WO2018194229A1 - 타겟 포인팅 기능, 트래킹 기능 및 광학장치의 조정기능을 구비한 라이다 시스템 - Google Patents

타겟 포인팅 기능, 트래킹 기능 및 광학장치의 조정기능을 구비한 라이다 시스템 Download PDF

Info

Publication number
WO2018194229A1
WO2018194229A1 PCT/KR2017/011745 KR2017011745W WO2018194229A1 WO 2018194229 A1 WO2018194229 A1 WO 2018194229A1 KR 2017011745 W KR2017011745 W KR 2017011745W WO 2018194229 A1 WO2018194229 A1 WO 2018194229A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sensing
lidar system
guide
light source
Prior art date
Application number
PCT/KR2017/011745
Other languages
English (en)
French (fr)
Inventor
김철영
Original Assignee
(주)엠제빈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170049783A external-priority patent/KR101763165B1/ko
Priority claimed from KR1020170088572A external-priority patent/KR101852945B1/ko
Priority claimed from KR1020170106541A external-priority patent/KR101814135B1/ko
Priority claimed from KR1020170106537A external-priority patent/KR101814125B1/ko
Priority claimed from KR1020170106539A external-priority patent/KR101814129B1/ko
Application filed by (주)엠제빈 filed Critical (주)엠제빈
Publication of WO2018194229A1 publication Critical patent/WO2018194229A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices

