WO2018196627A1 - 废热钳制控制方法与自源式废热钳温器、车辆 - Google Patents

废热钳制控制方法与自源式废热钳温器、车辆 Download PDF

Info

Publication number
WO2018196627A1
WO2018196627A1 PCT/CN2018/082876 CN2018082876W WO2018196627A1 WO 2018196627 A1 WO2018196627 A1 WO 2018196627A1 CN 2018082876 W CN2018082876 W CN 2018082876W WO 2018196627 A1 WO2018196627 A1 WO 2018196627A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
control switch
waste heat
clamping
Prior art date
Application number
PCT/CN2018/082876
Other languages
English (en)
French (fr)
Inventor
朱若东
Original Assignee
朱若东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱若东 filed Critical 朱若东
Publication of WO2018196627A1 publication Critical patent/WO2018196627A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present application belongs to the field of controlling the temperature of a waste heat source target, and particularly relates to a waste heat clamp control method and a self-source waste heat clamp dedicated to implementing the method, and a vehicle using the self-source waste heat clamp.
  • waste heat source continuously introduces waste heat to the articles, as the heat accumulation in the articles increases, the temperature of the articles continuously rises, and the continuous rise of such temperatures is extremely unfavorable to the articles themselves and the surrounding environment.
  • the way of dissipating heat to articles is mainly divided into heat conduction type, heat convection type and heat radiation type.
  • the heat conduction type is represented by a fin structure, a semiconductor refrigeration structure, a heat exchange coil structure, etc.
  • the heat convection type is represented by an air conditioning refrigeration structure, an air cooler structure, etc., and both forms of refrigeration methods are dependent on energy.
  • the heat radiation type is represented by a bare structure and a high thermal conductive material, but as the greenhouse effect is intensified, the summer temperature is increasing year by year, and the heat dissipation efficiency of the heat dissipation method is also lowered, which results in a heat radiation type. The practicality of the cooling method is gradually reduced.
  • the present application aims to provide a waste heat clamp control method which has the advantages of high refrigeration efficiency and does not rely on a power source, and also provides a self-source waste heat thermostat and use dedicated to the implementation of the waste heat clamp control method.
  • the self-source waste heat thermostat vehicle is a waste heat clamping control method which has the advantages of high refrigeration efficiency and does not rely on a power source.
  • the waste heat clamping control method comprises the following steps:
  • step c The other energy described in step c is the power source of the active refrigeration device, and the active refrigeration device cools the waste heat accumulation portion of the target.
  • Self-source waste heat thermostat including at least one clamping unit
  • the clamping temperature unit includes a pre-clamping thermometer and at least one thermoelectric conversion unit.
  • the pre-clamping thermometer includes a passive thermostat and a heat conduction type first heat conduction path, and the introduction portion of the first heat conduction path is configured to derive waste heat of the target waste heat accumulation portion, and the lead portion of the first heat conduction path is configured to Cooling the heat of the introduction portion downstream, the thermostat controlling an on-off state between the introduction portion and the deriving portion of the first heat conduction path;
  • the thermoelectric conversion unit includes a heat transfer device configured to continuously conduct heat from the first heat conduction path unidirectionally, the heat transfer device including at least one of a diode heat pipe and a heat equalizing plate, and a cold end of the heat transfer device
  • the heat conduction connection is connected to a thermoelectric generator.
  • a second heat conduction path is between the cold end of the heat transfer device and the hot face of the thermoelectric generator, and the second heat conduction path includes a heat accumulator mainly comprising a solid-solid phase change material or a solid-liquid phase change material, and the heat storage is performed.
  • the sum of the phase transition temperature of the device and the minimum conduction temperature difference of the heat transfer device is not higher than the set temperature of the thermostat.
  • the latent heat transferred from the cold end of the heat pipe to the heat accumulator per unit time is Q 1
  • the latent heat transferred from the heat accumulator of the thermal surface of the generator per unit time is Q 2
  • the second heat conduction is one of the following:
  • the cold end of the heat transfer device is directly thermally coupled to the heat accumulator or is connected to the heat accumulator through a mechanical first temperature control switch
  • the thermal surface of the thermoelectric generator is directly thermally coupled to the heat storage.
  • the heat exchanger is connected to the heat exchanger through a mechanical second temperature control switch
  • the first temperature control switch is a normally closed switch for monitoring the temperature of the heat accumulator and triggering a temperature higher than a phase change temperature of the heat accumulator
  • the control switch is a normally open switch for monitoring the temperature of the regenerator and triggering a temperature not higher than a phase change temperature of the regenerator;
  • the cold end of the heat transfer device is directly thermally coupled to the heat accumulator or is connected to the heat accumulator through the first temperature control switch, and the hot surface of the thermoelectric generator passes through the mechanical third
  • the temperature-controlled switch heat conduction is connected to the regenerator, and the third temperature control switch is a normally open switch for monitoring the temperature of the regenerator and triggering a temperature not lower than a phase change temperature of the regenerator;
  • the cold end of the heat transfer device is directly connected to the heat accumulator or is connected to the heat accumulator through the first temperature control switch.
  • the thermoelectric generator has two groups and is connected to each other to define two sets of thermoelectric generators. a first temperature difference generator for the heat Q 2a conducted from the heat accumulator per unit time and a second temperature difference generator for heat Q 2b conducted from the heat accumulator per unit time, Q 1 >Q 2a , Q 1 ⁇ Q 2b , the hot surface of the first thermoelectric generator is connected to the heat accumulator through the fourth temperature control switch, and the hot surface of the second thermoelectric generator is connected to the heat accumulator through the fifth temperature control switch, the fourth temperature control Both the switch and the fifth temperature control switch monitor the temperature of the regenerator, and the fourth temperature control switch has a lower limit trigger temperature that is turned on when the regenerator is warmed to a lower limit temperature lower than the phase transition temperature, and a lower limit of the regenerator from the lower limit The temperature rises to an upper limit trigger temperature that
  • the thermostat is a mechanical or liquid or gas type thermometer
  • the first heat conduction path is mainly composed of a heat conduction element configured to derive heat of the waste heat accumulation area of the target and a pointer of the thermometer of the heat conduction connection heat transfer device, the pointer It is a heat conductive material and is connected to the heat insulating rotating shaft of the thermometer, and the heat conducting element is located on the dial of the thermometer, and the temperature value of the dial of the heat conducting element is gradually increased from the back edge to the front edge.
  • the clamping unit can be selected from one of the following ways:
  • the single-point type, the heat-conducting component is fixed on the dial, and the set temperature of the thermostat is a fixed temperature point corresponding to the rear edge of the heat-conducting component on the dial; in the clamping temperature unit, the pre-clamping table heat conduction connection
  • the sum of the phase change temperature of the single thermoelectric conversion unit, or the heat conduction and the plurality of heat accumulators, the phase transition temperature is not equal, and the phase transition temperature is the highest, and the minimum conduction temperature difference of the heat transfer device is not higher than the above Constant temperature thermoelectric conversion unit;
  • the heat-conducting element slip is disposed in a section of the dial, and the set temperature of the thermostat is any temperature point corresponding to the adjustable narrow range of the rear edge of the heat-conducting element on the dial.
  • the minimum temperature point of the narrow range is not lower than the sum of the phase transition temperature of the heat accumulator and the minimum conduction temperature difference of the heat transfer device, and the maximum temperature point of the narrow range is not higher than the first temperature control switch and the third temperature control
  • the highest of the trigger temperature of the switch and the fifth temperature control switch in the clamp temperature unit, the pre-clamping table is thermally coupled to a single thermoelectric conversion unit, or the heat conduction is connected to the plurality of regenerators, the phase transition temperatures are not equal, and a thermoelectric conversion unit in which the sum of the phase transition temperature of the highest temperature and the minimum conduction temperature difference of the heat transfer device is not higher than the minimum temperature point of the narrow range;
  • the heat-conducting element slip is disposed in a section of the dial, and the set temperature of the thermostat is any temperature point corresponding to the adjustable wide range of the rear edge of the heat-conducting element on the dial;
  • the stage can be regarded as a combination of several single stages: the narrow ranges of all single stages are combined in order to become a wide range of multi-stage, the heat transfer device hot end of all thermoelectric conversion units of several single-stage thermostats, Connected to the derivation end of the same pre-clamping table, the highest phase change temperature of the regenerator in each thermoelectric conversion unit is defined as the high temperature thermoelectric conversion unit, and the narrow range of the uppermost section of the corresponding set temperature range is the highest Range, the maximum set temperature of the highest narrow range is the maximum set temperature of a wide range; the lowest phase change temperature of the regenerator is the low temperature thermoelectric conversion unit, the phase transition temperature of the heat accumulator in the high temperature thermoelectric conversion unit and the heat transfer device The sum of the minimum conduction
  • the thermostat is a mechanical thermometer.
  • the temperature sensing device of the mechanical thermometer adopts a bimetal or a memory alloy.
  • the temperature sensing device senses the temperature of different target objects as follows:
  • the temperature sensing device In the first temperature sensing mode, when the temperature of the solid target is clamped, the temperature sensing device indirectly monitors the temperature of the waste heat accumulation region of the target through the intermediate device, and the intermediate device includes the heat conductive container and the intermediate liquid contained therein, and the intermediate liquid The highest sensible heat temperature is not lower than the highest set temperature of the thermostat, and the temperature sensing device is probed into the intermediate liquid to be thermally conductively connected to the intermediate liquid;
  • the second temperature sensing mode when the temperature of the liquid target is clamped, the temperature sensing device is directly inserted into the target;
  • the temperature sensing device monitors the temperature of the target waste heat accumulation zone by the solid material or the liquid material dump, between the solid material dump and the temperature sensing device.
  • the temperature sensing mode is the first temperature sensing mode
  • the temperature sensing mode between the liquid material dump and the temperature sensing device is the second temperature sensing mode
  • the deposit is coated with the first
  • the heat insulating cover has a first one-way window for unidirectional flow of external hot air into the cover at the bottom of the first heat insulating cover.
  • the cold surface of the thermoelectric generator is provided with a passive heat dissipation structure, and the passive heat dissipation structure comprises at least one of the following structures:
  • the cold surface of the thermoelectric generator is connected to the annular heat pipe radiator through the sixth temperature control switch, and the sixth temperature control switch is a normally open switch for monitoring the cold surface temperature of the thermoelectric generator;
  • the cold surface of the thermoelectric generator is provided with a second heat-insulating cover which is tightly and snugly covered, and the top of the second heat-insulating cover has a second one-way window which is opened outward in one direction;
  • the cold surface heat conduction of the thermoelectric generator is connected with a folded heat sink, and the heat sink is connected with a memory alloy material or a bimetal in the form of a memory alloy material or a bimetal.
  • Wire, wire heat conduction is connected to the cold surface of the thermoelectric generator;
  • the cold surface of the thermoelectric generator is provided with a second heat-insulating cover which is tightly and snugly covered, and the second heat-insulating cover is provided with a perforation, and the electric fan is installed on the perforation, and the power supply of the electric fan is a preset power supply and At least one of the thermoelectric generators;
  • thermoelectric generator The cold surface heat conduction of the thermoelectric generator is connected with a speed clamp, and the speed clamp includes at least one of the following structures:
  • the first structure includes a semiconductor refrigerating sheet and a brine cooled by a cold surface of the semiconductor refrigerating sheet.
  • the power source of the semiconductor refrigerating sheet is at least one of a preset power source and the thermoelectric generator, and the brine passes through the seventh temperature.
  • the control switch heat conduction is connected to the cold surface of the thermoelectric generator, and the seventh temperature control switch is a normally open switch for monitoring the cold surface temperature of the thermoelectric generator;
  • the second structure includes another clamping temperature unit, which is a heat-dissipating temperature unit on a cold surface of a thermoelectric generator of a working clamping unit that cools a pair of objects, and a cooling unit
  • the heat exchanger phase transition temperature is lower than the heat accumulator phase transition temperature of the working clamp temperature unit.
  • the clamp temperature unit and the thermoelectric conversion unit are each a replaceable assembly structure, and the pre-clamping temperature meter is a replaceable module structure, and each device in the thermoelectric conversion unit is a replaceable module structure.
  • the vehicle includes a vehicle body and a waste heat accumulation area thereon, and the heat conduction connection on the waste heat accumulation area is connected with a self-source waste heat clamp, and the self-source waste heat clamp includes at least one clamp temperature unit.
  • the clamping temperature unit includes a pre-clamping thermometer and at least one thermoelectric conversion unit.
  • the pre-clamping thermometer includes a passive thermostat and a heat conduction type first heat conduction path, and the introduction portion of the first heat conduction path is configured to derive waste heat of the target waste heat accumulation portion, and the lead portion of the first heat conduction path is configured to Cooling the heat of the introduction portion downstream, the thermostat controlling an on-off state between the introduction portion and the deriving portion of the first heat conduction path;
  • the thermoelectric conversion unit includes a heat transfer device configured to continuously conduct heat from the first heat conduction path unidirectionally, the heat transfer device including at least one of a diode heat pipe and a heat equalizing plate, and a cold end of the heat transfer device
  • the heat conduction connection is connected to a thermoelectric generator.
  • a second heat conduction path is between the cold end of the heat transfer device and the hot face of the thermoelectric generator, and the second heat conduction path includes a heat accumulator mainly comprising a solid-solid phase change material or a solid-liquid phase change material, and the heat storage is performed.
  • the sum of the phase transition temperature of the device and the minimum conduction temperature difference of the heat transfer device is not higher than the set temperature of the thermostat.
  • the latent heat transferred from the cold end of the heat pipe to the heat accumulator per unit time is Q 1
  • the latent heat transferred from the heat accumulator of the thermal surface of the generator per unit time is Q 2
  • the second heat conduction is one of the following:
  • the cold end of the heat transfer device is directly thermally coupled to the heat accumulator or is connected to the heat accumulator through a mechanical first temperature control switch
  • the thermal surface of the thermoelectric generator is directly thermally coupled to the heat storage.
  • the heat exchanger is connected to the heat exchanger through a mechanical second temperature control switch
  • the first temperature control switch is a normally closed switch for monitoring the temperature of the heat accumulator and triggering a temperature higher than a phase change temperature of the heat accumulator
  • the control switch is a normally open switch for monitoring the temperature of the regenerator and triggering a temperature not higher than a phase change temperature of the regenerator;
  • the cold end of the heat transfer device is directly thermally coupled to the heat accumulator or is connected to the heat accumulator through the first temperature control switch, and the hot surface of the thermoelectric generator passes through the mechanical third
  • the temperature-controlled switch heat conduction is connected to the regenerator, and the third temperature control switch is a normally open switch for monitoring the temperature of the regenerator and triggering a temperature not lower than a phase change temperature of the regenerator;
  • the cold end of the heat transfer device is directly connected to the heat accumulator or is connected to the heat accumulator through the first temperature control switch.
  • the thermoelectric generator has two groups and is connected to each other to define two sets of thermoelectric generators. a first temperature difference generator for the heat Q 2a conducted from the heat accumulator per unit time and a second temperature difference generator for heat Q 2b conducted from the heat accumulator per unit time, Q 1 >Q 2a , Q 1 ⁇ Q 2b , the hot surface of the first thermoelectric generator is connected to the heat accumulator through the fourth temperature control switch, and the hot surface of the second thermoelectric generator is connected to the heat accumulator through the fifth temperature control switch, the fourth temperature control Both the switch and the fifth temperature control switch monitor the temperature of the regenerator, and the fourth temperature control switch has a lower limit trigger temperature that is turned on when the regenerator is warmed to a lower limit temperature lower than the phase transition temperature, and a lower limit of the regenerator from the lower limit The temperature rises to an upper limit trigger temperature that
  • the thermostat is a mechanical or liquid or gas type thermometer
  • the first heat conduction path is mainly composed of a heat conduction element configured to derive heat of the waste heat accumulation area of the target and a pointer of the thermometer of the heat conduction connection heat transfer device
  • the pointer It is a heat conductive material and is connected to the heat insulating shaft of the thermometer
  • the heat conducting element is located on the dial of the thermometer, and the scale value of the dial corresponding to the front edge of the heat conducting element gradually increases.
  • the clamping unit can be selected from one of the following ways:
  • the single-point type, the heat-conducting component is fixed on the dial, and the set temperature of the thermostat is a fixed temperature point corresponding to the rear edge of the heat-conducting component on the dial; in the clamping temperature unit, the pre-clamping table heat conduction connection
