WO2018196108A1 - 一种光学模组及增强现实眼镜 - Google Patents

一种光学模组及增强现实眼镜 Download PDF

Info

Publication number
WO2018196108A1
WO2018196108A1 PCT/CN2017/087687 CN2017087687W WO2018196108A1 WO 2018196108 A1 WO2018196108 A1 WO 2018196108A1 CN 2017087687 W CN2017087687 W CN 2017087687W WO 2018196108 A1 WO2018196108 A1 WO 2018196108A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
splitting film
polarized light
polarization
light
Prior art date
Application number
PCT/CN2017/087687
Other languages
English (en)
French (fr)
Inventor
张元�
赵东峰
崔海铭
杨春
赵博刚
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710292660.5A external-priority patent/CN107065189B/zh
Priority claimed from CN201720463537.0U external-priority patent/CN206684389U/zh
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2018196108A1 publication Critical patent/WO2018196108A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present application relates to the field of augmented reality technology, and more particularly to an optical module and augmented reality glasses.
  • Augmented Reality is a technology that combines virtual images with real-world scenes in real time.
  • the basic optical principle is to simultaneously inject the light of real world scene information and virtual image information into the human eye.
  • the image information transmitted on the two optical paths is fused at the human eye, so that the human eye simultaneously obtains a mixed image of the real world scene information and the virtual image, thereby achieving the effect of augmented reality.
  • the use of augmented reality technology in various fields is more and more extensive.
  • the augmented reality glasses mainly include a display screen for providing virtual image light and an optical module for processing the virtual image light and the external incident light to be fused in the human eye.
  • An optical module is applied to augmented reality glasses, and the augmented reality glasses include a display screen, and the optical module comprises: a oppositely disposed curved lens and a planar lens; wherein
  • One side surface of the planar lens has a first polarization splitting film, and one surface of the curved lens has a second polarization Spectroscopic film
  • the outgoing light from the display screen is sequentially reflected by a planar lens having a first polarizing beam splitting film and a curved lens having a second polarizing beam splitting film and transmitted through a planar lens having a first polarizing beam splitting film to form first image information, wherein the emitted light is emitted Polarized light
  • the external light sequentially passes through the curved lens having the second polarizing beam splitting film and the planar lens having the first polarizing beam splitting film to form second image information;
  • the first image information and the second image information form mixed image information.
  • the polarized light is elliptically polarized light
  • the polarization direction of the elliptically polarized light includes a first polarization direction and a second polarization direction.
  • a difference between a polarization direction of the first polarization splitting film and a first polarization direction of the elliptically polarized light is less than a preset threshold.
  • the first polarization splitting film is configured to totally transmit the polarized light in the first polarization direction and reflect the polarized light in the second polarization direction.
  • the polarization direction of the second polarization beam splitting film is at a first preset angle with the polarization direction of the first polarization beam splitting film, and the first preset angle ranges from 45° ⁇ 5°, including the end point value.
  • the first polarization direction is an S direction
  • the second polarization direction is a P direction
  • the polarized light is linearly polarized light
  • the first polarizing beam splitting film is used to make the planar lens transmit at least 50% of the polarized light, and the remaining polarized light is reflected to form the reflected light
  • the second polarizing beam splitting film is used to reflect at least the reflected light. 50%.
  • the plane lens and the display screen are set at a second preset angle; the second preset angle ranges from 45° ⁇ 5°, including the endpoint value.
  • the curved lens has a first curved surface and a second curved surface, wherein the first curved surface and the second curved surface are both concave toward the planar lens, and the second curved surface is provided with a second polarizing beam splitting film, and the external light is sequentially transmitted through The first curved surface and the second curved surface reach the planar lens.
  • the radius of curvature of the first curved surface and the radius of curvature of the second curved surface satisfy a preset formula
  • the preset formula is:
  • the optical film set further comprises a half wave plate, and the half wave plate is disposed on the optical path of the outgoing light from the display screen to the first polarizing beam splitting film, and after the emitted light passes through the half wave plate Arrivals On a planar lens having a first polarizing beam splitting film.
  • the method further includes: an anti-reflection film;
  • the anti-reflection film is disposed on a side surface of the planar lens facing away from the curved lens.
  • Some embodiments of the present application also provide an augmented reality glasses, including: a head mounted device body for fixing the augmented reality glasses to a user's head preset position; the head mounted device body having a display for placement Screen fixing device;
  • first lens module and the second lens module each include the optical module according to any one of the above;
  • the display screen when performing augmented reality image display, is divided into two display areas for split screen display, and both display areas display the first image; the outgoing light emitted by one display area is used for incident to the first lens mode.
  • the optical module of the group, the outgoing light emitted from the other display area is used to enter the optical module of the second lens module.
  • Some embodiments of the present application provide an optical module and augmented reality glasses, wherein the optical module includes a curved lens, a planar lens, and a polarization beam splitting film respectively disposed on the surface of the planar lens and the curved lens.
  • the display screen The emitted light passes through the first polarizing beam splitting film and the second polarizing beam splitting film, and then passes through the first polarizing beam splitting film and the plane lens to form first image information; the external light sequentially passes through the curved lens, the second polarizing beam splitting film, and the first a polarizing beam splitting film and a plane lens form second image information, and when the augmented reality display is performed by the optical module, the first image information and the second image information form mixed image information; it can be seen that the optical module uses only a curved lens and a A flat lens enables augmented reality image display.
  • the planar lens can realize the reflection and utilization of the polarized light with a relatively large polarization direction in the light emitted from the display screen through the first polarizing beam splitting film, thereby increasing the light energy utilization rate of the light emitted by the display screen.
  • FIG. 1 is a schematic structural diagram of an optical module according to some embodiments of the present application.
  • FIG. 2 is a schematic diagram showing polarization states of elliptically polarized light emitted by a display screen according to some embodiments of the present application;
  • FIG. 3(a) is a schematic diagram showing polarization directions of a first polarization splitting film according to some embodiments of the present application.
  • FIG. 3(b) is a schematic diagram showing polarization directions of a second polarization splitting film according to some embodiments of the present application.
  • FIG. 4 is a schematic diagram of an optical path of an outgoing light of a display screen according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of an optical module according to some embodiments of the present application.
  • FIG. 6 is a schematic diagram of a design principle of an optical module according to some embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of an augmented reality glasses provided by some embodiments of the present application.
  • Some embodiments of the present application provide an optical module, as shown in FIG. 1 , applied to an augmented reality glasses, the augmented reality glasses include a display screen A10, and the optical module includes: a curved lens 200 and a planar lens 100 disposed opposite to each other; ,
  • the surface of the plane lens 100 has a first polarization beam splitting film 110, and the surface of the curved lens 200 has a second polarization beam splitting film 210;
  • the outgoing light from the display screen A10 is sequentially reflected by the planar lens 100 having the first polarizing beam splitting film 110 and the curved lens 200 having the second polarizing beam splitting film 210 and transmitted through the planar lens 100 having the first polarizing beam splitting film 110 to form a first An image information, wherein the outgoing light from the display screen A10 is polarized light;
