WO2018195738A1 - 一种混合动力车辆的控制方法和系统 - Google Patents

一种混合动力车辆的控制方法和系统 Download PDF

Info

Publication number
WO2018195738A1
WO2018195738A1 PCT/CN2017/081758 CN2017081758W WO2018195738A1 WO 2018195738 A1 WO2018195738 A1 WO 2018195738A1 CN 2017081758 W CN2017081758 W CN 2017081758W WO 2018195738 A1 WO2018195738 A1 WO 2018195738A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
travel
route
power
mode
Prior art date
Application number
PCT/CN2017/081758
Other languages
English (en)
French (fr)
Inventor
李卓希
Original Assignee
李卓希
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李卓希 filed Critical 李卓希
Priority to PCT/CN2017/081758 priority Critical patent/WO2018195738A1/zh
Publication of WO2018195738A1 publication Critical patent/WO2018195738A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information

Definitions

  • the present invention relates to the field of traffic control technologies, and in particular, to a control method and system for a hybrid vehicle.
  • Hybrid vehicles are well-adapted to people's complex traffic conditions and reduced energy consumption.
  • a hybrid vehicle drives driving by combining at least two different power sources, which typically include an engine that obtains torque by burning fuel such as gasoline and an electric motor that obtains torque by battery power.
  • the hybrid vehicle when the hybrid vehicle is running at a low speed or a low speed, the hybrid vehicle obtains a driving force by the electric motor, and when the hybrid vehicle is in a normal driving phase, the hybrid vehicle obtains a driving force through the engine, and the hybrid vehicle can still Switching between different driving modes to achieve high efficiency driving, it can be seen that the hybrid vehicle uses the engine as the main power source and the electric motor as the auxiliary power source.
  • the technical problem to be solved by the present invention is that the hybrid vehicle of the prior art can only switch between different power driving modes for the traveling speed of the vehicle, which cannot be used for the driving line mileage data and the battery of the vehicle.
  • the reasonable switching configuration of the power driving mode in the power supply cannot effectively improve the energy utilization efficiency of the hybrid vehicle and extend the mileage of the hybrid vehicle.
  • an embodiment of the present invention provides a control method for a hybrid vehicle, where the method includes:
  • acquiring data about a travel route planned by the vehicle includes obtaining a route route, a route route, and travel time data regarding the travel route by setting start and end point information of the vehicle;
  • the route is a length of the journey between the start point and the end point;
  • determining a load distribution condition in the travel line includes acquiring, in a different area of the travel line, that the vehicle is traveling in an electric energy consumption mode, wherein the vehicle is in each of the different areas The output power consumption value of the electrical energy storage;
  • the electric energy consumption mode refers to a mode in which the electric motor drives the vehicle to travel only when the electric energy storage device outputs electric energy to the electric motor;
  • determining a vehicle actual load threshold condition of different areas in the travel line includes acquiring a running power value of the vehicle during actual driving of the vehicle, and acquiring, by using a least square method, the driving power value a first fitting curve to calculate an area A of the first fitting curve under each of the different regions;
  • a second fitting curve regarding a load distribution situation in the driving line is acquired by a least square method, and a region area B of the second fitting curve in each of the different regions is calculated;
  • a power drive mode of the vehicle in each of the different zones is determined based on a comparison between the area areas A and B.
  • an embodiment of the present invention further provides a control system for a hybrid vehicle, wherein the system includes a control unit, a position navigation unit, and a driving mode switching unit;
  • the location navigation unit is capable of acquiring travel route data regarding the vehicle plan
  • the control unit is capable of calculating a load distribution situation in the travel line according to the travel route data of the vehicle plan, and calculating an actual load threshold condition of the vehicle in different areas of the travel line;
  • the driving mode switching unit is capable of switching the hybrid vehicle in a power consumption mode or a power retention mode based on a load distribution condition in the travel line and an actual load threshold condition of the different area;
  • the location navigation unit is an external or built-in navigation terminal capable of generating, as the travel route data, a route route, a route route and a display time of the vehicle travel according to the input start point and the end point of the vehicle;
  • the system controls an electrical energy storage of the hybrid vehicle to output electrical energy to a motor to drive the vehicle to travel;
  • the system controls an internal combustion engine of the hybrid vehicle to drive the vehicle to travel;
  • control unit is capable of acquiring an output power consumption value of the electric energy storage of the vehicle in each of the different areas when the vehicle is traveling in the electric energy consumption mode;
  • control unit is further capable of obtaining the actual value of the different areas according to the highest power value, the lowest power value and the average power value of the vehicle traveling in each of different areas of the driving line, and by least squares method Load threshold condition.
  • the present invention provides a control method and system for a hybrid vehicle by the above technical solution, which obtains route and distance data of a planned travel of the vehicle, and calculates the vehicle to complete the plan based on the power consumption mode of the battery in the vehicle.