Definitions

  • This embodiment relates to a lidar system that can use a guide light to point to a target, track a sensed target, and precisely adjust the scanning area of the optics.
  • LIDAR Light Detection And Ranging
  • the radar system is similar in function to Radio Detection And Ranging (RADAR), but differs from a radar that uses radio waves to detect a target. Due to these differences, the LiDAR system is sometimes referred to as 'image radar'.
  • RADAR Radio Detection And Ranging
  • the rider Due to the difference in the Doppler effect between light and microwave, the rider has superior azimuth resolution, distance resolution, and the like compared to radar.
  • Aeronautical lidar has been mainstream, which emits laser pulses from satellites and aircraft and receives pulses backscattered by particles in the air at ground stations. These air riders have been used to measure the presence and movement of dust, smoke, aerosols, cloud particles, etc. along with wind information, and to analyze the distribution or air pollution of dust particles in the atmosphere.
  • the ground lidar which is installed on the ground and performs both the obstacle detection, the terrain delling, and the position acquisition of the object, is being actively conducted. Accordingly, research is being conducted to apply the ground lidar system to defense fields such as surveillance and reconnaissance robots, combat robots, unmanned watercraft ships and unmanned helicopters, and civil fields such as civilian mobile robots, intelligent cars, and unmanned vehicles.
  • Lidar systems use a light source with a wavelength band that is typically invisible to the human eye as sensing light to detect a target. This is because it is good in terms of sensing efficiency that a light source having a wavelength band which cannot be visually confirmed, for example, an infrared band, is used as the sensing light.
  • the lidar system is divided into an optical device for generating and illuminating the sensing light for detecting the target and a scanner for detecting the target using the sensing light.
  • the lidar system generates and irradiates sensing light for detecting a target by using an optical device, and detects whether the target is invaded by receiving reflected light reflected from the target using a scanner.
  • the lidar scanner includes a mirror which rotates at an angle of 45 degrees with the direction of the sensing light emitted from the optical device, and detects a target existing in a plane perpendicular to the direction in which the sensing light is transmitted from the optical device.
  • the conventional lidar optical device is provided with a light source to irradiate the sensing light directly from the light source to the lidar scanner, or is provided with a light source and a mirror so that the sensing light is reflected from the mirror and irradiated to the lidar scanner.
  • the arrangement or structure of each component in the lidar optics produced within the production process of the lidar optics may differ from that of the ideal lidar optics. Accordingly, the scanning area of the conventional lidar system inevitably differs from the area to be scanned by the system user. Therefore, users of conventional lidar systems must adjust the placement of the mirror or light source to eliminate the difference.
  • the user of the conventional lidar system needs to operate the lidar system to check whether there is a difference, and to eliminate the difference, it is necessary to disassemble the optical device and adjust the arrangement of the mirror or light source in the optical device. You must stop the operation. In other words, users of the conventional lidar system have experienced considerable inconvenience in starting and stopping the lidar system to accurately eliminate the difference.
  • errors in the optical device occur due to deterioration and environmental factors in the installation process and operation according to the installation environment, and these errors cause a big problem in the sensing performance. However, such installation and operation error was not compensated systematically.
  • the conventional lidar system includes a filter component for filtering light outside the wavelength band of the reflected light outside the lidar system (cover portion of the lidar system), so that only the sensing light and the reflected light are included in the lidar system. It has been able to pass outside.
  • the conventional lidar system irradiates the guide light having the visible light band separately from the sensing light so as to check whether the scanning area corresponds to the scanning area indicated by the target light, and when the target is detected, where the target is located.
  • the outside of the conventional lidar system includes a filter component for filtering light outside the wavelength band of the reflected light, it is inconvenient to provide a configuration for irradiating guide light without any action inside the lidar system. there was.
  • the structure of the LiDAR system should be independently implemented as a separate component, or the structure of the outside of the LiDAR system should be implemented by dividing the structure with and without the optical filter to irradiate the guide light. There was inconvenience such as doing. This problem has been a limiting factor in the production of LiDAR systems.
  • One embodiment of the present invention is to provide a lidar system having a guide light irradiated to the scanning area so as to visually identify the area to be scanned.
  • An embodiment of the present invention provides a lidar system that accurately points the position of a particular object scanned by the lidar system and tracks it according to the position change of the object to provide accurate position information of a target detected by the lidar system. Dale has a purpose.
  • One embodiment of the present invention is to provide a lidar system including a lidar optical device that enables precise adjustment of the scanning area by adjusting the angle at which the sensing light is irradiated while the lidar system is in operation. There is this.
  • One embodiment of the present invention is to provide a lidar system having an optical filter inside the optical device, and can be mass-produced with a simple configuration while receiving only the reflected light.
  • the first light source for outputting sensing light having a wavelength other than the visible light band and the wavelength of the visible light band
  • a second light source for outputting guide light and a power unit mounted on a housing of the lidar system to prevent separation and providing rotational power, and a motor shaft positioned only at a lower end of the power unit and rotating with power supplied from the power unit (Shaft) and is implemented in a shape having a predetermined area is located on the top of the power unit and is connected to the motor and the motor including a motor body portion that receives a rotational power from the power unit to rotate with the motor shaft, It is attached to the first mirror and the motor body portion for reflecting the sensing light, the guide light is the same as the sensing light And a second mirror for reflecting in the direction.
  • the lidar system further comprises a control unit for controlling the operation of the first light source, the second light source and the motor.
  • the control unit controls the second light source to change the timing at which the guide light is output, whereby the guide light is sensed by the sensing. Characterized in that it is reflected in the same direction as the light.
  • the second light source is characterized in that the detachable.
  • a plurality of second light sources are provided, and the controller controls the guide light output timing of each of the plurality of second light sources so that the guide light shows a predetermined character or shape. It is done.
  • the second light source is characterized in that for outputting guide light having a wavelength of a plurality of different visible light bands.
  • the controller controls the second light source to output guide light having wavelengths of different visible light bands according to whether the target is detected.
  • the lidar system is attached between the motor body portion and the second mirror, characterized in that it further comprises an angle adjusting unit for adjusting the angle of the guide light reflected by the second mirror do.
  • the lidar system is provided with a guide light irradiated to the scanning area, there is an advantage that the system user can visually check the scanning area without using additional equipment. .
  • the lidar system allows the guide light to point the position of the object to a specific object (target) scanned using the sensing light, and to track in accordance with the change in the position of the object from the outside There is an advantage of identifying the detected object.
  • the lidar system can correct the error of the optical device, and the correction can adjust the angle at which the sensing light is irradiated even during operation, the operation and stop of the lidar system are not repeated.
  • the advantage is that the scanning area can be precisely adjusted without the need.
  • the LiDAR system has an optical filter inside the optical device, so that only the reflected light can be received and mass produced with a simple configuration.
  • FIG. 1 is a perspective view of a lidar system according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the lidar system according to the first embodiment of the present invention.
  • FIG 3 is a perspective view of a lidar system according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a lidar system according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the structure of a motor of a lidar system according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing still another structure of the motor of the lidar system according to the second embodiment of the present invention.
  • FIG. 7 is a perspective view of a lidar system according to a third embodiment of the present invention.
  • FIG. 8 is an internal configuration diagram of a lidar system according to a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a lidar system according to a third embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an embodiment in which a lidar system detects an object according to a third embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method of pointing and targeting a detected object by a LiDAR system according to a third exemplary embodiment of the present invention.
  • FIG. 12 is a perspective view of a lidar system according to a fourth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a lidar system according to a fourth embodiment of the present invention.
  • FIG. 14 is a perspective view of a lidar optical device according to a fourth embodiment of the present invention.
  • FIG. 15 is a perspective view of a lidar optical device according to a fifth embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of a lidar optical device according to a fourth embodiment of the present invention.
  • FIG. 17 is a three-dimensional view of the lidar optical device according to the fourth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a lidar optical device according to a sixth embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of a lidar optical device according to the seventh embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of a lidar optical device according to the seventh embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of the lidar optical device according to the eighth embodiment of the present invention.
  • 21 is a cross-sectional view of the lidar optical device according to the eighth embodiment of the present invention.
  • FIG. 22 and 23 show an embodiment in which a lidar optical device according to an eighth embodiment of the present invention is installed.
  • FIG. 24 is a diagram illustrating an embodiment in which a lidar system detects an object according to an eighth embodiment of the present invention.
  • 25 is a sectional view of a lidar optical device according to the ninth embodiment of the present invention.
  • 26 is a diagram showing an example of a mirror unit according to the first embodiment of the present invention.
  • FIG. 27 is a sectional view of a lidar system according to a tenth embodiment of the present invention.
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a perspective view of a lidar system according to a first embodiment of the present invention.
  • the lidar system 100 includes a cover 110, a scanner 120, a guide 130, and a body 140.
  • the cover 110 protects the internal configuration of the lidar system 100.
  • the cover unit 110 may be formed of a transparent material to allow the sensing light or the guide light to pass therethrough, and may be implemented in a cylindrical shape without an angle so as not to change a direction in which the sensing light or the guide light passes.
  • the cover part 110 is positioned in front of the scanner 120 to pass the sensing light through the first cover part 113 and the second cover part 116 located in front of the guide part 130 to pass the guide light. It can be divided into.
  • the first cover part 113 is disposed at a position away from the scanner 120 by a predetermined distance in the direction in which the scanner 120 emits the sensing light, and passes through the reflected light reflected by the sensing light and the sensing light back to the object. Let's do it.
  • the first cover part 113 may include a band pass filter (BPF) through which only the light of the wavelength band of the sensing light passes, thereby preventing light other than the sensing light and the reflected light from passing through.
  • BPF band pass filter
  • the second cover part 116 is disposed at a position away from the guide part 130 by a predetermined distance in the direction in which the guide part 130 emits the guide light, and passes the guide light.
  • Each cover portion 113 and 116 may be divided by a separate mark 119.
  • the scanner 120 reflects the sensing light emitted from the optical device (not shown) to the scanning area, and reflects the reflected light reflected from the object to the optical device (not shown).
  • the scanner 120 is rotated by a motor (not shown) and reflects the sensing light to the entire scanning area.
  • the scanner 120 reflects the reflected light back to the object or the background (hereinafter, abbreviated as 'existing background') that has already existed or reflected by the target to the optical device. As a result, the optical device receives the reflected light.
  • the guide unit 130 irradiates the guide light in the same direction as the area where the scanner 120 is scanning.
  • the guide light is light having a wavelength in the visible light band that can be visually identified. That is, by irradiating the guide light in the same direction as the area that the scanner 120 is scanning, the guide unit 130 immediately checks the area where the user of the lidar system 100 is being scanned without any additional equipment. To help.
  • the body portion maintains the shape of the lidar system 100 and supports the cover portion 110 and the scanner 120.
  • the body 140 has a control unit (not shown) that controls the operation of the lidar system 100, data processing, and the like, and the scanner 120 irradiates sensing light for scanning the target, and reflects from the target.
  • An optical device (not shown) for receiving the reflected light and a motor (not shown) for rotating the scanner 120.
  • FIG. 2 is a cross-sectional view of the lidar system according to the first embodiment of the present invention.
  • the motor 210 is located in the body part 140 and is connected to the scanner 120 and the guide part 130 to provide power to rotate the scanner 120 and the guide part 130.
  • the motor 210 is connected together with the scanner 120 and the guide part 130, so that the scanner 120 and the guide part 130 rotate in the same manner at the same time.
  • the motor 210 includes an encoder (not shown) or is connected to the encoder, and uses the encoder to grasp information such as the number of revolutions of the motor, the speed, the direction of rotation, or the angle of rotation, and transmits the information to the controller 250. to provide.
  • the guide part 130 includes a light source 220 and a first mirror part 230.
  • the light source 220 irradiates guide light for guiding the area to be scanned.
  • the light source 220 irradiates the sensing light toward the first mirror unit 230, and the guide light reflected by the first mirror unit 230 is irradiated in the same direction as the sensing light.
  • the guide part 130 includes only one light source, but the guide part 130 may include a plurality of light sources.
  • Each light source included in the guide unit 130 may be disposed at a predetermined distance, and the output timing may be adjusted by the controller 250 to display a preset letter or shape. Since the guide unit 130 is connected to the motor 210 and rotates together with the scanner 120, a preset letter or shape may appear according to the output timing of each light source included in the guide unit 130.
  • the guide unit 130 includes a plurality of light sources, and the control unit 250 controls the output timing of each light source, so that the lidar system 100 may be used in situations where a target is found or there is no abnormality. As a result, appropriate characters or shapes can be output.
  • the light source 220 may output guide light having wavelengths of a plurality of different visible light bands, respectively. For example, one light source 220 may output all of the red, yellow, green, and blue guide lights.
  • the controller 250 may control the light source 220 to output guide light having a different color according to each situation, such as when a target is found or when there is no abnormality. You can more intuitively understand the changes that occur in.
  • FIG. 2 illustrates that the light source 220 is positioned in the + Y axis direction based on the first mirror unit 230
  • the light source 220 is not limited thereto.
  • the position of the light source 220 may vary depending on the angle of the reflecting surface of the scanner 120 and the direction in which the sensing light is reflected. For example, when the sensing light is emitted in the -Y axis direction, and the scanner 120 has a reflecting surface at an angle of +45 degrees from the X axis on the XY plane, the light source 220 may turn the first mirror 230. It can be located in the + X axis direction.
  • the light source 220 is fixed to the body portion 140, and may be attached or detached from the body portion 140.
  • the light source 220 may be attached only when the guide light is needed, and may be detached from the body 140 when the guide light is not needed even when the lidar system 100 is in operation. Accordingly, since the light source 220 may later be attached to and used in the lidar system, the lidar system 100 without including the light source 220 may be mass-produced. In addition, when the light source 220 fails, since only the light source 220 needs to be removed, there is no influence on the operation of the lidar system 100.
  • the first mirror unit 230 reflects the guide light emitted from the light source 220 in the direction in which the sensing light is reflected.
  • the first mirror unit 230 includes a reflective surface at a predetermined angle with respect to the direction in which the light source 220 irradiates the guide light so as to reflect the guide light emitted from the light source 220 to the scanning area.
  • the first mirror unit 230 may include a reflective surface having a 45 ° angle.
  • the first mirror unit 230 includes a reflection surface having a predetermined angle, thereby reflecting the guide light to be irradiated in the same direction as the direction in which the sensing light is reflected.
  • the first mirror unit 230 is connected to the motor 210 to rotate together with the rotation of the motor 210. By rotating together with the motor, the first mirror unit 230 may reflect the guide light to a region of a constant area where the sensing light is reflected instead of one point.
  • the first mirror unit 230 may have a side surface coated with a mirror, and may have various shapes such as a flat polygonal column shape or a cylindrical shape.
  • the first mirror unit 230 may be integrated with the scanner 120.
  • the first mirror unit 230 may have various shapes.
  • the first mirror unit 230 may have a shape that is similar to or symmetrical with the scanner 120, and may be integrated with the scanner 120.
  • the irradiation range of the guide light and the sensing light is almost the same.
  • the scanner 120 reflects the sensing light emitted from the optical device 240 and re-reflects the reflected light reflected on the existing background or the target.
  • the scanner 1220 includes a reflecting surface having a predetermined angle with respect to the direction in which the optical device 240 irradiates the sensing light so as to reflect the sensing light emitted by the optical device 240 to the scanning area.
  • the scanner 1220 may have a reflective surface having a 45 ° angle.
  • the scanner 1220 includes a reflective surface having a predetermined angle, thereby reflecting the sensed sensing light to the scanning area.
  • the scanner 120 is connected to the motor 210 to rotate together with the rotation of the motor 210. By rotating together with the motor, the scanner 120 may reflect the sensing light to an area of a certain area instead of a point, and may re-reflect reflected light reflected to an existing background or target in an area of a certain area instead of a point. have.
  • the scanner 120 is connected to the motor together with the guide unit 130, the scanner 120 always rotates by the same angle as the guide unit 130. Accordingly, the sensing light and the guide light may be reflected in the same direction.
  • the optical device 240 is located in the body 140 and irradiates the sensing light with the scanner 120 or receives the reflected light incident from the scanner 120.
  • the sensing light is light having a wavelength band other than the wavelength band of visible light, and has a wavelength band which is not visible to the naked eye.
  • the infrared light of the 900nm band may be used as the sensing light.
  • the optical apparatus 240 reflects the sensing light to the sensing area by irradiating the sensing light with the scanner 1220. Also, the optical device 240 receives the reflected light reflected by the scanner 120 and incident on the optical device 240.
  • the controller 250 controls the operation of each component in the lidar system 100, and determines whether the target has intruded into the scanning area by using the optical device 240 and the scanner 120.
  • the controller 250 reflects the angle when the sensing light is irradiated and the sensing light to each component of the existing background.
  • the time until incident to the optical device 240 is measured.
  • the controller 250 may calculate a distance by which angles each component of the existing background is located at which angle using the measured value.
  • the controller 250 includes a memory (not shown) and stores directions and distances of respective components of the existing background. Subsequently, when a value different from the information of each component of the existing background stored in the memory is calculated, the controller 250 may know that the target has invaded the actual scanning area.
  • the controller 250 may measure the direction and distance of the target by using the measured value.
  • the controller 250 may measure the position of the target and may control to notify the outside of the target by using light or sound.
  • the controller 250 controls the light source 220 according to a situation such as whether or not the target has invaded. do.
  • the controller 250 controls the output timing of each light source to display a letter or a shape suitable for each situation.
  • the controller 250 may provide guide light having wavelengths of visible light bands of different colors according to respective situations.
  • the light source 220 is controlled to irradiate. For example, when the target invades, the controller 250 controls the light source 220 to irradiate red guide light, and when the target does not invade, the controller 250 emits green guide light.
  • the light source 220 may be controlled.
  • the controller 250 may control the irradiation timing of the guide light by controlling the light source 220.
  • the guide The light may be irradiated at different positions from the sensing light. In this case, since the guide light is irradiated to a position different from the position where the sensing light detects the intrusion of the target, the guide light may cause confusion for the user of the lidar system 1200. To prevent this problem, the controller 250 determines the angle difference between the sensing light and the guide light by using the encoder of the motor 210.
  • the control unit 250 When the target is detected, the control unit 250 does not control the guide light to be irradiated as soon as the sensing light detects the target, but controls the light source 220 so that the guide light is irradiated when the target light is rotated or rotated less by the angle difference. To control. Accordingly, even if an unavoidable error occurs in the installation process or the production process of the first mirror 230 or the scanner 120, the controller 250 may control the guide light to be accurately irradiated at the position where the target is detected. .
  • the controller 250 may be embodied as a circuit board that surrounds the optical device 240.
  • the controller 250 may be embodied in the body part 140 in a separate configuration from the optical device 240. have.
  • the controller 250 is not limited to the implementation.
  • FIG 3 is a perspective view of a lidar system according to a second embodiment of the present invention.
  • the lidar system according to the second embodiment of the present invention further includes a guide part 310 in the lidar system 100 shown in FIG. 1.
  • the guide part 310 guides the area currently being scanned by using the visible light, in particular, the monochromatic light so that the user of the LiDAR system can easily check.
  • the optical device 240 irradiates sensing light having a wavelength band other than the wavelength band of visible light
  • the user of the lidar system may determine where the area is being scanned unless the user uses a separate equipment. none. Therefore, the guide unit 310 irradiates the visible light to the area currently being scanned, so that the user of the lidar system can immediately identify the scanned and written area without any equipment.
  • FIG. 4 is a cross-sectional view of a lidar system according to a second embodiment of the present invention.
  • the hollow 440 is positioned away from the cover part 110 by a predetermined distance so that the guide light is irradiated with a separate route from the sensing light.
  • the hollow 440 is located at one side of the body portion 140, and the length of the motor from the cover portion 110, more specifically, the length of the motor body portion and the power portion (see FIG. 5 for details). Location).
  • the cover unit 110 includes a filter that passes only the wavelength band of the sensing light in order to prevent light other than the reflected light from entering the scanner 120.
  • the cover 110 when the sensing light is IR, the cover 110 includes only an IR filter that passes only the IR, thereby passing only the sensing light and the reflected light, and blocks other light such as visible light emitted from the outside.
  • the problem is that the guide light uses light of a different wavelength band than the sensing light.
  • the guide light is light having a wavelength in the visible light band so that the user of the lidar system can visually recognize it. Therefore, if the guide unit 310 is located in the cover unit 110, such as the scanner 120, the guide light will be filtered by the cover unit 110.
  • the lidar system 100 includes the cover part 110 of the first cover part 113 and the guide part 130 positioned in front of the scanner 120. It is separated by the 2nd cover part 116 located in front.
  • the first cover portion 113 includes the above-described filter, but the second cover portion 116 does not include the above-described filter, thereby preventing the lidar system 100 from filtering the guide light.
  • the lidar system 300 by separating the portion of the guide light is radiated into a separate space from the scanner, thereby preventing the above-mentioned problem from occurring.
  • the light source 410 is positioned in the body part 140 to irradiate the guide light to the first mirror part 420.
  • the light source 410 may be implemented in plurality, or may output guide light having wavelengths of a plurality of different visible light bands.
  • the light source 410 may be attached or detached.
  • the first mirror unit 420 reflects the guide light and is irradiated in the same direction as the sensing light via the hollow 440. Unlike the first mirror unit 230 described with reference to FIG. 2, the first mirror unit 420 is not connected to the shaft of the motor that connects the scanner 1220 and the motor 430 together. 430 is attached directly to the rotation. If the mirror part is connected to the shaft of the motor, the shaft of the motor must be additionally longer as the mirror part. Accordingly, the lidar system must be large, especially when the lidar system is a horizontal system for sensing the XZ plane, not a vertical system for sensing the XY plane, and requires a very narrow body portion.
  • the first mirror portion 420 is directly attached to the motor 430 by the attachment means. Accordingly, there is an advantage that it can be implemented even within a relatively narrow body portion, there is an advantage in that it is easy to produce because only the first mirror unit 420 is attached to the motor.
  • the motor 430 provides power so that the connected scanner 120 and the attached first mirror unit 420 can rotate.
  • the motor 430 is implemented in a relatively narrow body portion, and has the following configuration to attach the first mirror portion.
  • FIG. 5 is a cross-sectional view showing the structure of a motor of the lidar system according to a second embodiment of the present invention
  • Figure 6 is a cross-sectional view showing another structure of a motor of the lidar system according to a second embodiment of the present invention to be.
  • the motor 430 of the LiDAR system includes a power unit 510, a motor body 520, and a motor shaft 530.
  • the power unit 510 is mounted to the body 140 of the LiDAR system to prevent the motor from being separated, and provides rotational power to the motor body 520 and the motor shaft 530.
  • the body portion 140 of the lidar system may have a groove for fixing the power portion 510, and the power portion 510 is mounted in the groove of the body portion 140 so as to provide a motor 430. This can prevent departure.
  • the motor body 520 is located at the top of the power unit 510 and is implemented in a shape having a predetermined area. As shown in FIG. 5, the motor body 520 may be implemented in a plate shape, or may be implemented in various shapes such as a circle.
  • the motor body portion 520 has an area equal to or larger than one surface of the first mirror portion 420 to be attached so that the first mirror portion 420 may be attached thereto.
  • the motor body part 520 is rotated by receiving rotational power from the power unit 510, and also rotates the first mirror part 420 attached to the motor body part 520.
  • the motor shaft 530 is positioned only at the lower end of the power unit 510 and rotates by receiving rotational power from the power unit 510.
  • the motor shaft 530 rotates all the components (scanner 120, etc.) connected to the shaft.
  • the motor shaft 530 is always rotated together with the motor body 520 and rotates by the same angle.
  • the hollow 440 is located away from the cover 110 by the length of the power unit 510 and the motor body 520.
  • the guide light reflected by the first mirror unit 420 passes through the hollow 440. You won't be able to. Therefore, the body 140 has a hollow 440 at a position separated by the length of the power unit 510 and the motor body 520 from the cover 110.
  • the motor 430 may further include an encoder (not shown).
  • the encoder knows information such as the number of revolutions of the motor, the speed, the direction of rotation, or the angle of rotation.
  • the encoder grasps the above-mentioned information and transmits it to the controller 250.
  • the encoder may be located inside the power unit 510 or may be implemented in a separate configuration connected to the power unit 510.
  • the angle adjuster 610 is attached between the motor body 520 and the first mirror 420, and adjusts the angle formed by the first mirror 420 with the motor body 520. Due to an error in the arrangement process of the light source 410 or the first mirror 420, or an error in the production process with respect to the angle of the reflection surface of the first mirror 420, the area where the guide light is emitted and the sensing light are emitted. The areas to be different may be different. In particular, there is a problem when the error of both regions is not an error on the XY plane (which the control unit 250 can control) but an error on the Z axis.
  • the angle adjuster 610 adjusts the angle formed by the first mirror 420 with the motor body 520, so that the error occurring on the Z axis can be eliminated.
  • the angle adjusting unit 610 easily eliminates the error. .
  • FIG. 7 is a perspective view of a lidar system according to a third embodiment of the present invention.
  • the lidar system 700 includes a cover 710 having a cylindrical shape and outputting a laser to sense a target, protecting an internal optical component.
  • the cover 710 may be made of a material that can pass through the laser.
  • the cover 710 may be divided into an upper cover 714 and a lower cover 718. Each cover portion may be divided by a separate mark 720, it may be divided without a separate mark.
  • the body portion 730 has a structure for supporting the cover portion 710.
  • FIG. 8 is an internal configuration diagram of a lidar system according to a third embodiment of the present invention
  • FIG. 9 is a cross-sectional view of the lidar system according to a third embodiment of the present invention.
  • the lidar system 700 includes a motor unit 810, a third mirror unit 820, a fourth mirror unit 830, a transceiver unit 840, a guide light source unit 850, and a controller (not shown).
  • the motor unit 810 provides power for rotating the third mirror unit 820 and the fourth mirror unit 830, which will be described later.
  • the third mirror unit 820 Since the third mirror unit 820 is dynamically coupled to the connection unit 814 located below the motor unit 810, the third mirror unit 820 is also rotated by the rotation of the motor.
  • the third mirror unit 820 is formed to reflect the guide light, which will be described later.
  • the third mirror unit 820 forms a mirror through a process such as gold coating on the side surface.
  • the fourth mirror 830 is located below the third first mirror 820 and rotates in association with the third mirror 820, and the inside of the fourth mirror 830 may reflect the sensing light received from the bottom surface. Has an angle.
  • the transmitted sensing light is re-received by the fourth mirror unit 830 to the transmission / reception unit 840 which will be described later and processed.
  • the fourth mirror unit 830 and the third mirror unit 820 are interlocked and rotated so that the lidar system 700 may point or track the detected object.
  • the transmitter / receiver 840 transmits the light of the sensing light source located at the bottom to the fourth mirror 830, and processes the light received through the fourth mirror 830 to a controller (not shown). Is controlled by
  • the encoder 818, the motor unit 810, the third mirror unit 820, and the fourth mirror unit 830 are sequentially connected to the connection unit 814, but one connection unit 814 is illustrated.
  • the order of joining can be changed as long as they are joined by. That is, in addition to the present embodiment, the encoder 818, the third mirror 820, the motor 810, and the fourth mirror 830 may be connected to the connecting portion 814 in the order.
  • the sensing light transmitted from the transceiver 840 may use a light source in a 900 nm band, and the receiver may use an APD to improve reception sensitivity.
  • Various photodiodes may be used in addition to the APD, and various wavelengths may be selected as the wavelength of the sensing light.
  • the LiDAR system senses a light source in the 900 nm band with a light source having a wavelength invisible to the human eye, the user of the LiDAR system cannot visually check the sensing range.
  • the user uses an IR camera to check the sensing range, but since the IR camera has a narrow angle of view, it is difficult to check the detection range of the rider rotating and sensing.
  • the guide light source unit 850 is composed of a light source having a wavelength of a visible light source band, and may use a red light source having the lowest price.
  • the guide light 870 transmitted by the guide light source 850 is reflected by the third mirror 820 and is output to the outside through the cover 710.
  • the guide light 870 is output at the position of the upper cover part 714 of the cover part 710.
  • the guide light source 850 is focused on the side surface 835 of the mirror, and the guide light 870 emitted from the guide light source 850 is reflected by the side surface 835 of the rotating third mirror 820. It is output to the upper cover part 714.
  • the guide light source 850 may be located at the rear of the lidar, or may be positioned at the side of the lidar by turning 90 degrees.
  • FIG. 10 is a diagram illustrating an embodiment in which a lidar system detects an object according to a third embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method of pointing and targeting a detected object by a LiDAR system according to a third exemplary embodiment of the present invention.
  • Steps are divided into three stages: detection preparation step (S1110), detection step (S1120), and warning step (S1130).
  • the detection preparation step (S1110) scans an area to be detected or scanned using the sensing light 860 (S1111), sets an automatic reference based on the information obtained from the detection target area (S1113), and the sensing light 860.
  • Scan data and coordinates measured by the controller are stored (S1115).
  • the coordinates are formed by the encoder 818 and stored in the controller.
