WO2018194099A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2018194099A1
WO2018194099A1 PCT/JP2018/016029 JP2018016029W WO2018194099A1 WO 2018194099 A1 WO2018194099 A1 WO 2018194099A1 JP 2018016029 W JP2018016029 W JP 2018016029W WO 2018194099 A1 WO2018194099 A1 WO 2018194099A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
layer
resin
component
mass
Prior art date
Application number
PCT/JP2018/016029
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 大山
松村 恵理
栄一 林
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201880024025.1A priority Critical patent/CN110494493B/en
Priority to JP2019513669A priority patent/JP7287274B2/en
Priority to KR1020197030498A priority patent/KR102500417B1/en
Publication of WO2018194099A1 publication Critical patent/WO2018194099A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4269Macromolecular compounds obtained by reactions other than those involving unsaturated carbon-to-carbon bindings
    • C08G59/4276Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a resin composition. Furthermore, the present invention relates to an adhesive film, a cured product, a wiring board with a built-in inductor element, a chip inductor component, and a printed wiring board, which are obtained using the resin composition.
  • Inductor parts include a power supply system and a signal system, and the signal system requires a relative magnetic permeability (permeability) in a region of gigahertz or higher.
  • the adhesive film described in Patent Document 1 is premised on use in a signal system, and has a good relative magnetic permeability in the range of 1 GHz to 3 GHz.
  • the power supply system is required to have a high relative permeability in a lower frequency region than the signal system, and is generally used at a frequency of less than 10 MHz. Therefore, the conventional resin composition is optimized for a frequency of less than 10 MHz or 1 GHz or more.
  • the present inventors have paid attention to a new frequency range of 10 MHz to 200 MHz, and have found that if a high relative permeability can be realized in this frequency range, a new inductor component for a power supply system can be obtained. Obtained.
  • a resin composition as a magnetic layer in the interlayer insulating layer portion of the printed wiring board, it is difficult to warp after forming the magnetic layer, flame retardancy, and lamination Sex etc. are also required.
  • the object of the present invention is to obtain a cured product that is excellent in flame retardancy, suppresses the amount of warpage, and can improve the relative permeability particularly in the frequency range of 10 to 200 MHz.
  • Excellent resin composition To provide an adhesive film, a cured product, a wiring board with a built-in inductor element, a chip inductor component, and a printed wiring board obtained by using the resin composition.
  • a resin composition containing a magnetic filler has a low relative permeability in the frequency range of 10 to 200 MHz, and therefore is suitable for high frequency applications in the range of 1 GHz to 3 GHz or low frequency in the range of 0 to 10 MHz. It was limited to use.
  • the components contained in the resin composition were adjusted so that the elastic modulus at 23 ° C. of the cured product obtained by thermosetting the resin composition containing the magnetic filler was within a predetermined range.
  • the adhesive film obtained using the resin composition is excellent in laminating properties, and the cured product of the resin composition is excellent in flame retardancy and the amount of warpage is suppressed, particularly in the frequency range of 10 to 200 MHz.
  • the inventors have found that the magnetic permeability can be improved and have completed the present invention.
  • the present invention includes the following contents.
  • cured material which heat-cured the resin composition is 7 GPa or more and 18 GPa or less.
  • the component (B) is at least one curing agent selected from a phenolic curing agent and an active ester curing agent.
  • the component (C) is one or more thermoplastic resins selected from phenoxy resins, polyvinyl acetal resins, butyral resins, and acrylic resins having a weight average molecular weight of 30,000 to 1,000,000. [1] -The resin composition in any one of [8].
  • the cured product obtained by thermosetting the resin composition has a relative permeability of 5 to 20 at a frequency of 10 MHz, a relative permeability of 5 to 20 at a frequency of 100 MHz, and a relative permeability at a frequency of 1 GHz.
  • the resin composition according to any one of [1] to [16] which is used for forming a magnetic layer of a wiring board including an inductor element.
  • the resin composition according to [17] wherein the frequency at which the inductor element functions is 10 to 200 MHz.
  • An adhesive film comprising a support and a resin composition layer formed on the support and formed from the resin composition according to any one of [1] to [18].
  • a magnetic layer that is a cured product of the resin composition layer of the adhesive film according to [20], and a conductive structure that is at least partially embedded in the magnetic layer, Inductor element built-in wiring board including the conductive element and an inductor element that extends in the thickness direction of the magnetic layer and is configured by a part of the magnetic layer surrounded by the conductive structure .
  • a cured product that is excellent in flame retardancy, suppresses the amount of warpage, and can improve the relative permeability particularly in the frequency range of 10 to 200 MHz.
  • An excellent resin composition; an adhesive film, a cured product, a wiring board with a built-in inductor element, a chip inductor component, and a printed wiring board, which are obtained using the resin composition, can be provided.
  • FIG. 1 is a schematic plan view of an inductor element built-in wiring board according to the first embodiment as an example as seen from one side in the thickness direction.
  • FIG. 2 is a schematic diagram showing a cut end surface of the inductor element built-in wiring board according to the first embodiment cut at a position indicated by a dashed line II-II as an example.
  • FIG. 3 is a schematic plan view for explaining the configuration of the first wiring layer in the inductor element built-in wiring board according to the first embodiment as an example.
  • FIG. 4 is a schematic cross-sectional view for explaining a method of manufacturing the inductor element built-in wiring board according to the second embodiment as an example.
  • FIG. 5 is an enlarged photograph of the cross section of the resin composition of Example 10.
  • the resin composition of the present invention is a resin composition containing (A) a thermosetting resin, (B) a curing agent, (C) a thermoplastic resin, and (D) a magnetic filler.
  • the heat-cured cured product has an elastic modulus at 23 ° C. of 7 GPa or more and 18 GPa or less.
  • a resin composition containing a magnetic filler has a low relative permeability in a frequency range of 10 to 200 MHz, so that the resin composition is used for a high frequency in a range of 1 GHz to 3 GHz or 0 to 10 MHz. Limited to low frequency applications in the range.
  • the present invention by adjusting the content of the components (A) to (D) contained in the resin composition so that the elastic modulus at 23 ° C.
  • the adhesive film has excellent laminating properties.
  • the resin composition may further contain (E) an inorganic filler other than the magnetic filler, (F) a curing accelerator, (G) a flame retardant, and (H) an organic filler as necessary.
  • E an inorganic filler other than the magnetic filler
  • F a curing accelerator
  • G a flame retardant
  • H an organic filler
  • the resin composition contains (A) a thermosetting resin.
  • A) As a component the thermosetting resin used when forming the insulating layer of a wiring board can be used, and an epoxy resin is especially preferable.
