WO2018195823A1 - 数据传输方法、设备及系统 - Google Patents

数据传输方法、设备及系统 Download PDF

Info

Publication number
WO2018195823A1
WO2018195823A1 PCT/CN2017/082035 CN2017082035W WO2018195823A1 WO 2018195823 A1 WO2018195823 A1 WO 2018195823A1 CN 2017082035 W CN2017082035 W CN 2017082035W WO 2018195823 A1 WO2018195823 A1 WO 2018195823A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
terminal
physical layer
user data
network device
Prior art date
Application number
PCT/CN2017/082035
Other languages
English (en)
French (fr)
Inventor
李军
铁晓磊
花梦
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780089928.3A priority Critical patent/CN110547034B/zh
Priority to PCT/CN2017/082035 priority patent/WO2018195823A1/zh
Publication of WO2018195823A1 publication Critical patent/WO2018195823A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method, device, and system.
  • IoT Internet of Things
  • MTC Machine-Type Communications
  • the 3rd Generation Partnership Project (3GPP) of the Mobile Communications Standardization Organization is in the Global System for Mobile Communication (GSM) or Enhanced Data Rate GSM Evolution Technology (Enhanced Data Rate).
  • GSM Global System for Mobile Communication
  • Enhanced Data Rate Enhanced Data Rate
  • EDGE GSM/EDGE Radio Access Network
  • GERAN GSM/EDGE Radio Access Network #62 plenary session passed a new research topic to study the support of extremely low complexity and low cost in cellular networks
  • NB Narrow Band
  • the NB-IoT terminal In the current NB-IoT research, the NB-IoT terminal must complete the random access process through the physical random access channel (PRACH) before connecting to the network. After entering the connected state, the network can be normal. Data communication. However, in the Release (Rel)-13 or 14 protocol, the NB-IoT terminal completes the random access procedure for too long, resulting in an increase in data transmission delay. Therefore, how to reduce the data transmission delay becomes an urgent problem to be solved by the Rel-15 protocol.
  • PRACH physical random access channel
  • Embodiments of the present application provide a data transmission method, device, and system for reducing data transmission delay.
  • a first aspect provides a data transmission method, the method comprising: sending a first message to an access network device, where the first message includes a preamble sequence used by the terminal; and receiving a second message sent by the access network device, the second message The message includes the preamble sequence confirmed by the access network device; in response to the second message, sending a third message to the access network device, the third message including the identifier of the terminal; receiving the fourth message sent by the access network device
  • the fourth message includes contention resolution information for indicating that the terminal access is successful, and any one of the second message or the fourth message further includes physical layer downlink scheduling information or downlink user data of the terminal; or And receiving the physical layer downlink scheduling information of the terminal that is sent by the access network device after receiving the second message.
  • the scheme at least a part of user data transmission or scheduling can be performed in advance in the random access process, so that the data transmission delay can be reduced.
  • the second message further includes physical layer downlink scheduling information of the terminal; after receiving the second message, the method further includes: on the physical layer resource indicated by the physical layer downlink scheduling information Receiving downlink user data sent by the access network device. Based on the solution, downlink user data may be transmitted between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the physical layer resource in the embodiment of the present application specifically refers to the number of subframes, the position of the subframe, the number of repetitions, and the modulation and coding scheme MCS, which are not specifically limited in this embodiment of the present application.
  • the method further includes: receiving downlink user data sent by the access network device on the physical layer resource indicated by the physical layer downlink scheduling information. .
  • downlink user data may be transmitted between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the second message further includes indication information for indicating downlink user data transmission between the second message and the third message.
  • the terminal continues to receive the physical layer downlink scheduling information and the downlink user data of the terminal between the second message and the third message.
  • the physical layer downlink scheduling information is scrambled by the identifier of the terminal. In this way, only the terminal can receive the downlink scheduling information of the physical layer, and other terminals cannot receive the downlink scheduling information of the physical layer, and reduce the power consumption of other terminals.
  • the downlink user data is scrambled by the identifier of the terminal.
  • the terminal can receive the downlink user data, and other terminals cannot receive the downlink user data, thereby reducing the power consumption of other terminals.
  • the identifier of the terminal includes a cell radio network temporary identifier C-RNTI of the terminal, or the identifier of the terminal includes an access mapped by the non-access stratum NAS identifier of the terminal.
  • Layer identification a cell radio network temporary identifier C-RNTI of the terminal, or the identifier of the terminal includes an access mapped by the non-access stratum NAS identifier of the terminal.
  • the second message further includes downlink user data
  • the fourth message further includes information indicating that the downlink user data belongs to the terminal.
  • the downlink user data may be transmitted in the second message in the random access process, so that at least a part of the user data transmission or scheduling may be performed in advance in the random access process, thereby reducing the data transmission delay.
  • the method before sending the first message, further includes: receiving a command sent by the access network device to indicate the preamble sequence. That is to say, the preamble sequence used by the terminal may be indicated to the terminal by the access network device.
  • the access network device only sends the downlink user data on the physical layer resource indicated by the physical layer downlink scheduling information when the preamble sequence is detected, thereby reducing the probability that the access network device blindly transmits the downlink user data.
  • the fourth message further includes physical layer downlink scheduling information of the terminal; after receiving the fourth message, the method further includes: on the physical layer resource indicated by the physical layer downlink scheduling information Receiving downlink user data sent by the access network device.
  • the physical layer downlink scheduling information of the terminal may be transmitted in the fourth message in the random access process, and then the downlink user data is transmitted after the fourth message, so that at least one part can be executed in advance in the random access process. User data transmission or scheduling, thus reducing data transmission delay.
  • the fourth message also includes downlink user data.
  • the downlink user data may be transmitted in the fourth message in the random access process, so that at least a part of the user data transmission or scheduling may be performed in advance in the random access process, so that the data transmission delay may be reduced.
  • a second aspect provides a data transmission method, the method comprising: receiving a first message sent by a terminal, where the first message includes a preamble sequence used by the terminal; and in response to the first message, sending a second message to the terminal, where The second message includes the preamble sequence confirmed by the access network device; the third message sent by the receiving terminal, the third message includes an identifier of the terminal; and in response to the third message, the fourth message is sent to the terminal, the fourth message
  • the message includes contention resolution information indicating that the terminal access is successful; wherein any one of the second message or the fourth message further includes physical layer downlink scheduling information or downlink user data of the terminal; or After the second message, the physical layer downlink scheduling information of the terminal sent by the terminal is further sent. Based on the scheme, at least a part of user data transmission or scheduling can be performed in advance in the random access process, so that the data transmission delay can be reduced.
  • the second message further includes physical layer downlink scheduling information of the terminal; after the sending the second message, the method further includes: on the physical layer resource indicated by the physical layer downlink scheduling information Send downlink user data.
  • downlink user data may be transmitted between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the physical layer resource in the embodiment of the present application specifically refers to the number of subframes, the position of the subframe, the number of repetitions, and the modulation and coding scheme MCS, which are not specifically limited in this embodiment of the present application.
  • the method further includes: sending downlink user data on the physical layer resource indicated by the physical layer downlink scheduling information. Based on the solution, downlink user data may be transmitted between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the second message further includes indication information for indicating downlink user data transmission between the second message and the third message.
  • the terminal continues to receive the physical layer downlink scheduling information and the downlink user data of the terminal between the second message and the third message.
  • the physical layer downlink scheduling information is scrambled by the identifier of the terminal. In this way, only the terminal can receive the downlink scheduling information of the physical layer, and other terminals cannot receive the downlink scheduling information of the physical layer, and reduce the power consumption of other terminals.
  • the downlink user data is scrambled by the identifier of the terminal.
  • the terminal can receive the downlink user data, and other terminals cannot receive the downlink user data, thereby reducing the power consumption of other terminals.
  • the identifier of the terminal includes a cell radio network temporary identifier C-RNTI of the terminal, or the identifier of the terminal includes an access mapped by the non-access stratum NAS identifier of the terminal.
  • Layer identification a cell radio network temporary identifier C-RNTI of the terminal, or the identifier of the terminal includes an access mapped by the non-access stratum NAS identifier of the terminal.
  • the second message further includes downlink user data
  • the fourth message is further Information is included for indicating that the downlink user data belongs to the terminal.
  • the downlink user data may be transmitted in the second message in the random access process, so that at least a part of the user data transmission or scheduling may be performed in advance in the random access process, thereby reducing the data transmission delay.
  • the method before receiving the first message, further includes: sending a command indicating the preamble sequence to the terminal. That is to say, the preamble sequence used by the terminal may be indicated to the terminal by the access network device.
  • the access network device only sends the downlink user data on the physical layer resource indicated by the physical layer downlink scheduling information when the preamble sequence is detected, thereby reducing the probability that the access network device blindly transmits the downlink user data.
  • the fourth message further includes physical layer downlink scheduling information of the terminal.
  • the method further includes: on the physical layer resource indicated by the physical layer downlink scheduling information. Send downlink user data.
  • the physical layer downlink scheduling information of the terminal may be transmitted in the fourth message in the random access process, and then the downlink user data is transmitted after the fourth message, so that at least a part of the user data may be executed in advance in the random access process. Transmission or scheduling, thus reducing data transmission delay.
  • the fourth message also includes downlink user data.
  • the downlink user data may be transmitted in the fourth message in the random access process, so that at least a part of the user data transmission or scheduling may be performed in advance in the random access process, so that the data transmission delay may be reduced.
  • a third aspect provides a terminal, where the terminal includes: a sending module and a receiving module, and a sending module, configured to send a first message to the access network device, where the first message includes a preamble sequence used by the terminal, and the receiving module is configured to: And receiving, by the access network device, the second message, where the second message includes the preamble sequence confirmed by the access network device, and the sending module is further configured to send a third message to the access network device in response to the second message,
  • the third message includes the identifier of the terminal, and the receiving module is further configured to receive a fourth message sent by the access network device, where the fourth message includes contention resolution information indicating that the terminal access is successful; Any one of the message or the fourth message further includes physical layer downlink scheduling information or downlink user data of the terminal; or, after receiving the second message, the receiving module further receives the physical layer downlink of the terminal sent by the access network device Scheduling information.
  • the terminal includes: a sending module and a receiving module, and a sending module, configured
  • the second message further includes physical layer downlink scheduling information of the terminal
  • the receiving module is further configured to, after receiving the second message, perform physical layer resources indicated by the downlink information in the physical layer.
  • the physical layer resource in the embodiment of the present application specifically refers to the number of subframes, the position of the subframe, the number of repetitions, and the modulation and coding scheme MCS, which are not specifically limited in this embodiment of the present application.
  • the receiving module is further configured to: after receiving the physical layer downlink scheduling information of the terminal, receive the access network device on the physical layer resource indicated by the physical layer downlink scheduling information. Downstream user data to be sent. Based on the terminal, downlink user data may be transmitted between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the second message further includes indication information for indicating downlink user data transmission between the second message and the third message.
  • the terminal continues to receive the physical layer downlink scheduling information and the downlink user data of the terminal between the second message and the third message.
  • the physical layer downlink scheduling information is scrambled by the identifier of the terminal. In this way, only the terminal can receive the downlink scheduling information of the physical layer, and other terminals cannot receive the downlink scheduling information of the physical layer, and reduce the power consumption of other terminals.
  • the downlink user data is scrambled by the identifier of the terminal.
  • the terminal can receive the downlink user data, and other terminals cannot receive the downlink user data, thereby reducing the power consumption of other terminals.
  • the identifier of the terminal includes a cell radio network temporary identifier C-RNTI of the terminal, or the identifier of the terminal includes an access mapped by the non-access stratum NAS identifier of the terminal.
  • Layer identification a cell radio network temporary identifier C-RNTI of the terminal, or the identifier of the terminal includes an access mapped by the non-access stratum NAS identifier of the terminal.
  • the second message further includes downlink user data
  • the fourth message further includes information indicating that the downlink user data belongs to the terminal.
  • the downlink user data may be transmitted in the second message in the random access process, so that at least a part of the user data transmission or scheduling may be performed in advance in the random access process, thereby reducing the data transmission delay.
  • the receiving module is further configured to: before the sending module sends the first message, receive a command sent by the access network device to indicate the preamble sequence. That is to say, the preamble sequence used by the terminal may be indicated to the terminal by the access network device.
  • the access network device only sends the downlink user data on the physical layer resource indicated by the physical layer downlink scheduling information when the preamble sequence is detected, thereby reducing the probability that the access network device blindly transmits the downlink user data.
  • the fourth message further includes physical layer downlink scheduling information of the terminal
  • the receiving module is further configured to: after receiving the fourth message, perform physical layer resources indicated by the downlink information in the physical layer. Receiving downlink user data sent by the access network device. Based on the terminal, the physical layer downlink scheduling information of the terminal may be transmitted in the fourth message in the random access process, and then the downlink user data is transmitted after the fourth message, so that at least a part of the user data may be performed in advance in the random access process. Transmission or scheduling, thus reducing data transmission delay.
  • the fourth message also includes downlink user data.
  • the downlink user data may be transmitted in the fourth message in the random access process, so that at least a part of the user data transmission or scheduling may be performed in advance in the random access process, so that the data transmission delay may be reduced.
  • a fourth aspect provides an access network device, where the access network device includes: a receiving module further transmitting a module; and a receiving module, configured to receive a first message sent by the terminal, where the first message includes a preamble sequence used by the terminal; a sending module, configured to send, to the terminal, a second message, where the second message includes the preamble sequence confirmed by the access network device, and the receiving module is further configured to receive a third message sent by the terminal, where The third message includes the identifier of the terminal; the sending module is also used to respond Sending, to the terminal, a fourth message, where the fourth message includes contention resolution information indicating that the terminal access is successful, where any one of the second message or the fourth message further includes the terminal
  • the physical layer downlink scheduling information or the downlink user data; or the sending module is further configured to further send the physical layer downlink scheduling information of the terminal sent by the terminal after the second message is sent. Based on the access network device, at least a part of user data transmission or scheduling can be performed in advance in the random access process
  • the second message further includes physical layer downlink scheduling information of the terminal
  • the sending module is further configured to: after the sending the second message, the physical layer resource indicated by the downlink information in the physical layer Send downlink user data.
  • downlink user data may be transmitted between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing Data transmission delay.
  • the physical layer resource in the embodiment of the present application specifically refers to the number of subframes, the position of the subframe, the number of repetitions, and the modulation and coding scheme MCS, which are not specifically limited in this embodiment of the present application.
  • the sending module is further configured to send downlink user data on the physical layer resource indicated by the physical layer downlink scheduling information after the physical layer downlink scheduling information of the terminal is sent.
  • downlink user data may be transmitted between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing Data transmission delay.
  • the second message further includes indication information for indicating downlink user data transmission between the second message and the third message.
  • the terminal continues to receive the physical layer downlink scheduling information and the downlink user data of the terminal between the second message and the third message.
  • the physical layer downlink scheduling information is scrambled by the identifier of the terminal. In this way, only the terminal can receive the downlink scheduling information of the physical layer, and other terminals cannot receive the downlink scheduling information of the physical layer, and reduce the power consumption of other terminals.
  • the downlink user data is scrambled by the identifier of the terminal.
  • the terminal can receive the downlink user data, and other terminals cannot receive the downlink user data, thereby reducing the power consumption of other terminals.
  • the identifier of the terminal includes a cell radio network temporary identifier C-RNTI of the terminal, or the identifier of the terminal includes an access mapped by the non-access stratum NAS identifier of the terminal.
  • Layer identification a cell radio network temporary identifier C-RNTI of the terminal, or the identifier of the terminal includes an access mapped by the non-access stratum NAS identifier of the terminal.
  • the second message further includes downlink user data
  • the fourth message further includes information indicating that the downlink user data belongs to the terminal.
  • the downlink user data may be transmitted in the second message in the random access process, so that at least a part of the user data transmission or scheduling may be performed in advance in the random access process, thereby reducing the data transmission delay.
  • the sending module is further configured to send a command indicating the preamble sequence to the terminal before the receiving module receives the first message. That is to say, the preamble sequence used by the terminal may be indicated to the terminal by the access network device.
  • the access network device sends the number of downlink users on the physical layer resource indicated by the physical layer downlink scheduling information only after detecting the preamble sequence. According to this, the probability that the access network device blindly sends downlink user data is reduced.
  • the fourth message further includes physical layer downlink scheduling information of the terminal
  • the sending module is further configured to: after transmitting the fourth message, the physical layer resource indicated by the downlink information of the physical layer Send downlink user data.
  • the physical layer downlink scheduling information of the terminal may be transmitted in the fourth message in the random access process, and then the downlink user data is transmitted after the fourth message, so that at least a part of the user data may be executed in advance in the random access process. Transmission or scheduling, thus reducing data transmission delay.
  • the fourth message also includes downlink user data.
  • the downlink user data may be transmitted in the fourth message in the random access process, so that at least a part of the user data transmission or scheduling may be performed in advance in the random access process, so that the data transmission delay may be reduced.
  • a fifth aspect provides a data transmission method, the method comprising: sending a first message to an access network device, where the first message includes a preamble sequence used by the terminal; and receiving a second message sent by the access network device, the second message The message includes the preamble sequence confirmed by the access network device and the physical layer uplink scheduling information of the terminal; in response to the second message, sending a third message to the access network device, where the third message includes an identifier of the terminal; Receiving a fourth message sent by the access network device, where the fourth message includes contention resolution information indicating that the terminal access is successful; wherein the third message further includes uplink user data, where the uplink user data is at the physical layer The physical layer resource indicated by the uplink scheduling information is sent, or the uplink user data is further sent on the physical layer resource indicated by the physical layer uplink scheduling information after the third message is sent. Based on the scheme, at least a part of user data transmission or scheduling can be performed in advance in the random access process, so that the data transmission delay can be reduced.
  • a data transmission method includes: receiving a first message sent by a terminal, where the first message includes a preamble sequence used by the terminal; and in response to the first message, sending a second message to the terminal, where the The second message includes the preamble sequence confirmed by the access network device and the physical layer uplink scheduling information of the terminal; the third message sent by the receiving terminal, the third message includes the identifier of the terminal, and the third message is sent to the terminal in response to the second message.
  • the fourth message includes contention resolution information indicating that the terminal access is successful, and the third message further includes uplink user data, where the uplink user data is in the physical layer resource indicated by the physical layer uplink scheduling information.
  • the seventh aspect provides a terminal, where the terminal includes: a sending module and a receiving module, and a sending module, configured to send a first message to the access network device, where the first message includes a preamble sequence used by the terminal, and the receiving module is configured to: And receiving, by the access network device, the second message, where the second message includes the preamble sequence and the physical layer uplink scheduling information of the terminal, and the sending module is further configured to respond to the second message.
  • the uplink user data is sent on the physical layer resource indicated by the physical layer uplink scheduling information; or the sending module is further configured to: after the third message is sent, further indicated by the physical layer uplink scheduling information
  • the uplink user data is sent on the physical layer resource. Based on the terminal, at least a part of user data transmission or scheduling can be performed in advance in the random access process, so that the data transmission delay can be reduced.
  • the eighth aspect provides an access network device, where the access network device includes: a receiving module and a sending module, and a receiving module, configured to receive a first message sent by the terminal, where the first message includes a preamble sequence used by the terminal;
  • the module is configured to send, to the terminal, a second message, where the second message includes the preamble sequence and the physical layer uplink scheduling information of the terminal confirmed by the access network device, and the receiving module is further configured to receive the terminal.
  • the sending module is further configured to send, to the terminal, a fourth message, where the fourth message includes a contention resolution for indicating that the terminal access is successful, in response to the third message.
  • the third message further includes uplink user data, where the uplink user data is sent on a physical layer resource indicated by the physical layer uplink scheduling information; or the receiving module is further configured to: after receiving the third message, further The uplink user data is received on the physical layer resource indicated by the physical layer uplink scheduling information.
  • the access network device Based on the access network device, at least a part of user data transmission or scheduling can be performed in advance in the random access process, so that the data transmission delay can be reduced.
  • the uplink user data is scrambled by the temporary cell radio network temporary identifier C-RNTI of the terminal.
  • the first message further includes first indication information, where the first indication information indicates that the terminal supports uplink in a random access procedure.
  • the first indication information indicates that the terminal supports uplink in a random access procedure.
  • the first indication information indicates that the terminal supports uplink user data transmission in a random access procedure, including: the first indication message Determined by the location of the random access resource used by the first message, where the location of the random access resource used by the first message is used to indicate that the terminal supports uplink user data transmission in a random access procedure.
  • the first indication information indicates an uplink user data size to be transmitted, including: the first indication message is used by the first message.
  • the location of the random access resource is determined, where the location of the random access resource used by the first message is used to indicate that the size of the uplink user data exceeds a preset threshold.
  • the physical layer uplink scheduling information includes a first physical layer resource and a second physical layer resource; the first physical layer resource is used for sending The uplink user data, the second physical layer resource is used to send other information in the third message except the uplink user data.
  • the second message further includes second indication information, where the second indication information is used to indicate the first physical layer resource And the second physical layer resource is not continuous.
  • the third message further includes third indication information, where the third indication information indicates the third message and the fourth message. There is uplink user data transfer between. In this way, after receiving the third message, the access network device continues to receive the uplink user data of the terminal between the third message and the fourth message.