  • the form of the coordinates may be (X, Y) coordinates in absolute coordinates, and may be absolute coordinates of angles provided by the encoder. That is, in the detection preparation step (S1110), reference data, which is basic information of the detection area, are acquired, including an object fixed in the area detected by the lidar, and an absolute coordinate of the detected area is calculated.
  • This series of processes is performed in a controller (not shown). Data acquisition using the sensing light 860 is performed at the data acquisition unit, and coordinate calculation is performed at the coordinate calculation unit in the controller (not shown). Also, the precision of the coordinates is determined by the resolution of the encoder.
  • the next detection step (S1120) activates the lidar, that is, scans the detection area (S1121) using the sensing light 860.
  • the lidar system compares the measured data obtained by scanning with the reference data to determine whether there is a difference in the data (S1123).
  • the comparison of data can be made by comparing coordinates. Such data comparison may be performed by a data comparison unit in a controller (not shown).
  • the warning step (S1130) outputs an alarm (S1135), and utilizes the absolute coordinates of the different data (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S1131) to guide light (S
  • Irradiating the guide light 870 means pointing the guide light 870 to the detected target.
  • the Lidar system irradiates the guide light 870 for all the coordinates where the data are different.
  • control unit may measure data each time scanning using the sensing light 860, and determine whether there is a difference in the data every time the measurement is performed, and irradiate the guide light 870 to the coordinates with the difference.
  • the function of determining the data difference by continuously scanning may cause the guide light 870 to be irradiated by tracking the movement of the object when the detected target moves. That is, by tracking the detected target and visualizing it using the guide light, there is an advantage of enabling identification from the outside.
  • comparing the data to detect the target and irradiating the guide light may be determined after scanning once, and may be determined by accumulating or averaging the measurement data by scanning a plurality of times.
  • the Lidar system provides a function of pointing a target and tracking when the target moves when there is a target in the detection area.
  • the detection preparation step (S1110) may further include an error correction step of the error between the sensing light 860 and the guide light 870 by the error correction unit.
  • the error includes a coordinate error due to the installation type of the sensing light 860 and the guide light 870, a timing error at which the output is turned on due to the characteristics of the laser, and the like.
  • FIG. 12 is a perspective view of a lidar system according to a fourth embodiment of the present invention.
  • a lidar system 1200 includes a body portion 1210, a scanner 1220, and a cover portion 1230.
  • the body portion 1210 maintains the shape of the lidar system 1200 and supports the scanner 1220 and the cover portion 1230.
  • the body portion 1210 is a control unit (not shown) for controlling the operation or data processing of the lidar system 1200 therein, the scanner 1220 irradiates the sensing light for scanning the target, and reflected from the target
  • An optical device (not shown) for receiving the reflected light
  • a motor (not shown) for operating the scanner to enable the scanner 1220 to scan the scanning area.
  • the scanner 1220 reflects the sensing light irradiated from the optical device into the scanning area, and reflects the reflected light reflected from the object back into the optical device.
  • the scanner 1220 is rotated by a motor (not shown) and reflects the sensing light to the entire scanning area.
  • the scanner 1220 reflects the reflected sensing light on an existing object or a background (hereinafter, abbreviated as 'existing background') or reflects the reflected light reflected back to the target by an optical device so that the optical device reflects the reflected light. To receive the light.
  • Cover portion 1230 protects the internal configuration of lidar system 1200.
  • the cover part 1230 is made of a transparent material to allow the sensing light or the reflected light to pass therethrough, and may be implemented in a cylindrical shape without an angle so as not to change a direction in which the sensing light or the reflected light passes.
  • the cover part 1230 may be configured as follows.
  • the cover part 1230 does not include an optical filter that passes only the sensing light or the reflected light and filters light outside the wavelength band of the sensing light or the reflected light. That is, the cover part 1230 passes through all light including sensing light and reflected light.
  • a structure for irradiating the guide light is disposed inside the cover part 1230, so that the cover part 1230 irradiates the area with the optical filter and the guide light. In order to avoid this, there is no need to separate into an area without the optical filter. Accordingly, the lidar system 1200 according to an embodiment of the present invention has an advantage that it can be mass produced more easily than the conventional lidar system.
  • FIG. 13 is a cross-sectional view of a lidar system according to a fourth embodiment of the present invention.
  • the scanner 1220 includes a motor 1310 and a fifth mirror unit 1320.
  • the motor 1310 is located in the body portion 1210 and is connected to the fifth mirror portion 1320 to provide power to rotate the fifth mirror portion 1320.
  • the motor 1310 includes an encoder (not shown) or is connected to the encoder, and uses the encoder to grasp information such as the number of revolutions, speed, direction of rotation or angle of rotation of the motor.
  • the motor 1310 may provide the grasped information to the controller 1340 or allow the controller 1340 to check the above-described information.
  • the fifth mirror 1320 reflects the sensing light irradiated from the optical device 1330 and re-reflects the reflected light reflected by the existing background or the target.
  • the fifth mirror unit 1320 has a reflective surface having a predetermined angle with respect to the direction in which the optical device 1330 irradiates the sensing light so as to reflect the sensing light emitted by the optical device 1330 to the scanning area. do.
  • the first mirror 1320 may include a reflective surface having a 45 ° angle.
  • the first mirror unit 1320 has a reflective surface having a predetermined angle, thereby reflecting the sensing light emitted to the scanning area.
  • the first mirror unit 1320 is connected to the motor 1310 to rotate together with the rotation of the motor 1310. By rotating together with the motor, the first mirror 1320 may reflect the sensing light to an area of a predetermined area instead of a point, and reflects the reflected light reflected to an existing background or target in an area of the predetermined area instead of a point. Can be reflected.
  • the lidar system 1200 When the sensing light and the reflected light are incident or reflected on the reflective surface, the sensing light and the reflected light should be horizontal to each other so that the lidar system 1200 may detect the target with high efficiency. However, if an error occurs in the optical device due to the aforementioned production process and environmental factors, the sensing light and the reflected light are not horizontal. In order to solve this problem, the lidar system according to an embodiment of the present invention has the following technical features.
  • the optical device 1330 is located in the body portion 1210 and irradiates the sensing light with the scanner 1220 or receives the reflected light incident from the scanner 1220. While the optical device 1330 irradiates the sensing light or receives the reflected light, the scanning area (hereinafter, referred to as a 'target scanning area') that the user of the LiDAR system is to scan is a scanning area (hereinafter, referred to as a target scanning area) to which the actual sensing light is radiated In this case, the irradiation direction of the sensing light can be adjusted according to whether or not it corresponds to 'actual scanning area'. Detailed description thereof will be described with reference to FIGS. 14 to 17.
  • the optical device 1330 is located in the body portion 1210 and irradiates sensing light with the scanner 1220, or all the light incident from the scanner 1220 including reflected light. To receive. However, the optical device 1330 includes an optical filter in the optical device 1330 to determine whether the optical device 1330 receives only the reflected light. In addition, the optical device 1330 irradiates the guide light to the scanner 1220. The guide light may be irradiated inside the optical device 1330, or the guide light may be irradiated outside the optical device 1330. A detailed description of the optical device will be described with reference to FIGS. 18 and 19.
  • the controller 1340 controls the operation of each component in the lidar system 1200, and determines whether the target has entered the scanning area by using the optical device 1330 and the scanner 1220.
  • the controller 1340 may reflect the angle when the sensing light is irradiated and the sensing light to each component of the existing background, thereby providing the optical device ( The time until the incident to 1330 is measured.
  • the controller 1340 may calculate a distance by which angles each component of the existing background is located at which angle, using the measured value.
  • the controller 1340 includes a memory (not shown) and stores directions and distances of respective components of the existing background. Subsequently, when a value different from the information of each component of the existing background stored in the memory is calculated, the controller 1340 may know that the target has invaded the actual scanning area.
  • the controller 1340 may measure the direction and the distance of the target by using the measured value.
  • the controller 1340 may measure the position of the target, and may control to notify the outside of the target using light or sound.
  • the controller 1340 may be implemented as a circuit board that surrounds the optical device 1330, and may be implemented in the body portion 1210 in a separate configuration from the optical device 1330. Can be.
  • the controller 1340 is not limited to the implementation.
  • FIG. 14 is a perspective view of a lidar optical device according to a fourth embodiment of the present invention.
  • FIG. 14 illustrates a case in which the controller 1340 is implemented in the body portion 1210 in a separate configuration from the optical device 1330.
  • a lidar optical device 1330 includes an optical lens 1410, a light emitter 1420, and a sensing light source 1430.
  • the optical lens 1410 collects the reflected light incident from the scanner 1220 and transmits the reflected light to a light detector (not shown). Unlike the sensing light, since the reflected light reflected from the target or the existing background is dispersed, there is a fear that a sufficient amount of reflected light for detecting the reflected light may not be incident on the light detector (not shown). The optical lens collects the reflected light, thereby allowing the light detector (not shown) to detect the reflected light.
  • the light emitting unit 1420 includes a blocking unit 1424 for preventing the sensing light radiated from the sensing light source 1430 from being distributed to the outside of the light emitting unit 1420, and an irradiating unit 1428 irradiated with the sensing light. .
  • the light emitting unit 1420 includes a blocking unit 1424, thereby preventing the sensing light from being dispersed to the outside and irradiating only the irradiation unit 1428. By allowing the sensing light to be irradiated only to the irradiator 1428, the light emitter 1420 allows the sensing light to be irradiated only in the scanning area with intact intensity.
  • the width of the blocking unit 1424 and the width of the irradiating unit 1428 determined accordingly may be set differently according to the scanning area.
  • the sensing light source 1430 irradiates sensing light for detecting a target.
  • the sensing light source 1430 irradiates the sensing light toward the sixth mirror unit (not shown), and the sensing light reflected by the sixth mirror unit (not shown) passes through the irradiation unit 1428 of the light emitting unit 1420. Irradiated with a scanner 1220.
  • the sensing light has a wavelength band other than the wavelength band of visible light. For example, the infrared light of the 900nm band may be used as the sensing light.
  • FIG. 15 is a perspective view of a lidar optical device according to a fifth embodiment of the present invention.
  • FIG. 15 illustrates a case in which the controller 1340 is implemented as a circuit board that surrounds the optical device 1330.
  • the controller 1340 is implemented as a circuit board that surrounds the optical device 1330.
  • FIG. 16 is a cross-sectional view of a lidar optical device according to a fourth embodiment of the present invention
  • FIG. 17 is a stereoscopic view of a lidar optical device according to a fourth embodiment of the present invention.
  • the sixth mirror unit 1610 reflects the sensing light emitted from the sensing light source 1430 to the scanner 1220, more specifically, the fifth mirror 1320.
  • the sixth mirror unit 1610 includes a reflective surface that forms a predetermined angle with a direction in which the sensing light is radiated from the sensing light source 1430. For example, when the scanner 1220 is positioned vertically (+ Z axis direction) of the sixth mirror part 1610 and the sensing light is irradiated in the + Y axis direction, the sixth mirror part 1610 may be 45 degrees. It has a reflecting surface having a degree and thereby reflects the sensing light to the scanner 1220.
  • the angle adjuster 1620 is connected to at least one surface of the sixth mirror unit 1610 other than the reflective surface, and adjusts an angle between the direction in which the sensing light is radiated from the sensing light source 1430 and the reflective surface.
  • the mirror part (the fifth mirror part or the sixth mirror part) in which the angle of the reflection surface is slightly deviated from the preset angle may be produced.
  • the sixth mirror unit 1610 may be disposed in a state in which the direction in which the sensing light is irradiated and the angle formed by the reflecting surface are slightly out of a predetermined angle. .
  • the sensing light and the reflected light may not be horizontal, which may cause deterioration in sensing performance of the LiDAR system, and the actual scanning area of the LiDAR system 1200 may have errors in the X-axis direction or Z-axis direction from the target scanning area. And may be formed.
  • the angle adjuster 1620 adjusts an angle formed between the direction in which the sensing light is radiated from the sensing light source 1430 and the reflection surface.
  • the angle adjuster 1620 is connected to one surface of the sixth mirror unit 1610 other than the reflective surface, so that one side of the sixth mirror unit 1610 is upward (+ Z axis direction) or downward (-Z axis direction).
  • the angle adjusting unit 1620 adjusts the sensing light to be irradiated to the scanner 1220 in the correct direction by adjusting the direction in which the sensing light is irradiated and the angle formed by the reflecting surface, and finally irradiates to the Mokpo scanning area.
  • one angle adjusting unit 1620 is connected to the sixth mirror unit 1610, but the present invention is not limited thereto. As illustrated in FIG. 17, a plurality of angle adjusting units 1620 are arranged at intervals so that each angle adjusting unit is sensed. The angle formed by the irradiation direction and the reflecting surface can be adjusted. In addition, although the angle adjusting unit 1620 is illustrated as a screw in FIG. 16, the angle adjusting unit 1620 is not limited thereto. Any angle adjusting unit 1620 may be implemented as long as one side of the sixth mirror unit 1610 may be moved.
  • Lidar optics 1330 have holes 1630 on one surface of the housing closest to angle adjuster 1620.
  • the user of the lidar system may adjust the angle using the angle adjuster 1620 through the hole 1630 at the outside of the optical device 1330 even when the lidar system 1200 is in operation.
  • the controller 1340 may include a separate motor (not shown) for controlling the angle adjuster 1620.
  • the controller 1340 may control the angle adjuster 250 to receive an error between the target scanning area and the actual scanning area and adjust the angle by the error using a motor.
  • the light detector 1640 receives the reflected light from the scanner and converts the reflected light into an electrical signal, thereby detecting whether the reflected light is received.
  • the light detector 1640 may be implemented as any device that converts an optical signal such as a photo diode (PD) into an electrical signal.
  • PD photo diode
  • the isolator 1650 is disposed in front of the direction in which the sensing light source 1430 emits the sensing light to block the reflected light incident to the light source.
  • the isolator 1650 refers to a circuit device for propagating a radio wave in a forward direction but not in a reverse direction.
  • the isolator 1650 passes the sensing light, but blocks the reflected light incident in the opposite direction of the sensing light. Most of the reflected light is collected by the optical lens 1410 and incident on the light detector 1640, but some of the reflected light may be incident on the irradiation unit 1428 of the light emitter 1420 instead of the optical lens 1410.
  • the reflected light incident to the irradiator 1428 is reflected by the sixth mirror unit 1610 and incident to the sensing light source 1430, and the reflected light needs to be blocked. Therefore, the isolator 1650 blocks the reflected light incident on the sensing light source 1430 as described above.
  • FIG. 18 is a cross-sectional view of a lidar optical device according to a sixth embodiment of the present invention.
  • the seventh mirror unit 1810 reflects the sensing light emitted from the sensing light source 1430 to the scanner 1220, more specifically, the fifth mirror 1320.
  • the seventh mirror unit 1810 includes a reflective surface that forms a predetermined angle with a direction in which the sensing light is radiated from the sensing light source 1430. For example, when the scanner 1220 is positioned vertically (+ Z-axis direction) of the seventh mirror unit 1810 and the sensing light is irradiated in the + Y-axis direction, the seventh mirror unit 1810 may be 45. It has a reflecting surface having a degree and thereby reflects the sensing light to the scanner 1220.
  • the seventh mirror unit 1810 reflects the guide light irradiated from the guide light source 1820 together with the sensing light to the fifth mirror 1320. Since the sensing light and the guide light have different wavelength bands and do not cause any interference with each other, the sensing light and the guide light may be irradiated to the seventh mirror unit 1810 together.
  • the guide light source 1820 irradiates the guide light to the seventh mirror unit 1810. Like the sensing light source, the guide light source 1820 irradiates the guide light toward the seventh mirror unit 1810, and the guide light reflected by the seventh mirror unit 1810 is irradiated by the light emitter 1420. It is irradiated to the scanner 1220 via. As described above, since the cover part 1230 does not include an optical filter for passing only the sensing light or the reflected light, the guide light source 1820 may irradiate the guide light in the same path as that of the sensing light. . In FIG. 18, the guide light source 1820 is positioned on the + Z axis with respect to the sensing light source 1430, but is not limited thereto.
  • the guide light source 1820 may be positioned in any direction of ⁇ X, ⁇ Y, and ⁇ Z axes with respect to the sensing light source 1430, and the guide light source 1820 may guide light to the seventh mirror unit 1810. Since it is sufficient to irradiate the scanner 1220 via the laser beam, the sensing light source 1430 may be spaced apart from the sensing light source 1430 within a limit in which the guide light may be irradiated to the seventh mirror unit 1810.
  • the optical filter 1830 passes only the light of the wavelength band of the sensing light or the reflected light among all the light incident to the optical device 1330. As described above, since the cover part 1230 does not include a separate optical filter, all the light including the reflected light is incident on the scanner 1220, and all the light is reflected on the fifth mirror part 1320 as it is. Is incident on the optical device 1330. However, since the light to be detected by the light detector 1840 in the optical device 1330 is only reflected light, and the remaining light is only noise, the remaining noise light needs to be filtered.
  • the optical filter 1830 is disposed away from the light detector 1840 by a predetermined distance in a direction opposite to the light incident to the optical device 1330, so that the sensing light or the reflected light of all the light incident to the optical device 1330 is Only the light of the wavelength band which has is passed.
  • the optical filter 1830 may have an area larger than that of the light detector 1840 in order to pass only the light of the wavelength band of the sensing light or the reflected light to the light detector 1840.
  • the light detector 1840 receives the reflected light passing through the optical filter 1830 and converts it into an electrical signal, thereby detecting whether the reflected light is received.
  • the light detector 1840 may be any element that converts an optical signal such as a photo diode (PD) into an electrical signal.
  • the light detector 1840 receives only the reflected light passing through the optical filter 1830 among all the light collected by the optical lens 1410 and converts it into an electrical signal.
  • the isolator 1850 is disposed in front of the direction in which the sensing light source 1430 emits the sensing light to block the reflected light incident to the light source.
  • the isolator 1850 refers to a circuit device for propagating a radio wave in a forward direction but not in a reverse direction.
  • the isolator 1850 passes the sensing light, but blocks the reflected light incident in the opposite direction of the sensing light. Most of the reflected light is collected by the optical lens 1410 and incident on the light detector 1840, but some of the reflected light may be incident on the irradiation unit 1428 of the light emitter 1420 instead of the optical lens 1410.
  • the reflected light incident on the irradiator 1428 is reflected by the seventh mirror unit 1810 and incident on the sensing light source 1430, but the reflected light needs to be blocked. Therefore, the isolator 1850 blocks the reflected light incident on the sensing light source 1430 as described above.
  • FIG. 19 is a cross-sectional view of a lidar optical device according to the seventh embodiment of the present invention.
  • the guide light source 1910 is located outside the lidar optics 1330. Like the guide light source 1820, the guide light may be reflected on the seventh mirror unit 1810 and irradiated to the fifth mirror unit 1320. However, the guide light source 1910 may directly reflect the fifth mirror unit 1320 without additional reflection. Guide light can be irradiated. Since the guide light source 1910 is located outside the lidar optics 1330, a problem may occur when the sensing light source has a large size or the size of the optical device 1330 is not large enough to place the guide light source. (Such as a problem of changing the trajectory of the sensing light or the guide light) can be prevented.
  • the guide light source 1910 may be located in the remaining portion of the light emitting unit 1420 except for the irradiation unit 1428. Since the guide light source 1910 is positioned in the light emitter 1420, the guide light source 1910 may be prevented from obstructing a path of the light reflected from the fifth mirror 1320 and incident on the optical device 230. For example, when the guide light source 1910 is positioned above the optical lens 1410 (+ Z axis direction), the light incident to the optical device 1330 is reduced by the area of the guide light source 1910, thereby Therefore, there is room for the reflected light reflected from the target. Therefore, the guide light source 1910 may be located in the light emitter 1420.
  • FIG. 20 is a cross-sectional view of the lidar optical device according to the eighth embodiment of the present invention.
  • the lidar system includes a cover part 2000 having a laser output, protecting an internal optical component, and having a cylindrical shape to sense an object at a wide angle.
  • the cover part 2000 is made of a material that can pass through the laser.
  • the cover part 2000 of the horizontal lidar system illustrated in FIG. 20 includes an upper cover part 2010 and a lower cover part 2020. Each cover portion may be divided through a separate mark 2030, it may be divided without a separate marking.
  • the body portion 2040 has a structure for supporting the cover portion 2000.
  • 21 is a cross-sectional view of the lidar optical device according to the eighth embodiment of the present invention.
  • the lidar system includes a motor unit 2100, a first mirror unit 2200, a second mirror unit 2300, a transceiver unit 2400, a guide light source unit 2500, a substrate unit 2600, an optical unit 2700, and the like. It includes a control unit (not shown).
  • the horizontal lidar system works as follows.
  • the first mirror 2200 changes the direction of the sensed light 2450, and is dynamic to the motor unit 2100 and the coupling unit 110.
  • the sensing light 2450 is output to the outside of the cover part 2000.
  • the output sensing light 2450 is reflected on an object or a background, and is received by the transceiver 2400 through the second mirror 2300.
  • the controller analyzes the received sensing light 2450 and checks whether there is a target to be detected.
  • the motor unit 2100 provides power for rotating the second mirror unit 2300, which will be described later, and an encoder (not shown) may be connected to one side or an upper side thereof.
  • the encoder (not shown) may recognize the rotation angle of the connected motor.
  • the optical unit 2700 may include the first mirror unit 2200, and may include a wavelength selective optical filter (not shown), a lens (not shown), or the like.
  • the structure of the optical unit 2700 may be configured in various shapes, and may be configured to effectively receive the sensing light 2450.
  • the second mirror part 2300 may be rotated by the motor part 2100 and may cover a wide range by having various mirror shapes. Each component is mounted and coupled to the upper and lower surfaces of the substrate portion 2600 to operate.
  • the transceiver 2400 may transmit or receive the sensing light 2450 including the sensing light source.
  • the light source used as the sensing light source transmits and receives light in the 900 nm band, and the transceiver 2400 may use the APD to improve the reception sensitivity of the light.
  • the 900nm light source is a light source with an invisible wavelength. Even though the LiDAR system senses it, the user of the LiDAR system cannot visually check the sensing range. The user should check the sensing range using an IR camera, etc., and since the IR camera has a narrow angle of view, it is difficult to check the sensing range of the rider rotating and sensing.
  • the rotating second mirror portion 2300 is generally coupled by a person. Since there is not much demand, it is still not equipped with an automated system for manufacturing. As such, because they are combined by humans, errors occur in the manufacturing process, and these errors are outside the expected sensing range.
  • the lidar system according to an embodiment of the present invention includes a guide light source unit 2500 for checking in real time such an error and a sensing range.
  • the guide light source 2500 may be positioned above the path through which the sensing light 2450 passes by the guide light source supporter 2510. Since the path of the sensing light 2450 and the path of the guide light do not overlap, the lidar system according to an embodiment of the present invention can be easily produced from a conventional lidar system without major changes in hardware and software. 2450) and the guide light have different optical paths, but the guide light source does not affect the performance of a separate lidar.
  • the guide light source unit 2500 includes a light source having a wavelength of a visible light source band, and a red light source having the cheapest price may be used as the guide light source.
  • the guide light source unit 2500 transmits guide light to be reflected by the second mirror unit 2300, and outputs the guide light 2550 to the outside through the cover unit 2000.
  • the guide light 2550 is output at the position of the upper cover part 2010 of the cover part 2000.
  • the guide light 2550 of the guide light source is output at a higher Z-axis than the sensing light 2450, unlike the sensing light 2450 reflected by the lower reflecting surface 2320, the guide light may include a second mirror portion ( Reflected by the upper reflective surface 2310 of 2300. When the second mirror part 2300 rotates, the range of the sensing light 2450 and the guide light 2550 reflected by the second mirror part 2300 is widened.
  • the upper reflective surface 2310 and the lower reflective surface 2320 may be configured in one plane, and the upper reflective surface 2310 may be configured with a slight inclination.
  • the inclination of the upper reflective surface 2310 provides an effect of compensating for the height difference between the guide light 2550 and the sensing light 2450.
  • the second mirror part 2300 may be configured in a single plane shape. With this configuration, there is an advantage in that the manufacturing of the second mirror portion 2300 is easy.
  • the second mirror unit 2300 may be coupled to the motor unit 2100 by the coupling unit 2110.
  • the coupling part 2110 may be configured only on the opposite side of the reflective surface of the second mirror part 2300, and both surfaces thereof may be configured.
  • the guide light 2550 and the sensing light 2450 are output in an arc as shown in FIG. 24.
  • arcs are almost the same shape.
  • the sensing light 2450 is invisible, but the guide light 2550 is visible because a visible light source is used. At this time, the guide light 2550 has a straight shape on one surface when viewed by the human eye.
  • the length of the arc that is, the angle of the sensing light 2450 and the guide light 2550 may have a slight difference depending on the shape of the second mirror 2300.
  • the cover part 2000 according to the eighth embodiment of the present invention passes only the sensing light or the reflected light and does not include an optical filter for filtering light outside the wavelength band of the sensing light or the reflected light. That is, the cover part 2000 passes all the light including the sensing light 2450.
  • a structure for irradiating the guide light 2550 is disposed inside the cover part 2000, so that the cover part 2000 is provided with an optical filter and an area without an optical filter for irradiating the guide light 2550. There is no need to separate. Accordingly, the lidar system according to an embodiment of the present invention has an advantage that it can be mass produced more easily than the conventional lidar system.
  • Lidar system may further include an optical filter (not shown).
  • the optical filter passes only the light of the wavelength band of the sensing light among all the light incident into the lidar system.
  • the cover unit 2000 does not include a separate optical filter, all the light including the sensing light is incident into the lidar system, and all the light is reflected by the second mirror unit 2300 as it is.
  • the light is incident to the transceiver 2400 through the first mirror 200.
  • the remaining light is only noise, the remaining noise light needs to be filtered.
  • the optical device is disposed between the second mirror portion 2300 and the first mirror portion 2200, or does not affect the structure of the first mirror portion 2200, the first mirror portion 2200 and the transmission and reception unit It is disposed between the 2400, and passes only the light of the wavelength band of the sensing light of all the light incident to the lidar system.
  • the optical filter may have an area larger than that of the second mirror unit or the first mirror unit in order to pass only the light of the wavelength band of the sensing light to the transceiver 2400.
  • the controller (not shown) scans an area to be detected using the sensing light 2450, sets an automatic reference based on information obtained from the detection target area, and scan data measured by the sensing light 2450. And store the coordinates.
  • the coordinates are formed based on an encoder (not shown) and stored in the controller.
  • the form of the coordinates may be (X, Y) coordinates in absolute coordinates, and may be absolute coordinates of angles provided by the encoder. That is, the control unit obtains the reference data which is the basic information of the detection area, including the fixed object in the area detected by the lidar before detecting the predetermined object, and calculates the absolute coordinates of the detected area.
  • the controller scans an area to be detected using the sensing light 2450.
  • the controller compares the measured data obtained by scanning with the reference data to determine whether there is a difference between the two data.
  • the controller may compare both data in coordinate units.
  • the control unit outputs an alarm when the reference data and the measurement data are different according to the comparison result of both data, and turns on the guide light 2550 so that the guide light 2550 can be irradiated to the absolute coordinates of the different data.
  • the controller may measure data every time the sensing light 2450 scans, determine whether there is a difference in data each time the measurement is performed, and control to irradiate the guide light 2550 with respect to the coordinates having the difference. As described above, the controller continuously scans and determines the data difference, so that when the object to be detected moves, the controller may control to irradiate the guide light 2550 by tracking the movement of the object. That is, by tracking the detected object and visualizing it using the guide light, there is an advantage that can be identified from the outside.
  • the lidar system of the present invention When the lidar system of the present invention is operated, a straight line is formed on the surface to be sensed by the guide light 2550 and the sensing light 2450, and the line formed by the guide light 2550 is noticeable.
  • the lines formed by the sensing light 2450 will not be noticeable.
  • the user of the lidar system may predict the position of the string formed by the sensing light 2450 using the string formed by the guide light 2550.
  • 25 is a sectional view of a lidar optical device according to the ninth embodiment of the present invention.
  • the guide light source 2500 is configured to be output by a path different from that of the sensing light 2450. Because of this configuration, it can be easily produced in the conventional lidar system, it is possible to minimize the noise of the sensing light (2450) reflected and received.
  • the Lidar system can be configured as in Example 9 disclosed in FIG.
  • the sensing light 2450 normally has a 900 nm band and the guide light 2550 has a 600 nm band, both lights do not cause interference.
  • the Lidar system may be configured by combining the guide light source unit 2500 and the sensing light source 2410.
  • the guide light 2550 and the sensing light 2450 are sent to the first mirror 2200 in a single path, and the sensing range formed by the second mirror 2300 is almost the same.
  • the guide light 2550 When two light sources are irradiated at the same time, the guide light 2550 is also reflected on an object or a background, and thus the reception sensitivity is lowered without passing through a filter because the guide light 2550 is received by the transmitting and receiving unit 2400 together with the sensing light 2450.
  • the sensing light 2450 and the guide light 2550 are combined and output in one optical path, both light may be output at the same time, but light may be alternately output by switching each light source.
  • Operation of the guide light 2550 can be performed as follows, which can be applied to both the eighth and ninth embodiments.
  • the controller may calculate the range in which the sensing light 2450 is irradiated by checking the range of the irradiated area by controlling the guide light 2550 to be irradiated before the sensing light 2450 is irradiated. Accordingly, when the lidar system is installed, there is an advantage that the error can be minimized.
  • the sensing light 2450 and the guide light 2550 may be irradiated at the same time, thereby revealing that the LiDAR system senses a specific area.
  • the sensing light 2450 may be used to show that it is operating.
  • control unit operates the guide light 2550 at a predetermined cycle, so that the lidar system user can monitor the state even in the middle of operating the system.
  • FIG. 11 each process is described as being sequentially executed, but this is merely illustrative of the technical idea of the exemplary embodiment of the present invention.
  • one of ordinary skill in the art to which an embodiment of the present invention belongs may execute the process described in FIG. 11 by changing the order described in FIG. 11 without departing from the essential characteristics of the embodiment of the present invention, or one or more of each process. Since it is possible to apply various modifications and variations by executing in parallel, FIG. 11 is not limited to the time series order.
  • the computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. That is, the computer-readable recording medium may be a magnetic storage medium (for example, ROM, floppy disk, hard disk, etc.), an optical reading medium (for example, CD-ROM, DVD, etc.) and a carrier wave (for example, the Internet Storage medium).
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

