WO2018196435A1 - 基于径向磁管的直线电机 - Google Patents

基于径向磁管的直线电机 Download PDF

Info

Publication number
WO2018196435A1
WO2018196435A1 PCT/CN2018/000140 CN2018000140W WO2018196435A1 WO 2018196435 A1 WO2018196435 A1 WO 2018196435A1 CN 2018000140 W CN2018000140 W CN 2018000140W WO 2018196435 A1 WO2018196435 A1 WO 2018196435A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
tube
coil
magnetic
power
Prior art date
Application number
PCT/CN2018/000140
Other languages
English (en)
French (fr)
Inventor
陈启星
罗启宇
Original Assignee
陈启星
罗启宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈启星, 罗启宇 filed Critical 陈启星
Publication of WO2018196435A1 publication Critical patent/WO2018196435A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the invention is a linear motor and belongs to the field of motors.
  • the invention is abbreviated as a radial magnetic tube motor.
  • linear motors there are many types of linear motors, such as: AC linear induction motor (LIM), AC linear synchronous motor (LSM), DC linear motor (LDM), linear stepper motor (LPM), linear electromagnetic solenoid motor (LES), linear oscillation. Electric motors (LOM), etc., among which AC linear induction motors are well used in power drive, such as high-speed rail, aircraft carrier electromagnetic catapults, etc.
  • LIM AC linear induction motor
  • LSM AC linear synchronous motor
  • LDM DC linear motor
  • LPM linear stepper motor
  • LES linear electromagnetic solenoid motor
  • LOM linear oscillation. Electric motors
  • linear electromagnetic solenoid motor is simple structure, DC brushless drive
  • linear electromagnetic solenoid motor is commonly known as voice coil motor, using the same working principle as the voice coil in the speaker, an outer circle
  • the tube magnetic pole sleeve has an inner circular shaft magnetic pole, and a circular tubular cavity is formed between the inner and outer magnetic poles, and the annular voice coil sleeve can slide along the inner circular axis in the gap.
  • the shortcomings of LES are obvious, mainly because there is no solution to the problem of long-distance high-power driving.
  • the object of the invention is to solve the problem that the LES type motor can not be driven by long distance and high power, and after structural modification, a novel DC linear motor, a motor with large direct current, high driving force, high efficiency and adjustable driving force is obtained.
  • a dynamic also called a dynamic
  • a tubular device that produces translational power
  • Radial magnetic field that is, the inner arc is one pole and the outer arc is the other pole.
  • the magnetic tubes are all radial magnetic fields, and the magnetic fields in this paper are all radial magnetic fields.
  • a linear motor based on a radial magnetic tube which is simply referred to as a magnetic tube motor, is characterized in that it consists of a stator (STA) and a power sub-QDZ.
  • the length of the stator is much larger than the length of the power sub-, which can be regarded as a principle analysis. Infinitely long, electromagnetic pure iron is referred to as pure iron.
  • the stator (STA) is constructed by nesting a stator magnet tube (SCG) in a pure iron tube (DTG).
  • the stator magnet tube (SCG) is a radial magnetic field, and its internal shape is formed.
  • the motive can pass through the stator duct (DZGD); the motive consists of the dynamic sub-body (QZT) and the sliding force (HDZ), and the motive body is composed of a coil bobbin (XGJ) and a sub-core.
  • QTX is composed of a power sub-coil (QDX).
  • the structure of the power sub-body (QZT) is: a power sub-core, which is a radial magnetic field tube, which is mounted on a tubular coil bobbin and then wound thereon.
  • the power sub-coil (QDX) forms a power sub-body; the driving sub-body is mounted with a sliding force (HDZ) to become a motive (QDZ); the motive and the stator are mounted with a sensor group (CGQ) to acquire the physical quantity of the motive To control its drive current and voltage; after the power sub-coil is energized, the current
  • the stator magnetic field interacts to generate electromagnetic force, and the driving motive moves in the stator duct (DZGD), and the motive drives the load through the transmission mechanism; the magnetic tubes are all radial magnetic fields, that is, the inner arc is one pole and the outer arc is another pole.
  • the power sub-coil QDX is represented by QDX 1 and QDX 2
  • QDX 1 is a partial side view of QDX
  • QDX 2 is a partial cross-sectional view of QDX.
  • Single section includes various curved shape sections (circular section, elliptical section, parabolic section) and polygonal section (rectangular section, trapezoidal section); composite shape (referred to as composite shape) section is a plurality of single sections The combination is typically an arch section with a semi-circular section at the top and a rectangular section at the bottom; the cross-sectional shape generally refers to a single section and a composite section shape.
  • ⁇ Pipe section The general name of various tubular sections, referring to the sections of all cylinders, tubes and shafts, including stator (STA), pure iron pipe (DTG), stator magnetron (SCG), clearance pipe JXT, and rotor core Cross section of QTX, power sub-coil (QDX), coil bobbin coil bobbin (XGJ) coil bobbin (XGJ), slider (HDZ), and end core DBTX.
  • a curved stator becomes a linear stator when the radius of curvature is infinite.
  • the curve is called a quasi-linear line. Therefore, the straight line includes Slowly curved curve.
  • Radial magnetic tube a permanent magnet tube (also called a radiation ring) whose direction of magnetic flux is radial radiation, that is, the inner wall of the tube is one pole, and the outer wall of the tube is the other pole, and the polarity of the inner wall is marked as radial magnetic
  • the polarity of the tube such as: SCG N means that the inner wall of the stator magnet tube is N pole, the reverse magnet tube and the same direction magnetic tube: the magnetic tube with the same magnetic field line is the same direction magnetic tube, and the magnetic tube with the opposite magnetic field line is reverse magnetic tube.
  • Zero clearance refers to the close contact between two adjacent faces without slip, and the gap is regarded as zero, such as sheath and dynamic sub-magnetic tube, dynamic sub-magnetic tube and power sub-coil (QDX), dynamic sub-coil (QDX) and coil bobbin There are zero gaps between them.
  • ⁇ Micro-gap It means that the two adjacent faces are not in contact, there is no friction during relative movement but the gap is small, and the two adjacent faces are lubricated contacts, and the friction is very small.
  • the dynamic sub-gap between the outer wall of the motive and the inner wall of the stator is micro-gap .
  • Outer ring clearance The gap between the outer wall of the rotor and the inner wall of the stator is called the outer ring clearance.
  • electromagnetic pure iron refers to soft ferromagnetic materials (referred to as pure iron, which starts with the Chinese electromagnetic pure iron label DT, such as pure iron pipe (DTG);
  • pure iron pipe such as pure iron pipe (DTG)
  • hard ferromagnetic materials including ferrite and neodymium iron boron.