  • the sum of the phase change temperature of the single thermoelectric conversion unit, or the heat conduction and the plurality of heat accumulators, the phase transition temperature is not equal, and the phase transition temperature is the highest, and the minimum conduction temperature difference of the heat transfer device is not higher than the above Constant temperature thermoelectric conversion unit;
  • the heat-conducting element slip is disposed in a section of the dial, and the set temperature of the thermostat is any temperature point corresponding to the adjustable narrow range of the rear edge of the heat-conducting element on the dial.
  • the minimum temperature point of the narrow range is not lower than the sum of the phase transition temperature of the heat accumulator and the minimum conduction temperature difference of the heat transfer device, and the maximum temperature point of the narrow range is not higher than the first temperature control switch and the third temperature control
  • the highest of the trigger temperature of the switch and the fifth temperature control switch in the clamp temperature unit, the pre-clamping table is thermally coupled to a single thermoelectric conversion unit, or the heat conduction is connected to the plurality of regenerators, the phase transition temperatures are not equal, and a thermoelectric conversion unit in which the sum of the phase transition temperature of the highest temperature and the minimum conduction temperature difference of the heat transfer device is not higher than the minimum temperature point of the narrow range;
  • the heat-conducting element slip is disposed in a section of the dial, and the set temperature of the thermostat is any temperature point corresponding to the adjustable wide range of the rear edge of the heat-conducting element on the dial;
  • the stage can be regarded as a combination of several single stages: the narrow ranges of all single stages are combined in order to become a wide range of multi-stage, the heat transfer device hot end of all thermoelectric conversion units of several single-stage thermostats, Connected to the derivation end of the same pre-clamping table, the highest phase change temperature of the regenerator in each thermoelectric conversion unit is defined as the high temperature thermoelectric conversion unit, and the narrow range of the uppermost section of the corresponding set temperature range is the highest Range, the maximum set temperature of the highest narrow range is the maximum set temperature of a wide range; the lowest phase change temperature of the regenerator is the low temperature thermoelectric conversion unit, the phase transition temperature of the heat accumulator in the high temperature thermoelectric conversion unit and the heat transfer device The sum of the minimum conduction
  • the thermostat is a mechanical thermometer.
  • the temperature sensing device of the mechanical thermometer adopts a bimetal or a memory alloy.
  • the temperature sensing device senses the temperature of different target objects as follows:
  • the temperature sensing device In the first temperature sensing mode, when the temperature of the solid target is clamped, the temperature sensing device indirectly monitors the temperature of the waste heat accumulation region of the target through the intermediate device, and the intermediate device includes the heat conductive container and the intermediate liquid contained therein, and the intermediate liquid The highest sensible heat temperature is not lower than the highest set temperature of the thermostat, and the temperature sensing device is probed into the intermediate liquid to be thermally conductively connected to the intermediate liquid;
  • the second temperature sensing mode when the temperature of the liquid target is clamped, the temperature sensing device is directly inserted into the target;
  • the temperature sensing device monitors the temperature of the target waste heat accumulation zone by the solid material or the liquid material dump, between the solid material dump and the temperature sensing device.
  • the temperature sensing mode is the first temperature sensing mode
  • the temperature sensing mode between the liquid material dump and the temperature sensing device is the second temperature sensing mode
  • the deposit is coated with the first
  • the heat insulating cover has a first one-way window for unidirectional flow of external hot air into the cover at the bottom of the first heat insulating cover.
  • the cold surface of the thermoelectric generator is provided with a passive heat dissipation structure, and the passive heat dissipation structure comprises at least one of the following structures:
  • the cold surface of the thermoelectric generator is connected to the annular heat pipe radiator through the sixth temperature control switch, and the sixth temperature control switch is a normally open switch for monitoring the cold surface temperature of the thermoelectric generator;
  • the cold surface of the thermoelectric generator is provided with a second heat-insulating cover which is tightly and snugly covered, and the top of the second heat-insulating cover has a second one-way window which is opened outward in one direction;
  • the cold surface heat conduction of the thermoelectric generator is connected with a folded heat sink, and the heat sink is connected with a memory alloy material or a bimetal in the form of a memory alloy material or a bimetal.
  • Wire, wire heat conduction is connected to the cold surface of the thermoelectric generator;
  • the cold surface of the thermoelectric generator is provided with a second heat-insulating cover which is tightly and snugly covered, and the second heat-insulating cover is provided with a perforation, and the electric fan is installed on the perforation, and the power supply of the electric fan is a preset power supply and At least one of the thermoelectric generators;
  • thermoelectric generator The cold surface heat conduction of the thermoelectric generator is connected with a speed clamp, and the speed clamp includes at least one of the following structures:
  • the first structure includes a semiconductor refrigerating sheet and a brine cooled by a cold surface of the semiconductor refrigerating sheet.
  • the power source of the semiconductor refrigerating sheet is at least one of a preset power source and the thermoelectric generator, and the brine passes through the seventh temperature.
  • the control switch heat conduction is connected to the cold surface of the thermoelectric generator, and the seventh temperature control switch is a normally open switch for monitoring the cold surface temperature of the thermoelectric generator;
  • the second structure includes another clamping temperature unit, which is a heat-dissipating temperature unit on a cold surface of a thermoelectric generator of a working clamping unit that cools a pair of objects, and a cooling unit
  • the heat exchanger phase transition temperature is lower than the heat accumulator phase transition temperature of the working clamp temperature unit.
  • the clamp temperature unit and the thermoelectric conversion unit are each a replaceable assembly structure, and the pre-clamping temperature meter is a replaceable module structure, and each device in the thermoelectric conversion unit is a replaceable module structure.
  • the refrigeration mode adopted in the present application is a combination of unidirectional heat conduction and thermal energy conversion.
  • the irreversible characteristics of unidirectional heat conduction are utilized to avoid the restriction of the heat transfer rate of the target in the conduction path, especially avoiding the useless work in the heat energy conversion process.
  • the reverse flow of waste heat restricts the heat extraction rate from the target, thus ensuring that heat can be smoothly exported from the target; on the other hand, other forms of energy converted from thermal energy are stored or directly output, which is equivalent to the target.
  • the heat has been stored or applied to the third component or equipment through other forms of energy, which not only utilizes the energy source in the heat conversion, but also the heat on the target, avoids the dependence of the refrigeration process on the power source, and transforms through the energy form. And the transfer avoids the backflow of heat to the target, and thus the refrigeration mode has the advantages of high cooling efficiency and independent of the power source.
  • the third component or device operated by the other energy obtained by the thermal energy conversion is an active refrigeration device, and the active refrigeration device is targeted to the target object, which is equivalent to cooling the target by using both heat conduction and energy conversion.
  • the forced cooling method of the active refrigeration device is used to cool the target object, thereby further accelerating the cooling efficiency of the target object and accelerating the cooling rate of the target object.
  • phase change material is combined with the temperature control switch to make the phase change material conduct heat conduction mainly under the latent heat state, and the heat conduction speed in the latent heat state is significantly higher than the heat conduction speed in the sensible heat state, thereby further Accelerate the cooling rate of the target.
  • thermoelectric generator is accelerated by using at least one heat dissipation method of the heat insulating cover and the speed clamp, thereby accelerating the thermoelectric conversion efficiency of the self-source waste heat thermostat, thereby further accelerating the cooling of the target. speed.
  • each unit of the self-source waste heat thermostat adopts an assembly structure, and the device adopts a modular structure to improve the interchangeability of various parts in the self-source waste heat thermostat, thereby reducing the difficulty of maintenance and maintenance.
  • FIG. 1 is a schematic view of a working clamp unit of a core frame of a thermostat of the present application
  • Figure 2 is a front elevational view of Figure 1;
  • Figure 3 is a perspective view showing the structure of the pre-clamping table of Figure 1;
  • FIG. 5 is a schematic view showing the working principle of the thermoelectric conversion unit of Figure 4.
  • thermoelectric conversion unit of the working clamping unit of the present application when the second heat conduction path adopts the (4) form;
  • FIG. 7 is a schematic view showing the working principle of the thermoelectric conversion unit of Figure 6;
  • FIG. 8 is a schematic structural view of a multi-stage working clamp unit of the present application.
  • Embodiment of the waste heat clamping control method in the present application the steps of the method are as follows:
  • step c The other energy described in step c is the power source of the active refrigeration device, and the active refrigeration device cools the waste heat accumulation portion of the target.
  • the energy converted by the heat may also be other energy than the electrical energy, such as potential energy, kinetic energy, and in terms of potential energy, the heat can be utilized.
  • the airbag is heated to obtain elastic potential energy; in terms of kinetic energy, this part of heat can be utilized as a power source of the steam engine to obtain kinetic energy through the steam engine.
  • Step d can also be omitted when it is not considered that the energy is applied to the target for cooling after the conversion of the thermal energy.
  • the thermostat is dedicated to implementing the above-mentioned waste heat clamping control method, and thus the thermostat can be divided into a core framework for realizing the above-mentioned waste heat clamping control method and an optimized design for optimizing the core framework function from the contribution of the structure to the above method and function. Two parts. The two parts will be described below in conjunction with the specific structure.
  • the core structure of the thermostat is a working clamp temperature unit
  • the core structure of the working clamp temperature unit is mainly composed of a pre-clamping thermometer 1 and a thermoelectricity which are sequentially arranged along the waste heat conduction path in the heat insulating casing.
  • the conversion unit 2 is composed.
  • the working process is: pre-clamping temperature table 1 real-time monitoring of the temperature of the waste heat accumulation area on the target object, when the temperature of the waste heat accumulation area reaches the artificially set set temperature on the pre-clamping temperature table 1, the pre-clamping temperature table 1 will be scrapped.
  • the heat is transferred to the thermoelectric conversion unit 2, and the thermoelectric conversion unit 2 sequentially conducts and converts the incoming waste heat, and finally converts the waste heat energy into electrical energy.
  • thermometer 1 1, pre-clamping thermometer
  • the pre-clamping temperature meter 1 adopts a detachable modular structure, which is modified by a bimetal thermometer, and is a temperature point of a single temperature point or a continuous temperature range.
  • the pre-clamping thermometer 1 is mainly composed of a thermostat and a first heat conduction path.
  • the thermostat preferably uses a bimetal or a memory alloy as a temperature sensing device and drives a thermometer for rotating the pointer.
  • the thermostat can also be a liquid or a gas. Or other mechanical thermometers, even thermostats can also use mechanical temperature switches or knobs.
  • the pointer of the thermostat can only be transferred to the scale value corresponding to the set temperature when the target temperature rises to the set temperature by itself, and the trailing edge of the pointer and the slider When it is turned on, the self-source waste heat working clamp temperature unit starts to work; when the instantaneous temperature of the target object is higher than the clamp set temperature, the pointer of the temperature controller is immediately at the slider position and the slider at the target corresponding temperature scale.
  • the self-sourced waste heat working clamp unit is activated immediately, and as the clamp temperature continues
  • the instantaneous temperature of the target continues to decrease continuously, so that the connection position of the pointer and the slider continues to continuously follow the trailing edge of the slider until the pointer is connected with the trailing edge of the slider, and the pointer continues to swing toward the trailing edge of the slider, and finally detaches.
  • the slider, the target is clamped to the temperature, and the self-source waste heat working clamp temperature unit stops working immediately.
  • thermometer 1.1, bimetal or memory alloy thermometer
  • the thermometer is mainly composed of a temperature sensing device 11, an adiabatic rotating shaft 12, a dial 13, and a pointer 14.
  • the temperature sensing device 11 is a bimetal or a memory alloy.
  • One end of the adiabatic rotating shaft 12 is drivingly connected to the temperature sensing device 11, the other end is connected to the pointer 14, and the adiabatic rotating shaft 12 is rotatably mounted at the center of the dial 13.
  • the pointer 14 is made of a highly thermally conductive material.
  • the fixed end of the pointer 14 is fixed to the adiabatic rotating shaft 12, which is also the heat deriving portion of the entire pre-clamping table 1, and introduces waste heat into the thermoelectric conversion unit 2.
  • the end of the pointer 14 is centered on the fixed end and is driven to rotate by the adiabatic rotating shaft 12, and the indicated dial 13 temperature scale value is the instantaneous temperature of the target.
  • thermometer works in the following manner: the temperature sensing device 11 operates to drive the adiabatic rotating shaft 12 and the pointer 14 to rotate, thereby realizing the temperature measurement, and simultaneously driving the pointer 14 to the set temperature position set on the dial 13.
  • the first heat conduction path is mainly composed of a thermally conductive element of a highly thermally conductive material on the dial 13 and a pointer 14 as a heat-extracting triggering element.
  • the heat conducting element communicates with the target to form a path for the heat of the target to be introduced from the source waste heat working clamp unit.
  • the heat conducting element is a curved piece of metal material that slides along the arc edge of the dial 13 or is directly fixed to the dial 13
  • the slider 15 and the inner and outer sides of the slider 15 are two arcs on two concentric circles which are both concentric with the dial 13.
  • the two rays from the radial direction of the center are respectively intersected with the two arcs, and are cut into two before and after.
  • the straight line segment becomes the front and rear edges of the slider 15. If the temperature scale range on the dial 13 starts from a certain point and the scale value is continuously distributed from small to large in the clockwise direction, then the slider 15 is the smallest from the temperature scale range.
  • the straight line segment that enters first is the leading edge of the slider 15, and the rear enters the trailing edge of the slider 15. That is, the scale value of the dial 13 corresponding to the rear edge of the heat conducting element to the front edge is gradually increased.
  • the rear edge of the slider 15 corresponds to the temperature scale of the dial 13 in the radial direction, which is the set temperature value at which the self-source waste heat working clamp unit finally clamps the target into position.
  • the arc length of the trailing edge of the slider 15 to the leading edge is considered to be sufficiently long.
  • the instantaneous temperature of the target reaches and exceeds the set temperature corresponding to the trailing edge of the slider 15, and the end of the pointer 14 is immediately rotated to the target temperature at the scale position of the dial 13, and at the scale position.
  • the slider 15 is connected, and the working clamp unit operates immediately, and the end of the pointer 14 does not come out from the front edge of the slider 15.
  • the pointer 14 is made of a highly thermally conductive material, and the fixed end of the pointer 14 is connected to the thermoelectric conversion unit 2 as a heat-extracting portion of the first heat conduction path to realize a heat conduction connection between the pre-clamping table 1 and the thermoelectric conversion unit 2.
  • the pointer 14 is not connected to the slider.
  • the end of the pointer 14 rotates clockwise toward the slider.
  • the end of the pointer is at the mark of the set temperature point, and communicates with the trailing edge of the slider 15, that is, the first heat conduction path between the target and the thermoelectric conversion unit 2 is realized.
  • the self-source waste heat working clamp unit starts working immediately.
  • the slider In the vertical direction, the slider is between the upper plane of the dial and the lower plane of the pointer, and the thickness of the slider is such that the upper plane of the slider is in sliding contact with the lower plane of the pointer.
  • the thermoelectric conversion unit 2 adopts a detachable assembly structure.
  • the thermoelectric conversion unit 2 is mainly composed of a heat transfer device 22 and a thermoelectric generator 23 connected in series in the outer casing 21 in the order of the waste heat conduction paths.
  • the hot end of the heat transfer device 22 is thermally coupled to the leading end of the first heat conduction path of the pre-warm table 1.
  • the workflow is that the heat transfer device 22 unidirectionally transfers the waste heat from the first heat conduction path to the thermoelectric generator 23, and the waste heat energy is converted into electrical energy by the thermoelectric generator 23 to realize unidirectional conduction and conversion of waste heat.
  • the outer casing 21 adopts a detachable modular structure, and the outer casing 21 is made of a heat insulating material.
  • the outer casing 21 has a cylindrical structure such that the hot end of the heat transfer device 22 and the cold face of the thermoelectric generator 23 are each exposed from both ends of the outer casing 21.
  • the main function of the outer casing 21 is to separate the thermoelectric conversion unit 2 from the outside and another thermoelectric conversion unit 2 to prevent collusion and dissipation of waste heat.
  • the heat transfer device 22 is a heat pipe or a heat equalizing plate adopting a replaceable modular structure.
  • the heat pipe is diode-shaped, and the heat equalizing plate can also be regarded as a diode, that is, the heat in the heat equalizing plate can only be from the hot end. Conducted to the cold end.
  • the heat transfer device 22 is mainly responsible for unidirectionally conducting the waste heat of the first heat conduction path deriving portion of the pre-warm table 1 to the hot surface of the thermoelectric generator 23.
  • thermoelectric generator 23 also employs a replaceable modular structure, preferably a thermoelectric generator 23.
  • the hot face of the thermoelectric generator 23 is configured to derive heat from the cold end of the heat transfer device 22.
  • the temperature controller of the pre-clamping temperature meter 1 monitors the temperature of the waste heat accumulation area of the target object, and when the monitored temperature reaches or exceeds the set temperature of the temperature controller, the temperature controller
  • the pointer 14 is connected to the heat conducting slider at the scale corresponding to the instantaneous temperature of the target on the dial 13; thus, the first heat conduction path is in an on state, and the waste heat of the waste heat accumulation area of the target reaches the thermoelectric conversion unit through the first heat conduction path.
