WO2018198369A1 - Vane pump - Google Patents
Vane pump Download PDFInfo
- Publication number
- WO2018198369A1 WO2018198369A1 PCT/JP2017/017073 JP2017017073W WO2018198369A1 WO 2018198369 A1 WO2018198369 A1 WO 2018198369A1 JP 2017017073 W JP2017017073 W JP 2017017073W WO 2018198369 A1 WO2018198369 A1 WO 2018198369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- vane
- pump
- pair
- accommodation space
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
- F01C21/0809—Construction of vanes or vane holders
- F01C21/0818—Vane tracking; control therefor
- F01C21/0827—Vane tracking; control therefor by mechanical means
- F01C21/0836—Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/10—Outer members for co-operation with rotary pistons; Casings
- F01C21/104—Stators; Members defining the outer boundaries of the working chamber
- F01C21/106—Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3446—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/001—Radial sealings for working fluid
- F04C27/002—Radial sealings for working fluid of rigid material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2250/00—Geometry
- F04C2250/30—Geometry of the stator
Definitions
- the present invention relates to a vane pump, and more specifically, a rotor is disposed in a housing space of a pump housing to define a pair of pump chambers, and a vane tip provided so as to be able to appear and retract on an outer peripheral surface as the rotor rotates.
- the present invention relates to a vane pump that sucks and discharges fluid by changing the volume of each pump chamber while sliding in contact with the inner peripheral surface of the housing space.
- the capacity of the vane pump depends on the volume change of the pump chamber.
- the increase in the storage space for the purpose of increasing the capacity directly leads to an increase in the size of the vane pump itself and, in turn, the ease of mounting on vehicles. Resulting in.
- an elliptical accommodating space is defined in the cam ring, and a cylindrical rotor is disposed at the center of the ellipse inside the cam ring, so that both sides of the rotor are arranged. It defines a pair of crescent-shaped pump chambers. For this reason, as the rotor rotates, the vanes cause volume changes in the respective pump chambers, thereby achieving an increase in pump capacity without enlarging the accommodating space.
- the vane pump of Patent Document 2 can increase the pump capacity in the same occupied space as compared with that of Patent Document 1.
- the configuration of Patent Document 2 in order to achieve a further increase in the volume of the pump chamber, and hence an increase in the pump capacity, there is no choice but to enlarge the accommodating space.
- the present invention was made in order to solve such problems, and the object of the present invention is to achieve further increase in pump capacity after suppressing enlargement and ensuring good mountability.
- the object is to provide a vane pump that can.
- the vane pump of the present invention has a cylindrical rotor disposed in a housing space provided in a pump housing, and defines pump chambers on both sides of the rotor. Both ends of the outer peripheral surface of the rotor perpendicular to the installation direction are opposed to the inner peripheral surface of the accommodating space via a minute gap, respectively, and the tip of a vane provided so as to be able to appear and retract on the outer peripheral surface of the rotor as the rotor rotates is provided.
- the storage space connects the ends of a pair of semicircular arc surfaces with a pair of opposing surfaces
- the cross section is formed in a track shape.
- the distance between the pair of opposing surfaces is set to be narrower than the diameter of the rotor, and a pair of sealing surfaces having a circular arc shape corresponding to the outer peripheral surface of the rotor are formed on the inner peripheral surface of the accommodation space.
- a pair of sealing surfaces having a circular arc shape corresponding to the outer peripheral surface of the rotor are formed on the inner peripheral surface of the accommodation space.
- the outer peripheral surfaces of the rotor face each other through a minute gap in the area of each seal surface (Claim 2).
- At least end portions of the pair of seal surfaces of the storage space on the rotation direction side of the rotor are respectively formed with buffer surfaces having a circular arc shape having a center outside the storage space. Item 3).
- the sliding force to the buffer surface is caused by the centrifugal force acting on the vane and the fluid pressure in the outer circumferential direction. It is preferable that the curvature of the buffer surface is set so that the acceleration is in the protruding direction where the contact can be maintained (claim 4).
- vane pump of the present invention it is possible to achieve a further increase in pump capacity while suppressing an increase in size and ensuring good mountability.
- FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1 showing a rotor and vanes in the accommodation space.
- FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, showing a connection portion between the rotor and the output shaft of the motor.
- FIG. It is the schematic diagram which compared the shape of planar view of accommodation space by 1st Embodiment and patent document 2.
- FIG. It is a schematic diagram which shows the shape of planar view of the accommodation space of 2nd Embodiment. It is a schematic diagram which shows the shape of planar view of the accommodation space of another example of 2nd Embodiment.
- FIG. 1 is a perspective view showing the vacuum pump of the present embodiment
- FIG. 2 is an exploded perspective view showing the vacuum pump
- FIG. 3 is a sectional view taken along the line III-III of FIG. 1 showing the rotor and vanes in the accommodating space
- FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
- the vacuum pump 1 of this embodiment is mounted on a vehicle in order to generate a negative pressure to be supplied to the vehicle brake assist device.
- the vacuum pump 1 is shown in a posture when installed in the vehicle, and in the following description, the vehicle is mainly used to represent front and rear, left and right, and up and down directions.
- the vacuum pump 1 has a pump housing 2 as a center, a motor 3 fixed to the lower side, and a silencer housing 4 fixed to the upper side.
- the pump housing 2 is manufactured by aluminum die casting and has a cylindrical shape extending in the vertical direction.
- An inner peripheral wall 6 is formed so as to have a double inner / outer positional relationship with respect to the outer peripheral wall 5.
- a bottom wall 7 is integrally formed and closed at a lower portion of the inner peripheral wall 6, and an upper plate 8 is fixed to an upper opening portion of the inner peripheral wall 6 with screws 9, and these inner peripheral wall 6, bottom wall 7 and upper plate are fixed.
- a storage space 10 is defined by 8.
- the storage space 10 has a track shape in plan view, and the shape will be described in detail later because it is related to the gist of the present invention.
- a motor 3 is fixed to the lower surface of the pump housing 2 with screws 12, and an output shaft 13 is disposed in the motor 3 along an axis L extending in the vertical direction.
- a pair of upper and lower bearings 14 (the upper side is shown in FIG. 4). ) Is rotatably supported.
- a boss portion 15 projects upward from the upper portion of the motor 3 with the output shaft 13 as a center, and a cylindrical tube portion 16 projects downward from the lower surface of the bottom wall 7 of the pump housing 2. Yes.
- the cylinder portion 16 is fitted on the boss portion 15 with an O-ring 17 interposed therebetween, whereby the pump housing 2 and the motor 3 are positioned on the axis L.
- the output shaft 13 of the motor 3 protrudes upward from the shaft hole 15 a of the boss portion 15, and the upper portion is positioned in the accommodating space 10 through the cylindrical portion 16 of the pump housing 2 and the shaft hole 7 a of the bottom wall 7. Specifically, the upper portion of the output shaft 13 is located at the track center (both centered in the front-rear and left-right directions) of the accommodation space 10 in plan view.
- a cylindrical rotor 18 centering on the axis L is disposed in the accommodation space 10.
- a shaft hole 18 a is drilled along the axis L from below, and the upper part of the output shaft 13 is inserted into the rotor 18. ing.
- the relative rotation between the output shaft 13 and the rotor 18 is restricted by a rotation-preventing member 19 disposed in the shaft hole 18a, and the motor 18 causes the rotor 18 to move in a predetermined direction (counterclockwise in plan view indicated by an arrow in FIG. 3).
- a rotation-preventing member 19 disposed in the shaft hole 18a
- the lower surface of the rotor 18 is opposed to the bottom wall 7 of the accommodating space 10 via a minute gap, and the upper surface of the rotor 18 is opposed to the upper plate 8 via a minute gap.
- pump chambers 20 each having a crescent shape in plan view are defined on both front and rear sides of the rotor 18 in the accommodation space 10.
- a vane groove 18b is provided in six equally divided portions on the outer peripheral surface of the rotor 18 over the entire vertical width of the rotor 18, and a plate-like vane 21 is centered around the axis L in each vane groove 18b. It is arranged to be able to appear and retract in the inside and outside direction.
- the vertical width of each vane 21 is substantially the same as the vertical width of the rotor 18, and the tip (outer peripheral end) is inclined with respect to the base end (inner peripheral end) in the rotational direction of the rotor 18.
- the rotor 18 and the vane 21 are slidably contacted with each other in the housing space 10 during the operation of the vacuum pump 1, so that the rotor 18 and the vane 21 are made of self-lubricating carbon. Yes.
- a silencer housing 4 is fixed to the upper surface of the pump housing 2 with screws 22, and an expansion chamber and a resonance chamber are formed in the silencer housing 4 to relieve pulsation of air discharged from the vacuum pump 1, although not shown. Has been.
- a connector 24 for supplying power to the motor 3 and a nipple 25 connected to a brake assist device via a pneumatic hose (not shown) are provided on the front side of the outer peripheral wall 5 of the pump housing 2.
- a pair of suction ports 26 are recessed in the lower surface of the upper plate 8, and each suction port 26 opens into the pump chamber 20 (shown in phantom lines in FIG. 3).
- One suction port 26 communicates with the nipple 25 via a first suction passage 27 formed in the pump housing 2 and is an annular first recess that is recessed on the lower surface of the upper plate 8 so as to surround the accommodation space 10. 2 communicates with the other suction port 26 via the suction path 28.
- discharge ports (not shown) are opened in each pump chamber 20, and these discharge ports communicate with the outside from the discharge path 29 via the expansion chamber and the resonance chamber in the silencer housing 4.
- each vane 21 gradually changes the volume of the pump chamber 20 partitioned into a plurality while the tip end is in sliding contact with the inner peripheral surface of the accommodation space 10. .
- air from the brake assist device is sucked into one pump chamber 20 from one suction port 26 via the pneumatic hose, nipple 25 and first suction path 27, and the other via the second suction path 28.
- the suction port 26 is sucked into the other pump chamber 20.
- each pump chamber 20 air is transferred from the suction port 26 side to the discharge port side by the vane 21, and flows into the silencer housing 4 through the discharge path 29 from each discharge port. Air pulsation is relaxed in the process of flowing through the expansion chamber and the resonance chamber, and then air is discharged to the outside.
- An annular space 30 is formed between the inner peripheral wall 6 and the outer peripheral wall 5 of the pump housing 2, and the annular space 30 communicates with the outside through slits 31 formed on both front and rear sides of the outer peripheral wall 5.
- an engine cooling fan is disposed in front of the vacuum pump 1, and a part of the cooling air is sent to the vacuum pump 1.
- the cooling air flows into the annular space 30 from the front slit 31 and branches to the left and right, flows through both the left and right sides of the inner peripheral wall 6, joins, and is discharged from the rear slit 31 to the outside. Due to the circulation of the cooling air, the temperature rise of the vacuum pump 1 is suppressed.
- mounting flanges 33 having buffer members 32 are integrally formed on both the left and right sides of the pump housing 2, and the vacuum pump 1 is fixed to the vehicle body via these mounting flanges 33.
- the accommodation space of the vane pump of Patent Document 2 is elliptical in plan view. Specifically, it has a shape expressed by the following equation (1) on the X-axis and Y-axis planes.
- X 2 / A 2 + Y 2 / B 2 1 « (1)
- a / B is the ratio of the major axis to the minor axis of the ellipse.
- the shape setting of the accommodation space is intended to suppress the change in acceleration in the protruding direction of the vane as much as possible.
- each vane receives centrifugal force and air pressure in the outer peripheral direction (air pressure acting on the base end-air pressure acting on the tip end, which corresponds to the fluid pressure of the present invention). is recieving.