  • An object composed of a plurality of components is a composite of a pure iron pipe (DTG) inner wall sleeve stator magnet (SCG), and the point pointed by the pointing line is replaced by a pointing ring.
  • the pointing circle spans two parts of a pure iron tube (DTG) and a stator magnet tube (SCG);
  • the stator (STA) consists of a long pure iron tube (DTG) inner wall enclosing a stator magnet tube (SCG), pure iron
  • the tube is a long tube made of soft ferromagnetic material.
  • the stator magnet tube (SCG) is a radial magnetic tube made of hard magnetic material or electromagnet.
  • the inner wall of the stator magnet tube is the inner wall of the stator, and the inner circumference of the stator (STA) tube section.
  • the outer circumference of the section of the stator (STAD) is the same as the outer circumference of the section of the stator (STA), and the inner circumference of the section of the stator (STA) is slightly larger than the outer circumference of the section of the rotor (QDZ), and the micro-gap is placed on the outer wall of the rotor.
  • Motivator consists of a dynamic sub-body and a slider.
  • the components of the power sub-body are: a power sub-core, a power sub-coil (QDX), and a coil bobbin.
  • the power sub-core QTX has two types: soft magnetic and hard magnetic.
  • the hard magnetic and soft magnetic sub-cores made of metal materials should be cut at least one insulation on the radial and axially defined planes.
  • the JYF is sewn so that the rotor core cannot form a loop in the circumferential direction.
  • Power sub-coil It is formed by winding a coil on a bobbin bobbin (XGJ) coil bobbin (XGJ).
  • the direction of the magnetic field line of the stator is exactly perpendicular to the wall surface of the power sub-coil (QDX).
  • the power sub-coil (QDX) is subjected to axial force after being energized, and the entire motive is driven through the stator duct (DZGD).
  • the current of the coil can be adjusted to adjust the power.
  • the axial force received by the sub-force is equipped with a driving hook (QDG) on the motive.
  • the driving hook protrudes from the driving groove (QDC) on the stator to the outside to drive the driven body to move; in order to reduce the friction of the propeller while traveling For force, it is necessary to install a slider on both ends of the power sub-body.
  • the damper HCQ is mounted at the end of the stator to reduce the impact force of the rotor pair end.
  • Embodiment 1 A linear motor based on a radial magnetic tube, which is simply referred to as a magnetic tube motor, which is characterized in that: the stator (STA) and the motive (QDZ) are composed of two parts, and the length of the stator is much larger than the length of the motive.
  • the principle analysis can be regarded as infinitely long.
  • the stator (STA) is constructed by nesting a stator magnet tube (SCG) in a pure iron tube (DTG).
  • the stator magnet tube (SCG) is a radial magnetic field, and a stator is formed inside.
  • the motive can pass through the stator duct (DZGD); the motive consists of the dynamic sub-body (QZT) and the slider (HDZ), and the motive body is composed of a coil bobbin (XGJ) and a sub-core (QTX).
  • the power sub-coil (QDX) is constructed.
  • the structure of the power sub-body (QZT) is: a power sub-core, which is a radial magnetic field tube, which is mounted on a tubular coil bobbin and then wraps around the brake force.
  • the coil (QDX) forms a power sub-body; the upper side of the power sub-body is mounted with a slider (HDZ) to become a power sub-generator (QDZ); the power sub- and the stator are mounted with a sensor group (CGQ), and the physical quantity of the motive is obtained to control the coil Driving current and voltage magnitude; after the power sub-coil is energized, the current is related to the stator magnetic field Effect, generating an electromagnetic force, the stator driving power in the sub-motion conduit (DZGD), the power driven load through the sub-transmission mechanism; magnetic tubes are radial magnetic field, i.e., the arc of a pole, the other pole of the outer arc.
  • Embodiment 2 including a hard ferromagnetic magnetic tile type stator magnet tube (SCG),
  • stator magnet is composed of many stator magnetic tiles (SCW) in a pure iron pipe (DTG) (Fig. 1.3).
  • the magnetic tile (SCW) is a radial magnetic field, so the stator magnet (SCG) is also a radial magnetic field.
  • Embodiment 3 Construction of a stator magnet tube (SCG):
  • An integral radial magnet tube is used.
  • Embodiment 4 including an electromagnet type stator magnet tube (SCG),
  • the kinetic (QDZ) (Fig. 1) construction is to install a slider (HDZ) at both ends of the dynamic sub-body (QZT) (Fig. 1.5) (Fig. 1, Fig. 1.2); the structure of the dynamic sub-body (QZT) is: A tubular bobbin core (QTX) is attached to the outer layer of the tubular coil bobbin (XGJ), and then the coil is wound on the mop core (QTX) to form a tubular dynamic sub-coil (QDX), and the bobbin (XGJ)
  • the power sub-core (QTX) plus power sub-coil (QDX) is equal to the power sub-body;
  • the power sub-core (QTX) is a radial hard ferromagnetic or electromagnet tubular body, the magnetic field direction is consistent with the stator, responsible for intercepting the negative direction
  • the magnetic field lines change the magnetic field distribution so that the positive magnetic field lines at the position of the power sub-coils are larger than the
  • stator When the stator is an infinitely long unidirectional magnetic field structure, since the magnetic field lines are closed curves, the net value of the forward and negative magnetic fluxes will be equal to zero at a position in the middle of the stator. If the magnetic field distribution is not changed, the power sub-coils will not be generated after being energized. Electromagnetic force.
  • Embodiment 7 a hard ferromagnetic material dynamic iron core (QTX),
  • Embodiment 8 an electromagnet power iron core (QTX),
  • Embodiment 9 sectional shape of several motors
  • All tubular or tubular cross-sectional shapes include circles, ellipses, rectangles, polygons, and composites thereof; one of the composite shapes is arched (Fig. 2), with the upper half being semicircular and the lower half being rectangular.
  • Embodiment 10 Structure of an alternating stator magnet tube (SCG)
  • the stator magnet tube is made up of many short magnetic tubes.
  • the magnetic fields of the adjacent short magnetic tubes are opposite in direction (Fig. 4).
  • the definition is as follows: the inner arc of the short magnetic tube SCG N is N pole, as positive Direction, the inner arc of SCG S is the S pole, which is the negative direction; the inner arc of the stator magnet is the magnetic field of the alternating direction of NSNS, and a non-magnetic tube SCG X is also sandwiched between the magnetic tube SCG N and SCG S , ie, SCG N - SCG X -SCG S -SCG X -SCG N -SCG X -SCG S -...Alternate, so a lot of magnetic circuits are formed, avoiding the net value of forward and negative magnetic flux equal to zero,
  • the power sub-core (QTX) is made of soft ferromagnetic material, and the power sub-core (QTX) can also be eliminated.