  • the different work modes of different power drive modes ensure that the hybrid vehicle can switch between different power drive modes according to the consumption rate of its own energy when completing the scheduled travel, and can also improve the energy of the vehicle. Take advantage of efficiency and smooth ride.
  • FIG. 1 is a schematic flow chart of a control method of a hybrid vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a control system of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for controlling a hybrid vehicle according to an embodiment of the present invention.
  • the method includes:
  • the hybrid vehicle may be a plug-in hybrid vehicle including a powertrain including an internal combustion engine and an electric motor using fossil fuel such as gasoline or diesel, wherein the internal combustion engine and the electric combustion engine At least one wheel connection in the vehicle that achieves travel of the vehicle by applying torque to the connected wheels to rotate the wheel;
  • the electric motor may be one or more, the electric motor being coupled to at least one of the wheels of the vehicle,
  • the vehicle is driven by applying torque to the connected vehicle to rotate the wheel, and the motor is also connected to an electric energy storage such as a battery or a battery pack, and the electric energy storage device operates by outputting corresponding power.
  • the electrical energy storage device is also coupled to the internal combustion engine by an energy converter to convert a portion of the mechanical energy output by the internal combustion engine during operation into electrical energy and stored in the electrical energy storage.
  • the hybrid vehicle can have two modes of operation, an internal combustion engine drive mode and a motor drive mode.
  • an internal combustion engine drive mode the internal combustion engine combusts fossil fuels and converts chemical energy into mechanical energy and transmits it to the wheels to propel the vehicle; in the motor drive mode, the electric motor converts electrical energy in the electrical energy storage into mechanical energy And passed to the wheel to drive the vehicle.
  • the two different vehicle drive modes respectively use different energy sources to drive the wheels, and correspondingly, the hybrid vehicle can travel in the power consumption mode and the power maintenance mode.
  • the hybrid vehicle uses only electrical energy from the electrical energy storage, and the electrical energy in the electrical energy storage is continuously consumed; in the electrical energy retention mode, the hybrid vehicle is only used. Energy from the burning of fossil fuels, electrical energy stored in the electrical energy store It is not consumed, and the electrical energy storage can maintain a certain amount of power.
  • the hybrid vehicle is also provided with a position navigation unit that is capable of monitoring the current location of the vehicle and the travel path of the vehicle.
  • the location navigation unit may be an external location navigation unit such as a smart mobile terminal such as a mobile phone, or a built-in location navigation unit provided by the vehicle, and the location navigation unit performs data communication with the control unit of the hybrid vehicle through the interface. .
  • the location navigation unit Through the location navigation unit, the user can obtain data such as the current location of the vehicle and the destination of the input vehicle.
  • the driving route data of the vehicle can be planned in an optimized manner, and the driving route data can be but not limited to a starting point, an ending point, a path line, a line distance, and a driving time. Etc., wherein the route is the length of the journey between the end points of the starting point value.
  • the location navigation unit transmits the planned travel route data to the control unit, and the control unit acquires, according to the received travel route data, a travel characteristic corresponding to different regions of the hybrid vehicle in the travel route, the travel feature is Refers to a series of data distributions of speeds of the hybrid vehicle in different regions, and the speed distribution of the hybrid vehicle in different regions of the driving route is affected by the road conditions or traffic facilities of the driving route.
  • the control unit determines the driving characteristics of the hybrid vehicle in different areas of the driving line, calculate the electric energy driving mileage of the hybrid vehicle in the different area based on the driving characteristic, where the electric driving mileage refers to the hybrid vehicle The number of miles traveled by the vehicle in the corresponding area when operating in the power consumption mode.
  • the control unit converts the electric power mileage of different areas in the driving line into power consumption power values corresponding to different areas, where the electric power consumption power value refers to the electric vehicle driving the electric energy in the electric energy consumption mode The power value output by the electric energy storage device when the mileage is traveled, so that the control unit can obtain the power consumption distribution of the electric energy storage output when the electric energy consumption mode is operated in different regions of the travel line.
  • the hybrid vehicle acquires a current vehicle load distribution state in real time during driving, where the load distribution condition refers to a driving power value of the hybrid vehicle in an electric energy consumption mode or an electric energy holding mode, and the driving power value includes The highest power value, the lowest power value, and the average power value of the vehicle.
  • the driving power value can be obtained by the current driving speed of the vehicle and the traffic environment.
  • the control unit is configured according to the highest power value, the lowest power value, and the average power value.
  • the control unit saves the calculated area area A in the storage unit according to the distribution order of the different areas for the next step processing.