  • the heat transfer device 22 has a hot end, and the heat transfer device 22 utilizes the one-way heat transfer feature to transport the waste heat of the hot end to the cold end in one direction, and then actively absorbs heat through the hot surface of the thermoelectric generator 23, and the temperature difference is generated.
  • the electric appliance converts the waste heat and heat into electric energy, thereby completing the one-way derivation and conversion of the waste heat.
  • the core frame of the working clamp unit can realize the waste heat of the target itself, and unidirectional heat conduction and thermoelectric conversion, the waste heat is directly derived from the target, and the accumulated waste heat is consumed by converting electric energy. So that the temperature of the target is clamped at a preset temperature point.
  • the structure of the core frame is optimized to better meet the problems encountered in the actual work.
  • the optimized design is mainly in the three directions of heat transfer mode, heat dissipation mode and use place. The different optimization design directions are detailed below.
  • a heat accumulator is added between the heat transfer element of the thermoelectric conversion unit 2 and the thermoelectric generator 23.
  • the regenerator has a modular structure and is mainly composed of an insulated container and a phase change material contained therein. Phase change materials use “solid-solid” or “solid-liquid” phase change materials to maintain linear growth of the sensible heat phase of the phase change material as much as possible.
  • One side of the phase change material derives heat from the cold end of the heat transfer element, and the other heat is introduced to the hot face of the thermoelectric generator 23, which requires that the sum of the phase transition temperature of the heat accumulator and the minimum conduction temperature difference of the heat transfer device 22 is not higher than The set temperature of the thermostat.
  • the ability of the target to absorb waste heat from the waste heat source may be greater than that of the self-source waste heat work clamp.
  • the ability of the temperature unit to absorb waste heat from the target causes the target temperature to "drift" during this time, which is greater than the temperature point to be clamped. Therefore, there is a need to have an "advance amount" in the actual temperature considerations of the clamp, and a "pre-clamp" on the clamp temperature setting.
  • the heat accumulator When the working clamp temperature unit enters the normal working phase of transferring waste heat through latent heat, the heat accumulator has already sensible heat to start the phase change state, because the heat accumulator transmits the waste heat of the target with latent heat more than the target sensible heat from the waste heat The ability of the source to absorb waste heat, the self-source waste heat work clamp unit can clamp the target without heating up.
  • the heat transfer device 22 introduces waste heat into the heat accumulator and the heat difference generator 23 derives waste heat from the heat accumulator, which is dominated by the heat transfer device 22 and the thermoelectric generator 23, and the two are introduced into waste heat.
  • the difference in the ability to derive waste heat determines the increase or decrease of waste heat in the regenerator.
  • the whole working clamp unit mainly utilizes the latent heat state of the phase change material of the regenerator (ie, the continuous reciprocating process from the phase change material to the complete phase change), so that the heat of the target is sequentially transmitted, and finally the thermoelectric generator 23 Thermoelectric conversion, the heat is continuously transmitted from the target to electricity, and the waste heat is not accumulated in the target, so that the target is "clamped" at the temperature set by the thermostat.
  • the phase change material of the regenerator is heated by the sensible heat in the sensible heat stage, and after the phase transition temperature is reached, the phase change material of the regenerator is changed from the initial phase transition to the complete phase transition.
  • the reciprocating, regenerator heats the heat from the cold end of the heat transfer device 22 to the hot face of the thermoelectric generator 23 in the form of latent heat.
  • the phase change temperature of the heat accumulator plus the minimum conduction temperature difference of the heat transfer device 22 is not higher than, and preferably slightly lower than, the set temperature of the thermostat.
  • the latent heat of the heat accumulator that is conducted from the cold end of the heat transfer device 22 into the heat accumulator per unit time in the latent heat state is Q 1
  • the latent heat of the hot face of the generator 23 is discharged from the heat accumulator per unit time.
  • Q 1 Q 2
  • Q 1 Q 2
  • the regenerator will present Q in actual work.
  • Q 2 Q 1 > Q 2 and Q 1 ⁇ Q 2 three conditions.
  • the second heat conduction path between the cold end of the heat pipe and the hot face of the thermoelectric generator 23 is one of the following four forms:
  • thermoelectric generator 23 and the cold end of the heat transfer device 22 are each directly thermally coupled to the heat accumulator, and the second heat conduction path is a continuous heat conduction path, and the heat is continuously conducted.
  • the cold end of the heat transfer device 22 is thermally coupled to the heat accumulator 26 through a mechanical first temperature control switch 24, and the hot surface of the thermoelectric generator 23 is passed through a mechanical second temperature control.
  • the switch 25 is thermally coupled to the heat accumulator 26.
  • the first temperature control switch 24 is a normally closed switch that monitors the temperature of the heat accumulator 26 and triggers a temperature higher than the phase change temperature of the heat accumulator 26, and the second temperature control switch 25 monitors the temperature of the heat accumulator 26 and triggers A normally open switch having a temperature not higher than the phase transition temperature of the heat accumulator 26.
  • the function of the first temperature control switch 24 is to turn off the heat transfer path between the heat transfer element and the heat accumulator 26 when the phase change material of the heat accumulator 26 exceeds the phase change temperature, because the phase change material is abnormally rising at this time.
  • the reason for the high is either from the decrease of Q 2 , from Q 1 , or the simultaneous occurrence of both, and in either case, it indicates that the entire heat conduction path is abnormal, and the first temperature control switch 24 is immediately cut off. It played the role of insurance and prevented the situation from getting worse.
  • the function of the second temperature control switch 25 is to turn off the heat path between the heat accumulator 26 and the thermoelectric generator 23 when the heat accumulator 26 performs sensible heat rise, on the one hand, the heat accumulator 26 is in the heat discharge path. In the case of blocking, the heat is concentrated to rapidly heat up, and on the other hand, the temperature that is constantly changing is prevented from acting on the thermoelectric generator 23 to generate unstable electric energy.
  • the second temperature-controlled switch monitors the temperature of the phase change material of the regenerator, and when the temperature is raised to a temperature slightly lower than the trigger temperature, it is monitored that the phase change material is about to complete the sensible heat temperature, and enters a state where the phase transition is about to start; Trigger to slightly higher than the phase transition temperature, that is, the phase change material is monitored from continuous phase transition to full phase transition; when the temperature recovers from the phase transition temperature to the phase transition temperature, it is detected that the phase change material begins to be monitored.
  • the complete phase transition to the incomplete phase transition state transition when the temperature is cooled from the phase transition temperature to a temperature slightly lower than the phase transition temperature, it is detected that the phase change material recovers from the phase transition state to the phase transition that is about to begin. Hot state.
  • the cold end of the heat transfer device 22 is directly thermally coupled to the heat accumulator 26 or thermally coupled to the heat accumulator 26 via the first temperature control switch 24, and the hot surface of the thermoelectric generator 23 is mechanically
  • the third temperature control switch is thermally connected to the heat accumulator 26, and the third temperature control switch is a normally open switch for monitoring the temperature of the heat accumulator 26 and triggering a temperature not lower than the phase change temperature of the heat accumulator 26, and the third temperature control switch
  • the function of the heat accumulator 26 is to realize the heat collecting between the heat accumulator 26 and the hot surface of the thermoelectric generator 23 when the sensible heat rise and quasi-phase change state of the heat accumulator 26 is turned off. The heat accumulation in the heater 26 continues to change phase; until the heat accumulator 26 enters the full state, the heat accumulator 26 and the thermoelectric generator 23 are thermally contacted to conduct heat conduction.
  • the working principle of the second heat conduction path is: when the working clamp temperature unit starts working, it is still the first temperature control switch 24 between the heat transfer device 22 and the heat accumulator 26 or directly connected, firstly direct conduction conduction Heat (sensible heat), at which time the third temperature control switch between the heat accumulator 26 and the hot face of the thermoelectric generator 23 is turned "off".
  • the hot face of the thermoelectric generator 23 communicates with the heat accumulator 26 through the third temperature control switch, and starts to conduct heat (latent heat) from the heat accumulator 26, at this time,
  • the heat transfer device 22 introduces the heat (latent heat) of Q 1 to the heat accumulator 26 per unit time, and the heat of the Q2 is radiated from the heat accumulator 26 per unit time in the hot surface of the thermoelectric generator 23 (latent heat), that is,
  • the synchronous, fully phase-change state of the heat accumulator 26 has a latent heat of heat (Q 2 -Q 1 ) per unit time, which is continued until the heat accumulator 26 returns to the quasi-phase transition state, the third temperature
  • the control switch detects that the temperature of the heat accumulator 26 has decreased to slightly below the phase change temperature, and the third temperature control switch disconnects the heat path between the heat accumulator 26 and the hot face of the thermoelectric generator 23.
  • thermoelectric generator does not perform thermoelectric conversion; when the regenerator reaches a complete phase change, the hot surface of the thermoelectric generator immediately communicates with the regenerator, and the thermoelectric conversion begins.
  • the heat transfer device continues to accumulate
  • the heat exchanger introduces latent heat, and the synchronous thermoelectric generator derives more latent heat from the heat accumulator; when the latent heat of the heat accumulator is continuously reduced during the phase 2, it returns to the moment when the phase transition is about to begin, and then enters stage 3. At this point, the hot face of the thermoelectric generator is disconnected from the regenerator and is switched to phase 1;
  • the cold end of the heat transfer device 22 is thermally coupled to the heat accumulator 26 through the first temperature control switch 24, and the hot surface of the thermoelectric generator 23 is directly thermally coupled to the heat accumulator 26 or through the second
  • the temperature control switch 25 is thermally coupled to the heat accumulator 26.
  • the second thermostat switch 25 is indirectly connected between the hot face of the thermoelectric generator 23 and the regenerator 26.
  • the working principle of the second heat conduction path is: when the working clamp unit starts working, the first temperature control switch 24 between the heat transfer device 22 and the heat accumulator 26 first directly communicates the conduction heat (sensible heat).
  • the second temperature control switch 25 between the heat exchanger 26 and the hot face of the thermoelectric generator 23 is turned off, and when the heat accumulator 26 is about to reach the phase transition temperature, the second temperature control switch 25 is triggered to communicate.
  • the heat transfer device 22 introduces heat Q 1 (latent heat) to the heat accumulator 26 per unit time; at the same time, the hot surface of the thermoelectric generator 23 starts to conduct heat Q 2 (latent heat) from the heat accumulator 26; synchronization, unit
  • the heat (latent heat) having the time (Q 1 - Q2) accumulates in the phase change material of the heat accumulator 26, and when the heat of the phase change material of the heat accumulator 26 (latent heat) continues to accumulate to a complete phase change, the heat accumulator 26 continues.
  • the second temperature control switch 25 is still connected, and the hot face of the temperature difference power generator 23 is still completely reversible from the heat accumulator 26
  • the heat is transferred to the unit time Q 2 (latent heat), and the thermoelectric conversion is performed until the latent heat of the heat accumulator 26 is completely thermoelectrically converted, and then a small amount of sensible heat is regenerated from the heat accumulator 26, and the heat is stored.
  • the temperature of the device 26 reaches a certain temperature point slightly lower than its phase transition temperature, that is, the temperature is reached.
  • Change state the first temperature switch 24 communicates again, re-introduced into the heat transfer device 22 in the form of latent heat, and so forth, until the object is clamped to the set temperature.
  • thermoelectric generator is not thermoelectrically converted, and the hot surface is not connected to the regenerator. This is stage 4; the heat transfer device continues to introduce heat into the regenerator from the regenerative state to the phase transition state (latent heat) ), the synchronous, thermoelectric generator also communicates with the regenerator, and continuously derives latent heat for thermoelectric conversion.
  • Phase 5 and Phase 6 cycle (especially when using the second temperature control switch, mainly because of the high heat transfer efficiency during the heat conduction process, in order to quickly enter the phase change of the heat accumulator, the heat transfer device works during the sensible heat rise phase, Synchronous, the thermoelectric generator does not work, so that the regenerator quickly enters the latent heat from sensible heat.
  • thermoelectric generator 23 has two groups and is connected to each other.
  • a first temperature difference power generator 231 defining two sets of temperature difference power generators 23 for heat Q 2a conducted from the heat accumulator 26 per unit time and a second heat amount Q 2b conducted from the heat accumulator 26 per unit time are defined.
  • the thermoelectric generator 232, Q 1 >Q 2a , Q 1 ⁇ Q 2b forms a push-pull relationship between the first thermoelectric generator 231, the second thermoelectric generator 232 and the heat transfer device 22, that is, the same thermoelectric conversion unit 2
  • the hot surface of the first thermoelectric generator 231 is thermally coupled to the regenerator 26 through the fourth temperature control switch 251, and the hot surface of the second thermoelectric generator 232 is thermally coupled to the regenerator 26 through the fifth temperature control switch 252, the fourth temperature control Both the switch 251 and the fifth temperature control switch 252 monitor the temperature of the heat accumulator 26, and the fourth temperature control switch 251 has a lower limit trigger temperature and heat storage when the heat accumulator 26 is warmed to a lower limit temperature lower than the phase transition temperature.
  • the upper limit trigger temperature when the temperature rises from the lower limit temperature to not lower than the upper limit temperature of the phase change temperature, and the fifth temperature control switch 252 reaches the temperature higher than the lower limit temperature and is not higher than the temperature at the heat accumulator 26 A normally open switch that is triggered when the temperature of the upper limit temperature is described.
  • thermoelectric conversion unit 2 of this form is mainly composed of "one heat transfer device 22, one heat accumulator 26, and two thermoelectric generators that work alternately. 23" composition.
  • the working principle is that when the working clamp unit starts working, the heat transfer device 22 is directly connected to the heat accumulator 26, and the hot surfaces of the fourth temperature control switch 251 and the fifth temperature control switch 252 are completely disconnected from the heat path of the heat accumulator 26. .
  • the hot face of the first thermoelectric generator 231 communicates with the heat accumulator 26 through the fourth temperature control switch 251, and starts to work according to the above (3) form;
  • the heat accumulator 26 reaches a full phase change state, the first temperature difference power generator 231 is disconnected from the path of the heat accumulator 26 by the fourth temperature control switch 251, and the second temperature difference power generator 232 is connected by the fifth temperature control switch 252.
  • the heat exchanger 26 starts to work according to the (2) form; when the heat accumulator 26 returns from the fully phase change state to the quasi-phase change state, the first temperature difference power generator 231 takes over the second temperature difference power generator 232 to operate.
  • the source waste heat working clamp unit is also converted from the (2) form to the (3) form work. In this way, the self-source waste heat working clamp unit continues to work in (3), (2) until the target is clamped to the set temperature.
  • Each of the first to fifth temperature-controlled switches 252 described above is preferably a double-metal sheet or a sudden temperature-controlled switch in the form of a memory alloy, which on the one hand increases the reaction speed and on the other hand avoids dependence on active equipment.
  • the linkage mode between the fourth temperature control switch 251 and the fifth temperature control because the fourth temperature control switch 251 requires a lower limit trigger temperature and an upper limit trigger temperature, so simply rely on the fourth If the temperature control switch 251 itself meets the conditions, either a high-cost temperature-controlled switch having a corresponding function or an artificial manual operation compensation is used, which, although achievable in the present application, is disadvantageous in industrial applications.
  • the first one, the working state of the self-source waste heat working clamp unit is that the heat transfer from the target is synchronized with the thermoelectric conversion; secondly, the heat transfer from the target is intermittent, and the thermoelectricity The conversion is carried out continuously; the third is that the heat transfer from the target is continuously performed, and the thermoelectric conversion is intermittent; and the fourth, the conduction heat removal and the thermoelectric conversion are continuously performed.
  • the temperature control switches in each form require some mechanical mechanism to perform the necessary linkage with each other and will not be described.
  • All the temperature control switches are bimetal spring temperature control switches, and the temperature control switch detects that the phase change material temperature of the regenerator 26 reaches a temperature slightly lower than the phase transition temperature or slightly higher than the phase transition temperature, that is, the heat accumulator 26
  • the phase change material reaches a quasi-phase transition state or a complete phase transition state in which the phase change begins to continue to absorb heat, and the temperature control switch triggers the mechanism to communicate or disconnect the heat conduction path.
  • the temperature of the phase change material of the heat accumulator 26 is restored, and the temperature control switch trigger mechanism performs the reverse action.
  • the quasi-phase transition state and the phase transition state of the regenerator 26 are controlled by the temperature control switch, or the heat path is turned on and off during conversion between any of the complete phase transition states.
  • the thermoelectric conversion unit 2 is ensured to operate normally, the interior of the heat accumulator 26 always conducts heat in the form of latent heat.
  • the bimetal in the temperature control switch can also be replaced by a memory alloy for temperature measurement and driving
  • the heat conducting element is fixed to the dial 13, and the set temperature of the thermostat is a fixed temperature point on the dial 13 at the rear edge of the heat conducting element.