- Each of the vanes is urged in the outer circumferential direction by these forces, and repeatedly moves in and out in the vane groove following the shape of the inner circumferential surface while the tip is in sliding contact with the inner circumferential surface of the accommodation space.
- FIG. 5 is a schematic diagram comparing the shape of the accommodation space 10 in plan view between the first embodiment (solid line) and Patent Document 2 (virtual line).
- the vane 21 when entering the one pump chamber 20 via the point a is displaced in the protruding direction, and the acceleration change in the protruding direction at this time depends on the shape of the inner peripheral surface of the accommodating space 10. .
- the tip of the vane 21 is separated from the inner peripheral surface in spite of the centrifugal force and the air pressure described above, and the pump efficiency is reduced due to air leakage. Therefore, the shape giving priority to suppressing the acceleration change in the protruding direction of the vane 21 as much as possible is the accommodating space (indicated by 10 ′ in FIG. 5) of Patent Document 2.
- the accommodation space 10 of the present embodiment is set, and its shape will be sequentially described below as first to third embodiments.
- the accommodation space 10 of the vacuum pump 1 of the present embodiment has a track shape in plan view.
- a shape in which the ends of a pair of semicircles having a constant radius Rp are connected by a pair of straight lines is defined as a track shape.
- A indicates a semicircular region (semicircular arc surface A described below)
- B indicates a straight region (parallel surface B described below)
- a point including the linear region B and a constant radius Rp.
- the point having the semicircular region A is a track-like feature. Since the accommodation space 10 has a width in the vertical direction, the accommodation space 10 of this embodiment is formed by connecting the ends of a pair of front and rear semicircular arc surfaces A with a pair of left and right parallel surfaces B (opposing surfaces). It can be expressed as a cross-sectional track shape.
- the cylindrical rotor 18 disposed in the accommodating space 10 defines a crescent-shaped pump chamber 20 corresponding to the front and rear semicircular arc surfaces A, and both left and right sides of the outer peripheral surface of the rotor 18. (Both sides perpendicular to the direction in which the pump chambers 20 are arranged in parallel) are opposed to the left and right parallel planes B through minute gaps, and the front and rear pump chambers 20 are partitioned through these minute gaps.
- the radius Rp of the pair of semicircular arc surfaces does not necessarily have to be the same, and different radii (one Rp> Rr> the other Rp) are included in the track shape of the present invention.
- the accommodation space 10 ′ of Patent Document 2 expressed by the above formula (1) is elliptical.
- the main difference from the track shape is that there is no straight region, and there is no region with a constant radius Rp like the track shape, and the radius is not determined based on the equation (1). Due to this difference, the volume of the pump chamber 20 of this embodiment is increased compared to the pump chamber of Patent Document 2 by an amount corresponding to the four regions C in FIG.
- the pump chamber 20 secured by the track-like and elliptical containing spaces 10, 10 ' after setting the long axis L1 and the short axis L2 of the containing spaces 10, 10' that affect the space occupied by the vacuum pump to be the same. Compare the volumes.
- the total area of the pair of pump chambers in the elliptical accommodation space 10 ′ is 292 mm 2 .
- the total area of the pair of pump chambers 20 is 382 mm 2 and an increase of about 31% can be achieved.
- the volume of the pump chamber 20 increases accordingly, so that according to the present embodiment, the vacuum pump 1 can be prevented from being enlarged and a good pumpability can be ensured. An increase in capacity can be achieved.
- the outer peripheral surface of the cylindrical rotor 18 is locally opposed to the pair of parallel surfaces B forming the accommodation space 10 at two points on the left and right sides. It is. For this reason, the seal length in the front-rear direction (region where the minute gap is formed) partitioning the front and rear pump chambers 20 is very short, that is, only line contact.
- the aluminum pump housing 2 in which the accommodation space 10 is defined and the carbon rotor 18 are greatly different in linear expansion coefficient, the inner circumferential surface of the accommodation space 10 and the outer circumferential surface of the rotor 18 are different. Even if the gap is adjusted to be small, the gap increases at high temperatures. As a result, coupled with the short seal length described above, there is a concern that pump efficiency may be reduced due to air leakage particularly at high temperatures. Therefore, a second embodiment in which a measure for extending the seal length is added based on the configuration of the present embodiment (track-shaped accommodation space 10) will be described below.
- FIG. 6 is a schematic diagram showing the shape of the accommodation space 10 of the second embodiment in plan view.
- the shape of the accommodation space 10 of this embodiment is the same as that of the first embodiment, and the same is true in that the pair of front and rear semicircular arc surfaces A are set to the same radius Rp.
- the radius Rp of the semicircular arc surface A is set slightly smaller than the radius Rr of the rotor 18. For this reason, the interval between the pair of parallel surfaces B connecting the ends of the semicircular arc A is set slightly narrower than the diameter of the rotor 18.
- a seal surface D having an arc cross section corresponding to the outer peripheral surface of the rotor 18 is formed in the region of each parallel surface B, and the outer peripheral surface of the rotor 18 has a minute gap in the entire region of the seal surface D. Are opposed to each other.
- a very long region corresponding to the seal surface D is secured as the seal length in the front-rear direction that partitions the front and rear pump chambers 20, and against the line contact of the first embodiment. In other words, it can be expressed as surface contact. Therefore, when the air leaks, it is necessary to pass through a long path (seal length) with a minute gap, so even if the gap increases due to the temperature rise of the vacuum pump 1, it is the same as that of the first embodiment. In comparison, the amount of air leakage can be significantly reduced.
- the present embodiment it is possible to prevent a decrease in pump efficiency due to leakage at a high temperature, and in combination with an increase in pump capacity due to the adoption of the track-shaped accommodation space 10, the performance of the vacuum pump is greatly increased. Can be improved.
- an advantageous feature against such an air leak is that a pump equivalent to that of the first embodiment can be obtained even if the gap between the inner peripheral surface of the accommodating space 10 and the outer peripheral surface of the rotor 18 is set to be slightly larger. It means that efficiency can be achieved. For this reason, the assembly of the vacuum pump 1 can be facilitated and the productivity can be improved, and the rapid wear of the rotor 18 that occurs when the gap is too small can be avoided, and the durability of the vacuum pump 1 can be improved. Another advantage is also obtained.
- the longitudinal length of the seal surface D is increased.
- the front-rear length exceeds the front-rear length of the parallel surface B, the parallel surface B is replaced with the seal surface D.
- the present invention includes such setting of the seal surface D, and will be described below as another example of the second embodiment.
- FIG. 7 is a schematic diagram showing the shape of the accommodation space 10 of another example of the second embodiment in plan view.
- this alternative example there are no parallel surfaces B on both front and rear sides of the seal surface D, and both front and rear ends of the seal surface D are directly connected to the end of the semicircular arc surface A.
- a longer seal length than that of the second embodiment is ensured. Therefore, the amount of air leakage at a high temperature can be further reduced, and a decrease in pump efficiency can be more reliably prevented.
- the acceleration in the direction in which the vanes 21 protrude and retract with the rotation of the rotor 18 is discontinuous.
- abnormal noise may be generated due to the instantaneous separation of the vanes 21, it is desirable to suppress the acceleration change of the vanes 21.
- FIG. 8 is a partially enlarged view of a region X in FIG. 6 showing the separation of the vanes 21 generated in the second embodiment.
- the second embodiment and the other examples can suppress the leakage at a higher temperature than the first embodiment by increasing the seal length, but the instantaneous leakage synchronized with the rotation of the rotor 18 occurs and the merit is reduced by half. There is a concern. Therefore, a third embodiment and another example in which measures for suppressing instantaneous leaks are added based on the configuration of the present embodiment and another example (track-shaped accommodation space 10 + seal surface D) will be described below.
- FIG. 9 is a partially enlarged view corresponding to FIG. 8 showing the periphery of the buffer surface of the accommodation space 10 of the third embodiment.
- the buffer surface E is formed at each connection point (point b) between the end of each seal surface D on the rotor rotation direction side and the end of the parallel surface B.
- These buffer surfaces E have a circular arc shape with a radius Rb having a center p outside the accommodating space 10, and the seal surface D and the parallel surface B are connected via the buffer surface E.
- the buffer surface E is curved in the direction opposite to the curved shape of the semicircular arc surface A and the seal surface D (concave when viewed from inside the accommodating space 10) (convex when viewed from inside the accommodating space 10). is doing.
- the vane 21 moves from the seal surface D to the parallel surface B through the buffer surface E as the rotor 18 rotates. Then, the vane 21 gently increases the acceleration in the protruding direction following the curvature of the buffer surface E by sliding the tip to the buffer surface E. As a result, the rapid increase in acceleration in the protruding direction that occurs when the seal surface D directly shifts to the parallel surface B at the point b in FIG. 6 is suppressed, and the tip of the vane 21 is the inner peripheral surface of the accommodation space 10. Since the sliding contact is maintained without being separated, instantaneous air leakage is avoided.
- the present embodiment it is possible to suppress the instantaneous leak synchronized with the rotation of the rotor 18 while suppressing the leakage at a high temperature by increasing the seal length of the second embodiment. A decrease in pump efficiency can be prevented more reliably. In addition, abnormal noise caused by the separation of the vanes 21 can be suppressed.
- the radius Rb of the buffer surface E having such an action is set so as to satisfy the following requirements.
- the acceleration in the protruding direction of the vane 21 in sliding contact with the buffer surface E depends on the curvature determined by the radius Rb of the buffer surface E.
- the vane 21 that is in sliding contact with the buffer surface E receives a centrifugal force about the axis L, and receives an air pressure in the outer peripheral direction and is biased toward the outer peripheral side.
- the vane 21 is displaced in the projecting direction at an acceleration exceeding the urging force, the sliding contact with the buffer surface E cannot be maintained and the tip is separated.
- the curvature of the buffer surface E and the radius Rb are determined so that the vane 21 receiving the biasing force is displaced in the protruding direction at an acceleration slightly smaller than the maximum acceleration at which the sliding contact with the buffer surface E can be maintained. It has been.
- the radius Rb of the buffer surface E as described above, the effect related to the instantaneous air leakage can be obtained with certainty.
- the buffer surface E as described above can be applied to another example of the second embodiment, and a partially enlarged view thereof is shown in FIG.
- another buffer surface E as in the third embodiment has an arcuate cross section having a center p outside the accommodation space 10, and the end of the seal surface D on the rotor rotation direction side and the semicircular arc surface A. It is formed in the connection location (point b) with the edge part. Since the operation of the buffer surface E is the same as that of the third embodiment, the description thereof will not be repeated. However, the increase in acceleration in the protruding direction of the vane 21 during sliding contact with the buffer surface E is moderated, and the rotor 18 Instantaneous leakage synchronized with the rotation of can be suppressed.
- the buffer surface E is formed based on the single center p and the radius Rb.
- the present invention is not limited to this.
- the cross-sectional shape of the buffer surface E may be formed by combining a plurality of arcs having different centers and radii.
- the buffer surface E is formed at the end of each seal surface D on the rotor rotation direction side (point b in FIGS. 6 and 7).
- the buffer surface E may also be formed (indicated by point c in FIGS. 6 and 7).
- the present invention is applied to the vacuum pump 1 that sucks and discharges air as a fluid to generate a negative pressure
- the type of the vane pump is not limited to this.
- the pump may be embodied as an air pump that operates by supplying discharged air to an actuator, or may be embodied as a pump that sucks and discharges liquid such as oil or fuel.
- the pump housing 2 is made of aluminum die casting and the rotor 18 and the vane 21 are made of carbon.
- the material is not limited to these materials. Since the pump housing 2 may be made of a material having good heat conduction, it may be made of stainless steel or cast iron, for example.
- the rotor 18 and the vane 21 are not necessarily made of a material having self-lubricating properties.