  • the embodiment of the present application provides a terminal, including: a processor, a memory, and a bus; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, and when the terminal is running, the processing is performed.
  • the computer executes the computer-executed instructions stored in the memory to cause the terminal to perform the data transmission method according to any of the first or fifth aspects above.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, to enable the computer to perform the above first aspect or fifth aspect Any of the described data transmission methods.
  • the embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the data transmission method according to any one of the first aspect or the fifth aspect.
  • an embodiment of the present application provides an access network device, including: a processor, a memory, and a bus; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the access When the network device is in operation, the processor executes the computer-executed instructions stored in the memory to cause the access network device to perform the data transmission method according to any one of the second aspect or the sixth aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, enable the computer to perform the second or sixth aspect described above The data transmission method of any of the above.
  • the embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the data transmission method of any of the second aspect or the sixth aspect.
  • the embodiment of the present application provides a data transmission system, where the data transmission system includes the terminal according to the foregoing third aspect, and the access network device according to the foregoing fourth aspect; or the data transmission system The terminal according to the above seventh aspect, and the access network device according to the above eighth aspect; or the data transmission system, comprising the terminal according to the above ninth aspect, and the Access network equipment.
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of hardware of an access network device 20 and a terminal 30 according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart 1 of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram 1 of a message format and transmission of a second message according to an embodiment of the present application
  • FIG. 5 is a second schematic flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart 3 of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a second schematic diagram of message format and transmission of a second message according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart 4 of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart 5 of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart 6 of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram 1 of a message format and transmission of a third message according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of grouping of random access resources according to an embodiment of the present application.
  • FIG. 14 is a second schematic diagram of message format and transmission of a third message according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of transmission of a third message and uplink user data according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram 1 of a terminal according to an embodiment of the present disclosure.
  • FIG. 17 is a second schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram 1 of an access network device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram 2 of an access network device according to an embodiment of the present disclosure.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the data transmission system 10 includes an access network device 20 and one or more terminals 30 connected to the access device 20.
  • the access network device 20 may be a device that can communicate with the terminal 30.
  • the access network device 20 can be a base station, a relay station, or an access point, and the like.
  • the base station may be a base transceiver station in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network.
  • BTS which may also be an NB (NodeB) in wideband code division multiple access (WCDMA), or an eNB or an eNodeB (evolutional NodeB) in long term evolution (LTE), or It may be an eNB in the IoT or the NB-IoT, which is not specifically limited in this embodiment of the present application.
  • the access network device 20 may also be a network device in other networks, such as a future 5th generation (5G) mobile communication network or a future evolution of the Public Land Mobile Network (PLMN).
  • 5G 5th generation
  • PLMN Public Land Mobile Network
  • the network device is not specifically limited in this embodiment of the present application.
  • the terminal 30 may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a terminal agent, or a terminal device.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a functional handheld device, a computing device, or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal in a future 5G network, or a terminal in a future evolved PLMN network, etc., are not specifically limited in this embodiment of the present application. .
  • FIG. 2 is a schematic diagram showing the hardware structure of the access network device 20 and the terminal 30 provided by the embodiment of the present application.
  • the terminal 30 includes at least one processor 301, at least one memory 302, and at least one transceiver 303.
  • the terminal 30 may further include an output device 304 and an input device 305.
  • the processor 301, the memory 302, and the transceiver 303 are connected by a bus.
  • the processor 301 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the present application. integrated circuit.
  • the processor 301 may also include a plurality of CPUs, and the processor 301 may be a single-CPU processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data, such as computer program instructions.
  • the memory 302 can be a Read-Only Memory (ROM) or other type of static storage device that can store static information and instructions, a Random Access Memory (RAM), or other types that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • disc storage device including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 302 can exist independently and be coupled to the processor 301 via a bus.
  • the memory 302 can also be integrated with the processor 301.
  • the memory 302 is used to store application code for executing the solution of the present application, and is controlled by the processor 301 for execution.
  • the processor 301 is configured to execute the computer program code stored in the memory 302, thereby implementing the method for data transmission in the embodiment of the present application.
  • the transceiver 303 can use any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • the transceiver 303 includes a transmitter Tx and a receiver Rx.
  • Output device 304 is in communication with processor 301 and can display information in a variety of ways.
  • the output device 304 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • Input device 305 is in communication with processor 301 and can accept user input in a variety of ways.
  • input device 305 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the access network device 20 includes at least one processor 201, at least one memory 202, at least one transceiver 203, and at least one network interface 204.
  • the processor 201, the memory 202, the transceiver 203, and the network interface 204 are connected by a bus.
  • the network interface 204 is configured to connect to a core network device through a link (for example, an S1 interface), or connect to a network interface of other access network devices through a wired or wireless link (for example, an X2 interface) (not shown in the figure)
  • the embodiment of the present application does not specifically limit this.
  • a description of the processor 201, the memory 202, and the transceiver 203 can be referred to the description of the processor 301, the memory 302, and the transceiver 303 in the terminal 30, and details are not described herein again.
  • the data transmission method provided by the embodiment of the present application is described below with reference to the access network device 20 and the terminal 30 shown in FIG. 2, and the data transmission system 10 shown in FIG. 1 is applied to the NB-IoT as an example.
  • the downlink control channel (NPDCCH) command carries a downlink control information (DCI) for the terminal to perform random access.
  • DCI uses the unique identity of the terminal, that is, the Cell Radio Network Temporary Identifier (C-RNTI) to perform scrambling, so only the terminal can detect the NPDCCH command.
  • C-RNTI Cell Radio Network Temporary Identifier
  • Scenario 2 When the terminal receives the paging message sent by the access network device to itself, it knows that the access network device will have data to send to itself, and therefore performs random access.
  • Scenario 3 When the terminal has data to access the network device, or when the terminal needs to connect to the network just after booting, random access is required.
  • a data transmission method is provided in the embodiment of the present application.
  • the interaction between the access network device and a terminal is used as an example, and the following steps S301-S310 are included:
  • the terminal sends a first message to the access network device, where the first message includes a preamble sequence used by the terminal.
  • the resource occupied by the preamble sequence is randomly selected by the terminal or indicated by the access network device. If multiple terminals send the same preamble sequence on the same resource, a collision will occur, which requires a subsequent contention scheme.
  • the access network device receives the first message sent by the terminal.
  • the access network device sends a second message to the terminal, where the second message includes a preamble sequence used by the terminal and physical layer downlink scheduling information of the terminal, which is confirmed by the access network device.
  • the message format of the second message is as shown in FIG. 4, and includes a Media Access Control (MAC) header, n random access responses (RAR), and padding bits, n
  • the RAR may be, for example, RAR1, RAR2, ..., RARn.
  • the MAC header includes n random access preamble index (RAPID) subheaders corresponding to n RARs, and the n RAPID subheads may be, for example, a RAPID subheader 1, a RAPID subheader 2. ..., RAPID subhead n.
  • the RAPID subheader is used to indicate the preamble sequence detected by the access network device.
  • the RAR includes information such as a timing alignment command, an initial uplink resource (UL grant) for transmitting a third message, and a Cell Radio Network Temporary Identifier (C-RNTI).
  • the timing alignment command is used for uplink synchronization between different terminals and access network devices.
  • the second message in the embodiment of the present application includes the preamble sequence used by the terminal and the physical layer downlink scheduling information of the terminal that is confirmed by the access network device. Therefore, the MAC header of the second message shown in FIG. Indicates a RAPID subheader of the preamble sequence used by the terminal, and the n RARs include the RAR corresponding to the first message.
  • the physical layer downlink (DownLink, DL) grant information can be filled in the MAC header, as shown in FIG.
  • the physical layer downlink scheduling information may also be filled in the padding bit or the RAR corresponding to the preamble sequence of the terminal, which is not specifically limited in this embodiment of the present application.
  • the downlink user data may be received by the terminal with the same RA-RNTI; if the physical layer downlink scheduling information is placed in the RAR corresponding to the preamble sequence of the terminal. Then, only the RA-RNTI is the same, and the terminal that sends the preamble sequence that is the preamble sequence used by the terminal can receive the downlink scheduling information of the physical layer.
  • the transmission of the second message is also shown in FIG.
  • the MAC layer of the access network device transmits a MAC protocol data unit (PDU) carrying the second message to the physical layer of the access network device, and the physical layer of the access network device
  • PDU MAC protocol data unit
  • the MAC PDU is filled in the transport block of the physical layer, and then processed by the channel coding, modulation, and the like of the physical layer, and the bearer is transmitted on the Narrowband Physical Downlink Shared Channel (NPDSCH).
  • NPDSCH Narrowband Physical Downlink Shared Channel
  • the access network device also sends downlink control information (DCI) to the terminal, where the DCI is used to schedule the NPDSCH.
  • DCI bearer is transmitted on the NPDCCH.
  • the RAR of the bearer is a reply to the preamble sequence sent on which time resource and frequency resource, and the access network device calculates the scrambling code sequence by using the Random Access Radio Network Temporary Identifier RA-RNTI.
  • the NPDCCH is scrambled, and the RA-RNTI is obtained by the access network device according to the PRACH combining formula (1) of the preamble sequence detected by the bearer:
  • SFN_id is the index of the first radio frame of the designated PRACH resource
  • floor() means rounding down. It can be seen from the formula (1) that if the preamble sequences sent by different terminals use the same time resource, the RA-RNTI is also the same, and the corresponding NPDSCH carrying the RAR is scheduled by the same NPDCCH DCI, and the RAR is in the same Transmission on the NPDSCH, as shown in Figure 4.
  • FIG. 4 is only a transmission diagram of the second message.
  • multiple NPDCCH+NPDSCHs may be required for transmission, which is not specifically limited in this embodiment of the present application.
  • the access network device sends downlink user data on the physical layer resource indicated by the physical layer downlink scheduling information.
  • the physical layer resource in the embodiment of the present application specifically refers to the number of subframes, the position of the subframe, the number of repetitions, the modulation and coding scheme (MCS), and the like. .
  • the downlink user data in step S304 is scrambled by the identifier of the terminal.
  • the downlink user data is scrambled, and the NPDSCH carrying the downlink user data is actually scrambled, which is uniformly described herein, and is not described here.
  • the access network device knows the unique identity of the terminal, the C-RNTI, and the identifier of the terminal that scrambles the downlink user data is the C-RNTI of the terminal. In this case, only the terminal can receive the downlink user data, and other terminals cannot receive the downlink user data.
  • the access network device only knows the non-access stratum (NAS) identifier of the paged terminal carried in the paging message, and does not know that the terminal is in the physical layer.
  • the access layer identifier so the access network device does not know which sequence to use to scramble the downlink user data. If a common RNTI (for example, paging RNTI, Paging-RNTI) is used for scrambling, the terminal that does not want to receive the downlink user data will receive the downlink user data, resulting in a waste of a large amount of power consumption. Therefore, in the embodiment of the present application, the NAS identifier of the terminal is mapped to the access layer identifier of the terminal by using some rule.
  • a common RNTI for example, paging RNTI, Paging-RNTI
  • the mapping rule may be: the last two digits of the NAS identifier of the terminal correspond to the access layer identifier 0, the "01" corresponds to the access layer identifier 1, the "10” corresponds to the access layer identifier 2, and the "11" corresponds to the access.
  • Layer identification 3 The access network device can use the access layer identifier to scramble the downlink user data, and the paged terminal also decodes the downlink user data according to the mapping rule, and can receive the downlink user data. Other terminals cannot receive the downlink user data, which reduces the power consumption of other terminals.
  • the NAS identifier in the embodiment of the present application may specifically include a core network identifier, where the core network identifier may be, for example, an international mobile subscriber identity (International The Mobile Subscriber Identity (IMSI) or the S-temporary mobile subscriber identity (S-TMSI), etc., is not specifically limited in this embodiment of the present application.
  • IMSI International The Mobile Subscriber Identity
  • S-TMSI S-temporary mobile subscriber identity
  • mapping rule in the above example is only one mapping rule that is schematically provided in the embodiment of the present application.
  • the access network device may also map the NAS identifier of the terminal to the access layer identifier of the terminal according to other mapping rules.
  • the embodiment of the present application does not specifically limit this.
  • the terminal receives a second message sent by the access network device.
  • the terminal calculates an RA-RNTI according to the time-frequency resource occupied by the sending preamble sequence. After transmitting the preamble sequence, the terminal uses the RA-RNTI to blindly check whether there is DCI in a RAR window. If the terminal detects DCI, it receives the NPDSCH channel according to the DCI, thereby obtaining the second message; if the terminal does not detect DCI means that the second message has not been received.
  • the blind detection is performed on a common search space (CSS) with a frequency domain of 180 kHz.
  • the resources of the common search space are through a system information Narrow band (System Information Block Narrow band, SIB-NB) is notified to the terminal.
  • SIB-NB System Information Block Narrow band
  • the terminal receives the downlink user data sent by the access network device on the physical layer resource indicated by the physical layer downlink scheduling information.
  • the transmission deadline of the downlink user data in the embodiment of the present application does not exceed the transmission time of the third message, and is uniformly described herein, and details are not described herein again.
  • the terminal sends a third message to the access network device, where the third message includes an identifier of the terminal.
  • the terminal after the terminal successfully receives its own RAR in the RAR window, the terminal sends a third message in the random access process, such as a radio resource, to the access network device through the NPUSCH in a certain subframe after receiving the RAR.
  • Control Radio Resource Control, RRC
  • the third message is scrambled according to the temporary C-RNTI included in the RAR, and includes the identifier of the terminal in the cell for contention resolution.
  • the identifier of the terminal included in the third message is not specifically limited in this embodiment.
  • the identifier of the terminal included in the third message is the C-RNTI of the terminal; in the scenario 2, the identifier of the terminal included in the third message is the C-RNTI or S- of the terminal.
  • the embodiment of the present application does not specifically limit this.
  • the access network device receives the third message sent by the terminal.
  • step 301 in a contention random access procedure, there may be cases where multiple terminals transmit the same preamble sequence on the same resource. In this case, different terminals will receive the same RAR, thereby obtaining the same temporary C-RNTI, and thus transmitting the third message on the same time resource and frequency resource according to the same temporary C-RNTI, thereby causing the third If the access network device cannot successfully decode the third message, the terminal needs to retransmit the third message. After the terminal reaches the maximum number of retransmissions, the terminal starts a new random access procedure. If the access network device can successfully decode the third message, step 309 is performed.
  • the access network device sends a fourth message to the terminal, where the fourth message includes contention resolution information indicating that the terminal access is successful.
  • the terminal receives a fourth message sent by the access network device.
  • steps S311 and S312 may be further included:
  • the access network device sends a command to the terminal indicating the preamble sequence used by the terminal.
  • the terminal receives a preamble sequence sent by the access network device and indicates the terminal uses.
  • the preamble sequence used by the terminal in step S301 may be indicated to the terminal by the access network device.
  • the access network device only performs the step S304 after detecting the preamble sequence, that is, the downlink user data is sent on the physical layer resource indicated by the physical layer downlink scheduling information, thereby reducing the probability that the access network device blindly sends the downlink user data.
  • the blind transmission in the embodiment of the present application means that the downlink user data is sent to the terminal, regardless of whether the access network device detects the preamble sequence of the terminal, and is uniformly described herein, and details are not described herein.
  • the command indicating the preamble sequence used by the terminal is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the command of the preamble sequence is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the command of the preamble sequence is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the command of the preamble sequence is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the command of the preamble sequence is included in the NPDCCH command
  • the command indicating the preamble sequence used by the terminal is included in the paging message, and although the paging message is not scrambled by using the identifier of the terminal, the command indicating the preamble sequence used by the terminal may be It is received by other terminals, and the preamble sequence used by the terminal may be used by other terminals.
  • step S304 is performed, that is, the physical layer resource indicated by the physical layer downlink scheduling information is sent.
  • the downlink user data also reduces the probability that the access network device blindly transmits downlink user data.
  • the data transmission method provided by the embodiment of the present application may transmit downlink user data between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process. Therefore, the data transmission delay can be reduced.
  • the operations of the access network devices in the foregoing S311, S302, S303, S304, S308, and S309 can be performed by the processor 201 in the access network device 20 shown in FIG. 2 calling the computer program code stored in the memory 202.
  • the embodiment of the present application does not impose any limitation on this.
  • the data transmission method provided by the embodiment of the present application takes the interaction between the access network device and a terminal as an example, and includes the following steps S501-S510:
  • the access network device sends a second message to the terminal, where the second message includes a preamble sequence used by the terminal confirmed by the access network device.
  • the second message shown in FIG. 4 includes the physical layer downlink scheduling information of the terminal, and the second message in the embodiment of the present application does not include the physical layer downlink scheduling information of the terminal.
  • the access network device sends physical layer downlink scheduling information of the terminal to the terminal.
  • the physical layer downlink scheduling information in step S504 is scrambled by the identifier of the terminal.
  • the physical layer downlink scheduling information is usually transmitted on the NPDCCH, the physical layer downlink scheduling information is scrambled, and the NPDCCH carrying the physical layer downlink scheduling information is actually scrambled, and unified. The description will not be repeated below.
  • the access network device knows the unique identity of the terminal, the C-RNTI, and the identifier of the terminal that scrambles the physical layer downlink scheduling information is the C-RNTI of the terminal. In this case, only the terminal can receive the downlink scheduling information of the physical layer, and other terminals cannot receive the downlink scheduling information of the physical layer.
  • the access network device only knows the NAS identifier of the paged terminal carried in the paging message, and does not know the access layer identifier of the terminal at the physical layer, so the access network The device does not know which sequence to use to scramble the physical layer downlink scheduling information. If a common RNTI (for example, paging RNTI, Paging-RNTI) is used for scrambling, the terminal that does not want to receive the downlink scheduling information of the physical layer will receive the downlink scheduling information of the physical layer, resulting in a waste of a large amount of power consumption. Therefore, in the embodiment of the present application, the NAS identifier of the terminal is mapped to the access layer identifier of the terminal by using some rule.
  • a common RNTI for example, paging RNTI, Paging-RNTI
  • the mapping rule may be: the last two digits of the NAS identifier of the terminal correspond to the access layer identifier 0, the "01" corresponds to the access layer identifier 1, the "10” corresponds to the access layer identifier 2, and the "11" corresponds to the access.
  • Layer identification 3 The access network device can use the access layer identifier to scramble the physical layer downlink scheduling information, and the paged terminal also decodes the DL Grant by using the corresponding sequence according to the mapping rule, and can receive the physical layer downlink. Scheduling information, while other terminals cannot receive downlink scheduling information of the physical layer, reducing power consumption of other terminals.
  • the NAS identifier in the embodiment of the present application may specifically include a core network identifier, and the core network identifier may be, for example, an IMSI or an S-TMSI.
  • mapping rule in the above example is only one mapping rule that is schematically provided in the embodiment of the present application.
  • the access network device may also map the NAS identifier of the terminal to the access layer identifier of the terminal according to other mapping rules.
  • the embodiment of the present application does not specifically limit this.
  • the access network device sends downlink user data on the physical layer resource indicated by the physical layer downlink scheduling information.
  • step S505 For the related implementation of step S505, refer to step S304, and details are not described herein again.
  • the terminal receives the second message sent by the access network device.
  • step S506 For the related implementation of step S506, reference may be made to step S305, and details are not described herein again.
  • the terminal receives physical layer downlink scheduling information sent by the access network device.
  • the terminal may receive the physical layer downlink scheduling information sent by the access network device by using the second message, that is, the blind layer detection mode is used to detect the physical layer downlink scheduling information, and the application is implemented.
  • the blind detection physical layer downlink scheduling letter The information may be performed on a time period after the RAR window, or may be performed on the time period in which the RAR window is located after receiving the second message, which is not specifically limited in this embodiment of the present application.
  • the terminal receives the downlink user data sent by the access network device on the physical layer resource indicated by the physical layer downlink scheduling information.
  • step S508 For the related implementation of step S508, refer to step S306, and details are not described herein again.
  • the transmission deadline of the downlink user data in the embodiment of the present application does not exceed the transmission time of the third message, and is uniformly described herein, and details are not described herein again.
  • the second message in the embodiment of the present application may further include indication information that is downlink user data transmission between the second message and the third message, so that the terminal continues to be in the first after receiving the second message.
  • the physical layer downlink scheduling information and the downlink user data of the terminal are received between the second message and the third message, which is not specifically limited in this embodiment of the present application.
  • steps S514 and S515 may also be included:
  • the access network device sends a command to the terminal indicating the preamble sequence used by the terminal.
  • the terminal receives a preamble sequence sent by the access network device and indicates the terminal uses.
  • the preamble sequence used by the terminal in step S501 may be indicated to the terminal by the access network device.
  • the access network device only performs the step S504 after detecting the preamble sequence, that is, the physical layer downlink scheduling information of the terminal is sent to the terminal, and the downlink user data is sent on the physical layer resource indicated by the physical layer downlink scheduling information, thereby reducing The probability that the access network device blindly sends downlink user data.
  • the command indicating the preamble sequence used by the terminal is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the command of the preamble sequence is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the command of the preamble sequence is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the command of the preamble sequence is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the command of the preamble sequence is included in the NPDCCH command
  • the command indicating the preamble sequence used by the terminal is included in the paging message, and although the paging message is not scrambled by using the identifier of the terminal, the command indicating the preamble sequence used by the terminal may be Received by other terminals, and the preamble sequence used by the terminal may be used by other terminals, but the access network device only performs the step S504 after detecting the preamble sequence, that is, the physical layer downlink scheduling information of the terminal is sent to the terminal, and then The downlink user data is sent on the physical layer resource indicated by the physical layer downlink scheduling information, which also reduces the probability that the access network device blindly sends downlink user data.