  • control unit sets the load distribution in the travel line obtained in S101 in the same coordinate system in the form of a power consumption value distribution, and adopts the same method as in S102, and several of the distributions are used.
  • the power consumption value is calculated by least squares, a fitting curve is obtained for the plurality of power consumption values, and the fitting curve is divided into regions according to the different regions, thereby calculating each of the different regions in the The corresponding area B in the coordinate system, and the control unit saves the calculated area B in the storage unit according to the distribution order of the different areas.
  • control unit sequentially acquires data of area A and area B for the same area from the storage unit, and compares the area A and the area B, and if the area B is smaller than the area A, it indicates that the mixing
  • the power consumed by the power vehicle in the power consumption mode in the area of the driving line is less than the power consumed by the power consumption mode, and the control unit sends the first to the driving mode switching unit of the hybrid vehicle.
  • the driving mode switching unit After the driving mode switching unit receives the first instruction, indicating that the current power driving mode of the hybrid vehicle is switched to the power consumption mode; if the area B is greater than or equal to the area A, it indicates that the hybrid vehicle is in the The power consumed by the area in the driving line is greater than the power consumed by the power consumption mode, and the control unit sends a second command to the driving mode switching unit of the hybrid vehicle. After receiving the second instruction, the driving mode switching unit indicates that the hybrid vehicle is currently Power driving mode is switched to the hold mode, thereby reducing power consumption of the hybrid vehicle travel.
  • the control method of the hybrid vehicle calculates the route of the vehicle and the route data by calculating the vehicle, and calculates the vehicle based on the power consumption mode of the battery in the vehicle.
  • the respective work distribution situations of the different power driving modes wherein the control unit can perform the hybrid vehicle differently according to the comparison processing result between the actual driving data of the vehicle and the calculated expected driving data.
  • the power drive mode is switched to ensure that the hybrid vehicle can always travel in an energy-optimized manner during driving, thereby improving the energy utilization efficiency and running stability of the vehicle.
  • the hybrid vehicle may be a rechargeable hybrid vehicle, and the hybrid vehicle includes a powertrain.
  • the powertrain includes an internal combustion engine and an electric motor using fossil fuel such as gasoline or diesel, and the electric motor is also connected to an electric energy storage such as a battery or a battery pack, and the electric energy storage device operates the electric motor by outputting corresponding power. Therefore, the hybrid vehicle can have two modes of operation, an internal combustion engine drive mode and a motor drive mode.
  • the internal combustion engine burns fossil fuel and converts chemical energy into mechanical energy and transmits to In the wheel, thereby driving the vehicle; in the motor drive mode, the electric motor converts the electrical energy in the electrical energy storage into mechanical energy and transmits it to the wheel, thereby propelling the vehicle to travel.
  • the hybrid vehicle Since the hybrid vehicle has the above two driving modes, whether the hybrid vehicle needs to consume electric energy for the electric energy storage can also be divided into two modes of an electric energy consumption mode and an electric energy retention mode.
  • the hybrid vehicle In the power consumption mode, the hybrid vehicle uses only electrical energy from the electrical energy storage, and the electrical energy in the electrical energy storage is continuously consumed; in the electrical energy maintenance mode, the hybrid vehicle uses only fossil fuel. The energy generated during combustion, the electrical energy stored in the electrical energy storage is not consumed, and the electrical energy storage is capable of maintaining a certain amount of electrical capacity.
  • the hybrid vehicle also includes a position navigation unit that is capable of monitoring the current location of the vehicle and the travel path of the vehicle.
  • the location navigation unit may be an external location navigation unit such as a smart mobile terminal such as a mobile phone, or a built-in location navigation unit provided by the vehicle. Through the location navigation unit, the user can obtain data such as the current location of the vehicle and the destination of the input vehicle.
  • the hybrid vehicle also includes a control unit and a storage unit.
  • the control unit is configured to control the position navigation unit to implement planning of a vehicle travel route, and calculate a vehicle travel line load distribution and a vehicle actual load threshold.
  • the storage unit is configured to save the position navigation unit input and output data and the calculation data result in the control unit.
  • the hybrid vehicle further includes a driving mode switching unit capable of causing the vehicle to perform a power consumption mode or a power retention while traveling according to the vehicle travel line load distribution data and the vehicle real-time load threshold data calculated by the control unit. Mode switching.
  • the control system of the hybrid vehicle calculates the route and the route data of the planned travel of the vehicle, and calculates, based on the power consumption mode of the battery in the vehicle, that the vehicle is different when completing the planned travel route.
  • the hybrid vehicle can always travel in an energy-optimized manner during driving, thereby improving the energy efficiency and smooth running of the vehicle.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