  • the power sub-coil When the motive (QDZ) is in the positive magnetic tube SCG N interval, the power sub-coil will be positively driven when it is energized, and the reverse driving force will be subjected to the reverse driving force; otherwise, when the dynamometer is in the negative magnetic tube SCG S interval When the power sub-coil is energized in the reverse direction, it will receive a positive driving force, and the forward energization will be subjected to the reverse driving force. Therefore, when the motive travels to the region where the direction of the magnetic field changes, it is necessary to change the power supply direction of the power sub-coil to ensure that the driving force direction is consistent.
  • the non-magnetic tube SCG X section does not generate a driving force for the motive coil (QDX) and is a transition section for changing the direction of the power coil current.
  • QDX driving force for the motive coil
  • the non-magnetic tube SCG X section does not generate a driving force for the motive coil (QDX) and is a transition section for changing the direction of the power coil current.
  • Example 11 A closed stator construction. Its pure iron pipe (DTG) is a sealed pipe (Fig. 3). With this structure, a high-speed train running in a quasi-vacuum pipe can be designed. The motive is the car (CX), and the stator pipe is drawn into a quasi-vacuum. After that, the resistance of the air to the motion of the moton is greatly reduced.
  • Embodiment 12 A wheel-rail type sliding substructure.
  • the track is mounted in the stator inner arc (DG, see Figure 1.3, Figure 2).
  • the track is embedded in the stator magnet tube and does not protrude to the surface of the stator magnet tube.
  • the roller is mounted on the sliding body (HDT) to form a slider ( Figure 2.1
  • the roller can be rolled on the guide rail (DG); the drive hook is fixed on the slider; the track can double as the power conductor and the signal conductor.
  • Embodiment 13 One of the structures of the slider is a magnetic levitation slider (Fig. 2.2),
  • the magnetic field direction of the XFC is opposite to the magnetic field direction of the stator magnet tube (SCG).
  • the two magnetic fields generate repulsive force and will slide.
  • the child (HDZ) floats; the slider can also be a combination of a magnetic suspension type and a wheel-rail type;
  • Embodiment 14 power supply mode of two types of coils of a power sub
  • One is powered by a rail (DG), and the other is a cable that passes through a drive slot (QDC) that connects the power supply to the power sub-coil.
  • DG rail
  • QDC drive slot
  • Embodiment 15 a sensor group (CGQ) of a magnetic tube motor
  • CGQ sensor group
  • Embodiment 16 Traction radial magnetic tube motor (Fig. 5),
  • a pulley called a traction wheel QYL is installed at both ends of the stator, and the end cores at both ends of the stator have a through hole called a traction hole QYK, and the two ends of the traction rope QYS are respectively connected to the two ends of the power via the two traction holes, and the power is transmitted.
  • the sub-drive traction rope (QYS) and the traction hook (QYG) drive the external load.
  • the traction rope can be changed to a drawbar, and the external load is driven by the traction hook on the drawbar.
  • Embodiment 17 a blocking cable (Fig. 6),
  • Embodiment 18 Maintaining a structure with a constant driving force (Fig. 8),
  • the power supply unit is connected in series and one by one. It is one of the methods.
  • the power supply unit is connected one by one, including brush type and switch type.
  • Brush type Install a brush on the drive hook, and gradually increase the power supply potential with the sliding position of the brush;
  • the sensor signal is supplied to the control circuit to turn on the switch one by one, thereby gradually increasing the power supply potential; the normally closed contacts K 1 , K 2 , ..., K n-2 , K of the control switch n-1, K n individually turned off, the potential of the power supply unit gradually superimposed between the positive electrode power cable (DL +) and negative power cables (DL-);
  • Switch type 1 a power sub-position control type switch, which is installed with a row of sensors beside the trajectory of the power sub. With the moving position of the motive, the sensor signal is supplied to the control circuit to turn on the switch one by one, thereby gradually increasing the power supply potential;
  • Switch 2 Power sub-speed control switch, a speed measuring coil is mounted on the power, the speed measuring coil is like a single power sub-coil, but the wire is very thin, winding along the power coil winding groove, with As the power sub-speed increases, the signal output by the speed measuring coil becomes stronger and stronger, and the speed signal is supplied to the control circuit to turn on the switch one by one, thereby gradually increasing the power supply potential;
  • Switch type 3 a power sub-drive current-controlled switch, which is wound around a coil at a fixed end of the cable. One core of the coil is opposite to a Hall-based transmitter. When the current is less than the set value, The core magnetic induction strength drops below the set value, is measured by the transmitter, and is supplied to the control circuit to increase the power supply potential switch;
  • Embodiment 19 using a feedback power generation braking structure
  • CTDJ is the number of the magnetic tube motor, since Figure 1 is a CTDJ as a whole, so CTDJ is not shown in Figure 1, and is marked in Figures 5 and 6).
  • STA stator magnet tube (SCG) plus pure iron pipe (DTG));
  • SCG statator magnet tube;
  • DKX break line;
  • QDG drive hook;
  • WJX outputer clearance;
  • CGQ Sensor group;
  • QDX - Power Coil QDX includes QDX 1 and QDX 2 , QDX 1 is a partial side view of QDX, QDX 2 is a partial cutaway view of QDX); QDZ - Powered; DZGD - Stator Pipe;
  • Figure 1.1 Sectional view of the magnetic tube motor.
  • FIG. 1.3 Stator cross-section of a magnetic tube motor.
  • DG DTG; (SCW, SCG); STA; QDC;
  • Figure 1.4 Sectional view of an electromagnet-type stator magnet or a motive.
  • ECW - electromagnetic tile electromagnet type stator magnet (SCW) and electromagnet type power sub-magnetic tile (QCW); CWT - magnetic tile core; CWX - magnetic tile coil.
  • SCW electromagnet type stator magnet
  • QCW electromagnet type power sub-magnetic tile
  • Figure 2 Sectional view of the stator and power sub-body of a composite magnetic tube motor.
  • Figure 2.1 Sectional view of the stator and wheel-rail slides of a composite-shaped magnetic tube motor.
  • HDT - sliding body GL - roller; DG; DTG; (SCW, SCG); STA; QDG; QDC; WJX;
  • Figure 2.2 Sectional view of the stator and magnetic suspension slider of a composite magnetron motor.
  • Figure 3 Sectional view of the stator and power sub-body of a closed composite magnet tube motor.
  • Figure 4 Front view of a magneto-tube motor with alternating magnetic field stator magnets.
  • Figure 6 Front view of the obstructing cable formed by the pair of traction magnetron motors
  • FIG. 7 Schematic diagram of a stepped capacitor or battery type power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