  • the external light sequentially passes through the curved lens 200 having the second polarizing beam splitting film 210 and the planar lens 100 having the first polarizing beam splitting film 110 to form second image information;
  • the first image information and the second image information form mixed image information.
  • the display screen A10 displays the first image
  • the emitted light of the display screen A10 carrying the first image information passes through the optical module and merges in the human eye to form the first image information; likewise, the second image information is carried.
  • the external light passes through the optical module and merges in the human eye to form second image information; when the augmented reality image is displayed, the first image information and the second image information form mixed image information in the human eye.
  • the optical module can realize augmented reality image display only by using a curved lens 200 and a planar lens 100.
  • the first polarization splitting film 110 is configured to transmit a polarized light component of the polarized light that is parallel to the polarization direction of the first polarizing beam splitting film 110, and reflects a polarized light component of the polarized light that is perpendicular to the polarization direction of the first polarizing beam splitting film 110,
  • the light reflected by the first polarizing beam splitting film 110 passes through the curved lens 200 having the second polarizing beam splitting film 210 and passes through the transmission of the planar lens 100 having the first polarizing beam splitting film 110 to enter the human eye to form a first image.
  • the polarization direction of the first polarization splitting film 110 can be set to be perpendicular to the polarization direction of the polarized light having a relatively large energy in the polarized light, so as to achieve a relatively large polarization of energy in the polarized light.
  • the reflection and utilization of light increases the utilization of light energy of the light emitted by the display A10.
  • the polarized light is elliptically polarized light
  • the polarization direction of the elliptically polarized light includes a first polarization direction and a second polarization direction.
  • FIG. 2 is a schematic diagram of the polarization state of the elliptically polarized light emitted by the display screen A10, wherein the short side direction of the display screen A10 is the horizontal axis (X), and the long side direction is the vertical axis (Y).
  • the coordinate system O-XYZ is established for the Z axis perpendicular to the direction of the display screen A10.
  • the second polarization direction is defined as the polarization direction of the polarized light having a relatively large energy in the elliptically polarized light emitted from the display screen A10; the polarized light defining the first polarization direction is the smallest in the elliptically polarized light emitted from the display screen A10.
  • the polarization direction of the polarized light; then the difference between the polarization direction of the first polarization beam splitting film and the first polarization direction of the elliptically polarized light is less than a preset threshold, so that the light emitted from the display screen A10 reaches the first polarization beam splitting film 110 for the first time.
  • the first polarizing beam splitting film 110 reflects the polarized light having a relatively large amount of energy in the elliptically polarized light, thereby improving the utilization of the light energy of the light emitted from the display screen A10.
  • the energy ratio of P to polarized light is the highest (generally over 80%), and the proportion of energy of S to polarized light is the smallest. Therefore, in one embodiment of the present application, the first polarization direction is the S direction and the second polarization direction is the P direction. Still referring to FIG. 2, reference numeral P denotes a P-direction polarization direction, S denotes an S-direction polarization direction, P-direction polarization direction lies in a plane composed of incident light, reflected light, refracted light and normal, and S-direction polarization direction is perpendicular to incident light.
  • the outgoing light is elliptically polarized, so in one embodiment of the present application, the mobile phone screen can be utilized as the display A10 in the augmented reality glasses.
  • the preset threshold has a value ranging from 0° to 5°, including the endpoint value.
  • the preset threshold value is 0°, so that the first polarization splitting film is used to totally transmit the polarized light of the first polarization direction and to reflect the polarized light of the second polarization direction.
  • the preset threshold may also be 1°, 2°, 3°, or the like. The specific value of the preset threshold is not limited in this application, which is determined according to the process level and equipment requirements.
  • the polarization direction of the second polarization beam splitting film 210 is at a first predetermined angle with the polarization direction of the first polarization beam splitting film 110, and the first preset angle ranges from 45° ⁇ 5°. , including endpoint values.
  • the polarization directions of the first polarization splitting film 110, the second polarization splitting film 210, and the polarization state of the display screen A10 are respectively referred to FIG. 3(a), FIG. 3(b) and FIG. 2; from FIG. 3(a), FIG. 3 ( b) and FIG. 2, when the P direction of the display screen A10 is 45 degrees from the horizontal axis direction, referring to FIG.
  • the polarization direction of the first polarization beam splitting film 110 and the display screen The S direction of A10 is almost parallel to the polarization direction (the difference between the polarization direction of the first polarization beam splitting film 110 and the S direction of the display screen A10 is less than a preset threshold) to achieve S-polarized light and reflect P-polarization.
  • the function of the light referring to FIG. 3(b), the polarization direction of the second polarization beam splitting film 210 is at a first predetermined angle with the polarization direction of the first polarization beam splitting film 110.
  • the optical path of the outgoing light of the display screen A10 is as shown in FIG. 4.
  • the P-polarized light in the outgoing light of the display screen A10 is reflected by the first polarizing beam splitting film 110 to the surface of the second polarizing beam splitting film 210.
  • the polarization direction of the two polarization splitting film 210 and the polarization of the first polarization beam splitting film 110 The direction is at a first predetermined angle, so that the reflected P-polarized light passes through the second polarizing beam splitting film 210 and becomes a reflected light having a P-direction polarized light and an S-direction polarized light energy ratio of about 50%.
  • the S-polarized light of the light passes through the first polarizing beam splitting film 110 and enters the human eye to form first image information. Since the energy of the P-polarized light accounts for more than 80% of the total energy of the outgoing light in the outgoing light of the display A10, the full utilization of the P-polarized light enables the optical module to improve the energy utilization rate of the emitted light of the display A10. , the probability of poor display of mixed image information due to excessive external light is reduced.
  • the first polarizing beam splitting film 110 is used to make the planar lens 100 transmit at least polarized light. 50%, and reflecting the remaining polarized light to form reflected light, and the second polarizing beam splitting film 210 is used to reflect at least 50% of the reflected light, and the function of realizing the display of the augmented reality image by the optical module can also be realized.
  • the planar lens 100 is disposed at a second predetermined angle with the display screen A10; the second predetermined angle ranges from 45° ⁇ 5°, including the endpoint value.
  • the first predetermined angle has a value of 45°.
  • the value of the preset threshold when the value of the preset threshold is 0°, the value of the first preset angle is 45°, so that the P-polarized light reflected by the first polarization splitting film 110 passes through the second polarization. After the reflection of the spectroscopic film 210, the reflected light of the P-polarized light and the S-polarized light energy is 50%, so as to further improve the energy utilization rate of the emitted light of the display screen A10.
  • the second preset angle can ensure that the first polarizing beam splitting film 110 on the surface of the planar lens 100 can reflect the outgoing light of the display screen A10 to the curved lens 200.
  • the second preset angle has a value range of 45° ⁇ 5°, including the endpoint value.
  • the second predetermined angle is preferably 45°.
  • the second preset angle may also be 44°, 43°, 46° or 47°. The specific value of the second preset angle is not limited in this application, and is determined according to actual conditions.