一种混合动力车辆的控制方法,方法包括:获取关于车辆规划的行驶线路的数据,确定行驶线路中的负荷分布情况(S101);确定行驶线路中不同区域的车辆实际负荷阈值情况(S102);基于行驶线路中的负荷分布情况和不同区域的车辆实际负荷阈值情况,确定车辆在对应区域的动力驱动模式(S103)。提供一种高效节能和利于车辆平稳行驶的混合动力车辆的控制方法。

Description

一种混合动力车辆的控制方法和系统 技术领域
本发明涉及交通控制技术领域,尤其涉及一种混合动力车辆的控制方法和系统。
背景技术
随着技术的发展,汽车已经成为人们出行的重要交通工具。而混合动力车辆能够很好地适应城市复杂的交通情况以及降低能源消耗,其越来越受人们的青睐。混合动力车辆是通过组合至少两种不同的动力源来驱动行驶,其通常包括通过燃烧汽油等燃料获得转矩的发动机和通过蓄电池电力获得转矩的电动机。通常地,当混合动力车辆在启动或者低速行驶时,混合动力车辆通过电动机获得驱动力,而当混合动力车辆在进入正常行驶阶段,混合动力车辆通过发动机获得驱动力,并且混合动力车辆还能在不同行驶模式之间进行转换,从而实现其高效率行驶,可见混合动力车辆是将发动机作为主要动力源而将电动机作为辅助动力源。
目前的混合动力车辆通常都是根据车辆当前的行驶速度进行不同动力源驱动模式的转换,其并没有考虑混合动力车辆中蓄电池的电量与车辆规划行驶线路里程数据之间的关系,从而不能实现混合动力车辆电动机工作模式依据线路数据的切换。
发明内容
针对上述现有技术存在的缺陷,本发明所要解决的技术问题在于现有技术的混合动力车辆只能针对车辆的行驶速度进行不同动力驱动模式的切换,其不能针对车辆的行驶线路里程数据和蓄电池中的电量进行动力驱动模式的合理切换配置,不能有效地提高混合动力车辆的能源利用效率和延长混合动力车辆的行驶里程。
为了解决上述技术问题,本发明实施例提供一种混合动力车辆的控制方法,其特征在于,所述方法包括:
S101、获取关于车辆规划的行驶线路的数据,确定所述行驶线路中的负荷分布情况;
S102、确定所述行驶线路中不同区域的车辆实际负荷阈值情况;
S103、基于所述行驶线路中的所述负荷分布情况和所述不同区域的所述车辆实际负荷阈值情况,确定所述车辆在对应区域的动力驱动模式;
进一步,在S101中,获取关于车辆规划的行驶线路的数据包括通过设定所述车辆的起点和终点信息,得到关于所述行驶线路的路径线路、线路路程和行驶时间数据;
其中所述线路路程是关于所述起点和终点之间的路程长度;
进一步,在S101中,确定所述行驶线路中的负荷分布情况包括在所述行驶线路的不同区域中获取所述车辆以电能消耗模式行驶时,所述车辆在所述不同区域的每个中的电能存储器的输出功率消耗值;
其中,所述电能消耗模式是指所述车辆仅在所述电能存储器向电动机输出电能的情况下,所述电动机驱动所述车辆行驶的模式;
进一步,在S102中,确定所述行驶线路中不同区域的车辆实际负荷阈值情况包括在所述车辆实际行驶过程中获取所述车辆的行驶功率值,并通过最小二乘法获取关于所述行驶功率值的第一拟合曲线,以计算出所述第一拟合曲线在每个所述不同区域下的区域面积A;
进一步,在S103中,通过最小二乘法获取关于所述行驶线路中的负荷分布情况的第二拟合曲线,并计算所述第二拟合曲线在每个所述不同区域下得区域面积B;
基于所述区域面积A和B之间的比较情况,确定所述车辆在每个所述不同区域的动力驱动模式。
相应地,本发明实施例还提供一种混合动力车辆的控制系统,其特征在于,所述系统包括控制单元、位置导航单元和驱动模式切换单元;
其中,所述位置导航单元能够获取关于所述车辆规划的行驶线路数据;
所述控制单元能够根据所述车辆规划的行驶线路数据计算所述行驶线路中的负荷分布情况,以及计算所述车辆在所述行驶线路中不同区域的实际负荷阈值情况;
所述驱动模式切换单元能够基于所述行驶线路中的负荷分布情况和所述不同区域的实际负荷阈值情况,使所述混合动力车辆在电量消耗模式或者电量保持模式的切换;
进一步,所述位置导航单元为外置式或者内置式导航终端,其能够根据输入的所述车辆的起点和终点生成关于所述车辆行驶的路径线路、线路路程和显示时间作为所述行驶线路数据;
进一步,在所述电量消耗模式下,所述系统控制所述混合动力车辆的电能存储器向电动机输出电能以驱动所述车辆行驶;
在所述电能保持模式下,所述系统控制所述混合动力车辆的内燃发动机驱动所述车辆行驶;
进一步,所述控制单元能够获取所述车辆以所述电能消耗模式行驶时,所述车辆在所述不同区域的每个中的电能存储器的输出功率消耗值;
进一步,所述控制单元还能够根据所述车辆在所述行驶线路不同区域的每一个中行驶的最高功率值、最低功率值和平均功率值,并通过最小二乘法得出所述不同区域的实际负荷阈值情况。