一种基于径向磁管的直线电机,由定子(STA)和动力子(QDZ)两大部分组成,定子(STA)的构造是:在纯铁管(DTG)内弧嵌套定子磁管(SCG),定子磁管(SCG)为径向磁场,其内部形成定子管道(DZGD),动力子可以在定子管道(DZGD)中穿行;动力子由动力子主体(QZT)和滑动子(HDZ)构成,动力子主体由线圈骨架(XGJ)加动力子铁芯(QTX)加动力子线圈(QDX)构成,动力子铁芯,它是一个径向磁场管,被安装在一个管状的线圈骨架上,再在上面绕制动力子线圈(QDX),形成动力子主体;动力子主体两端安装上滑动子(HDZ)成为动力子(QDZ);动力子线圈通电后产生电磁力,驱动动力子在定子管道(DZGD)中运动,动力子通过传动机构带动负荷。

Description

基于径向磁管的直线电机 技术领域:
本发明是一种直线电机,属于电机领域。本发明简称径向磁管电机。
背景技术:
直线电机种类繁多,如:交流直线感应电动机(LIM),交流直线同步电动机(LSM),直流直线电动机(LDM),直线步进电动机(LPM),直线电磁螺线管电动机(LES),直线振荡电动机(LOM),等,其中,交流直线感应电动机在动力驱动中得到了很好的应用,比如高铁、航母的电磁弹射器等,但是,其技术复杂性很高,导致可靠性难以保证。
直线电磁螺线管电动机(LES)的优点是结构简单,直流无刷驱动;直线电磁螺线管电动机(LES)俗称为音圈电机,采用与喇叭中的音圈相同的工作原理,一个外圆管磁极套一个内圆轴磁极,内外磁极间形成圆管形空隙,环形音圈套在空隙中可以沿内圆轴滑动。就目前而言,LES的缺点很明显,主要是没有解决长距离大功率驱动的问题。
发明内容
本发明的目的是解决LES式电机无法长距离大功率驱动的问题,经过结构改造,得到一种新型直流直线电机,直流、驱动力大、效率高、驱动力可调的电机。
定义:动力子(dynamicer也称为驱动子),产生平动动力的管状装置。
定义:径向磁场,即,内弧为一极,外弧为另一极。磁管都是径向磁场,本文中的磁场都是径向磁场。
一种基于径向磁管的直线电机,简称磁管电机,其特征是:由定子(STA)和动力子QDZ两大部分组成,定子长度远远大于动力子长度,在原理分析时可以视为无限长,电磁纯铁简称纯铁,定子(STA)的构造是:在纯铁管(DTG)内弧嵌套定子磁管(SCG),定子磁管(SCG)为径向磁场,其内部形成定子管道(DZGD),动力子可以在定子管道(DZGD)中穿行;动力子由动力子主体(QZT)和滑动力子(HDZ)构成,动力子主体由线圈骨架(XGJ)加动力子铁芯(QTX)加动力子线圈(QDX)构成,动力子主体(QZT)的结构是:动力子铁芯,它是一个径向磁场管,被安装在一个管状的线圈骨架上,再在上面绕制动力子线圈(QDX),形成动力子主体;动力子主体两端安装上滑动力子(HDZ)后成为动力子(QDZ);动力子和定子上安装传感器组(CGQ),获取动力子的物理量以控制其驱动电流和电压大小;动力子线圈通电后,电流与定子磁场相互作用,产生电磁力,驱动动力子在定子管道(DZGD)中运动,动力子通过传动机构带动负荷;磁管都是径向磁场,即,内弧为一极,外弧为另一极。
为了叙述简便,本文中词汇先给出以下定义和约定:
●标号相同而下标的阿拉伯数字不同,表示不同视角的同一个部件,如:动力子线圈QDX用QDX 1和QDX 2表示,QDX 1是QDX的局部侧视图,QDX 2是QDX的局部剖视图。
●磁瓦(定子磁瓦(SCW)和动力子磁瓦(QCW)),包括硬铁磁性磁瓦和电磁铁磁瓦。
●截面形状:单一截面包括各种曲线形状截面(圆形截面、椭圆形截面、抛物线截面)和多边形截面(矩形截面、梯形截面);复合型形状(简称复合形)截面是多个单一截面的组合,典型的为拱门截面,其上部为半圆截面,下部为矩形截面;截面形状泛指单一截面和复合形截面形状。
●管截面:各种管状体截面的统称,指所有筒、管、轴的截面,包括定子(STA)、纯铁管(DTG)、定子磁管(SCG)、间隙管JXT、动力子铁芯QTX、动力子线圈(QDX)、线圈骨架线圈骨架(XGJ)线圈骨架(XGJ)、滑动子(HDZ)、端部铁芯DBTX的截面。
●准直线:一根弯曲的定子,当曲率半径为无穷大时就成了直线定子,为了叙述简洁,本文定义曲率半径大于动力子长度20倍时,称该曲线称为准直线,所以,直线包括缓慢弯曲的曲线。
●径向磁管:其磁力线方向为径向辐射方向的永磁管(又称辐射环),即管的内壁为一极,而管外壁为另一极,以内壁极性标记为径向磁管的极性,如:SCG N表示定子磁管内壁为N极,反向磁管和同向磁管:磁力线方向一致的磁管为同向磁管,磁力线方向相反的磁管为反向磁管。
●零间隙:指两邻面紧密接触且无滑动,其间隙视为零,比如护套与动力子磁管、动力子磁管与动力子线圈(QDX)、动力子线圈(QDX)与线圈骨架之间都是零间隙。
●微间隙:指两邻面不接触,相对运动时无摩擦但间隙很小,也包括两邻面为润滑式接触,摩擦力很小,比如动力子外壁与定子内壁之间动力子是微间隙。
●外环间隙:动力子外壁与定子内壁之间的间隙称外环间隙。
●软铁磁性材料很多,包括电磁纯铁和硅钢,本文用电磁纯铁泛指软铁磁性材料(简称纯铁,采用中国的电磁纯铁标号DT作标号开始,如纯铁管(DTG);硬铁磁性材料很多,包括铁氧体和钕铁硼。
复合体:由多个元器件构成的物体,比如定子(STA)是由纯铁管(DTG)内壁套定子磁管(SCG)构成的复合体,其指向线所指的点用一个指向圈代替,该指向圈跨越了纯铁管(DTG)和定子磁管(SCG)两个器件;定子(STA)由很长的纯铁管(DTG)内壁套住定子磁管(SCG)构成,纯铁管是用软铁磁性材料做成的长管,定子磁管(SCG)是硬磁材料或电磁铁 制造的径向磁管,定子磁管内壁就是定子内壁,定子(STA)管截面内周形状与动力子(QDZ)管截面外周形状相同,并且,定子(STA)管截面内周微大于动力子(QDZ)管截面外周,微间隙地套在动力子外壁,
动力子:由动力子主体和滑动子构成。
动力子主体的构件分别为:动力子铁芯、动力子线圈(QDX)、线圈骨架。
动力子铁芯QTX有软磁式和硬磁式两种,为了避免形成涡流,金属材料制造的硬磁和软磁动力子铁芯都应该在径向与轴向确定的平面上切割至少一条绝缘缝JYF,使动力子铁芯在圆周方向不能形成回路。
动力子线圈(QDX):在线圈骨架线圈骨架(XGJ)线圈骨架(XGJ)上绕制线圈而成。