  • the epoxy resin examples include bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; trisphenol type epoxy resin; tert-butyl-catechol type epoxy resin; epoxy resin having a condensed ring structure such as naphthol novolac type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin; glycidylamine type epoxy resin; glycidyl ester type epoxy resin Cresol novolac type epoxy resin; biphenyl type epoxy resin (epoxy resin having biphenyl skeleton); linear aliphatic epoxy resin; butadiene structure Alicyclic epoxy resins; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexanedimethanol type epoxy resins; trimethylol type epoxy resin; tetraphenyl ethane epoxy resins epoxy resin.
  • An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the epoxy resin is preferably at least one selected from a bisphenol A type epoxy resin, an epoxy resin having a biphenyl skeleton, a naphthalene type epoxy resin, and an epoxy resin having a condensed ring structure, an epoxy resin having a biphenyl skeleton, And more preferably one or more selected from epoxy resins having a condensed ring structure.
  • the epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule. Moreover, it is preferable that an epoxy resin has an aromatic structure, and when using 2 or more types of epoxy resins, it is more preferable that at least 1 type has an aromatic structure.
  • the nonvolatile component of the epoxy resin is 100% by mass, at least 50% by mass or more is preferably an epoxy resin having two or more epoxy groups in one molecule. Among them, it has two or more epoxy groups in one molecule, and has a liquid epoxy resin (hereinafter referred to as “liquid epoxy resin”) at a temperature of 20 ° C.
  • solid epoxy resin a solid epoxy resin
  • the aromatic structure is a chemical structure generally defined as aromatic, and includes polycyclic aromatics and aromatic heterocycles.
  • Liquid epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, phenol novolac type epoxy resins, and ester skeletons.
  • Preferred are cycloaliphatic epoxy resins, cyclohexanedimethanol type epoxy resins, glycidylamine type epoxy resins, and epoxy resins having a butadiene structure.
  • Glycidylamine type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF Type epoxy resin and naphthalene type epoxy resin are more preferable.
  • liquid epoxy resin examples include “HP4032”, “HP4032D”, “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC, “828US”, “jER828EL” (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation. "JER807” (bisphenol F type epoxy resin), “jER152” (phenol novolak type epoxy resin), “630", “630LSD” (glycidylamine type epoxy resin), “ZX1059” (bisphenol A) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Type epoxy resin and bisphenol F type epoxy resin “EX-721” (glycidyl ester type epoxy resin) manufactured by Nagase ChemteX, and “Celoxide 2021P” manufactured by Daicel (an alicyclic epoxy having an ester skeleton) resin), “PB-3600” (epoxy resin having a butadiene structure), “ZX1658", “ZX1658GS” (liquid 1,4-glycidylcyclohexane) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., "630LSD” (glycidylamine type epoxy resin manufactured by Mitsubishi Chemical Corporation) And “EP-3980S” (glycidylamine type epoxy resin) manufactured by ADEKA. These may be used alone or in combination of two or more.
  • Solid epoxy resins include naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, Anthracene type epoxy resin, bisphenol A type epoxy resin, and tetraphenylethane type epoxy resin are preferable, and naphthalene type tetrafunctional epoxy resin, naphthol type epoxy resin, and biphenyl type epoxy resin are more preferable.
  • solid epoxy resin examples include “HP4032H” (naphthalene type epoxy resin), “HP-4700”, “HP-4710” (naphthalene type tetrafunctional epoxy resin), “N-690” (manufactured by DIC).
  • Cresol novolac type epoxy resin “N-695” (cresol novolac type epoxy resin), “HP-7200” (dicyclopentadiene type epoxy resin), “HP-7200HH”, “HP-7200H”, “EXA-7311” ”,“ EXA-7311-G3 ”,“ EXA-7311-G4 ”,“ EXA-7311-G4S ”,“ HP6000 ”(naphthylene ether type epoxy resin),“ EPPN-502H ”(manufactured by Nippon Kayaku Co., Ltd.) Trisphenol type epoxy resin), "NC7000L” (naphthol novolac type epoxy) Fat), “NC3000H”, “NC3000”, “NC3000L”, “NC3100” (biphenyl type epoxy resin), “ESN475V” (naphthalene type epoxy resin), “ESN485” (naphthol novolak type epoxy resin) manufactured by Nippon Steel & Sumikin Chemical Co
  • the amount ratio thereof is in a range of 1: 0.1 to 1: 4 by mass ratio. preferable.
  • the quantitative ratio of liquid epoxy resin to solid epoxy resin is 1: 0.3 to 1: 3.5 by mass ratio. Is more preferably in the range of 1: 0.6 to 1: 3, and particularly preferably in the range of 1: 0.8 to 1: 2.5.
  • the content (% by mass) of the component (A) is preferably 0.1 when the nonvolatile component in the resin composition is 100% by mass from the viewpoint of obtaining a magnetic layer exhibiting good mechanical strength and insulation reliability. It is at least 0.5% by mass, more preferably at least 0.5% by mass, even more preferably at least 1% by mass.
  • the upper limit of content of an epoxy resin is not specifically limited as long as the effect of this invention is show
  • the content (% by volume) of the component (A) is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more when the nonvolatile component in the resin composition is 100% by volume. It is. Although an upper limit is not specifically limited as long as the effect of this invention is show
  • the epoxy equivalent of the epoxy resin is preferably 50 to 5000, more preferably 50 to 3000, still more preferably 80 to 2000, and even more preferably 110 to 1000. By being in this range, the crosslink density of the cured product is sufficient, and a magnetic layer having a small surface roughness can be provided.
  • the epoxy equivalent can be measured according to JIS K7236, and is the mass of a resin containing 1 equivalent of an epoxy group.
  • the weight average molecular weight of the epoxy resin is preferably 100 to 5000, more preferably 250 to 3000, and still more preferably 400 to 1500.
  • the weight average molecular weight of the epoxy resin is a weight average molecular weight in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
  • the resin composition contains (B) a curing agent.
  • the component (B) is not particularly limited as long as it has a function of curing the component (A).
  • the curing agent is an epoxy resin curing agent.
  • the epoxy resin curing agent include phenolic curing agents, naphthol curing agents, active ester curing agents, benzoxazine curing agents, and cyanate ester curing agents.
  • curing agent may be used individually by 1 type, or may use 2 or more types together. From the viewpoint of insulating reliability and heat resistance, the curing agent is preferably at least one selected from a phenolic curing agent and an active ester curing agent.
  • a phenol-based curing agent having a novolak structure or a naphthol-based curing agent having a novolak structure is preferable from the viewpoint of heat resistance and water resistance.
  • curing agent is preferable and a triazine frame
  • curing agent is more preferable.
  • a triazine skeleton-containing phenol novolac curing agent is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion to the conductor layer.
  • phenol-based curing agent and naphthol-based curing agent include “MEH-7700”, “MEH-7810”, “MEH-7785” manufactured by Meiwa Kasei Co., Ltd., “NHN”, “CBN” manufactured by Nippon Kayaku Co., Ltd.