  • the data transmission method provided by the embodiment of the present application may transmit downlink user data between the second message and the third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process. Therefore, the data transmission delay can be reduced.
  • the data transmission method provided by the embodiment of the present application is an example of the interaction between the access network device and a terminal, and the following steps S601-S608 are included:
  • the access network device sends a second message to the terminal, where the second message includes a preamble sequence used by the terminal and a downlink user data of the terminal that are confirmed by the access network device.
  • the message format of the second message is as shown in FIG. 7, and includes a MAC header, n RARs, and padding bits.
  • the n RARs may be, for example, RAR1, RAR2, ..., RARn.
  • the MAC header in the embodiment shown in FIG. 4 includes physical layer downlink scheduling information of the terminal
  • the MAC header in the embodiment shown in FIG. 7 includes the terminal. Downstream user data.
  • the downlink user data of the terminal may also be filled in the padding bit or the RAR corresponding to the preamble sequence of the terminal, which is not specifically limited in this embodiment of the present application. If the downlink user data is placed in the MAC header or the padding bit, the downlink user data can be received by the same terminal as the RA-RNTI; if the RAR corresponding to the preamble sequence of the terminal is placed, only the RA-RNTI is the same. And the terminal that sends the preamble sequence that is the preamble sequence used by the terminal can receive the downlink user data.
  • the transmission of the second message is also shown in FIG. 7.
  • FIG. 7 For related description, reference may be made to the description of the transmission of the second message shown in FIG. 4, and details are not described herein again.
  • the terminal receives the second message sent by the access network device.
  • step S604 For the related implementation of step S604, refer to step S305, and details are not described herein again.
  • the access network device sends a fourth message to the terminal, where the fourth message includes contention resolution information indicating that the terminal access is successful, and information indicating that the downlink user data belongs to the terminal.
  • the fourth message sent by the access network device to the terminal may include information used to indicate that the downlink user data does not belong to the terminal or belongs to another terminal.
  • the terminal that fails the competition may discard the downlink user data according to the indication information, which is not specifically limited in this embodiment of the present application.
  • the terminal receives a fourth message sent by the access network device.
  • steps S609 and S610 may be further included:
  • the access network device sends a command to the terminal indicating the preamble sequence used by the terminal.
  • the terminal receives a preamble sequence sent by the access network device and indicates the terminal uses.
  • the preamble sequence used by the terminal in step S601 may be indicated to the terminal by the access network device.
  • the access network device sends the downlink user data to the terminal only after detecting the preamble sequence, that is, the second message in step S603 includes the downlink user data of the terminal, thereby reducing the probability that the access network device blindly transmits the downlink user data. .
  • the command indicating the preamble sequence used by the terminal is included in the NPDCCH command, and the NPDCCH command is scrambled by using the C-RNTI of the terminal, so that only the terminal can receive the indication that the terminal is used.
  • the terminal uses the preamble sequence to perform random access, and the access network device sends the downlink user data to the terminal only after detecting the preamble sequence, that is, the second message in step S603 includes the downlink user data of the terminal, thereby reducing the downlink user data.
  • the command indicating the preamble sequence used by the terminal is included in the paging message, and although the paging message is not scrambled by using the identifier of the terminal, the command indicating the preamble sequence used by the terminal may be Received by other terminals, and the preamble sequence used by the terminal may be used by other terminals, but the access network device only sends the downlink user data to the terminal after detecting the preamble sequence, that is, the second message in step S603 is included.
  • the downlink user data of the terminal also reduces the probability that the access network device blindly transmits downlink user data.
  • the data transmission method provided by the embodiment of the present application may transmit downlink user data in the second message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the action of the terminal in the foregoing S610, S601, S604, S605, and S608 can be performed by the processor 301 of the terminal 30 shown in FIG. 2 to call the computer program code stored in the memory 302. .
  • the operations of the access network devices in the foregoing S609, S602, S603, S606, and S607 may be performed by the processor 201 in the access network device 20 shown in FIG. 2 by calling the computer program code stored in the memory 202.
  • the embodiment does not impose any limitation on this.
  • the data transmission method provided by the embodiment of the present application is an example of the interaction between the access network device and a terminal, and the following steps S801-S808 are included:
  • the access network device sends a fourth message to the terminal, where the fourth message is sent.
  • the contention resolution information indicating that the terminal access is successful and the downlink user data of the terminal are included.
  • the fourth message in step S807 may be scrambled by using the C-RNTI of the terminal, or may be scrambled by using the temporary C-RNTI, which is not specifically limited in this embodiment of the present application. If the fourth message is scrambled by using the temporary C-RNTI, the other terminal that sends the preamble sequence for the preamble sequence used by the terminal may also receive the downlink user data, and finally, only the terminal that successfully competes is obtained. The downlink user data.
  • the terminal receives a fourth message sent by the access network device.
  • the data transmission method provided by the embodiment of the present application may transmit downlink user data in the fourth message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the operation of the access network device in the foregoing S802, S803, S806, and S807 may be performed by the processor 201 in the access network device 20 shown in FIG. 2, by using the computer program code stored in the memory 202. There are no restrictions on this.
  • the data transmission method provided by the embodiment of the present application is an example of the interaction between the access network device and a terminal, including the following steps S901-S910:
  • S901-S906, the same as S801-S806, for details, refer to the embodiment shown in FIG. 8, and details are not described herein again.
  • the access network device sends a fourth message to the terminal, where the fourth message includes contention resolution information indicating that the terminal access is successful, and physical layer downlink scheduling information of the terminal.
  • the access network device sends downlink user data on the physical layer resource indicated by the physical layer downlink scheduling information.
  • the downlink user data in step S908 can be scrambled by using the C-RNTI of the terminal, because the access network device knows the unique identifier C-RNTI of the terminal at this time.
  • the terminal receives a fourth message sent by the access network device.
  • S910 The terminal receives downlink user data on a physical layer resource indicated by the physical layer downlink scheduling information.
  • the data transmission method provided by the embodiment of the present application may transmit downlink user data in the fourth message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the embodiment of the present application carries the physical layer downlink scheduling information of the terminal in the fourth message, and the physical layer resource indicated by the access network device in the physical layer downlink scheduling information after the fourth message
  • the downlink user data is sent on, so that if the fourth message is temporarily scrambled by the temporary C-RNTI of the terminal, the downlink user data in the fourth message may be acquired by the other terminal of the preamble sequence used by the terminal. This saves power.
  • the actions of the terminals in the foregoing S901, S904, S905, S909, and S910 can be performed by the processor 301 of the terminal 30 shown in FIG. 2 to call the computer program code stored in the memory 302. .
  • the operations of the access network devices in the foregoing S902, S903, S906, S907, and S908 can be performed by the processor 201 in the access network device 20 shown in FIG. 2, by calling the computer program code stored in the memory 202.
  • the embodiment does not impose any limitation on this.
  • a data transmission method taken the interaction between an access network device and a terminal as an example, and includes the following steps S1001-S1008:
  • the access network device sends a second message to the terminal, where the second message includes a preamble sequence used by the terminal and an entity layer uplink scheduling information of the terminal confirmed by the access network device.
  • the second message shown in FIG. 4 includes the physical layer downlink scheduling information of the terminal, and the second message in the embodiment of the present application does not include the physical layer downlink scheduling information of the terminal.
  • the terminal receives the second message sent by the access network device.
  • step S1004 For the related implementation of step S1004, reference may be made to step S305, and details are not described herein again.
  • the terminal In response to the second message, the terminal sends a third message to the access network device, where the third message includes an identifier of the terminal and uplink user data of the terminal.
  • the uplink user data is sent on a physical layer resource indicated by the physical layer uplink scheduling information.
  • the terminal after the terminal successfully receives its own RAR in the RAR window, the terminal sends a third message in the random access process, such as an RRC link, to the access network device through the NPUSCH in a certain subframe after receiving the RAR. Request or track area updates, etc.
  • the third message is scrambled according to the temporary C-RNTI included in the RAR, and includes the identifier of the terminal in the local cell and the uplink user data of the terminal, and is used for contention resolution.
  • the identifier of the terminal included in the third message is not specifically limited in this embodiment.
  • the identifier of the terminal included in the third message is the C-RNTI of the terminal; in the scenario 2, the identifier of the terminal included in the third message is the C-RNTI or S- of the terminal.
  • the embodiment of the present application does not specifically limit this.
  • FIG. 11 is a schematic diagram of transmission of a third message in the embodiment of the present application.
  • the MAC layer of the terminal transmits the MAC PDU carrying the third message to the physical layer of the terminal, and the physical layer of the terminal fills the MAC PDU into the transport block of the physical layer, and then performs channel coding through the physical layer.
  • Processing, such as modulation, is carried on a narrowband Physical Uplink Shared Channel (NPUSCH).
  • NPUSCH narrowband Physical Uplink Shared Channel
  • the transport block size (TBS) of the third message in the existing random access process is fixed and is 88 bits.
  • the third block is transmitted in the third message. Upstream user data, so the TBS is to be based on the second message
  • the physical layer uplink scheduling information is adjusted.
  • the TBS is not specifically limited in this embodiment.
  • S1006 The access network device receives the third message sent by the terminal.
  • step S1006 For the related implementation of step S1006, reference may be made to step S308, and details are not described herein again.
  • the data transmission method provided by the embodiment of the present application may transmit uplink user data in a third message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process, thereby reducing data transmission. Delay.
  • the operation of the terminal in the foregoing S1001, S1004, S1005, and S1008 can be performed by the processor 301 of the terminal 30 shown in FIG. 2 to call the computer program code stored in the memory 302.
  • the embodiment of the present application does not impose any limitation.
  • the operation of the access network device in the foregoing S1002, S1003, S1006, and S1007 may be performed by the processor 201 in the access network device 20 shown in FIG. 2, by using the computer program code stored in the memory 202. There are no restrictions on this.
  • a data transmission method is provided in the embodiment of the present application.
  • the interaction between the access network device and a terminal is used as an example, and the following steps S1201-S1210 are included:
  • the terminal In response to the second message, the terminal sends a third message to the access network device, where the third message includes an identifier of the terminal.
  • step S1205 For the related implementation of step S1205, reference may be made to step S307, and details are not described herein again.
  • the third message further includes third indication information, where the third indication information indicates that uplink user data transmission is performed between the third message and the fourth message, so that the access network device is After receiving the third message, the uplink user data of the terminal is continuously received between the third message and the fourth message, which is not specifically limited in this embodiment of the present application.
  • S1206 The terminal sends uplink user data on the physical resource indicated by the physical layer uplink scheduling information.
  • S1207 The access network device receives the third message sent by the terminal.
  • step S1207 For the related implementation of step S1207, refer to step S308, and details are not described herein again.
  • the access network device receives the uplink user data on the physical resource indicated by the physical layer uplink scheduling information.
  • the transmission deadline of the uplink user data in the embodiment of the present application does not exceed the transmission time of the fourth message, and is uniformly described herein, and details are not described herein again.
  • the data transmission method provided by the embodiment of the present application may transmit uplink user data between the third message and the fourth message in the random access process, so that at least a part of user data transmission or scheduling may be performed in advance in the random access process. Therefore, the data transmission delay can be reduced.
  • the actions of the terminals in the foregoing S1201, S1204, S1205, S1206, and S1210 may be It is executed by the processor 301 of the terminal 30 shown in FIG. 2 to call the computer program code stored in the memory 302.
  • This embodiment of the present application does not impose any limitation.
  • the operations of the access network devices in the foregoing S1202, S1203, S1207, S1207, and S1209 may be performed by the processor 201 in the access network device 20 shown in FIG. 2 by calling the computer program code stored in the memory 202.
  • the embodiment does not impose any limitation on this.
  • the first message further includes first indication information, where the first indication information indicates that the terminal supports uplink user data transmission or indication to be in a random access procedure.
  • the physical layer uplink scheduling information in the second message is determined by the access network device according to the first indication information. That is to say, the number of bits occupied by the physical layer uplink scheduling information (UL Grant) in the embodiment of the present application is variable, and can be increased from 15 bits to X bits in FIG. 4, which is not specifically described in this embodiment of the present application. limited. Where X is a positive integer greater than 15.
  • the first indication information indicates that the terminal supports the uplink user data transmission in the random access process
  • the first indication message is determined by the location of the random access resource used by the first message, where The location of the random access resource used by the first message can be used to indicate whether the terminal supports uplink user data transmission in a random access procedure.
  • the embodiment of the present application further considers the backward compatibility problem, and groups the random access resources used by each terminal in the system.
  • a terminal such as a Rel-15NB-IoT terminal
  • the terminal supports uplink user data transmission in the random access process; otherwise, uplink user data transmission in the random access process is not supported.
  • FIG. 13(b) for a terminal supporting uplink user data transmission in a random access procedure, such as a Rel-15NB-IoT terminal, when it uses the first random access resource, it indicates the terminal.
  • the first random access resource is dedicated to uplink user data transmission in a random access procedure, and supports uplink user data in a random access procedure.
  • the transmitted terminal uses a relatively independent resource, that is, the first random access resource, and is not affected by a terminal (such as a Rel-13 or 14NB-IoT terminal) that does not support uplink user data transmission in the random access process. However, if no terminal supports uplink user data transmission during the random access process, resources are wasted.
  • the first indication information indicates the size of the uplink user data to be transmitted, and the first indication message is determined by the location of the random access resource used by the first message, where the first message is used.
  • the location of the random access resource is used to indicate that the size of the uplink user data exceeds a preset threshold.
  • the embodiment of the present application further considers the uplink user data size problem, and groups the random access resources used by each terminal in the system.
  • the random access resource includes a first random access resource and a second random access resource.
  • the size of the uplink user data to be transmitted by the terminal exceeds a preset threshold; otherwise, the size of the uplink user data to be transmitted by the terminal is not Exceeded the preset threshold.
  • the physical layer uplink scheduling information includes the first physical layer resource and the second physical layer resource; the first physical layer resource is used to send the uplink user data, and the second physical layer resource is used to send the third user in the third message. Other information outside of the data.
  • the second message further includes second indication information, where the second indication information is used to indicate that the first physical layer resource and the second physical layer resource are discontinuous.
  • the second indication information is used to indicate that the first physical layer resource and the second physical layer resource are discontinuous.
  • the transmission indication of the third message may also be as shown in FIG. Wherein, in FIG. 14, the first physical layer resource and the second physical layer resource are discontinuous.
  • the MAC layer of the terminal transmits a MAC PDU carrying other information except the uplink user data in the third message to the physical layer of the terminal, and the MAC layer is filled by the physical layer of the terminal to the transport block of the physical layer. Then, through the physical layer channel coding, modulation and other processing, the bearer is transmitted on the NPUSCH1.
  • the MAC layer of the terminal transmits the MAC PDU carrying the uplink user data in the third message to the physical layer of the terminal, and the physical layer of the terminal fills the MAC PDU into the transport block of the physical layer, and then performs channel coding and modulation of the physical layer.
  • the bearer is sent on NPUSCH2.
  • the access network device can separately decode the uplink user data in the third message and other information except the uplink user data.
  • the transmission of the third message and the uplink user data may also be as shown in FIG.
  • the first physical layer resource and the second physical layer resource are discontinuous.
  • the MAC layer of the terminal transmits the MAC PDU carrying the third message to the physical layer of the terminal, and the physical layer of the terminal fills the MAC PDU into the transport block of the physical layer, and then performs channel coding through the physical layer. Processing such as modulation, and the bearer is transmitted on the NPUSCH1.
  • the MAC layer of the terminal transmits the MAC PDU carrying the uplink user data to the physical layer of the terminal, and the MAC PDU of the terminal is filled into the transport block of the physical layer by the physical layer of the terminal, and then processed by the channel coding, modulation, etc. of the physical layer. Sent on NPUSCH2. In this way, the access network device can separately decode the third message and the uplink user data.
  • the solution provided by the embodiment of the present application is introduced from the perspective of the terminal interacting with the access network device.
  • the foregoing access network devices and terminals include corresponding hardware structures or software modules for performing respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiments of the present application may divide the function modules of the access network device and the terminal according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the embodiment of the present application The division of modules in the middle is schematic, only for a logical function division, and there may be another division manner in actual implementation.
  • FIG. 16 shows a possible structural diagram of the terminal 160 involved in the above embodiment.
  • the terminal 160 includes a transmitting module 1601 and a receiving module 1602.
  • the sending module 1601 is configured to support the terminal 160 to perform steps S301 and S307 in FIG. 3; the receiving module 1602 is configured to support the terminal 160 to perform steps S305, S306, and S310 in FIG. 3. Optionally, the receiving module 1602 is further configured to support the terminal 160 to perform step S312 in FIG. 3.
  • the transmitting module 1601 is configured to support the terminal 160 to perform steps S501 and S509 in FIG. 5; the receiving module 1602 is configured to support the terminal 160 to perform steps S506, S507, S508, and S512 in FIG.
  • the receiving module 1602 is further configured to support the terminal 160 to perform step S514 in FIG. 5.
  • the transmitting module 1601 is configured to support the terminal 160 to perform steps S601 and S605 in FIG. 6; the receiving module 1602 is configured to support the terminal 160 to perform steps S604 and S608 in FIG. 6.
  • the receiving module 1602 is further configured to support the terminal 160 to perform step S610 in FIG. 6.
  • the transmitting module 1601 is configured to support the terminal 160 to perform steps S801 and S805 in FIG. 8; the receiving module 1602 is configured to support the terminal 160 to perform steps S804 and S808 in FIG.
  • the transmitting module 1601 is configured to support the terminal 160 to perform steps S901 and S905 in FIG. 9; the receiving module 1602 is configured to support the terminal 160 to perform steps S904, S909, and S910 in FIG.
  • the transmitting module 1601 is configured to support the terminal 160 to perform steps S1001 and S1005 in FIG. 10; the receiving module 1602 is configured to support the terminal 160 to perform steps S1004 and S1008 in FIG.
  • the transmitting module 1601 is configured to support the terminal 160 to perform steps S1201, S1205, and S1206 in the figure;
  • the receiving module 1602 is configured to support the terminal 160 to perform steps S1204 and S1210 in the figure.
  • FIG. 17 shows a possible structural diagram of the terminal 170 involved in the above embodiment.
  • the terminal 170 includes a communication module 1701.
  • the communication module 1701 is configured to perform the operations of the sending module 1601 and the receiving module 1602 in FIG. 16 .
  • the communication module 1701 is configured to perform the operations of the sending module 1601 and the receiving module 1602 in FIG. 16 .
  • the terminal is presented in the form of dividing each functional module corresponding to each function, or the terminal is presented in a form of dividing each functional module in an integrated manner.
  • a "module” herein may include an Application-Specific Integrated Circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, or other device that can provide the above functions.
  • ASIC Application-Specific Integrated Circuit
  • terminal 160 or terminal 170 may take the form of terminal 30 shown in FIG.
  • the transmitting module 1601 and the receiving module 1602 in FIG. 16 can pass FIG. 2
  • the processor 301 and the memory 302 in the terminal 30 are implemented.
  • the sending module 1601 and the receiving module 1602 can be executed by calling the application code stored in the memory 302 by the processor 301, which is not limited in this embodiment.
  • the communication module 1701 in FIG. 17 may be implemented by the processor 301 and the memory 302 in the terminal 30 of FIG. 2.
  • the communication module 1701 may invoke the application stored in the memory 302 by the processor 301.
  • the code is executed, and the embodiment of the present application does not impose any limitation on this.
  • the terminal provided by the embodiment of the present application can be used to perform the foregoing data transmission method. Therefore, the technical effects of the present invention can be referred to the foregoing method embodiments.
  • FIG. 18 shows a possible structural diagram of the access network device 180 involved in the above embodiment.
  • the access network device 180 includes a sending module 1801 and a receiving module 1802.
  • the sending module 1801 is configured to support the access network device 180 to perform steps S303, S304, and S309 in FIG. 3, and the receiving module 1802 is configured to support the access network device 180 to perform steps S302 and S308 in FIG. Optionally, the sending module 1801 is further configured to support the access network device 180 to perform step S311 in FIG. 3.
  • the sending module 1801 is configured to support the access network device 180 to perform steps S503, S504, S505, and S511 in FIG. 5, and the receiving module 1802 is configured to support the access network device 180 to perform steps S502 and S510 in FIG.
  • the sending module 1801 is further configured to support the access network device 180 to perform step S513 in FIG. 5.
  • the sending module 1801 is configured to support the access network device 180 to perform steps S603 and S607 in FIG. 6, and the receiving module 1802 is configured to support the access network device 180 to perform steps S602 and S606 in FIG. 6.
  • the sending module 1801 is further configured to support the access network device 180 to perform step S609 in FIG. 6.
  • the sending module 1801 is configured to support the access network device 180 to perform steps S803 and S807 in FIG. 8
  • the receiving module 1802 is configured to support the access network device 180 to perform steps S802 and S806 in FIG.
  • the sending module 1801 is configured to support the access network device 180 to perform steps S903, S907, and S908 in FIG. 9, and the receiving module 1802 is configured to support the access network device 180 to perform steps S902 and S906 in FIG.
  • the sending module 1801 is configured to support the access network device 180 to perform steps S1003 and S1007 in FIG. 10
  • the receiving module 1802 is configured to support the access network device 180 to perform steps S1002 and S1006 in FIG.
  • the sending module 1801 is configured to support the access network device 180 to perform steps S1203 and S1209 in FIG. 12
  • the receiving module 1802 is configured to support the access network device 180 to perform steps S1202, S1207, and S1208 in FIG.
  • FIG. 19 shows a possible structural diagram of the access network device 190 involved in the above embodiment.
  • the access network device 190 includes a communication module 1901.
  • the communication module 1901 is configured to perform the operations of the sending module 1801 and the receiving module 1802 in FIG. 18. For details, refer to the embodiment shown in FIG. Let me repeat.
  • the access network device is presented in the form of dividing each functional module corresponding to each function, or the access network device is presented in the form of dividing each functional module in an integrated manner.
  • a "module” herein may include an Application-Specific Integrated Circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, or other device that can provide the above functions.
  • ASIC Application-Specific Integrated Circuit
  • access network device 180 or access network device 190 may take the form of access network device 20 shown in FIG.
  • the transmitting module 1801 and the receiving module 1802 in FIG. 18 can be implemented by the processor 201 and the memory 202 in the access network device 20 of FIG.
  • the sending module 1801 and the receiving module 1802 can be executed by calling the application code stored in the memory 202 by the processor 201, which is not limited in this embodiment.
  • the communication module 1901 in FIG. 19 can be implemented by the processor 201 and the memory 202 in the access network device 20 of FIG. 2.
  • the communication module 1901 can be stored in the memory 202 by the processor 201.
  • the application code is executed, and the embodiment of the present application does not impose any limitation on this.
  • the access network device provided by the embodiment of the present application can be used to perform the foregoing data transmission method. Therefore, the technical solutions that can be obtained by reference to the foregoing method embodiments are not described herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Abstract