  • the curved lens 200 has a first curved surface and a second curved surface, and the first curved surface and the second curved surface are both concave toward the planar lens 100, and the second curved surface
  • the surface is provided with a second polarization splitting film 210, and the external light sequentially passes through the first curved surface and the second curved surface to reach the planar lens 100.
  • the optical axis of the curved lens 200 is parallel to the reference plane P1, and the display screen A10 is parallel to the reference plane P1. Therefore, the angle formed by the planar lens 100 and the reference plane P1 is also a second predetermined angle.
  • the optical module has two optical paths, which are the light path of the display screen A10 and the light path of the external light; wherein, the light path of the light emitted by the display screen A10 is: the first polarization beam splitting film 110-second polarization The light splitting film 210 - the first polarizing beam splitting film 110 - the planar lens 100 - the human eye; the external light path is: the curved lens 200 - the second polarizing beam splitting film 210 - the first polarizing beam splitting film 110 - the planar lens 100 - the human eye.
  • the radius of curvature of the first curved surface and the radius of curvature of the second curved surface satisfy a preset formula
  • the preset formula is:
  • the radius of curvature of the first curved surface and the second curved surface may be such that the reflected P-direction polarized light and the transmitted external light are satisfied, and the smaller the difference in the curvature radius of the first curved surface and the second curved surface, the curved lens 200 is The simpler the manufacturing process, the preferred radius of curvature of the first curved surface is equal to the radius of curvature of the second curved surface. More preferably, the first curved surface and the second curved surface are both part of the spherical surface. At the same time, the curved lens 200 can be prepared using a transparent plastic material to facilitate the shaping of the curved lens 200.
  • the optical film set further includes a half wave plate, and the half wave plate is disposed on the optical path from the outgoing light of the display screen A10 to the first polarizing beam splitting film 110, and the emitted light passes through The half wave plate is then passed onto the planar lens 100 having the first polarization splitting film 110.
  • the optical module may have poor applicability to certain size mobile phone screens. Therefore, in some embodiments of the present application, by setting a half wave plate, the outgoing light of the display screen A10 has a certain phase difference after passing through the half wave plate, so that the optical module can be well applied.
  • the display module A10 of different sizes increases the universality of the optical module.
  • the optical module further includes: an anti-reflection film 120;
  • the anti-reflection film 120 is disposed on a surface of the planar lens 100 facing away from the curved lens 200.
  • the purpose of providing the anti-reflection film 120 on the surface of the planar lens 100 facing away from the curved lens 200 is to reduce the reflected light of the planar lens 100 toward the side surface of the human eye, thereby preventing the planar lens 100 from being strongly reflected toward the side surface of the human eye, and giving A situation in which the user experience has an adverse effect.
  • FIG. 6 is a schematic diagram of a design principle of an optical module according to some embodiments of the present application.
  • Reference numeral 300 in FIG. 6 denotes a human eye; and the planar lens 100 has an angle ⁇ of 45° with respect to a reference plane P1.
  • the optical axis of the curved lens 200 is parallel to the reference plane P1.
  • the optical axis of the curved lens 200 is located within the reference plane P1. In this way, a fixed mounting of the relative positions of the curved lens 200 and the planar lens 100 is facilitated.
  • the relative position of the display screen A10 and the optical module is fixed, and the display screen A10 is parallel to the reference plane P1.
  • the reference plane P1 is parallel to the XY plane
  • the Z-axis forward direction is the direction in which the planar lens 100 is directed to the display screen A10.
  • the Y axis is perpendicular to the optical axis of the curved lens 200.
  • the monocular field of view angle is set to ⁇ ; the intersection of the optical axis of the curved lens 200 and the first polarizing beam splitting film 110 to the display screen A10 is d 3 , and the intersection point is to the first curved surface (the curved lens 200 faces away from the plane lens 100 side)
  • the distance of the surface) is d 2 .
  • the distance from the surface of the planar lens 100 facing away from the curved lens 200 to the human eye 300 is set to be d 1 .
  • the relative positional relationship of the curved lens 200, the planar lens 100, and the display screen A10 is arranged based on the above formula (1) and formula (2), facilitating the layout of the relative positional relationship of the three.
  • formula (3) and formula (4) are:
  • the length of the display screen A10 is 104 mm
  • the length of the monocular display area is 52 mm.
  • the monocular field of view ⁇ 45°
  • d 1 52 mm
  • d 2 30 mm
  • the size of the curved lens 200 is 64 mm ⁇ 46 mm ⁇ 2 mm, that is, the curved lens 200 has a length of 64 mm on the Y axis, a width of 46 mm on the Z axis, and a thickness of 2 mm on the X axis;
  • the size of the planar lens 100 is 64 mm ⁇ 63 mm ⁇ 2 mm, that is, the plane lens 100 has a length of 64 mm on the Y-axis, a width of 63 mm on the Z-axis, and a thickness of 2 mm on the X-axis.
  • the radius of curvature of the first arc surface and the second arc surface is set to be 124 mm.
  • some embodiments of the present application further provide an augmented reality glasses, as shown in FIG. 7, including: a headset body A21, and the headset device A21 is configured to fix the augmented reality glasses to the user's head preset. Position; the wearing device body has a fixing device A24 for placing the display screen A10;
  • the first lens module A22 and the second lens module A23 are disposed on the main body of the device, and the first lens module A22 and the second lens module A23 each include the optical module according to any of the above embodiments;
  • the display screen A10 when performing augmented reality image display, is divided into two display areas for performing split screen display, and both display areas display the first image; the outgoing light emitted from one display area is used for incident to the first lens.
  • the optical module of the module A22 the outgoing light emitted from the other display area is used to enter the optical module of the second lens module A23.
  • the curved lenses 200 of the two optical modules are all perpendicular to a reference surface, the optical axis of the curved lens 200 is parallel to the reference surface, and the display screen A10 is parallel to the reference surface and disposed toward the optical axis to facilitate the components.
  • the relative position of the installation is fixed.
  • FIG. 7 is a cross-sectional view taken along line AA'.
  • FIG. 6 is a view showing the relative positional relationship between the curved lens 200, the planar lens 100, and the display screen A10 in the optical module of the first lens module A22 in the cross-sectional view. , will not repeat them here.
  • some embodiments of the present application provide an optical module and an enhanced display glasses, wherein the optical module includes a curved lens 200 and a planar lens 100.
  • the outgoing light of the display A10 passes through the first After the reflection of the polarization splitting film 110 and the second polarization splitting film 210, the first polarization information is formed through the first polarization beam splitting film 110 and the planar lens 100; the external light sequentially passes through the curved lens 200 and the second polarizing beam splitting film 210.
  • the first polarizing beam splitting film 110 and the planar lens 100 form second image information.
  • the augmented reality display is performed by the optical module, the first image information and the second image information form mixed image information. It can be seen that the optical module uses only one curved surface.
  • the lens 200 and a planar lens 100 ie Augmented reality image display can be realized.
  • the planar lens 100 can realize the reflection and utilization of the polarized light with a relatively large polarization direction in the light emitted from the display screen through the first polarizing beam splitting film 110, thereby increasing the light emitted by the display screen A10. Can use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光学模组及增强现实眼镜,其中,光学模组包括曲面透镜(200)和平面透镜(100),在实际应用过程中,显示屏(A10)的出射光线经过第一偏振分光膜(110)和第二偏振分光膜(210)的反射后,透过第一偏振分光膜(110)及平面透镜(100)形成第一图像信息;外界光线依次透过曲面透镜(200)、第二偏振分光膜(210)、第一偏振分光膜(110)及平面透镜(100)形成第二图像信息,在利用光学模组进行增强现实显示时,第一图像信息和第二图像信息形成混合图像信息;可见,光学模组仅利用一曲面透镜(200)以及一平面透镜(100),即可实现增强现实图像显示。另外,平面透镜(100)可以通过第一偏振分光膜(110)实现对显示屏(A10)出射光线中能量占比较大的偏振方向的偏振光的反射和利用,从而增加了显示屏(A10)出射光线的光能利用率。