- the rotor 18 and the vane 21 may be made of aluminum on the premise of lubrication with oil, or limited to carbon even in the case of no lubrication. Alternatively, other self-lubricating materials such as resin may be used.
- the outer peripheral wall 5, inner peripheral wall 6 and bottom wall 7 of the pump housing 2 are integrally formed.
- the present invention is not limited to this.
- the inner peripheral wall 6 is a separate cam ring and the bottom wall 7 is separated.
- the lower plate of the member may be used, and these may be assembled to the pump housing 2.
- Vacuum pump (vane pump) 2 Pump housing 10 Housing space 18 Rotor 20 Pump chamber 21 Vane A Semi-circular arc surface B Parallel surface (opposing surface) D Seal surface E Buffer surface
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
In this vane pump, a cylindrical rotor (18) is arranged within an accommodation space (10) of a pump housing (2), a pair of pump chambers (20) are individually defined on the front and rear sides of the rotor (18), and the left and right sides of the outer circumferential surface of the rotor (18) are each made to face the inner circumferential surface of the accommodation space (10) with a minute gap therebetween. The rotor (18) is rotationally driven by a motor (3) and air is taken in and discharged as a result of a vane (21) on the outer circumference causing the capacity of each of the pump chambers (20) to change. The accommodation space (10) is formed to have a cross-sectional track shape in which the ends of a pair of semicircular arc surfaces A are connected by a pair of parallel surfaces B in a planar view.
Description
本発明は、ベーンポンプに係り、詳しくは、ポンプハウジングの収容空間内にロータを配設して一対のポンプ室を画成し、ロータの回転に伴い外周面に出没可能に設けられたベーンの先端を収容空間の内周面に摺接させながら、各ポンプ室を容積変化させて流体を吸入・吐出するベーンポンプに関する。
The present invention relates to a vane pump, and more specifically, a rotor is disposed in a housing space of a pump housing to define a pair of pump chambers, and a vane tip provided so as to be able to appear and retract on an outer peripheral surface as the rotor rotates. The present invention relates to a vane pump that sucks and discharges fluid by changing the volume of each pump chamber while sliding in contact with the inner peripheral surface of the housing space.
この種のベーンポンプには、ポンプ室の画成状態を異にする種々の形式が存在する。例えば特許文献1の図4に記載されたベーンポンプでは、カムリングの両側面をプレートにより閉塞して円筒状をなす収容空間を画成し、その内部の偏芯位置に円筒状のロータを配置している。結果として収容空間内には三日月状をなす単一のポンプ室が画成され、そのポンプ室をロータの回転に伴いベーンにより容積変化させて流体を吸入・吐出している。
¡There are various types of vane pumps of this type with different defined conditions in the pump chamber. For example, in the vane pump described in FIG. 4 of Patent Document 1, both sides of the cam ring are closed by plates to define a cylindrical storage space, and a cylindrical rotor is arranged at an eccentric position inside the storage space. Yes. As a result, a single crescent-shaped pump chamber is defined in the accommodating space, and the volume of the pump chamber is changed by a vane with the rotation of the rotor to suck and discharge fluid.
ベーンポンプの容量(流体の吐出量)はポンプ室の容積変化に依存するが、容量の増加を目的とした収容空間の大型化はベーンポンプ自体の大型化、ひいては車両等への搭載性の悪化に直結してしまう。
The capacity of the vane pump (the amount of fluid discharged) depends on the volume change of the pump chamber. However, the increase in the storage space for the purpose of increasing the capacity directly leads to an increase in the size of the vane pump itself and, in turn, the ease of mounting on vehicles. Resulting in.
そこで、例えば特許文献2の図2に記載されたベーンポンプでは、カムリング内に楕円状をなす収容空間を画成し、その内部の楕円中心に円筒状のロータを配置することにより、ロータの両側に三日月状をなす一対のポンプ室を画成している。このためロータの回転に伴いベーンにより各ポンプ室で容積変化が生起され、これにより収容空間をそれほど大型化することなくポンプ容量の増加を達成している。
Therefore, for example, in the vane pump described in FIG. 2 of Patent Document 2, an elliptical accommodating space is defined in the cam ring, and a cylindrical rotor is disposed at the center of the ellipse inside the cam ring, so that both sides of the rotor are arranged. It defines a pair of crescent-shaped pump chambers. For this reason, as the rotor rotates, the vanes cause volume changes in the respective pump chambers, thereby achieving an increase in pump capacity without enlarging the accommodating space.
上記のように特許文献2のベーンポンプは、特許文献1のものに比較すれば同一の占有スペースでポンプ容量を増加可能である。しかしながら、特許文献2の構成を採用する限り、更なるポンプ室の容積増加、ひいてはポンプ容量の増加を達成するには収容空間を大型化するしかなく、この点で限界があった。
As described above, the vane pump of Patent Document 2 can increase the pump capacity in the same occupied space as compared with that of Patent Document 1. However, as long as the configuration of Patent Document 2 is adopted, in order to achieve a further increase in the volume of the pump chamber, and hence an increase in the pump capacity, there is no choice but to enlarge the accommodating space.
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、大型化を抑制して良好な搭載性を確保した上で、更なるポンプ容量の増加を達成することができるベーンポンプを提供することにある。
The present invention was made in order to solve such problems, and the object of the present invention is to achieve further increase in pump capacity after suppressing enlargement and ensuring good mountability. The object is to provide a vane pump that can.
上記の目的を達成するため、本発明のベーンポンプは、ポンプハウジングに設けた収容空間内に円筒状のロータを配設して、ロータの両側にポンプ室をそれぞれ画成すると共に、ポンプ室の並設方向と直交する前記ロータの外周面の両側を収容空間の内周面にそれぞれ微小間隙を介して相対向させ、ロータの回転に伴いロータの外周面に出没可能に設けられたベーンの先端を収容空間の内周面に摺接させながら、各ポンプ室を容積変化させて流体を吸入・吐出するベーンポンプにおいて、収容空間が、一対の半円弧面の互いの端部を一対の対向面で接続してなる断面トラック状に形成されていることを特徴とする(請求項1)。
In order to achieve the above object, the vane pump of the present invention has a cylindrical rotor disposed in a housing space provided in a pump housing, and defines pump chambers on both sides of the rotor. Both ends of the outer peripheral surface of the rotor perpendicular to the installation direction are opposed to the inner peripheral surface of the accommodating space via a minute gap, respectively, and the tip of a vane provided so as to be able to appear and retract on the outer peripheral surface of the rotor as the rotor rotates is provided. In a vane pump that draws and discharges fluid by changing the volume of each pump chamber while sliding in contact with the inner peripheral surface of the storage space, the storage space connects the ends of a pair of semicircular arc surfaces with a pair of opposing surfaces The cross section is formed in a track shape.
その他の態様として、一対の対向面の間隔が、ロータの直径に比して狭く設定され、収容空間の内周面には、ロータの外周面と対応する断面円弧状の一対のシール面が形成され、各シール面の領域でロータの外周面が微小間隙を介して相対向していることが好ましい(請求項2)。
As another aspect, the distance between the pair of opposing surfaces is set to be narrower than the diameter of the rotor, and a pair of sealing surfaces having a circular arc shape corresponding to the outer peripheral surface of the rotor are formed on the inner peripheral surface of the accommodation space. In addition, it is preferable that the outer peripheral surfaces of the rotor face each other through a minute gap in the area of each seal surface (Claim 2).
その他の態様として、収容空間の一対のシール面の少なくともロータの回転方向側の端部に、それぞれ収容空間の外に中心を有する断面円弧状をなす緩衝面が形成されていることが好ましい(請求項3)。
As another aspect, it is preferable that at least end portions of the pair of seal surfaces of the storage space on the rotation direction side of the rotor are respectively formed with buffer surfaces having a circular arc shape having a center outside the storage space. Item 3).
その他の態様として、緩衝面を摺接中の前記ベーンが緩衝面の曲率に倣って突出方向に位置変位するときに、ベーンに作用する遠心力及び外周方向への流体圧により緩衝面への摺接を維持可能な突出方向への加速度となるように、緩衝面の曲率が設定されていることが好ましい(請求項4)。
As another aspect, when the vane sliding on the buffer surface is displaced in the protruding direction following the curvature of the buffer surface, the sliding force to the buffer surface is caused by the centrifugal force acting on the vane and the fluid pressure in the outer circumferential direction. It is preferable that the curvature of the buffer surface is set so that the acceleration is in the protruding direction where the contact can be maintained (claim 4).
本発明のベーンポンプによれば、大型化を抑制して良好な搭載性を確保した上で、更なるポンプ容量の増加を達成することができる。
According to the vane pump of the present invention, it is possible to achieve a further increase in pump capacity while suppressing an increase in size and ensuring good mountability.
以下、本発明をベーン式のバキュームポンプに具体化した一実施形態を説明する。
図1は本実施形態のバキュームポンプを示す斜視図、図2はバキュームポンプを示す分解斜視図、図3は収容空間内のロータ及びベーンを示す図1のIII-III線断面図、図4はロータとモータの出力軸との連結箇所を示す図3のIV-IV線断面図である。 Hereinafter, an embodiment in which the present invention is embodied in a vane type vacuum pump will be described.
1 is a perspective view showing the vacuum pump of the present embodiment, FIG. 2 is an exploded perspective view showing the vacuum pump, FIG. 3 is a sectional view taken along the line III-III of FIG. 1 showing the rotor and vanes in the accommodating space, and FIG. FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
図1は本実施形態のバキュームポンプを示す斜視図、図2はバキュームポンプを示す分解斜視図、図3は収容空間内のロータ及びベーンを示す図1のIII-III線断面図、図4はロータとモータの出力軸との連結箇所を示す図3のIV-IV線断面図である。 Hereinafter, an embodiment in which the present invention is embodied in a vane type vacuum pump will be described.
1 is a perspective view showing the vacuum pump of the present embodiment, FIG. 2 is an exploded perspective view showing the vacuum pump, FIG. 3 is a sectional view taken along the line III-III of FIG. 1 showing the rotor and vanes in the accommodating space, and FIG. FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
本実施形態のバキュームポンプ1は、車両のブレーキアシスト装置に供給する負圧を発生させるために車両に搭載されている。各図では、車両に設置されたときの姿勢でバキュームポンプ1が示されており、以下の説明では、車両を主体として前後、左右、上下方向を表現する。
The vacuum pump 1 of this embodiment is mounted on a vehicle in order to generate a negative pressure to be supplied to the vehicle brake assist device. In each figure, the vacuum pump 1 is shown in a posture when installed in the vehicle, and in the following description, the vehicle is mainly used to represent front and rear, left and right, and up and down directions.
全体としてバキュームポンプ1はポンプハウジング2を中心として、その下側にモータ3を固定し、上側に消音ハウジング4を固定して構成されている。
As a whole, the vacuum pump 1 has a pump housing 2 as a center, a motor 3 fixed to the lower side, and a silencer housing 4 fixed to the upper side.
ポンプハウジング2はアルミダイカスト成型により製作されて上下方向に延びる円筒状をなし、その外周壁5に対して内外二重の位置関係となるように内周壁6が形成されている。内周壁6の下部は底壁7が一体形成されて閉塞され、内周壁6の上方への開口部にはアッパープレート8がビス9により固定され、これらの内周壁6、底壁7及びアッパープレート8により収容空間10が画成されている。収容空間10は平面視においてトラック状をなしているが、その形状は本発明の要旨に関わるため後に詳述する。
The pump housing 2 is manufactured by aluminum die casting and has a cylindrical shape extending in the vertical direction. An inner peripheral wall 6 is formed so as to have a double inner / outer positional relationship with respect to the outer peripheral wall 5. A bottom wall 7 is integrally formed and closed at a lower portion of the inner peripheral wall 6, and an upper plate 8 is fixed to an upper opening portion of the inner peripheral wall 6 with screws 9, and these inner peripheral wall 6, bottom wall 7 and upper plate are fixed. A storage space 10 is defined by 8. The storage space 10 has a track shape in plan view, and the shape will be described in detail later because it is related to the gist of the present invention.