本发明通过上述技术方案提供一种混合动力车辆的控制方法和系统,该方法和系统获取车辆规划行驶的线路和路程数据,并基于车辆中蓄电池的电量消耗模式来计算出该车辆在完成该规划行驶的线路时,不同动力驱动模式各自的工作分配情况,从而保证混合动力车辆在完成预定路程行驶时,能够依据自身能量的消耗速率来进行不同动力驱动模式的切换,同时也能够提高车辆的能源利用效率和行驶平稳性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种混合动力车辆的控制方法的流程示意图;
图2是本发明实施例提供的一种混合动力车辆的控制系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,为本发明实施例提供的一种混合动力车辆的控制方法的流程示意图,在本发明实施例中,所述方法包括:
S101、获取关于车辆规划的行驶线路的数据,确定该行驶线路中的负荷分布情况。
具体而言,该混合动力车辆可为充电式混合动力车辆,该混合动力车辆包括动力总成,该动力总成包括使用汽油或者柴油等化石燃料的内燃发动机和电动机,其中,该内燃发动机与该车辆中的至少一个车轮连接,其通过向连接的车轮施加转矩以使车轮转动,从而实现该车辆的行驶;该电动机可为一个或者多个,该电动机与该车辆中的至少一个车轮连接,同样地通过向连接的车辆施加转矩以使车轮转动,从而实现该车辆的行驶,该电动机还与蓄电池或者蓄电池组等电能存储器相连接,该电能存储器通过输出相应的功率来使电动机运转,同时该电能存储器还通过以能量转换器与该内燃发动机进行连接,从而将该内燃发动机在运转时输出的一部分机械能转换成电能并存储在该电能存储器中。对应地,该混合动力车辆能够具有内燃发动机驱动模式和电动机驱动模式这两种模式下运动。在内燃发动机驱动模式中,该内燃发动机燃烧化石燃料,并将化学能转化为机械能并传递至车轮中,从而推动车辆行驶;在电动机驱动模式中,该电动机将该电能存储器中的电能转化为机械能并传递至车轮中,从而推动车辆行驶。
上述两种不同的车辆驱动模式分别采用不同的能量来源来驱动车轮运转,对应地,该混合动力车辆能够在电能消耗模式和电能保持模式下进行行驶。具体地,在该电能消耗模式中,该混合动力车辆只使用来自该电能存储器中的电能,此时该电能存储器中的电能会不断被消耗;在该电能保持模式下,该混合动力车辆仅使用来自化石燃料燃烧时产生的能量,该电能存储器中储存的电能 并不会被消耗,该电能存储器能够保持特定容量的电量。
该混合动力车辆还设置有位置导航单元,该位置导航单元能够监测该车辆当前所处的位置以及该车辆的行驶路径。优选地,该位置导航单元可以是手机等智能移动终端这类外置型位置导航单元,或者是车辆自带的内置型位置导航单元,该位置导航单元通过接口与混合动力车辆的控制单元进行数据通信。用户能够通过该位置导航单元获取车辆当前所在的位置以及输入车辆预期前往的目的地等数据。当该位置导航单元接收到用户输入的行驶数据后,能够以最优化等方式规划出该车辆的行驶线路数据,该行驶线路数据可为但不限于起点、终点、路径线路,线路路程和行驶时间等,其中,该线路路程是关于该起点值该终点之间的路程长度。
该位置导航单元将规划生成的该行驶线路数据传送到控制单元中,该控制单元基于接收到的行驶线路数据获取关于该混合动力车辆在该行驶线路中不同区域对应的行驶特征,该行驶特征是指该混合动力车辆在不同区域中关于速度的一系列数据分布状况,该混合动力车辆在该行驶线路不同区域的速度分布状况是受该行驶线路的路况或者交通设施影响的。该控制单元确定该混合动力车辆在该行驶线路中不同区域的行驶特征后,基于该行驶特征计算出该混合动力车辆在该不同区域中的电能行驶里程,该电能行驶里程是指该混合动力车辆以该电能消耗模式运作时,车辆在该对应区域中的行驶里程数。随后,该控制单元将该行驶线路中不同区域的电能行驶里程转换为对应不同区域中的电能消耗功率值,该电能消耗功率值是指该混合动力车辆在该电能消耗模式运作下,行驶该电能行驶里程时该电能存储器输出的功率值,由此该控制单元就能后获取在该行驶线路中不同区域的进行电能消耗模式运作时,该电能存储器输出的功率消耗分布状况。
S102、确定该行驶线路中不同区域的车辆实际负荷阈值情况。
具体而言,该混合动力车辆在行驶过程中实时获取当前车辆行驶负荷分布状态,该负荷分布状况是指该混合动力车辆在电能消耗模式或者电能保持模式下的行车功率值,该行车功率值包括该车辆行驶的最高功率值、最低功率值和平均功率值。其中,该行车功率值可通过该车辆当前的行车速度以及行车交通环境得出。具体地,该控制单元依据该最高功率值、最低功率值和平均功率值 在同一坐标系中建议关于该三者在对应区域中的功率值分布情况,并采用最小二乘法计算出关于该最高功率值、最低功率值和平均功率值三者各自的拟合曲线,通过计算该三个拟合曲线各自的斜率,并以斜率最大的拟合直线作为该车辆行驶的功率判断阈值曲线,同时将该功率判断阈值曲线按照该不同区域进行区域划分,从而计算出对该不同区域中的每一个在该坐标系下对应的面积A,该控制单元将该计算得出的区域面积A按照该不同区域的分布顺序保存在存储单元中,以用于下一步骤处理。