  • the pre-clamping table 1 is thermally coupled to a single thermoelectric conversion unit 2.
  • the trailing edge of the slider 15 is fixed at a certain temperature value, only a single temperature set point, and a thermoelectric conversion unit 2 corresponding thereto, the heat conduction end of the heat pipe of the thermoelectric conversion unit 2 is thermally connected to the pre-clamping table 1 on.
  • thermoelectric conversion unit 2 that is, when we define the set temperature of the single-point thermostat to be T 0 , the minimum conduction temperature difference of the heat transfer device 22 is t, and the phase change temperature of the regenerator 26 of the thermoelectric conversion unit 2 For T 2 , then T 0 must be greater than or equal to T 2 +t (preferably the phase change material is selected such that T 2 +t is slightly smaller than T 0 ).
  • the working clamp temperature unit starts to clamp the target, and the corresponding heat accumulator 26 of the thermoelectric conversion unit 2
  • the phase change temperature is specifically designed for the single set temperature, that is, the latent heat transfer efficiency of the heat accumulator 26 is the highest, and the heat transfer efficiency of the heat transfer device 22 is also the highest.
  • the phase change temperature and the heat transfer device of the plurality of heat accumulators having different phase transition temperatures and the highest phase transition temperature may be thermally conducted on the pre-warm table 1
  • the thermoelectric conversion unit 2 having a sum of minimum conduction temperature differences not higher than the temperature set point.
  • the heat conducting element is slip-disposed in a section of the dial 13, and the set temperature of the thermostat is any temperature point corresponding to the adjustable narrow range of the rear edge of the heat conducting element on the dial 13, the minimum temperature point of the narrow range is not Lower than the sum of the phase transition temperature of the heat accumulator 26 and the minimum conduction temperature difference of the heat transfer device 22, the maximum temperature point of the narrow range is not higher than the first temperature control switch 24, the third temperature control switch and the fifth temperature The highest of the trigger temperatures of the control switch 252.
  • the pre-clamping temperature meter 1 is thermally conductively connected to the single thermoelectric conversion unit 2, or the heat transfer is connected to the plurality of heat accumulators 26, and the phase transition temperature and heat transfer are the same, and the phase transition temperature is the highest.
  • the sum of the minimum conduction temperature differences of the device 22 is not higher than the thermoelectric conversion unit 2 of the narrow range of minimum temperature points.
  • the minimum temperature value that can be set is T 0
  • the minimum conduction temperature difference of the heat transfer device 22 is t
  • the phase change of the thermoelectric conversion unit 2 regenerator 26 The temperature is T 2 , then T 0 must be greater than or equal to (T 2 +t).
  • the different thermoelectric conversion units 2 differ only in the phase change temperatures of the respective heat accumulators 26.
  • thermoelectric conversion unit 2 that adapts the regenerator phase transition temperature T 2 to satisfy (T 2 + t) slightly smaller than T 0 is the best. Thus, the corresponding specific thermoelectric conversion unit 2 is determined.
  • the minimum set temperature is T 0 . Then, by sliding the slider 15 within this narrow temperature setting range, any other set temperature T 1 , T 1 corresponding to the trailing edge of the slider 15 is slightly larger than, approximately equal to T 0 . Then, they can also be combined well with the already adapted thermoelectric conversion unit 2.
  • a portion of the slider 15 extends outwardly to directly communicate with the target, that is, the target heat has been introduced into the slider 15. Then, as long as the pointer 14 rotates to communicate with the slider 15, the entire working clamp temperature unit heat path is completely connected, and the working clamp temperature unit starts to work. The "pointer 14" is rotated, and there are two cases in which the slider 15 is connected:
  • thermoelectric conversion unit 2 After the single-stage working clamp unit determines a specific thermoelectric conversion unit 2, it is also possible to connect a plurality of thermoelectric conversion units 2 with a lower phase transition temperature of the regenerator 26, in order to economically and Concisely, we can only retain the most efficient thermoelectric conversion unit 2 (that is, the highest phase transition temperature in each thermoelectric conversion unit 2).
  • the heat conducting element is slidably disposed in a section of the dial 13, and the set temperature of the thermostat is any temperature point corresponding to the adjustable wide range of the rear edge of the heat conducting element on the dial 13;
  • the multi-stage type is a combination of N single-stage thermostats: the multi-stage set temperature is continuously wide, and the N-segment can be regarded as a single-stage temperature narrow range.
  • the minimum set temperature point for a wide range of multi-stages is also the minimum temperature set point for a single-stage narrow range of the lowest temperature range.
  • the maximum temperature set point for the next-stage single-stage narrow range is again the minimum temperature set point for the single-stage narrow range of the previous stage, and so on.
  • thermoelectric conversion unit 2 matching the phase change temperature of the regenerator is selected, and The narrow range setting temperature corresponds.
  • the thermoelectric conversion unit 2 in which the N regenerators have different phase transition temperatures is obtained.
  • This large set temperature range is achieved by a pre-clamping thermometer 1 (the slider 15 arc length is still considered to be long enough).
  • the heat transfer output of the pre-warm table 1 is still the fixed end of its pointer 14.
  • the hot ends of all the heat pipes of the N thermoelectric conversion units 2 are connected together through a chute 3 of high thermal conductivity metal, and the chute 3 is further connected to the fixed end of the pointer 14, thereby forming a multi-stage working clamp unit.
  • the multi-stage working clamp temperature unit clamps the temperature range to a large range, which is compatible with the temperature at which the clamped object can have a sensible heat.
  • the multi-stage clamp unit will start to work when the target temperature rises to the set temperature.
  • the instantaneous temperature of the target is higher than the set temperature of the pre-clamping table 1, and the multi-stage clamping unit starts working immediately.
  • the pointer 14 is rotated and the communication temperature scale 15 corresponding to the position of the slider is T '1, all of the minimum on the temperature difference of the heat pipe is t, a thermoelectric conversion unit 2 cake thermal phase transition temperature of Tx . All thermoelectric conversion units 2 whose Tx satisfies (Tx+t) less than or equal to T'1 operate simultaneously.
  • thermoelectric conversion unit 2 closest to T 'that the thermoelectric conversion element 2 to the case 1 contribution clamp the maximum temperature of the object, a corresponding heat transfer efficiency is the highest.
  • the number of thermoelectric conversion units 2 participating in the multi-stage working clamp unit is gradually reduced (the earlier the phase transition temperature is, the earlier the work is withdrawn) until the last thermoelectric conversion unit 2 is operated. Multi-stage works just like a single-stage, until the clamp is in place.
  • thermoelectric conversion unit 2 of each stage in the working clamp unit is the constant temperature of the hot surface of the thermoelectric generator 23
  • the temperature difference of the thermoelectric conversion unit 2 is determined.
  • the temperature of the cold side of the generator 23 should preferably also be kept constant. Generally, we expose the cold surface of the thermoelectric generator to the ambient air. Since the working clamp unit does not use other energy sources during operation, the temperature of the cold surface of the thermoelectric generator 23 is unstable. The main heated surface penetrates from the thermoelectric generator 23. The internal heat and the ambient temperature change are affected by both external heat generated by convection on the cold surface of the thermoelectric generator 23.
  • thermoelectric generator 23 it is only necessary to cover the cold surface of the thermoelectric generator 23 with the second heat insulating cover, but in the actual working condition, the former has a greater influence on the temperature of the cold surface of the thermoelectric generator 23 than the latter, so it is necessary to adopt The active and forced heat dissipation mode cools the cold surface of the thermoelectric generator 23.
  • thermoelectric generator 23 From the form of heat dissipation, the method of active and forced heat dissipation of the thermoelectric generator 23 can be divided into passive heat dissipation and speed clamp heat dissipation, which will be described below in conjunction with a specific structure.
  • the cold surface of the thermoelectric generator 23 is connected to the annular heat pipe radiator through the sixth temperature control switch, and the sixth temperature control switch is used to monitor the temperature difference of the cold surface temperature of the thermoelectric generator 23 by using a bimetal or a memory alloy.
  • the sixth temperature control switch disconnects the thermal path between the cold surface of the thermoelectric generator 23 and the annular heat pipe radiator The cold surface heat accumulation of the thermoelectric generator 23; when the instantaneous temperature of the cold surface of the thermoelectric generator 23 is equal to or higher than the trigger temperature of the sixth temperature difference switch, the sixth temperature control switch turns on the cold surface of the thermoelectric generator 23 and the annular heat pipe The heat path between the radiators, the heat of the cold surface of the thermoelectric generator 23 is dissipated to the atmosphere through the annular heat pipe radiator.
  • the cold surface of the thermoelectric generator 23 is provided with a second heat-insulating cover which is tightly and snugly covered.
  • the top of the second heat-insulating cover has a second one-way window which is opened outward in one direction, and the second one-way
  • the window may be formed by combining a bimetal or a memory alloy on the movable shutter, and the bimetal or memory alloy is thermally conductively connected to the cold surface of the thermoelectric generator 23 to be bimetal or when the cold surface temperature of the thermoelectric generator 23 is too high.
  • the memory alloy moves and stretches, and the stretching action of the bimetal or the memory alloy drives the movable shutter to open to realize one-way outward opening.
  • thermoelectric generator 23 The cold surface heat conduction of the thermoelectric generator 23 is connected with a folded heat sink, and the heat sink is connected with a memory alloy material or a bimetal in the form of a memory alloy material or a bimetal.
  • the wire and the wire are thermally connected to the cold surface of the thermoelectric generator 23, so that when the temperature of the cold surface of the thermoelectric generator 23 is too high, the wire moves and expands, and the stretching action of the wire drives the heat sink to expand to increase the heat dissipation area. Achieve rapid heat dissipation.
  • the cold surface of the thermoelectric generator 23 is provided with a second heat-insulating cover which is tightly and conformally covered.
  • the second heat-insulating cover is provided with a perforation, and the electric fan is installed on the perforation, and the power supply of the electric fan is a preset power supply and At least one of the thermoelectric generators 23, with respect to the power supply problem of the power source, preferably all of the power generated by the thermoelectric generator 23 is used, but since there is a section of the power supply blank in the startup phase of the thermoelectric generator 23, After the power is turned on for a period of time, after the thermoelectric generator 23 is connected, the preset power supply is disconnected or removed, and the electric fan is driven by the thermoelectric generator 23 to cool the cold surface of the thermoelectric generator 23.
  • the speed clamp is mainly to replace the above passive heat dissipation structure in a more efficient manner, so that the thermoelectric conversion efficiency of the thermoelectric generator 23 is higher under the same conditions.
  • the speed clamp has the following two forms:
  • the speed clamp includes a semiconductor refrigerating sheet and a cold-cooling refrigerant cooled by the cold surface of the semiconductor refrigerating sheet.
  • the power source of the semiconductor refrigerating sheet is at least one of a preset power source and the thermoelectric generator 23, and the brine is passed through.
  • the seventh temperature control switch is thermally connected to the cold surface of the thermoelectric generator 23, and the seventh temperature control switch is a normally open switch for monitoring the cold surface temperature of the thermoelectric generator 23 in the form of a bimetal or a memory alloy.
  • the speed clamp is powered by a self-source power source obtained by preset power supply or thermoelectric conversion, and starts "semiconductor refrigeration sheet + as a first-stage refrigeration coolant + each thermoelectric generator 23 cold surface, through each thermoelectric generator 23
  • the seventh temperature control switch on the cold surface is turned on or off, and the cooling amount is obtained from the brine.
  • the cold surface of each thermoelectric generator 23 adjusts its own cold surface temperature by the respective obtained cold amount, so as to control the temperature difference between the cold surface and the hot surface of the thermoelectric generator 23 at an ideal temperature difference, thereby obtaining a relatively stable thermoelectricity. Conversion efficiency.
  • the speed clamp includes another temperature clamping unit, which is a heat-dissipating temperature unit on the cold surface of the thermoelectric generator 23 of the working clamp unit that cools the pair of objects.
  • the heat-dissipating clamp temperature unit is used to replace the passive heat-dissipating structure.
  • the cold surface of the thermoelectric generator 23 of the first-stage working clamp temperature unit has a relative temperature "low temperature", and the purpose of optimizing the cooling effect of the cold surface of the thermoelectric generator 23 is achieved.
  • the passive heat dissipation sub-mode and the speed clamp heat dissipation sub-mode there is no mutual interference between the passive heat dissipation and the speed clamp heat dissipation, the passive heat dissipation sub-mode and the speed clamp heat dissipation sub-mode, that is, in specific use.
  • one or two of passive heat dissipation and speed clamp heat dissipation, or at least one of a passive heat dissipation sub-mode and a speed clamp heat dissipation sub-mode may be selected.
  • the temperature sensing device 11 of the thermostat can only directly measure the temperature of the liquid, when the object to be clamped is solid or gas, the thermostat must indirectly measure and fix by means of the intermediate liquid or the transfer object. Or the temperature of the gas target to realize the function of the temperature controller. For this reason, the temperature sensing device 11 of the temperature controller can select the following temperature sensing method according to different places of use:
  • the temperature sensing device 11 When clamping the temperature of the solid target, the temperature sensing device 11 indirectly monitors the temperature of the waste heat accumulation region of the target through the intermediate device, and the intermediate device includes the heat conductive container and the intermediate liquid contained therein, and the highest sensible heat of the intermediate liquid The temperature is not lower than the highest set temperature of the thermostat, and the temperature sensing device 11 is probed into the intermediate liquid to be thermally conductively connected to the intermediate liquid.
  • the waste gas of the target gas is passed through the heat convection, and is transferred to a solid material or a liquid material for accumulation (solid, liquid transfer coated with the first heat insulating cover, first
  • the bottom of the heat insulating cover is provided with a first one-way window for unidirectional flow of the target gas into the cover, and the temperature sensing device 11 indirectly achieves clamping of the gas target by sensing the temperature of the dump.
  • the temperature sensing method between the deposit of the solid material and the temperature sensing device is the first (1) temperature sensing method
  • the temperature sensing mode between the liquid material transfer material and the temperature sensing device is the first (2) ) Temperature sensing method.
  • the intermediate liquid in the form (1), must have a high thermal conductivity, and it is heated to be isothermally and synchronously with the target by close contact with the surface of the target, and the sensible temperature range of the intermediate liquid must be Covering the temperature setting range of the thermostat, so that the sensible heat temperature of the intermediate liquid can achieve a linear and unique correspondence with the continuous temperature setting range of the thermostat, and thus the intermediate liquid here functions as: transitional temperature measurement.
  • the thermostat mainly relies on the latent heat of the phase change material to conduct and thermoelectrically convert waste heat from the target, and the waste heat of the target is usually sensible heat.
  • the phase change material of the heat accumulator 26 of the thermostat is different from the material of the target, the heat transfer rate of latent heat is usually much greater than the heat transfer rate of sensible heat.
  • the thermostat can clamp the target. Warming up, in other words, there is no process problem with the thermostat.
  • the thermostat does not require a portion that is in contact with the outside, and the third insulating cover can be used to isolate the portion from the outside.
  • thermoelectric generator 23 there is a problem with the collection and storage of electrical energy for the use of waste heat conversion by the thermostat. Collecting and storing electric energy with a small current low voltage power collector, a battery or a capacitor, a voltage regulator, and an inverter, thereby achieving unloading of the thermoelectric generator 23, and the thermoelectric generator can be realized by the above series of electric devices. 23 The converted power supply is properly combined with the preset power supply to better adapt to the cold surface of the thermoelectric generator 23 and the heat sink of the target.
  • the thermostat can also be provided with an electric, electronic control and remote control related structure, that is, when the preset power supply is added, the clamper starts to clamp the temperature, the time point at which the output of the converted electric energy starts, and each The state of the temperature control switch can be controlled by electric, electronic control and remote control.
  • the vehicle includes sequentially connected along the waste heat conduction path, the vehicle body + the first thermostat (preferably multi-stage working clamp temperature unit + speed clamp) + engine cooling water pump + second thermostat (preferably single point working pliers)
  • first thermostat preferably multi-stage working clamp temperature unit + speed clamp
  • second thermostat preferably single point working pliers
  • the temperature unit the structure of the different thermostats will be the above embodiment.
  • the multi-stage working clamp temperature unit of the first thermostat is mainly configured to clamp the body temperature to adapt the body temperature to the human body, so the phase change materials of the respective heat accumulators 26 in the multi-stage working clamp unit should be selected.
  • the phase transition temperature is matched to the critical temperature points of the human body, such as 15 ° C, 25 ° C, 25 ° C, and 40 ° C, so that the use of the first thermostat is ergonomic.
  • the single-point working clamp temperature unit in the second thermostat configured to clamp the engine cooling water pump converts the high-temperature waste heat into a sufficient electric energy by clamping the high-temperature waste heat to 90 ° C, and in turn is the first thermostat
  • the speed clamp provides plenty of energy.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种废热钳制控制方法,包括如下步骤:a、监测目标物的废热积聚部的即时温度;b、在监测到的即时温度达到或超过设定温度时,将废热积聚部的废热单向传导导出;c、将导出的废热转化为热能以外的其他能量,该其他能量被存储或被直接输出。还公开了一种自源式废热钳温器,包括至少一钳温单元,钳温单元包括预钳温表(1)和至少一热电转化单元(2),预钳温表(1),包括无源式的温控器和热传导式的第一热传导路径,热电转换单元(2),包括配置成将来自于第一热传导路径的热量单向继续向下游传导的传热器件(22),另外,还公开了包括自源式废热钳温器的车辆。其中制冷方式为单向热传导和热能转化相结合的方式,一方面利用单向热传导不可逆的特点,避免传导路径中逆流对目标物热量导出速度的制约,尤其避免了热能转化过程中无用功废热的逆向流动对热量自目标物导出速度的制约,从而保证了热量能够从目标物上顺利地导出;另一方面将热能转化得到的其他形式能量存储或直接输出后,相当于目标物上的热量已通过其他能量形式存储或作用在第三零部件或设备上,既利用热量转化中能量源即为目标物上的热量的特点,避免制冷过程对动力源的依赖,又通过能量形式的转化和转移避免了热量向目标物的逆流。