Abstract

타겟 포인팅 기능, 트래킹 기능 및 광학장치의 조정기능을 구비한 라이다 시스템을 개시한다. 본 실시예의 일 측면에 의하면, 스캐닝하는 영역을 육안으로 확인할 수 있도록 스캐닝 영역으로 조사되는 가이드 광을 구비하며, 라이다 시스템이 스캐닝한 특정 물건의 위치를 정확하게 포인팅하고 물건의 위치 변동에 따라 트래킹하여 라이다 시스템이 탐지한 타겟의 정확한 위치정보를 제공하고, 라이다 시스템이 가동중인 상태에서도 센싱광이 조사되는 각도를 조정함으로써 정밀한 스캐닝 영역의 조정이 가능하도록 하는 라이다 광학장치를 포함하며, 광학장치 내부에 광학필터를 구비하여, 반사광만을 수광하면서도 간단한 구성을 가져 양산이 가능한 라이다 시스템을 제공하는 데 일 목적이 있다.

Description

타겟 포인팅 기능, 트래킹 기능 및 광학장치의 조정기능을 구비한 라이다 시스템
본 실시예는 가이드 광을 이용하여 타겟을 포인팅하고, 감지된 타겟을 트래킹하며, 광학장치의 스캐닝 영역을 정밀하게 조정할 수 있는 라이다 시스템에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
라이다(LIDAR: Light Detection And Ranging) 시스템은 빛을 이용하여 타겟을 탐지하고 타겟까지의 거리를 측정하는 시스템을 말한다. 라이다 시스템은 기능에 있어서 레이더(RADAR: Radio Detection And Ranging)와 유사하지만, 전파를 이용하여 타겟을 탐지하는 레이다와 달리 빛을 이용하여 타겟을 탐지한다는 차이를 갖는다. 이러한 차이로 인해 라이다 시스템은 '영상 레이더'라고 칭해지기도 한다.
빛과 마이크로파 간의 도플러 효과 차이로 인하여, 라이다는 레이더에 비하여 우수한 방위 분해능, 거리 분해능 등을 갖는다.
위성이나 항공기에서 레이저 펄스를 방출하고, 대기중의 입자에 의해 후방 산란되는 펄스를 지상관측소에서 수신하는 항공 라이다가 주류를 이루어왔다. 이러한 항공 라이다는 바람 정보와 함께 먼지, 연기, 에어로졸, 구름입자 등의 존재와 이동을 측정하고, 대기중의 먼지입자의 분포 또는 대기 오염도를 분석하는 데 사용되어왔다. 그런데, 최근에는 송신계와 수신계가 모두 지상에 설치되어 장애물 탐지, 지형 델링, 대상물의 위치 획득 기능을 수행하는 지상 라이다에 대한 연구가 활발히 진행되고 있다. 이에 따라, 지상 라이다 시스템을 감시정찰로봇, 전투로봇, 무인수상함, 무인헬기 등의 국방분야나, 민수용 이동로봇, 지능형자동차, 무인자동차 등의 민수 분야에 적용하려는 연구가 이루어지고 있다.
라이다 시스템은 타겟을 탐지하기 위한 센싱광으로 통상 육안으로 확인할 수 없는 파장 대역을 가진 광원을 사용한다. 육안으로 확인할 수 없는 파장 대역, 예를 들어, 적외선 대역을 갖는 광원을 센싱광으로 이용하는 것이 센싱 효율면에 있어서 좋기 때문이다.
그러나 이러한 대역의 광원을 이용하게 되면, 스캐닝되는지 여부, 스캐닝 되는 영역, 미러의 오차에 의한 음영지역 발생 등을 이용자가 육안으로 직접 확인할 수 없어, 별도로 광원을 확인하기 위한 장비를 이용해야 하는 불편이 있다.
한편, 라이다 시스템은 타겟을 탐지하기 위한 센싱광을 생성하고 조사하는 광학장치와 센싱광을 이용하여 타겟을 탐지하는 스캐너로 구분된다. 라이다 시스템은 광학장치를 이용하여 타겟을 탐지하기 위한 센싱광을 생성하여 조사하며, 스캐너를 이용하여 타겟으로부터 반사된 반사광을 수광하여 타겟의 침입여부를 감지한다.
라이다 스캐너는 광학장치로부터 조사되는 센싱광의 방향과 45도 각도를 이루며 회전하는 미러를 구비하여, 센싱광이 광학장치로부터 전송되는 방향에 수직인 평면에 존재하는 타겟을 탐지한다. 한편, 종래의 라이다 광학장치는 광원을 구비하여 광원으로부터 직접 라이다 스캐너로 센싱광을 조사하거나, 광원과 미러를 구비하여 센싱광이 미러로부터 반사되어 라이다 스캐너로 조사되도록 구성되어 있다
그러나 라이다 광학장치의 생산과정 내에서 생산되는 라이다 광학장치 내 각 구성의 배치나 구성의 구조가 이상적인 라이다 광학장치의 그것과 달라질 수 있다. 이에 따라, 종래의 라이다 시스템의 스캐닝 영역은 시스템 사용자가 스캐닝하고자 하는 영역과 필연적으로 차이를 갖는다. 따라서 종래의 라이다 시스템 사용자는 해당 차이를 없애기 위해서 미러 또는 광원의 배치를 조정하여야 한다.
그러나 종래의 라이다 시스템 사용자가 차이가 발생하는지 확인하기 위해서는 라이다 시스템을 가동시켜야 하고, 발생한 차이를 없애기 위해서는 광학장치를 분해하여 광학장치 내 미러 또는 광원의 배치를 조정하여야 하기 때문에 라이다 시스템의 가동을 중지해야 한다. 즉, 종래의 라이다 시스템 사용자는 해당 차이를 정확히 없애기 위해 라이다 시스템을 가동시켰다 중지했다 하는 상당한 불편을 겪어왔다. 또한, 설치환경에 따른 설치과정 및 운중에서 노후와 환경적 요인으로 광학장치의 오차가 발생하고, 이러한 오차는 센싱 성능에 큰 문제를 야기시킨다. 하지만, 이러한 설치 및 운중의 오차 발생은 시스템적으로 보상이 불가능하였다.
또한, 라이다 시스템 내 광학장치로 반사광 이외의 빛이 입사되는 경우, 타겟의 존재와는 무관하게 타겟이 항상 존재하는 것으로 감지할 수 있어 정확도가 떨어지게 된다. 이에 따라, 종래의 라이다 시스템은 라이다 시스템의 외부(라이다 시스템의 커버부)에 반사광이 갖는 파장 대역 이외의 광은 필터링하는 필터 성분을 포함시킴으로써, 센싱광과 반사광만이 라이다 시스템의 외부를 통과할 수 있도록 해 왔다.
그러나 전술한 것과 같은 구성은 다음의 문제를 야기한다. 종래의 라이다 시스템은 가시광선 대역을 갖는 가이드광을 센싱광과는 별도로 조사하여 스캐닝하는 영역이 표하는 스캐닝 영역과 일치하는지, 타겟을 검출한 경우 타겟의 위치가 어디인지 등을 확인할 수 있도록 했다. 그러나 종래의 라이다 시스템의 외부에는 반사광이 갖는 파장 대역 이외의 광은 필터링하는 필터 성분이 포함되어 있기 때문에, 가이드광을 조사하는 구성을 라이다 시스템의 내부에 아무런 조치없이 구비할 수 없는 불편이 있었다. 가이드광을 조사하는 구성을 라이다 시스템에서 별도의 구성으로 독립적으로 구현해야 하거나, 가이드광을 조사하기 위해 라이다 시스템 외부의 구성을 광학필터를 포함하는 부분과 포함하지 않은 부분으로 구분하여 구현해야 하는 등의 불편이 있었다. 이러한 문제점은 라이다 시스템을 양산하는데 있어 제약으로 작용해왔다.
본 발명의 일 실시예는, 스캐닝하는 영역을 육안으로 확인할 수 있도록 스캐닝 영역으로 조사되는 가이드 광을 구비한 라이다 시스템을 제공하는 데 일 목적이 있다.
본 발명의 일 실시예는, 라이다 시스템이 스캐닝한 특정 물건의 위치를 정확하게 포인팅하고 물건의 위치 변동에 따라 트래킹하여 라이다 시스템이 탐지한 타겟의 정확한 위치정보를 제공하는 라이다 시스템을 제공하는 데 일 목적이 있다.
본 발명의 일 실시예는, 라이다 시스템이 가동중인 상태에서도 센싱광이 조사되는 각도를 조정함으로써 정밀한 스캐닝 영역의 조정이 가능하도록 하는 라이다 광학장치를 포함하는 라이다 시스템을 제공하는 데 일 목적이 있다.
본 발명의 일 실시예는, 광학장치 내부에 광학필터를 구비하여, 반사광만을 수광하면서도 간단한 구성을 가져 양산이 가능한 라이다 시스템을 제공하는 데 일 목적이 있다.
본 발명의 일 측면에 의하면, 타겟을 탐지하는 라이다(LIDAR: LIght Detection And Ranging) 시스템에 있어서, 가시광선 대역 이외의 파장을 갖는 센싱광을 출력하는 제1 광원과 가시광선 대역의 파장을 갖는 가이드광을 출력하는 제2 광원과 상기 라이다 시스템의 하우징에 장착되어 이탈을 방지하며 회전 동력을 제공하는 동력부, 상기 동력부의 하단에만 위치하며 상기 동력부로부터 회전 동력을 제공받아 회전하는 모터 샤프트(Shaft) 및 기 설정된 면적을 갖는 형상으로 구현되어 상기 동력부의 상단에 위치하며 상기 동력부로부터 회전 동력을 제공받아 상기 모터 샤프트와 함께 회전하는 모터 몸체부를 포함하는 모터와 상기 모터 샤프트와 연결되며, 상기 센싱광을 반사시키는 제1 미러 및 상기 모터 몸체부와 부착되며, 상기 가이드광을 상기 센싱광과 동일한 방향으로 반사시키는 제2 미러를 포함하는 것을 특징으로 하는 라이다 시스템을 제공한다.
본 발명의 일 측면에 의하면, 상기 라이다 시스템은 상기 제1 광원, 상기 제2 광원 및 상기 모터의 동작을 제어하는 제어부를 더 포함하는 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 상기 제어부는 상기 가이드광이 상기 센싱광과 상이한 방향으로 반사되는 경우, 상기 제2 광원을 제어하여 상기 가이드광이 출력되는 타이밍을 달리함으로써, 상기 가이드광이 상기 센싱광과 동일한 방향으로 반사되도록 하는 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 상기 제2 광원은 탈 ·부착이 가능한 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 상기 제2 광원은 복수 개 구비되며, 상기 제어부는 복수 개의 제2 광원 각각의 가이드광 출력 타이밍을 제어하여 상기 가이드광이 기 설정된 문자 또는 형상을 나타내도록 하는 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 상기 제2 광원은 복수 개의 서로 다른 가시광선 대역의 파장을 갖는 가이드광을 출력하는 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 상기 제어부는 상기 타겟이 탐지되었는지 여부에 따라 상기 제2 광원이 서로 다른 가시광선 대역의 파장을 갖는 가이드광을 출력하도록 제어하는 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 상기 라이다 시스템은 상기 모터 몸체부와 상기 제2 미러의 사이에 부착되며, 상기 제2 미러가 반사시키는 가이드 광의 각도를 조정하는 각도 조정부를 더 포함하는 것을 특징으로 한다.
이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 라이다 시스템이 스캐닝 영역으로 조사되는 가이드 광을 구비하기 때문에, 시스템 사용자가 별도의 장비 사용없이도 스캐닝하는 영역을 육안으로 확인할 수 있는 장점이 있다.
본 발명의 일 측면에 따르면, 라이다 시스템이 센싱광을 이용하여 스캐닝한 특정 물체(타겟)에 상기 가이드 광이 물건의 위치를 포인팅하고, 상기 물체의 위치 변화에 따라 트래킹할 수 있도록 하여 외부에서 탐지된 물체를 식별할 수 있는 장점이 있다.
본 발명의 일 측면에 따르면, 라이다 시스템이 광학장치의 오차를 보정할 수 있고, 보정은 가동중인 상태에서도 센싱광이 조사되는 각도를 조정할 수 있기 때문에, 라이다 시스템의 동작과 정지를 반복하지 않고도 정밀하게 스캐닝 영역을 조정할 수 있는 장점이 있다.
본 발명의 일 측면에 따르면, 라이다 시스템은 광학장치 내부에 광학필터를 구비함으로써, 반사광만을 수광하면서도 간단한 구성을 가져 양산이 가능한 장점이 있다.
도 1은 본 발명의 제1 실시예에 따른 라이다 시스템의 사시도이다.
도 2는 본 발명의 제1 실시예에 따른 라이다 시스템의 단면도이다.
도 3은 본 발명의 제2 실시예에 따른 라이다 시스템의 사시도이다.
도 4는 본 발명의 제2 실시예에 따른 라이다 시스템의 단면도이다.
도 5는 본 발명의 제2 실시예에 따른 라이다 시스템의 모터의 구조를 도시한 단면도이다.
도 6은 본 발명의 제2 실시예에 따른 라이다 시스템의 모터의 또 다른 구조를 도시한 단면도이다.
도 7은 본 발명의 제3 실시예에 따른 라이다 시스템 사시도이다.
도 8은 본 발명의 제3 실시예에 따른 라이다 시스템 내부 구성도이다.
도 9는 본 발명의 제3 실시예에 따른 라이다 시스템의 단면도이다.
도 10은 본 발명의 제3 실시예에 따른 라이다 시스템이 물체를 탐지하는 실시예를 도시한 도면이다.
도 11은 본 발명의 제3 실시예에 따른 라이다 시스템이 탐지된 물체를 포인팅 및 타겟팅하는 방법을 도시한 순서도이다.
도 12는 본 발명의 제4 실시예에 따른 라이다 시스템의 사시도이다.
도 13은 본 발명의 제4 실시예에 따른 라이다 시스템의 단면도이다.
도 14는 본 발명의 제4 실시예에 따른 라이다 광학장치의 사시도이다.
도 15는 본 발명의 제5 일 실시예에 따른 라이다 광학장치의 사시도이다.
도 16은 본 발명의 제4 실시예에 따른 라이다 광학장치의 단면도이다.
도 17은 본 발명의 제4 실시예에 따른 라이다 광학장치의 입체도이다.
도 18은 본 발명의 제6 실시예에 따른 라이다 광학장치의 단면도이다.
도 19는 본 발명의 제7 실시예에 따른 라이다 광학장치의 단면도이다.
도 19는 본 발명의 제7 실시예에 따른 라이다 광학장치의 단면도이다.
도 20은 본 발명의 제8 실시예에 따른 라이다 광학장치의 단면도이다.
도 21은 본 발명의 제8 실시예에 따른 라이다 광학장치의 단면도이다.
도 22 및 23은 본 발명의 제8 실시예에 따른 라이다 광학장치가 설치된 실시예를 도시한 도면이다.
도 24는 본 발명의 제8 실시예에 따른 라이다 시스템이 물체를 탐지하는 실시예를 도시한 도면이다.
도 25는 본 발명의 제9 실시예에 따른 라이다 광학장치의 단면도이다.
도 26은 본 발명의 제1 실시예에 따른 미러부의 일 예를 도시한 도면이다.
도 27은 본 발명의 제10 실시예에 따른 라이다 시스템의 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 라이다 시스템의 사시도이다.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 라이다 시스템(100)은 커버부(110), 스캐너(120), 가이드부(130) 및 몸체부(140)를 포함한다.
커버부(110)는 라이다 시스템(100) 내 내부 구성을 보호한다. 커버부(110)는 센싱광 또는 가이드광을 통과시킬수 있도록 투명한 재질로 구성되며, 센싱광 또는 가이드광의 진행방향을 변화시키지 않도록 각이 없는 원통 형상으로 구현될 수 있다.
커버부(110)는 스캐너(120)의 전방에 위치하여 센싱광을 통과시키는 제1 커버부(113)와 가이드부(130)의 전방에 위치하여 가이드광을 통과시키는 제2 커버부(116)로 구분될 수 있다. 제1 커버부(113)는 스캐너(120)로부터 스캐너(120)가 센싱광을 방사하는 방향으로 기 설정된 거리만큼 떨어진 위치에 배치되어, 센싱광과 센싱광이 물체에 반사되어 되돌아오는 반사광을 통과시킨다. 이때, 제1 커버부(113)는 센싱광이 갖는 파장 대역의 빛만을 통과시키는 대역 통과 필터(BPF)를 구비하여, 센싱광 및 반사광 이외의 빛이 통과하는 것을 방지할 수 있다. 제2 커버부(116)는 가이드부(130)로부터 가이드부(130)가 가이드광을 방사하는 방향으로 기 설정된 거리만큼 떨어진 위치에 배치되어, 가이드광을 통과시킨다. 각 커버부(113, 116)는 별도의 마크(119)에 의해 구분될 수 있다.
스캐너(120)는 광학장치(미도시)로부터 조사되는 센싱광을 스캐닝 영역으로 반사시키고, 물체로부터 반사된 반사광을 광학장치(미도시)로 반사시킨다. 스캐너(120)는 모터(미도시)에 의해 회전하며, 센싱광을 스캐닝 영역 전부에 반사시킨다. 스캐너(120)는 기존에 이미 존재하던 물체나 배경(이하에서는 '기존 배경'이라고 약칭함)에 반사되거나, 타겟에 반사되어 되돌아오는 반사광을 광학장치로 반사시킨다. 이에 따라, 광학장치는 반사광을 수광한다.
가이드부(130)는 스캐너(120)가 스캐닝하고 있는 영역과 동일한 방향으로 가이드광을 조사한다. 여기서, 가이드광은 육안으로 식별할 수 있는 가시광선 대역의 파장을 갖는 빛이다. 즉, 스캐너(120)가 스캐닝하고 있는 영역과 동일한 방향으로 가이드광을 조사함으로써, 가이드부(130)는 라이다 시스템(100) 사용자가 현재 스캐닝되고 있는 영역이 어디인지를 별도의 장비없이도 바로 확인할 수 있도록 한다.
몸체부(라이다 시스템의 하우징, 140)는 라이다 시스템(100)의 형상을 유지하도록 하며, 커버부(110)및 스캐너(120)를 지탱한다. 또한, 몸체부(140)는 내부에 라이다 시스템(100)의 동작이나 데이터 처리 등을 제어하는 제어부(미도시), 스캐너(120)가 타겟을 스캐닝하기 위한 센싱광을 조사하고, 타겟으로부터 반사된 반사광을 수광하는 광학장치(미도시) 및 스캐너(120)를 회전시키는 모터(미도시)를 포함한다.
도 2는 본 발명의 제1 실시예에 따른 라이다 시스템의 단면도이다.
모터(210)는 몸체부(140) 내에 위치하며, 스캐너(120) 및 가이드부(130)와 연결되어 스캐너(120) 및 가이드부(130)가 회전할 수 있도록 동력을 제공한다. 모터(210)는 스캐너(120) 및 가이드부(130)와 함께 연결되어, 스캐너(120)와 가이드부(130)가 동시에 동일하게 회전하도록 한다. 모터(210)는 엔코더(Encoder, 미도시)를 포함하거나 엔코더와 연결되며, 엔코더를 이용하여 모터의 회전 수나 속도, 회전 방향 또는 회전 각도 등의 정보를 파악하고, 파악한 정보를 제어부(250)로 제공한다.
가이드부(130)는 광원(220)과 제1 미러부(230)를 포함한다.
광원(220)은 스캐닝되는 영역을 가이드하기 위한 가이드광을 조사한다. 광원(220)은 제1 미러부(230)를 향해 센싱광을 조사하며, 제1 미러부(230)에 의해 반사된 가이드광은 센싱광과 동일한 방향으로 조사된다.
도 2에는 가이드부(130)가 하나의 광원만을 포함하고 있는 것으로 도시되어 있으나, 가이드부(130)는 복수 개의 광원을 포함할 수 있다. 가이드부(130)에 포함된 각각의 광원은 기 설정된 거리를 두고 배치되며, 제어부(250)에 의해 출력 타이밍이 조절되어 기 설정된 문자나 형상을 나타낼 수 있다. 가이드부(130)는 스캐너(120)와 함께 모터(210)에 연결되어 회전하고 있기 때문에, 가이드부(130)에 포함된 각각의 광원의 출력 타이밍에 따라 기 설정된 문자나 형상이 나타날 수 있다. 이처럼, 가이드부(130)는 복수 개의 광원을 포함하고, 제어부(250)는 각 광원의 출력 타이밍을 제어함으로써, 라이다 시스템(100)은 타겟이 발견된 경우나 아무런 이상이 없는 경우 등 상황에 따라 적절한 문자나 형상을 출력할 수 있다.
광원(220)은 복수 개의 서로 다른 가시광선 대역의 파장을 갖는 가이드광을 각각 출력할 수 있다. 예를 들어, 하나의 광원(220)이 빨간색, 노란색, 초록색 및 파란색 가이드광을 모두 출력할 수 있다. 제어부(250)는 타겟이 발견된 경우나 아무런 이상이 없는 경우 등 각 상황에 따라 서로 다른 색의 가이드 광을 출력하도록 광원(220)을 제어할 수 있으며, 이에 따라, 라이다 시스템 사용자는 스캐닝 영역에서 발생하는 변화를 보다 직관적으로 파악할 수 있다.
한편, 도 2에는 광원(220)이 제1 미러부(230)를 기준으로 +Y 축 방향에 위치해 있는 것으로 도시되어 있으나, 반드시 이에 한정하는 것은 아니다. 광원(220)은 스캐너(120)의 반사면 각도와 센싱광이 반사되는 방향에 따라 위치가 달라질 수 있다. 예를 들어, 센싱광이 -Y축 방향으로 방사되며, 스캐너(120)가 XY 평면 상에서 X축으로부터 +45도 각도의 반사면을 갖는 경우, 광원(220)은 제1 미러부(230)를 기준으로 +X 축방향에 위치할 수 있다.
광원(220)은 몸체부(140)에 고정되는데, 몸체부(140)에서 탈·부착될 수 있다. 광원(220)은 가이드광이 필요한 때에만 부착되고, 라이다 시스템(100)이 동작중이더라도 가이드광을 사용할 필요가 없을 때는 몸체부(140)에서 탈착될 수 있다. 이에 따라, 추후 광원(220)이 라이다 시스템에 부착되어 사용될 수 있기 때문에, 광원(220)을 포함시키지 않은 라이다 시스템(100)이 대량 생산될 수 있다. 또한, 광원(220)이 고장나는 경우, 광원(220)만을 탈착하면 되기 때문에, 라이다 시스템(100)의 동작에 아무런 영향이 미치지 않는다.
제1 미러부(230)는 광원(220)으로부터 조사되는 가이드광을 센싱광이 반사되는 방향으로 반사시킨다. 제1 미러부(230)는 광원(220)이 조사하는 가이드광을 스캐닝 영역으로 반사시키기 위해, 광원(220)이 가이드광을 조사하는 방향을 기준으로 기 설정된 각도를 이루는 반사면을 구비한다. 예를 들어, -X 축으로 조사된 가이드광을 -Y 축 방향으로 반사시키기 위해, 제1 미러부(230)는 45˚각도를 갖는 반사면을 구비할 수 있다. 이처럼, 제1 미러부(230)는 기 설정된 각도를 갖는 반사면을 구비함으로써, 조사되는 가이드광을 센싱광이 반사되는 방향과 동일한 방향으로 반사시킨다.
제1 미러부(230)는 모터(210)와 연결되어 모터(210)의 회전에 따라 함께 회전한다. 모터와 함께 회전함으로써, 제1 미러부(230)는 한 지점이 아닌 센싱광이 반사되는 일정한 면적의 영역으로 가이드광을 반사시킬 수 있다.
도 26에 도시된 바와 같이, 제1 미러부(230)는 미러로 코팅된 옆면을 가질 수 있고, 평탄한 다각형기둥 형상 또는 원기둥 형상 등 다양한 형상을 가질 수 있다.
또한, 도 27에 도시된 바와 같이, 제1 미러부(230)는 스캐너(120)와 일체형으로 구성될 수 있다. 전술한 바와 같이, 제1 미러부(230)는 다양한 형상을 가질 수 있는데, 스캐너(120)와 유사한 형상 또는 대칭되는 형상을 가짐으로써, 스캐너(120)와 일체형으로 구성될 수 있다. 제1 미러부(230)가 이처럼 구성되면, 가이드광과 센싱광의 조사되는 범위가 거의 동일해지는 장점이 있다.
스캐너(120)는 광학장치(240)로부터 조사되는 센싱광을 반사시키며, 기존 배경이나 타겟에 반사된 반사광을 재반사시킨다. 스캐너(1220)는 광학장치(240)가 조사하는 센싱광을 스캐닝 영역으로 반사시키기 위해, 광학장치(240)가 센싱광을 조사하는 방향을 기준으로 기 설정된 각도를 이루는 반사면을 구비한다. 예를 들어, +Z 축으로 조사된 센싱광을 XY 평면상의 스캐닝 영역으로 반사시키기 위해, 스캐너(1220)는 45˚ 각도를 갖는 반사면을 구비할 수 있다. 이처럼, 스캐너(1220)는 기 설정된 각도를 갖는 반사면을 구비함으로써, 조사되는 센싱광을 스캐닝 영역으로 반사시킨다.
스캐너(120)는 모터(210)와 연결되어 모터(210)의 회전에 따라 함께 회전한다. 모터와 함게 회전함으로써, 스캐너(120)는 한 지점이 아닌 일정한 면적의 영역으로 센싱광을 반사시킬 수 있으며, 한 지점이 아닌 일정한 면적의 영역 내 기존 배경이나 타겟에 반사된 반사광을 재반사시킬 수 있다. 또한, 스캐너(120)는 가이드부(130)와 함께 모터에 연결됨에 따라, 항상 가이드부(130)와 동일한 각도만큼 회전한다. 이에 따라, 센싱광과 가이드광이 동일한 방향으로 반사될 수 있다.
광학장치(240)는 몸체부(140) 내에 위치하며, 스캐너(120)로 센싱광을 조사하거나, 스캐너(120)로부터 입사되는 반사광을 수광한다. 센싱광은 가시광선의 파장 대역 외의 파장 대역을 갖는 빛으로, 육안으로 식별할 수 없는 파장 대역을 갖는다. 예를 들어, 센싱광은 900nm 대역의 적외선이 이용될 수 있다. 광학장치(240)는 센싱광을 스캐너(1220)로 조사함으로써, 센싱 영역으로 센싱광을 반사시킨다. 또한, 광학장치(240)는 스캐너(120)에 반사되어 광학장치(240)로 입사되는 반사광을 수광한다.
제어부(250)는 라이다 시스템(100) 내 각 구성의 동작을 제어하며, 광학장치(240)와 스캐너(120)를 이용하여 타겟이 스캐닝 영역으로 침입을 하였는지를 판단한다. 기존 배경으로 센싱광이 조사되고 기존 배경으로부터 반사된 반사광이 광학장치(240)로 입사되는 경우, 제어부(250)는 센싱광이 조사될 때의 각도 및 센싱광이 기존 배경의 각 구성에 반사되어 광학장치(240)로 입사될 때까지의 시간을 측정한다. 제어부(250)는 측정값을 이용하여 기존 배경의 각 구성들이 어느 각도에 얼마만큼 떨어져 있는지 거리를 연산할 수 있다. 제어부(250)는 메모리(미도시)를 구비하며, 기존 배경의 각 구성들의 방향과 거리를 저장한다. 추후, 메모리에 저장된 기존 배경의 각 구성들의 정보와 상이한 값이 연산되는 경우, 제어부(250)는 실제 스캐닝 영역에 타겟이 침입했음을 알 수 있다.
또한, 타겟이 침입한 경우, 제어부(250)는 측정값을 이용하여 타겟의 방향과 거리를 측정할 수 있다. 제어부(250)는 타겟의 위치를 측정할 수 있으며, 타겟이 침입했음을 빛 또는 소리 등을 이용하여 외부로 알리도록 제어할 수 있다.
광원(220)이 복수 개가 구비되었거나, 복수 개의 서로 다른 가시광선 대역의 파장을 갖는 가이드광을 조사할 수 있는 경우, 제어부(250)는 타겟이 침입했는지 여부 등 상황에 따라 광원(220)을 제어한다. 복수 개의 광원(220)이 구비된 경우, 제어부(250)는 각각의 광원의 출력 타이밍을 제어하여, 각 상황에 적절한 문자나 형상을 나타내도록 한다. 또는, 광원(220)이 복수 개의 서로 다른 가시광선 대역의 파장을 갖는 가이드광을 조사할 수 있는 경우, 제어부(250)는 각 상황에 따라 서로 다른 색의 가시광선 대역의 파장을 갖는 가이드광을 조사하도록 광원(220)을 제어한다. 예를 들어, 타겟이 침입한 경우, 제어부(250)는 적색의 가이드광을 조사하도록 광원(220)을 제어하고, 타겟이 침입한 경우가 아니면, 제어부(250)는 녹색의 가이드광을 조사하도록 광원(220)을 제어할 수 있다.
한편, 제어부(250)는 광원(220)을 제어하여 가이드광의 조사 타이밍을 제어할 수 있다. 제1 미러(230)나 스캐너(120)의 설치과정 상의 오차 또는 제1 미러(230)나 스캐너(120)의 반사면의 생산과정 상의 오차로 인해 센싱광과 가이드광이 동시에 조사되는 경우, 가이드광은 센싱광과 서로 다른 위치에 조사될 수 있다. 이러한 경우, 가이드광은 센싱광이 타겟이 침입한 것으로 탐지한 위치와 다른 위치로 조사되기 때문에, 라이다 시스템(1200)의 사용자에게 혼란을 가져올 수 있다. 이러한 문제를 방지하고자, 제어부(250)는 모터(210)의 엔코더를 이용하여 센싱광과 가이드광의 각도차를 파악한다. 타겟이 탐지된 경우, 제어부(250)는 센싱광이 타겟을 탐지한 즉시 가이드광이 조사되도록 제어하는 것이 아니라, 각도차만큼 덜 회전하였거나 더 회전한 시점에 가이드광이 조사되도록 광원(220)을 제어한다. 이에 따라, 제1 미러(230)나 스캐너(120)의 설치과정 또는 생산과정 상에서 피할 수 없는 오차가 발생하더라도, 제어부(250)는 타겟이 탐지된 위치에 정확히 가이드광이 조사되도록 제어할 수 있다.