Description

一种光学模组及增强现实眼镜
本申请要求于2017年4月28日提交中国专利局、申请号为201710292660.5、发明名称为“一种光学模组及增强现实眼镜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。另外本申请还要求于2017年4月28日提交中国专利局、申请号为201720463537.0、实用新型名称为“一种光学模组及增强现实眼镜”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及增强现实技术领域,更具体地说,涉及一种光学模组及增强现实眼镜。
背景技术
增强现实(Augmented Reality,AR),是一种实时地将虚拟图像与现实场景进行结合展现的技术,其基本的光学原理为向人眼同时入射携带真实世界景物信息和虚拟图像信息的光线,使两个光学路径上传输的图像信息在人眼处融合,以使人眼同时获得真实世界的景物信息和虚拟图像的混合图像,从而达到增强现实的效果。随着计算机技术的不断发展,增强现实技术在各个领域的用途越来越广泛。
增强现实眼镜主要包括用于提供虚拟图像光线的显示屏和用于对虚拟图像光线和外界入射光线处理使其在人眼中融合的光学模组。
申请内容
本申请一些实施例提供了如下技术方案:
一种光学模组,应用于增强现实眼镜,增强现实眼镜包括显示屏,光学模组包括:相对设置的曲面透镜和平面透镜;其中,
平面透镜一侧表面具有第一偏振分光膜,曲面透镜一侧表面具有第二偏振 分光膜;
来自显示屏的出射光线依次经过具有第一偏振分光膜的平面透镜和具有第二偏振分光膜的曲面透镜反射并经过具有第一偏振分光膜的平面透镜透射后形成第一图像信息,其中出射光线为偏振光;
外界光线依次透过具有第二偏振分光膜的曲面透镜、和具有第一偏振分光膜的平面透镜后形成第二图像信息;
第一图像信息和第二图像信息形成混合图像信息。
可选的,偏振光为椭圆偏振光,椭圆偏振光的偏振方向包括第一偏振方向和第二偏振方向。
可选的,第一偏振分光膜的偏振方向与椭圆偏振光的第一偏振方向的差值小于预设阈值。
可选的,第一偏振分光膜用于全透过第一偏振方向的偏振光、并反射第二偏振方向的偏振光。
可选的,第二偏振分光膜的偏振方向与第一偏振分光膜的偏振方向成第一预设角度,第一预设角度的取值范围为45°±5°,包括端点值。
可选的,第一偏振方向为S向,第二偏振方向为P向。
可选的,偏振光为线偏振光,第一偏振分光膜用于使平面透镜至少透过偏振光的50%,并反射剩余偏振光形成反射光,第二偏振分光膜用于至少反射反射光的50%。
可选的,平面透镜与显示屏成第二预设角度设置;第二预设角度的取值范围为45°±5°,包括端点值。
可选的,曲面透镜具有第一弧面和第二弧面,第一弧面和第二弧面均凹向平面透镜,第二弧面表面设置有第二偏振分光膜,外界光线依次透过第一弧面和第二弧面到达平面透镜。
可选的,第一弧面的曲率半径与第二弧面的曲率半径满足预设公式;
预设公式为:|R1-R2|≤σ,其中,R1表示第一弧面的曲率半径,R2表示第二弧面的曲率半径,σ表示预设误差。
可选的,光学膜组还包括二分之一波片,二分之一波片设置在来自显示屏的出射光线至第一偏振分光膜的光路上,出射光线经过二分之一波片之后到达 具有第一偏振分光膜的平面透镜上。
可选的,还包括:减反射膜;
减反射膜设置于平面透镜背离曲面透镜一侧表面。
本申请一些实施例还提供一种增强现实眼镜,包括:头戴设备主体,头戴设备主体用于将增强现实眼镜固定在用户的头部预设位置;头戴设备主体具有用于放置的显示屏的固定装置;
设置在头戴设备主体上的第一镜片模组以及第二镜片模组,第一镜片模组以及第二镜片模组均包括如上述任一项的光学模组;
其中,在进行增强现实图像显示时,显示屏分为两个显示区域,以进行分屏显示,两个显示区域均显示第一图像;一个显示区域出射的出射光线用于入射至第一镜片模组的光学模组,另一个显示区域出射的出射光线用于入射第二镜片模组的光学模组。
本申请一些实施例提供了一种光学模组及增强现实眼镜,其中,光学模组包括曲面透镜、平面透镜以及分别位于平面透镜和曲面透镜表面的偏振分光膜,在实际应用过程中,显示屏的出射光线经过第一偏振分光膜和第二偏振分光膜的反射后,透过第一偏振分光膜及平面透镜形成第一图像信息;外界光线依次透过曲面透镜、第二偏振分光膜、第一偏振分光膜及平面透镜形成第二图像信息,在利用光学模组进行增强现实显示时,第一图像信息和第二图像信息形成混合图像信息;可见,光学模组仅利用一曲面透镜以及一平面透镜,即可实现增强现实图像显示。
本申请一些实施例中,平面透镜可以通过第一偏振分光膜实现对显示屏出射光线中能量占比较大的偏振方向的偏振光的反射和利用,从而增加了显示屏出射光线的光能利用率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请的一些实施例提供的一种光学模组的结构示意图;
图2为本申请的一些实施例提供的显示屏发射的椭圆偏振光的偏振状态示意图;
图3(a)为本申请的一些实施例提供的第一偏振分光膜的偏振方向的示意图;
图3(b)为本申请的一些实施例提供的第二偏振分光膜的偏振方向的示意图;
图4为本申请的一些实施例提供的显示屏的出射光线的光路示意图;
图5为本申请的一些实施例提供的一种光学模组的结构示意图;
图6为本申请的一些实施例提供的光学模组的设计原理示意图;
图7为本申请的一些实施例提供的一种增强现实眼镜的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请一些实施例提供了一种光学模组,如图1所示,应用于增强现实眼镜,增强现实眼镜包括显示屏A10,光学模组包括:相对设置的曲面透镜200和平面透镜100;其中,
平面透镜100一侧表面具有第一偏振分光膜110,曲面透镜200一侧表面具有第二偏振分光膜210;