定子的磁力线方向正好垂直于动力子线圈(QDX)管壁面,动力子线圈(QDX)通电后受到轴向力,带动整个动力子在定子管道(DZGD)中穿行,调节线圈电流大小即可以调节动力子受到的轴向力大小,动力子上装有驱动钩(QDG),驱动钩从定子上的驱动槽(QDC)中伸出到外面,带动被驱动体运动;为了减小动力子穿行时的摩擦力,需要在动力子主体两端安装滑动子。
在定子端部安装缓冲器HCQ以减小动力子对端部的冲击力。
实施例
实施例1:一种基于径向磁管的直线电机,简称磁管电机,其特征是:由定子(STA)和动力子(QDZ)两大部分组成,定子长度远远大于动力子长度,在原理分析时可以视为无限长,定子(STA)的构造是:在纯铁管(DTG)内弧嵌套定子磁管(SCG),定子磁管(SCG)为径向磁场,其内部形成定子管道(DZGD),动力子可以在定子管道(DZGD)中穿行;动力子由动力子主体(QZT)和滑动子(HDZ)构成,动力子主体由线圈骨架(XGJ)加动力子铁芯(QTX)加动力子线圈(QDX)构成,动力子主体(QZT)的结构是:动力子铁芯,它是一个径向磁场管,被安装在一个管状的线圈骨架上,再在上面绕制动力子线圈(QDX),形成动力子主体;动力子主体两端安装上滑动子(HDZ)后成为动力子(QDZ);动力子和定子上安装传感器组(CGQ),获取动力子的物理量以控制其驱动电流和电压大小;动力子线圈通电后,电流与定子磁场相互作用,产生电磁力,驱动动力子在定子管道(DZGD)中运动,动力子通过传动机构带动负荷;磁管都是径向磁场,即,内弧为一极,外弧为另一极。
实施例2:包括一种硬铁磁性磁瓦式定子磁管(SCG),
它是一根径向单向磁场的管道,构造方法之一是:定子磁管(SCG)由很多定子磁瓦(SCW)在纯铁管(DTG)内弧拼接而成(图1.3),定子磁瓦(SCW)是径向磁场,所以,定子磁管(SCG) 也是径向磁场。
实施例3:一种定子磁管(SCG)的构造:
采用整体式径向磁管。
实施例4:包括一种电磁铁瓦式定子磁管(SCG),
它由很多径向电磁铁瓦(Fig.1.4)在纯铁管(DTG)内弧拼接而成,当动力子运行到定子的某个位置时,这个位置的电铁瓦通电,产生径向磁场;当动力子离开某个位置时,这个位置的电铁瓦断电,磁场消失。
实施例5:
一种带驱动槽(QDC)的定子,其构造是(图1):顺着定子(STA)管道方向开了一条驱动槽(QDC),动力子的驱动钩(QDG)伸出到定子(STA)外面拖曳负载,当动力子在定子管道(DZGD)中穿行时,驱动钩驱动该负载;
实施例6:包括一个动力子,
动力子(QDZ)(图1)构造是在动力子主体(QZT)(图1.5)两端安装滑动子(HDZ)(图1,图1.2);动力子主体(QZT)的结构是:在一个管状的线圈骨架(XGJ)外层安装一个管状的动力子铁芯(QTX),然后在动力子铁芯(QTX)上绕制线圈,形成一个管状的动力子线圈(QDX),线圈骨架(XGJ)加动力子铁芯(QTX)加动力子线圈(QDX)等于动力子主体;动力子铁芯(QTX)是径向硬铁磁性或电磁铁管状体,磁场方向与定子一致,负责拦截负向磁力线,改变磁场分布,以使动力子线圈位置的正向磁力线大于负向磁力线,所以,动力子线圈通电后将会产生电磁力。
当定子为无限长单向磁场结构时,由于磁力线为闭合曲线,所以在定子中部某一位置,正向和负向磁通量净值会等于零,如果不改变磁场分布,动力子线圈通电后将不会产生电磁力。
实施例7:一种硬铁磁性材料动力子铁芯(QTX),
有整体管式和动力子磁瓦QCW拼接管式两种(所以图1.5中(QTX)和(QCW)指向同一个地方),为了避免涡流,动力子铁芯(QTX)在圆周方向绝缘,铁氧体本身是绝缘的,对于铷铁硼动力子铁芯(QTX),在拼接缝处绝缘或者开绝缘缝;动力子主体(QZT)两端安装上滑动子(HDZ)后成为动力子;动力子线圈通电后与磁场相互作用,产生电磁力,驱动动力子在管道中运动,动力子通过传动机构带动负荷;
实施例8:一种电磁铁动力子铁芯(QTX),
它由很多径向电磁铁瓦(Fig.1.4)在线圈骨架线圈骨架(XGJ)线圈骨架(XGJ)外弧拼 接而成,
实施例9:几种电机的截面形状,
所有的管状或管状的截面形状包括圆形、椭圆形、矩形、多边形和它们的复合形;其中一种复合形状为拱门形(图2),其上半部为半圆,下半部为矩形。
实施例10:一种交替式定子磁管(SCG)的结构
定子磁管(SCG)由很多短磁管连接而成,相邻的短磁管的磁场方向相反(图4),为了描述简单,定义:短磁管SCG N的内弧为N极,作为正方向,SCG S的内弧为S极,作为负方向;该定子磁管内弧为N-S-N-S交替方向的磁场,磁管SCG N和SCG S之间还夹一个无磁管SCG X,即,SCG N-SCG X-SCG S-SCG X-SCG N-SCG X-SCG S-……交替,所以会形成非常多的磁回路,避免了正向和负向磁通量净值等于零,
动力子铁芯(QTX)用软铁磁性材料制造,也可以取消动力子铁芯(QTX),
当动力子(QDZ)处于正磁管SCG N区间时,动力子线圈正向通电会受到正向驱动力,反向通电会受到反向驱动力;反之,当动力子处于负磁管SCG S区间时,动力子线圈反向通电会受到正向驱动力,正向通电会受到反向驱动力。所以,动力子行进到磁场方向改变的区域时,需要改变对动力子线圈的供电方向以保证驱动力方向一致,
无磁管SCG X区间不会对动力子线圈(QDX)产生驱动力,是用于改变动力子线圈电流方向的过渡区间。为了确定改变动力子线圈的电流方向的位置,需要在动力子上设置探测磁场方向的传感器,探测动力子所处位置是在正磁场区还是负磁场区或者是在磁场过渡区,再通过控制器改变电流方向。
实施例11:一种封闭式定子构造。它的纯铁管(DTG)为一个密封管道(图3),采用这种结构,可以设计一种在准真空管道中运行的高速列车,动力子为车厢(CX),定子管道被抽成准真空后,大大减小空气对动力子的运动产生的阻力。
实施例12:一种轮轨式滑动子结构。在定子内弧安装轨道(DG,见图1.3,图2),轨道嵌入在定子磁管中,不凸出到定子磁管的表面;滚轮安装在滑动体(HDT)上形成滑动子(图2.1),滚轮可以在导轨(DG)上滚动;驱动钩固定在滑动子上;轨道可以兼做电源导线和信号导线。
实施例13:滑动子的结构之一是磁悬浮式滑动子(图2.2),