제어부(250)는 도 2에 도시된 것처럼 광학장치(240)를 감싸는 형태의 회로 기판으로 구현될 수 있으며, 그와 달리 광학장치(240)와는 별도의 구성으로 몸체부(140) 내에 구현될 수 있다. 제어부(250)는 구현 형태에 있어 별도의 제약을 받지 않는다.
도 3은 본 발명의 제2 실시예에 따른 라이다 시스템의 사시도이다.
도 3을 참조하면, 본 발명의 제2 실시예에 따른 라이다 시스템은 도 1에 도시된 라이다 시스템(100)에 가이드부(310)를 더 포함한다.
가이드부(310)는 가시광선, 특히, 라이다 시스템 사용자가 용이하게 확인할 수 있도록 단색광선을 이용하여 현재 스캐닝되고 있는 지역을 가이드한다. 전술한 바와 같이, 광학장치(240)는 가시광선의 파장 대역 외의 파장 대역을 갖는 센싱광을 조사하기 때문에, 라이다 시스템 사용자가 별도의 장비를 이용하지 않는 한 현재 스캐닝되고 있는 지역이 어디인지 확인할 수 없다. 따라서 가이드부(310)는 가시광선을 현재 스캐닝되고 있는 지역으로 조사함으로써, 라이다 시스템 사용자가 별도의 장비없이도 바로 스캐닝되고 이쓴ㄴ 지역을 확인할 수 있도록 한다.
도 4는 본 발명의 제2 실시예에 따른 라이다 시스템의 단면도이다.
중공(中孔, 440)은 커버부(110)로부터 기 설정된 거리만큼 떨어져 위치하여, 가이드광이 센싱광과는 별도의 루트로 조사되도록 한다. 중공(440)은 몸체부(140)의 일 측에 위치하여, 커버부(110)로부터 모터의 길이, 보다 구체적으로는, 모터 몸체부 및 동력부의 길이만큼(보다 자세한 설명은 도 5를 참조하여 설명하기로 함) 떨어져 위치한다. 가이드광이 조사되는 중공(440)이 몸체부(140)에 위치함에 따라, 다음과 같은 효과를 가질 수 있다. 커버부(110)는 스캐너(120)로 반사광 이외의 빛이 유입되는 것을 방지하기 위해, 센싱광이 갖는 파장대역 만을 통과시키는 필터를 포함한다. 예를 들어, 센싱광이 IR인 경우, 커버부(110)는 IR만을 통과시키는 IR 필터를 포함함으로써 센싱광과 반사광만을 통과시키며, 외부에서 조사되는 가시광선 등의 다른 빛을 차단시킨다. 문제는 가이드광은 센싱광과는 다른 파장대역의 빛을 사용하는데 있다. 가이드광은 라이다 시스템의 사용자가 육안으로 확인할 수 있도록 하기 위해 가시광선 대역의 파장을 갖는 빛이다. 따라서 가이드부(310)가 스캐너(120)와 같이 커버부(110) 내에 위치하는 경우라면, 가이드광은 커버부(110)에 의해 필터링될 것이다. 이러한 문제를 방지하고자, 본 발명의 일 실시예에 따른 라이다 시스템(100)은 커버부(110)를 스캐너(120)의 전방에 위치하는 제1 커버부(113)과 가이드부(130)의 전방에 위치하는 제2 커버부(116)으로 분리하고 있다. 제1 커버부(113)에는 전술한 필터를 포함하되, 제2 커버부(116)은 전술한 필터를 포함하지 않음으로써, 라이다 시스템(100)은 가이드광이 필터링되는 문제를 막고있다.
반면, 본 발명의 다른 일 실시예에 따른 라이다 시스템(300)은 아예 가이드광이 방사되는 부분을 스캐너와는 별도의 공간으로 분리함으로써, 전술한 문제가 발생하는 것을 원천적으로 방지한다.
광원(410)은 몸체부(140) 내에 위치하여, 가이드광을 제1 미러부(420)로 조사한다. 도 2를 참조하여 설명한 광원(220)과 같이, 광원(410)은 복수 개로 구현되거나, 복수 개의 서로 다른 가시광선 대역의 파장을 갖는 가이드광을 각각 출력할 수 있다. 또한, 광원(410)은 탈·부착될 수 있다.
제1 미러부(420)는 가이드광을 반사시켜, 중공(440)을 거쳐 센싱광과 동일한 방향으로 조사되도록 한다. 도 2를 참조하여 설명한 제1 미러부(230)와는 달리, 제1 미러부(420)는 스캐너(1220)와 모터(430)를 연결하는 모터의 샤프트(Shaft)에 함께 연결되는 것이 아니라, 모터(430)에 직접 부착되어 회전한다. 미러부가 모터의 샤프트에 연결되는 경우, 모터의 샤프트는 미러부만큼 추가적으로 더 길어져야 한다. 이에 따라, 라이다 시스템은 커져야하며, 특히, 라이다 시스템이 XY 평면을 감지하기 위한 세로형 시스템이 아닌, XZ 평면을 감지하기 위한 가로형 시스템인 경우, 아주 좁은 폭의 몸체부를 요구한다. 미러부가 모터의 샤프트에 연결되는 경우, 이러한 요구에 부응할 수 없는 문제가 발생한다. 따라서 제1 미러부(420)는 부착수단에 의해 모터(430)에 직접 부착된다. 이에 따라, 비교적 좁은 폭의 몸체부 내에서도 구현이 가능해지는 장점이 있으며, 단지 제1 미러부(420)를 모터에 부착하기만 하면 되기 때문에 생산에 용이한 장점이 있다.
모터(430)는 연결된 스캐너(120) 및 부착된 제1 미러부(420)가 회전할 수 있도록 동력을 제공한다. 전술한 바와 같이, 모터(430)는 비교적 좁은 폭의 몸체부 내에서도 구현이 되고, 제1 미러부를 부착할 수 있도록 다음과 같은 구성을 갖는다.
도 5는 본 발명의 제2 실시예에 따른 라이다 시스템의 모터의 구조를 도시한 단면도이고, 도 6은 본 발명의 제2 실시예에 따른 라이다 시스템의 모터의 또 다른 구조를 도시한 단면도이다.
도 5 를 참조하면, 본 발명의 제2 실시예에 따른 라이다 시스템의 모터(430)는 동력부(510), 모터 몸체부(520) 및 모터 샤프트(530)를 포함한다.
동력부(510)는 라이다 시스템의 몸체부(140)에 장착되어 모터의 이탈을 방지하며, 모터 몸체부(520) 및 모터 샤프트(530)에 회전 동력을 제공한다. 예를 들어, 라이다 시스템의 몸체부(140)는 동력부(510)를 고정시키기 위한 홈을 구비할 수 있고, 동력부(510)는 몸체부(140)의 홈에 장착되어 모터(430)의 이탈을 방지할 수 있다.
모터 몸체부(520)는 동력부(510)의 상단에 위치하며, 기 설정된 면적을 갖는 형상으로 구현된다. 도 5에 도시된 바와 같이, 모터 몸체부(520)는 판형으로 구현될 수도 있고, 그 외에 원형 등 다양한 형상으로 구현될 수 있다. 모터 몸체부(520)는 제1 미러부(420)가 부착될 수 있도록, 부착되는 제1 미러부(420)의 일면보다 동일하거나 큰 면적을 갖는다. 모터 몸체부(520)는 동력부(510)로부터 회전동력을 제공받아 회전하며, 모터 몸체부(520)에 부착된 제1 미러부(420)도 함께 회전하도록 한다.
모터 샤프트(530)는 동력부(510)의 하단에만 위치하며, 동력부(510)로부터 회전동력을 제공받아 회전한다. 모터 샤프트(530)는 샤프트에 연결된 모든 구성(스캐너(120) 등)을 회전시킨다. 또한, 모터 샤프트(530)는 동력부(510)로부터 회전동력을 제공받아 회전하기 때문에, 모터 몸체부(520)와 항상 함께 회전하며, 동일한 각도만큼 회전한다.
도 4를 참조하여 전술하였듯이, 중공(440)은 커버부(110)로부터 동력부(510)와 모터 몸체부(520)의 길이만큼 떨어져 위치한다. 중공(440)이 커버부(110)로부터 동력부(510)와 모터 몸체부(520)의 길이를 벗어나 위치하게 되면, 제1 미러부(420)에 반사된 가이드광은 중공(440)을 통과하지 못하게 된다. 따라서 몸체부(140)는 커버부(110)로부터 동력부(510)와 모터 몸체부(520)의 길이만큼 떨어진 위치에 중공(440)을 구비한다.
모터(430)는 엔코더(Encoder, 미도시)를 추가로 포함할 수 있다. 엔코더는 모터의 회전 수나 속도, 회전 방향 또는 회전 각도 등의 정보를 파악한다. 엔코더는 전술한 정보를 파악하여 제어부(250)로 전달한다. 엔코더는 동력부(510) 내부에 위치할 수 있고, 또는 동력부(510)와 연결된 별도의 구성으로 구현될 수 있다.
도 6은 도 5에 도시된 모터(430)에 각도 조정부(610)를 더 포함한다.
각도 조정부(610)는 모터 몸체부(520)와 제1 미러(420)의 사이에 부착되며, 제1 미러(420)가 모터 몸체부(520)와 이루는 각도를 조정한다. 광원(410) 또는 제1 미러(420)의 배치과정상의 오차, 제1 미러(420)이 갖는 반사면의 각도에 대한 생산과정상의 오차 등으로 인해, 가이드광이 방사되는 영역과 센싱광이 방사되는 영역이 상이해질 수 있다. 특히, 양 영역의 오차가 (제어부(250)가 제어할 수 있는) XY 평면상의 오차가 아닌, Z축상의 오차인 경우 문제가 된다. 이 경우, 각도 조정부(610)는 제1 미러(420)가 모터 몸체부(520)와 이루는 각도를 조정함으로써, Z축 상에 발생한 오차를 해소할 수 있도록 한다. 특히, 제1 미러(420)가 모터 몸체부(520)에 온전히 부착되었음에도 제1 미러의 생산과정상의 오차로 인해 양 영역에 오차가 발생하는 경우, 각도 조정부(610)는 오차를 용이하게 해소시킨다.
도 7은 본 발명의 제3 실시예에 따른 라이다 시스템 사시도이다.
라이다 시스템(700)은 타겟을 센싱하기 위해 레이저를 출력하고, 내부 광학부품을 보호하며, 원통 형상을 갖는 커버부(710)를 포함한다. 커버부(710)는 레이저가 통과 가능한 재질로 구성될 수 있다.
도 7에 도시된 세로형 라이다 시스템(700)의 경우에는 커버부(710)가 상부 커버부(714), 하부 커버부(718)로 나뉠 수 있다. 각각의 커버부는 별도의 마크(720)를 통해서 구분될 수 있고, 별도의 구분 마크없이도 나뉠 수 있다. 또한 몸체부(730)는 상기 커버부(710)를 지지하는 구조를 갖는다.
도 8은 본 발명의 제3 실시예에 따른 라이다 시스템 내부 구성도이고, 도 9는 본 발명의 제3 실시예에 따른 라이다 시스템의 단면도이다.
라이다 시스템(700)은 모터부(810), 제3 미러부(820), 제4 미러부(830), 송수신부(840), 가이드 광원부(850) 및 제어부(미도시)를 포함한다.
모터부(810)는 후술되는 제3 미러부(820) 및 제4 미러부(830)를 회전할 수 있는 동력을 제공하는 것으로, 일측 또는 상측에 연결된 인코더(818)를 이용하여 모터의 회전 각도를 인식할 수 있다.
제3 미러부(820)는 모터부(810)의 하측에 위치한 연결부(814)와 동적으로 결합되어 있기 때문에, 모터의 회전에 의해 제3 미러부(820)도 같이 회전된다. 제3 미러부(820)는 후술되는 가이드광을 반사시킬 수 있도록 형성된다. 가이드광을 반사시키기 위해서, 제3 미러부(820)는 측면에 금코팅 등의 처리를 거쳐 미러를 구성한다.
제4 미러부(830)는 제3 1미러부(820)의 하부에 위치하는 것으로 제3 미러부(820)와 연동되어 회전하며, 내측에는 저면으로부터 수신되는 센싱광을 반사시킬 수 있도록 소정의 각도를 지닌다. 송출된 센싱광은 제4 미러부(830)에 의해 후술되는 송수신부(840)로 재수신되여 신호 처리된다. 여기서, 제4 미러부(830)와 제3 미러부(820)가 연동되어 회전함으로써, 라이다 시스템(700)이 탐지된 물체를 포인팅하거나 트래킹할 수 있다.
송수신부(840)는 저면에 위치한 센싱광원의 빛을 제4 미러부(830)로 송출하고, 제4 미러부(830)를 거쳐 수신된 빛을 신호처리하는 것으로 후술되는 제어부(미도시)에 의해 제어된다.
도 8에는 인코더(818), 모터부(810), 제3 미러부(820), 제4 미러부(830) 순서로 연결부(814)에 연결되어 있는 것으로 도시되어 있으나, 하나의 연결부(814)에 의해 결합되기만 한다면 연결되는 순서는 변경될 수 있다. 즉, 본 실시예 외에도 인코더(818), 제3 미러부(820), 모터부(810), 제4 미러부(830) 순으로 연결부(814)에 연결될 수 있다.
한편, 송수신부(840)로부터 송출되는 센싱광은 900nm 대역의 광원을 사용하고, 수신부는 수신감도를 향상시키기 위해서 APD를 사용할 수 있다. APD외에도 다양한 포토다이오드가 사용될 수 있고, 센싱광의 파장도 다양한 파장이 선택될 수 있다.
라이다 시스템이 900nm 대역의 광원은 사람의 눈에 안보이는 파장을 갖는 광원으로 센싱을 하기 때문에, 라이다 시스템의 이용자는 센싱 범위를 눈으로 확인할 수 없다. 사용자는 센싱범위를 확인하기 위해 IR카메라 등을 이용하지만, IR카메라는 화각이 좁기 때문에, 회전하여 센싱하는 라이다의 탐지 범위를 확인하기 어려운 문제가 있다.
가이드 광원부(850)는 가시광원 대역의 파장을 가지는 광원으로 구성되며, 가격대가 가장 저렴한 빨간색 광원을 사용할 수 있다. 가이드 광원부(850)에 의해 송출되는 가이드광(870)은 제3 미러부(820)에 의해서 반사되고, 커버부(710)를 통해서 외부로 출력된다. 가이드광(870)은 커버부(710) 중 상부 커버부(714의 위치에서 출력된다.
또한, 가이드 광원부(850)는 미러의 옆면(835)에 포커싱되어, 가이드 광원부(850)에서 송출되는 가이드광(870)은 회전하는 제3 미러부(820)의 옆면(835)에 의해서 반사되어, 상부 커버부(714)로 출력된다. 가이드 광원부(850)는 라이다의 후면에 위치할 수도 있고, 90도 틀어서 라이다의 측면에 위치할 수도 있다.
도 10은 본 발명의 제3 실시예에 따른 라이다 시스템이 물체를 탐지하는 실시예를 도시한 도면이다.
도 11은 본 발명의 제3 실시예에 따른 라이다 시스템이 탐지된 물체를 포인팅 및 타겟팅하는 방법을 도시한 순서도이다.
단계는 탐지 준비 단계(S1110), 탐지 단계(S1120), 경고 단계(S1130)로 크게 3단계로 구분된다, 각각의 단계를 보면 다음과 같다.
탐지 준비 단계(S1110)은 센싱광(860)을 이용하여 탐지 또는 스캐닝하는 영역을 스캐닝(S1111)하여, 탐지 대상영역에서 얻어지는 정보를 기반으로 자동 기준을 설정(S1113)하고, 센싱광(860)에 의해서 측정된 스캔 데이터 및 좌표를 저장(S1115)한다. 좌표는 인코더(818)에 의해 형성되어 제어부에 저장된다. 좌표의 형태는 절대좌표로 (X, Y)좌표 일 수 있고, 인코더에서 제공하는 각도의 절대좌표일 수 있다. 즉, 탐지 준비 단계(S1110)에서는 라이다가 탐지하는 영역 내 고정되어 있는 물체를 포함하여, 탐지 영역의 기본 정보인 기준 데이터를 획득하고, 그 탐지되는 영역의 절대좌표를 산출한다. 이런 일련의 과정은 제어부(미도시)에서 이루어진다. 센싱광(860)을 이용한 데이터 획득은 데이터 획득부에서, 좌표산출은 제어부(미도시) 내의 좌표산출부에서 이루어진다. 또한, 좌표의 정밀도는 인코더의 해상도(resolution)에 의해서 결정된다.
다음 탐지 단계(S1120)는 라이다를 가동시켜서, 즉, 센싱광(860)을 이용하여 탐지 영역을 스캐닝(S1121)한다. 라이다 시스템은 스캐닝하여 획득한 측정데이터를 기준데이터와 비교하여 데이터의 차이 유무를 판단(S1123)한다. 데이터의 비교는 좌표 단위로 비교하여 이루어 질 수 있다. 이 같은 데이터 비교는 제어부(미도시) 내의 데이터 비교부에 의해서 이루어질 수 있다.
마지막으로 경고 단계(S1130)는 탐지 단계(S1120)에서 비교한 데이터, 즉 기준 데이터와 측정 데이터가 상이하면, 알람을 출력(S1135)하고, 상이한 데이터의 절대좌표를 활용(S1131)하여 가이드광(870)을 조사할 수 있도록, 가이드광(870)을 ON(S1133)을 시킨다. 데이터가 상이하다는 의미는 탐지 영역에 타겟이 감지되었다는 것을 의미한다.
가이드광(870)을 조사를 한다는 것은 탐지된 타겟에 대해서 가이드광(870)을 포인팅하는 것을 의미한다.
만약, 복수 개의 좌표에서 데이터가 상이(실제로는 감지 물체가 일정 면적을 갖기 때문에 복수 개의 좌표에서 데이터가 상이할 것임)하면, 라이다 시스템은 데이터가 상이한 좌표 모두에 대해서 가이드광(870)을 조사를 한다.
또한, 제어부는 센싱광(860)을 이용해 스캐닝할 때마다 데이터를 측정하고, 측정할 때마다 매번 데이터의 차이 유무를 판단할 수 있고, 차이가 있는 좌표에 대해서 가이드광(870)을 조사하도록 할 수 있다. 이와 같이, 연속적으로 스캐닝하여 데이터 차이를 판단하는 기능은, 탐지되는 타겟이 이동을 하게 되면, 물체의 이동을 쫓아서 가이드광(870)이 조사되도록 할 수 있다. 즉, 탐지된 타겟을 트래킹하여 가이드광을 이용해 가시화함으로써, 외부에서 식별이 가능하도록 하는 장점이 있다.
또한, 데이터를 비교하여 타겟을 탐지하고 가이드광을 조사하는 것은 1회 스캐닝 후, 판단하여 할 수 있고, 복수 회 스캐닝하여, 측정 데이터를 누적하거나, 평균을 내어 판단할 수도 있다.
상기와 같은 일련의 과정으로, 본 발명의 일 실시예에 따른 라이다 시스템은 탐지영역 내에 타겟이 있는 경우, 타겟을 포인팅하고 타겟이 움직이면 트래킹할 수 있는 기능을 제공한다.
나아가, 탐지 준비 단계(S1110)에서는 오차보정부에 의해서 센싱광(860)과 가이드광(870)의 오차를 오차 보정 단계를 더 포함할 수 있다. 오차는 센싱광(860)과 가이드광(870)의 설치 형태에 기인한 좌표오차, 레이저의 특성에 기인한 출력이 켜지는 타이밍 오차 등을 포함한다.
도 12는 본 발명의 제4 실시예에 따른 라이다 시스템의 사시도이다.
도 12를 참조하면, 본 발명의 제4 실시예에 따른 라이다 시스템(1200)은 몸체부(1210), 스캐너(1220) 및 커버부(1230)를 포함한다.
몸체부(1210)는 라이다 시스템(1200)의 형상을 유지하도록 하며, 스캐너(1220) 및 커버부(1230)를 지탱한다. 또한, 몸체부(1210)는 내부에 라이다 시스템(1200)의 동작이나 데이터 처리 등을 제어하는 제어부(미도시), 스캐너(1220)가 타겟을 스캐닝하기 위한 센싱광을 조사하고, 타겟으로부터 반사된 반사광을 수광하는 광학장치(미도시) 및 스캐너(1220)가 스캐닝 영역을 스캐닝할 수 있도록 스캐너를 동작시키는 모터(미도시)를 포함한다.
스캐너(1220)는 광학장치로부터 조사되는 센싱광을 스캐닝 영역으로 반사시키고, 물체로부터 반사된 반사광을 광학장치로 재반사시킨다. 스캐너(1220)는 모터(미도시)에 의해 회전하며, 센싱광을 스캐닝 영역 전부에 반사시킨다. 스캐너(1220)는 반사시킨 센싱광이 기존에 이미 존재하던 물체나 배경(이하에서는 '기존 배경'이라고 약칭함)에 반사되거나, 타겟에 반사되어 되돌아오는 반사광을 광학장치로 반사시켜 광학장치가 반사광을 수광할 수 있도록 한다.
커버부(1230)는 라이다 시스템(1200) 내 내부 구성을 보호한다. 커버부(1230)는 센싱광 또는 반사광을 통과시킬 수 있도록 투명한 재질로 구성되며, 센싱광 또는 반사광의 진행방향을 변화시키지 않도록 각이 없는 원통 형상으로 구현될 수 있다.
몸체부(1210) 내 광학장치가 제6 실시예 또는 제7 실시예에 따른 광학장치인 경우, 커버부(1230)는 다음과 같이 구성될 수 있다. 커버부(1230)는 센싱광이나 반사광만을 통과시키며 센싱광 또는 반사광이 갖는 파장대역 이외의 광은 필터링하는 광학필터를 구비하지 않는다. 즉, 커버부(1230)는 센싱광이나 반사광을 포함한 모든 광이 통과된다. 커버부(1230) 내부에 가이드광(스캐닝 영역 또는 타겟을 육안으로 식별하기 위해 조사되는 광)을 조사하는 구성이 배치되어 있어, 커버부(1230)를 광학필터가 구비된 영역과 가이드광을 조사하기 위해 광학필터를 구비하지 않는 영역으로 분리할 필요가 없다. 이에 따라, 본 발명의 일 실시예에 따른 라이다 시스템(1200)은 종래의 라이다 시스템에 비해 보다 용이하게 양산할 수 있는 장점이 있다.
도 13은 본 발명의 제4 실시예에 따른 라이다 시스템의 단면도이다.
스캐너(1220)는 모터(1310)와 제5 미러부(1320)를 포함한다.
전술한 바와 같이, 모터(1310)는 몸체부(1210) 내에 위치하며, 제5 미러부(1320)와 연결되어 제5 미러부(1320)가 회전할 수 있도록 동력을 제공한다. 모터(1310)는 엔코더(Encoder, 미도시)를 포함하거나 엔코더와 연결되며, 엔코더를 이용하여 모터의 회전 수나 속도, 회전 방향 또는 회전 각도 등의 정보를 파악한다. 모터(1310)는 파악한 정보를 제어부(1340)로 제공하거나, 전술한 정보를 제어부(1340)가 확인할 수 있도록 한다.
제5 미러부(1320)는 광학장치(1330)로부터 조사되는 센싱광을 반사시키며, 기존 배경이나 타겟에 반사된 반사광을 재반사시킨다. 제5 미러부(1320)는 광학장치(1330)가 조사하는 센싱광을 스캐닝 영역으로 반사시키기 위해, 광학장치(1330)가 센싱광을 조사하는 방향을 기준으로 기 설정된 각도를 이루는 반사면을 구비한다. 예를 들어, +Z 축으로 조사된 센싱광을 XY 평면상의 스캐닝 영역으로 반사시키기 위해, 제1 미러부(1320)는 45˚ 각도를 갖는 반사면을 구비할 수 있다. 이처럼, 제1 미러부(1320)는 기 설정된 각도를 갖는 반사면을 구비함으로써, 조사되는 센싱광을 스캐닝 영역으로 반사시킨다.
제1 미러부(1320)는 모터(1310)와 연결되어 모터(1310)의 회전에 따라 함께 회전한다. 모터와 함께 회전함으로써, 제1 미러부(1320)는 한 지점이 아닌 일정한 면적의 영역으로 센싱광을 반사시킬 수 있으며, 한 지점이 아닌 일정한 면적의 영역 내 기존 배경이나 타겟에 반사된 반사광을 재반사시킬 수 있다.
센싱광과 반사광은 반사면에 입사하거나 반사될 때, 서로 수평을 이뤄야만, 라이다 시스템(1200)이 높은 효율로 타겟을 감지할 수 있다. 하지만, 앞서 언급한 생산과정 및 환경적 요인으로 광학장치에서 오차가 발생하면, 센싱광과 반사광은 수평을 이루지 못한다. 이러한 문제를 해결하기 위해서, 본 발명의 일 실시예에 따른 라이다 시스템은 다음과 같은 기술적 특징을 구비한다.
광학장치(1330)는 몸체부(1210) 내에 위치하며, 스캐너(1220)로 센싱광을 조사하거나, 스캐너(1220)로부터 입사되는 반사광을 수광한다. 광학장치(1330)는 센싱광을 조사하거나 반사광을 수광하는 도중에도, 라이다 시스템 사용자가 스캐닝하고자 하는 스캐닝 영역(이하에서는 '목표 스캐닝 영역'이라 칭함)이 실제 센싱광이 조사되는 스캐닝 영역(이하에서는 '실제 스캐닝 영역'이라 칭함)과 일치하는지에 따라 센싱광의 조사 방향을 조정할 수 있다. 이에 대한 상세한 설명은 도 14 내지 도 17을 참조하여 설명하기로 한다.
제6 실시예 또는 제7 실시예에 따른 광학장치(1330)는 몸체부(1210) 내에 위치하며, 스캐너(1220)로 센싱광을 조사하거나, 반사광을 포함하여 스캐너(1220)로부터 입사되는 모든 광을 수광한다. 다만, 광학장치(1330) 내에 광학필터를 구비하여 광학장치(1330)는 반사광에 대한 수광여부만을 판단한다. 이와 함께, 광학장치(1330)는 스캐너(1220)로 가이드광을 조사한다. 광학장치(1330) 내부에서 가이드광을 조사할 수도 있고, 광학장치(1330)의 외부에서 가이드광을 조사할 수도 있다. 광학장치에 대한 상세한 설명은 도 18 및 19를 참조하여 설명하기로 한다.
제어부(1340)는 라이다 시스템(1200) 내 각 구성의 동작을 제어하며, 광학장치(1330)와 스캐너(1220)를 이용하여 타겟이 스캐닝 영역으로 침입을 하였는지를 판단한다. 기존 배경으로 센싱광이 조사되고 기존 배경으로부터 반사된 반사광이 광학장치로 입사되는 경우, 제어부(1340)는 센싱광이 조사될 때의 각도 및 센싱광이 기존 배경의 각 구성에 반사되어 광학장치(1330)로 입사될 때까지의 시간을 측정한다. 제어부(1340)는 측정값을 이용하여 기존 배경의 각 구성들이 어느 각도에 얼마만큼 떨어져 있는지 거리를 연산할 수 있다. 제어부(1340)는 메모리(미도시)를 구비하며, 기존 배경의 각 구성들의 방향과 거리를 저장한다. 추후, 메모리에 저장된 기존 배경의 각 구성들의 정보와 상이한 값이 연산되는 경우, 제어부(1340)는 실제 스캐닝 영역에 타겟이 침입했음을 알 수 있다.
또한, 타겟이 침입한 경우, 제어부(1340)는 측정값을 이용하여 타겟의 방향과 거리를 측정할 수 있다. 제어부(1340)는 타겟의 위치를 측정할 수 있으며, 타겟이 침입했음을 빛 또는 소리 등을 이용하여 외부로 알리도록 제어할 수 있다.
도 13에 도시된 것처럼, 제어부(1340)는 광학장치(1330)를 감싸는 형태의 회로 기판으로 구현될 수 있으며, 그와 달리 광학장치(1330)와는 별도의 구성으로 몸체부(1210) 내에 구현될 수 있다. 제어부(1340)는 구현 형태에 있어 별도의 제약을 받지 않는다.
도 14는 본 발명의 제4 실시예에 따른 라이다 광학장치의 사시도이다. 도 14는 제어부(1340)가 광학장치(1330)와는 별도의 구성으로 몸체부(1210) 내에 구현된 경우를 도시하고 있다.
도 14를 참조하면, 본 발명의 일 실시예에 따른 라이다 광학장치(1330)는 광학 렌즈(1410), 광 송출부(1420) 및 센싱광원(1430)을 포함한다.
광학 렌즈(1410)는 스캐너(1220)로부터 입사되는 반사광을 집광하여 광 검출부(미도시)로 전달한다. 센싱광과는 달리, 타겟 또는 기존 배경으로부터 반사되는 반사광은 분산되기 때문에, 반사광을 검출하는데 충분한 양의 반사광이 광 검출부(미도시)로 입사되지 못할 우려가 존재한다. 광학 렌즈는 반사광을 집광함으로써, 광 검출부(미도시)가 반사광을 검출할수 있도록 한다.
광 송출부(1420)는 센싱광원(1430)으로부터 조사되는 센싱광이 광 송출부(1420) 외부로 분산되는 것을 방지하기 위한 차단부(1424)와 센싱광이 조사되는 조사부(1428)을 포함한다. 광 송출부(1420)는 차단부(1424)를 구비함으로써, 센싱광이 외부로 분산되는 것을 방지하며 오롯이 조사부(1428)로만 조사되도록 한다. 센싱광이 조사부(1428)로만 조사되도록 함으로써, 광 송출부(1420)는 센싱광이 스캐닝 영역에만 온전한 세기로 조사되도록 한다. 차단부(1424)의 폭과 그에 따라 결정되는 조사부(1428)의 폭은 스캐닝 영역에 따라 달리 설정될 수 있다.