来自显示屏A10的出射光线依次经过具有第一偏振分光膜110的平面透镜100和具有第二偏振分光膜210的曲面透镜200反射并经过具有第一偏振分光膜110的平面透镜100透射后形成第一图像信息,其中来自显示屏A10的出射光线为偏振光;
外界光线依次透过具有第二偏振分光膜210的曲面透镜200、和具有第一偏振分光膜110的平面透镜100后形成第二图像信息;
第一图像信息和第二图像信息形成混合图像信息。
需要说明的是,显示屏A10显示第一图像,携带第一图像信息的显示屏A10的出射光线经过光学模组后在人眼中交汇,从而形成第一图像信息;同样的,携带第二图像信息的外界光线经过光学模组后在人眼中交汇,从而形成第二图像信息;在增强现实图像显示时,第一图像信息和第二图像信息在人眼中形成混合图像信息。在本申请一些实施例中,光学模组仅利用一曲面透镜200以及一平面透镜100,即可实现增强现实图像显示。
另外,第一偏振分光膜110用于透过偏振光中与第一偏振分光膜110偏振方向平行的偏振光分量,并且反射偏振光中与第一偏振分光膜110偏振方向垂直的偏振光分量,其中,被第一偏振分光膜110反射的光线经过具有第二偏振分光膜210的曲面透镜200的反射并经过具有第一偏振分光膜110的平面透镜100的透射后进入人眼,形成第一图像信息;在实际应用中,可以将第一偏振分光膜110的偏振方向设置为与偏振光中能量占比较大的偏振光的偏振方向垂直的方向,以实现对偏振光中能量占比较大的偏振光的反射和利用,增加显示屏A10出射光线的光能利用率。
在本申请的一些实施例中,参考图2,偏振光为椭圆偏振光,椭圆偏振光的偏振方向包括第一偏振方向和第二偏振方向。
需要说明的是,图2为显示屏A10发射的椭圆偏振光的偏振状态的示意图,其中,以显示屏A10的短边方向为横轴(X),长边方向为纵轴(Y),以垂直于显示屏A10的方向为Z轴建立坐标系O-XYZ。
如果定义第二偏振方向为显示屏A10出射的椭圆偏振光中能量占比较大的偏振光的偏振方向;定义第一偏振方向的偏振光为显示屏A10出射的椭圆偏振光中能量占比最小的偏振光的偏振方向;那么第一偏振分光膜的偏振方向与椭圆偏振光的第一偏振方向的差值小于预设阈值,以实现在显示屏A10出射光线第一次到达第一偏振分光膜110时,被第一偏振分光膜110反射椭圆偏振光中能量占比较大的偏振光,从而提高显示屏A10出射光线的光能利用率的目的。
一般地,在显示屏A10出射的椭圆偏振光中,P向偏振光的能量占比最高(一般超过80%),S向偏振光的能量占比最小。因此,在本申请的一个具体实施例中,第一偏振方向为S向,第二偏振方向为P向。仍然参考图2,标号P表示P向偏振方向,S表示S向偏振方向,P向偏振方向位于入射光、反射光、折射光和法线组成的平面内,S向偏振方向位于垂直于入射光、反射光、折射光和法线组成的平面内。在主流的手机屏幕中,其出射光线均为椭圆偏振光,因此在本申请的一个实施例中,可以利用手机屏幕作为增强现实眼镜中的显示屏A10。
在本申请的一些实施例中,预设阈值的取值范围为0°-5°,包括端点值。
需要说明的是,预设阈值的取值越小,显示屏A10的出射光线被第一偏振分光膜110的反射部分的能量占比越高,也就意味着最终在人眼中形成第一图像信息的光线的能量占比越高。因此,预设阈值的取值为0°,以使第一偏振分光膜用于全透过第一偏振方向的偏振光、并反射第二偏振方向的偏振光。但在本申请的其他实施例中,预设阈值的取值还可以为1°、2°、3°等。本申请对预设阈值的具体取值并不做限定,具体根据工艺水平以及设备要求而定。
在本申请的一些实施例中,第二偏振分光膜210的偏振方向与第一偏振分光膜110的偏振方向成第一预设角度,第一预设角度的取值范围为45°±5°,包括端点值。
第一偏振分光膜110、第二偏振分光膜210的偏振方向和显示屏A10的偏振状态分别参考图3(a)、图3(b)和图2;从图3(a)、图3(b)和图2中可以看出,当显示屏A10的P向偏振方向与横轴方向所成角度为45°时,参考图3(a),第一偏振分光膜110的偏振方向与显示屏A10的S向偏振方向几乎平行(第一偏振分光膜110的偏振方向与显示屏A10的S向偏振方向的差值小于预设阈值),以实现透过S向偏振光,并反射P向偏振光的功能;参考图3(b),第二偏振分光膜210的偏振方向与第一偏振分光膜110的偏振方向成第一预设角度。
一些实施例中,显示屏A10的出射光线的光路如图4所示,显示屏A10的出射光线中的P向偏振光被第一偏振分光膜110反射到达第二偏振分光膜210表面,由于第二偏振分光膜210的偏振方向与第一偏振分光膜110的偏振 方向成第一预设角度,因此被反射的P向偏振光经过第二偏振分光膜210的反射后成为P向偏振光和S向偏振光能量占比均大约为50%的反射光线,该反射光线的S向偏振光透过第一偏振分光膜110进入人眼后形成第一图像信息。由于在显示屏A10的出射光线中,P向偏振光的能量占出射光线总能量的80%以上,对P向偏振光的充分利用使得光学模组可以提升显示屏A10的出射光线的能量利用率,降低了出现由于外界光线过强而造成的混合图像信息显示效果不佳问题的概率。
在本申请的一些实施例中,当显示屏A10出射的光线为线偏振光,也就是说偏振光为线偏振光时,第一偏振分光膜110用于使平面透镜100至少透过偏振光的50%,并反射剩余偏振光形成反射光,第二偏振分光膜210用于至少反射反射光的50%,同样能够实现利用光学模组实现增强现实图像显示的功能。
在本申请的一些实施例中,任然参考图1,平面透镜100与显示屏A10成第二预设角度设置;第二预设角度的取值范围为45°±5°,包括端点值。
在本申请的一些实施例中,第一预设角度的取值为45°。
在本实施例中,当预设阈值的取值为0°时,第一预设角度的取值为45°,这样可以保证被第一偏振分光膜110反射的P向偏振光经过第二偏振分光膜210的反射后成为P向偏振光和S向偏振光能量占比均为50%的反射光线,以进一步提升显示屏A10的出射光线的能量利用率。