在滑动体的外围安装一圈硬铁磁性磁铁或电磁铁(XFC),称为悬浮磁铁XFC,XFC的磁场方向与定子磁管(SCG)的磁场方向相反,两个磁场产生排斥力,将滑动子(HDZ)浮起;滑动子也可以是磁悬浮式和轮轨式两种方法相结合;
实施例14:动力子两种线圈的供电方式,
一种是通过导轨(DG)供电,一种是电缆从驱动槽(QDC)穿过,连接电源和动力子线圈。
实施例15:磁管电机的传感器组(CGQ),
在动力子和定子上安装传感器组(CGQ),检测关键的物理量(包括速度、受力、位置、磁场方向),获取这些物理量以控制电流和电压大小;
实施例16:牵引式径向磁管电机(图5),
定子两端安装称为牵引轮QYL的滑轮,定子两端的端部铁芯都有通孔称为牵引孔QYK,牵引绳QYS两端经过分别穿过两个牵引孔连接到动力子两端,动力子带动牵引绳(QYS)和牵引钩(QYG)来带动外部载荷。
与牵引绳类似,可以将牵引绳改成牵引杆,用牵引杆上的牵引钩带动外部载荷。
实施例17:一种阻拦索(图6),
由一对牵引式径向磁管电机构成的(图6),一对牵引式径向磁管电机的牵引绳连接成一根,动力子通电后,其阻拦索ZLS会产生对飞机FJ的反向拉力,即产生对飞机的制动力。
实施例18:维持驱动力恒定的结构(图8),
注意到:动力子速度越大,产生的反电势会越大,抵消掉的电源电势越大,使得驱动电势变小→驱动电流变小→动力子驱力变小,对于飞机类载荷,需要在弹射周期内基本保持驱力大小恒定,即,需要维持驱动电势恒定,必须随着动力子速度增加而加大电源电势,同步抵消掉动力子反电势,从而保持驱动电流恒定。逐渐增加电源电势的方法有多种,供电单元串联以及逐个接入,是方法之一,供电单元的逐个接入法,包括电刷式和开关式,
电刷式:在驱动钩上安装一个电刷,随着电刷的滑动位置逐渐增加电源电势;
开关式,:随着动力子的运动,传感器信号提供给控制电路逐次接通开关,从而逐渐增加电源电势;控制开关的常闭触点K 1、K 2、……、K n-2、K n-1、K n逐个断开,供电单元的电势逐渐叠加在电源电缆正极(DL+)和电源电缆负极(DL-)之间;
开关式1:动力子位置控制式开关,在动力子的轨迹旁边安装一排传感器,随着动力子的运动位置,传感器信号提供给控制电路逐次接通开关,从而逐渐增加电源电势;
开关式2:动力子速度控制式开关,在动力子上安装一个测速线圈,该测速线圈就像一个单独的动力子线圈一样,不过导线非常细,顺着动力子线圈绕线沟缠绕,随着动力子速度的增加,该测速线圈输出的信号越来越强,该速度信号提供给控制电路逐次接通开关,从而逐渐增加电源电势;
开关式3:动力子驱动电流控制式开关,在电缆线的固定端绕一个线圈,线圈中一个 铁芯,铁芯对着一个基于霍尔元件的变送器,当电流小于设定值时,铁芯磁感应强度下降至低于设定值,被变送器测出,提供给控制电路,接通增加电源电势开关;
实施例19:采用反馈发电制动结构,
反馈发电制动。在载荷发射完成后,必须将动力子进行制动,制动时将动力子的动能回收成电源电能是很有必要的,在弹射刚好完成的位置安装一个位置传感器,将电动机状态切换成发电机状态,载荷被弹射后,动力子还会保留很大的动能,当动力子遇到了位置传感器后,磁管电机由电动机切换成了发电机,利用动力子的剩余动能发电,对电源充电;
附图说明:(前图中解释过的编号,在后图中直接列出,只解释新编号)
图1——磁管电机正视图
(CTDJ为磁管电机的标号,因为图1整体是CTDJ,所以CTDJ在图1中没有标出,在图5和图6中标出了)。STA——定子(等于定子磁管(SCG)加纯铁管(DTG));SCG——定子磁管;DKX——断开线;QDG——驱动钩;WJX——外间隙;CGQ——传感器组;DTG——电磁纯铁管,简称纯铁管;DBTX——端部铁芯;HCQ——缓冲器;HDZ——滑动子;XGJ——线圈骨架;QTX——动力子铁芯;QDX——动力子线圈(QDX包括QDX 1和QDX 2,QDX 1是QDX的局部侧视图,QDX 2是QDX的局部剖视图,);QDZ——动力子;DZGD——定子管道;
图1.1——磁管电机截面图。
QTX;(QCW,QTX)一一动力子磁瓦和动力子铁芯(动力子铁芯由许多动力子磁瓦拼接而成,所以指向同一个地方);PJF——拼接缝并绝缘缝;DG——导轨;DTG;SCG;(SCW,SCG)——定子磁瓦和定子磁管(由定子磁瓦拼接而成的定子磁管,所以指向同一个地方);STA;QDC——驱动槽;QDX;XGJ;WJX。
图1.2——动力子正视图。
HDZ;DTG;QDG;STA;QDX 1和QDX 2;SCG;QDX;XGJ;WJX;CGQ;
图1.3——磁管电机定子截面图。DG;DTG;(SCW,SCG);STA;QDC;
图1.4——电磁铁式定子磁瓦或动力子磁瓦的截面图。
ECW——电磁瓦,电磁铁式定子磁瓦(SCW)和电磁铁式动力子磁瓦(QCW)的统称;CWT——磁瓦铁芯;CWX——磁瓦线圈。
图1.5——磁管电机动力子截面图。
PJF;(QCW,QTX);QDX;XGJ;QZT——动力子主体;.
图2——复合形磁管电机的定子和动力子主体截面图。
PJF;DG;(QCW,QTX);DTG;(SCW,SCG);STA;QDC;QDX;XGJ;WJX;
图2.1——复合形磁管电机的定子和轮轨式滑动子截面图。
HDT——滑动体;GL——滚轮;DG;DTG;(SCW,SCG);STA;QDG;QDC;WJX;
图2.2——复合形磁管电机的定子和磁悬浮式滑动子截面图。
HDT;XFC——悬浮磁铁;DTG;SCG;STA;QDG;QDC;WJX;
图3——封闭式复合形磁管电机的定子和动力子主体截面图。
DG;CX——车厢;QTX;DTG;(SCW,SCG);STA;QDX;XGJ;WJX;
图4——磁场交替排列式定子磁管的磁管电机正视图。
DTG;DKX;SCG S——内弧S极的定子磁管;SCG N——内弧N极的定子磁管;SCG x——定子磁管中的无磁管;DBTX;
图5——牵引式磁管电机正视图
QYG——牵引钩;QYS——牵引绳;QYK——牵引孔;QYL——牵引轮;
图6——牵引式磁管电机对构成的阻拦索正视图
ZLS——阻拦索;FJ——飞机;QYK;QYL;
图7——分级式电容或蓄电池式电源示意图。
C 0~C n——分级电容或蓄电池;K 1~K n——分级开关;DL+——电源电缆正极;DL-——电源电缆负极;LXG——螺线管;DLT——电流监测铁芯;HEY——霍尔元件;BSQ——变送器;XHX——信号线。