Description

废热钳制控制方法与自源式废热钳温器、车辆
相关申请的交叉引用
本申请要求于2017年04月24日提交中国专利局的申请号为201710275353.6、名称为“废热钳制控制方法与自源式废热钳温器、车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于控制废热热源目标物温度的领域,尤其涉及一种废热钳制控制方法及专用于实施该方法的自源式废热钳温器、应用该自源式废热钳温器的车辆。
背景技术
目前,在工业设施、家居器材、市政设施和军事设施上,无论是受自身动作的影响,还是受外界设备和器材的动作以及太阳光照射的影响,在物品上会出现废热积聚的现象。由于有废热源向物品持续地导入废热,故而随着物品内热量不断积聚增加,物品的温度会出现持续上升的现象,这种温度的持续上升对物品本身和周边环境都是极为不利的。
现有技术中,对物品散热的方式主要分为热传导式、热对流式和热辐射式。其中,热传导式以翅片结构、半导体制冷结构、换热盘管结构等为代表,热对流式以空调制冷结构、空冷器结构等为代表,这两种形式的制冷方式均对能源的依赖程度较大,常常采用动力源消耗电能的方式进行制冷,而随着当代工业水平的提高,电能的短缺情况日益加剧,从而引起利用电能单纯进行制冷的电能利用方式将引起有限能源的极大浪费;热辐射式以裸露结构、高导热材料等为代表,但随着温室效应的不断加剧,夏日温度的逐年升高,这种散热方式的散热效率也随之降低,也就导致热辐射式的制冷方式的实用性逐渐降低。
发明内容
本申请旨在提供一种既具有制冷效率高的优点、又不依赖动力源的废热钳制控制方法,同时还提供了一种专用于实施该废热钳制控制方法的自源式废热钳温器和使用该自源式废热钳温器的车辆。为解决上述技术问题,本申请中废热钳制控制方法的技术方案如下:
废热钳制控制方法,包括如下步骤:
a、监测目标物的废热积聚部的即时温度;
b、在监测到的即时温度达到或超过设定温度时,将废热积聚部的废热单向传导导出;
c、将导出的废热转化为热能以外的其他能量,该其他能量被存储或被直接输出。
步骤c中所述的其他能量为有源制冷装置的动力源,有源制冷装置对目标物的废热积聚部进行制冷。
本申请中自源式废热钳温器的技术方案如下:
自源式废热钳温器,包括至少一钳温单元,
钳温单元包括预钳温表和至少一热电转化单元,
预钳温表,包括无源式的温控器和热传导式的第一热传导路径,第一热传导路径的导入部配置成导出目标物废热积聚部的废热,第一热传导路径的导出部配置成向下游传导所述导入部的热量,温控器控制第一热传导路径的导入部和导出部之间的通断状态;
热电转换单元,包括配置成将来自于第一热传导路径的热量单向继续向下游传导的传热器件,传热器件包含二极管性的热管和均热板中至少一种,传热器件的冷端热传导连接有温差发电器。
传热器件的冷端和温差发电器的热面之间为第二热传导路径,第二热传导路径包括主要包含固-固式相变材料或者固-液式相变材料的蓄热器,蓄热器的相变温度与传热器件的最小导通温差之和不高于温控器的设定温度,
定义在蓄热器潜热状态下,单位时间从热管冷端传导进入蓄热器的潜热热量为Q 1,单位时间温差发电器热面从蓄热器传导出来的潜热热量为Q 2,第二热传导路径的热传导结构为以下方式中一种:
第一种方式,Q 1=Q 2,传热器件的冷端直接热传导连接蓄热器或者通过机械式的第一温控开关热传导连接蓄热器,温差发电器的热面直接热传导连接蓄热器或者通过机械式的第二温控开关热传导连接蓄热器,第一温控开关为监测蓄热器的温度、且触发温度高于蓄热器的相变温度的常闭开关,第二温控开关为监测蓄热器的温度、且触发温度不高于蓄热器的相变温度的常开开关;
第二种方式,Q 1<Q 2,传热器件的冷端直接热传导连接蓄热器或者通过所述第一温控开关热传导连接蓄热器,温差发电器的热面通过机械式的第三温控开关热传导连接蓄热器,第三温控开关为监测蓄热器的温度、且触发温度不低于蓄热器的相变温度的常开开关;
第三种方式,Q 1>Q 2,传热器件的冷端通过所述第一温控开关热传导连接蓄热器,温差发电器的热面直接热传导连接蓄热器或者通过所述第二温控开关热传导连接蓄热器;
第四种方式,传热器件的冷端直接热传导连接蓄热器或通过所述第一温控开关热传导连接蓄热器,温差发电器有两组、且相互并接,定义两组温差发电器分别为单位时间内从蓄热器中传导出去的热量Q 2a的第一温差发电器和单位时间内从蓄热器中传导出去的热量Q 2b的第二温差发电器,Q 1>Q 2a,Q 1<Q 2b,第一温差发电器的热面通过第四温控开关热传导连接蓄热器,第二温差发电器的热面通过第五温控开关热传导连接蓄热器,第四温控开关和第五温控开关均监测蓄热器的温度,第四温控开关有在蓄热器升温至低于相变温度的下限温度时接通的下限触发温度和蓄热器自所述下限温度升温至不低于相变温度的上限温度时断开的上限触发温度,第五温控开关为在蓄热器到达高于所述下限温度且不高于所述上限温度的温度时触发的常开开关。
温控器为机械式或液体式或气体式的温度计,第一热传导路径主要由配置成导出目标物的废热积聚区热量的导热元件和热传导连接传热器件的热端的所述温度计的指针,指针为导热材质且连接在所述温度计的绝热转轴上,导热元件位于所述温度计的表盘上,导热元件的后边沿至前边沿对应的表盘温度刻度值逐渐增大,
根据导热元件的不同结构,钳温单元可选择如下方式中一种:
第一种方式,单点式,导热元件固定在表盘上,温控器的设定温度为导热元件的后边沿在表盘上对应的一个固定温度点;钳温单元中,预钳温表热传导连接单个热电转化单元,或者热传导并接多个蓄热器的、相变温度不等、并且、相变温度最高者的相变温度与传热器件的最小导通温差之和不高于所述设定温度的热电转化单元;
第二种方式,单级式,导热元件滑移设置在表盘的一区间内,温控器的设定温度为导热元件的后边沿在表盘上对应可调整的窄范围中任一温度点,该窄范围的最小温度点不低于蓄热器的相变温度与传热器件的最小导通温差之和,该窄范围的最大温度点不高于所述第一温控开关、第三温控开关和第五温控开关的触发温度中最高者;钳温单元中,预钳温表热传导连接单个热电转化单元,或者热传导并接多个蓄热器的、相变温度不等、并且、相变温度最高者的相变温度与传热器件的最小导通温差之和不高于所述窄范围的最小温度点、的热电转化单元;
第三种方式,多级式,导热元件滑移设置在表盘的一区间内,温控器的设定温度为导热元件的后边沿在表盘上对应可调整的宽范围中任一温度点;多级式可以视为若干单级式的组合:所有单级式的窄范围按照顺序组合,成为多级式的宽范围,若干单级式钳温器的所有热电转化单元的传热器件热端,并接在同一个预钳温表的导出端,定义各热电转化单元中蓄热器相变温度最高者为高温热电转化单元、其对应的设定温度宽范围的最上段的窄范围为最高窄范围,最高窄范围的最大设定温度就是宽范围的最大设定温度;蓄热器相变温度最低者为低温热电转化单元,高温热电转化单元中蓄热器的相变温度与传热器 件的最小导通温差之和不高于所述最高窄范围的最小温度点,低温热电转化单元中蓄热器的相变温度与传热器件的最小导通温差之和不高于所述宽范围的最小温度点。
温控器为机械式温度计,机械式温度计的感温器件采用双金属片或记忆合金,感温器件对不同状态目标物的感温方式如下:
第一种感温方式,在钳制固体目标物的温度时,感温器件通过中间器件间接的监测目标物废热积聚区的温度,中间器件包括导热的容器及其内容纳的中间液体,中间液体的最高显热温度不低于温控器的最高设定温度,并且感温器件探入中间液体中而与中间液体热传导连接;
第二种感温方式,在钳制液体目标物的温度时,感温器件直接插入目标物内;
第三种感温方式,在钳制气体目标物的温度时,感温器件通过固体材质或液体材质的转存物监测目标物废热集聚区的温度,固体材质的转存物和感温器件之间的感温方式为所述第一种感温方式,液体材质的转存物和感温器件之间的感温方式为所述第二种感温方式,并且转存物上包覆有第一绝热罩,第一绝热罩的底部设有供外界热气单向流入罩内的第一单向窗口。温差发电器的冷面设有无源散热结构,无源散热结构包含以下结构中至少一种:
第一种结构,温差发电器的冷面通过第六温控开关热传导连接有环型热管散热器,第六温控开关为监测温差发电器冷面温度的常开开关;
第二种结构,温差发电器的冷面上设有紧密、贴合地包覆的第二绝热罩,第二绝热罩的顶部有单向向外打开的第二单向窗口;
第三种结构,温差发电器的冷面热传导连接有折叠式的散热片,散热片上连接有配置成带动散热片撑开和收合的记忆合金材质或双金属片形式的拥有可重复变形的金属丝,金属丝热传导连接在温差发电器的冷面上;
第四种结构,温差发电器的冷面上设有紧密、贴合地包覆的第二绝热罩,第二绝热罩上开设有穿孔,穿孔上安装有电扇,电扇的电源为预置电源和所述温差发电器中至少一种;
温差发电器的冷面热传导连接有速钳器,速钳器包含以下结构中至少一种:
第一种结构,包括半导体制冷片和以半导体制冷片的冷面制冷的载冷剂,半导体制冷片的电源为预置电源和所述温差发电器中至少一种,载冷剂通过第七温控开关热传导连接温差发电器的冷面,第七温控开关为监测温差发电器冷面温度的常开开关;
第二种结构,包括另一所述钳温单元,该钳温单元为作用在一对目标物制冷的工作钳温单元的温差发电器冷面上的散热钳温单元,散热钳温单元的蓄热器相变温度低于工作钳温单元的蓄热器相变温度。
钳温单元和热电转换单元各自为可拆换的总成结构,预钳温表为可拆换的模块结构,热电转换单元中各装置均为可拆换的模块结构。
本申请中车辆的技术方案如下:
车辆,包括车体及其上的废热积聚区,废热积聚区上热传导连接有自源式废热钳温器,自源式废热钳温器包括至少一钳温单元,
钳温单元包括预钳温表和至少一热电转化单元,
预钳温表,包括无源式的温控器和热传导式的第一热传导路径,第一热传导路径的导入部配置成导出目标物废热积聚部的废热,第一热传导路径的导出部配置成向下游传导所述导入部的热量,温控器控制第一热传导路径的导入部和导出部之间的通断状态;
热电转换单元,包括配置成将来自于第一热传导路径的热量单向继续向下游传导的传热器件,传热器件包含二极管性的热管和均热板中至少一种,传热器件的冷端热传导连接有温差发电器。
传热器件的冷端和温差发电器的热面之间为第二热传导路径,第二热传导路径包括主要包含固-固 式相变材料或者固-液式相变材料的蓄热器,蓄热器的相变温度与传热器件的最小导通温差之和不高于温控器的设定温度,
定义在蓄热器潜热状态下,单位时间从热管冷端传导进入蓄热器的潜热热量为Q 1,单位时间温差发电器热面从蓄热器传导出来的潜热热量为Q 2,第二热传导路径的热传导结构为以下方式中一种:
第一种方式,Q 1=Q 2,传热器件的冷端直接热传导连接蓄热器或者通过机械式的第一温控开关热传导连接蓄热器,温差发电器的热面直接热传导连接蓄热器或者通过机械式的第二温控开关热传导连接蓄热器,第一温控开关为监测蓄热器的温度、且触发温度高于蓄热器的相变温度的常闭开关,第二温控开关为监测蓄热器的温度、且触发温度不高于蓄热器的相变温度的常开开关;
第二种方式,Q 1<Q 2,传热器件的冷端直接热传导连接蓄热器或者通过所述第一温控开关热传导连接蓄热器,温差发电器的热面通过机械式的第三温控开关热传导连接蓄热器,第三温控开关为监测蓄热器的温度、且触发温度不低于蓄热器的相变温度的常开开关;
第三种方式,Q 1>Q 2,传热器件的冷端通过所述第一温控开关热传导连接蓄热器,温差发电器的热面直接热传导连接蓄热器或者通过所述第二温控开关热传导连接蓄热器;
第四种方式,传热器件的冷端直接热传导连接蓄热器或通过所述第一温控开关热传导连接蓄热器,温差发电器有两组、且相互并接,定义两组温差发电器分别为单位时间内从蓄热器中传导出去的热量Q 2a的第一温差发电器和单位时间内从蓄热器中传导出去的热量Q 2b的第二温差发电器,Q 1>Q 2a,Q 1<Q 2b,第一温差发电器的热面通过第四温控开关热传导连接蓄热器,第二温差发电器的热面通过第五温控开关热传导连接蓄热器,第四温控开关和第五温控开关均监测蓄热器的温度,第四温控开关有在蓄热器升温至低于相变温度的下限温度时接通的下限触发温度和蓄热器自所述下限温度升温至不低于相变温度的上限温度时断开的上限触发温度,第五温控开关为在蓄热器到达高于所述下限温度且不高于所述上限温度的温度时触发的常开开关。
温控器为机械式或液体式或气体式的温度计,第一热传导路径主要由配置成导出目标物的废热积聚区热量的导热元件和热传导连接传热器件的热端的所述温度计的指针,指针为导热材质且连接在所述温度计的绝热转轴上,导热元件位于所述温度计的表盘上,导热元件的后边沿至前边沿对应的表盘刻度值逐渐增大,
根据导热元件的不同结构,钳温单元可选择如下方式中一种:
第一种方式,单点式,导热元件固定在表盘上,温控器的设定温度为导热元件的后边沿在表盘上对应的一个固定温度点;钳温单元中,预钳温表热传导连接单个热电转化单元,或者热传导并接多个蓄热器的、相变温度不等、并且、相变温度最高者的相变温度与传热器件的最小导通温差之和不高于所述设定温度的热电转化单元;
第二种方式,单级式,导热元件滑移设置在表盘的一区间内,温控器的设定温度为导热元件的后边沿在表盘上对应可调整的窄范围中任一温度点,该窄范围的最小温度点不低于蓄热器的相变温度与传热器件的最小导通温差之和,该窄范围的最大温度点不高于所述第一温控开关、第三温控开关和第五温控开关的触发温度中最高者;钳温单元中,预钳温表热传导连接单个热电转化单元,或者热传导并接多个蓄热器的、相变温度不等、并且、相变温度最高者的相变温度与传热器件的最小导通温差之和不高于所述窄范围的最小温度点、的热电转化单元;
第三种方式,多级式,导热元件滑移设置在表盘的一区间内,温控器的设定温度为导热元件的后边沿在表盘上对应可调整的宽范围中任一温度点;多级式可以视为若干单级式的组合:所有单级式的窄范围按照顺序组合,成为多级式的宽范围,若干单级式钳温器的所有热电转化单元的传热器件热端,并接在同一个预钳温表的导出端,定义各热电转化单元中蓄热器相变温度最高者为高温热电转化单元、其对 应的设定温度宽范围的最上段的窄范围为最高窄范围,最高窄范围的最大设定温度就是宽范围的最大设定温度;蓄热器相变温度最低者为低温热电转化单元,高温热电转化单元中蓄热器的相变温度与传热器件的最小导通温差之和不高于所述最高窄范围的最小温度点,低温热电转化单元中蓄热器的相变温度与传热器件的最小导通温差之和不高于所述宽范围的最小温度点。
温控器为机械式温度计,机械式温度计的感温器件采用双金属片或记忆合金,感温器件对不同状态目标物的感温方式如下:
第一种感温方式,在钳制固体目标物的温度时,感温器件通过中间器件间接的监测目标物废热积聚区的温度,中间器件包括导热的容器及其内容纳的中间液体,中间液体的最高显热温度不低于温控器的最高设定温度,并且感温器件探入中间液体中而与中间液体热传导连接;
第二种感温方式,在钳制液体目标物的温度时,感温器件直接插入目标物内;
第三种感温方式,在钳制气体目标物的温度时,感温器件通过固体材质或液体材质的转存物监测目标物废热集聚区的温度,固体材质的转存物和感温器件之间的感温方式为所述第一种感温方式,液体材质的转存物和感温器件之间的感温方式为所述第二种感温方式,并且转存物上包覆有第一绝热罩,第一绝热罩的底部设有供外界热气单向流入罩内的第一单向窗口。温差发电器的冷面设有无源散热结构,无源散热结构包含以下结构中至少一种:
第一种结构,温差发电器的冷面通过第六温控开关热传导连接有环型热管散热器,第六温控开关为监测温差发电器冷面温度的常开开关;
第二种结构,温差发电器的冷面上设有紧密、贴合地包覆的第二绝热罩,第二绝热罩的顶部有单向向外打开的第二单向窗口;
第三种结构,温差发电器的冷面热传导连接有折叠式的散热片,散热片上连接有配置成带动散热片撑开和收合的记忆合金材质或双金属片形式的拥有可重复变形的金属丝,金属丝热传导连接在温差发电器的冷面上;
第四种结构,温差发电器的冷面上设有紧密、贴合地包覆的第二绝热罩,第二绝热罩上开设有穿孔,穿孔上安装有电扇,电扇的电源为预置电源和所述温差发电器中至少一种;
温差发电器的冷面热传导连接有速钳器,速钳器包含以下结构中至少一种:
第一种结构,包括半导体制冷片和以半导体制冷片的冷面制冷的载冷剂,半导体制冷片的电源为预置电源和所述温差发电器中至少一种,载冷剂通过第七温控开关热传导连接温差发电器的冷面,第七温控开关为监测温差发电器冷面温度的常开开关;
第二种结构,包括另一所述钳温单元,该钳温单元为作用在一对目标物制冷的工作钳温单元的温差发电器冷面上的散热钳温单元,散热钳温单元的蓄热器相变温度低于工作钳温单元的蓄热器相变温度。
钳温单元和热电转换单元各自为可拆换的总成结构,预钳温表为可拆换的模块结构,热电转换单元中各装置均为可拆换的模块结构。
本申请的有益效果是:
本申请采用的制冷方式为单向热传导和热能转化相结合的方式,一方面利用单向热传导不可逆的特点,避免传导路径中逆流对目标物热量导出速度的制约,尤其避免了热能转化过程中无用功废热的逆向流动对热量自目标物导出速度的制约,从而保证了热量能够从目标物上顺利地导出;另一方面将热能转化得到的其他形式能量存储或直接输出后,相当于目标物上的热量已通过其他能量形式存储或作用在第三零部件或设备上,既利用热量转化中能量源即为目标物上的热量的特点,避免制冷过程对动力源的依赖,又通过能量形式的转化和转移避免了热量向目标物的逆流,因而该制冷方式具有制冷效率高和不依赖动力源的优点。
进一步地,热能转化得到的其他能量所作业的第三零部件或设备为有源制冷装置,而该有源制冷装置的作用对象是目标物,相当于既利用热传导和能量转化对目标物进行制冷,又使用有源制冷装置的强制制冷方式对目标物进行制冷,从而进一步加快可目标物的制冷效率,加快了目标物的冷却速度。
进一步地,利用相变材料和温控开关组合的方式,使得相变材料主要在潜热状态下进行热量传导,而潜热状态下热量的传导速度明显高于显热状态下的热量传导速度,从而进一步加快了目标物的制冷速度。
进一步地,利用绝热罩和速钳器中至少一种散热方式,加速温差发电器的冷面冷却速度,从而加速自源式废热钳温器的热电转化效率,也就进一步加快了目标物的制冷速度。
进一步地,自源式废热钳温器中各个单元采用总成结构,装置采用模块结构,以提高自源式废热钳温器中各个部分的互换性,降低检修和维护的难度。
附图说明
图1是本申请的钳温器核心框架的工作钳温单元示意图;
图2是图1的主视图;
图3是图1的预钳温表的立体结构示意图;
图4是本申请的工作钳温单元在Q 1=Q 2时第1.2形式的结构示意图;
图5是图4中热电转化单元的工作原理示意图;
图6是本申请的工作钳温单元在第二热传导路径采用第(4)形式时热电转化单元的示意图;
图7是图6中热电转化单元的工作原理示意图;
图8是本申请的多级工作钳温单元的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本申请中废热钳制控制方法的实施例:该方法的步骤如下:
a,监测目标物的废热积聚部的即时温度;
b,在监测到的即时温度达到或超过设定温度时,将目标物上的废热单向传导导出,从而使目标物的温度被“钳制”在设定温度值;
c,将单向传导导出的热量转化为电能,该电能被存储或被直接作为动力源输出;
步骤c中所述的其他能量为有源制冷装置的动力源,有源制冷装置对目标物的废热积聚部进行制冷。
d,本申请中废热钳制控制方法的其他实施例:在步骤c中,将热量转化后的能量也可以是除电能以外的其他能量,如势能、动能,就势能而言,可利用这部分热量加热气囊,取得弹性势能;就动能而言,可利用这部分热量作为蒸汽机的动力源,以通过蒸汽机获得动能。在不考虑将热能转化后能量二次应用于目标物上进行制冷时,步骤d也可以省去。
本申请中自源式废热钳温器的实施例:
该钳温器专用于实施上述废热钳制控制方法,因而从结构对上述方法和功能的贡献来说,该钳温器可分为实现上述废热钳制控制方法的核心框架和优化核心框架功能的优化设计两部分组成。下面结合具体结构对两部分进行说明。
一、核心框架
如图1和图2所示,该钳温器的核心结构为一工作钳温单元,该工作钳温单元的核心结构主要由绝热壳体内沿废热传导路径依次设置的预钳温表1和热电转化单元2组成。其工作流程是:预钳温表1实 时监测目标物上废热积聚区的温度,在废热积聚区的温度达到预钳温表1上人为设定的设定温度时,预钳温表1将废热传导至热电转化单元2,热电转化单元2将传入的废热先后进行单向传导和转化,最终将废热热能转化至电能。
1、预钳温表