  • the active ester curing agent is not particularly limited, but generally an ester group having high reaction activity such as phenol ester, thiophenol ester, N-hydroxyamine ester, heterocyclic hydroxy compound ester in one molecule.
  • a compound having two or more in the above is preferably used.
  • the active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- Cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, Benzenetriol, dicyclopentadiene type diphenol compound, phenol novolac and the like can be mentioned.
  • the “dicyclopentadiene type diphenol compound” refers to a diphenol compound obtained by condensing two molecules of phenol with one molecule of dicyclopentadiene.
  • an active ester compound containing a dicyclopentadiene-type diphenol structure an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated product of a phenol novolac, and an active ester compound containing a benzoylated product of a phenol novolac are preferred, Of these, active ester compounds having a naphthalene structure and active ester compounds having a dicyclopentadiene type diphenol structure are more preferred.
  • the “dicyclopentadiene type diphenol structure” represents a divalent structure composed of phenylene-dicyclopentylene-phenylene.
  • active ester curing agents include “EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T”, “HPC-8000H— as active ester compounds containing a dicyclopentadiene type diphenol structure.
  • benzoxazine-based curing agent examples include “HFB2006M” manufactured by Showa Polymer Co., Ltd. and “Pd” and “Fa” manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • cyanate ester curing agent examples include bisphenol A dicyanate, polyphenol cyanate, oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4 '-Ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3,5-dimethyl) Bifunctional cyanate resins such as phenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether, phenol Novolac and Polyfunctional cyanate resin derived from resol novolac, these cyanate resins and partially triazine of prepolymer.
  • cyanate ester curing agent examples include “PT30” and “PT60” (both phenol novolac polyfunctional cyanate ester resins), “BA230”, “BA230S75” (part of bisphenol A dicyanate) manufactured by Lonza Japan. Or a prepolymer which is all triazine-modified into a trimer).
  • the amount ratio between the epoxy resin and the curing agent is a ratio of [total number of epoxy groups of the epoxy resin]: [total number of reactive groups of the curing agent] and should be in the range of 1: 0.2 to 1: 2. Is more preferable, and the range of 1: 0.3 to 1: 1.5 is more preferable, and the range of 1: 0.4 to 1: 1 is more preferable.
  • the reactive group of the curing agent is an active hydroxyl group, an active ester group or the like, and varies depending on the type of the curing agent.
  • the total number of epoxy groups of the epoxy resin is a value obtained by totaling the values obtained by dividing the mass of the nonvolatile component of each epoxy resin by the epoxy equivalent for all epoxy resins
  • the total number of reactive groups of the curing agent is The value obtained by dividing the mass of the non-volatile component of each curing agent by the reactive group equivalent is the total value for all curing agents.
  • the resin composition may include a mixture of a liquid epoxy resin and a solid epoxy resin as an epoxy resin, and at least one selected from the group consisting of a phenolic curing agent and an active ester curing agent as a curing agent. preferable.
  • the content of the component (B) is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass or less when the nonvolatile component in the resin composition is 100% by mass.
  • the lower limit is not particularly limited but is preferably 0.1% by mass or more.
  • Thermoplastic resin contains (C) a thermoplastic resin.
  • C) By containing a component, an elasticity modulus can be reduced and curvature can be reduced.
  • thermoplastic resin examples include phenoxy resin, acrylic resin, polyvinyl acetal resin, butyral resin, polyimide resin, polyamide imide resin, polyether sulfone resin, and polysulfone resin. Phenoxy resin, polyvinyl acetal resin, butyral resin And at least one selected from acrylic resins.
  • a thermoplastic resin may be used individually by 1 type, or may use 2 or more types together.
  • the weight average molecular weight in terms of polystyrene of the thermoplastic resin is preferably 30,000 or more, more preferably 50,000 or more, and even more preferably 100,000 or more. Further, it is preferably 1 million or less, more preferably 750,000 or less, and further preferably 500,000 or less.
  • the weight average molecular weight in terms of polystyrene of the thermoplastic resin is measured by a gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • the polystyrene-reduced weight average molecular weight of the thermoplastic resin is “LC-9A / RID-6A” manufactured by Shimadzu Corporation as a measuring device, and “Shodex K-800P / K-804L” manufactured by Showa Denko KK as a column. / K-804L ”can be calculated using a standard polystyrene calibration curve by measuring the column temperature at 40 ° C. using chloroform or the like as the mobile phase.
  • phenoxy resin examples include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene
  • the terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group.
  • a phenoxy resin may be used individually by 1 type, or may use 2 or more types together.
  • Specific examples of the phenoxy resin include “1256” and “4250” (both bisphenol A skeleton-containing phenoxy resin), “YX8100” (bisphenol S skeleton-containing phenoxy resin), and “YX6954” (bisphenolacetophenone) manufactured by Mitsubishi Chemical Corporation.
  • “FX280” and “FX293” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. “YL7500BH30”, “YX6954BH30”, “YX7553”, “YX7553BH30”, “YL7769BH30” manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd. ”,“ YL6794 ”,“ YL7213 ”,“ YL7290 ”,“ YL7482 ”, and the like.
  • the acrylic resin is preferably a functional group-containing acrylic resin, more preferably an epoxy group-containing acrylic resin having a glass transition temperature of 25 ° C. or less, from the viewpoint of further reducing the thermal expansion coefficient and the elastic modulus.
  • the number average molecular weight (Mn) of the functional group-containing acrylic resin is preferably 10,000 to 1,000,000, more preferably 30,000 to 900,000.
  • the functional group equivalent of the functional group-containing acrylic resin is preferably 1000 to 50000, more preferably 2500 to 30000.
  • an epoxy group-containing acrylate copolymer resin having a glass transition temperature of 25 ° C. or lower is preferable. Specific examples thereof include “SG” manufactured by Nagase ChemteX Corporation.
  • polyvinyl acetal resin and butyral resin include electric butyral “4000-2”, “5000-A”, “6000-C”, “6000-EP” manufactured by Denki Kagaku Kogyo Co., Ltd., manufactured by Sekisui Chemical Co., Ltd.
  • Examples include ESREC BH series, BX series, KS series such as “KS-1”, BL series such as “BL-1”, and BM series.
  • polyimide resins include “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd.
  • Specific examples of the polyimide resin also include a linear polyimide obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (polyimide described in JP-A-2006-37083), a polysiloxane skeleton.
  • modified polyimides such as containing polyimide (polyimides described in JP-A Nos. 2002-12667 and 2000-319386).
  • polyamideimide resin examples include “Bilomax HR11NN” and “Vilomax HR16NN” manufactured by Toyobo.