ポンプハウジング2の下面にはモータ3がビス12により固定され、モータ3内には上下方向に延びる軸線Lに沿って出力軸13が配設されて上下一対のベアリング14(図4に上側を示す)により回転可能に支持されている。モータ3の上部には出力軸13を中心としてボス部15が上方に向けて突設され、ポンプハウジング2の底壁7の下面には円筒状の筒部16が下方に向けて突設されている。筒部16はボス部15に対してOリング17を挟んで外嵌しており、これにより軸線L上でポンプハウジング2とモータ3とが位置決めされている。
A motor 3 is fixed to the lower surface of the pump housing 2 with screws 12, and an output shaft 13 is disposed in the motor 3 along an axis L extending in the vertical direction. A pair of upper and lower bearings 14 (the upper side is shown in FIG. 4). ) Is rotatably supported. A boss portion 15 projects upward from the upper portion of the motor 3 with the output shaft 13 as a center, and a cylindrical tube portion 16 projects downward from the lower surface of the bottom wall 7 of the pump housing 2. Yes. The cylinder portion 16 is fitted on the boss portion 15 with an O-ring 17 interposed therebetween, whereby the pump housing 2 and the motor 3 are positioned on the axis L.
モータ3の出力軸13はボス部15の軸孔15aから上方に突出し、ポンプハウジング2の筒部16内及び底壁7の軸孔7aを経て上部を収容空間10内に位置させている。詳しくは出力軸13の上部は、平面視において収容空間10のトラック中心(前後及び左右方向で共に中心)に位置している。
The output shaft 13 of the motor 3 protrudes upward from the shaft hole 15 a of the boss portion 15, and the upper portion is positioned in the accommodating space 10 through the cylindrical portion 16 of the pump housing 2 and the shaft hole 7 a of the bottom wall 7. Specifically, the upper portion of the output shaft 13 is located at the track center (both centered in the front-rear and left-right directions) of the accommodation space 10 in plan view.
収容空間10内には軸線Lを中心とした円筒状をなすロータ18が配設され、ロータ18には軸線Lに沿って下方より軸孔18aが穿設されて出力軸13の上部が挿入されている。軸孔18a内に配設された回止め部材19により出力軸13とロータ18との相対回転が規制されており、モータ3によりロータ18が所定方向(図3に矢印で示す平面視で反時計回り)に回転駆動されるようになっている。
A cylindrical rotor 18 centering on the axis L is disposed in the accommodation space 10. A shaft hole 18 a is drilled along the axis L from below, and the upper part of the output shaft 13 is inserted into the rotor 18. ing. The relative rotation between the output shaft 13 and the rotor 18 is restricted by a rotation-preventing member 19 disposed in the shaft hole 18a, and the motor 18 causes the rotor 18 to move in a predetermined direction (counterclockwise in plan view indicated by an arrow in FIG. 3). Around).
ロータ18の下面は収容空間10の底壁7に対し微小間隙を介して相対向し、ロータ18の上面はアッパープレート8に対し微小間隙を介して相対向している。結果として収容空間10内のロータ18の前後両側には、平面視で三日月形状をなすポンプ室20がそれぞれ画成されている。
The lower surface of the rotor 18 is opposed to the bottom wall 7 of the accommodating space 10 via a minute gap, and the upper surface of the rotor 18 is opposed to the upper plate 8 via a minute gap. As a result, pump chambers 20 each having a crescent shape in plan view are defined on both front and rear sides of the rotor 18 in the accommodation space 10.
ロータ18の外周面の等分6箇所には、ロータ18の上下幅全体に亘ってベーン溝18bが凹設され、各ベーン溝18b内には、板状のベーン21がそれぞれ軸線Lを中心とした内外方向に出没可能に配設されている。各ベーン21の上下幅はロータ18の上下幅と略一致すると共に、その基端(内周端)に対して先端(外周端)をロータ18の回転方向に傾けた姿勢を採っている。
A vane groove 18b is provided in six equally divided portions on the outer peripheral surface of the rotor 18 over the entire vertical width of the rotor 18, and a plate-like vane 21 is centered around the axis L in each vane groove 18b. It is arranged to be able to appear and retract in the inside and outside direction. The vertical width of each vane 21 is substantially the same as the vertical width of the rotor 18, and the tip (outer peripheral end) is inclined with respect to the base end (inner peripheral end) in the rotational direction of the rotor 18.
以下に述べるように、バキュームポンプ1の作動中にはロータ18及びベーン21が収容空間10内で無潤滑で摺接するため、これらのロータ18及びベーン21は自己潤滑性を有するカーボンにより製作されている。
As will be described below, the rotor 18 and the vane 21 are slidably contacted with each other in the housing space 10 during the operation of the vacuum pump 1, so that the rotor 18 and the vane 21 are made of self-lubricating carbon. Yes.
ポンプハウジング2の上面には消音ハウジング4がビス22により固定され、図示はしないが消音ハウジング4内には、バキュームポンプ1から吐出される空気の脈動を緩和するための拡張室や共鳴室が形成されている。
A silencer housing 4 is fixed to the upper surface of the pump housing 2 with screws 22, and an expansion chamber and a resonance chamber are formed in the silencer housing 4 to relieve pulsation of air discharged from the vacuum pump 1, although not shown. Has been.
図3に示すように、ポンプハウジング2の外周壁5の前側にはモータ3に給電するためのコネクタ24、及び図示しない空圧ホースを介してブレーキアシスト装置に接続されるニップル25が設けられている。アッパープレート8の下面には一対の吸入ポート26が凹設され、各吸入ポート26はそれぞれポンプ室20内に開口している(図3に仮想線で示す)。一方の吸入ポート26は、ポンプハウジング2に形成された第1吸入路27を介して上記ニップル25と連通すると共に、アッパープレート8の下面に収容空間10を取り囲むように凹設された環状の第2吸入路28を介して他方の吸入ポート26と連通している。
また、各ポンプ室20内には図示しない吐出ポートがそれぞれ開口し、これらの吐出ポートは吐出路29から消音ハウジング4内の拡張室及び共鳴室を介して外部と連通している。 As shown in FIG. 3, aconnector 24 for supplying power to the motor 3 and a nipple 25 connected to a brake assist device via a pneumatic hose (not shown) are provided on the front side of the outer peripheral wall 5 of the pump housing 2. Yes. A pair of suction ports 26 are recessed in the lower surface of the upper plate 8, and each suction port 26 opens into the pump chamber 20 (shown in phantom lines in FIG. 3). One suction port 26 communicates with the nipple 25 via a first suction passage 27 formed in the pump housing 2 and is an annular first recess that is recessed on the lower surface of the upper plate 8 so as to surround the accommodation space 10. 2 communicates with the other suction port 26 via the suction path 28.
In addition, discharge ports (not shown) are opened in eachpump chamber 20, and these discharge ports communicate with the outside from the discharge path 29 via the expansion chamber and the resonance chamber in the silencer housing 4.
また、各ポンプ室20内には図示しない吐出ポートがそれぞれ開口し、これらの吐出ポートは吐出路29から消音ハウジング4内の拡張室及び共鳴室を介して外部と連通している。 As shown in FIG. 3, a
In addition, discharge ports (not shown) are opened in each
従って、モータ3により収容空間10内でロータ18が回転駆動されると、各ベーン21は先端を収容空間10の内周面に摺接させながら、複数に区画したポンプ室20を次第に容積変化させる。これにより、ブレーキアシスト装置からの空気が空圧ホース及びニップル25及び第1吸入路27を経て一方の吸入ポート26から一方のポンプ室20内に吸入されると共に、第2吸入路28を経て他方の吸入ポート26から他方のポンプ室20内に吸入される。
Therefore, when the rotor 18 is rotationally driven in the accommodation space 10 by the motor 3, each vane 21 gradually changes the volume of the pump chamber 20 partitioned into a plurality while the tip end is in sliding contact with the inner peripheral surface of the accommodation space 10. . As a result, air from the brake assist device is sucked into one pump chamber 20 from one suction port 26 via the pneumatic hose, nipple 25 and first suction path 27, and the other via the second suction path 28. The suction port 26 is sucked into the other pump chamber 20.
各ポンプ室20内ではベーン21により空気が吸入ポート26側から吐出ポート側へと移送され、それぞれの吐出ポートから吐出路29を経て消音ハウジング4内に流入する。空気の脈動は拡張室及び共鳴室を流通する過程で緩和され、その後に空気が外部に吐出される。
In each pump chamber 20, air is transferred from the suction port 26 side to the discharge port side by the vane 21, and flows into the silencer housing 4 through the discharge path 29 from each discharge port. Air pulsation is relaxed in the process of flowing through the expansion chamber and the resonance chamber, and then air is discharged to the outside.
ポンプハウジング2の内周壁6と外周壁5との間には環状の空間30が形成され、この環状空間30は、外周壁5の前後両側に形成されたスリット31を介してそれぞれ外部と連通している。図示はしないが、バキュームポンプ1の前方にはエンジン冷却用ファンが配設され、冷却風の一部がバキュームポンプ1に送られる。冷却風は前側のスリット31から環状空間30内に流入して左右に分岐し、内周壁6の左右両側を流通した後に合流して後側のスリット31から外部に排出される。この冷却風の流通により、バキュームポンプ1の温度上昇が抑制される。
An annular space 30 is formed between the inner peripheral wall 6 and the outer peripheral wall 5 of the pump housing 2, and the annular space 30 communicates with the outside through slits 31 formed on both front and rear sides of the outer peripheral wall 5. ing. Although not shown, an engine cooling fan is disposed in front of the vacuum pump 1, and a part of the cooling air is sent to the vacuum pump 1. The cooling air flows into the annular space 30 from the front slit 31 and branches to the left and right, flows through both the left and right sides of the inner peripheral wall 6, joins, and is discharged from the rear slit 31 to the outside. Due to the circulation of the cooling air, the temperature rise of the vacuum pump 1 is suppressed.
一方、ポンプハウジング2の左右両側には緩衝部材32を備えた取付フランジ33が一体形成され、これらの取付フランジ33を介してバキュームポンプ1が車体に固定されるようになっている。
On the other hand, mounting flanges 33 having buffer members 32 are integrally formed on both the left and right sides of the pump housing 2, and the vacuum pump 1 is fixed to the vehicle body via these mounting flanges 33.
ところで、[発明が解決しようとする課題]で述べたように、本実施形態と同様にロータの両側にポンプ室を画成した特許文献2のベーンポンプでは、更にポンプ容量を増加するには収容空間を大型化するしかなく、必然的にベーンポンプ自体の大型化により車両への搭載性が悪化するという問題があった。
By the way, as described in [Problems to be Solved by the Invention], in the vane pump of Patent Document 2 in which the pump chambers are defined on both sides of the rotor as in the present embodiment, the accommodation space is required to further increase the pump capacity. However, there is a problem that the mountability of the vane pump itself deteriorates due to the enlargement of the vane pump itself.