本申请实施例提供数据传输方法、设备及系统,用于降低数据传输时延。该方法包括:向接入网设备发送第一消息,该第一消息包括终端使用的前导序列;接收接入网设备发送的第二消息,该第二消息包括由接入网设备确认的该前导序列;响应于该第二消息,向接入网设备发送第三消息,该第三消息包括该终端的标识;接收接入网设备发送的第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息;其中,该第二消息或第四消息中的任一项还包括该终端的物理层下行调度信息或下行用户数据;或者,在接收该第二消息后进一步接收接入网设备发送的该终端的物理层下行调度信息。

Description

数据传输方法、设备及系统 技术领域
本申请涉及通信技术领域,尤其涉及数据传输方法、设备及系统。
背景技术
物联网(Internet of things,IoT)是一种面向机器间通信(Machine-Type Communications,MTC)的网络,未来主要应用在智能抄表、医疗检测监控、物流检测、工业检测监控、汽车联网、智能社区以及可穿戴设备等领域中。由于其应用场景多种多样,包括从室外到室内、从地上到地下等,因而对物联网的设计提出了很多特殊的要求,比如覆盖增强、支持大量低速率设备、非常低的成本和低能量消耗等要求。
为了满足这些特殊需求,移动通信标准化组织第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在全球移动通信系统(Global System for Mobile Communication,GSM)或增强型数据速率GSM演进技术(Enhanced Data Rate for GSM Evolution,EDGE)无线接入网(GSM/EDGE Radio Access Network,GERAN)#62次全会上通过了一个新的研究课题,用来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且在无线接入网络(Radio Access Network,RAN)#69次会议上立项为窄带(Narrow Band,NB)-IoT课题。
在目前NB-IoT课题研究中,NB-IoT终端在连接入网络之前,先要通过物理随机接入信道(Physical Random access channel,PRACH)完成随机接入过程,进入连接态之后才能和网络进行正常的数据通信。然而,在版本(Release,Rel)-13或14协议中,NB-IoT终端完成随机接入过程的时间太长,造成了数据传输时延的增大。因此如何降低数据传输时延,成为Rel-15协议亟待解决的问题。
发明内容
本申请的实施例提供数据传输方法、设备及系统,用于降低数据传输时延。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种数据传输方法,该方法包括:向接入网设备发送第一消息,该第一消息包括终端使用的前导序列;接收接入网设备发送的第二消息,该第二消息包括由接入网设备确认的该前导序列;响应于该第二消息,向接入网设备发送第三消息,该第三消息包括该终端的标识;接收接入网设备发送的第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息;其中,该第二消息或第四消息中的任一项还包括该终端的物理层下行调度信息或下行用户数据;或者,在接收该第二消息后进一步接收接入网设备发送的该终端的物理层下行调度信息。基于该方案,可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
在一种可能的设计中,该第二消息还包括该终端的物理层下行调度信息;在接收该第二消息后,该方法还包括:在该物理层下行调度信息所指示的物理层资源上接收该接入网设备发送的下行用户数据。基于该方案,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,本申请实施例中的物理层资源,具体是指子帧个数、子帧的位置、重复次数、调制编码方案MCS等,本申请实施例对此不作具体限定。
在一种可能的设计中,在接收该终端的物理层下行调度信息后,该方法还包括:在该物理层下行调度信息所指示的物理层资源上接收该接入网设备发送的下行用户数据。基于该方案,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,该第二消息还包括用于指示在该第二消息和该第三消息之间有下行用户数据传输的指示信息。这样,终端在接收到第二消息后,继续在第二消息和第三消息之间接收该终端的物理层下行调度信息和下行用户数据。
可选的,该物理层下行调度信息通过该终端的标识进行加扰。这样,只有该终端能收到该物理层下行调度信息,而其它终端则不能收到该物理层下行调度信息,降低其它终端的功耗。
可选的,在上述可能的设计中,下行用户数据通过该终端的标识进行加扰。这样,只有该终端能收到该下行用户数据,而其它终端则不能收到该下行用户数据,降低其它终端的功耗。
可选的,在上述可能的设计中,该终端的标识包括该终端的小区无线网络临时标识C-RNTI、或者该终端的标识包括由该终端的非接入层NAS标识所映射成的接入层标识。
在一种可能的设计中,该第二消息还包括下行用户数据,该第四消息还包括用于指示该下行用户数据属于该终端的信息。基于该方案,可以在随机接入过程中的第二消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,在上述可能的设计中,在发送该第一消息前,该方法还包括:接收该接入网设备发送的指示该前导序列的命令。也就是说,该终端使用的前导序列可以是由接入网设备指示给该终端的。该接入网设备只有检测到该前导序列才会在物理层下行调度信息指示的物理层资源上发送下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。
在一种可能的设计中,该第四消息还包括该终端的物理层下行调度信息;在接收该第四消息后,该方法还包括:在该物理层下行调度信息所指示的物理层资源上接收该接入网设备发送的下行用户数据。基于该方案,可以在随机接入过程中的第四消息中传输终端的物理层下行调度信息,进而在第四消息后传输下行用户数据,使得可以在随机接入过程中提前执行至少一部 分用户数据传输或调度,因此可以降低数据传输时延。
在一种可能的设计中,该第四消息还包括下行用户数据。基于该方案,可以在随机接入过程中的第四消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
第二方面,提供一种数据传输方法,该方法包括:接收终端发送的第一消息,该第一消息包括该终端使用的前导序列;响应于该第一消息,向终端发送第二消息,该第二消息包括由接入网设备确认的该前导序列;接收终端发送的第三消息,该第三消息包括该终端的标识;响应于该第三消息,向终端发送第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息;其中,该第二消息或第四消息中的任一项还包括该终端的物理层下行调度信息或下行用户数据;或者,在发送该第二消息后进一步发送该终端发送的该终端的物理层下行调度信息。基于该方案,可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
在一种可能的设计中,该第二消息还包括该终端的物理层下行调度信息;在发送该第二消息后,该方法还包括:在该物理层下行调度信息所指示的物理层资源上发送下行用户数据。基于该方案,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,本申请实施例中的物理层资源,具体是指子帧个数、子帧的位置、重复次数、调制编码方案MCS等,本申请实施例对此不作具体限定。
在一种可能的设计中,在发送该终端的物理层下行调度信息后,该方法还包括:在该物理层下行调度信息所指示的物理层资源上发送下行用户数据。基于该方案,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,该第二消息还包括用于指示在该第二消息和该第三消息之间有下行用户数据传输的指示信息。这样,终端在接收到第二消息后,继续在第二消息和第三消息之间接收该终端的物理层下行调度信息和下行用户数据。
可选的,该物理层下行调度信息通过该终端的标识进行加扰。这样,只有该终端能收到该物理层下行调度信息,而其它终端则不能收到该物理层下行调度信息,降低其它终端的功耗。
可选的,在上述可能的设计中,下行用户数据通过该终端的标识进行加扰。这样,只有该终端能收到该下行用户数据,而其它终端则不能收到该下行用户数据,降低其它终端的功耗。
可选的,在上述可能的设计中,该终端的标识包括该终端的小区无线网络临时标识C-RNTI、或者该终端的标识包括由该终端的非接入层NAS标识所映射成的接入层标识。
在一种可能的设计中,该第二消息还包括下行用户数据,该第四消息还 包括用于指示该下行用户数据属于该终端的信息。基于该方案,可以在随机接入过程中的第二消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,在上述可能的设计中,在接收该第一消息前,该方法还包括:向该终端发送指示该前导序列的命令。也就是说,该终端使用的前导序列可以是由接入网设备指示给该终端的。该接入网设备只有检测到该前导序列才会在物理层下行调度信息指示的物理层资源上发送下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。
在一种可能的设计中,该第四消息还包括该终端的物理层下行调度信息;在发送该第四消息后,该方法还包括:在该物理层下行调度信息所指示的物理层资源上发送下行用户数据。基于该方案,可以在随机接入过程中的第四消息中传输终端的物理层下行调度信息,进而在第四消息后传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
在一种可能的设计中,该第四消息还包括下行用户数据。基于该方案,可以在随机接入过程中的第四消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
第三方面,提供一种终端,该终端包括:发送模块和接收模块;发送模块,用于向接入网设备发送第一消息,该第一消息包括终端使用的前导序列;接收模块,用于接收接入网设备发送的第二消息,该第二消息包括由接入网设备确认的该前导序列;发送模块,还用于响应于该第二消息,向接入网设备发送第三消息,该第三消息包括该终端的标识;接收模块,还用于接收接入网设备发送的第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息;其中,该第二消息或第四消息中的任一项还包括该终端的物理层下行调度信息或下行用户数据;或者,在接收模块接收该第二消息后进一步接收接入网设备发送的该终端的物理层下行调度信息。基于该终端,可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
在一种可能的设计中,该第二消息还包括该终端的物理层下行调度信息;接收模块,还用于在接收该第二消息后,在该物理层下行调度信息所指示的物理层资源上接收该接入网设备发送的下行用户数据。基于该终端,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,本申请实施例中的物理层资源,具体是指子帧个数、子帧的位置、重复次数、调制编码方案MCS等,本申请实施例对此不作具体限定。
在一种可能的设计中,接收模块,还用于在接收该终端的物理层下行调度信息后,在该物理层下行调度信息所指示的物理层资源上接收该接入网设 备发送的下行用户数据。基于该终端,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,该第二消息还包括用于指示在该第二消息和该第三消息之间有下行用户数据传输的指示信息。这样,终端在接收到第二消息后,继续在第二消息和第三消息之间接收该终端的物理层下行调度信息和下行用户数据。
可选的,该物理层下行调度信息通过该终端的标识进行加扰。这样,只有该终端能收到该物理层下行调度信息,而其它终端则不能收到该物理层下行调度信息,降低其它终端的功耗。
可选的,在上述可能的设计中,下行用户数据通过该终端的标识进行加扰。这样,只有该终端能收到该下行用户数据,而其它终端则不能收到该下行用户数据,降低其它终端的功耗。
可选的,在上述可能的设计中,该终端的标识包括该终端的小区无线网络临时标识C-RNTI、或者该终端的标识包括由该终端的非接入层NAS标识所映射成的接入层标识。
在一种可能的设计中,该第二消息还包括下行用户数据,该第四消息还包括用于指示该下行用户数据属于该终端的信息。基于该方案,可以在随机接入过程中的第二消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,在上述可能的设计中,接收模块,还用于在发送模块发送第一消息前,接收该接入网设备发送的指示该前导序列的命令。也就是说,该终端使用的前导序列可以是由接入网设备指示给该终端的。该接入网设备只有检测到该前导序列才会在物理层下行调度信息指示的物理层资源上发送下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。
在一种可能的设计中,该第四消息还包括该终端的物理层下行调度信息;接收模块,还用于在接收该第四消息后,在该物理层下行调度信息所指示的物理层资源上接收该接入网设备发送的下行用户数据。基于该终端,可以在随机接入过程中的第四消息中传输终端的物理层下行调度信息,进而在第四消息后传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
在一种可能的设计中,该第四消息还包括下行用户数据。基于该方案,可以在随机接入过程中的第四消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
第四方面,提供一种接入网设备,该接入网设备包括:接收模块还发送模块;接收模块,用于接收终端发送的第一消息,该第一消息包括该终端使用的前导序列;发送模块,用于响应于该第一消息,向终端发送第二消息,该第二消息包括由接入网设备确认的该前导序列;接收模块,还用于接收终端发送的第三消息,该第三消息包括该终端的标识;发送模块,还用于响应 于该第三消息,向终端发送第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息;其中,该第二消息或第四消息中的任一项还包括该终端的物理层下行调度信息或下行用户数据;或者,发送模块,还用于在发送该第二消息后进一步发送该终端发送的该终端的物理层下行调度信息。基于该接入网设备,可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
在一种可能的设计中,该第二消息还包括该终端的物理层下行调度信息;发送模块,还用于在发送该第二消息后,在该物理层下行调度信息所指示的物理层资源上发送下行用户数据。基于该接入网设备,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,本申请实施例中的物理层资源,具体是指子帧个数、子帧的位置、重复次数、调制编码方案MCS等,本申请实施例对此不作具体限定。
在一种可能的设计中,发送模块,还用于在发送该终端的物理层下行调度信息后,在该物理层下行调度信息所指示的物理层资源上发送下行用户数据。基于该接入网设备,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,该第二消息还包括用于指示在该第二消息和该第三消息之间有下行用户数据传输的指示信息。这样,终端在接收到第二消息后,继续在第二消息和第三消息之间接收该终端的物理层下行调度信息和下行用户数据。
可选的,该物理层下行调度信息通过该终端的标识进行加扰。这样,只有该终端能收到该物理层下行调度信息,而其它终端则不能收到该物理层下行调度信息,降低其它终端的功耗。
可选的,在上述可能的设计中,下行用户数据通过该终端的标识进行加扰。这样,只有该终端能收到该下行用户数据,而其它终端则不能收到该下行用户数据,降低其它终端的功耗。
可选的,在上述可能的设计中,该终端的标识包括该终端的小区无线网络临时标识C-RNTI、或者该终端的标识包括由该终端的非接入层NAS标识所映射成的接入层标识。
在一种可能的设计中,该第二消息还包括下行用户数据,该第四消息还包括用于指示该下行用户数据属于该终端的信息。基于该方案,可以在随机接入过程中的第二消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
可选的,在上述可能的设计中,发送模块,还用于在接收模块接收该第一消息前,向该终端发送指示该前导序列的命令。也就是说,该终端使用的前导序列可以是由接入网设备指示给该终端的。该接入网设备只有检测到该前导序列才会在物理层下行调度信息指示的物理层资源上发送下行用户数 据,因此降低了接入网设备盲发下行用户数据的概率。
在一种可能的设计中,该第四消息还包括该终端的物理层下行调度信息;发送模块,还用于在发送该第四消息后,在该物理层下行调度信息所指示的物理层资源上发送下行用户数据。基于该方案,可以在随机接入过程中的第四消息中传输终端的物理层下行调度信息,进而在第四消息后传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
在一种可能的设计中,该第四消息还包括下行用户数据。基于该方案,可以在随机接入过程中的第四消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
第五方面,提供一种数据传输方法,该方法包括:向接入网设备发送第一消息,该第一消息包括终端使用的前导序列;接收接入网设备发送的第二消息,该第二消息包括由该接入网设备确认的该前导序列和该终端的物理层上行调度信息;响应于该第二消息,向接入网设备发送第三消息,该第三消息包括该终端的标识;接收接入网设备发送的第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息;其中,该第三消息中还包括上行用户数据,该上行用户数据在该物理层上行调度信息所指示的物理层资源上发送;或者,在发送该第三消息后进一步在该物理层上行调度信息所指示的物理层资源上发送上行用户数据。基于该方案,可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
第六方面,提供一种数据传输方法,该方法包括:接收终端发送的第一消息,该第一消息包括终端使用的前导序列;响应于该第一消息,向终端发送第二消息,该第二消息包括由接入网设备确认的该前导序列和终端的物理层上行调度信息;接收终端发送的第三消息,该第三消息包括终端的标识;响应于该第三消息,向终端发送第四消息,该第四消息包括用于指示终端接入成功的竞争解决信息;其中,该第三消息中还包括上行用户数据,该上行用户数据在该物理层上行调度信息所指示的物理层资源上发送;或者,在接收该第三消息后进一步在该物理层上行调度信息所指示的物理层资源上接收上行用户数据。基于该方案,可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
第七方面,提供一种终端,该终端包括:发送模块和接收模块;发送模块,用于向接入网设备发送第一消息,该第一消息包括终端使用的前导序列;接收模块,用于接收接入网设备发送的第二消息,该第二消息包括由该接入网设备确认的该前导序列和该终端的物理层上行调度信息;发送模块,还用于响应于该第二消息,向接入网设备发送第三消息,该第三消息包括该终端的标识;接收模块,还用于接收接入网设备发送的第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息;其中,该第三消息中还包 括上行用户数据,该上行用户数据在该物理层上行调度信息所指示的物理层资源上发送;或者,发送模块,还用于在发送该第三消息后进一步在该物理层上行调度信息所指示的物理层资源上发送上行用户数据。基于该终端,可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
第八方面,提供一种接入网设备,该接入网设备包括:接收模块和发送模块;接收模块,用于接收终端发送的第一消息,该第一消息包括终端使用的前导序列;发送模块,用于响应于该第一消息,向终端发送第二消息,该第二消息包括由接入网设备确认的该前导序列和终端的物理层上行调度信息;接收模块,还用于接收终端发送的第三消息,该第三消息包括终端的标识;发送模块,还用于响应于该第三消息,向终端发送第四消息,该第四消息包括用于指示终端接入成功的竞争解决信息;其中,该第三消息中还包括上行用户数据,该上行用户数据在该物理层上行调度信息所指示的物理层资源上发送;或者接收模块,还用于在接收该第三消息后进一步在该物理层上行调度信息所指示的物理层资源上接收上行用户数据。基于该接入网设备,可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
结合上述第五方面至第八方面的任一方面,在一种可能的设计中,上行用户数据通过该终端的临时小区无线网络临时标识C-RNTI进行加扰。
结合上述第五方面至第八方面的任一方面,在一种可能的设计中,该第一消息还包括第一指示信息,该第一指示信息指示该终端支持在随机接入过程中的上行用户数据传输或指示待传输的上行用户数据大小;其中,该物理层上行调度信息是根据该第一指示信息确定的。也就是说,本申请实施例中的物理层上行调度信息(UL Grant)所占的比特数是可变的。
结合上述第五方面至第八方面的任一方面,在一种可能的设计中,该第一指示信息指示该终端支持在随机接入过程中的上行用户数据传输,包括:该第一指示消息由该第一消息使用的随机接入资源的位置确定,其中,该第一消息使用的随机接入资源的位置用于指示该终端支持在随机接入过程中的上行用户数据传输。
结合上述第五方面至第八方面的任一方面,在一种可能的设计中,该第一指示信息指示待传输的上行用户数据大小,包括:该第一指示消息由该第一消息使用的随机接入资源的位置确定,其中,该第一消息使用的随机接入资源的位置用于指示该上行用户数据的大小超过预设阈值。
结合上述第五方面至第八方面的任一方面,在一种可能的设计中,该物理层上行调度信息包含第一物理层资源和第二物理层资源;该第一物理层资源用于发送该上行用户数据,该第二物理层资源用于发送该第三消息中的除该上行用户数据外的其它信息。