센싱광원(1430)은 타겟을 탐지하기 위한 센싱광을 조사한다. 센싱광원(1430)은 제6 미러부(미도시)를 향해 센싱광을 조사하며, 제6 미러부(미도시)에 의해 반사된 센싱광은 광 송출부(1420)의 조사부(1428)를 거쳐 스캐너(1220)로 조사된다. 센싱광은 가시광선의 파장 대역 외의 파장 대역을 갖는다. 예를 들어, 센싱광은 900nm 대역의 적외선이 이용될 수 있다.
도 15는 본 발명의 제5 일 실시예에 따른 라이다 광학장치의 사시도이다. 도 15는 제어부(1340)가 광학장치(1330)를 감싸는 형태의 회로 기판으로 구현된 경우를 도시하고 있다.
도 15를 참조하면, 제어부(1340)는 광학장치(1330)를 감싸는 형태의 회로 기판으로 구현된다.
도 16은 본 발명의 제4 실시예에 따른 라이다 광학장치의 단면도이고, 도 17은 본 발명의 제4 실시예에 따른 라이다 광학장치의 입체도이다.
제6 미러부(1610)는 센싱광원(1430)으로부터 조사되는 센싱광을 스캐너(1220), 보다 구체적으로, 제5 미러(1320)로 반사시킨다. 제6 미러부(1610)는 센싱광원(1430)으로부터 센싱광이 조사되는 방향과 기 설정된 각도를 이루는 반사면을 구비한다. 예를 들어, 스캐너(1220)가 제6 미러부(1610)의 연직 위(+Z축 방향)에 위치하며, 센싱광이 +Y축 방향으로 조사되는 경우, 제6 미러부(1610)는 45˚를 갖는 반사면을 가지며 이에 따라 센싱광을 스캐너(1220)로 반사시킨다.
각도 조정부(1620)는 제6 미러부(1610)의 반사면 이외의 적어도 일면에 연결되어, 센싱광원(1430)으로부터 센싱광이 조사되는 방향과 반사면이 이루는 각도를 조정한다. 전술한 바와 같이, 생산 과정상에서 반사면의 각도가 기 설정된 각도에서 미세하게 벗어난 미러부(제5 미러부 또는 제6 미러부)가 생산될 수 있다. 또는, 라이다 광학장치(1330) 내 미러부가 배치됨에 있어, 제6 미러부(1610)는 센싱광이 조사되는 방향과 반사면이 이루는 각도가 기 설정된 각도에서 미세하게 벗어난 상태로 배치될 수 있다. 이에 따라, 센싱광과 반사광은 수평을 이루지 못하여 라이다 시스템의 센싱 성능에 열화가 발생할 수 있고, 라이다 시스템(1200)의 실제 스캐닝 영역이 목표 스캐닝 영역으로부터 X축 방향이나 Z축 방향으로 오차를 가지며 형성될 수 있다. 각도 조정부(1620)는 센싱광원(1430)으로부터 센싱광이 조사되는 방향과 반사면이 이루는 각도를 조정한다. 각도 조정부(1620)는 제6 미러부(1610)의 반사면 이외의 일면에 연결되어, 제6 미러부(1610)의 일 측을 위(+Z축 방향)로 또는 아래(-Z축 방향)로 조정함으로써, 센싱광이 조사되는 방향과 반사면이 이루는 각도를 조정한다. 제6 미러부(1610)의 일 측이 위로 올라가게 되면, 센싱광이 조사되는 방향과 반사면이 이루는 각도는 작아진다. 반대로, 제6 미러부(1610)의 일 측이 아래로 내려가게 되면, 센싱광이 조사되는 방향과 반사면이 이루는 각도는 커진다. 이처럼, 각도 조정부(1620)는 센싱광이 조사되는 방향과 반사면이 이루는 각도를 조정함으로써, 센싱광이 스캐너(1220)에 정확한 방향으로 조사되도록 하여, 최종적으로 목포 스캐닝 영역으로 조사되도록 조정한다. 도 16에서는 각도 조정부(1620)가 제6 미러부(1610)에 하나가 연결되어 있는 것으로 도시되어 있으나 이에 한정되는 것은 아니고, 도 17과 같이 복수 개가 간격을 가지고 배치되어 각각의 각도 조정부가 센싱광이 조사되는 방향과 반사면이 이루는 각도를 조정할 수 있다. 또한, 도 16에는 각도 조정부(1620)는 나사로 도시되어 있으나 이에 한정되는 것은 아니며, 제6 미러부(1610)의 일측을 이동시킬 수 있는 것이라면 어떠한 것으로도 구현될 수 있다.
라이다 광학장치(1330)는 각도 조정부(1620)와 가장 근접한 하우징의 일면에 구멍(1630)을 갖는다. 라이다 시스템 사용자는 라이다 시스템(1200)이 동작 중인 상태에서도 광학장치(1330)의 외부에서 구멍(1630)을 거쳐 각도 조정부(1620)를 이용해 각도를 조정할 수 있다. 또는, 제어부(1340)는 각도 조정부(1620)를 조절하기 위한 별도의 모터(미도시) 등을 구비할 수 있다. 제어부(1340)는 목표 스캐닝 영역과 실제 스캐닝 영역의 오차를 피드백받아, 모터를 이용해 오차만큼 각도를 조정하도록 각도 조정부(250)를 제어할 수 있다.
광 검출부(1640)는 스캐너로부터 진입하는 반사광을 수광하여 전기신호로 변환함으로써, 반사광의 수광여부를 검출한다. 광 검출부(1640)는 포토 다이오드(PD: Photo Diode) 등 광 신호를 전기 신호로 변환하는 소자라면 어떠한 것으로도 구현될 수 있다.
아이솔레이터(Isolator, 1650)는 센싱광원(1430)이 센싱광을 방사하는 방향의 앞부분에 배치되어, 광원으로 입사되는 반사광을 차단한다. 아이솔레이터(1650)는 전파를 순방향으로는 진행시키되, 역방향으로는 진행시키지 않는 회로소자를 의미한다. 아이솔레이터(1650)는 센싱광은 통과시키지만, 센싱광의 반대방향으로 입사되는 반사광은 차단시킨다. 대부분의 반사광이 광학 렌즈(1410)에 의해 집광되어 광 검출부(1640)로 입사되나, 일부의 반사광이 광학 렌즈(1410)가 아닌 광 송출부(1420)의 조사부(1428)로 입사될 수 있다. 조사부(1428)로 입사되는 반사광은 제6 미러부(1610)에 반사되어 센싱광원(1430)으로 입사되는데, 이러한 반사광은 차단될 필요가 있다. 따라서 아이솔레이터(1650)는 이처럼 센싱광원(1430)으로 입사되는 반사광을 차단한다.
도 18은 본 발명의 제6 실시예에 따른 라이다 광학장치의 단면도이다.
제7 미러부(1810)는 센싱광원(1430)으로부터 조사되는 센싱광을 스캐너(1220), 보다 구체적으로, 제5 미러(1320)로 반사시킨다. 제7 미러부(1810)는 센싱광원(1430)으로부터 센싱광이 조사되는 방향과 기 설정된 각도를 이루는 반사면을 구비한다. 예를 들어, 스캐너(1220)가 제7 미러부(1810)의 연직 위(+Z축 방향)에 위치하며, 센싱광이 +Y축 방향으로 조사되는 경우, 제7 미러부(1810)는 45˚를 갖는 반사면을 가지며 이에 따라 센싱광을 스캐너(1220)로 반사시킨다.
또한, 제7 미러부(1810)는 센싱광과 함께 가이드 광원(1820)으로부터 조사되는 가이드광도 함께 제5 미러(1320)로 반사시킨다. 센싱광과 가이드광은 서로 파장 대역이 상이하여 상호간에 어떠한 간섭을 일으키지 않기 때문에, 함께 제7 미러부(1810)로 조사되어도 무방하다.
가이드 광원(1820)은 가이드광을 제7 미러부(1810)로 조사한다. 가이드 광원(1820)도 센싱광원과 마찬가지로 제7 미러부(1810)를 향해 가이드광을 조사하며, 제7 미러부(1810)에 의해 반사된 가이드광은 광 송출부(1420)의 조사부(1428)를 거쳐 스캐너(1220)로 조사된다. 전술한 바와 같이, 커버부(1230)가 센싱광 또는 반사광만을 통과시키는 광학 필터를 구비하고 있지 않기 때문에, 가이드 광원(1820)은 센싱광이 조사되는 경로와 동일한 경로로 가이드광을 조사할 수 있다. 도 18에는 가이드 광원(1820)이 센싱광원(1430)을 기준으로 +Z축에 위치하는 것으로 도시되어 있으나, 반드시 이에 한정하는 것은 아니다. 가이드 광원(1820)은 센싱광원(1430)을 기준으로 ±X축, ±Y축, ±Z축 어느 방향에 위치하여도 무방하며, 가이드 광원(1820)은 가이드 광을 제7 미러부(1810)를 거쳐 스캐너(1220)로 조사할 수 있으면 족하기 때문에, 가이드 광을 제7 미러부(1810)로 조사할 수 있는 한도 내에서 센싱광원(1430)과 기 설정된 거리만큼 떨어져 위치할 수도 있다.
광학필터(1830)는 광학장치(1330)로 입사되는 모든 광 중 센싱광 또는 반사광이 갖는 파장 대역의 광만을 통과시킨다. 전술한 바와 같이, 커버부(1230)는 별도의 광학필터를 포함하고 있지 않기 때문에, 스캐너(1220)로 반사광을 포함한 모든 광이 입사되며, 모든 광이 그대로 제5 미러부(1320)에 반사되어 광학장치(1330)로 입사된다. 그러나 광학장치(1330) 내 광 검출부(1840)에서 검출할 광은 반사광뿐이며, 나머지 광은 노이즈일 뿐이므로 나머지 노이즈광은 필터링할 필요가 있다. 광학필터(1830)는 광학장치(1330)로 입사되는 광과 반대되는 방향으로 광 검출부(1840)로부터 기 설정된 거리만큼 떨어져 배치되어, 광학장치(1330)로 입사되는 모든 광 중 센싱광 또는 반사광이 갖는 파장 대역의 광만을 통과시킨다. 광학필터(1830)는 센싱광 또는 반사광이 갖는 파장 대역의 광만을 광 검출부(1840)로 통과시키기 위해, 광 검출부(1840)의 면적보다 큰 면적을 가질 수 있다.
광 검출부(1840)는 광학필터(1830)를 통과한 반사광을 수광하여 전기신호로 변환함으로써, 반사광의 수광여부를 검출한다. 광 검출부(1840)는 포토 다이오드(PD: Photo Diode) 등 광 신호를 전기 신호로 변환하는 소자는 어떠한 것으로도 구현될 수 있다. 광 검출부(1840)는 광학 렌즈(1410)에 의해 집광된 모든 광 중 광학필터(1830)를 통과한 반사광 만을 수광하여 전기신호로 변환한다.
아이솔레이터(Isolator, 1850)는 센싱광원(1430)이 센싱광을 방사하는 방향의 앞부분에 배치되어, 광원으로 입사되는 반사광을 차단한다. 아이솔레이터(1850)는 전파를 순방향으로는 진행시키되, 역방향으로는 진행시키지 않는 회로소자를 의미한다. 아이솔레이터(1850)는 센싱광은 통과시키지만, 센싱광의 반대방향으로 입사되는 반사광은 차단시킨다. 대부분의 반사광이 광학 렌즈(1410)에 의해 집광되어 광 검출부(1840)로 입사되나, 일부의 반사광이 광학 렌즈(1410)가 아닌 광 송출부(1420)의 조사부(1428)로 입사될 수 있다. 조사부(1428)로 입사되는 반사광은 제7 미러부(1810)에 반사되어 센싱광원(1430)으로 입사되는데, 이러한 반사광은 차단할 필요가 있다. 따라서 아이솔레이터(1850)는 이처럼 센싱광원(1430)으로 입사되는 반사광을 차단한다.
도 19는 본 발명의 제7 실시예에 따른 라이다 광학장치의 단면도이다.
도 18에 도시된 가이드 광원(1820)과 달리, 가이드 광원(1910)은 라이다 광학장치(1330)의 외부에 위치한다. 가이드 광원(1820)과 같이 가이드 광을 제7 미러부(1810)에 반사시켜 제5 미러부(1320)로 조사할 수 있으나, 가이드 광원(1910)은 별도의 반사 없이 직접 제5 미러부(1320)로 가이드 광을 조사할 수 있다. 가이드 광원(1910)이 라이다 광학장치(1330)의 외부에 위치함으로써, 센싱광원의 크기가 크거나 광학장치(1330)의 크기가 작아 가이드 광원을 배치할 공간이 넉넉하지 않은 경우에 발생할 수 문제(센싱광 또는 가이드 광의 궤적이 바뀌는 문제 등)를 방지할 수 있다.
또한, 가이드 광원(1910)은 광 송출부(1420)에서 조사부(1428)를 제외한 나머지 부분에 위치할 수 있다. 가이드 광원(1910)이 광 송출부(1420)에 위치함으로써, 제5 미러부(1320)로부터 반사되어 광학 장치(230)로 입사되는 광의 경로를 방해하는 것을 방지할 수 있다. 예를 들어, 가이드 광원(1910)이 광학 렌즈(1410)의 위(+Z축 방향)에 위치하는 경우, 가이드 광원(1910)의 면적만큼 광학 장치(1330)로 입사되는 광이 감소하며, 이에 따라, 타겟에서 반사된 반사광도 함께 줄어들 여지가 있다. 따라서 가이드 광원(1910)은 광 송출부(1420)에 위치할 수 있다.
도 20은 본 발명의 제8 실시예에 따른 라이다 광학장치의 단면도이다.
라이다 시스템은 넓은 각도로 대상을 센싱하기 위해 레이저가 출력되고, 내부 광학부품을 보호하며, 원통 형상을 갖는 커버부(2000)를 포함한다. 커버부(2000)는 레이저가 통과 가능한 재질로 구성될다.
도 20에 도시된 가로형 라이다 시스템의 커버부(2000)는 상부 커버부(2010), 하부 커버부(2020)를 포함한다. 각각의 커버부는 별도의 마크(2030)를 통해서 구분될 수 있고, 별도의 구분 표시 없이 나뉠 수 있다. 또한, 몸체부(2040)는 상기 커버부(2000)를 지지하는 구조를 갖는다.
도 21은 본 발명의 제8 실시예에 따른 라이다 광학장치의 단면도이다.
라이다 시스템은 모터부(2100), 제1 미러부(2200), 제2 미러부(2300), 송수신부(2400), 가이드 광원부(2500), 기판부(2600), 광학부(2700) 및 제어부(미도시)를 포함한다.
가로형 라이다 시스템은 다음과 같이 동작한다. 송수신부(2400)가 센싱광(2450)을 송출하면, 제1 미러부(2200)가 송출된 센싱광(2450)의 방향을 변경하고, 모터부(2100)와 결합부(110)에 동력적으로 결합되어 있는 제2 미러부(2300)가 회전하면서, 커버부(2000)의 외부로 센싱광(2450)이 출력된다. 출력된 센싱광(2450)은 물체 또는 배경에 반사되어, 제2 미러부(2300)을 거쳐 송수신부(2400)로 수신된다. 제어부는 수신된 센싱광(2450)을 분석하여, 피검출 대상의 존부를 확인한다.
모터부(2100)는 후술되는 제2 미러부(2300)를 회전시킬 수 있는 동력을 제공하는 것으로, 일측 또는 상측에는 인코더(미도시)가 연결될 수 있다. 인코더(미도시)는 연결된 모터의 회전 각도를 인식할 수 있다.
광학부(2700)은 상기 제1 미러부(2200)을 포함하고, 파장선택 광필터(미도시), 렌즈(미도시) 등을 포함할 수 있다. 광학부(2700)의 구조는 다양한 형상으로 구성될 수 있고, 센싱광(2450)을 효과적으로 수광하는 구조로 구성될 수 있다.
넓은 범위를 커버하거나 2차원 센싱을 하기 위해서, 제2 미러부(2300)는 모터부(2100)에 의해서 회전되고, 다양한 미러 모양을 가짐으로써 넓은 범위를 커버할 수 있다. 각각의 구성요소들은 기판부(2600)의 상하면에 실장/결합되어 동작한다.
송수신부(2400)는 센싱광원을 포함하여 센싱광(2450)을 송출하거나 수신한다. 센싱광원으로 사용되는 광원은 900nm 대역의 광을 송수신하고, 송수신부(2400)는 광의 수신감도를 향상시키기 위해서 APD를 사용할 수 있다.
900nm 대역의 광원은 사람의 눈에 안보이는 파장을 갖는 광원으로 라이다 시스템이 센싱을 하더라도, 라이다 시스템 사용자는 센싱 범위를 눈으로 확인할 수 없다. 사용자는 센싱범위를 IR 카메라 등을 이용하여 확인하여야 하며, IR카메라는 화각이 좁기 때문에, 회전하여 센싱하는 라이다의 센싱 범위를 확인하기 어려운 문제가 있다.
또한, 회전하는 제2 미러부(2300)는 사람에 의해 결합되는 것이 일반적이다. 수요가 많지 않기 때문에 아직까지는 제조를 위한 자동화 시스템을 갖추지 않는 것이 실정이다. 이처럼, 사람에 의해 결합되기 때문에, 제조과정에서 오차가 발생하고, 이러한 오차는 예상하고 있는 센싱 범위를 벗어나게 만든다.
또한, 라이다 시스템을 설치하는 과정에서 오차가 발생할 수 있어서, 센싱 범위가 정확하지 않은 문제가 생긴다.
제8실시예
본 발명의 일 실시예에 따른 라이다 시스템은 이러한 오차 및 센싱하고 있는 범위를 실시간으로 확인하기 위한 가이드 광원부(2500)를 포함한다. 가이드 광원(2500)은 가이드 광원 지지부(2510)에 의해서, 센싱광(2450)이 지나는 경로의 상부에 위치할 수 있다. 센싱광(2450)의 경로와 가이드 광의 경로가 겹치지 않기 때문에, 본 발명의 일 실시예에 따른 라이다 시스템은 하드웨어, 소프트웨어의 큰 변화 없이 종래 라이다 시스템으로부터 용이하게 생산될 수 있고, 센싱광(2450)과 가이드광은 광학적 경로가 다르기 때문에 가이드 광원이 포함되더라도 별도의 라이다 성능에 영향을 미치지 않는다.
가이드 광원부(2500)는 가시광원 대역의 파장을 가지는 광원으로 구성되며, 가이드 광원으로 가격대가 가장 저렴한 빨간색 광원이 사용될 수 있다.
가이드 광원부(2500)는 제2 미러부(2300)에 의해서 반사되도록 가이드 광을 송출하고, 커버부(2000)를 통해서 가이드 광(2550)을 외부로 출력시킨다. 가이드 광(2550)은 커버부(2000) 중 상부 커버부(2010)의 위치에서 출력된다.
가이드 광원의 가이드 광(2550)은 센싱광(2450)보다 Z축으로 높은 곳에서 출력되기 때문에, 하부 반사면(2320)에 의해서 반사되는 센싱광(2450)과 달리 가이드광은 제2 미러부(2300)의 상부 반사면(2310)에 의해서 반사된다. 제2 미러부(2300)가 회전하게 되면, 제2 미러부(2300)에 반사되는 센싱광(2450)과 가이드 광(2550)의 범위가 넓어지게 된다.
상부 반사면(2310)과 하부 반사면(2320)은 하나의 평면으로 구성될 수 있고, 상부 반사면(2310)은 약간의 기울기를 가지고 구성될 수 있다. 상부 반사면(2310)의 기울기는 가이드 광(2550)과 센싱광(2450)의 높이차이를 보상할 수 있는 효과를 제공한다.
도 23에 도시된 바와 같이, 제2 미러부(2300)는 단일평면의 형상으로 구성될 수 있다. 이렇게 구성되면, 제2 미러부(2300)의 제작이 용이한 장점이 있다.
제2 미러부(2300)는 결합부(2110)에 의해 모터부(2100)에 결합될 수 있다. 결합부(2110)는 제2 미러부(2300)의 반사면의 반대에만 구성될 수 있고, 양면 모두 구성될 수 있다.
제2 미러부(2300)가 회전을 하기 때문에, 가이드 광(2550)과 센싱광(2450)은 도 24에 개시된 것과 같이 호를 그리며 출력된다. 또한, 가이드 광(2550)과 센싱광(2450)이 동시에 제2 미러부(2300)에 반사되기 때문에, 거의 동일한 모양을 호를 그리게 된다.
센싱광(2450)의 경우에는 눈에 보이지 않지만, 가이드 광(2550)의 경우에는 가시광원을 사용하기 때문에 눈에 보인다. 이때, 가이드 광(2550)은 사람의 눈으로 봤을 때, 일면에서 직선의 모양을 갖는다.
센싱광(2450)과 가이드 광(2550)의 호의 길이, 즉, 각도는 제2 미러부(2300)의 형상에 따라서 약간의 차이는 가질 수 있다.
본 발명의 제8 실시예에 따른 커버부(2000)는 센싱광이나 반사광만을 통과시키며 센싱광 또는 반사광이 갖는 파장대역 이외의 광은 필터링하는 광학필터를 구비하지 않는다. 즉, 커버부(2000)는 센싱광(2450)을 포함한 모든 광을 통과시킨다. 커버부(2000) 내부에 가이드 광(2550)을 조사하는 구성이 배치되어 있어, 커버부(2000)를 광학필터가 구비된 영역과 가이드 광(2550)을 조사하기 위해 광학필터를 구비하지 않는 영역으로 분리할 필요가 없다. 이에 따라, 본 발명의 일 실시예에 따른 라이다 시스템은 종래의 라이다 시스템에 비해 보다 용이하게 양산할 수 있는 장점이 있다.
본 발명의 일 실시예에 따른 라이다 시스템은 광학필터(미도시)를 더 포함할 수 있다. 광학필터는 라이다 시스템 내로 입사되는 모든 광 중 센싱광이 갖는 파장 대역의 광만을 통과시킨다. 전술한 바와 같이, 커버부(2000)는 별도의 광학필터를 포함하고 있지 않기 때문에, 라이다 시스템 내로 센싱광을 포함한 모든 광이 입사되며, 모든 광이 그대로 제2 미러부(2300)에 반사되어 제1 미러부를 거쳐(200) 송수신부(2400)로 입사된다. 그러나 송수신부(2400)가 검출할 광은 센싱광뿐이며, 나머지 광은 노이즈일 뿐이므로 나머지 노이즈광은 필터링할 필요가 있다. 광학장치는 제2 미러부(2300)와 제1 미러부(2200)의 사이에 배치되거나, 제1 미러부(2200)의 구조에 영향을 미치지 않는 선에서 제1 미러부(2200)와 송수신부(2400)의 사이에 배치되어, 라이다 시스템으로 입사되는 모든 광 중 센싱광이 갖는 파장 대역의 광만을 통과시킨다. 광학필터는 센싱광이 갖는 파장 대역의 광만을 송수신부(2400)로 통과시키기 위해, 제2 미러부 또는 제1 미러부의 면적보다 큰 면적을 가질 수 있다.
또한, 제어부(미도시)는 센싱광(2450)을 이용하여 탐지하고자 하는 영역을 스캐닝하여, 탐지 대상영역에서 얻어지는 정보를 기반으로 자동 기준을 설정하고, 센싱광(2450)에 의해서 측정된 스캔 데이터 및 좌표를 저정한다. 좌표는 인코더(미도시)기반으로 형성되어, 제어부에 저장된다. 좌표의 형태는 절대좌표로 (X, Y)좌표 일 수 있고, 인코더에서 제공하는 각도의 절대좌표일 수 있다. 즉, 제어부는 소정의 물체를 탐지하기 이전에 라이다가 탐지하는 영역 내의 고정되어 있는 물체를 포함하여, 탐지 영역의 기본 정보인 기준 데이터를 획득하고, 그 탐지되는 영역의 절대좌표를 산출한다.
이후, 제어부는 센싱광(2450)을 이용하여 탐지하고자 하는 영역을 스캐닝한다. 제어부는 스캐닝하여 획득한 측정데이터를 기준데이터와 비교하여, 양 데이터의 차이 유무를 판단한다. 제어부는 좌표 단위로 양 데이터를 비교할 수 있다.
제어부는 양 데이터의 비교 결과에 따라 기준 데이터와 측정 데이터가 상이하면, 알람을 출력하고, 상이한 데이터의 절대좌표에 가이드 광(2550)을 조사할 수 있도록, 가이드 광(2550)을 ON을 시킨다. 제어부는 센싱광(2450)이 스캐닝할 때마다 데이터를 측정하고, 측정할 때마다 데이터의 차이 유무를 판단할 수 있고, 차이가 있는 좌표에 대해서는 가이드 광(2550)을 조사하도록 제어할 수 있다. 이와 같이, 제어부는 연속적으로 스캐닝하고 데이터 차이를 판단함으로써, 탐지되는 물체가 이동을 하게 되면, 물체의 이동을 쫓아서 가이드 광(2550)을 조사하도록 제어할 수 있다. 즉, 탐지된 물체를 트래킹하여 가이드 광을 이용해 가시화하여, 외부에서 식별이 가능하도록 하는 장점이 있다.
본 발명의 라이다 시스템은 동작을 시키면, 가이드 광(2550)과 센싱광(2450)에 의해서 센싱 대상의 면에는 직선의 줄이 형성되고, 가이드 광(2550)에 의해서 형성되는 줄은 눈에 띌 것이며, 센싱광(2450)에 의해서 형성되는 줄은 눈에 띄지 않을 것이다. 하지만, 라이다 시스템 사용자는 가이드 광(2550)에 의해서 형성되는 줄을 이용해 센싱광(2450)에 의해서 형성되는 줄의 위치를 예측할 수 있을 것이다.
제9 실시예
도 25는 본 발명의 제9 실시예에 따른 라이다 광학장치의 단면도이다.
제8 실시예의 경우에는 가이드 광원부(2500)가 센싱광(2450)과 다른 경로로 출력되도록 구성되었다. 이와 같은 구성을 갖기 때문에, 종래 라이다 시스템에서 손쉽게 생산할 수 있고, 반사되어 수신되는 센싱광(2450)의 노이즈를 최소화할 수 있다.
수신감도가 상대적으로 덜 중요한 라이다 시스템은 도 25에 개시된 실시예 9와 같이 구성될 수 있다.
빛은 파장이 다르면, 서로 간섭이 일어나지 않는다. 따라서, 센싱광(2450)은 통상 900nm 대역을, 가이드 광(2550)은 600nm 대역을 갖기 때문에, 양 광은 간섭을 일으키지 않는다.
따라서, 도 25에 개시된 것과 같이 라이다 시스템은 가이드 광원부(2500)와 센싱광원(2410)을 결합하여 구성할 수 있다.
이에 따라, 가이드 광(2550)과 센싱광(2450)은 제1 미러부(2200)에 단일 경로로 송출되고, 제2 미러부(2300)에 의해서 형성되는 센싱 범위도 거의 같게 된다.
동시에 두 개의 광원을 조사를 하면, 가이드 광(2550)도 함께 물체나 배경에 반사되어서, 센싱광(2450)과 함께 송수신부(2400)로 수신이 되기 때문에 필터를 거치지 않고서는 수신감도가 떨어지는 문제가 야기한다. 따라서, 센싱광(2450)과 가이드 광(2550)을 결합해서 하나의 광경로로 출력하는 경우에는 동시의 양 광을 출력할 수도 있으나, 각 광원을 스위칭해서 번갈아가며 광을 출력할 수 있다.
가이드 광(2550)의 운용은 다음과 같이 할 수 있고, 이는 실시예 8과 9에 모두 적용될 수 있다.
첫째, 제어부는 센싱광(2450)이 조사되기 전에 먼저 가이드 광(2550)이 조사되도록 제어하여 조사되는 영역의 범위를 확인함으로써, 센싱광(2450)이 조사되는 범위를 산출할 수 있다. 이에 따라 라이다 시스템이 설치되는 경우, 오차가 최소화될 수 있는 장점이 있다.
둘째, 센싱광(2450)과 가이드 광(2550)을 동시에 조사하여, 라이다 시스템이 특정 영역을 센싱하고 있음을 드러낼 수 있다. 이런 경우, 센싱광(2450)이 운용되고 있다는 것을 눈으로 보여줄 수 있는 장점이 될 수 있다.
셋째, 제어부는 가이드 광(2550)을 소정의 주기에 맞춰서 동작시킴으로써, 라이다 시스템 사용자가 시스템이 운용되는 중간에도 그 상태를 모니터링할 수 있도록 한다.
도 11에서는 각 과정을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 발명의 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것이다. 다시 말해, 본 발명의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 일 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 11에 기재된 순서를 변경하여 실행하거나 각 과정 중 하나 이상의 과정을 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 11은 시계열적인 순서로 한정되는 것은 아니다.
한편, 도 11에 도시된 과정들은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 즉, 컴퓨터가 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장매체를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
*본 특허출원은 2017년 04월 18일 한국에 출원한 특허출원번호 제 10-2017-0049783호, 2017년 08월 23일 한국에 출원한 특허출원번호 제 10-2017-0106537호, 2017년 07월 12일 한국에 출원한 특허출원번호 제 10-2017-0088572호, 2017년 08월 23일 한국에 출원한 특허출원번호 제 10-2017-0106537호, 2017년 08월 23일 한국에 출원한 특허출원번호 제 10-2017-0106541호 및 2017년 04월 21일 한국에 출원한 특허출원번호 제 10-2017-0051867호에 대해 에 대해 각각 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (8)