以上の不具合を鑑みて本発明者は、収容空間の形状に着目した。特許文献2のベーンポンプの収容空間は平面視において楕円状をなしている。詳しくは、X軸及びY軸の平面上で次式(1)により表現される形状をなしている。
X2/A2+Y2/B2=1……(1)
ここに、A/Bは楕円の長径と短径の比率である。
このような収容空間の形状設定は、ベーンの突出方向への加速度変化を極力抑制することを目的としたものである。 In view of the above problems, the present inventor has focused on the shape of the accommodation space. The accommodation space of the vane pump ofPatent Document 2 is elliptical in plan view. Specifically, it has a shape expressed by the following equation (1) on the X-axis and Y-axis planes.
X 2 / A 2 + Y 2 / B 2 = 1 …… (1)
Here, A / B is the ratio of the major axis to the minor axis of the ellipse.
The shape setting of the accommodation space is intended to suppress the change in acceleration in the protruding direction of the vane as much as possible.
X2/A2+Y2/B2=1……(1)
ここに、A/Bは楕円の長径と短径の比率である。
このような収容空間の形状設定は、ベーンの突出方向への加速度変化を極力抑制することを目的としたものである。 In view of the above problems, the present inventor has focused on the shape of the accommodation space. The accommodation space of the vane pump of
X 2 / A 2 + Y 2 / B 2 = 1 …… (1)
Here, A / B is the ratio of the major axis to the minor axis of the ellipse.
The shape setting of the accommodation space is intended to suppress the change in acceleration in the protruding direction of the vane as much as possible.
即ち、ベーンポンプの作動中において、各ベーンは遠心力を受けると共に、外周方向への空圧(基端に作用する空圧-先端に作用する空圧であり、本発明の流体圧に相当)を受けている。これらの力により各ベーンは外周方向に付勢され、先端を収容空間の内周面に摺接させながら内周面の形状に倣ってベーン溝内で出没を繰り返している。
That is, during the operation of the vane pump, each vane receives centrifugal force and air pressure in the outer peripheral direction (air pressure acting on the base end-air pressure acting on the tip end, which corresponds to the fluid pressure of the present invention). is recieving. Each of the vanes is urged in the outer circumferential direction by these forces, and repeatedly moves in and out in the vane groove following the shape of the inner circumferential surface while the tip is in sliding contact with the inner circumferential surface of the accommodation space.
図5は収容空間10の平面視の形状を第1実施形態(実線)と特許文献2(仮想線)とで比較した模式図である。
例えば、ポイントaを経て一方のポンプ室20内へと侵入する際のベーン21は突出方向に位置変位し、このときの突出方向への加速度変化は収容空間10の内周面の形状に依存する。加速度変化が急激な場合には、上記した遠心力や空圧を受けているにも拘わらずベーン21の先端が内周面から離間し、空気のリークによりポンプ効率が低下してしまう。そこで、ベーン21の突出方向への加速度変化を極力抑制することを優先した形状が、特許文献2の収容空間(図5中に10’で示す)である。 FIG. 5 is a schematic diagram comparing the shape of theaccommodation space 10 in plan view between the first embodiment (solid line) and Patent Document 2 (virtual line).
For example, thevane 21 when entering the one pump chamber 20 via the point a is displaced in the protruding direction, and the acceleration change in the protruding direction at this time depends on the shape of the inner peripheral surface of the accommodating space 10. . When the change in acceleration is rapid, the tip of the vane 21 is separated from the inner peripheral surface in spite of the centrifugal force and the air pressure described above, and the pump efficiency is reduced due to air leakage. Therefore, the shape giving priority to suppressing the acceleration change in the protruding direction of the vane 21 as much as possible is the accommodating space (indicated by 10 ′ in FIG. 5) of Patent Document 2.
例えば、ポイントaを経て一方のポンプ室20内へと侵入する際のベーン21は突出方向に位置変位し、このときの突出方向への加速度変化は収容空間10の内周面の形状に依存する。加速度変化が急激な場合には、上記した遠心力や空圧を受けているにも拘わらずベーン21の先端が内周面から離間し、空気のリークによりポンプ効率が低下してしまう。そこで、ベーン21の突出方向への加速度変化を極力抑制することを優先した形状が、特許文献2の収容空間(図5中に10’で示す)である。 FIG. 5 is a schematic diagram comparing the shape of the
For example, the
しかしながら、内周面に対するベーン21の摺接を維持できれば、必ずしも特許文献2の収容空間10’の形状を採用する必要はなく、よりポンプ室20の容積増加に貢献する形状を採用することも可能である。この観点の下に本実施形態の収容空間10は設定されており、その形状を第1~3実施形態として以下に順次説明する。
However, as long as the sliding contact of the vane 21 with respect to the inner peripheral surface can be maintained, it is not always necessary to adopt the shape of the accommodation space 10 ′ of Patent Document 2, and it is possible to adopt a shape that further contributes to an increase in the volume of the pump chamber 20. It is. Under this point of view, the accommodation space 10 of the present embodiment is set, and its shape will be sequentially described below as first to third embodiments.
[第1実施形態]
図5に実線で示すように、本実施形態のバキュームポンプ1の収容空間10は平面視においてトラック状をなしている。本発明では、一定半径Rpを有する一対の半円の互いの端部を一対の直線で接続した形状をトラック状と定義する。 [First Embodiment]
As indicated by a solid line in FIG. 5, theaccommodation space 10 of the vacuum pump 1 of the present embodiment has a track shape in plan view. In the present invention, a shape in which the ends of a pair of semicircles having a constant radius Rp are connected by a pair of straight lines is defined as a track shape.
図5に実線で示すように、本実施形態のバキュームポンプ1の収容空間10は平面視においてトラック状をなしている。本発明では、一定半径Rpを有する一対の半円の互いの端部を一対の直線で接続した形状をトラック状と定義する。 [First Embodiment]
As indicated by a solid line in FIG. 5, the
図5中のAが半円の領域(以下に述べる半円弧面A)、Bが直線の領域(以下に述べる平行面B)を示しており、直線領域Bを備える点、及び一定半径Rpの半円領域Aを備える点がトラック状の特徴である。収容空間10は上下方向に幅を有することから、本実施形態の収容空間10は、前後一対の半円弧面Aの互いの端部を左右一対の平行面B(対向面)で接続してなる断面トラック状と表現できる。
In FIG. 5, A indicates a semicircular region (semicircular arc surface A described below), B indicates a straight region (parallel surface B described below), a point including the linear region B, and a constant radius Rp. The point having the semicircular region A is a track-like feature. Since the accommodation space 10 has a width in the vertical direction, the accommodation space 10 of this embodiment is formed by connecting the ends of a pair of front and rear semicircular arc surfaces A with a pair of left and right parallel surfaces B (opposing surfaces). It can be expressed as a cross-sectional track shape.
そして、収容空間10内に配設された円筒状のロータ18により、前後の半円弧面Aに対応してそれぞれ三日月状のポンプ室20が画成されると共に、ロータ18の外周面の左右両側(ポンプ室20の並設方向と直交する両側)が微小間隙を介して左右の平行面Bに対して相対向し、これらの微小間隙を介して前後のポンプ室20が区画されている。
The cylindrical rotor 18 disposed in the accommodating space 10 defines a crescent-shaped pump chamber 20 corresponding to the front and rear semicircular arc surfaces A, and both left and right sides of the outer peripheral surface of the rotor 18. (Both sides perpendicular to the direction in which the pump chambers 20 are arranged in parallel) are opposed to the left and right parallel planes B through minute gaps, and the front and rear pump chambers 20 are partitioned through these minute gaps.
無論、このトラック状の収容空間10においても、ベーン21に作用する遠心力や空圧によりベーン21の先端が常に収容空間10の内周面に摺接し続ける。このため空気のリークが確実に防止され、特許文献2の楕円状の収容空間10’に比して遜色のないポンプ効率が得られている。
Of course, also in this track-shaped accommodation space 10, the tip of the vane 21 always keeps sliding in contact with the inner peripheral surface of the accommodation space 10 due to the centrifugal force and air pressure acting on the vane 21. For this reason, air leakage is reliably prevented, and pump efficiency comparable to that of the elliptical accommodation space 10 ′ of Patent Document 2 is obtained.
なお本実施形態では、トラック状を形成する一対の半円弧面の半径Rpを共にロータ18の半径Rrに一致(Rp=Rr)させている。但し、必ずしも一対の半円弧面の半径Rpを同一とする必要はなく、異なる半径(一方のRp>Rr>他方のRp)とした場合も本発明のトラック状に含まれるものとする。
In this embodiment, the radius Rp of the pair of semicircular arc surfaces forming the track shape is made to coincide with the radius Rr of the rotor 18 (Rp = Rr). However, the radius Rp of the pair of semicircular arc surfaces does not necessarily have to be the same, and different radii (one Rp> Rr> the other Rp) are included in the track shape of the present invention.
このような本実施形態の収容空間10に対して、上式(1)で表現される特許文献2の収容空間10’は楕円状である。トラック状との主な相違は、直線領域を備えない点、及びトラック状のような一定半径Rpの領域はなく、式(1)に基づくことで半径が定まっていない点にある。そして、この相違に起因して本実施形態のポンプ室20は、図5中の4箇所の領域C相当分だけ特許文献2のポンプ室に比較して容積が増加している。
For the accommodation space 10 of this embodiment, the accommodation space 10 ′ of Patent Document 2 expressed by the above formula (1) is elliptical. The main difference from the track shape is that there is no straight region, and there is no region with a constant radius Rp like the track shape, and the radius is not determined based on the equation (1). Due to this difference, the volume of the pump chamber 20 of this embodiment is increased compared to the pump chamber of Patent Document 2 by an amount corresponding to the four regions C in FIG.
以下、バキュームポンプの占有スペースに影響する収容空間10,10’の長軸L1及び短軸L2を同一設定した上で、トラック状と楕円状の収容空間10,10’で確保されるポンプ室20の容積を比較する。
Hereinafter, the pump chamber 20 secured by the track-like and elliptical containing spaces 10, 10 'after setting the long axis L1 and the short axis L2 of the containing spaces 10, 10' that affect the space occupied by the vacuum pump to be the same. Compare the volumes.
トラック状及び楕円状の収容空間10,10’を共に長軸L1=51mm、短軸L2=40mmでそれぞれ形成した場合、楕円状の収容空間10’では一対のポンプ室の総面積が292mm2に、トラック状の収容空間10では一対のポンプ室20の総面積が382mm2になり、約31%の増加を達成できる。結果として、その分だけポンプ室20の容積も増加することから、本実施形態によれば、バキュームポンプ1の大型化を抑制して車両への良好な搭載性を確保した上で、更なるポンプ容量の増加を達成することができる。
In the case where both the track-like and elliptical accommodation spaces 10, 10 ′ are formed with the major axis L1 = 51 mm and the minor axis L2 = 40 mm, the total area of the pair of pump chambers in the elliptical accommodation space 10 ′ is 292 mm 2 . In the track-shaped accommodation space 10, the total area of the pair of pump chambers 20 is 382 mm 2 and an increase of about 31% can be achieved. As a result, the volume of the pump chamber 20 increases accordingly, so that according to the present embodiment, the vacuum pump 1 can be prevented from being enlarged and a good pumpability can be ensured. An increase in capacity can be achieved.
ところで、図5に基づき説明したように、収容空間10を形成する一対の平行面Bに対し、円筒状をなすロータ18の外周面は左右両側の2点で局所的に相対向しているだけである。このため、前後のポンプ室20を区画している前後方向のシール長(微小間隙が形成されている領域)が非常に短く、言わば線接触に過ぎない。
By the way, as explained based on FIG. 5, the outer peripheral surface of the cylindrical rotor 18 is locally opposed to the pair of parallel surfaces B forming the accommodation space 10 at two points on the left and right sides. It is. For this reason, the seal length in the front-rear direction (region where the minute gap is formed) partitioning the front and rear pump chambers 20 is very short, that is, only line contact.