结合上述第五方面至第八方面的任一方面,在一种可能的设计中,该第二消息中还包括第二指示信息,该第二指示信息用于指示该第一物理层资源 和该第二物理层资源不连续。这样,当在随机接入过程中发送上行用户数据的终端与在随机接入过程中未发送上行用户数据的终端发生碰撞时,就不会降低未发送上行用户数据的终端被接入网设备正确接收的概率,从而不会影响到未发送上行用户数据的终端的性能。
结合上述第五方面至第八方面的任一方面,在一种可能的设计中,该第三消息中还包括第三指示信息,该第三指示信息指示在该第三消息和该第四消息之间有上行用户数据传输。这样,接入网设备在接收到第三消息后,继续在第三消息和第四消息之间接收该终端上行用户数据。
第九方面,本申请实施例提供一种终端,包括:处理器、存储器和总线;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该终端运行时,该处理器执行该存储器存储的该计算机执行指令,以使该终端执行如上述第一方面或第五方面中任一所述的数据传输方法。
第十方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或第五方面中任一所述的数据传输方法。
第十一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行第一方面或第五方面中任一所述的数据传输方法。
其中,第九方面至第十一方面中任一种设计方式所带来的技术效果可参见第一方面或第五方面中不同设计方式所带来的技术效果,此处不再赘述。
第十二方面,本申请实施例提供一种接入网设备,包括:处理器、存储器和总线;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该接入网设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该接入网设备执行如上述第二方面或第六方面中任一所述的数据传输方法。
第十三方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第二方面或第六方面中任一所述的数据传输方法。
第十四方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行第二方面或第六方面中任一所述的数据传输方法。
其中,第十二方面至第十四方面中任一种设计方式所带来的技术效果可参见第二方面或第六方面中不同设计方式所带来的技术效果,此处不再赘述。
第十五方面,本申请实施例提供一种数据传输系统,该数据传输系统包括如上述第三方面所述的终端和如上述第四方面所述的接入网设备;或者,该数据传输系统包括如上述第七方面所述的终端和如上述第八方面所述的接入网设备;或者,该数据传输系统包括如上述第九方面所述的终端和如上述第十二方面所述的接入网设备。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种数据传输系统的架构示意图;
图2为本申请实施例提供的接入网设备20和终端30的硬件结构示意图;
图3为本申请实施例提供的数据传输方法流程示意图一;
图4为本申请实施例提供的第二消息的消息格式和传输示意图一;
图5为本申请实施例提供的数据传输方法流程示意图二;
图6为本申请实施例提供的数据传输方法流程示意图三;
图7为本申请实施例提供的第二消息的消息格式和传输示意图二;
图8为本申请实施例提供的数据传输方法流程示意图四;
图9为本申请实施例提供的数据传输方法流程示意图五;
图10为本申请实施例提供的数据传输方法流程示意图六;
图11为本申请实施例提供的第三消息的消息格式和传输示意图一;
图12为本申请实施例提供的数据传输方法流程示意图七;
图13为本申请实施例提供的随机接入资源的分组示意图;
图14为本申请实施例提供的第三消息的消息格式和传输示意图二;
图15为本申请实施例提供的第三消息和上行用户数据的传输示意图;
图16为本申请实施例提供的终端的结构示意图一;
图17为本申请实施例提供的终端的结构示意图二;
图18为本申请实施例提供的接入网设备的结构示意图一;
图19为本申请实施例提供的接入网设备的结构示意图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,为本申请实施例提供的一种数据传输系统10。该数据传输系统10中包括一个接入网设备20,以及与该接入设备20连接的一个或多个终端30。
其中,接入网设备20可以是能和终端30通信的设备。例如,接入网设备20可以是基站、中继站或接入点等。基站可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station, BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB),或者可以是IoT或者NB-IoT中的eNB,本申请实施例对此不作具体限定。当然,接入网设备20还可以是其他网络中的网络设备,比如可以是未来第五代(5th generation,5G)移动通信网络或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备,本申请实施例对此不作具体限定
终端30可以是用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN网络中的终端等,本申请实施例对此不作具体限定。
如图2所示,为本申请实施例提供的接入网设备20和终端30的硬件结构示意图。
终端30包括至少一个处理器301、至少一个存储器302、至少一个收发器303。可选的,终端30还可以包括输出设备304和输入设备305。
处理器301、存储器302和收发器303通过总线相连接。处理器301可以是一个通用中央处理器(Central Processing Unit,CPU)、微处理器、特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器301也可以包括多个CPU,并且处理器301可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过总线与处理器301相连接。存储器302也可以和处理器301集成在一起。其中,存储器302用于存储执行本申请方案的应用程序代码,并由处理器301来控制执行。处理器301用于执行存储器302中存储的计算机程序代码,从而实现本申请实施例中所述数据传输的方法。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(Radio Access Network,RAN)、无线局域网(Wireless Local Area Networks,WLAN)等。收发器303包括发射机Tx和接收机Rx。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(Liquid Crystal Display,LCD),发光二级管(Light Emitting Diode,LED)显示设备,阴极射线管(Cathode Ray Tube,CRT)显示设备,或投影仪(projector)等。输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
接入网设备20包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它接入网设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端30中处理器301、存储器302和收发器303的描述,在此不再赘述。
下面将结合图2所示的接入网设备20和终端30,以图1所示的数据传输系统10应用在NB-IoT中为例,对本申请实施例提供的数据传输方法进行展开说明。
首先,给出NB-IoT随机接入流程的三种典型应用场景,分别如下:
场景一、当接入网设备有数据需要发送给一个终端,或者接入网设备给一个终端发送数据之后,一直未收到该终端的反馈时,接入网设备会向该终端发送一个窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)命令,NPDCCH命令上承载一个下行控制信息(Downlink Control Information,DCI),用于让该终端进行随机接入。其中,该DCI使用该终端的唯一身份标识,即小区无线网络临时标识(Cell radio network temporary identifier,C-RNTI)进行加扰,因此只有该终端能检测到此NPDCCH命令。
场景二、当终端接收到接入网设备发送给自己的寻呼(Paging)消息时,知道接入网设备即将有数据要发送给自己,因此进行随机接入。
场景三、当终端自己有数据需要给接入网设备时,或者终端刚开机需要连接入网络时,需要进行随机接入。
也就是说,上述的场景一和场景二中有下行用户数据需要传输,上述的场景三中有上行用户数据需要传输。
其次,将结合图3至图9对本申请实施例提供的上行用户数据传输的方法进行介绍。
如图3所示,为本申请实施例提供的一种数据传输方法,以接入网设备与一个终端的交互为例,包括如下步骤S301-S310:
S301、终端向接入网设备发送第一消息,该第一消息包括终端使用的前导序列。
其中,前导序列所占的资源是终端随机选取或者接入网设备进行指示的。若多个终端在相同的资源上发送相同的前导序列,则会发生碰撞,这就需要后续的竞争方案。
S302、接入网设备接收终端发送的第一消息。
S303、响应于第一消息,接入网设备向终端发送第二消息,该第二消息包括由接入网设备确认的该终端使用的前导序列和该终端的物理层下行调度信息。
其中,第二消息的消息格式如图4所示,包括媒体接入控制(Media Access Control,MAC)头、n个随机接入响应(Random Access Response,RAR)和填充(padding)比特,n个RAR例如可以是RAR1、RAR2、……、RARn。
其中,MAC头中包括与n个RAR一一对应的n个随机接入前导索引(Random Access Preamble Index,RAPID)子头,n个RAPID子头例如可以是RAPID子头1、RAPID子头2、……、RAPID子头n。其中,RAPID子头用于指示接入网设备检测出来的前导序列。
RAR中包含定时对齐指令、第三消息准许传输的初始上行资源(UL grant)、临时小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)等信息。其中,定时对齐指令用于不同终端与接入网设备之间的上行同步。
本申请实施例中的第二消息包括由接入网设备确认的该终端使用的前导序列和该终端的物理层下行调度信息,因此,图4所示的第二消息的MAC头中包含用于指示该终端使用的前导序列的RAPID子头,n个RAR中包括第一消息对应的RAR。物理层下行(DownLink,DL)调度(grant)信息可以填充在MAC头中,如图4所示。可选的,物理层下行调度信息也可以填充在填充比特或者该终端的前导序列对应的RAR中,本申请实施例对此不作具体限定。其中,若物理层下行调度信息放在MAC头或者填充比特,则只要RA-RNTI相同的终端都可以收到该下行用户数据;如果物理层下行调度信息放在该终端的前导序列对应的RAR中,则只有RA-RNTI相同,且发送前导序列为该终端使用的前导序列的终端才能收到该物理层下行调度信息。
另外,图4中还给出了第二消息的传输示意。如图4所示,接入网设备的MAC层将承载第二消息的MAC协议数据单元(Protocol Data Unit,PDU)传输至接入网设备的物理层,由接入网设备的物理层将该MAC PDU填充至物理层的传输块中,进而经过物理层的信道编码,调制等处理,承载在窄带物理下行共享信道(Narrowband Physical Downlink Shared Channel,NPDSCH)上发送。同时,接入网设备还向终端发送下行控制信息(Downlink control information,DCI),该DCI用于调度NPDSCH。如图4所示,DCI承载在NPDCCH上发送。为了标识该NPDCCH承载的DCI调度的NPDSCH 承载的RAR是针对在哪个时间资源和频率资源上发送的前导序列的回复,接入网设备会使用随机接入无线网络临时标识(Random Access Radio Network Temporary Identifier RA-RNTI)计算扰码序列,对NPDCCH进行加扰,RA-RNTI由接入网设备根据承载检测出来的前导序列的PRACH结合公式(1)获得:
RA-RNTI=1+floor(SFN_id/4)          公式(1)
其中,SFN_id是指定PRACH资源的第一个射频帧的索引,floor()表示向下取整。由公式(1)可以看出,如果不同终端发送的前导序列采用了相同的时间资源,则RA-RNTI也相同,进而对应的承载RAR的NPDSCH会由相同的NPDCCH的DCI调度,RAR在同一个NPDSCH上传输,如图4所示。
需要说明的是,图4仅是第二消息的一个传输示意图。当然,当MAC层数据特别大时,若一个NPDCCH+NPDSCH的方式传输不完,可能需要多个NPDCCH+NPDSCH来进行传输,本申请实施例对此不作具体限定。
S304、接入网设备在该物理层下行调度信息指示的物理层资源上发送下行用户数据。
其中,本申请实施例中的物理层资源,具体是指子帧个数、子帧的位置、重复次数、调制编码方案(Modulation and coding scheme,MCS)等,本申请实施例对此不作具体限定。
可选的,步骤S304中的下行用户数据通过终端的标识进行加扰。
需要说明的是,由于数据通常是承载在NPDSCH上传输,因此对下行用户数据加扰,实际上是对承载该下行用户数据的NPDSCH进行加扰,在此进行统一说明,以下不再赘述。
其中,在上述场景一中,由于此时接入网设备知道终端的唯一身份标识C-RNTI,因此对下行用户数据进行加扰的终端的标识为终端的C-RNTI。该情况下,仅该终端能接收到该下行用户数据,其他终端接收不到该下行用户数据。
其中,在上述场景二中,由于此时接入网设备只知道寻呼消息中携带的被寻呼终端的非接入层(Non Access Stratum,NAS)标识,而并不知道该终端在物理层的接入层标识,因此接入网设备不知道用哪个序列对下行用户数据进行加扰。如果用一个公共的RNTI(例如寻呼RNTI,Paging-RNTI)进行加扰,则不想接收该下行用户数据的终端都会去接收该下行用户数据,造成大量功耗的浪费。因此,本申请实施例中,将终端的NAS标识通过某种规则映射成终端的接入层标识。例如,映射规则可以是:终端的NAS标识最后两位“00”对应接入层标识0,“01”对应接入层标识1,“10”对应接入层标识2,“11”对应接入层标识3。这样接入网设备可以用接入层标识对下行用户数据进行加扰,被寻呼到的终端也根据该映射规则用相应的序列对下行用户数据进行解码,就能收到该下行用户数据,而其它终端则不能收到该下行用户数据,降低其它终端的功耗。其中,本申请实施例中的NAS标识具体可以包括核心网标识,该核心网标识例如可以是国际移动用户标识(International  Mobile Subscriber Identity,IMSI)或者系统架构演进临时移动用户标识(S-temporary mobile subscriber identity,S-TMSI)等,本申请实施例对此不作具体限定。
需要说明的是,上述示例中的映射规则仅仅是本申请实施例示意性提供的一个映射规则,当然,接入网设备还可以根据其他映射规则将终端的NAS标识映射成终端的接入层标识,本申请实施例对此不作具体限定。
S305、终端接收接入网设备发送的第二消息。
具体的,终端会根据发送前导序列所占的时频资源计算出一个RA-RNTI。终端在发送前导序列之后,会在一个RAR窗内用RA-RNTI去盲检是否有DCI,如果终端检测到有DCI,则根据DCI去接收NPDSCH信道,从而获得第二消息;如果终端检测不到DCI,则表示未收到第二消息。其中,该盲检是在一个频域为180kHz的公共的搜索空间(common search space,CSS)上进行的,该公共的搜索空间的资源是通过系统消息窄带系统消息块(System Information Block Narrow band,SIB-NB)通知给终端的。
S306、终端在该物理层下行调度信息所指示的物理层资源上接收接入网设备发送的下行用户数据。
其中,本申请实施例中下行用户数据的传输截止时间不超过第三消息的发送时间,在此进行统一说明,以下不再赘述。
S307、响应于第二消息,终端向接入网设备发送第三消息,该第三消息包括终端的标识。
具体的,终端在RAR窗口内成功接收到自己的RAR后,会在收到该RAR后的一个确定的子帧通过NPUSCH向接入网设备发送随机接入过程中的第三消息,如无线资源控制(Radio Resource Control,RRC)链接请求或跟踪区域更新等。第三消息根据RAR中包含的临时C-RNTI进行加扰,并包含终端在本小区中的标识,用于竞争解决。其中,本申请实施例对第三消息中包含的终端的标识不作具体限定。示例性的,在上述场景一中,第三消息中包含的终端的标识为终端的C-RNTI;在上述场景二中,第三消息中包含的终端的标识为终端的C-RNTI或者S-TMSI等,本申请实施例对此不作具体限定。
S308、接入网设备接收终端发送的第三消息。
如步骤301所述,在竞争的随机接入过程中,会存在多个终端在相同的资源上发送相同的前导序列的情况。在该情况下,不同的终端会接收到相同的RAR,从而获得相同的临时C-RNTI,因而根据相同的临时C-RNTI在相同的时间资源和频率资源上发送第三消息,从而造成第三消息传输的冲突,若接入网设备不能对第三消息成功解码,则终端需要对第三消息进行重传,当终端达到最大重传次数后会开始新的随机接入过程。若接入网设备能对第三消息成功解码,则执行步骤309。
S309、响应于第三消息,接入网设备向终端发送第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息。
S310、终端接收接入网设备发送的第四消息。
可选的,如图3所示,在步骤S301之前,还可以包括步骤S311和S312:
S311、接入网设备向终端发送指示该终端使用的前导序列的命令。
S312、终端接收接入网设备发送的指示该终端使用的前导序列。
也就是说,步骤S301中该终端使用的前导序列可以是由接入网设备指示给该终端的。该接入网设备只有检测到该前导序列才会执行步骤S304,即在物理层下行调度信息指示的物理层资源上发送下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。其中,本申请实施例中的盲发是指无论接入网设备是否检测到该终端的前导序列,均向该终端发送下行用户数据,在此进行统一说明,以下不再赘述。
示例性的,在上述场景一中,指示该终端使用的前导序列的命令包含在NPDCCH命令中,由于NPDCCH命令采用终端的C-RNTI进行加扰,因此,只有该终端能够接收到指示该终端使用的前导序列的命令。进而该终端使用该前导序列进行随机接入,接入网设备只有检测到该前导序列才会执行步骤S304,即在物理层下行调度信息指示的物理层资源上发送下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。
示例性的,在上述场景二中,指示该终端使用的前导序列的命令包含在寻呼消息中,虽然该寻呼消息未采用终端的标识进行加扰,指示该终端使用的前导序列的命令可能被其他终端接收到,进而该终端使用的前导序列可能被其它终端使用,但是接入网设备只有检测到该前导序列才会执行步骤S304,即在物理层下行调度信息指示的物理层资源上发送下行用户数据,也降低了接入网设备盲发下行用户数据的概率。
本申请实施例提供的数据传输方法,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
其中,上述S312、S301、S305、S306、S307和S310中终端的动作可以由图2所示的终端30的处理器301调用存储器302中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S311、S302、S303、S304、S308和S309中接入网设备的动作可以由图2所示的接入网设备20中的处理器201调用存储器202中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
可选的,如图5所示,为本申请实施例提供的一种数据传输方法,以接入网设备与一个终端的交互为例,包括如下步骤S501-S510:
S501-S502、同S301-S302,具体可参考图3所示的实施例,在此不再赘述。
S503、响应于第一消息,接入网设备向终端发送第二消息,该第二消息包括由接入网设备确认的该终端使用的前导序列。
其中,第二消息的消息格式和第二消息的传输示意可参考图4,在此不再赘述。区别仅在于图4所示的第二消息中包含终端的物理层下行调度信息,本申请实施例中的第二消息中不包含终端的物理层下行调度信息。
S504、接入网设备向终端发送终端的物理层下行调度信息。
可选的,步骤S504中的物理层下行调度信息通过终端的标识进行加扰。
需要说明的是,由于物理层下行调度信息通常是承载在NPDCCH上传输,因此对物理层下行调度信息加扰,实际上是对承载该物理层下行调度信息的NPDCCH进行加扰,在此进行统一说明,以下不再赘述。
其中,在上述场景一中,由于此时接入网设备知道终端的唯一身份标识C-RNTI,因此对物理层下行调度信息进行加扰的终端的标识为终端的C-RNTI。该情况下,仅该终端能接收到该物理层下行调度信息,其他终端接收不到该物理层下行调度信息。
其中,在上述场景二中,由于此时接入网设备只知道寻呼消息中携带的被寻呼终端的NAS标识,而并不知道该终端在物理层的接入层标识,因此接入网设备不知道用哪个序列对物理层下行调度信息进行加扰。如果用一个公共的RNTI(例如寻呼RNTI,Paging-RNTI)进行加扰,则不想接收该物理层下行调度信息的终端都会去接收该物理层下行调度信息,造成大量功耗的浪费。因此,本申请实施例中,将终端的NAS标识通过某种规则映射成终端的接入层标识。例如,映射规则可以是:终端的NAS标识最后两位“00”对应接入层标识0,“01”对应接入层标识1,“10”对应接入层标识2,“11”对应接入层标识3。这样接入网设备可以用接入层标识对物理层下行调度信息进行加扰,被寻呼到的终端也根据该映射规则用相应的序列对DL Grant进行解码,就能收到该物理层下行调度信息,而其它终端则不能收到该物理层下行调度信息,降低其它终端的功耗。其中,本申请实施例中的NAS标识具体可以包括核心网标识,该核心网标识例如可以是IMSI或者S-TMSI等,本申请实施例对此不作具体限定。
需要说明的是,上述示例中的映射规则仅仅是本申请实施例示意性提供的一个映射规则,当然,接入网设备还可以根据其他映射规则将终端的NAS标识映射成终端的接入层标识,本申请实施例对此不作具体限定。