  • polyamide-imide resin examples include modified polyamide-imides such as “KS9100” and “KS9300” (polysiloxane skeleton-containing polyamideimide) manufactured by Hitachi Chemical.
  • polyethersulfone resin examples include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd.
  • polyphenylene ether resin include an oligophenylene ether / styrene resin “OPE-2St 1200” having a vinyl group manufactured by Mitsubishi Gas Chemical Company.
  • polysulfone resin examples include polysulfone “P1700” and “P3500” manufactured by Solvay Advanced Polymers.
  • thermoplastic resin is preferably at least one selected from phenoxy resins, polyvinyl acetal resins, butyral resins, and acrylic resins having a weight average molecular weight of 30,000 to 1,000,000.
  • the content (c1) of the component (C) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and still more preferably 0 when the nonvolatile component in the resin composition is 100% by mass. .3% by mass or more. Moreover, Preferably it is 10 mass% or less, More preferably, it is 9 mass% or less, More preferably, it is 8 mass% or less. By setting the content of the component (C) within such a range, the viscosity of the resin composition becomes appropriate, and a uniform resin composition layer having a thickness and a bulk property can be formed.
  • the content of the component (C) is such that (c1 / a1) ⁇ 100 is preferably 35 or more.
  • the amount is preferably adjusted, more preferably 45 or more, still more preferably 55 or more, 65 or more, or 70 or more.
  • the upper limit is preferably 80 or less, more preferably 78 or less, and still more preferably 77 or less.
  • the adhesive film obtained using the resin composition has excellent laminating properties.
  • the “resin component” means a component excluding the component (D) and the component (E) among the non-volatile components constituting the resin composition.
  • the resin composition contains (D) a magnetic filler.
  • the material of the magnetic filler is not particularly limited.
  • Fe-Si alloy powder Fe-Si-Al alloy powder, Fe-Cr alloy powder, Fe-Cr-Si alloy powder, Fe-Ni-Cr alloy powder, Fe alloys containing at least one element selected from Si, Al, and Cr, such as Fe—Cr—Al alloy powder, are preferable.
  • Magnetic filler can be used as the magnetic filler.
  • Specific examples of commercially available magnetic fillers that can be used include “PST-S” manufactured by Sanyo Special Steel Co., Ltd., “AW2-08”, “AW2-08PF20F”, “AW2-08PF10F”, “AW2-” manufactured by Epson Atmix. 08PF3F “,” Fe-3.5Si-4.5CrPF20F “,” Fe-50NiPF20F “,” Fe-80Ni-4MoPF20F “,” LD-M “,” LD-MH “,” KNI-106 "manufactured by JFE Chemical Co., Ltd.
  • KNI-106GSM “KNI-106GS”, “KNI-106GS”, “KNI-109”, “KNI-109GSM”, “KNI-109GS”, “KNS-415”, “BSF-547”, “BSF-” manufactured by Toda Kogyo Co., Ltd.
  • a magnetic filler may be used individually by 1 type, or may use 2 or more types together.
  • the component (D) is preferably spherical.
  • the value (aspect ratio) obtained by dividing the long side length of the powder of component (D) by the short side length is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less. It is. In general, it is easier to improve the relative magnetic permeability when the magnetic filler has a flat shape that is not spherical. However, in order to achieve a predetermined elastic modulus by combining the components (A) to (C), it is easier to obtain a resin composition having desired characteristics, particularly when the spherical component (D) is used. Can do.
  • the average particle diameter of the component (D) is preferably 0.01 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more. Further, it is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 4 ⁇ m or less.
  • the average particle diameter of a component can be measured by the method similar to the average particle diameter of the (E) component mentioned later.
  • the relative magnetic permeability when using a magnetic filler having an average particle diameter exceeding 25 ⁇ m is used when the frequency is 0 to 10 MHz. Somewhat inferior. However, even if the frequency exceeds 10 MHz, the relative permeability does not rapidly decrease, and a high relative permeability can be maintained in the range of 0 to 200 MHz. That is, the magnetic loss is usually reduced while maintaining a high relative permeability in a wide range of 0 to 200 MHz, particularly 10 MHz to 200 MHz.
  • the content (% by volume) of component (D) is preferably 10% by volume or more, more preferably 100% by volume or more, more preferably from the viewpoint of improving the relative magnetic permeability and flame retardancy. Is 20% by volume or more, more preferably 30% by volume or more. Moreover, it is preferably 85% by volume or less, more preferably 75% by volume or less, and still more preferably 65% by volume or less.
  • the content (mass%: d1) of the component (D) is preferably 75 mass% or more when the nonvolatile component in the resin composition is 100 mass% from the viewpoint of improving the relative magnetic permeability and flame retardancy. More preferably, it is 76 mass% or more, More preferably, it is 77 mass% or more. Further, it is preferably less than 95% by mass, more preferably 94% by mass or less, and further preferably 93% by mass or less.
  • the active ester curing agent is used as the component (B) and / or when the acrylic resin is used as the component (C)
  • the compatibility of the components (A) to (C) may be lowered.
  • the resin composition forms a sea-island structure composed of a matrix phase (sea) and a dispersed phase (island), and the component (D) may be unevenly distributed on the matrix phase side.
  • the matrix phase is preferably a mixed component of component (A) and component (B)
  • the dispersed phase is preferably component (C).
  • a frequency of 10 MHz to The relative magnetic permeability can be 5 or more when the frequency is 200 MHz, particularly 10 MHz to 100 MHz, and the magnetic loss can be usually 0.05 or less when the frequency is 10 MHz to 100 MHz.
  • the resin composition may contain (E) an inorganic filler other than the magnetic filler.
  • E an inorganic filler other than the magnetic filler.
  • the material of component (E) is not particularly limited as long as it is an inorganic compound.
  • Examples include bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium tungstate phosphate.
  • silica is particularly preferred.
  • examples of the silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica.
  • spherical silica is preferable as the silica.
  • a component may be used individually by 1 type and may be used in combination of 2 or more type.
  • the average particle diameter of the inorganic filler is preferably 0.01 ⁇ m in order to improve the fluidity and moldability of the resin composition, and to improve the relative magnetic permeability and magnetic loss when cured, and the initial resistance value. Above, more preferably 0.05 ⁇ m or more, still more preferably 0.1 ⁇ m or more, 0.3 ⁇ m or more. Further, it is preferably 5 ⁇ m or less, more preferably 2.5 ⁇ m or less, further preferably 1.5 ⁇ m or less, and 1 ⁇ m or less.
  • the average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory.
  • the particle size distribution of the inorganic filler can be prepared on a volume basis by a laser diffraction / scattering particle size distribution measuring apparatus, and the median diameter can be measured as the average particle diameter.
  • an inorganic filler dispersed in methyl ethyl ketone by ultrasonic waves can be preferably used.