そして、収容空間10が画成されているアルミ製のポンプハウジング2とカーボン製のロータ18とは線膨張係数が大きく相違することから、収容空間10の内周面とロータ18の外周面との間隙を小さく調整したとしても、高温時には間隙が増加してしまう。結果として、上記したシール長が短いことと相俟って、特に高温時には空気のリークを生じてポンプ効率が低下する懸念がある。
そこで、本実施形態の構成(トラック状の収容空間10)をベースとし、シール長を延長化する対策を加えた第2実施形態を以下に説明する。 Since thealuminum pump housing 2 in which the accommodation space 10 is defined and the carbon rotor 18 are greatly different in linear expansion coefficient, the inner circumferential surface of the accommodation space 10 and the outer circumferential surface of the rotor 18 are different. Even if the gap is adjusted to be small, the gap increases at high temperatures. As a result, coupled with the short seal length described above, there is a concern that pump efficiency may be reduced due to air leakage particularly at high temperatures.
Therefore, a second embodiment in which a measure for extending the seal length is added based on the configuration of the present embodiment (track-shaped accommodation space 10) will be described below.
そこで、本実施形態の構成(トラック状の収容空間10)をベースとし、シール長を延長化する対策を加えた第2実施形態を以下に説明する。 Since the
Therefore, a second embodiment in which a measure for extending the seal length is added based on the configuration of the present embodiment (track-shaped accommodation space 10) will be described below.
[第2実施形態]
図6は第2実施形態の収容空間10の平面視の形状を示す模式図である。
本実施形態の収容空間10の形状は第1実施形態と同様のトラック状をなしており、その前後一対の半円弧面Aが同一の半径Rpに設定されている点も同様である。但し、本実施形態では、半円弧面Aの半径Rpがロータ18の半径Rrに比して若干小さく設定されている。このため、半円弧Aの互いの端部を接続している一対の平行面Bの間隔がロータ18の直径に比して若干狭く設定されている。結果として各平行面Bの領域内には、ロータ18の外周面と対応する断面円弧状のシール面Dが形成されており、このシール面Dの全領域でロータ18の外周面が微小間隙を介して相対向している。 [Second Embodiment]
FIG. 6 is a schematic diagram showing the shape of theaccommodation space 10 of the second embodiment in plan view.
The shape of theaccommodation space 10 of this embodiment is the same as that of the first embodiment, and the same is true in that the pair of front and rear semicircular arc surfaces A are set to the same radius Rp. However, in this embodiment, the radius Rp of the semicircular arc surface A is set slightly smaller than the radius Rr of the rotor 18. For this reason, the interval between the pair of parallel surfaces B connecting the ends of the semicircular arc A is set slightly narrower than the diameter of the rotor 18. As a result, a seal surface D having an arc cross section corresponding to the outer peripheral surface of the rotor 18 is formed in the region of each parallel surface B, and the outer peripheral surface of the rotor 18 has a minute gap in the entire region of the seal surface D. Are opposed to each other.
図6は第2実施形態の収容空間10の平面視の形状を示す模式図である。
本実施形態の収容空間10の形状は第1実施形態と同様のトラック状をなしており、その前後一対の半円弧面Aが同一の半径Rpに設定されている点も同様である。但し、本実施形態では、半円弧面Aの半径Rpがロータ18の半径Rrに比して若干小さく設定されている。このため、半円弧Aの互いの端部を接続している一対の平行面Bの間隔がロータ18の直径に比して若干狭く設定されている。結果として各平行面Bの領域内には、ロータ18の外周面と対応する断面円弧状のシール面Dが形成されており、このシール面Dの全領域でロータ18の外周面が微小間隙を介して相対向している。 [Second Embodiment]
FIG. 6 is a schematic diagram showing the shape of the
The shape of the
即ち、本実施形態では、前後のポンプ室20を区画している前後方向のシール長として、シール面Dに相当する非常に長い領域が確保されており、第1実施形態の線接触に対して言わば面接触と表現できる。従って、空気がリークする際には微小間隙の長い経路(シール長)を通過する必要があるため、バキュームポンプ1の温度上昇により間隙が増加した場合であっても、第1実施形態のものに比較して空気のリーク量を格段に低減できる。
In other words, in this embodiment, a very long region corresponding to the seal surface D is secured as the seal length in the front-rear direction that partitions the front and rear pump chambers 20, and against the line contact of the first embodiment. In other words, it can be expressed as surface contact. Therefore, when the air leaks, it is necessary to pass through a long path (seal length) with a minute gap, so even if the gap increases due to the temperature rise of the vacuum pump 1, it is the same as that of the first embodiment. In comparison, the amount of air leakage can be significantly reduced.
よって本実施形態によれば、高温時のリークに起因するポンプ効率の低下を未然に防止でき、トラック状の収容空間10の採用によるポンプ容量の増加と相俟って、バキュームポンプの性能を大幅に向上することができる。
Therefore, according to the present embodiment, it is possible to prevent a decrease in pump efficiency due to leakage at a high temperature, and in combination with an increase in pump capacity due to the adoption of the track-shaped accommodation space 10, the performance of the vacuum pump is greatly increased. Can be improved.
加えて、このような空気のリークに対して有利な特徴は、収容空間10の内周面とロータ18の外周面との間隙を多少大きめに設定しても、第1実施形態と同等のポンプ効率を達成できることを意味する。このため、バキュームポンプ1の組付が容易になって生産性を向上できると共に、間隙が過小な場合に発生するロータ18の急激な摩耗を回避して、バキュームポンプ1の耐久性を向上できるという別の利点も得られる。
In addition, an advantageous feature against such an air leak is that a pump equivalent to that of the first embodiment can be obtained even if the gap between the inner peripheral surface of the accommodating space 10 and the outer peripheral surface of the rotor 18 is set to be slightly larger. It means that efficiency can be achieved. For this reason, the assembly of the vacuum pump 1 can be facilitated and the productivity can be improved, and the rapid wear of the rotor 18 that occurs when the gap is too small can be avoided, and the durability of the vacuum pump 1 can be improved. Another advantage is also obtained.
ところで、ロータ18の半径Rrに比して半円弧面Aの半径Rpを大きく縮小するほど(ロータ18の直径に比して平行面Bの間隔を大きく縮小するほど)シール面Dの前後長は増加し、その前後長が平行面Bの前後長を超えると平行面Bがシール面Dに置き換わる。このようなシール面Dの設定も本発明は含んでおり、以下に第2実施形態の別例として説明する。
By the way, as the radius Rp of the semicircular arc surface A is greatly reduced as compared with the radius Rr of the rotor 18 (as the distance between the parallel surfaces B is greatly reduced as compared with the diameter of the rotor 18), the longitudinal length of the seal surface D is increased. When the front-rear length exceeds the front-rear length of the parallel surface B, the parallel surface B is replaced with the seal surface D. The present invention includes such setting of the seal surface D, and will be described below as another example of the second embodiment.
図7は第2実施形態の別例の収容空間10の平面視の形状を示す模式図である。
図に示すように、この別例ではシール面Dの前後両側に平行面Bは存在せず、シール面Dの前後両端が直接的に半円弧面Aの端部と接続されている。このように構成した別例では、第2実施形態よりも更に長いシール長が確保される。よって、高温時の空気のリーク量を一層低減して、ポンプ効率の低下をより確実に防止することができる。 FIG. 7 is a schematic diagram showing the shape of theaccommodation space 10 of another example of the second embodiment in plan view.
As shown in the drawing, in this alternative example, there are no parallel surfaces B on both front and rear sides of the seal surface D, and both front and rear ends of the seal surface D are directly connected to the end of the semicircular arc surface A. In another example configured in this manner, a longer seal length than that of the second embodiment is ensured. Therefore, the amount of air leakage at a high temperature can be further reduced, and a decrease in pump efficiency can be more reliably prevented.
図に示すように、この別例ではシール面Dの前後両側に平行面Bは存在せず、シール面Dの前後両端が直接的に半円弧面Aの端部と接続されている。このように構成した別例では、第2実施形態よりも更に長いシール長が確保される。よって、高温時の空気のリーク量を一層低減して、ポンプ効率の低下をより確実に防止することができる。 FIG. 7 is a schematic diagram showing the shape of the
As shown in the drawing, in this alternative example, there are no parallel surfaces B on both front and rear sides of the seal surface D, and both front and rear ends of the seal surface D are directly connected to the end of the semicircular arc surface A. In another example configured in this manner, a longer seal length than that of the second embodiment is ensured. Therefore, the amount of air leakage at a high temperature can be further reduced, and a decrease in pump efficiency can be more reliably prevented.
一方、第2実施形態及び別例のように収容空間10の内周面にシール面Dを形成した場合には、ロータ18の回転に伴う各ベーン21の出没方向の加速度が不連続になるという若干の弊害が生じる。
即ち、図5に基づき説明したように、ベーン21の突出方向への加速度変化が急激な場合にはベーン21の先端が収容空間10の内周面から瞬間的に離間し、空気のリークによりポンプ効率が低下してしまう。また、ベーン21の瞬間的な離間により異音を発生する場合もあるため、ベーン21の加速度変化を抑制することが望ましい。 On the other hand, when the seal surface D is formed on the inner peripheral surface of theaccommodation space 10 as in the second embodiment and another example, the acceleration in the direction in which the vanes 21 protrude and retract with the rotation of the rotor 18 is discontinuous. Some adverse effects occur.
That is, as described with reference to FIG. 5, when the acceleration change in the protruding direction of thevane 21 is abrupt, the tip of the vane 21 is instantaneously separated from the inner peripheral surface of the accommodation space 10, and the pump leaks due to air leakage. Efficiency will decrease. Moreover, since abnormal noise may be generated due to the instantaneous separation of the vanes 21, it is desirable to suppress the acceleration change of the vanes 21.
即ち、図5に基づき説明したように、ベーン21の突出方向への加速度変化が急激な場合にはベーン21の先端が収容空間10の内周面から瞬間的に離間し、空気のリークによりポンプ効率が低下してしまう。また、ベーン21の瞬間的な離間により異音を発生する場合もあるため、ベーン21の加速度変化を抑制することが望ましい。 On the other hand, when the seal surface D is formed on the inner peripheral surface of the
That is, as described with reference to FIG. 5, when the acceleration change in the protruding direction of the
しかしながら、第2実施形態及び別例では、収容空間10の内周面に形成されたシール面Dの箇所で起伏が不連続になり、必然的にベーン21の突出方向への加速度変化も不連続になる。
図8は第2実施形態で生じるベーン21の離間を示す図6中のX領域の部分拡大図である。ロータ18の回転に伴ってベーン21がシール面Dから平行面Bへと移行した際に(図8中のポイントb)、ベーン21の突出方向への加速度が急増することから、ベーン先端の離間による瞬間的なリーク発生(ロータ1回転に当たりに2回)の要因になり得る。 However, in the second embodiment and another example, the undulation is discontinuous at the location of the seal surface D formed on the inner peripheral surface of theaccommodation space 10, and the change in acceleration in the protruding direction of the vane 21 is necessarily discontinuous. become.
FIG. 8 is a partially enlarged view of a region X in FIG. 6 showing the separation of thevanes 21 generated in the second embodiment. When the vane 21 shifts from the seal surface D to the parallel surface B with the rotation of the rotor 18 (point b in FIG. 8), the acceleration in the protruding direction of the vane 21 increases rapidly. May cause an instantaneous leak (twice per rotation of the rotor).