S505、接入网设备在该物理层下行调度信息指示的物理层资源上发送下行用户数据。
其中,步骤S505的相关实现可参考步骤S304,在此不再赘述。
S506、终端接收接入网设备发送的第二消息。
其中,步骤S506的相关实现可参考步骤S305,在此不再赘述。
S507、终端接收接入网设备发送的物理层下行调度信息。
可选的,本申请实施例中,终端也可以采用接收第二消息的方式接收接入网设备发送的物理层下行调度信息,即采用盲检的方式,检测物理层下行调度信息,本申请实施例对此不作具体限定。其中,盲检物理层下行调度信 息可以在RAR窗之后的一个时间段上进行,也可以在接收到第二消息后,在RAR窗所在的时间段上进行,本申请实施例对此不作具体限定。
S508、终端在该物理层下行调度信息所指示的物理层资源上接收接入网设备发送的下行用户数据。
其中,步骤S508的相关实现可参考步骤S306,在此不再赘述。
其中,本申请实施例中下行用户数据的传输截止时间不超过第三消息的发送时间,在此进行统一说明,以下不再赘述。
可选的,本申请实施例中的第二消息中还可以包括在第二消息和第三消息之间有下行用户数据传输的指示信息,以使得终端在接收到第二消息后,继续在第二消息和第三消息之间接收该终端的物理层下行调度信息和下行用户数据,本申请实施例对此不作具体限定。
S509-S512、同S307-S310,具体可参考图3所示的实施例,在此不再赘述。
可选的,如图5所示,在步骤S501之前,还可以包括步骤S514和S515:
S514、接入网设备向终端发送指示该终端使用的前导序列的命令。
S515、终端接收接入网设备发送的指示该终端使用的前导序列。
也就是说,步骤S501中该终端使用的前导序列可以是由接入网设备指示给该终端的。该接入网设备只有检测到该前导序列才会执行步骤S504,即向终端发送终端的物理层下行调度信息,进而在该物理层下行调度信息指示的物理层资源上发送下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。
示例性的,在上述场景一中,指示该终端使用的前导序列的命令包含在NPDCCH命令中,由于NPDCCH命令采用终端的C-RNTI进行加扰,因此,只有该终端能够接收到指示该终端使用的前导序列的命令。进而该终端使用该前导序列进行随机接入,接入网设备只有检测到该前导序列才会执行步骤S504,即向终端发送终端的物理层下行调度信息,进而在该物理层下行调度信息指示的物理层资源上发送下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。
示例性的,在上述场景二中,指示该终端使用的前导序列的命令包含在寻呼消息中,虽然该寻呼消息未采用终端的标识进行加扰,指示该终端使用的前导序列的命令可能被其他终端接收到,进而该终端使用的前导序列可能被其它终端使用,但是接入网设备只有检测到该前导序列才会执行步骤S504,即向终端发送终端的物理层下行调度信息,进而在该物理层下行调度信息指示的物理层资源上发送下行用户数据,也降低了接入网设备盲发下行用户数据的概率。
本申请实施例提供的数据传输方法,可以在随机接入过程中的第二消息和第三消息之间传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
其中,上述S514、S501、S506、S507、S508、S509和S512中终端的动作可以由图2所示的终端30的处理器301调用存储器302中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S513、S502、S503、S504、S505、S510和S511中接入网设备的动作可以由图2所示的接入网设备20中的处理器201调用存储器202中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
可选的,如图6所示,为本申请实施例提供的一种数据传输方法,以接入网设备与一个终端的交互为例,包括如下步骤S601-S608:
S601-S602、同S301-S302,具体可参考图3所示的实施例,在此不再赘述。
S603、响应于第一消息,接入网设备向终端发送第二消息,该第二消息包括由接入网设备确认的该终端使用的前导序列和该终端的下行用户数据。
其中,第二消息的消息格式如图7所示,包括MAC头、n个RAR和填充比特。n个RAR例如可以是RAR1、RAR2、……、RARn。
其中,MAC头、n个RAR和填充比特的相关描述可参考图4所示的第二消息的MAC头、n个RAR和填充比特的描述,在此不再赘述。其中,与图4所示的实施例的区别在于,图4所示的实施例中的MAC头中包含终端的物理层下行调度信息,图7所示的实施例中的MAC头中包含终端的下行用户数据。
可选的,终端的下行用户数据也可以填充在填充比特或者该终端的前导序列对应的RAR中,本申请实施例对此不作具体限定。其中,若下行用户数据放在MAC头或者填充比特,则只要RA-RNTI相同的终端都可以收到该下行用户数据;如果放在该终端的前导序列对应的RAR中,则只有RA-RNTI相同,且发送前导序列为该终端使用的前导序列的终端才能收到该下行用户数据。
另外,图7中还给出了第二消息的传输示意,相关描述可参考图4所示的第二消息的传输示意的描述,在此不再赘述。
S604、终端接收接入网设备发送的第二消息。
其中,步骤S604的相关实现可参考步骤S305,在此不再赘述。
S605-S606、同S307-S308,具体可参考图3所示的实施例,在此不再赘述。
S607、响应于第三消息,接入网设备向终端发送第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息和用于指示下行用户数据属于该终端的信息。
可选的,若竞争胜出的终端不是该终端,则接入网设备向该终端发送的第四消息中可以包括用于指示下行用户数据不属于该终端或属于其他终端的信息。进而,该竞争失败的终端可以根据将指示信息,丢弃下行用户数据,本申请实施例对此不作具体限定。
S608、终端接收接入网设备发送的第四消息。
可选的,如图6所示,在步骤S601之前,还可以包括步骤S609和S610:
S609、接入网设备向终端发送指示该终端使用的前导序列的命令。
S610、终端接收接入网设备发送的指示该终端使用的前导序列。
也就是说,步骤S601中该终端使用的前导序列可以是由接入网设备指示给该终端的。该接入网设备只有检测到该前导序列才会向终端发送下行用户数据,即步骤S603中的第二消息中包含终端的下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。
示例性的,在上述场景一中,指示该终端使用的前导序列的命令包含在NPDCCH命令中,由于NPDCCH命令采用终端的C-RNTI进行加扰,因此,只有该终端能够接收到指示该终端使用的前导序列的命令。进而该终端使用该前导序列进行随机接入,接入网设备只有检测到该前导序列才会向终端发送下行用户数据,即步骤S603中的第二消息中包含终端的下行用户数据,因此降低了接入网设备盲发下行用户数据的概率。
示例性的,在上述场景二中,指示该终端使用的前导序列的命令包含在寻呼消息中,虽然该寻呼消息未采用终端的标识进行加扰,指示该终端使用的前导序列的命令可能被其他终端接收到,进而该终端使用的前导序列可能被其它终端使用,但是接入网设备只有检测到该前导序列才才会向终端发送下行用户数据,即步骤S603中的第二消息中包含终端的下行用户数据,也降低了接入网设备盲发下行用户数据的概率。
本申请实施例提供的数据传输方法,可以在随机接入过程中的第二消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
其中,上述S610、S601、S604、S605和S608中终端的动作可以由图2所示的终端30的处理器301调用存储器302中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S609、S602、S603、S606和S607中接入网设备的动作可以由图2所示的接入网设备20中的处理器201调用存储器202中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
可选的,如图8所示,为本申请实施例提供的一种数据传输方法,以接入网设备与一个终端的交互为例,包括如下步骤S801-S808:
S801-S803、同S501-S503,具体可参考图5所示的实施例,在此不再赘述。
S804、同S506,具体可参考图5所示的实施例,在此不再赘述。
S805-S806、同S509-S510,具体可参考图5所示的实施例,在此不再赘述。
S807、响应于第三消息,接入网设备向终端发送第四消息,该第四消息 包括用于指示该终端接入成功的竞争解决信息和该终端的下行用户数据。
可选的,步骤S807中的第四消息可以采用终端的C-RNTI进行加扰,也可以采用临时C-RNTI进行加扰,本申请实施例对此不作具体限定。其中,若第四消息采用临时C-RNTI进行加扰,则发送前导序列为该终端使用的前导序列的其他终端也可能收到该下行用户数据,然后,最终只有竞争成功的终端才会获取到该下行用户数据。
S808、终端接收接入网设备发送的第四消息。
本申请实施例提供的数据传输方法,可以在随机接入过程中的第四消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
其中,上述S801、S804、S805和S808中终端的动作可以由图2所示的终端30的处理器301调用存储器302中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S802、S803、S806和S807中接入网设备的动作可以由图2所示的接入网设备20中的处理器201调用存储器202中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
可选的,如图9所示,为本申请实施例提供的一种数据传输方法,以接入网设备与一个终端的交互为例,包括如下步骤S901-S910:
S901-S906、同S801-S806,具体可参考图8所示的实施例,在此不再赘述。
S907、响应于第三消息,接入网设备向终端发送第四消息,该第四消息包括用于指示该终端接入成功的竞争解决信息和该终端的物理层下行调度信息。
S908、接入网设备在该物理层下行调度信息指示的物理层资源上发送下行用户数据。
其中,步骤S908中的下行用户数据可以采用终端的C-RNTI进行加扰,因为此时接入网设备知道终端的唯一身份标识C-RNTI。
S909、终端接收接入网设备发送的第四消息。
S910、终端在该物理层下行调度信息指示的物理层资源上接收下行用户数据。
本申请实施例提供的数据传输方法,可以在随机接入过程中的第四消息中传输下行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
相对于图8所示的实施例,本申请实施例在第四消息中携带终端的物理层下行调度信息,在第四消息后,接入网设备在该物理层下行调度信息指示的物理层资源上发送下行用户数据,这样可以避免若第四消息采用终端的临时C-RNTI加扰,第四消息中的下行用户数据可能被前导序列为该终端使用的前导序列的其他终端获取到的可能,从而可以节省功耗。
其中,上述S901、S904、S905、S909和S910中终端的动作可以由图2所示的终端30的处理器301调用存储器302中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S902、S903、S906、S907和S908中接入网设备的动作可以由图2所示的接入网设备20中的处理器201调用存储器202中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
下面将结合图10至图15对本申请实施例提供的上行用户数据传输的方法进行介绍。
如图10所示,为本申请实施例提供的一种数据传输方法,以接入网设备与一个终端的交互为例,包括如下步骤S1001-S1008:
S1001-S1002、同S301-S302。
S1003、响应于第一消息,接入网设备向终端发送第二消息,该第二消息包括由接入网设备确认的该终端使用的前导序列和该终端的物理层上行调度信息。
其中,第二消息的消息格式和第二消息的传输示意可参考图4,在此不再赘述。区别仅在于图4所示的第二消息中包含终端的物理层下行调度信息,本申请实施例中的第二消息中不包含终端的物理层下行调度信息。
S1004、终端接收接入网设备发送的第二消息。
其中,步骤S1004的相关实现可参考步骤S305,在此不再赘述。
S1005、响应于第二消息,终端向接入网设备发送第三消息,该第三消息包括终端的标识和该终端的上行用户数据。其中,该上行用户数据在该物理层上行调度信息所指示的物理层资源上发送。
具体的,终端在RAR窗口内成功接收到自己的RAR后,会在收到该RAR后的一个确定的子帧通过NPUSCH向接入网设备发送随机接入过程中的第三消息,如RRC链接请求或跟踪区域更新等。第三消息根据RAR中包含的临时C-RNTI进行加扰,并包含终端在本小区中的标识和终端的上行用户数据,用于竞争解决。其中,本申请实施例对第三消息中包含的终端的标识不作具体限定。示例性的,在上述场景一中,第三消息中包含的终端的标识为终端的C-RNTI;在上述场景二中,第三消息中包含的终端的标识为终端的C-RNTI或者S-TMSI等,本申请实施例对此不作具体限定。
其中,图11为本申请实施例中的第三消息的传输示意。如图11所示,终端的MAC层将承载第三消息的MAC PDU传输至终端的物理层,由终端的物理层将该MAC PDU填充至物理层的传输块中,进而经过物理层的信道编码,调制等处理,承载在窄带物理上行共享信道(Narrowband Physical Uplink Shared Channel,NPUSCH)上发送。
需要说明的是,现有随机接入过程中的第三消息的传输块大小(transport block size,TBS)是固定的,是88比特,但是本申请实施例中,由于要在第三消息中传输上行用户数据,因此该TBS是要根据第二消息中的 物理层上行调度信息调整的,本申请实施例对TBS不作具体限定。
S1006、接入网设备接收终端发送的第三消息。
其中,步骤S1006的相关实现可参考步骤S308,在此不再赘述。
S1007-S1008、同S309-S310,具体可参考图3所示的实施例,在此不再赘述。
本申请实施例提供的数据传输方法,可以在随机接入过程中的第三消息中传输上行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
其中,上述S1001、S1004、S1005和S1008中终端的动作可以由图2所示的终端30的处理器301调用存储器302中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S1002、S1003、S1006和S1007中接入网设备的动作可以由图2所示的接入网设备20中的处理器201调用存储器202中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
可选的,如图12所示,为本申请实施例提供的一种数据传输方法,以接入网设备与一个终端的交互为例,包括如下步骤S1201-S1210:
S1201-S1204、同S1101-S1104。
S1205、响应于第二消息,终端向接入网设备发送第三消息,该第三消息包括终端的标识。
其中,步骤S1205的相关实现可参考步骤S307,在此不再赘述。
可选的,本申请实施例中,第三消息中还包括第三指示信息,该第三指示信息指示在第三消息和第四消息之间有上行用户数据传输,以使得接入网设备在接收到第三消息后,继续在第三消息和第四消息之间接收该终端上行用户数据,本申请实施例对此不作具体限定。
S1206、终端在物理层上行调度信息指示的物理资源上发送上行用户数据。
S1207、接入网设备接收终端发送的第三消息。
其中,步骤S1207的相关实现可参考步骤S308,在此不再赘述。
S1208、接入网设备在物理层上行调度信息指示的物理资源上接收上行用户数据。
其中,本申请实施例中上行用户数据的传输截止时间不超过第四消息的发送时间,在此进行统一说明,以下不再赘述。
S1209-S1210、同S309-S310,具体可参考图3所示的实施例,在此不再赘述。
本申请实施例提供的数据传输方法,可以在随机接入过程中的第三消息和第四消息之间传输上行用户数据,使得可以在随机接入过程中提前执行至少一部分用户数据传输或调度,因此可以降低数据传输时延。
其中,上述S1201、S1204、S1205、S1206和S1210中终端的动作可以 由图2所示的终端30的处理器301调用存储器302中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S1202、S1203、S1207、S1207和S1209中接入网设备的动作可以由图2所示的接入网设备20中的处理器201调用存储器202中存储的计算机程序代码来执行,本申请实施例对此不作任何限制。
可选的,在图10或图12所示的实施例中,第一消息还包括第一指示信息,该第一指示信息指示该终端支持在随机接入过程中的上行用户数据传输或指示待传输的上行用户数据大小。进而,第二消息中的物理层上行调度信息是由接入网设备根据该第一指示信息确定的。也就是说,本申请实施例中的物理层上行调度信息(UL Grant)所占的比特数是可变的,可以从图4中的15比特增加到X比特,本申请实施例对此不作具体限定。其中,X为大于15的正整数。
可选的,本申请实施例中,第一指示信息指示终端支持在随机接入过程中的上行用户数据传输,包括:第一指示消息由第一消息使用的随机接入资源的位置确定,其中,该第一消息使用的随机接入资源的位置能够用于指示该终端是否支持在随机接入过程中的上行用户数据传输。
也就是说,本申请实施例还考虑到后向兼容问题,对系统中各个终端使用的随机接入资源进行分组。比如,一种可能的实现方式中,如图13(a)所示,对于支持在随机接入过程中的上行用户数据传输的终端(比如Rel-15NB-IoT终端),当它使用第一随机接入资源时,即表示该终端支持在随机接入过程中的上行用户数据传输,否则,则不支持在随机接入过程中的上行用户数据传输。或者,如图13(b)所示,对于支持在随机接入过程中的上行用户数据传输的终端,比如Rel-15NB-IoT终端,当它使用第一随机接入资源时,即表示该终端支持在随机接入过程中的上行用户数据传输,否则,则不支持在随机接入过程中的上行用户数据传输。其中,图13(b)相比于图13(a)而言,第一随机接入资源是专用于随机接入过程中的上行用户数据传输的,支持在随机接入过程中的上行用户数据传输的终端会使用一个相对独立的资源,即第一随机接入资源,不会受到不支持在随机接入过程中的上行用户数据传输的终端(比如Rel-13或14NB-IoT终端)的影响,但是若没有终端支持在随机接入过程中的上行用户数据传输,则会造成资源的浪费。
可选的,本申请实施例中,第一指示信息指示待传输的上行用户数据大小,包括:第一指示消息由第一消息使用的随机接入资源的位置确定,其中,第一消息使用的随机接入资源的位置用于指示上行用户数据的大小超过预设阈值。
也就是说,本申请实施例还考虑到上行用户数据大小问题,对系统中各个终端使用的随机接入资源进行分组。比如,随机接入资源包括第一随机接入资源和第二随机接入资源。一种可能的实现方式中,当终端使用第一随机接入资源时,即表示该终端待传输的上行用户数据的大小超过预设阈值,否则,表示该终端待传输的上行用户数据的大小未超过预设阈值。
可选的,物理层上行调度信息包含第一物理层资源和第二物理层资源;第一物理层资源用于发送上行用户数据,第二物理层资源用于发送第三消息中的除上行用户数据外的其它信息。
可选的,第二消息中还包括第二指示信息,该第二指示信息用于指示第一物理层资源和第二物理层资源不连续。这样,当在随机接入过程中发送上行用户数据的终端与在随机接入过程中未发送上行用户数据的终端发生碰撞时,就不会降低未发送上行用户数据的终端被接入网设备正确接收的概率,从而不会影响到未发送上行用户数据的终端的性能。
示例性的,在图10所示的实施例中,第三消息的传输示意也可以如图14所示。其中,在图14中,第一物理层资源和第二物理层资源不连续。如图14所示,终端的MAC层将承载第三消息中除上行用户数据外的其它信息的MAC PDU传输至终端的物理层,由终端的物理层将该MAC PDU填充至物理层的传输块中,进而经过物理层的信道编码,调制等处理,承载在NPUSCH1上发送。终端的MAC层将承载第三消息中上行用户数据的MAC PDU传输至终端的物理层,由终端的物理层将该MAC PDU填充至物理层的传输块中,进而经过物理层的信道编码,调制等处理,承载在NPUSCH2上发送。这样,接入网设备接收到第三消息后,能够对第三消息中的上行用户数据和除上行用户数据外的其它信息分开进行解码。
或者,示例性的,在图12所示的实施例中,第三消息和上行用户数据的传输示意也可以如图15所示。其中,在图15中,第一物理层资源和第二物理层资源不连续。如图15所示,终端的MAC层将承载第三消息的MAC PDU传输至终端的物理层,由终端的物理层将该MAC PDU填充至物理层的传输块中,进而经过物理层的信道编码,调制等处理,承载在NPUSCH1上发送。终端的MAC层将承载上行用户数据的MAC PDU传输至终端的物理层,由终端的物理层将该MAC PDU填充至物理层的传输块中,进而经过物理层的信道编码,调制等处理,承载在NPUSCH2上发送。这样,接入网设备能够对第三消息和上行用户数据分开进行解码。
上述主要从终端与接入网设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述接入网设备和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入网设备和终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例 中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用对应各个功能划分各个功能模块的情况下,图16示出了上述实施例中所涉及的终端160的一种可能的结构示意图。如图16所示,终端160包括:发送模块1601和接收模块1602。
其中,发送模块1601用于支持终端160执行图3中的步骤S301和S307;接收模块1602用于支持终端160执行图3中的步骤S305、S306和S310。可选的,接收模块1602还用于支持终端160执行图3中的步骤S312。