如图3所示,预钳温表1整体采用可拆换的模块式结构,其以双金属片温度计改造而成,是以某个单一温度点或某一个连续温度范围的任意一个温度点,作为目标物被钳制的设定温度点。预钳温表1主要由温控器和第一热传导路径组成,温控器优选采用双金属片或记忆合金作为感温器件并且驱动指针转动的温度计,当然温控器也可以采用液体式或气体式或其他机械式的温度计,乃至于温控器也可以采用机械式的调温开关或旋钮。当目标物即时温度低于钳制设定温度时,只有当目标物温度自行上升到设定温度时,温控器的指针才能转到与设定温度对应的刻度值,指针与滑块的后沿接通,自源式废热工作钳温单元开始工作;当目标物的即时温度高于钳制设定温度时,温控器的指针即时地在目标物对应即时温度刻度处的滑块位置与滑块接通(假设滑块后沿之前的部分足够长,覆盖于任何高于设定温度的即时温度对应的温度刻度范围),自源式废热工作钳温单元即时启动,并且随着钳温的持续,目标物即时温度持续连续下降,导致指针与滑块的连接位置也持续连续向滑块后沿靠近,直至指针与滑块后沿处连接,及指针继续向滑块后沿之后摆动,最终脱离滑块,目标物被钳温到位,自源式废热工作钳温单元即时停止工作。
1.1、双金属片或记忆合金式的温度计
温度计主要由感温器件11、绝热转轴12、表盘13和指针14组成。
感温器件11为双金属片或记忆合金。
绝热转轴12的一端与感温器件11传动连接,另一端连接指针14,并且绝热转轴12转动安装在表盘13的中心位置。
指针14为高导热材料制成。指针14的固定端固定在绝热转轴12上,该固定端同时还是整个预钳温表1的热量导出部,而将废热导入热电转化单元2中。指针14的末端以固定端为中心,被绝热转轴12驱动而转动,其指示的表盘13温度刻度值为目标物的即时温度。
该温度计的工作方式是:感温器件11动作,带动绝热转轴12和指针14转动,实现测温,同时驱动指针14趋向表盘13上设定的设定温度位置。
1.2、第一热传导路径
第一热传导路径主要由位于表盘13上的高导热材质的导热元件和作为热导出触发元件的指针14组成。
导热元件连通目标物,形成目标物热量导入自源式废热工作钳温单元的路径,导热元件是一块可以是金属材料的沿着表盘13的圆弧边缘滑动或直接固定在表盘13的弧形的滑块15,该滑块15内外侧是都与表盘13同心的两个同心圆上的两段弧,从圆心径向引出前后两条射线分别与两段弧都相交,被截成前后两条直线段成为滑块15的前、后沿,如果表盘13上某一温度刻度范围从某点开始,刻度值沿顺时针方向从小到大连续分布,那么,滑块15从该温度刻度范围的最小温度刻度外的位置区域,沿顺时针方向滑动进入该温度刻度范围时,先进入的直线段为滑块15的前沿,后进入的为滑块15的后沿。也就是导热元件的后边沿至前边沿对应的表盘13刻度值逐渐增大。顺时针滑动滑块15时,滑块15的后沿径向对应的表盘13温度刻度,就是自源式废热工作钳温单元最终将目标物钳制到位的设定温度值。滑块15的后沿到前沿的弧长视为足够长。这样工作钳温单元工作时,目标物的即时温度只要达到和高于滑块15后沿对应的设定温度,指针14末端立刻转动到目标物即时温度在表盘13刻度位置,并且在该刻度位置所对应的滑块处,连通滑块15,工作钳温单元立刻工作,不会出现指针14末端从滑块15 前沿脱出的情况。
指针14是由高导热材料制成的,指针14的固定端连通热电转化单元2,作为第一热传导路径的热量导出部分,实现预钳温表1与热电转化单元2的热传导连接。当目标物即时温度低于设定温度时,指针14并不连接滑块。随着目标物自行持续升温,指针14的末端顺时针转动向滑块靠近。在目标物升温到设定钳制温度点时,指针末端即于设定温度点的刻度处,与滑块15的后沿连通,即实现了目标物与热电转化单元2之间的第一热传导路径处于接通状态,自源式废热工作钳温单元立即开始工作。
在垂直方向上,滑块处于表盘上平面和指针下平面之间,滑块的厚度恰好使滑块的上平面与指针下平面滑动接触。
2、热电转化单元
热电转化单元2采用可拆换的总成式结构。按照废热传导路径的先后顺序,热电转化单元2主要由外壳21内串接的传热器件22和温差发电器23组成。传热器件22的热端热传导连接在预钳温表1的第一热传导路径的导出端上。其工作流程是:传热器件22将来自于第一热传导路径的废热单向传导至温差发电器23,由温差发电器23将废热热能转化成电能,以实现废热的单向传导和转化。
2.1、外壳21
该外壳21采用可拆换的模块化结构,外壳21的材质选用绝热材质。外壳21采用筒状结构,使得传热器件22的热端和温差发电器23的冷面各自从外壳21的两端露出。外壳21的主要作用在于将热电转化单元2和外界、另一热电转化单元2隔开,以防废热的串通和散逸。
2.2、传热器件22
该传热器件22为采用可拆换的模块化结构的热管或者均热板,热管采用二极管性的,均热板也可以视为采用二极管性的,即均热板内热量只能从热端向冷端传导。该传热器件22主要负责将预钳温表1的第一热传导路径导出部的废热单向传导至温差发电器23的热面。
2.3、温差发电器23
该温差发电器23也采用可拆换的模块化结构,优选温差发电器23。温差发电器23的热面配置成导出传热器件22冷端的热量。
工作钳温单元的工作原理:首先,预钳温表1的温控器监测目标物的废热积聚区的温度,在该监测温度达到或者高于温控器的设定温度时,温控器的指针14在表盘13上目标物即时温度对应的刻度处,与导热滑块接通;这样,第一热传导路径处于接通状态,目标物的废热积聚区的废热经第一热传导路径到达热电转化单元2的传热器件22热端,传热器件22利用单向传热的特点,将热端的废热单向搬运至冷端,再通过温差发电器23的热面主动吸热的方式,由温差发电器将废热热电转化成电能,至此完成废热的单向导出和转化。
因而,该工作钳温单元的核心框架能够实现以目标物自身废热为动力,以单向热传导和热电转化的方式,将废热从目标物上单向导出,以转化电能的方式消耗这些积聚的废热,使得目标物的温度被钳制在预先设定的温度点。
二、优化设计
考虑到实际工作中诸多因素对工作钳温单元的影响,对核心框架的结构进行优化设计,以更好地满足实际工作中遇到的问题。优化设计主要在传热方式、散热方式和使用场所三个方向。下面对不同的优化设计方向进行详述。
1、传热方式的优化设计
在热电转化单元2的传热元件和温差发电器23之间增设蓄热器。蓄热器采用模块化结构,主要由绝热容器及其内容纳的相变材料构成。相变材料选用“固-固”或者“固-液”相变材料,以尽量保持相 变材料的显热阶段温度线性增长。相变材料的一面导出传热元件冷端的热量,另一面向温差发电器23热面导入热量,这就要求蓄热器的相变温度与传热器件22的最小导通温差之和不高于温控器的设定温度。蓄热器从启动工作到升温至准相变状态之前,存在一个以显热持续吸热升温的过程,在此过程中,可能由于目标物从废热源吸收废热的能力大于自源式废热工作钳温单元从目标物吸收废热的能力,造成目标物温度在这段时间内“漂移”,大于所要钳制的温度点。因此,需要在钳制的实际温度考量上有一个“提前量”,在钳温设定上实现“预钳”。当工作钳温单元进入通过潜热传导废热的正常工作阶段后,此时蓄热器已经显热升温至开始相变状态,由于蓄热器以潜热传导目标物废热的能力大于目标物显热从废热源吸收废热的能力,自源式废热工作钳温单元就能钳住目标物不升温。然而,传热器件22将废热单向导入蓄热器和温差发电器23从蓄热器中导出废热这两个过程中,是受传热器件22和温差发电器23主导的,两者导入废热和导出废热的能力差异决定了蓄热器内废热的增减情况。
整个工作钳温单元主要利用蓄热器的相变材料的潜热状态(即从相变材料开始相变到完全相变的不断往复过程),来实现目标物热量被依次传导,最后由温差发电器23热电转化,将热量持续从目标物传导出去转化为电能,不使目标物内形成废热持续积累,从而将目标物“钳制”在温控器设定的温度。热电转化单元2中,蓄热器的相变材料经过显热阶段的不断吸热升温,到达相变温度点开始相变后,就是蓄热器的相变材料从开始相变到完全相变不断往复的、经蓄热器将热量以潜热形式从传热器件22的冷端向温差发电器23热面传导的持续过程。蓄热器的相变温度加上传热器件22最小导通温差的和,不高于、最好略小于温控器的设定温度。
我们定义,蓄热器在潜热状态下,单位时间从传热器件22的冷端传导进入蓄热器的潜热热量为Q 1,单位时间温差发电器23热面从蓄热器传导出来的潜热热量为Q 2,我们通过设计传热器件22和温差发电器23的参数,力争Q 1=Q 2,但实际工程上很难做到这点,这样,该蓄热器在实际工作中将呈现Q 1=Q 2、Q 1>Q 2和Q 1<Q 2三种工况。对应地,热管的冷端和温差发电器23的热面之间的第二热传导路径为以下四种形式中一种:
(1)Q 1=Q 2,这是一种理想状态、高精度制造装配或者未来先进工艺条件下的情况。此时,第二热传导路径有两种方式:
1.1、温差发电器23的热面和传热器件22的冷端各自直接热传导连接蓄热器,第二热传导路径为一持续畅通的热传导通路,热量持续传导。
1.2、如图4和图5所示,传热器件22的冷端通过机械式的第一温控开关24热传导连接蓄热器26,温差发电器23的热面通过机械式的第二温控开关25热传导连接蓄热器26。第一温控开关24为监测蓄热器26的温度、且触发温度高于蓄热器26的相变温度的常闭开关,第二温控开关25为监测蓄热器26的温度、且触发温度不高于蓄热器26的相变温度的常开开关。第一温控开关24的作用是在蓄热器26的相变材料超过相变温度时关断传热元件和蓄热器26之间的传热通路,因为此时相变材料的不正常升高的原因要么来自于Q 2的减小,要么来自于Q 1,要么是两者的同时发生,而无论是哪种,都表明整个热传导路径出现异常,该第一温控开关24的即时切断起到了保险的作用,防止了事态恶化。第二温控开关25的作用是在蓄热器26在进行显热升温时,关断蓄热器26和温差发电器23之间的热通路,一方面使得蓄热器26在热导出通路被阻断的情况下热量聚集而迅速升温,另一方面避免持续变化的温度作用在温差发电器23上而产生不稳定电能。
第二温控开关监测蓄热器相变材料的温度,在温度升温到略微低于触发温度时,就是监测到相变材料即将完成显热升温,进入到即将开始相变的状态;在温度升温到略微高于相变温度时触发,就是监测到相变材料从持续相变到已经完全相变;在温度从高于相变温度回复到相变温度时触发,就是监测到了相变材料开始从完全相变向不完全相变状态转换;当温度从相变温度降温到略微低于相变温度的某个温 度点触发,就是监测到了相变材料从相变状态回复到即将开始相变的显热状态。
(2)Q 1<Q 2,传热器件22的冷端直接热传导连接蓄热器26或者通过上述第一温控开关24热传导连接蓄热器26,温差发电器23的热面通过机械式的第三温控开关热传导连接蓄热器26,第三温控开关为监测蓄热器26的温度、且触发温度不低于蓄热器26的相变温度的常开开关,第三温控开关的作用是实现蓄热器26的聚热,也就是在蓄热器26显热升温和准相变状态时,关断蓄热器26和温差发电器23热面之间的热通路,使得蓄热器26内热量积聚继续相变;直至蓄热器26进入完全状态后,才将蓄热器26和温差发电器23热面接通,进行热传导。
第二热传导路径的工作原理是:在工作钳温单元开始工作时,仍然是“传热器件22、蓄热器26之间的第一温控开关24或直接导通的方式,先是直接连通传导热量(显热),此时蓄热器26和温差发电器23热面之间的第三温控开关断开”。当蓄热器26从开始工作到完全相变后,温差发电器23的热面通过第三温控开关连通蓄热器26,开始从蓄热器26中传导出来热量(潜热),这时,单位时间内,传热器件22向蓄热器26导入Q 1的热量(潜热),同步,温差发电器23热面单位时间从蓄热器26中传导出来Q2的热量(潜热),也就是说,同步,完全相变状态的蓄热器26单位时间内有(Q 2-Q 1)的潜热热量在减少,这种减少一直持续,直至蓄热器26回复到准相变状态,第三温控开关检测到蓄热器26温度已经降低到略微低于相变温度,第三温控开关断开蓄热器26与温差发电器23热面之间的热量路径。这样,只有传热器件22仍然继续在单位时间向蓄热器26导入Q 1的热量(潜热),直至蓄热器26完全相变,第三温控开关再次连通。如此反复,直至目标物被钳制到设定温度。
工作时通过温控开关按照时序形成各种协调动作,使蓄热器升温到开始相变起,传热器件先向蓄热器一直导入潜热,此时为阶段1,温差发电器热面不连通蓄热器,即温差发电器不进行热电转化;当蓄热器一旦达到完全相变,温差发电器热面立刻连通蓄热器,热电转化开始,此时为阶段2,传热器件持续向蓄热器导入潜热,同步温差发电器从蓄热器中导出更多的潜热;当阶段2过程中蓄热器的潜热不断减少,使其又回复到即将开始相变的时刻,就进入阶段3。此时,温差发电器热面断开与蓄热器的连通,又转换到阶段1;如此循环不断。
(3)Q 1>Q 2,传热器件22的冷端通过上述第一温控开关24热传导连接蓄热器26,温差发电器23的热面直接热传导连接蓄热器26或者通过上述第二温控开关25热传导连接蓄热器26。优选温差发电器23热面和蓄热器26之间采用第二温控开关25间接连接。
第二热传导路径的工作原理是:在工作钳温单元开始工作时,传热器件22、蓄热器26之间的第一温控开关24,先是直接连通传导热量(显热),此时蓄热器26和温差发电器23热面之间的第二温控开关25断开,在蓄热器26即将达到相变温度时,触发第二温控开关25连通。这时,传热器件22单位时间向蓄热器26导入热量Q 1(潜热);同步,温差发电器23热面开始单位时间从蓄热器26传导走热量Q 2(潜热);同步,单位时间有(Q 1-Q2)的热量(潜热)在蓄热器26的相变材料中积累,当蓄热器26的相变材料热量(潜热)持续积累到完全相变,蓄热器26继续吸收显热形式的热量,再持续升温至略微高于蓄热器26相变温度的某个温度点,即达到第一温控开关24的触发温度,也就是第一温控开关24检测到蓄热器26达到完全相变,就突跃形变,第一温控开关24断开,此时,第二温控开关25仍然连通,温差发电器23热面仍然从完全相变的蓄热器26中,继续以单位时间Q 2传导出热量(潜热),热电转化直至将蓄热器26中的潜热热量全部热电转化掉,再继续从蓄热器26中热电转化掉少量显热热量,蓄热器26温度达到略微低于其相变温度的某个温度点,即达到准相变状态,第一温控开关24再次连通,传热器件22再次以潜热形式导入热量,如此反复,直至目标物被钳制到设定温度。
工作时通过温控开关按照时序形成各种协调动作,使蓄热器显热升温阶段,为了效率而使其快速达到即将开始相变状态,从蓄热器开始显热升温直到即将开始相变,传热器件一直向蓄热器导入显热。而 此时温差发电器却不热电转化,其热面不与蓄热器连通,此为阶段4;从蓄热器达到即将开始相变状态起,传热器件继续向蓄热器导入热量(潜热),同步,温差发电器也连通蓄热器,持续导出潜热进行热电转化。同步,导入、导出潜热的差值在蓄热器中持续积累,直至蓄热器达到完全相变,此时为阶段5;一旦蓄热器完全相变,传热器件立刻断开与蓄热器的连通,不再导入热量,而温差发电器却持续导出潜热进行热电转化,此为阶段6;当阶段6过程中,蓄热器的潜热不断减少,使其又回复到即将开始相变的时刻,此时传热器件再次连通蓄热器,又转换到阶段5。阶段5、阶段6循环不断(尤其在采用第二温控开关时,主要是因为热传导过程中,潜热工作效率高,为了蓄热器快速进入相变,在显热升温阶段,传热器件工作,同步,温差发电器不工作,以使得蓄热器快速的从显热进入潜热)。
(4)如图6和图7所示,传热器件22的冷端直接热传导连接蓄热器26或通过所述第一温控开关24热传导连接蓄热器26。温差发电器23有两组、且相互并接。
定义两组温差发电器23分别为单位时间内从蓄热器26中传导出去的热量Q 2a的第一温差发电器231和单位时间内从蓄热器26中传导出去的热量Q 2b的第二温差发电器232,Q 1>Q 2a,Q 1<Q 2b,以在第一温差发电器231、第二温差发电器232与传热器件22之间形成推挽关系,即同一热电转化单元2中有两组效率不一的温差发电器23可相互交替地使用。
第一温差发电器231的热面通过第四温控开关251热传导连接蓄热器26,第二温差发电器232的热面通过第五温控开关252热传导连接蓄热器26,第四温控开关251和第五温控开关252均监测蓄热器26的温度,第四温控开关251有在蓄热器26升温至低于相变温度的下限温度时接通的下限触发温度和蓄热器26自所述下限温度升温至不低于相变温度的上限温度时断开的上限触发温度,第五温控开关252为在蓄热器26到达高于所述下限温度且不高于所述上限温度的温度时触发的常开开关。
此时第二传热路径工作原理是(2)和(3)的组合,该形式的热电转化单元2主要由“一个传热器件22、一个蓄热器26、两个交替工作的温差发电器23”组成。工作原理是:工作钳温单元开始工作时,传热器件22与蓄热器26直接连通,第四温控开关251和第五温控开关252的热面与蓄热器26热量路径全部断开。当蓄热器26从开始工作升温到准相变状态时,第一温差发电器231的热面通过第四温控开关251连通蓄热器26,就开始按照上述第(3)形式工作;当蓄热器26达到完全相变状态,第一温差发电器231被第四温控开关251断开与蓄热器26的路径,同步,第二温差发电器232被第五温控开关252连通蓄热器26,就开始按照第(2)形式工作;当蓄热器26由完全相变状态回复到准相变状态时,第一温差发电器231又接替第二温差发电器232工作,该自源式废热工作钳温单元也从第(2)形式转换为第(3)形式工作。就这样,该自源式废热工作钳温单元持续以(3)、(2)接替工作,直至目标物被钳制到设定温度。
上述第一至第五温控开关252均优选双金属片或记忆合金形式的突跃式温控开关,一方面提高反应速度,另一方面避免对有源设备的依赖。尤其对第(4)形式而言,第四温控开关251和第五温控之间的联动方式,因第四温控开关251要求一个下限触发温度和一个上限触发温度,所以单纯依靠第四温控开关251自身达到条件的话,要么选用具备相应功能的高成本温控开关,要么用人为手动操作补偿,这在本申请中虽然可以实现,但在工业应用中都是不利的。为此,我们设计了第四温控开关251和第五温控开关252之间联动的方式,如第四温控开关251的执行元件和第五温控开关252的执行元件连接杠杆式的传动元件,利用第四温控开关251在下限触发时,第五温控开关252不触发;第五温控开关252触发时,第四温控开关251的上限触发其实是回位至原始状态的特点,实现杠杆式联动。
上述四种形式中,第一种,自源式废热工作钳温单元工作状态是,从目标物传导走热量与热电转化一直同步进行;第二种,从目标物传导走热量是间断的,热电转化连续进行;第三种,从目标物传导走热量是连续进行的,热电转化是间断进行的;第四种,传导走热量和热电转化都是连续进行的。每种形 式中的温控开关,有的相互之间需要一定的机械机构进行必要的联动,不再进行描述。所有的温控开关都是双金属片突跃式温控开关,温控开关检测到蓄热器26相变材料温度达到略微低于相变温度或者略微高于相变温度,即蓄热器26相变材料达到继续吸热就开始相变的准相变状态或者完全相变状态,温控开关就触发机构连通或者断开热量传导路径。蓄热器26相变材料温度回复,温控开关触发机构做反向动作。通过温控开关控制蓄热器26的准相变状态与相变状态,或者与完全相变状态任意两者之间转化时的热量路径的通、断。保证了热电转化单元2正常工作时,蓄热器26内部始终是以潜热形式传导热量。温控开关中的双金属片也可以用记忆合金替代,进行测温、驱动机构。
然而,在增加蓄热器26后,蓄热器26的相变温度对预钳温表1的设定位置限制(蓄热器26的相变温度与传热器件22的最小导通温差之和不高于温控器的设定温度),使得工作钳温单元的钳温范围受到限制,为此,我们研究了不同的第一热传导路径,从而得到了如下基于不同结构的第一热传导路径的工作钳温单元:
(1)单点式
导热元件固定在表盘13上,温控器的设定温度为导热元件的后边沿在表盘13上对应的一个固定温度点。钳温单元中,预钳温表1热传导连接单个热电转化单元2。滑块15后沿固定在某一确定的温度值上,只有一个单一的温度设定点,与一个与其对应的热电转化单元2,该热电转化单元2的热管热端热传导连接在预钳温表1上。所谓与其对应的热电转化单元2,即当我们定义单点温控器的设定温度为T 0,传热器件22的最小导通温差为t,热电转化单元2的蓄热器26相变温度为T 2,那么T 0必须大于或等于T 2+t(最好使相变材料的选择,使其T 2+t略微小于T 0)。这样,温控器上测得目标物的即时温度不低于此单一的温度设定点时,工作钳温单元才开始对目标物进行钳温,对应的热电转化单元2中蓄热器26的相变温度是专门针对于该单一设定温度设计的,也就是蓄热器26的潜热传导效率最高,传热器件22的热传导效率也是最高的。
另外,基于加速传热效率考虑,也可以在预钳温表1上热传导并接多个蓄热器的、相变温度不等、并且、相变温度最高者的相变温度与传热器件的最小导通温差之和不高于该温度设定点、的热电转化单元2。
(2)单级式
导热元件滑移设置在表盘13的一区间内,温控器的设定温度为导热元件的后边沿在表盘13上对应可调整的窄范围中任一温度点,该窄范围的最小温度点不低于蓄热器26的相变温度与传热器件22的最小导通温差之和,该窄范围的最大温度点不高于上述第一温控开关24、第三温控开关和第五温控开关252的触发温度中最高者。钳温单元中,预钳温表1热传导连接单个热电转化单元2,或者热传导并接多个蓄热器26的、相变温度不等、并且、相变温度最高者的相变温度与传热器件22的最小导通温差之和不高于所述窄范围的最小温度点、的热电转化单元2。