Claims (10)

  1. 一种基于径向磁管的直线电机,简称磁管电机,其特征是:由定子(STA)和动力子(QDZ)两大部分组成,定子长度远远大于动力子长度,在原理分析时可以视为无限长,定子(STA)的构造是:在纯铁管(DTG)内弧嵌套定子磁管(SCG),定子磁管(SCG)为径向磁场,其内部形成定子管道(DZGD),动力子可以在定子管道(DZGD)中穿行;动力子由动力子主体(QZT)和滑动子(HDZ)构成,动力子主体由线圈骨架(XGJ)加动力子铁芯(QTX)加动力子线圈(QDX)构成,动力子主体(QZT)的结构是:动力子铁芯,它是一个径向磁场管,被安装在一个管状的线圈骨架上,再在上面绕制动力子线圈(QDX),形成动力子主体;动力子主体两端安装上滑动子(HDZ)后成为动力子(QDZ);动力子和定子上安装传感器组(CGQ),获取动力子的物理量以控制其驱动电流和电压大小;动力子线圈通电后,电流与定子磁场相互作用,产生电磁力,驱动动力子在定子管道(DZGD)中运动,动力子通过传动机构带动负荷;磁管都是径向磁场,即,内弧为一极,外弧为另一极。
  2. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:包括一根由纯铁管(DTG)套住铁磁性定子磁管(SCG)所复合成的定子(STA),定子磁管(SCG)是一根径向磁场的管道,构造方法是:它由很多硬铁磁性定子磁瓦(SCW)或电磁铁瓦(ECW)在纯铁管(DTG)内弧拼接而成,定子磁瓦(SCW)是单径向磁场,所以,定子磁管(SCG)也是单径向磁场;电磁铁瓦(ECW)采用跟随式磁场,当动力子运行到定子的某个位置时,这个位置的电铁瓦通电,产生径向磁场;当动力子离开这个位置时,这个位置的电铁瓦断电,磁场消失。
  3. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:包括一个动力传递装置,有两种方式:
    一种是驱动钩加驱动槽的方式,一种带驱动槽(QDC)的定子,其构造是(图1),顺着定子(STA)管道方向开了一条驱动槽(QDC),动力子上的驱动钩(QDG)穿过驱动槽(QDC)伸出到定子(STA)外面拖曳负载,当动力子在定子管道(DZGD)中穿行时,驱动钩驱(QDG)动负载;
    一种是牵引式驱动,牵引式径向磁管电机(图5),定子两端安装称为牵引轮QYL的滑轮,定子两端的端部铁芯都有通孔称为牵引孔QYK,牵引绳QYS两端经过分别穿过两个牵引孔连接到动力子两端,动力子带动牵引绳(QYS)和牵引钩(QYG)来带动外部载荷。
  4. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:包括一个动力子,
    动力子(QDZ)(图1)构造是在动力子主体(QZT)(图1.5)两端安装滑动子(HDZ)(图1,图1.2);动力子主体(QZT)的结构是:在一个管状的线圈骨架(XGJ)外层安装一个管状的动力子铁芯(QTX),然后在动力子铁芯(QTX)上绕制线圈,形成一个管状的动力子线圈 (QDX),线圈骨架(XGJ)加动力子铁芯(QTX)加动力子线圈(QDX)等于动力子主体;动力子铁芯(QTX)是径向硬铁磁性或电磁铁管状体,磁场方向与定子一致,负责拦截负向磁力线,改变磁场分布,以使动力子线圈位置的正向磁力线大于负向磁力线,所以,动力子线圈通电后将会产生电磁力;
    动力子线圈的供电方式有两种,一种是通过导轨(DG)供电,一种是电缆从驱动槽(QDC)穿过,连接电源和动力子线圈。
  5. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:一种磁场交替排列式定子磁管,
    该定子磁管(SCG)的结构之一是:定子磁管(SCG)由很多短磁管连接而成,相邻的短磁管的磁场方向相反(图4),为了描述简单,定义:短磁管SCG N的内弧为N极,作为正方向,SCG S的内弧为S极,作为负方向;该定子磁管内弧为N-S-N-S交替方向的磁场,磁管SCG N和SCG S之间还夹一个无磁管SCG X,即,SCG N-SCG X-SCG S-SCG X-SCG N-SCG X-SCG S-……交替,所以会形成非常多的磁回路,避免了正向和负向磁通量净值等于零,
    动力子铁芯(QTX)用软铁磁性材料制造,也可以取消动力子铁芯(QTX),
    当动力子(QDZ)处于正磁管SCG N区间时,动力子线圈正向通电会受到正向驱动力,反向通电会受到反向驱动力;反之,当动力子处于负磁管SCG S区间时,动力子线圈反向通电会受到正向驱动力,正向通电会受到反向驱动力。所以,动力子行进到磁场方向改变的区域时,需要改变对动力子线圈的供电方向以保证驱动力方向一致,
    无磁管SCG X区间不会对动力子线圈(QDX)产生驱动力,是用于改变动力子线圈电流方向的过渡区间。为了确定改变动力子线圈的电流方向的位置,需要在动力子上设置探测磁场方向的传感器,探测动力子所处位置是在正磁场区还是负磁场区或者是在磁场过渡区,再通过控制器改变电流方向。
  6. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:一种封闭式定子(STA),
    它的纯铁管(DTG)为一个密封管道(图3),采用这种结构,可以设计一种在准真空管道中运行的高速列车,动力子为车厢CX,定子管道被抽成准真空后,大大减小空气对动力子的运动产生的阻力。
  7. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:滑动子的结构,滑动子有两种结构,
    一种是轮轨式滑动子,在定子内弧安装导轨(DG,见图1.3,图2.1),导轨(DG)嵌入在 定子磁管中,不凸出到定子磁管的表面;滚轮安装在滑动体(HDT)上形成滑动子(图2.1),滚轮可以在导轨(DG)上滚动;驱动钩固定在滑动子上;轨道可以兼做电源导线和信号导线;
    一种是磁悬浮式滑动子,在滑动体的外围安装一圈硬铁磁性磁铁或电磁铁(图2.2),称为悬浮磁铁磁铁XFC,XFC的磁场方向与定子磁管(SCG)的磁场方向相反,两个磁场产生排斥力,将滑动子(HDZ)浮起;
    滑动子也可以是磁悬浮式和轮轨式两种方法相结合。
  8. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:一种磁管电机式阻拦索,
    由一对牵引式径向磁管电机构成的(图6),一对牵引式径向磁管电机的牵引绳QYS连接成一根阻拦索ZLS,动力子通电后,其阻拦索ZLS会产生对飞机FJ的反向拉力,即产生对飞机的制动力。
  9. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:一种磁管电机式电磁炮和火箭发射初级,
    电磁炮,由磁管电机CTDJ和炮弹管PDT构成,磁管电机CTDJ驱动炮弹管PDT中的炮弹,由水平方向逐渐变为指向天空方向,因为电磁炮可以做得很长,所以曲率半径很大,弯曲很平缓,安装在炮台PT上。对于火药发射的炮弹,因为要考虑到接收爆炸的推力,炮弹尾部是平的,飞行中受到的空气阻力很大;而电磁炮的炮弹是弹射出去的,可以做成流线型,飞行中受到的空气阻力比平尾炮弹小得多,使射程加大;
    这种方法也可以用于火箭发射,增加一个地面发射初级。
  10. 根据权利要求1所述的基于径向磁管的直线电机,其进一步特征是:包括一个维持驱动力恒定的装置,
    该装置随着动力子速度增加而加大电源电势,同步抵消掉动力子反电势,从而保持驱动电流恒定。逐渐增加电源电势的方法有多种,供电单元串联以及逐个接入,是方法之一,供电单元的逐个接入法,包括电刷式和开关式,
    电刷式:在驱动钩上安装一个电刷,随着电刷的滑动位置逐渐增加电源电势;
    开关式,:随着动力子的运动,传感器信号提供给控制电路逐次接通开关,从而逐渐增加电源电势;控制开关的常闭触点K 1、K 2、……、K n-2、K n-1、K n逐个断开,供电单元的电势逐渐叠加在电源电缆正极(DL+)和电源电缆负极(DL-)之间;
    开关式1:动力子位置控制式开关,在动力子的轨迹旁边安装一排传感器,随着动力子的运动位置,传感器信号提供给控制电路逐次接通开关,从而逐渐增加电源电势;
    开关式2:动力子速度控制式开关,在动力子上安装一个测速线圈,该测速线圈就像一个单独的动力子线圈一样,不过导线非常细,顺着动力子线圈绕线沟缠绕,随着动力子速度的增加,该测速线圈输出的信号越来越强,该速度信号提供给控制电路逐次接通开关,从而逐渐增加电源电势;
    开关式3:动力子驱动电流控制式开关,在电缆线的固定端绕一个线圈,线圈中一个铁芯,铁芯对着一个基于霍尔元件的变送器,当电流小于设定值时,铁芯磁感应强度下降至低于设定值,被变送器测出,提供给控制电路,接通增加电源电势开关。
PCT/CN2018/000140 2017-04-26 2018-04-12 基于径向磁管的直线电机 WO2018196435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710316080.5A CN108809042A (zh) 2017-04-26 2017-04-26 基于径向磁管的直线电机
CN201710316080.5 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018196435A1 true WO2018196435A1 (zh) 2018-11-01