或者,发送模块1601用于支持终端160执行图5中的步骤S501和S509;接收模块1602用于支持终端160执行图5中的步骤S506、S507、S508和S512。可选的,接收模块1602还用于支持终端160执行图5中的步骤S514。
或者,发送模块1601用于支持终端160执行图6中的步骤S601和S605;接收模块1602用于支持终端160执行图6中的步骤S604和S608。可选的,接收模块1602还用于支持终端160执行图6中的步骤S610。
或者,发送模块1601用于支持终端160执行图8中的步骤S801和S805;接收模块1602用于支持终端160执行图8中的步骤S804和S808。
或者,发送模块1601用于支持终端160执行图9中的步骤S901和S905;接收模块1602用于支持终端160执行图9中的步骤S904、S909和S910。
或者,发送模块1601用于支持终端160执行图10中的步骤S1001和S1005;接收模块1602用于支持终端160执行图10中的步骤S1004和S1008。
或者,发送模块1601用于支持终端160执行图中的步骤S1201、S1205和S1206;接收模块1602用于支持终端160执行图中的步骤S1204和S1210。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
以采用集成的方式划分各个功能模块的情况下,图17示出了上述实施例中所涉及的终端170的一种可能的结构示意图。如图17所示,终端170包括通信模块1701。其中,通信模块1701用于执行图16中发送模块1601和接收模块1602的动作,具体可参考图16所示的实施例,在此不再赘述。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该终端以对应各个功能划分各个功能模块的形式来呈现,或者,该终端以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以包括特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到终端160或者终端170可以采用图2所示的终端30形式。比如,图16中的发送模块1601和接收模块1602可以通过图2 的终端30中的处理器301和存储器302来实现。具体的,发送模块1601和接收模块1602可以通过由处理器301来调用存储器302中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图17中的通信模块1701可以通过图2的终端30中的处理器301和存储器302来实现,具体的,通信模块1701可以通过由处理器301来调用存储器302中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的终端可用于执行上述的数据传输方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
比如,在采用对应各个功能划分各个功能模块的情况下,图18示出了上述实施例中所涉及的接入网设备180的一种可能的结构示意图。如图18所示,接入网设备180包括:发送模块1801和接收模块1802。
其中,发送模块1801用于支持接入网设备180执行图3中的步骤S303、S304和S309,接收模块1802用于支持接入网设备180执行图3中的步骤S302和S308。可选的,发送模块1801还用于支持接入网设备180执行图3中的步骤S311。
或者,发送模块1801用于支持接入网设备180执行图5中的步骤S503、S504、S505和S511,接收模块1802用于支持接入网设备180执行图5中的步骤S502和S510。可选的,发送模块1801还用于支持接入网设备180执行图5中的步骤S513。
或者,发送模块1801用于支持接入网设备180执行图6中的步骤S603和S607,接收模块1802用于支持接入网设备180执行图6中的步骤S602和S606。可选的,发送模块1801还用于支持接入网设备180执行图6中的步骤S609。
或者,发送模块1801用于支持接入网设备180执行图8中的步骤S803和S807,接收模块1802用于支持接入网设备180执行图8中的步骤S802和S806。
或者,发送模块1801用于支持接入网设备180执行图9中的步骤S903、S907和S908,接收模块1802用于支持接入网设备180执行图9中的步骤S902和S906。
或者,发送模块1801用于支持接入网设备180执行图10中的步骤S1003和S1007,接收模块1802用于支持接入网设备180执行图10中的步骤S1002和S1006。
或者,发送模块1801用于支持接入网设备180执行图12中的步骤S1203和S1209,接收模块1802用于支持接入网设备180执行图12中的步骤S1202、S1207和S1208。
以采用集成的方式划分各个功能模块的情况下,图19示出了上述实施例中所涉及的接入网设备190的一种可能的结构示意图。如图19所示,接入网设备190包括通信模块1901。其中,通信模块1901用于执行图18中发送模块1801和接收模块1802的动作,具体可参考图18所示的实施例,在此不 再赘述。
在本申请实施例中,该接入网设备以对应各个功能划分各个功能模块的形式来呈现,或者,该接入网设备以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以包括特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到接入网设备180或者接入网设备190可以采用图2所示的接入网设备20形式。比如,图18中的发送模块1801和接收模块1802可以通过图2的接入网设备20中的处理器201和存储器202来实现。具体的,发送模块1801和接收模块1802可以通过由处理器201来调用存储器202中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图19中的通信模块1901可以通过图2的接入网设备20中的处理器201和存储器202来实现,具体的,通信模块1901可以通过由处理器201来调用存储器202中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的接入网设备可用于执行上述的数据传输方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (45)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    向接入网设备发送第一消息,所述第一消息包括终端使用的前导序列;
    接收所述接入网设备发送的第二消息,所述第二消息包括由所述接入网设备确认的所述前导序列;
    响应于所述第二消息,向所述接入网设备发送第三消息,所述第三消息包括所述终端的标识;
    接收所述接入网设备发送的第四消息,所述第四消息包括用于指示所述终端接入成功的竞争解决信息;其中,
    所述第二消息或第四消息中的任一项还包括所述终端的物理层下行调度信息或下行用户数据;或者,在接收所述第二消息后进一步接收所述接入网设备发送的所述终端的物理层下行调度信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第二消息还包括所述终端的物理层下行调度信息;
    在接收所述第二消息后,所述方法还包括:
    在所述物理层下行调度信息所指示的物理层资源上接收所述接入网设备发送的下行用户数据。
  3. 根据权利要求1所述的方法,其特征在于,在接收所述终端的物理层下行调度信息后,所述方法还包括:
    在所述物理层下行调度信息所指示的物理层资源上接收所述接入网设备发送的下行用户数据。
  4. 根据权利要求3所述的方法,其特征在于,所述第二消息还包括用于指示在所述第二消息和所述第三消息之间有下行用户数据传输的指示信息。
  5. 根据权利要求3或4所述的方法,其特征在于,所述物理层下行调度信息通过所述终端的标识进行加扰。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述下行用户数据通过所述终端的标识进行加扰。
  7. 根据权利要求5或6所述的方法,其特征在于,所述终端的标识包括所述终端的小区无线网络临时标识C-RNTI、或者所述终端的标识包括由所述终端的非接入层NAS标识所映射成的接入层标识。
  8. 根据权利要求1所述的方法,其特征在于,所述第二消息还包括下行用户数据,所述第四消息还包括用于指示所述下行用户数据属于所述终端的信息。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,在发送所述第一消息前,所述方法还包括:
    接收所述接入网设备发送的指示所述前导序列的命令。
  10. 根据权利要求1所述的方法,其特征在于,所述第四消息还包括所述终端的物理层下行调度信息;
    在接收所述第四消息后,所述方法还包括:
    在所述物理层下行调度信息所指示的物理层资源上接收所述接入网设备发送的下行用户数据。
  11. 根据权利要求1所述的方法,其特征在于,所述第四消息还包括下行用户数据。
  12. 一种数据传输方法,其特征在于,所述方法包括:
    向接入网设备发送第一消息,所述第一消息包括终端使用的前导序列;
    接收所述接入网设备发送的第二消息,所述第二消息包括由所述接入网设备确认的所述前导序列和所述终端的物理层上行调度信息;
    响应于所述第二消息,向所述接入网设备发送第三消息,所述第三消息包括所述终端的标识;
    接收所述接入网设备发送的第四消息,所述第四消息包括用于指示所述终端接入成功的竞争解决信息;其中,
    所述第三消息中还包括上行用户数据,所述上行用户数据在所述物理层上行调度信息所指示的物理层资源上发送;或者,在发送所述第三消息后进一步在所述物理层上行调度信息所指示的物理层资源上发送上行用户数据。
  13. 根据权利要求12所述的方法,其特征在于,所述上行用户数据通过所述终端的临时小区无线网络临时标识C-RNTI进行加扰。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一消息还包括第一指示信息,所述第一指示信息指示所述终端支持在随机接入过程中的上行用户数据传输或指示待传输的上行用户数据大小;
    其中,所述物理层上行调度信息是根据所述第一指示信息确定的。
  15. 根据权利要求14所述的方法,其特征在于,所述第一指示信息指示所述终端支持在随机接入过程中的上行用户数据传输,包括:
    所述第一指示消息由所述第一消息使用的随机接入资源的位置确定,其中,所述第一消息使用的随机接入资源的位置用于指示所述终端支持在随机接入过程中的上行用户数据传输。
  16. 根据权利要求14所述的方法,其特征在于,所述第一指示信息指示待传输的上行用户数据大小,包括:
    所述第一指示消息由所述第一消息使用的随机接入资源的位置确定,其中,所述第一消息使用的随机接入资源的位置用于指示所述上行用户数据的大小超过预设阈值。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述物理层上行调度信息包含第一物理层资源和第二物理层资源;所述第一物理层资源用于发送所述上行用户数据,所述第二物理层资源用于发送所述第三消息中的除所述上行用户数据外的其它信息。
  18. 根据权利要求17所述的方法,其特征在于,所述第二消息中还包括第二指示信息,所述第二指示信息用于指示所述第一物理层资源和所述第二物理层资源不连续。
  19. 根据权利要求12-18任一项所述的方法,其特征在于,所述第三消息 中还包括第三指示信息,所述第三指示信息指示在所述第三消息和所述第四消息之间有上行用户数据传输。
  20. 一种数据传输方法,其特征在于,所述方法包括:
    接收终端发送的第一消息,所述第一消息包括所述终端使用的前导序列;
    响应于所述第一消息,向所述终端发送第二消息,所述第二消息包括由接入网设备确认的所述前导序列;
    接收所述终端发送的第三消息,所述第三消息包括所述终端的标识;
    响应于所述第三消息,向所述终端发送第四消息,所述第四消息包括用于指示所述终端接入成功的竞争解决信息;其中,
    所述第二消息或第四消息中的任一项还包括所述终端的物理层下行调度信息或下行用户数据;或者,在发送所述第二消息后进一步发送所述终端发送的所述终端的物理层下行调度信息。
  21. 根据权利要求20所述的方法,其特征在于,所述第二消息还包括所述终端的物理层下行调度信息;
    在发送所述第二消息后,所述方法还包括:
    在所述物理层下行调度信息所指示的物理层资源上发送下行用户数据。
  22. 根据权利要求20所述的方法,其特征在于,在发送所述终端的物理层下行调度信息后,所述方法还包括:
    在所述物理层下行调度信息所指示的物理层资源上发送下行用户数据。
  23. 根据权利要求22所述的方法,其特征在于,所述第二消息还包括用于指示在所述第二消息和所述第三消息之间有下行用户数据传输的指示信息。
  24. 根据权利要求22或23所述的方法,其特征在于,所述物理层下行调度信息通过所述终端的标识进行加扰。
  25. 根据权利要求21-24任一项所述的方法,其特征在于,所述下行用户数据通过所述终端的标识进行加扰。
  26. 根据权利要求24或25所述的方法,其特征在于,所述终端的标识包括所述终端的小区无线网络临时标识C-RNTI、或者所述终端的标识包括由所述终端的非接入层NAS标识所映射成的接入层标识。
  27. 根据权利要求20所述的方法,其特征在于,所述第二消息还包括下行用户数据,所述第四消息还包括用于指示所述下行用户数据属于所述终端的信息。
  28. 根据权利要求21-27任一项所述的方法,其特征在于,在接收所述第一消息前,所述方法还包括:
    向所述终端发送指示所述前导序列的命令。
  29. 根据权利要求20所述的方法,其特征在于,所述第四消息还包括所述终端的物理层下行调度信息;
    在发送所述第四消息后,所述方法还包括:
    在所述物理层下行调度信息所指示的物理层资源上发送下行用户数据。
  30. 根据权利要求20所述的方法,其特征在于,所述第四消息还包括下 行用户数据。
  31. 一种数据传输方法,其特征在于,所述方法包括:
    接收终端发送的第一消息,所述第一消息包括所述终端使用的前导序列;
    响应于所述第一消息,向所述终端发送第二消息,所述第二消息包括由接入网设备确认的所述前导序列和所述终端的物理层上行调度信息;
    接收所述终端发送的第三消息,所述第三消息包括所述终端的标识;
    响应于所述第三消息,向所述终端发送第四消息,所述第四消息包括用于指示所述终端接入成功的竞争解决信息;其中,
    所述第三消息中还包括上行用户数据,所述上行用户数据在所述物理层上行调度信息所指示的物理层资源上发送;或者,在接收所述第三消息后进一步在所述物理层上行调度信息所指示的物理层资源上接收上行用户数据。
  32. 根据权利要求31所述的方法,其特征在于,所述上行用户数据通过所述终端的临时小区无线网络临时标识C-RNTI进行加扰。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第一消息还包括第一指示信息,所述第一指示信息指示所述终端支持在随机接入过程中的上行用户数据传输或指示待传输的上行用户数据大小;
    其中,所述物理层上行调度信息是根据所述第一指示信息确定的。
  34. 根据权利要求33所述的方法,其特征在于,所述第一指示信息指示所述终端支持在随机接入过程中的上行用户数据传输,包括:
    所述第一指示消息由所述第一消息使用的随机接入资源的位置确定,其中,所述第一消息使用的随机接入资源的位置用于指示所述终端支持在随机接入过程中的上行用户数据传输。
  35. 根据权利要求33所述的方法,其特征在于,所述第一指示信息指示待传输的上行用户数据大小,包括:
    所述第一指示消息由所述第一消息使用的随机接入资源的位置确定,其中,所述第一消息使用的随机接入资源的位置用于指示所述上行用户数据的大小超过预设阈值。
  36. 根据权利要求31-35任一项所述的方法,其特征在于,所述物理层上行调度信息包含第一物理层资源和第二物理层资源;所述第一物理层资源用于发送所述上行用户数据,所述第二物理层资源用于发送所述第三消息中的除所述上行用户数据外的其它信息。
  37. 根据权利要求36所述的方法,其特征在于,所述第二消息中还包括第二指示信息,所述第二指示信息用于指示所述第一物理层资源和所述第二物理层资源不连续。
  38. 根据权利要求31-37任一项所述的方法,其特征在于,所述第三消息中还包括第三指示信息,所述第三指示信息指示在所述第三消息和所述第四消息之间有上行用户数据传输。
  39. 一种终端,其特征在于,所述终端包括:发送模块和接收模块;
    所述发送模块,用于向接入网设备发送第一消息,所述第一消息包括终端 使用的前导序列;
    所述接收模块,用于接收所述接入网设备发送的第二消息,所述第二消息包括由所述接入网设备确认的所述前导序列;
    所述发送模块,还用于响应于所述第二消息,向所述接入网设备发送第三消息,所述第三消息包括所述终端的标识;
    所述接收模块,还用于接收所述接入网设备发送的第四消息,所述第四消息包括用于指示所述终端接入成功的竞争解决信息;其中,
    所述第二消息或第四消息中的任一项还包括所述终端的物理层下行调度信息或下行用户数据;或者,所述接收模块,还用于在接收所述第二消息后进一步接收所述接入网设备发送的所述终端的物理层下行调度信息。
  40. 一种终端,其特征在于,所述终端包括:发送模块和接收模块;
    所述发送模块,用于向接入网设备发送第一消息,所述第一消息包括终端使用的前导序列;
    所述接收模块,用于接收所述接入网设备发送的第二消息,所述第二消息包括由所述接入网设备确认的所述前导序列和所述终端的物理层上行调度信息;
    所述发送模块,还用于响应于所述第二消息,向所述接入网设备发送第三消息,所述第三消息包括所述终端的标识;
    所述接收模块,还用于接收所述接入网设备发送的第四消息,所述第四消息包括用于指示所述终端接入成功的竞争解决信息;其中,
    所述第三消息中还包括上行用户数据,所述上行用户数据在所述物理层上行调度信息所指示的物理层资源上发送;或者,所述发送模块,还用于在发送所述第三消息后进一步在所述物理层上行调度信息所指示的物理层资源上发送上行用户数据。
  41. 一种接入网设备,其特征在于,所述接入网设备包括:接收模块和发送模块;
    所述接收模块,用于接收终端发送的第一消息,所述第一消息包括所述终端使用的前导序列;
    所述发送模块,用于响应于所述第一消息,向所述终端发送第二消息,所述第二消息包括由接入网设备确认的所述前导序列;
    所述接收模块,还用于接收所述终端发送的第三消息,所述第三消息包括所述终端的标识;
    所述发送模块,还用于响应于所述第三消息,向所述终端发送第四消息,所述第四消息包括用于指示所述终端接入成功的竞争解决信息;其中,
    所述第二消息或第四消息中的任一项还包括所述终端的物理层下行调度信息或下行用户数据;或者,所述发送模块,还用于在发送所述第二消息后进一步发送所述终端发送的所述终端的物理层下行调度信息。
  42. 一种接入网设备,其特征在于,所述接入网设备包括:接收模块和发送模块;
    所述接收模块,用于接收终端发送的第一消息,所述第一消息包括所述终端使用的前导序列;
    所述发送模块,用于响应于所述第一消息,向所述终端发送第二消息,所述第二消息包括由接入网设备确认的所述前导序列和所述终端的物理层上行调度信息;
    所述接收模块,还用于接收所述终端发送的第三消息,所述第三消息包括所述终端的标识;
    所述发送模块,还用于响应于所述第三消息,向所述终端发送第四消息,所述第四消息包括用于指示所述终端接入成功的竞争解决信息;其中,
    所述第三消息中还包括上行用户数据,所述上行用户数据在所述物理层上行调度信息所指示的物理层资源上发送;或者,所述接收模块,还用于在接收所述第三消息后进一步在所述物理层上行调度信息所指示的物理层资源上接收上行用户数据。
  43. 一种终端,其特征在于,包括:处理器、存储器和总线;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述终端运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述终端执行如权利要求1-11中任意一项所述的数据传输方法;或者,以使所述终端执行如权利要求12-19中任意一项所述的数据传输方法。
  44. 一种接入网设备,其特征在于,包括:处理器、存储器和总线;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述接入网设备运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述接入网设备执行如权利要求20-30中任意一项所述的数据传输方法;或者,以使所述接入网设备执行如权利要求31-38中任意一项所述的数据传输方法。
  45. 一种数据传输系统,其特征在于,所述数据传输系统包括如权利要求39所述的终端和如权利要求41所述的接入网设备;
    或者,所述数据传输系统包括如权利要求40所述的终端和如权利要求42所述的接入网设备;
    或者,所述数据传输系统包括如权利要求43所述的终端和如权利要求44所述的接入网设备。
PCT/CN2017/082035 2017-04-26 2017-04-26 数据传输方法、设备及系统 WO2018195823A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780089928.3A CN110547034B (zh) 2017-04-26 2017-04-26 数据传输方法、设备及系统
PCT/CN2017/082035 WO2018195823A1 (zh) 2017-04-26 2017-04-26 数据传输方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/082035 WO2018195823A1 (zh) 2017-04-26 2017-04-26 数据传输方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2018195823A1 true WO2018195823A1 (zh) 2018-11-01