当我们定义单级预钳温表1的温度设定范围比较窄,可以设定的最小温度值为T 0,传热器件22最小导通温差为t,热电转化单元2蓄热器26相变温度为T 2,那么T 0必须大于、等于(T 2+t)。在设计中,不同的热电转化单元2仅仅区别在各自蓄热器26的相变温度不同。
首先,T 0被确定为一个特定值时,适配蓄热器相变温度T 2满足(T 2+t)略微小于T 0的那个热电转化单元2的效果最好。这样,对应的特定热电转化单元2就确定下来了。
由于单级预钳温表1温度设定范围窄,且最小设定温度为T 0。那么,通过在这个窄的温度设定范围内滑动滑块15,滑块15后沿对应的任一其他设定温度T 1,T 1略微大于、近似等于T 0。那么,它们同样能够很好地与已经适配的热电转化单元2组合。
滑块15外侧延伸出一部分直接连通目标物,即目标物热量已经导入滑块15。那么,只要指针14 转动而连通滑块15,整个工作钳温单元热量路径全部连通,工作钳温单元开始工作。“指针14”转动,连通滑块15又有两种情况:
2.1,对于任意设定温度T 0。在目标物即时温度升温到T 0之前,指针14和滑块15不连通,直到目标物即时温度自行升温到T 0,指针14才顺时针转动,在后沿位置连通滑块15,工作钳温单元开始工作。
2.2,对于任意的设定温度T 1。由于滑块15从前沿到后沿的弧度长度被视为足够长,当目标物即时温度大于、等于T1,指针14末端在目标物即时温度刻度处对应的滑块前后沿之间的位置,连通滑块15,工作钳温单元立刻开始工作。随着工作钳温单元的持续工作,目标物即时温度不断降低,指针14末端一直在滑块15上逆时针向后沿滑动,直到目标物被钳温在T 1时,指针14末端连通滑块15在后沿处,对应设定温度T 1的刻度位置。
由上述内容可看出,单级式工作钳温单元确定一个特定的热电转化单元2后,其实还可以再并接若干个蓄热器26相变温度更低的热电转化单元2,为了经济和简洁,我们可以只保留效率最好的热电转化单元2(也就是各热电转化单元2中相变温度最高者)。
(3)多级式
如图8所示,导热元件滑移设置在表盘13的一区间内,温控器的设定温度为导热元件的后边沿在表盘13上对应可调整的宽范围中任一温度点;可以将多级式看做N个单级式钳温器组合而成:将多级式的设定温度连续宽范围,分成N段可以视为单级式的温度窄范围顺序衔接而成。多级式宽范围的最小设定温度点也是温度范围最小一级单级式窄范围的最小温度设定点。下一级单级式窄范围的最大温度设定点又是上一级单级式窄范围的最小温度设定点,以此类推。以每段单级式窄范围最小温度设定点为参照,按照能与之组成单级式钳温器的要求,选择蓄热器相变温度匹配的最优的一个热电转化单元2,与该窄范围设定温度对应。这样,就得到N个蓄热器相变温度不等的热电转化单元2。由一个预钳温表1实现这个大的设定温度范围(滑块15弧度长度仍然被视为足够长)。预钳温表1的热量传导输出端仍然是其指针14的固定端。所有N个热电转化单元2热管的热端,通过一个高导热金属材质的滑槽3连接在一起,滑槽3再连通指针14的固定端,就组成了多级式工作钳温单元。
多级工作钳温单元钳温设定连续范围的幅度大,这一特点与被钳温的目标物可以具有显热大幅度温度相适应。
目标物即时温度低于设定温度的,在目标物升温到设定温度时,多级式钳温单元才开始工作。目标物即时温度高于预钳温表1的设定温度,多级式钳温单元立刻开始工作。在工作某一时刻,指针14转动而连通滑块15的位置对应的温度刻度为T' 1,所有热管的最小导通温差都是t,某个热电转化单元2热饼的相变温度为Tx。Tx满足(Tx+t)小于、等于T'1的所有热电转化单元2都同时工作。(Tx+t)最接近T' 1的那个热电转化单元2对此时目标物的钳温贡献最大,热传导效率也相应是最高的。随着目标物的即时温度不断降低,多级工作钳温单元中参与工作的热电转化单元2的数量逐渐减少(相变温度越高者越早退出工作),直至最后一个热电转化单元2工作,多级式就如同单级式一样工作,直到钳温到位。
2、散热方式
由于工作钳温单元中各级热电转化单元2都是蓄热器26的相变温度决定了温差发电器23热面的恒定温度,所以,为了保证热电转化单元2的热电转化的稳定性,温差发电器23冷面的温度最好也应保持恒定。一般地,我们把温差发电器冷面暴露在环境空气中,因工作钳温单元在工作时不使用其他能源,所以温差发电器23冷面的温度不稳定主要受热面从温差发电器23内渗透而来的内热和周边环境温度变化而在温差发电器23冷面上对流产生的外热两方面因素影响。单纯考虑后者的话,只需用第二绝热罩将温差发电器23冷面罩住即可,但实际工况中,前者对温差发电器23冷面的温度影响是大于后者的,所以需要采用主动、强制式的散热方式对温差发电器23冷面进行制冷。
从散热形式,对温差发电器23主动、强制散热的方式可分为无源散热和速钳散热两种,下面结合具体结构进行说明。
2.1、无源散热
2.1.1、温差发电器23的冷面通过第六温控开关热传导连接有环型热管散热器,第六温控开关为采用双金属片或记忆合金的监测温差发电器23冷面温度的常开开关,即在温差发电器23冷面的即时温度低于第六温控开关的触发温度时,第六温控开关断开温差发电器23冷面和环型热管散热器之间的热通路,温差发电器23冷面热量积聚;在温差发电器23冷面的即时温度等于或高于第六温差开关的触发温度时,第六温控开关接通温差发电器23冷面和环型热管散热器之间的热通路,温差发电器23冷面的热量经环型热管散热器向大气环境散逸。
2.1.2、温差发电器23的冷面上设有紧密、贴合地包覆的第二绝热罩,第二绝热罩的顶部有单向向外打开的第二单向窗口,第二单向窗口可选用活动百叶窗上组合双金属片或记忆合金的方式,双金属片或记忆合金热传导连接在温差发电器23的冷面上,以在温差发电器23冷面温度过高时双金属片或记忆合金动作而伸展,双金属片或记忆合金的伸展动作带动活动百叶窗打开而实现单向向外开启。
2.1.3、温差发电器23的冷面热传导连接有折叠式的散热片,散热片上连接有配置成带动散热片撑开和收合的记忆合金材质或双金属片形式的拥有可重复变形的金属丝,金属丝热传导连接在温差发电器23的冷面上,这样在在温差发电器23冷面温度过高时金属丝动作而伸展,金属丝的伸展动作带动散热片展开而增大散热面积,实现快速散热。
2.1.4、温差发电器23的冷面上设有紧密、贴合地包覆的第二绝热罩,第二绝热罩上开设有穿孔,穿孔上安装有电扇,电扇的电源为预置电源和温差发电器23中至少一种,关于电源的电源问题,优选的是全部采用温差发电器23所产生的电源,但由于在温差发电器23启动阶段存在一段的电源空白区,此时可通过预置电源启动电扇一段时间后,在温差发电器23接续后,再断开或移走预置电源,完全依靠温差发电器23带动电扇对温差发电器23冷面进行制冷。
2.2、速钳散热
速钳器主要是以更高效的方式取代上述无源散热结构,使得在等同条件下,温差发电器23的热电转化效率更高。该速钳器主要有以下两种形式:
2.2.1、速钳器包括半导体制冷片和以半导体制冷片的冷面制冷的载冷剂,半导体制冷片的电源为预置电源和所述温差发电器23中至少一种,载冷剂通过第七温控开关热传导连接温差发电器23的冷面,第七温控开关为双金属片或记忆合金形式的监测温差发电器23冷面温度的常开开关。该速钳器以预置电源或热电转化所得的自源式电源为动力,启动“半导体制冷片+作为第一级制冷的载冷剂+各个温差发电器23冷面,通过各个温差发电器23冷面上的第七温控开关的通断,接通或断开从在载冷剂获得冷量”。其中,各个温差发电器23冷面通过各自获得的冷量来调节自身的冷面温度,以将温差发电器23的冷面和热面之间的温差控制在理想温差,进而获得较为稳定的热电转化效率。
2.2.2、在工作钳温单元的温差发电器23冷面增加一散热钳温单元,该散热钳温单元的蓄热器26相变温度低于工作钳温器的蓄热器26相变温度,即该速钳器包括另一钳温单元,该钳温单元为作用在一对目标物制冷的工作钳温单元的温差发电器23冷面上的散热钳温单元。用散热钳温单元替代无源散热结构,通过二次钳温,就可以将上一级工作钳温单元冷面积聚的未经热电转化的残余废热再次钳温,热电转化消耗掉,从而保持上一级工作钳温单元的温差发电器23冷面有相对温度的“低温”,达到优化温差发电器23冷面散热效果的目的。
关于上述散热方式,因无论是无源散热和速钳散热之间,还是无源散热的子方式和速钳散热的子方式之间,均不存在相互干涉的情况,也就是在具体使用时,可视情况选择无源散热和速钳散热中一种或 两种,或者无源散热的子方式和速钳散热的子方式中至少一种。
3、使用场所
由于温控器的感温器件11只能直接测量液体的温度,所以当被钳温的目标物是固体或气体时,该温控器就必须借助于中间液体或转存物,间接地测量固定或气体目标物的温度,以实现温控器的作用,为此该温控器的感温器件11可根据使用场所的不同,选用如下的感温方式:
(1)在钳制固体目标物的温度时,感温器件11通过中间器件间接的监测目标物废热积聚区的温度,中间器件包括导热的容器及其内容纳的中间液体,中间液体的最高显热温度不低于温控器的最高设定温度,并且感温器件11探入中间液体中而与中间液体热传导连接。
(2)在钳制液体目标物的温度时,感温器件11直接插入目标物内。
(3)在钳制气体目标物的温度时,首先将目标物气体废热通过热对流,转存到固体材质或液体材质进行集聚(固体、液体转存物上包覆有第一绝热罩,第一绝热罩的底部设有供目标物气体单向流入罩内的第一单向窗口),感温器件11通过对转存物的感温间接实现对气体目标物的钳温。固体材质的转存物和感温器件之间的感温方式为所述第(1)种感温方式,液体材质的转存物和感温器件之间的感温方式为所述第(2)种感温方式。
其中,第(1)种形式中,中间液体必须具有高导热系数,通过与目标物表面的紧密贴合,快速地与目标物等温、同步升温,而且这种中间液体的显热的温度范围必须覆盖温控器的温度设定范围,这样,中间液体的显热温度才能实现与温控器连续温度设定范围线性唯一对应,因而该中间液体在此的作用是:过渡性测温。
另外,该钳温器主要是靠相变材料的潜热来传导、热电转化掉来自目标物的废热,而目标物的废热通常是显热。尽管钳温器的蓄热器26相变材料和目标物的物质不同,但通常潜热热传导速度是远大于显热热传导速度的,只要质和量选择得当,钳温器就能够钳制住目标物的升温,换句话说,钳温器不存在工艺问题。钳温器不需要与外界接触的部分,可用第三绝热罩将该部分与外界隔绝。
另外,关于该钳温器用废热转化的电能收集和存储问题。用小电流低电压电源采集器、电池或电容、稳压器和逆变器进行电能的收集和存储,既实现对温差发电器23的卸荷,又能通过上述一系列电器件将温差发电器23转化而来的电源与预置电源进行恰当组合,更好地适配于温差发电器23冷面和目标物散热。
另外,该钳温器还可以增设电动、电控和遥控的相关结构,即在增设预置电源的情况下,该钳温器的开始钳温的时间点、开始输出转化电能的时间点和各级温控开关的状态等,都是可通过电动、电控和遥控方式进行控制的。
需注意的是:上述实施例中,所有的温控开关都不计其两端的温度差。
本申请中车辆的实施例:
该车辆包括沿废热传导路径先后顺序依次连接的,车体+第一钳温器(优选多级工作钳温单元+速钳器)+发动机冷却水泵+第二钳温器(优选单点工作钳温单元),不同钳温器的结构将上述实施例。
第一钳温器中多级工作钳温单元主要配置成钳制车体温度,使车体温度适应人体,因此该多级工作钳温单元中各个蓄热器26的相变材料选择应使它们的相变温度分别匹配人体的关键温度点,如15℃、25℃、25℃和40℃,以使该第一钳温器的使用体现人体工学。
配置成钳制发动机冷却水泵的第二钳温器中单点工作钳温单元,通过将高温废热钳制到90℃的过程中,以高温废热转化为充足的电能,再反过来为第一钳温器的速钳器提供充足的能源。最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者 对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 废热钳制控制方法,其特征在于,包括如下步骤:
    a、监测目标物的废热积聚部的即时温度;
    b、在监测到的即时温度达到或超过设定温度时,将废热积聚部的废热单向传导导出;
    c、将导出的废热转化为热能以外的其他能量,该其他能量被存储或被直接输出。
  2. 根据权利要求1所述的废热钳制控制方法,其特征在于,步骤c中所述的其他能量为有源制冷装置的动力源,有源制冷装置对目标物的废热积聚部进行制冷。
  3. 自源式废热钳温器,其特征在于,包括至少一钳温单元,
    钳温单元包括预钳温表和至少一热电转化单元,
    预钳温表,包括无源式的温控器和热传导式的第一热传导路径,第一热传导路径的导入部配置成导出目标物废热积聚部的废热,第一热传导路径的导出部配置成向下游传导所述导入部的热量,温控器控制第一热传导路径的导入部和导出部之间的通断状态;
    热电转换单元,包括配置成将来自于第一热传导路径的热量单向继续向下游传导的传热器件,传热器件包含二极管性的热管和均热板中至少一种,传热器件的冷端热传导连接有温差发电器。
  4. 根据权利要求3所述的自源式废热钳温器,其特征在于,传热器件的冷端和温差发电器的热面之间为第二热传导路径,第二热传导路径包括主要包含固-固式相变材料或者固-液式相变材料的蓄热器,蓄热器的相变温度与传热器件的最小导通温差之和不高于温控器的设定温度,
    定义在蓄热器潜热状态下,单位时间从热管冷端传导进入蓄热器的潜热热量为Q 1,单位时间温差发电器热面从蓄热器传导出来的潜热热量为Q 2,第二热传导路径的热传导结构
    为以下方式中一种:
    第一种方式,Q 1=Q 2,传热器件的冷端直接热传导连接蓄热器或者通过机械式的第一温控开关热传导连接蓄热器,温差发电器的热面直接热传导连接蓄热器或者通过机械式的第二温控开关热传导连接蓄热器,第一温控开关为监测蓄热器的温度、且触发温度高于蓄热器的相变温度的常闭开关,第二温控开关为监测蓄热器的温度、且触发温度不高于蓄热器的相变温度的常开开关;
    第二种方式,Q 1<Q 2,传热器件的冷端直接热传导连接蓄热器或者通过所述第一温控开关热传导连接蓄热器,温差发电器的热面通过机械式的第三温控开关热传导连接蓄热器,第三温控开关为监测蓄热器的温度、且触发温度不低于蓄热器的相变温度的常开开关;
    第三种方式,Q 1>Q 2,传热器件的冷端通过所述第一温控开关热传导连接蓄热器,温差发电器的热面直接热传导连接蓄热器或者通过所述第二温控开关热传导连接蓄热器;
    第四种方式,传热器件的冷端直接热传导连接蓄热器或通过所述第一温控开关热传导连接蓄热器,温差发电器有两组、且相互并接,定义两组温差发电器分别为单位时间内从蓄热器中传导出去的热量Q 2a的第一温差发电器和单位时间内从蓄热器中传导出去的热量Q 2b的第二温差发电器,Q 1>Q 2a,Q 1<Q 2b,第一温差发电器的热面通过第四温控开关热传导连接蓄热器,第二温差发电器的热面通过第五温控开关热传导连接蓄热器,第四温控开关和第五温控开关均监测蓄热器的温度,第四温控开关有在蓄热器升温至低于相变温度的下限温度时接通的下限触发温度和蓄热器自所述下限温度升温至不低于相变温度的上限温度时断开的上限触发温度,第五温控开关为在蓄热器到达高于所述下限温度且不高于所述上限温度的温度时触发的常开开关。
  5. 根据权利要求4所述的自源式废热钳温器,其特征在于,温控器为机械式或液体式或气体式的温度计,第一热传导路径主要由配置成导出目标物的废热积聚区热量的导热元件和热传导连接传热器件 的热端的所述温度计的指针,指针为导热材质且连接在所述温度计的绝热转轴上,导热元件位于所述温度计的表盘上,导热元件的后边沿至前边沿对应的表盘温度刻度值逐渐增大,
    根据导热元件的不同结构,钳温单元可选择如下方式中一种:
    第一种方式,单点式,导热元件固定在表盘上,温控器的设定温度为导热元件的后边沿在表盘上对应的一个固定温度点;钳温单元中,预钳温表热传导连接单个热电转化单元,或者,或者热传导并接多个蓄热器的、相变温度不等、并且、相变温度最高者的相变温度与传热器件的最小导通温差之和不高于所述设定温度的热电转化单元;
    第二种方式,单级式,导热元件滑移设置在表盘的一区间内,温控器的设定温度为导热元件的后边沿在表盘上对应可调整的窄范围中任一温度点,该窄范围的最小温度点不低于蓄热器的相变温度与传热器件的最小导通温差之和,该窄范围的最大温度点不高于所述第一温控开关、第三温控开关和第五温控开关的触发温度中最高者;钳温单元中,预钳温表热传导连接单个热电转化单元,或者热传导并接多个蓄热器的、相变温度不等、并且、相变温度最高者的相变温度与传热器件的最小导通温差之和不高于所述窄范围的最小温度点、的热电转化单元;
    第三种方式,多级式,导热元件滑移设置在表盘的一区间内,温控器的设定温度为导热元件的后边沿在表盘上对应可调整的宽范围中任一温度点;多级式可以视为若干单级式的组合:所有单级式的窄范围按照顺序组合,成为多级式的宽范围,若干单级式钳温器的所有热电转化单元的传热器件热端,并接在同一个预钳温表的导出端,定义各热电转化单元中蓄热器相变温度最高者为高温热电转化单元、其对应的设定温度宽范围的最上段的窄范围为最高窄范围,最高窄范围的最大设定温度就是宽范围的最大设定温度;蓄热器相变温度最低者为低温热电转化单元,高温热电转化单元中蓄热器的相变温度与传热器件的最小导通温差之和不高于所述最高窄范围的最小温度点,低温热电转化单元中蓄热器的相变温度与传热器件的最小导通温差之和不高于所述宽范围的最小温度点。
  6. 根据权利要求3或4或5所述的自源式废热钳温器,其特征在于,温控器为机械式温度计,机械式温度计的感温器件采用双金属片或记忆合金,感温器件对不同状态目标物的感温方式如下:
    第一种感温方式,在钳制固体目标物的温度时,感温器件通过中间器件间接的监测目标物废热积聚区的温度,中间器件包括导热的容器及其内容纳的中间液体,中间液体的最高显热温度不低于温控器的最高设定温度,并且感温器件探入中间液体中而与中间液体热传导连接;
    第二种感温方式,在钳制液体目标物的温度时,感温器件直接插入目标物内;
    第三种感温方式,在钳制气体目标物的温度时,感温器件通过固体材质或液体材质的转存物监测目标物废热集聚区的温度,固体材质的转存物和感温器件之间的感温方式为所述第一种感温方式,液体材质的转存物和感温器件之间的感温方式为所述第二种感温方式,并且转存物上包覆有第一绝热罩,第一绝热罩的底部设有供外界热气单向流入罩内的第一单向窗口。
  7. 根据权利要求3或4或5所述的自源式废热钳温器,其特征在于,温差发电器的冷面设有无源散热结构,无源散热结构包含以下结构中至少一种:
    第一种结构,温差发电器的冷面通过第六温控开关热传导连接有环型热管散热器,第六温控开关为监测温差发电器冷面温度的常开开关;
    第二种结构,温差发电器的冷面上设有紧密、贴合地包覆的第二绝热罩,第二绝热罩的顶部有单向向外打开的第二单向窗口;
    第三种结构,温差发电器的冷面热传导连接有折叠式的散热片,散热片上连接有配置成带动散热片撑开和收合的记忆合金材质或双金属片形式的拥有可重复变形的金属丝,金属丝热传导连接在温差发电器的冷面上;
    第四种结构,温差发电器的冷面上设有紧密、贴合地包覆的第二绝热罩,第二绝热罩上开设有穿孔,穿孔上安装有电扇,电扇的电源为预置电源和所述温差发电器中至少一种。
  8. 根据权利要求3或4或5所述的自源式废热钳温器,其特征在于,温差发电器的冷面热传导连接有速钳器,速钳器包含以下结构中至少一种:
    第一种结构,包括半导体制冷片和以半导体制冷片的冷面制冷的载冷剂,半导体制冷片的电源为预置电源和所述温差发电器中至少一种,载冷剂通过第七温控开关热传导连接温差发电器的冷面,第七温控开关为监测温差发电器冷面温度的常开开关;
    第二种结构,包括另一所述钳温单元,该钳温单元为作用在一对目标物制冷的工作钳温单元的温差发电器冷面上的散热钳温单元,散热钳温单元的蓄热器相变温度低于工作钳温单元的蓄热器相变温度。
  9. 根据权利要求3或4或5所述的自源式废热钳温器,其特征在于,钳温单元和热电转换单元各自为可拆换的总成结构,预钳温表为可拆换的模块结构,热电转换单元中各装置均为可拆换的模块结构。
  10. 车辆,包括车体及其上的废热积聚区,废热积聚区上热传导连接有权利要求3至9中任意一项所述的自源式废热钳温器。
PCT/CN2018/082876 2017-04-24 2018-04-12 废热钳制控制方法与自源式废热钳温器、车辆 WO2018196627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710275353.6A CN107415643B (zh) 2017-04-24 2017-04-24 废热钳制控制方法与自源式废热钳温器、车辆
CN201710275353.6 2017-04-24