S103、基于该行驶线路中的负荷分布情况和该不同区域的车辆实际负荷阈值情况,确定车辆在对应区域的动力驱动模式。
具体而言,该控制单元将在S101中获得的该行驶线路中的负荷分布情况,以功率消耗值分布的形式设置在同一坐标系中,并采用与S102中相同方法,对该分布的若干个功率消耗值采用最小二乘进行计算,获得关于该若干个功率消耗值的拟合曲线,并对该拟合曲线按照该不同区域进行区域划分,从而计算出对该不同区域中的每一个在该坐标系下对应的面积B,同时该控制单元将该计算得到的区域面积B按照该不同区域的分布顺序保存在存储单元中。
随后,该控制单元从该存储单元中依次获取对于同一区域的面积A和面积B的数据,将将该面积A和面积B进行比较处理,若该面积B小于该面积A,则表明当该混合动力车辆在该行驶线路中的该区域采用该电量消耗模式运行所消耗的功率小于采用该电量保持模式运行所消耗的功率,此时该控制单元向该混合动力车辆的驱动模式切换单元发出第一指令,该驱动模式切换单元接收到该第一指令后,指示该混合动力车辆当前的动力驱动模式切换为电量消耗模式;若该面积B大于或等于该面积A,则表明当该混合动力车辆在该行驶线路中的该区域采用该电量消耗模式运行所消耗的功率大于采用该电量保持模式运行所消耗的功率,此时该控制单元向该混合动力车辆的驱动模式切换单元发出第二指令,该驱动模式切换单元接收到该第二指令后,指示该混合动力车辆当前的动力驱动模式切换为电量保持模式,从而降低该混合动力车辆的行驶能耗。
从上述实施例可以看出,该混合动力车辆的控制方法通过获取车辆规划行驶的线路和路程数据,并基于车辆中蓄电池的电量消耗模式来计算出该车辆在 完成该规划行驶的线路时,不同动力驱动模式各自的工作分配情况,其中的控制单元能够依据车辆实际的行驶数据和计算得出的预期行驶数据之间的比较处理结果来进行该混合动力车辆不同动力驱动模式的切换,以保证该混合动力车辆能够在行驶过程中始终以能耗最优的方式行驶,从而提高车辆的能源利用效率和行驶平稳性。
参见图2,为本发明实施例提供的一种混合动力车辆的控制系统的结构示意图,在本发明实施例中,该混合动力车辆可为充电式混合动力车辆,该混合动力车辆包括动力总成,该动力总成包括使用汽油或者柴油等化石燃料的内燃发动机和电动机,该电动机还与蓄电池或者蓄电池组等电能存储器相连接,该电能存储器通过输出相应的功率来使电动机运转。因此,该混合动力车辆能够具有内燃发动机驱动模式和电动机驱动模式这两种模式下运动,具体为,在内燃发动机驱动模式中,该内燃发动机燃烧化石燃料,并将化学能转化为机械能并传递至车轮中,从而推动车辆行驶;在电动机驱动模式中,该电动机将该电能存储器中的电能转化为机械能并传递至车轮中,从而推动车辆行驶。
由于该混合动力车辆具有上述两种驱动模式,所以该混合动力车辆针对该电能存储器是否需要消耗电能,也可以分为电能消耗模式和电能保持模式这两种模式。在该电能消耗模式中,该混合动力车辆只使用来自该电能存储器中的电能,此时该电能存储器中的电能会不断被消耗;在该电能保持模式下,该混合动力车辆仅使用来自化石燃料燃烧时产生的能量,该电能存储器中储存的电能并不会被消耗,该电能存储器能够保持特定容量的电量。
该混合动力车辆还包括位置导航单元,该位置导航单元能够监测该车辆当前所处的位置以及该车辆的行驶路径。优选地,该位置导航单元可以是手机等智能移动终端这类外置型位置导航单元,或者是车辆自带的内置型位置导航单元。用户能够通过该位置导航单元获取车辆当前所在的位置以及输入车辆预期前往的目的地等数据。
该混合动力车辆还包括控制单元和存储单元。该控制单元用于控制该位置导航单元实现车辆行驶线路的规划、以及计算车辆行驶线路负荷分布和车辆实际负荷阈值进行。该存储单元用于保存该位置导航单元输入和输出数据和控制单元中的计算数据结果。
该混合动力车辆还包括驱动模式切换单元,该驱动模式切换单元能够根据该控制单元计算的车辆行驶线路负荷分布数据和车辆实时负荷阈值数据,使该车辆在行驶过程中进行电量消耗模式或者电量保持模式的切换。
关于本实施例涉及的术语的含义以及举例,可以参考图1对应的实施例。此处不再赘述。
从上述实施例可以看出,该混合动力车辆的控制系统通过获取车辆规划行驶的线路和路程数据,并基于车辆中蓄电池的电量消耗模式来计算出该车辆在完成该规划行驶的线路时,不同动力驱动模式各自的工作分配情况,其中的控制单元能够依据车辆实际的行驶数据和计算得出的预期行驶数据之间的比较处理结果来进行该混合动力车辆不同动力驱动模式的切换,以保证该混合动力车辆能够在行驶过程中始终以能耗最优的方式行驶,从而提高车辆的能源利用效率和行驶平稳性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