Family

ID=63917868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082035 WO2018195823A1 (zh) 2017-04-26 2017-04-26 数据传输方法、设备及系统

Country Status (2)

Country Link
CN (1) CN110547034B (zh)
WO (1) WO2018195823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885735A (zh) * 2020-06-30 2020-11-03 广东小天才科技有限公司 一种上行调度指示方法、终端设备及网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200694A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种通信系统中的随机接入方法及装置
CN103458528A (zh) * 2012-05-29 2013-12-18 华为技术有限公司 基于竞争的随机接入方法及设备
CN105611646A (zh) * 2014-11-07 2016-05-25 夏普株式会社 传输随机接入响应方法以及基站和用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123516B (zh) * 2011-03-31 2013-11-06 电信科学技术研究院 一种基于多个上行定时提前量的随机接入方法和设备
CN103796315B (zh) * 2012-11-02 2018-12-11 南京中兴软件有限责任公司 用户设备专用搜索空间的物理资源块配置方法和装置
CA2943148C (en) * 2014-03-21 2019-09-10 Huawei Technologies Co., Ltd. Random access response method, base station, and terminal
CN105101223A (zh) * 2014-05-16 2015-11-25 北京三星通信技术研究有限公司 一种在免许可频段上进行数据传输的方法和设备
CN106385712B (zh) * 2015-07-27 2021-07-23 中兴通讯股份有限公司 一种数据传输方法及系统
CN106470381A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 随机接入的处理方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200694A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种通信系统中的随机接入方法及装置
CN103458528A (zh) * 2012-05-29 2013-12-18 华为技术有限公司 基于竞争的随机接入方法及设备
CN105611646A (zh) * 2014-11-07 2016-05-25 夏普株式会社 传输随机接入响应方法以及基站和用户设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885735A (zh) * 2020-06-30 2020-11-03 广东小天才科技有限公司 一种上行调度指示方法、终端设备及网络设备
CN111885735B (zh) * 2020-06-30 2023-10-31 广东小天才科技有限公司 一种上行调度指示方法、终端设备及网络设备

Also Published As

Publication number Publication date
CN110547034B (zh) 2022-07-29
CN110547034A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
US11638304B2 (en) Random access procedure(s) for radio system
US10383152B2 (en) Random access procedure for machine type communication
EP3573353A1 (en) Communication method and device
US10904903B2 (en) Scheduling UEs with mixed TTI length
WO2017024998A1 (zh) 一种数据传输方法及装置
JP2018514097A (ja) 拡張カバレッジサポートのためのランダムアクセスプロシージャ
WO2017025066A1 (zh) 一种数据传输方法及装置
CN110545167B (zh) 信息传输的方法及装置
JP2022104989A (ja) 指示情報送信方法および装置
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
CN105191458A (zh) 一种发送、接收系统信息的方法及装置
JP2019515600A (ja) リソース判定方法、関連デバイスおよびシステム
WO2020164622A1 (zh) 一种随机接入方法和装置
US20220224478A1 (en) Communication method, device, and system
US20150230215A1 (en) Common Search Space In Secondary ENBS
TWI678939B (zh) 一種資訊傳輸方法及裝置
CN110999436A (zh) 一种系统消息的指示方法、装置及系统
US11956792B2 (en) Data transmission method, control information sending method, and device
US20210195518A1 (en) Reference signal sending method, reference signal receiving method, device, and system
KR20230110744A (ko) 우선 트래픽에 대응하는 통신 장치 및 통신 방법
US20180270789A1 (en) Updating Apparatus and Method for Access Control Parameter and Communication System
US20230354404A1 (en) Method and apparatus for determining number of coded modulation symbols, and communications device
WO2018195823A1 (zh) 数据传输方法、设备及系统
WO2018228562A1 (zh) 一种通信方法及装置
KR20230128028A (ko) 사용자 장비에 대한 향상된 불연속 수신 및 절전

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907511

Country of ref document: EP

Kind code of ref document: A1