  • a laser diffraction / scattering particle size distribution measuring apparatus “LA-500” manufactured by Horiba, Ltd., “SALD-2200” manufactured by Shimadzu, etc. can be used.
  • Inorganic fillers are fluorine-containing silane coupling agents, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, alkoxysilanes from the viewpoint of improving moisture resistance and dispersibility. It is preferably treated with one or more surface treatment agents such as an organosilazane compound and a titanate coupling agent. Examples of commercially available surface treatment agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu.
  • “KBE903” (3-aminopropyltriethoxysilane) manufactured by Chemical Industry Co., Ltd.
  • “KBM573” N-phenyl-3-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • “SZ-31” manufactured by Shin-Etsu Chemical Co., Ltd. ( Hexamethyldisilazane)
  • “KBM103” phenyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • “KBM-4803” long-chain epoxy silane coupling agent) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the degree of the surface treatment with the surface treatment agent is surface-treated with 0.2 to 5 parts by mass of the surface treatment agent with respect to 100 parts by mass of the inorganic filler from the viewpoint of improving the dispersibility of the inorganic filler. It is preferable that the surface treatment is performed at 0.2 to 3 parts by mass, and it is preferable that the surface treatment is performed at 0.3 to 2 parts by mass.
  • the degree of surface treatment with the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler.
  • Carbon content per unit surface area of the inorganic filler from the viewpoint of improving dispersibility of the inorganic filler is preferably 0.02 mg / m 2 or more, 0.1 mg / m 2 or more preferably, 0.2 mg / m 2 The above is more preferable.
  • 1 mg / m 2 or less is preferable, 0.8 mg / m 2 or less is more preferable, and 0.5 mg / m 2 or less is more preferable from the viewpoint of suppressing an increase in the melt viscosity of the resin varnish and the sheet form. preferable.
  • the amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent and ultrasonically cleaned at 25 ° C. for 5 minutes. After removing the supernatant and drying the solid, the carbon amount per unit surface area of the inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, “EMIA-320V” manufactured by HORIBA, Ltd. can be used.
  • EMIA-320V manufactured by HORIBA, Ltd.
  • the content (mass%: e1) of the component (E) is a viewpoint that improves the insulation reliability and flame retardancy when the resin composition is a cured product. Therefore, when the non-volatile component in the resin composition is 100% by mass, it is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more. Further, it is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the content (volume%) of the component (E) is preferably 1% by volume or more, more preferably 3% by volume or more, and further preferably 5% by volume or more.
  • the upper limit is preferably 30% by volume or less, more preferably 25% by volume or less, and still more preferably 20% by volume or less.
  • E1 / d1 is preferably 0 from the viewpoints of making the relative permeability and magnetic loss in the range of 10 to 200 MHz in a favorable range, suppressing the thermal expansion of the magnetic layer, and improving the reliability. 0.02 or more, more preferably 0.025 or more, and still more preferably 0.03 or more.
  • the upper limit is preferably 0.19 or less, more preferably 0.185 or less, and more preferably 0.18 or less.
  • the average particle size of the component (E) is preferably smaller than the average particle size of the component (D). If the content ratio of the component (D) and the component (E) is as described above, and the average particle size of the component (E) is smaller than the average particle size of the component (D), the magnetic filler particles are surrounded. Thus, the inorganic filler can be effectively arranged. As a result, the magnetic filler particles can be prevented from aggregating and coming into contact with each other, and the magnetic filler particles can be separated from each other. Can be realized.
  • the resin composition may contain (F) a curing accelerator.
  • the curing accelerator include a phosphorus-based curing accelerator, an amine-based curing accelerator, an imidazole-based curing accelerator, a guanidine-based curing accelerator, a metal-based curing accelerator, and the like.
  • a curing accelerator, an imidazole curing accelerator, and a metal curing accelerator are preferable, and an imidazole curing accelerator is more preferable.
  • a hardening accelerator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of phosphorus curing accelerators include triphenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate.
  • Tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate and the like, and triphenylphosphine and tetrabutylphosphonium decanoate are preferable.
  • amine curing accelerators examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. (5,4,0) -undecene and the like, and 4-dimethylaminopyridine and 1,8-diazabicyclo (5,4,0) -undecene are preferable.
  • imidazole curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- -Phenylimidazolium trimellitate, 2,4
  • imidazole curing accelerator Commercially available products may be used as the imidazole curing accelerator, and examples thereof include “P200-H50” manufactured by Mitsubishi Chemical Corporation.
  • guanidine curing accelerator examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide, 1-cyclohexyl biguanide, 1 -Allyl biguanide, 1-phenyl biguanide, 1- o- tolyl) biguanide
  • the metal-based curing accelerator examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complex examples include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • the content of the curing accelerator is preferably 0.001% by mass to 1% by mass when the non-volatile component in the resin composition is 100% by mass, 0.001 More preferred is from 0.1% by weight to 0.1% by weight, and even more preferred is 0.005% by weight to 0.05% by weight.
  • the resin composition may contain (G) a flame retardant.
  • the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.
  • a flame retardant may be used individually by 1 type, or may use 2 or more types together.
  • flame retardant commercially available products may be used, and examples thereof include “HCA-HQ” manufactured by Sanko Co., Ltd. and “PX-200” manufactured by Daihachi Chemical Industry Co., Ltd.
  • a flame retardant may be used individually by 1 type, or may use 2 or more types together.
  • the content of the flame retardant is preferably in the range of 0.5% by mass to 10% by mass when the nonvolatile component in the resin composition is 100% by mass, The range is more preferably 1% by mass to 9% by mass, and still more preferably 1.5% by mass to 8% by mass.
  • the resin composition may contain (H) an organic filler.
  • the organic filler include rubber particles.
  • rubber particles that are organic fillers for example, rubber particles that are not soluble in the organic solvent described later and are not compatible with the components (A) to (C) are used.
  • Such rubber particles are generally prepared by increasing the molecular weight of the rubber particle components to such an extent that they do not dissolve in organic solvents or resins, and making them into particles.
  • Examples of rubber particles that are organic fillers include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is made of a glassy polymer and an inner core layer is made of a rubbery polymer or Examples thereof include a rubber particle having a three-layer structure in which an outer shell layer is made of a glassy polymer, an intermediate layer is made of a rubbery polymer, and an inner core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, methyl methacrylate polymer
  • the rubbery polymer layer is made of, for example, butyl acrylate polymer (butyl rubber).
  • examples of rubber particles that can be used include “STAPHYLOID AC3816N” manufactured by Ganz. A rubber particle may be used individually by 1 type, or may use 2 or more types together.
  • the average particle diameter of the rubber particles as the organic filler is preferably in the range of 0.005 ⁇ m to 1 ⁇ m, more preferably in the range of 0.2 ⁇ m to 0.6 ⁇ m.