  1. 一种混合动力车辆的控制方法,其特征在于,所述方法包括:
    S101、获取关于车辆规划的行驶线路的数据,确定所述行驶线路中的负荷分布情况;
    S102、确定所述行驶线路中不同区域的车辆实际负荷阈值情况;
    S103、基于所述行驶线路中的所述负荷分布情况和所述不同区域的所述车辆实际负荷阈值情况,确定所述车辆在对应区域的动力驱动模式。
  2. 根据权利要求1所述的方法,其特征在于,
    在S101中,获取关于车辆规划的行驶线路的数据包括通过设定所述车辆的起点和终点信息,得到关于所述行驶线路的路径线路、线路路程和行驶时间数据;
    其中所述线路路程是关于所述起点和终点之间的路程长度。
  3. 根据权利要求1所述的方法,其特征在于,
    在S101中,确定所述行驶线路中的负荷分布情况包括在所述行驶线路的不同区域中获取所述车辆以电能消耗模式行驶时,所述车辆在所述不同区域的每个中的电能存储器的输出功率消耗值;
    其中,所述电能消耗模式是指所述车辆仅在所述电能存储器向电动机输出电能的情况下,所述电动机驱动所述车辆行驶的模式。
  4. 根据权利要求1所述的方法,其特征在于,
    在S102中,确定所述行驶线路中不同区域的车辆实际负荷阈值情况包括在所述车辆实际行驶过程中获取所述车辆的行驶功率值,并通过最小二乘法获取关于所述行驶功率值的第一拟合曲线,以计算出所述第一拟合曲线在每个所述不同区域下的区域面积A。
  5. 根据权利要求4所述的方法,其特征在于,
    在S103中,通过最小二乘法获取关于所述行驶线路中的负荷分布情况的第二拟合曲线,并计算所述第二拟合曲线在每个所述不同区域下得区域面积B;
    基于所述区域面积A和B之间的比较情况,确定所述车辆在每个所述不同区域的动力驱动模式。
  6. 一种混合动力车辆的控制系统,其特征在于,所述系统包括控制单元、位置导航单元和驱动模式切换单元;
    其中,所述位置导航单元能够获取关于所述车辆规划的行驶线路数据;
    所述控制单元能够根据所述车辆规划的行驶线路数据计算所述行驶线路中的负荷分布情况,以及计算所述车辆在所述行驶线路中不同区域的实际负荷阈值情况;
    所述驱动模式切换单元能够基于所述行驶线路中的负荷分布情况和所述不同区域的实际负荷阈值情况,使所述混合动力车辆在电量消耗模式或者电量保持模式的切换。
  7. 根据权利要求6所述的系统,其特征在于,
    所述位置导航单元为外置式或者内置式导航终端,其能够根据输入的所述车辆的起点和终点生成关于所述车辆行驶的路径线路、线路路程和显示时间作为所述行驶线路数据。
  8. 根据权利要求6所述的系统,其特征在于,
    在所述电量消耗模式下,所述系统控制所述混合动力车辆的电能存储器向电动机输出电能以驱动所述车辆行驶;
    在所述电能保持模式下,所述系统控制所述混合动力车辆的内燃发动机驱动所述车辆行驶。
  9. 根据权利要求8所述的系统,其特征在于,
    所述控制单元能够获取所述车辆以所述电能消耗模式行驶时,所述车辆在所述不同区域的每个中的电能存储器的输出功率消耗值。
  10. 根据权利要求6所述的系统,其特征在于,
    所述控制单元还能够根据所述车辆在所述行驶线路不同区域的每一个中行驶的最高功率值、最低功率值和平均功率值,并通过最小二乘法得出所述不同区域的实际负荷阈值情况。
PCT/CN2017/081758 2017-04-24 2017-04-24 一种混合动力车辆的控制方法和系统 WO2018195738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081758 WO2018195738A1 (zh) 2017-04-24 2017-04-24 一种混合动力车辆的控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081758 WO2018195738A1 (zh) 2017-04-24 2017-04-24 一种混合动力车辆的控制方法和系统