図8は第2実施形態で生じるベーン21の離間を示す図6中のX領域の部分拡大図である。ロータ18の回転に伴ってベーン21がシール面Dから平行面Bへと移行した際に(図8中のポイントb)、ベーン21の突出方向への加速度が急増することから、ベーン先端の離間による瞬間的なリーク発生(ロータ1回転に当たりに2回)の要因になり得る。 However, in the second embodiment and another example, the undulation is discontinuous at the location of the seal surface D formed on the inner peripheral surface of the
FIG. 8 is a partially enlarged view of a region X in FIG. 6 showing the separation of the
また図示はしないが、別例においてもベーン21がシール面Dから半円弧面Aへと移行する際に、同様の現象が発生する。このため第2実施形態及び別例は、シール長の増加により第1実施形態よりも高温時のリークは抑制できる反面、ロータ18の回転に同期する瞬間的なリークが発生してメリットが半減してしまう懸念がある。
そこで、本実施形態及び別例の構成(トラック状の収容空間10+シール面D)をベースとし、瞬間的なリークを抑制する対策を加えた第3実施形態及び別例を以下に説明する。 Although not shown, the same phenomenon occurs when thevane 21 moves from the seal surface D to the semicircular arc surface A in another example. For this reason, the second embodiment and the other examples can suppress the leakage at a higher temperature than the first embodiment by increasing the seal length, but the instantaneous leakage synchronized with the rotation of the rotor 18 occurs and the merit is reduced by half. There is a concern.
Therefore, a third embodiment and another example in which measures for suppressing instantaneous leaks are added based on the configuration of the present embodiment and another example (track-shapedaccommodation space 10 + seal surface D) will be described below.
そこで、本実施形態及び別例の構成(トラック状の収容空間10+シール面D)をベースとし、瞬間的なリークを抑制する対策を加えた第3実施形態及び別例を以下に説明する。 Although not shown, the same phenomenon occurs when the
Therefore, a third embodiment and another example in which measures for suppressing instantaneous leaks are added based on the configuration of the present embodiment and another example (track-shaped
[第3実施形態]
図9は第3実施形態の収容空間10の緩衝面の周辺を示す図8に対応する部分拡大図である。
上記のように第2実施形態では、ベーン21がシール面Dから平行面Bへと移行する際にベーン21の突出方向への加速度が急増するため、その発生ポイントは、各シール面Dのロータ回転方向側(ベーン21の進行方向側)の端部に相当する2箇所(図6,7にポイントbで示す)である。 [Third Embodiment]
FIG. 9 is a partially enlarged view corresponding to FIG. 8 showing the periphery of the buffer surface of theaccommodation space 10 of the third embodiment.
As described above, in the second embodiment, when thevane 21 moves from the seal surface D to the parallel surface B, the acceleration in the protruding direction of the vane 21 increases rapidly. These are two places (indicated by point b in FIGS. 6 and 7) corresponding to the ends on the rotational direction side (the traveling direction side of the vane 21).
図9は第3実施形態の収容空間10の緩衝面の周辺を示す図8に対応する部分拡大図である。
上記のように第2実施形態では、ベーン21がシール面Dから平行面Bへと移行する際にベーン21の突出方向への加速度が急増するため、その発生ポイントは、各シール面Dのロータ回転方向側(ベーン21の進行方向側)の端部に相当する2箇所(図6,7にポイントbで示す)である。 [Third Embodiment]
FIG. 9 is a partially enlarged view corresponding to FIG. 8 showing the periphery of the buffer surface of the
As described above, in the second embodiment, when the
そこで本実施形態では、各シール面Dのロータ回転方向側の端部と平行面Bの端部との接続箇所(ポイントb)にそれぞれ緩衝面Eが形成されている。これらの緩衝面Eは収容空間10外に中心pを有する半径Rbの断面円弧状をなし、この緩衝面Eを介してシール面Dと平行面Bとが接続されている。このような中心位置の設定により緩衝面Eは、半円弧面Aやシール面Dの湾曲形状(収容空間10内から見て凹)とは逆方向に湾曲(収容空間10内から見て凸)している。
Therefore, in the present embodiment, the buffer surface E is formed at each connection point (point b) between the end of each seal surface D on the rotor rotation direction side and the end of the parallel surface B. These buffer surfaces E have a circular arc shape with a radius Rb having a center p outside the accommodating space 10, and the seal surface D and the parallel surface B are connected via the buffer surface E. The buffer surface E is curved in the direction opposite to the curved shape of the semicircular arc surface A and the seal surface D (concave when viewed from inside the accommodating space 10) (convex when viewed from inside the accommodating space 10). is doing.
従って、バキュームポンプ1の作動中において、ロータ18の回転に伴ってベーン21はシール面Dから緩衝面Eを経て平行面Bへと移行する。そして、先端を緩衝面Eに摺接させることにより、ベーン21は緩衝面Eの曲率に倣って突出方向への加速度を緩やかに増加させる。結果として、図6中のポイントbでシール面Dから平行面Bへと直接的に移行した場合に生じる突出方向への加速度の急増が抑制され、ベーン21の先端が収容空間10の内周面から離間することなく摺接を維持するため、瞬間的な空気のリークが未然に回避される。
Therefore, during the operation of the vacuum pump 1, the vane 21 moves from the seal surface D to the parallel surface B through the buffer surface E as the rotor 18 rotates. Then, the vane 21 gently increases the acceleration in the protruding direction following the curvature of the buffer surface E by sliding the tip to the buffer surface E. As a result, the rapid increase in acceleration in the protruding direction that occurs when the seal surface D directly shifts to the parallel surface B at the point b in FIG. 6 is suppressed, and the tip of the vane 21 is the inner peripheral surface of the accommodation space 10. Since the sliding contact is maintained without being separated, instantaneous air leakage is avoided.
よって本実施形態によれば、第2実施形態のシール長の増加による高温時のリーク抑制を達成した上で、ロータ18の回転に同期した瞬間的なリークも抑制でき、結果として空気のリークによるポンプ効率の低下を一層確実に防止することができる。加えて、ベーン21の離間に起因する異音を抑制することもできる。
Therefore, according to the present embodiment, it is possible to suppress the instantaneous leak synchronized with the rotation of the rotor 18 while suppressing the leakage at a high temperature by increasing the seal length of the second embodiment. A decrease in pump efficiency can be prevented more reliably. In addition, abnormal noise caused by the separation of the vanes 21 can be suppressed.
このような作用を奏する緩衝面Eの半径Rbは、以下の要件を満たすように設定される。
上記したように緩衝面Eを摺接中のベーン21の突出方向への加速度は、緩衝面Eの半径Rbで定まる曲率に依存する。一方で、緩衝面Eを摺接中のベーン21は、軸線Lを中心とした遠心力を受けると共に、外周方向への空圧を受けて外周側に付勢されている。この付勢力を上回る加速度でベーン21が突出方向に位置変位した場合に、緩衝面Eへの摺接が維持できずに先端の離間が生じる。 The radius Rb of the buffer surface E having such an action is set so as to satisfy the following requirements.
As described above, the acceleration in the protruding direction of thevane 21 in sliding contact with the buffer surface E depends on the curvature determined by the radius Rb of the buffer surface E. On the other hand, the vane 21 that is in sliding contact with the buffer surface E receives a centrifugal force about the axis L, and receives an air pressure in the outer peripheral direction and is biased toward the outer peripheral side. When the vane 21 is displaced in the projecting direction at an acceleration exceeding the urging force, the sliding contact with the buffer surface E cannot be maintained and the tip is separated.
上記したように緩衝面Eを摺接中のベーン21の突出方向への加速度は、緩衝面Eの半径Rbで定まる曲率に依存する。一方で、緩衝面Eを摺接中のベーン21は、軸線Lを中心とした遠心力を受けると共に、外周方向への空圧を受けて外周側に付勢されている。この付勢力を上回る加速度でベーン21が突出方向に位置変位した場合に、緩衝面Eへの摺接が維持できずに先端の離間が生じる。 The radius Rb of the buffer surface E having such an action is set so as to satisfy the following requirements.
As described above, the acceleration in the protruding direction of the
そこで、付勢力を受けたベーン21が緩衝面Eへの摺接を維持可能な最大限の加速度よりも若干小さな加速度で突出方向に位置変位するように、緩衝面Eの曲率ひいては半径Rbが定められている。このような緩衝面Eの半径Rbの設定により、上記瞬間的な空気のリークに関する作用効果が確実に得られる。
Therefore, the curvature of the buffer surface E and the radius Rb are determined so that the vane 21 receiving the biasing force is displaced in the protruding direction at an acceleration slightly smaller than the maximum acceleration at which the sliding contact with the buffer surface E can be maintained. It has been. By setting the radius Rb of the buffer surface E as described above, the effect related to the instantaneous air leakage can be obtained with certainty.
一方、以上のような緩衝面Eは第2実施形態の別例にも適用でき、その部分拡大図を図10に示す。
この図のように、第3実施形態と同じく別例の緩衝面Eは収容空間10外に中心pを有する断面円弧状をなし、シール面Dのロータ回転方向側の端部と半円弧面Aの端部との接続箇所(ポイントb)に形成されている。緩衝面Eの作用は上記第3実施形態と同様であるため、重複する説明はしないが、緩衝面Eへの摺接中のベーン21の突出方向への加速度の増加を緩やかにして、ロータ18の回転に同期した瞬間的なリークを抑制することができる。 On the other hand, the buffer surface E as described above can be applied to another example of the second embodiment, and a partially enlarged view thereof is shown in FIG.
As shown in this figure, another buffer surface E as in the third embodiment has an arcuate cross section having a center p outside theaccommodation space 10, and the end of the seal surface D on the rotor rotation direction side and the semicircular arc surface A. It is formed in the connection location (point b) with the edge part. Since the operation of the buffer surface E is the same as that of the third embodiment, the description thereof will not be repeated. However, the increase in acceleration in the protruding direction of the vane 21 during sliding contact with the buffer surface E is moderated, and the rotor 18 Instantaneous leakage synchronized with the rotation of can be suppressed.
この図のように、第3実施形態と同じく別例の緩衝面Eは収容空間10外に中心pを有する断面円弧状をなし、シール面Dのロータ回転方向側の端部と半円弧面Aの端部との接続箇所(ポイントb)に形成されている。緩衝面Eの作用は上記第3実施形態と同様であるため、重複する説明はしないが、緩衝面Eへの摺接中のベーン21の突出方向への加速度の増加を緩やかにして、ロータ18の回転に同期した瞬間的なリークを抑制することができる。 On the other hand, the buffer surface E as described above can be applied to another example of the second embodiment, and a partially enlarged view thereof is shown in FIG.
As shown in this figure, another buffer surface E as in the third embodiment has an arcuate cross section having a center p outside the
なお、以上の第3実施形態及び別例では、単一の中心p及び半径Rbに基づき緩衝面Eを形成したが、これに限るものではない。例えば、中心及び半径が異なる複数の円弧を組み合わせて緩衝面Eの断面形状を形成してもよい。
また第3実施形態及び別例では、各シール面Dのロータ回転方向側の端部(図6,7のポイントb)に緩衝面Eを形成したが、加えてロータ反回転方向側の端部(図6,7にポイントcで示す)にも緩衝面Eを形成してもよい。 In the third embodiment and the other examples described above, the buffer surface E is formed based on the single center p and the radius Rb. However, the present invention is not limited to this. For example, the cross-sectional shape of the buffer surface E may be formed by combining a plurality of arcs having different centers and radii.
In the third embodiment and another example, the buffer surface E is formed at the end of each seal surface D on the rotor rotation direction side (point b in FIGS. 6 and 7). The buffer surface E may also be formed (indicated by point c in FIGS. 6 and 7).