需要说明的是,第二预设角度能够保证平面透镜100表面的第一偏振分光膜110能够向曲面透镜200反射显示屏A10的出射光线即可。在本申请的一个实施例中,第二预设角度的取值范围为45°±5°,包括端点值。在本申请的一个实施例中,第二预设角度优选为45°。但在本申请的其他实施例中,第二预设角度的取值还可以为44°、43°、46°或47°。本申请对第二预设角度的具体取值并不做限定,具体视实际情况而定。
在本申请的一些实施例中,仍以图1为例,曲面透镜200具有第一弧面和第二弧面,第一弧面和第二弧面均凹向平面透镜100,第二弧面表面设置有第二偏振分光膜210,外界光线依次透过第一弧面和第二弧面到达平面透镜100。
曲面透镜200的光轴平行于参考平面P1,显示屏A10平行于参考平面P1, 因此,平面透镜100与参考平面P1所成角度也为第二预设角度。
在本实施例中,同上述,光学模组具有两个光路,分别是显示屏A10出射光线光路和外界光线光路;其中,显示屏A10出射光线光路为:第一偏振分光膜110-第二偏振分光膜210-第一偏振分光膜110-平面透镜100-人眼;外界光线光路为:曲面透镜200-第二偏振分光膜210-第一偏振分光膜110-平面透镜100-人眼。
在本申请的一些实施例中,第一弧面的曲率半径与第二弧面的曲率半径满足预设公式;
预设公式为:|R1-R2|≤σ,其中,R1表示第一弧面的曲率半径,R2表示第二弧面的曲率半径,σ表示预设误差,0mm≤σ≤3mm。
第一弧面和第二弧面的曲率半径只要能够满足反射P向偏振光和透射外界光线即可,第一弧面和第二弧面的曲率半径的差值越小,则曲面透镜200的制作工艺越简单,那么优选的,第一弧面的曲率半径等于第二弧面的曲率半径,更优选的,第一弧面和第二弧面均为球面的一部分。同时,可以采用透明塑料材料制备曲面透镜200,以便于曲面透镜200的塑型。
在本申请的一些实施例中,光学膜组还包括二分之一波片,二分之一波片设置在来自显示屏A10的出射光线至第一偏振分光膜110的光路上,出射光线经过二分之一波片之后到达具有第一偏振分光膜110的平面透镜100上。
需要说明的是,如上,可以利用不同的手机屏幕作为显示屏A10,但是由于不同型号、品牌的手机屏幕的尺寸不一,可能会导致光学模组对某些尺寸的手机屏幕的适用性差的问题,因此在本申请一些实施例中,通过设置二分之一波片使得显示屏A10的出射光线在经过二分之一波片后具有一定的相位差,从而使得光学模组可以很好地适用于不同尺寸的显示屏A10,增加光学模组的普适性。
在本申请的一些实施例中,如图5所示,光学模组还包括:减反射膜120;
减反射膜120设置于平面透镜100背离曲面透镜200一侧表面。
在平面透镜100背离曲面透镜200一侧表面设置减反射膜120的目的是减少平面透镜100朝向人眼一侧表面的反射光,从而避免平面透镜100朝向人眼一侧表面产生强反射,而给用户体验带来不良影响的情况。
参考图6,图6为本申请一些实施例提光学模组的设计原理示意图,图6中的标号300表示人眼;平面透镜100与参考平面P1具有45°的夹角β。曲面透镜200的光轴与参考平面P1平行,图6中,曲面透镜200的光轴位于参考平面P1内。这样,便于曲面透镜200和平面透镜100的相对位置的固定安装。
当进行增强现实显示时,显示屏A10与光学模组的相对位置固定,显示屏A10平行于参考面P1。在三维直角坐标系O-XYZ中,参考平面P1平行于XY平面,Z轴正向为平面透镜100指向显示屏A10的方向。
设定显示屏A10的长度为L,即显示屏A10在Y轴方向的长度。Y轴垂直于曲面透镜200的光轴。设定单眼视场角为α;曲面透镜200的光轴与第一偏振分光膜110的交点到显示屏A10的距离为d3,交点到第一弧面(曲面透镜200背离平面透镜100一侧表面)的距离为d2。设定平面透镜100背离曲面透镜200一侧表面到人眼300的距离为d1
单眼视场角为α为已知参数,可以根据需求设定。如可以设定α=45°。L、α、d3以及d2满足公式(1),公式(1)为:
Figure PCTCN2017087687-appb-000001
设定光学模组的有效焦距为EFL,则有效焦距为EFL如公式(2)所示,公式(2)为:
EFL=d3+d2      (2)
基于上述公式(1)和公式(2)布置曲面透镜200、平面透镜100以及显示屏A10的相对位置关系,便于三者相对位置关系的布局。
需要说明的是,上述公式(1)和公式(2)中等式两边不是绝对的相等关系,允许一定的误差,即公式(1)可用公式(3)表示,公式(2)可用公式(4)表示。其中,公式(3)和公式(4)分别为:
Figure PCTCN2017087687-appb-000002
EFL≈d3+d2      (4)
当采用显示屏A10长度为104mm时,单眼显示区域长度为52mm。定义单眼视场角α=45°,d1=52mm,d2=30mm,d3=32mm。可以计算得出EFL=62mm。曲面透镜200的尺寸为64mm×46mm×2mm,也就是说,曲面透镜200在Y轴 上的长度为64mm,在Z轴的宽度为46mm,在X轴的厚度为2mm;平面透镜100的尺寸为64mm×63mm×2mm,也就是说,平面透镜100在Y轴上的长度为64mm,在Z轴的宽度为63mm,在X轴的厚度为2mm。设置第一弧面以及第二弧面的曲率半径均为124mm。
相应的,本申请一些实施例还提供了一种增强现实眼镜,如图7所示,包括:头戴设备主体A21,头戴设备主体A21用于将增强现实眼镜固定在用户的头部预设位置;头戴设备主体具有用于放置显示屏A10的固定装置A24;
设置在头戴设备主体上的第一镜片模组A22以及第二镜片模组A23,第一镜片模组A22以及第二镜片模组A23均包括如上述任一实施例的光学模组;
其中,在进行增强现实图像显示时,显示屏A10分为两个显示区域,以进行分屏显示,两个显示区域均显示第一图像;一个显示区域出射的出射光线用于入射至第一镜片模组A22的光学模组,另一个显示区域出射的出射光线用于入射第二镜片模组A23的光学模组。