  1. 타겟을 탐지하는 라이다(LIDAR: LIght Detection And Ranging) 시스템에 있어서,
    가시광선 대역 이외의 파장을 갖는 센싱광을 출력하는 제1 광원;
    가시광선 대역의 파장을 갖는 가이드광을 출력하는 제2 광원;
    상기 라이다 시스템의 하우징에 장착되어 이탈을 방지하며 회전 동력을 제공하는 동력부, 상기 동력부의 일측에만 위치하며 상기 동력부로부터 회전 동력을 제공받아 회전하는 모터 샤프트(Shaft) 및 기 설정된 면적을 갖는 형상으로 구현되어 상기 동력부의 나머지 일측에 위치하며 상기 동력부로부터 회전 동력을 제공받아 상기 모터 샤프트와 함께 회전하는 모터 몸체부를 포함하는 모터;
    상기 모터 샤프트와 연결되며, 상기 센싱광을 반사시키는 제1 미러; 및
    상기 모터 몸체부와 부착되며, 상기 가이드광을 상기 센싱광과 동일한 방향으로 반사시키는 제2 미러
    를 포함하는 것을 특징으로 하는 라이다 시스템.
  2. 제1항에 있어서,
    상기 제1 광원, 상기 제2 광원 및 상기 모터의 동작을 제어하는 제어부를 더 포함하는 것을 특징으로 하는 라이다 시스템.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 가이드광이 상기 센싱광과 상이한 방향으로 반사되는 경우, 상기 제2 광원을 제어하여 상기 가이드광이 출력되는 타이밍을 달리함으로써, 상기 가이드광이 상기 센싱광과 동일한 방향으로 반사되도록 하는 것을 특징으로 하는 라이다 시스템.
  4. 제1항에 있어서,
    상기 제2 광원은,
    탈 ·부착이 가능한 것을 특징으로 하는 라이다 시스템.
  5. 제2항에 있어서,
    상기 제2 광원은 복수 개 구비되며,
    상기 제어부는 복수 개의 제2 광원 각각의 가이드광 출력 타이밍을 제어하여 상기 가이드광이 기 설정된 문자 또는 형상을 나타내도록 하는 것을 특징으로 하는 라이다 시스템.
  6. 제1항에 있어서,
    상기 제2 광원은,
    복수 개의 서로 다른 가시광선 대역의 파장을 갖는 가이드광을 출력하는 것을 특징으로 하는 라이다 시스템.
  7. 제2항 또는 제6항에 있어서,
    상기 제어부는,
    상기 타겟이 탐지되었는지 여부에 따라 상기 제2 광원이 서로 다른 가시광선 대역의 파장을 갖는 가이드광을 출력하도록 제어하는 것을 특징으로 하는 라이다 시스템.
  8. 제1항에 있어서,
    상기 모터 몸체부와 상기 제2 미러의 사이에 부착되며, 상기 제2 미러가 반사시키는 가이드 광의 각도를 조정하는 각도 조정부를 더 포함하는 것을 특징으로 하는 라이다 시스템.
PCT/KR2017/011745 2017-04-18 2017-10-23 타겟 포인팅 기능, 트래킹 기능 및 광학장치의 조정기능을 구비한 라이다 시스템 WO2018194229A1 (ko)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR1020170049783A KR101763165B1 (ko) 2017-04-18 2017-04-18 가이드 광원을 포함하는 광센서 시스템
KR10-2017-0049783 2017-04-18
KR10-2017-0051867 2017-04-21
KR20170051867 2017-04-21
KR1020170088572A KR101852945B1 (ko) 2017-07-12 2017-07-12 타겟 포인팅 및 트래킹 기능을 갖는 라이다 시스템 및 라이다 시스템을 이용한 타겟 포인팅 및 트래킹 방법
KR10-2017-0088572 2017-07-12
KR10-2017-0106539 2017-08-23
KR10-2017-0106537 2017-08-23
KR1020170106541A KR101814135B1 (ko) 2017-08-23 2017-08-23 라이다 시스템
KR1020170106537A KR101814125B1 (ko) 2017-08-23 2017-08-23 가이드 광을 구비한 라이다 시스템
KR1020170106539A KR101814129B1 (ko) 2017-08-23 2017-08-23 라이다 시스템의 광학 장치
KR10-2017-0106541 2017-08-23