  • the average particle diameter of the rubber particles can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of the rubber particles is created on a mass basis using a concentrated particle size analyzer (“FPAR-1000” manufactured by Otsuka Electronics Co., Ltd.). The median diameter can be measured by setting it as the average particle diameter.
  • the content of the organic filler is preferably 0.1 to 20% by mass, and preferably 0.2 to 10% when the nonvolatile component in the resin composition is 100% by mass. % By mass is more preferable, and 0.3 to 5% by mass, or 0.5 to 3% by mass is more preferable.
  • the resin composition may further contain other additives as necessary.
  • other additives include organic copper compounds, organic zinc compounds, and organic cobalt compounds.
  • organic additives such as thickeners, antifoaming agents, leveling agents, adhesion-imparting agents, and color additives.
  • the elastic modulus at 23 ° C. of a cured product obtained by thermosetting the resin composition of the present embodiment is 7 GPa or more, preferably 7.5 GPa or more, more preferably 8 GPa or more.
  • an upper limit is 18 GPa or less, Preferably it is 17 GPa or less, More preferably, it is 16 GPa or less.
  • the adhesive film obtained using the resin composition has excellent laminating properties.
  • the elastic modulus can be set within such a range by adjusting the components (A) to (D).
  • the elastic modulus can be measured according to the method described in ⁇ Measurement of Elastic Modulus> described later.
  • a cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) has a characteristic of high relative permeability at a frequency of 10 MHz.
  • the relative permeability at a frequency of 10 MHz is preferably 5 or more, more preferably 6 or more, and even more preferably 7 or more. Moreover, Preferably it is 20 or less, More preferably, it is 18 or less, More preferably, it is 15 or less.
  • the relative permeability can be measured according to the method described in ⁇ Measurement of relative permeability and magnetic loss> described later.
  • a cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) has a characteristic of high relative permeability at a frequency of 100 MHz.
  • the relative permeability at a frequency of 100 MHz is preferably 5 or more, more preferably 6 or more, and even more preferably 7 or more.
  • the cured product obtained by thermosetting the resin composition may have a low relative permeability at a frequency of 1 GHz.
  • the relative permeability at a frequency of 1 GHz is preferably 4 or more, more preferably 5 or more, and still more preferably 6 or more. Moreover, it is preferably 16 or less, more preferably 15 or less, and still more preferably 14 or less.
  • the cured product obtained by thermally curing the resin composition may have a low relative magnetic permeability at a frequency of 3 GHz.
  • the relative magnetic permeability at a frequency of 3 GHz is preferably 2 or more, more preferably 3 or more, and further preferably 4 or more.
  • it is 10 or less, More preferably, it is 9 or less, More preferably, it is 8 or less.
  • a cured product obtained by thermosetting a resin composition exhibits a characteristic that magnetic loss at a frequency of 10 MHz is low.
  • the magnetic loss at a frequency of 10 MHz is preferably 0.05 or less, more preferably 0.04 or less, and still more preferably 0.03 or less.
  • the lower limit is not particularly limited, but may be 0.0001 or more.
  • the magnetic loss can be measured according to the method described in ⁇ Measurement of relative permeability and magnetic loss> described later.
  • a cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) has a characteristic that magnetic loss at a frequency of 100 MHz is low.
  • the magnetic loss at a frequency of 100 MHz is preferably 0.05 or less, more preferably 0.04 or less, and still more preferably 0.03 or less.
  • the lower limit is not particularly limited, but may be 0.0001 or more.
  • a cured product obtained by thermosetting the resin composition exhibits a characteristic that the amount of warpage is reduced.
  • the amount of warp is preferably 10 mm or less, more preferably 9 mm or less, and still more preferably 8 mm or less.
  • the upper limit is not particularly limited, but may be 0.1 mm or more.
  • the amount of warpage can be measured according to the method described in ⁇ Measurement of warpage amount> described later.
  • a cured product obtained by thermosetting the resin composition exhibits excellent flame retardancy.
  • flame retardancy it is preferable that the UL94 vertical flame retardant test is performed 5 times, and there are five unburned samples after 10 seconds of indirect flame. The evaluation of flame retardancy can be measured according to the method described in ⁇ Flame retardance evaluation> described later.
  • the resin composition of this embodiment is excellent in fluidity when forming a magnetic layer, and excellent in sealing performance of a wiring layer when it is used as a magnetic layer (cured product). Further, if the magnetic layer formed using the resin composition of the present invention is formed, the relative permeability in the frequency range of 10 MHz to 200 MHz, particularly the frequency range of 10 MHz to 100 MHz can be improved, and the magnetic loss can be reduced. it can. Moreover, the magnetic layer (cured product) obtained by thermosetting the resin composition of the present embodiment is also excellent in insulation.
  • the resin composition of the present embodiment has a magnetic property of a wiring board including an inductor element having a so-called film structure in which a coil is formed within the thickness of a magnetic layer (a magnetic body portion in which a plurality of magnetic layers are laminated). It can be suitably used as the material of the layer, and can be more suitably used particularly when the frequency at which the inductor element functions is 10 MHz to 200 MHz.
  • the cured product of the present invention is obtained by thermally curing the resin composition of the present invention.
  • the cured product of the present invention has an elastic modulus at 23 ° C. of 7 GPa or more and 18 GPa or less when thermally cured at 180 ° C. for 90 minutes, and the preferred range is as described above.
  • thermosetting conditions of the resin composition are not particularly limited, and for example, the conditions of the thermosetting process in the first magnetic layer forming process described later may be used. Moreover, you may preheat at the temperature lower than thermosetting temperature before making it thermoset.
  • the thickness of the cured product varies depending on the application, but when used as the magnetic layer of the inductor element built-in wiring board, it is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 60 ⁇ m or less, and even more preferably 40 ⁇ m or less. is there. Although the minimum of the thickness of hardened
  • the adhesive film of the present invention includes a support and a resin composition layer formed of the resin composition of the present invention provided on the support.
  • the thickness of the resin composition layer is not particularly limited.
  • the resin composition layer preferably has a thickness of 0.5 ⁇ m to 80 ⁇ m, and more preferably 10 ⁇ m to 60 ⁇ m.
  • Examples of the support include a film made of a plastic material, a metal foil, and release paper, and a film made of a plastic material and a metal foil are preferable.
  • plastic material having a high glass transition temperature examples include polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • acrylic such as polymethyl methacrylate (PMMA)
  • PMMA polymethyl methacrylate
  • TAC triacetyl cellulose
  • PES polyether sulfide
  • polyimide etc. Is mentioned.
  • polyethylene terephthalate, polyethylene naphthalate, and polyimide are preferable, and inexpensive polyethylene terephthalate is particularly preferable.