また第3実施形態及び別例では、各シール面Dのロータ回転方向側の端部(図6,7のポイントb)に緩衝面Eを形成したが、加えてロータ反回転方向側の端部(図6,7にポイントcで示す)にも緩衝面Eを形成してもよい。 In the third embodiment and the other examples described above, the buffer surface E is formed based on the single center p and the radius Rb. However, the present invention is not limited to this. For example, the cross-sectional shape of the buffer surface E may be formed by combining a plurality of arcs having different centers and radii.
In the third embodiment and another example, the buffer surface E is formed at the end of each seal surface D on the rotor rotation direction side (point b in FIGS. 6 and 7). The buffer surface E may also be formed (indicated by point c in FIGS. 6 and 7).
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、流体として空気を吸入・吐出して負圧を発生させるバキュームポンプ1に適用したが、ベーンポンプの種類はこれに限るものではない。例えば、吐出した空気をアクチュエータに供給して作動させるエアポンプとして具体化してもよいし、オイルや燃料等の液体を吸入・吐出するポンプとして具体化してもよい。
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the present invention is applied to the vacuum pump 1 that sucks and discharges air as a fluid to generate a negative pressure, but the type of the vane pump is not limited to this. For example, the pump may be embodied as an air pump that operates by supplying discharged air to an actuator, or may be embodied as a pump that sucks and discharges liquid such as oil or fuel.
また上記実施形態では、ポンプハウジング2をアルミダイカスト製とし、ロータ18及びベーン21をカーボン製としたが、それらの材料に限るものではない。ポンプハウジング2については熱伝導の良好な材料であれば良いため、例えばステンレス製或いは鋳鉄製としてもよい。またロータ18及びベーン21については、必ずしも自己潤滑性を有する材料とする必要はなく、例えばオイルによる潤滑を前提としてアルミにより製作してもよいし、無潤滑の場合であってもカーボンに限る必要はなく、他の自己潤滑性を有する材料、例えば樹脂製としてもよい。
In the above embodiment, the pump housing 2 is made of aluminum die casting and the rotor 18 and the vane 21 are made of carbon. However, the material is not limited to these materials. Since the pump housing 2 may be made of a material having good heat conduction, it may be made of stainless steel or cast iron, for example. The rotor 18 and the vane 21 are not necessarily made of a material having self-lubricating properties. For example, the rotor 18 and the vane 21 may be made of aluminum on the premise of lubrication with oil, or limited to carbon even in the case of no lubrication. Alternatively, other self-lubricating materials such as resin may be used.
また上記実施形態では、ポンプハウジング2の外周壁5、内周壁6及び底壁7を一体形成したが、これに限るものではなく、例えば内周壁6を別部材のカムリングとし、底壁7を別部材のロアプレートとし、これらをポンプハウジング2に対して組み付けるようにしてもよい。
In the above embodiment, the outer peripheral wall 5, inner peripheral wall 6 and bottom wall 7 of the pump housing 2 are integrally formed. However, the present invention is not limited to this. For example, the inner peripheral wall 6 is a separate cam ring and the bottom wall 7 is separated. The lower plate of the member may be used, and these may be assembled to the pump housing 2.
1 バキュームポンプ(ベーンポンプ)
2 ポンプハウジング
10 収容空間
18 ロータ
20 ポンプ室
21 ベーン
A 半円弧面
B 平行面(対向面)
D シール面
E 緩衝面 1 Vacuum pump (vane pump)
2 Pumphousing 10 Housing space 18 Rotor 20 Pump chamber 21 Vane A Semi-circular arc surface B Parallel surface (opposing surface)
D Seal surface E Buffer surface
2 ポンプハウジング
10 収容空間
18 ロータ
20 ポンプ室
21 ベーン
A 半円弧面
B 平行面(対向面)
D シール面
E 緩衝面 1 Vacuum pump (vane pump)
2 Pump
D Seal surface E Buffer surface
Claims (4)
- ポンプハウジングに設けた収容空間内に円筒状のロータを配設して、該ロータの両側にポンプ室をそれぞれ画成すると共に、前記ポンプ室の並設方向と直交する前記ロータの外周面の両側を前記収容空間の内周面にそれぞれ微小間隙を介して相対向させ、前記ロータの回転に伴い該ロータの外周面に出没可能に設けられたベーンの先端を前記収容空間の内周面に摺接させながら、前記各ポンプ室を容積変化させて流体を吸入・吐出するベーンポンプにおいて、
前記収容空間は、一対の半円弧面の互いの端部を一対の対向面で接続してなる断面トラック状に形成されている
ことを特徴とするベーンポンプ。 A cylindrical rotor is disposed in a housing space provided in the pump housing to define pump chambers on both sides of the rotor, and both sides of the outer peripheral surface of the rotor perpendicular to the direction in which the pump chambers are arranged side by side. To the inner circumferential surface of the housing space through a minute gap, and the tip of a vane provided on the outer circumferential surface of the rotor as the rotor rotates is slid onto the inner circumferential surface of the housing space. In the vane pump that sucks and discharges the fluid by changing the volume of each pump chamber while making contact,
The vane pump is characterized in that the accommodation space is formed in a cross-sectional track shape formed by connecting ends of a pair of semicircular arc surfaces with a pair of opposing surfaces. - 前記一対の対向面の間隔は、前記ロータの直径に比して狭く設定され、
前記収容空間の内周面には、前記ロータの外周面と対応する断面円弧状の一対のシール面が形成され、各シール面の領域で前記ロータの外周面が前記微小間隙を介して相対向している
ことを特徴とする請求項1に記載のベーンポンプ。 An interval between the pair of opposed surfaces is set narrower than a diameter of the rotor,
A pair of arc-shaped seal surfaces corresponding to the outer peripheral surface of the rotor is formed on the inner peripheral surface of the housing space, and the outer peripheral surface of the rotor is opposed to the seal space through the minute gap in the area of each seal surface. The vane pump according to claim 1, wherein the vane pump is provided. - 前記収容空間の一対のシール面の少なくとも前記ロータの回転方向側の端部に、それぞれ前記収容空間の外に中心を有する断面円弧状をなす緩衝面が形成されている
ことを特徴とする請求項2に記載のベーンポンプ。 The buffer surface having an arcuate cross-section having a center outside the storage space is formed at least at the end of the pair of seal surfaces of the storage space on the rotation direction side of the rotor. 2. The vane pump according to 2. - 前記緩衝面を摺接中の前記ベーンが該緩衝面の曲率に倣って突出方向に位置変位するときに、該ベーンに作用する遠心力及び外周方向への流体圧により前記緩衝面への摺接を維持可能な突出方向への加速度となるように、前記緩衝面の曲率が設定されている
ことを特徴とする請求項3に記載のベーンポンプ。 When the vane in sliding contact with the buffer surface is displaced in the projecting direction following the curvature of the buffer surface, the sliding contact with the buffer surface is caused by the centrifugal force acting on the vane and the fluid pressure in the outer circumferential direction. 4. The vane pump according to claim 3, wherein the curvature of the buffer surface is set so that the acceleration in the protruding direction is maintained.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780090073.6A CN110546383A (en) | 2017-04-28 | 2017-04-28 | Vane pump |
PCT/JP2017/017073 WO2018198369A1 (en) | 2017-04-28 | 2017-04-28 | Vane pump |
JP2019515068A JPWO2018198369A1 (en) | 2017-04-28 | 2017-04-28 | Vane pump |
DE112017007482.7T DE112017007482T5 (en) | 2017-04-28 | 2017-04-28 | VANE PUMP |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/017073 WO2018198369A1 (en) | 2017-04-28 | 2017-04-28 | Vane pump |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198369A1 true WO2018198369A1 (en) | 2018-11-01 |
Family
ID=63918151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/017073 WO2018198369A1 (en) | 2017-04-28 | 2017-04-28 | Vane pump |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2018198369A1 (en) |
CN (1) | CN110546383A (en) |
DE (1) | DE112017007482T5 (en) |
WO (1) | WO2018198369A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11324957A (en) * | 1998-05-15 | 1999-11-26 | Toyota Autom Loom Works Ltd | Electric compressor |
JP2002310072A (en) * | 2001-04-10 | 2002-10-23 | Makita Corp | Oil unit |
JP2003106275A (en) * | 2001-09-28 | 2003-04-09 | Kiyoshi Matsumoto | Displacement type pump |
GB2407625A (en) * | 2003-10-29 | 2005-05-04 | Weatherford Lamb | Vane type motor for downhole tool with inlet and outlet ports at opposite axial ends |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2831631A (en) * | 1953-07-27 | 1958-04-22 | Petersen Entpr | Rotary compressor |
JPS6043192U (en) * | 1983-08-31 | 1985-03-27 | 三菱重工業株式会社 | compressor |
US4859163A (en) * | 1987-06-25 | 1989-08-22 | Steven Schuller Performance Inc. | Rotary pump having vanes guided by bearing blocks |
JP4481090B2 (en) * | 2004-06-08 | 2010-06-16 | 東京計器株式会社 | Vane pump |
JP5901189B2 (en) * | 2011-09-12 | 2016-04-06 | 株式会社ミクニ | Vane pump |
JP5643923B2 (en) * | 2011-12-21 | 2014-12-24 | 株式会社リッチストーン | Rotary cam ring fluid machinery |
-
2017
- 2017-04-28 JP JP2019515068A patent/JPWO2018198369A1/en active Pending
- 2017-04-28 WO PCT/JP2017/017073 patent/WO2018198369A1/en active Application Filing
- 2017-04-28 DE DE112017007482.7T patent/DE112017007482T5/en not_active Withdrawn
- 2017-04-28 CN CN201780090073.6A patent/CN110546383A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11324957A (en) * | 1998-05-15 | 1999-11-26 | Toyota Autom Loom Works Ltd | Electric compressor |
JP2002310072A (en) * | 2001-04-10 | 2002-10-23 | Makita Corp | Oil unit |
JP2003106275A (en) * | 2001-09-28 | 2003-04-09 | Kiyoshi Matsumoto | Displacement type pump |
GB2407625A (en) * | 2003-10-29 | 2005-05-04 | Weatherford Lamb | Vane type motor for downhole tool with inlet and outlet ports at opposite axial ends |
Also Published As
Publication number | Publication date |
---|---|
CN110546383A (en) | 2019-12-06 |
JPWO2018198369A1 (en) | 2020-03-05 |
DE112017007482T5 (en) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20140027144A (en) | Rotary engine rotor | |
US9841023B2 (en) | Vacuum pump | |
JP2011231676A (en) | Vane pump | |
JP5554122B2 (en) | Vacuum pump | |
WO2018198369A1 (en) | Vane pump | |
KR101297743B1 (en) | Dry pump | |
CN110573740B (en) | Vane pump | |
WO2018084105A1 (en) | Vane pump | |
CN110546386B (en) | Vane pump | |
WO2018198370A1 (en) | Vane pump | |
KR101710261B1 (en) | Vane pump | |
JP4042746B2 (en) | Vane type vacuum pump | |
JPS6336074A (en) | Swash plate type compressor | |
US11149730B2 (en) | Vane pump driven by an engine of an automobile | |
CN110748485A (en) | Horizontal compressor and heat exchange work system | |
WO2018198371A1 (en) | Vane pump | |
US11982270B2 (en) | Pump device | |
JP2016079824A (en) | Vacuum pump | |
JP2018533684A (en) | Refueling assembly and compressor for refrigerator compressor | |
WO2024201875A1 (en) | Electric compressor device | |
JP2008150981A (en) | Vane rotary compressor | |
JP5914162B2 (en) | Vacuum pump | |
US20180030833A1 (en) | Gas compressor | |
JPS6037017Y2 (en) | Generator with eccentric vacuum pump | |
JP2017180388A (en) | Valve device of compressor, and compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17906804 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019515068 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17906804 Country of ref document: EP Kind code of ref document: A1 |