如上述实施例,两个光学模组的曲面透镜200均垂直于一参考面,曲面透镜200的光轴平行于参考面,显示屏A10平行于参考面,且朝向光轴设置,以便于部件之间的相对位置的安装固定。
图7在AA’上的切面图如图6所示,该切面图中第一镜片模组A22的光学模组中曲面透镜200、平面透镜100以及显示屏A10的相对位置关系参考图6所示,在此不再赘述。
综上所述,本申请一些实施例提供了一种光学模组及增强显示眼镜,其中,光学模组包括曲面透镜200和平面透镜100,在实际应用过程中,显示屏A10的出射光线经过第一偏振分光膜110和第二偏振分光膜210的反射后,透过第一偏振分光膜110及平面透镜100形成第一图像信息;外界光线依次透过曲面透镜200、第二偏振分光膜210、第一偏振分光膜110及平面透镜100形成第二图像信息,在利用光学模组进行增强现实显示时,第一图像信息和第二图像信息形成混合图像信息;可见,光学模组仅利用一曲面透镜200以及一平面透镜100,即 可实现增强现实图像显示。
本申请一些实施例中,平面透镜100可以通过第一偏振分光膜110实现对显示屏出射光线中能量占比较大的偏振方向的偏振光的反射和利用,从而增加了显示屏A10出射光线的光能利用率。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种光学模组,应用于增强现实眼镜;其特征在于,所述增强现实眼镜包括显示屏,所述光学模组包括:相对设置的曲面透镜和平面透镜;其中,
    所述平面透镜一侧表面具有第一偏振分光膜,所述曲面透镜一侧表面具有第二偏振分光膜;
    来自所述显示屏的出射光线依次经过具有所述第一偏振分光膜的平面透镜和具有所述第二偏振分光膜的曲面透镜反射并经过具有所述第一偏振分光膜的所述平面透镜透射后形成第一图像信息,其中所述出射光线为偏振光;
    外界光线依次透过具有所述第二偏振分光膜的所述曲面透镜、和具有所述第一偏振分光膜的所述平面透镜后形成第二图像信息;
    所述第一图像信息和第二图像信息形成混合图像信息。
  2. 根据权利要求1所述的光学膜组,其特征在于,所述偏振光为椭圆偏振光,所述椭圆偏振光的偏振方向包括第一偏振方向和第二偏振方向。
  3. 根据权利要求2所述的光学膜组,其特征在于,所述第一偏振分光膜的偏振方向与所述椭圆偏振光的第一偏振方向的差值小于预设阈值。
  4. 根据权利要求3所述的光学膜组,其特征在于,所述第一偏振分光膜用于全透过所述第一偏振方向的偏振光、并反射所述第二偏振方向的偏振光。
  5. 根据权利要求3所述的光学膜组,其特征在于,所述第二偏振分光膜的偏振方向与所述第一偏振分光膜的偏振方向成第一预设角度,所述第一预设角度的取值范围为45°±5°,包括端点值。
  6. 根据权利要求2所述的光学膜组,其特征在于,所述第一偏振方向为S向,所述第二偏振方向为P向。
  7. 根据权利要求1所述的光学膜组,其特征在于,所述偏振光为线偏振光,所述第一偏振分光膜用于使所述平面透镜至少透过所述偏振光的50%,并反射剩余偏振光形成反射光,所述第二偏振分光膜用于至少反射所述反射光的50%。
  8. 根据权利要求1所述的光学模组,其特征在于,所述平面透镜与所述显示屏成第二预设角度设置;所述第二预设角度的取值范围为45°±5°,包括端 点值。
  9. 根据权利要求1所述的光学模组,其特征在于,所述曲面透镜具有第一弧面和第二弧面,所述第一弧面和第二弧面均凹向所述平面透镜,所述第二弧面表面设置有所述第二偏振分光膜,外界光线依次透过所述第一弧面和第二弧面到达所述平面透镜。
  10. 根据权利要求9所述的光学模组,其特征在于,所述第一弧面的曲率半径与所述第二弧面的曲率半径满足预设公式;
    所述预设公式为:|R1-R2|≤σ,其中,R1表示所述第一弧面的曲率半径,R2表示所述第二弧面的曲率半径,σ表示预设误差,0mm≤σ≤3mm。
  11. 根据权利要求1所述的光学膜组,其特征在于,所述光学膜组还包括二分之一波片,所述二分之一波片设置在来自所述显示屏的出射光线至所述第一偏振分光膜的光路上,所述出射光线经过所述二分之一波片之后到达具有所述第一偏振分光膜的平面透镜上。
  12. 根据权利要求1所述的光学模组,其特征在于,还包括:减反射膜;
    所述减反射膜设置于所述平面透镜背离所述曲面透镜一侧表面。
  13. 一种增强现实眼镜,其特征在于,包括:头戴设备主体,所述头戴设备主体用于将所述增强现实眼镜固定在用户的头部预设位置;所述头戴设备主体具有用于放置显示屏的固定装置;
    设置在所述头戴设备主体上的第一镜片模组以及第二镜片模组,所述第一镜片模组以及所述第二镜片模组均包括如权利要求1-12任一项所述的光学模组;
    其中,在进行增强现实图像显示时,所述显示屏分为两个显示区域,以进行分屏显示,两个显示区域均显示第一图像;一个显示区域出射的所述出射光线用于入射至所述第一镜片模组的光学模组,另一个显示区域出射的所述出射光线用于入射所述第二镜片模组的光学模组。
PCT/CN2017/087687 2017-04-28 2017-06-09 一种光学模组及增强现实眼镜 WO2018196108A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710292660.5 2017-04-28
CN201710292660.5A CN107065189B (zh) 2017-04-28 2017-04-28 一种光学模组及增强现实眼镜
CN201720463537.0 2017-04-28
CN201720463537.0U CN206684389U (zh) 2017-04-28 2017-04-28 一种光学模组及增强现实眼镜