  • examples of the metal foil include a copper foil and an aluminum foil, and a copper foil is preferable.
  • a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and another metal (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.). It may be used.
  • the support may be subjected to mat treatment or corona treatment on the surface to be bonded to the resin composition layer.
  • a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used.
  • the release agent used for the release layer of the support with a release layer include one or more release agents selected from the group consisting of alkyd resins, polyolefin resins, urethane resins, and silicone resins. .
  • SK-1 SK-1
  • PET film having a release layer mainly composed of an alkyd resin release agent AL-5 "," AL-7 “,” Lumirror T60 "manufactured by Toray Industries,” Purex “manufactured by Teijin Ltd.,” Unipeel “manufactured by Unitika, and the like.
  • the thickness of the support is not particularly limited, but is preferably in the range of 5 ⁇ m to 75 ⁇ m, and more preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • the thickness of the whole support body with a release layer is the said range.
  • the resin composition used in the resin composition layer is prepared by appropriately mixing the above-described components, and, if necessary, kneading means (three rolls, ball mill, bead mill, sand mill, etc.) or stirring means (super mixer, planetary) It can be prepared by kneading or mixing with a Lee mixer or the like.
  • the production method of the adhesive film having the resin composition layer is not particularly limited.
  • a resin varnish in which the resin composition is dissolved in an organic solvent is prepared, and this resin varnish is applied to a support using a die coater or the like. And it can produce by drying the coating film of the apply
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol.
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol.
  • Aromatic hydrocarbons such as toluene and xylene
  • amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • Drying may be performed by a known method such as heating or hot air blowing.
  • the drying conditions are not particularly limited, but the drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less.
  • the boiling point of the organic solvent in the resin varnish for example, when using a resin varnish containing 30% by mass to 60% by mass of the organic solvent, for example, by drying at 80 ° C. to 150 ° C. for 3 minutes to 15 minutes.
  • a resin composition layer can be formed.
  • a protective film according to the support can be further laminated on the surface of the resin composition layer that is not bonded to the support (that is, the surface opposite to the support).
  • the thickness of the protective film is not particularly limited, but is, for example, 1 ⁇ m to 40 ⁇ m.
  • the adhesive film of the present invention has a component (A) such that the elastic modulus at 23 ° C. of a cured product obtained by thermosetting the resin composition (for example, a cured product thermally cured at 180 ° C. for 90 minutes) is 7 GPa or more and 18 GPa or less. Since the content of the component (D) is adjusted, it exhibits excellent laminating properties. Even if the adhesive film is laminated on the wiring board, there is usually no void in the circuit portion of the wiring board, and the resin composition derived from the adhesive film is sufficiently flowing.
  • a component (A) such that the elastic modulus at 23 ° C. of a cured product obtained by thermosetting the resin composition (for example, a cured product thermally cured at 180 ° C. for 90 minutes) is 7 GPa or more and 18 GPa or less. Since the content of the component (D) is adjusted, it exhibits excellent laminating properties. Even if the adhesive film is laminated on the wiring board, there is usually no void in
  • FIG. 1 is a schematic plan view of a wiring board with a built-in inductor element as viewed from one side in the thickness direction.
  • FIG. 2 is a schematic diagram showing a cut end face of the inductor element built-in wiring board cut at a position indicated by a dashed line II-II.
  • FIG. 3 is a schematic plan view for explaining the configuration of the first wiring layer in the inductor element built-in wiring board.
  • the inductor element built-in wiring board may be simply referred to as “wiring board”.
  • the wiring board has a magnetic layer that is a cured body of the resin composition (resin composition layer), and a conductive structure at least partially embedded in the magnetic layer, and the conductive structure;
  • the inductor element includes a part of the magnetic layer extending in the thickness direction of the magnetic layer and surrounded by the conductive structure.
  • the frequency at which the inductor element included in the wiring board of the present embodiment can function is assumed to be 10 MHz to 200 MHz.
  • a power supply system is assumed for the inductor element provided in the wiring board of the present embodiment.
  • the wiring board 10 is a build-up wiring board having a build-up magnetic layer.
  • the wiring board 10 includes a core substrate 20.
  • the core substrate 20 has a first main surface 20a and a second main surface 20b opposite to the first main surface 20a.
  • the core base material 20 is an insulating substrate.
  • the core base material 20 may be an inner layer circuit board in which wiring or the like is formed within the thickness.
  • Examples of the material of the core base material 20 include insulating base materials such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • the core substrate 20 has a first wiring layer 42 provided on the first main surface 20a and an external terminal 24 provided on the second main surface 20b.
  • the first wiring layer 42 and the second wiring layer 44 include a plurality of wirings. In the example shown in the figure, only the wiring constituting the coiled conductive structure 40 of the inductor element is shown.
  • the external terminal 24 is a terminal for electrically connecting to an external device or the like not shown.
  • the external terminal 24 can be configured as a part of a wiring layer provided on the second main surface 20b.
  • the conductive material that can constitute the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wiring for example, gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel,
  • metals selected from the group consisting of titanium, tungsten, iron, tin, and indium are included.
  • the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings may be made of a single metal or an alloy, and the alloy is selected from the above group, for example. And alloys of two or more metals (for example, nickel chromium alloy, copper nickel alloy, and copper titanium alloy).
  • chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel chromium alloy is more preferably used, and copper is further preferably used.
  • first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings have a single-layer structure, a single metal layer or an alloy layer composed of two or more different types of metals or alloys is laminated. It may be a layered structure.
  • the layer in contact with the magnetic layer is a single metal layer of chromium, zinc, or titanium, or an alloy of a nickel chromium alloy A layer is preferred.
  • the thicknesses of the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings are generally 3 ⁇ m to 35 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m, depending on the desired multilayer printed wiring board design.
  • the thickness of the first wiring layer 42 and the external terminal 24 included in the core base material 20 is not particularly limited.
  • the thickness of the first wiring layer 42 and the external terminal 24 is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 50 ⁇ m or less, even more preferably 40 ⁇ m or less, particularly preferably from the viewpoint of thinning. Is 30 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, or 10 ⁇ m or less.
  • the lower limit of the thickness of the external terminal 24 is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the line (L) / space (S) ratio of the first wiring layer 42 and the external terminal 24 is not particularly limited, but is usually 900/900 ⁇ m or less from the viewpoint of obtaining a magnetic layer with excellent surface smoothness by reducing surface irregularities.
  • the thickness is preferably 700/700 ⁇ m or less, more preferably 500/500 ⁇ m or less, still more preferably 300/300 ⁇ m or less, and even more preferably 200/200 ⁇ m or less.
  • the lower limit of the line / space ratio is not particularly limited, but is preferably 1/1 ⁇ m or more from the viewpoint of improving the embedding of the resin composition in the space.