Publications (1)

Publication Number Publication Date
WO2018196627A1 true WO2018196627A1 (zh) 2018-11-01

Family

ID=60424299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082876 WO2018196627A1 (zh) 2017-04-24 2018-04-12 废热钳制控制方法与自源式废热钳温器、车辆

Country Status (2)

Country Link
CN (1) CN107415643B (zh)
WO (1) WO2018196627A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107415643B (zh) * 2017-04-24 2018-07-06 朱若东 废热钳制控制方法与自源式废热钳温器、车辆
CN110466308A (zh) * 2018-05-10 2019-11-19 张家港优全汽配有限公司 一种复合式聚氨酯发泡型车用风道板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835222A (ja) * 1981-08-27 1983-03-01 Sumitomo Electric Ind Ltd 自動車の排熱回収装置
US20130139507A1 (en) * 2011-06-06 2013-06-06 Arthur P. Morse Thermal Compression and Waste Heat Recovery Heat Engine and Methods
CN105515445A (zh) * 2015-12-01 2016-04-20 长安大学 温差发电装置及方法
CN106150663A (zh) * 2016-06-30 2016-11-23 深圳市元征科技股份有限公司 发动机温度的控制方法及系统
CN107415643A (zh) * 2017-04-24 2017-12-01 朱若东 废热钳制控制方法与自源式废热钳温器、车辆
CN207225027U (zh) * 2017-04-24 2018-04-13 朱若东 自源式废热钳温器和车辆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977574A (zh) * 2016-06-30 2016-09-28 深圳市元征科技股份有限公司 电池温度的控制方法及系统
CN106328215A (zh) * 2016-08-10 2017-01-11 冷卫国 单向导热方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835222A (ja) * 1981-08-27 1983-03-01 Sumitomo Electric Ind Ltd 自動車の排熱回収装置
US20130139507A1 (en) * 2011-06-06 2013-06-06 Arthur P. Morse Thermal Compression and Waste Heat Recovery Heat Engine and Methods
CN105515445A (zh) * 2015-12-01 2016-04-20 长安大学 温差发电装置及方法
CN106150663A (zh) * 2016-06-30 2016-11-23 深圳市元征科技股份有限公司 发动机温度的控制方法及系统
CN107415643A (zh) * 2017-04-24 2017-12-01 朱若东 废热钳制控制方法与自源式废热钳温器、车辆
CN207225027U (zh) * 2017-04-24 2018-04-13 朱若东 自源式废热钳温器和车辆

Also Published As

Publication number Publication date
CN107415643B (zh) 2018-07-06
CN107415643A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
CN102082133B (zh) 一种温控散热装置
CN208208927U (zh) 一种基于半导体制冷片的锂电池温控装置
JP4981589B2 (ja) 太陽光発電・集熱複合利用装置
WO2010020480A3 (en) Thermoelectric energy storage system and method for storing thermoelectric energy
CN103017281B (zh) 蓄能型热电式空调器
WO2018196627A1 (zh) 废热钳制控制方法与自源式废热钳温器、车辆
CN110966801B (zh) 一种蓄热型直膨式光伏-太阳能热泵电热联供系统与方法
AU2012218168A1 (en) Household system with multiple peltier systems
CN105485906A (zh) 一种光伏太阳能热泵发电热水系统
TW201337195A (zh) 太陽能集熱油箱式溫差發電系統及其中所用之一體平面式微超熱管導熱裝置、過渡金屬合金超導熱裝置以及它們的應用
CN211552119U (zh) 一种蓄热型直膨式光伏-太阳能热泵电热联供系统
CN107681223B (zh) 一种利用两相流动力型分离式热管的锂电池预热及散热系统
JP2010190460A (ja) 空調システム
CN207225027U (zh) 自源式废热钳温器和车辆
CN110165245B (zh) 基于半导体材料和相变材料的燃料电池热管理方法及系统
KR101260609B1 (ko) 가정용 보일러의 연통에 설치되는 열전발전장치
CN107228434B (zh) 一种基于半导体制冷片的迷你型空调
JP4503045B2 (ja) 保存庫及び冷蔵用保存庫
Nandini Peltier based cabinet cooling system using heat pipe and liquid based heat sink
CN216774343U (zh) 一种具有蓄电池过热保护功能的充电器
CN211630730U (zh) 光伏空调及其冷却组件
CN112327967B (zh) 一种功率器件的温度控制装置、方法和电器设备
CN201617645U (zh) 制冷电饭煲
CN104631903B (zh) 一种冷暖两用太阳能野营帐篷
JP2012226927A (ja) 電池温調システムおよび温調方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791399

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18791399

Country of ref document: EP

Kind code of ref document: A1