Publications (1)

Publication Number Publication Date
WO2018194229A1 true WO2018194229A1 (ko) 2018-10-25

Family

ID=63856932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011745 WO2018194229A1 (ko) 2017-04-18 2017-10-23 타겟 포인팅 기능, 트래킹 기능 및 광학장치의 조정기능을 구비한 라이다 시스템

Country Status (1)

Country Link
WO (1) WO2018194229A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272699B2 (ja) * 1998-09-02 2002-04-08 ライカ ゲオジステームス アクチエンゲゼルシャフト 光学的測距装置
JP2010151809A (ja) * 2008-11-26 2010-07-08 Denso Wave Inc レーザレーダ装置
KR20110095621A (ko) * 2010-02-19 2011-08-25 엘지이노텍 주식회사 3차원 공간인식센서
JP2015129678A (ja) * 2014-01-07 2015-07-16 株式会社豊田中央研究所 走査光学系、光走査装置、及び距離測定装置
JP2016219258A (ja) * 2015-05-21 2016-12-22 シャープ株式会社 照明装置及び移動体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272699B2 (ja) * 1998-09-02 2002-04-08 ライカ ゲオジステームス アクチエンゲゼルシャフト 光学的測距装置
JP2010151809A (ja) * 2008-11-26 2010-07-08 Denso Wave Inc レーザレーダ装置
KR20110095621A (ko) * 2010-02-19 2011-08-25 엘지이노텍 주식회사 3차원 공간인식센서
JP2015129678A (ja) * 2014-01-07 2015-07-16 株式会社豊田中央研究所 走査光学系、光走査装置、及び距離測定装置
JP2016219258A (ja) * 2015-05-21 2016-12-22 シャープ株式会社 照明装置及び移動体

Similar Documents

Publication Publication Date Title
WO2016153233A1 (ko) 라이다 장치
WO2018230852A1 (ko) 3차원 공간의 이동 객체를 식별하는 방법 및 이를 구현하는 로봇
WO2020050498A1 (ko) 이미지 세그멘테이션을 이용한 주변 환경 감지 방법 및 장치
CA2392533C (en) Method and apparatus for aircraft protection against missile threats
WO2014175502A2 (ko) 광 신호를 이용한 거리 측정 방법 및 장치
WO2019135495A1 (ko) 거리 산출 방법 및 이를 수행하는 라이다 장치
WO2017217673A1 (en) Apparatus and method for measuring dust
WO2020175786A1 (en) Methods and apparatuses for object presence detection and range estimation
WO2014157847A1 (ko) 깊이 영상 획득 장치 및 그를 이용한 디스플레이 장치
CN108387175B (zh) 坐标测量装置
WO2019221524A1 (ko) 청소기 및 그 제어방법
WO2017023107A1 (ko) 광파 탐지 및 거리 측정 장치
WO2019199112A1 (ko) 자율 작업 시스템, 방법 및 컴퓨터 판독 가능한 기록매체
WO2019088370A1 (ko) 대면적 고속 물체 검사 장치
WO2014104765A1 (ko) 3차원 공간 측정 장치 및 동작 방법
WO2020075955A1 (ko) 롤 간 상대적 자세정보 검출장치 및 이를 이용한 롤 정렬상태 측정방법
WO2018194229A1 (ko) 타겟 포인팅 기능, 트래킹 기능 및 광학장치의 조정기능을 구비한 라이다 시스템
WO2018021681A1 (ko) 비행 가이드용 플레이트를 이용한 드론 스테이션
WO2020032413A1 (en) Moving robot and controlling method thereof
WO2012108577A1 (ko) 감시 장치 및 방법
WO2021177752A1 (ko) 초소형 라이다 센서
WO2017176070A1 (ko) 거리 측정 센서 조립체 및 그를 갖는 전자기기
WO2022102856A1 (ko) 라이다 장치
WO2014119838A1 (ko) 모션 인식 방법
SE512549C2 (sv) System för virtuell ensning av optiska axlar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906729

Country of ref document: EP

Kind code of ref document: A1