Publications (1)

Publication Number Publication Date
WO2018196108A1 true WO2018196108A1 (zh) 2018-11-01

Family

ID=63918084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087687 WO2018196108A1 (zh) 2017-04-28 2017-06-09 一种光学模组及增强现实眼镜

Country Status (1)

Country Link
WO (1) WO2018196108A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659217A (ja) * 1992-08-05 1994-03-04 Olympus Optical Co Ltd 頭部又は顔面装着式ディスプレイ装置
US5383053A (en) * 1992-04-07 1995-01-17 Hughes Aircraft Company Virtual image display having a high efficiency grid beamsplitter
US5903396A (en) * 1997-10-17 1999-05-11 I/O Display Systems, Llc Intensified visual display
CN201285470Y (zh) * 2008-11-10 2009-08-05 山东神戎电子股份有限公司 透射式头盔显示器
CN104903777A (zh) * 2012-11-21 2015-09-09 拉斯特公司 增强现实光学模块
CN106019568A (zh) * 2016-06-30 2016-10-12 北京小鸟看看科技有限公司 一种目镜系统和头戴显示设备
CN106405719A (zh) * 2016-12-15 2017-02-15 金华唯见科技有限公司 一种偏振反射片、增强现实近眼显示系统及头戴显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383053A (en) * 1992-04-07 1995-01-17 Hughes Aircraft Company Virtual image display having a high efficiency grid beamsplitter
JPH0659217A (ja) * 1992-08-05 1994-03-04 Olympus Optical Co Ltd 頭部又は顔面装着式ディスプレイ装置
US5903396A (en) * 1997-10-17 1999-05-11 I/O Display Systems, Llc Intensified visual display
CN201285470Y (zh) * 2008-11-10 2009-08-05 山东神戎电子股份有限公司 透射式头盔显示器
CN104903777A (zh) * 2012-11-21 2015-09-09 拉斯特公司 增强现实光学模块
CN106019568A (zh) * 2016-06-30 2016-10-12 北京小鸟看看科技有限公司 一种目镜系统和头戴显示设备
CN106405719A (zh) * 2016-12-15 2017-02-15 金华唯见科技有限公司 一种偏振反射片、增强现实近眼显示系统及头戴显示设备

Similar Documents

Publication Publication Date Title
CN107065189B (zh) 一种光学模组及增强现实眼镜
CN105572894B (zh) 一种短距离光学放大模组、放大方法及放大系统
CN206684389U (zh) 一种光学模组及增强现实眼镜
US9194995B2 (en) Compact illumination module for head mounted display
CN107238928A (zh) 一种阵列波导
CN105629472A (zh) 短距离光学放大模组、放大方法及放大系统
CN107065181B (zh) 虚拟现实设备的光学系统
CN109387942A (zh) 一种光学系统及增强现实设备
CN106226909A (zh) 显示装置及头戴式显示系统
WO2023273737A1 (zh) 成像模组和头戴显示设备
US11754838B2 (en) Near-eye optical system
CN205539752U (zh) 短距离光学放大模组及其组件
WO2019028970A1 (zh) 光学系统、放大影像装置、虚拟现实眼镜及增强现实眼镜
TWI684811B (zh) 顯示裝置及製造顯示裝置的方法
WO2019024205A1 (zh) 全景光学系统和电子设备
WO2023134506A1 (zh) Vr光学系统
CN209656995U (zh) 镜头模组及具有其的光学系统和虚拟现实设备
WO2022199194A1 (zh) 光学系统和穿戴式增强现实显示设备
WO2022002140A1 (zh) 光学装置及近眼显示设备
US11644673B2 (en) Near-eye optical system
CN206638889U (zh) 头戴式显示器
WO2018196108A1 (zh) 一种光学模组及增强现实眼镜
TWI711838B (zh) 短距離之光學系統
TWM587756U (zh) 微型化短距離光學系統
CN106896505A (zh) 一种适配手机的增强现实头戴设备及其光学模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907509

Country of ref document: EP

Kind code of ref document: A1