Publications (1)

Publication Number Publication Date
WO2018195738A1 true WO2018195738A1 (zh) 2018-11-01

Family

ID=63917878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081758 WO2018195738A1 (zh) 2017-04-24 2017-04-24 一种混合动力车辆的控制方法和系统

Country Status (1)

Country Link
WO (1) WO2018195738A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102069804A (zh) * 2010-12-25 2011-05-25 浙江吉利汽车研究院有限公司 一种混合动力汽车行驶状态预测控制方法
JP2012091774A (ja) * 2010-09-30 2012-05-17 Equos Research Co Ltd 電動駆動車両
CN105459844A (zh) * 2015-12-30 2016-04-06 北京理工大学 一种增程式电动汽车多模式能量管理方法
CN105730441A (zh) * 2014-12-08 2016-07-06 牛宝芬 一种电动汽车的电能管理方法
CN105936271A (zh) * 2015-03-04 2016-09-14 丰田自动车株式会社 用于车辆的信息处理器以及车辆控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091774A (ja) * 2010-09-30 2012-05-17 Equos Research Co Ltd 電動駆動車両
CN102069804A (zh) * 2010-12-25 2011-05-25 浙江吉利汽车研究院有限公司 一种混合动力汽车行驶状态预测控制方法
CN105730441A (zh) * 2014-12-08 2016-07-06 牛宝芬 一种电动汽车的电能管理方法
CN105936271A (zh) * 2015-03-04 2016-09-14 丰田自动车株式会社 用于车辆的信息处理器以及车辆控制方法
CN105459844A (zh) * 2015-12-30 2016-04-06 北京理工大学 一种增程式电动汽车多模式能量管理方法

Similar Documents

Publication Publication Date Title
US11548368B2 (en) Series-parallel hybrid power system and vehicle working mode decision-making method
CN107499155B (zh) 一种基于燃料电池和锂电池的混动车控制方法及控制系统
Hou et al. Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles
CN103419675B (zh) 一种增程式电动汽车的运行方法
US9327712B2 (en) System and method for control of a hybrid vehicle with regenerative braking using location awareness
JP4962604B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
WO2017041751A1 (zh) 一种增程式全电驱动低速牵引车
CN103770778A (zh) 一种基于最低使用成本考虑的增程式电车的控制方法
CN109606348B (zh) 一种插电式行星混联汽车能量管理控制方法
US20120116620A1 (en) Plug-In Hybrid Electric Vehicle and Method of Control for Providing Distance to Empty and Equivalent Trip Fuel Economy Information
US20150073639A1 (en) Hybrid drive train control method
CN102267453A (zh) 一种增程式电动车的能量管理方法
WO2011000259A1 (zh) 电动汽车发电机组的控制方法
US20150239460A1 (en) Method and system for controlling a hybrid vehicle
KR20120100372A (ko) 직렬형 하이브리드 전기자동차의 동력분배방법
JP2008247318A (ja) ハイブリッド車両
CN103171559A (zh) 分模式最优化混联式混合动力汽车能量管理方法
KR102524295B1 (ko) 플러그인 하이브리드 자동차 및 그를 위한 충전 제어 방법
CN103158711A (zh) 用于混合动力车的转矩控制方法及其系统
CN104619540A (zh) 用于车辆的控制系统、车辆和用于车辆的控制方法
CN103950371A (zh) 一种插电式混合动力旅游客车
US10836276B2 (en) Display device
JP2020082991A (ja) 車両の制御システム
KR20160071989A (ko) 플러그인 하이브리드 차량의 주행모드 변환 제어장치 및 제어방법
WO2016053786A1 (en) Multi-mode hybrid control for range-extended plug-in vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907030

Country of ref document: EP

Kind code of ref document: A1