Family

ID=63919427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000140 WO2018196435A1 (zh) 2017-04-26 2018-04-12 基于径向磁管的直线电机

Country Status (2)

Country Link
CN (1) CN108809042A (zh)
WO (1) WO2018196435A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110588362B (zh) * 2019-09-06 2021-07-23 中国人民解放军国防科技大学 一种电磁发射装置
CN213125814U (zh) * 2020-09-01 2021-05-04 瑞声科技(南京)有限公司 直线电机
CN112932933B (zh) * 2021-01-27 2023-12-12 深圳市文森特技术有限公司 往复运动机构
CN115149862A (zh) * 2022-06-30 2022-10-04 瑞声光电科技(常州)有限公司 多动子直驱传输系统的控制方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069370A (zh) * 1992-06-15 1993-02-24 宁波大学 电磁式螺旋型直线步进电动机
JP2001086725A (ja) * 1999-09-10 2001-03-30 Nikon Corp リニアモータ、並びにこれを用いたステージ装置及び露光装置
CN104052234A (zh) * 2014-06-10 2014-09-17 江苏大学 一种车辆电磁悬架驱动用五相圆筒型容错永磁直线作动器
WO2016066129A1 (zh) * 2014-10-30 2016-05-06 陈启星 基于径向磁筒的直线电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069370A (zh) * 1992-06-15 1993-02-24 宁波大学 电磁式螺旋型直线步进电动机
JP2001086725A (ja) * 1999-09-10 2001-03-30 Nikon Corp リニアモータ、並びにこれを用いたステージ装置及び露光装置
CN104052234A (zh) * 2014-06-10 2014-09-17 江苏大学 一种车辆电磁悬架驱动用五相圆筒型容错永磁直线作动器
WO2016066129A1 (zh) * 2014-10-30 2016-05-06 陈启星 基于径向磁筒的直线电机

Also Published As

Publication number Publication date
CN108809042A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2018196435A1 (zh) 基于径向磁管的直线电机
US10873251B2 (en) Linear motor based on radial magnetic tubes
Lee et al. Review of maglev train technologies
US20100126374A1 (en) Magnetostatic levitation and propulsion systems for moving objects
US1020942A (en) Levitating transmitting apparatus.
EP2371613A1 (en) Magnetostatic levitation and propulsion systems for moving objects
US8037978B1 (en) Eddy current braking system for trolley zip line cable
CN102150351B (zh) 直线永磁驱动系统及永磁驱动磁悬浮车路系统
US8047138B2 (en) Self-regulating magneto-dynamic system for high speed ground transportation vehicle
EP4105058A1 (en) Electromagnetic levitation train track system and levitation electromagnet
GB2173352A (en) Electrically powered propulsion unit
CN102072249B (zh) 一种大承载力径向磁轴承
US10604898B2 (en) Rail-bound maglev train
CN103595301A (zh) 一种架空高压输电线路作业磁力悬浮机器人
US8074579B1 (en) Magnetically levitated transport system
CN108657011A (zh) 一种真空管道磁悬列车混合ems支承结构
CN106763184A (zh) 一种六极径向‑轴向混合磁轴承
CN105896875A (zh) 基于同轴线圈、铁芯的驱动子式直线电机
WO2017216656A1 (en) Magnetic suspension for a vehicle
WO2007021206A1 (en) Magnetic levitation transport system
US5434459A (en) Pulsed power linear actuator and method of increasing actuator stroke force
Lee et al. Design, fabrication, and operating test of the prototype HTS electromagnet for EMS-based maglev
CN108847763A (zh) 一种恒流源励磁的磁悬浮磁阻直线电机
CN106240580B (zh) 一种弹射型真空运输系统
Pandey et al. Analysis of magnetic levitation and maglev trains

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791788

Country of ref document: EP

Kind code of ref document: A1