  • Examples of the core base material 20 include a wiring board formed as a wiring layer by patterning a copper layer using “R1515A” manufactured by Panasonic Corporation which is a glass cloth base material epoxy resin double-sided copper-clad laminate.
  • the core base material 20 has a plurality of through holes 22 that penetrate the core base material 20 so as to extend from the first main surface 20a to the second main surface 20b.
  • the through-hole 22 is provided with a through-hole wiring 22a.
  • the through-hole wiring 22 a electrically connects the first wiring layer 42 and the external terminal 24.
  • the first wiring layer 42 includes a spiral wiring portion for constituting the coiled conductive structure 40 and a rectangular land 42a electrically connected to the through-hole wiring 22a.
  • the spiral wiring portion includes a bent portion that bends at right angles to the linear portion and a bypass portion that bypasses the land 42a.
  • the spiral wiring portion of the first wiring layer 42 has a generally rectangular outline, and has a shape that is wound counterclockwise from the center side toward the outside.
  • the first magnetic layer 32 covers the first wiring layer 42 and the first main surface 20a exposed from the first wiring layer 42. Is provided.
  • the first magnetic layer 32 is a layer derived from the adhesive film described above, the first wiring layer 42 is excellent in sealing performance. Further, since the first magnetic layer 32 is formed using the adhesive film, the relative magnetic permeability in the frequency range of 10 MHz to 200 MHz is improved, and usually the magnetic loss is reduced.
  • the first magnetic layer 32 is provided with a via hole 36 that penetrates the first magnetic layer 32 in the thickness direction.
  • a second wiring layer 44 is provided in the first magnetic layer 32.
  • the second wiring layer 44 includes a spiral wiring portion for constituting the coiled conductive structure 40.
  • the spiral wiring portion includes a linear portion and a bent portion bent at a right angle.
  • the spiral wiring portion of the second wiring layer 44 has a generally rectangular outline, and has a shape that is wound clockwise from the center side toward the outside.
  • a via hole wiring 36a is provided in the via hole 36.
  • One end on the center side of the spiral wiring portion of the second wiring layer 44 is electrically connected to one end on the center side of the spiral wiring portion of the first wiring layer 42 by the via hole wiring 36a.
  • the other end on the outer peripheral side of the spiral wiring portion of the second wiring layer 44 is electrically connected to the land 42a of the first wiring layer 42 by the via hole wiring 36a. Therefore, the other end on the outer peripheral side of the spiral wiring portion of the second wiring layer 44 is electrically connected to the external terminal 24 via the via-hole wiring 36a, the land 42a, and the through-hole wiring 22a.
  • the coiled conductive structure 40 includes a spiral wiring part that is a part of the first wiring layer 42, a spiral wiring part that is a part of the second wiring layer 44, and a spiral wiring part of the first wiring layer 42. And a via-hole wiring 36a that electrically connects the spiral wiring portion of the second wiring layer 44 to each other.
  • the first magnetic layer 32 provided with the second wiring layer 44 is provided with a second magnetic layer 34 so as to cover the second wiring layer 44 and the first magnetic layer 32 exposed from the second wiring layer 44.
  • the second magnetic layer 34 is a layer derived from the adhesive film already described in the same manner as the first magnetic layer 32, and the resin composition layer of the adhesive film is excellent in fluidity when the magnetic layer is formed.
  • the sealing property of the wiring layer 44 is excellent. Further, since the second magnetic layer 34 is formed using the adhesive film, the relative magnetic permeability in the frequency range of 10 MHz to 200 MHz is improved, and usually the magnetic loss is reduced.
  • the first magnetic layer 32 and the second magnetic layer 34 constitute a magnetic part 30 that can be viewed as an integral magnetic layer. Therefore, the coiled conductive structure 40 is provided so as to be at least partially embedded in the magnetic part 30. That is, in the wiring board 10 of this embodiment, the inductor element extends in the thickness direction of the coiled conductive structure 40 and the magnetic part 30 and is surrounded by the coiled conductive structure 40. It is comprised by the core part which is a part of them.
  • the coiled conductive structure 40 includes the two wiring layers of the first wiring layer 42 and the second wiring layer 44 has been described.
  • the wiring layer has three or more wiring layers (and three or more layers).
  • the coiled conductive structure 40 can also be constituted by the build-up magnetic layer.
  • the spiral wiring portion of the wiring layer (not shown) arranged so as to be sandwiched between the uppermost wiring layer and the lowermost wiring layer is arranged at the nearest side with one end on the uppermost layer side.
  • One end of the spiral wiring portion of the wiring layer that is electrically connected to one end of the spiral wiring portion of the wiring layer and the other end is the lowest layer side and is disposed nearest Electrically connected to the part.
  • the magnetic layer is formed by the adhesive film, the relative magnetic permeability and flame retardancy of the formed magnetic layer can be increased, and the amount of warpage can be reduced.
  • the method for manufacturing a wiring board according to the present embodiment includes a magnetic part including a first magnetic layer and a second magnetic layer, and a coiled conductive structure at least partially embedded in the magnetic part.
  • a method of manufacturing a wiring board including an inductor element composed of a conductive structure and a part of a magnetic part, the core substrate provided with the adhesive film according to the present embodiment and the first wiring layer A step of laminating a resin composition layer of an adhesive film on a core substrate, a step of thermosetting the resin composition layer to form a first magnetic layer, and forming a via hole in the first magnetic layer A step of roughening the first magnetic layer in which the via hole is formed, a second wiring layer is formed on the first magnetic layer, and the first wiring layer and the second wiring layer are electrically connected to each other.
  • a core substrate (inner layer) provided with a first wiring layer 42 provided on the first main surface 20a, an external terminal 24 provided on the second main surface 20b, a through hole 22, and an inner wiring 22a in the through hole.
  • Circuit board 20 and an adhesive film are prepared.
  • the first magnetic layer 32 is formed. First, a laminating step of laminating the resin composition layer of the adhesive film so as to come into contact with the first wiring layer 42 of the core base material is performed.
  • the conditions for the laminating step are not particularly limited, and conditions used for forming a magnetic layer (build-up magnetic layer) using an adhesive film can be employed.
  • it can be performed by pressing a heated metal plate such as a stainless steel mirror plate from the support side of the adhesive film.
  • a heated metal plate such as a stainless steel mirror plate
  • it is preferable not to press the metal plate directly, but to press through an elastic member made of heat-resistant rubber or the like so that the adhesive film sufficiently follows the irregularities on the surface of the core substrate 20.
  • the pressing temperature is preferably in the range of 70 ° C. to 140 ° C.
  • the pressing pressure is preferably in the range of 1 kgf / cm 2 to 11 kgf / cm 2 (0.098 MPa to 1.079 MPa)
  • the pressing time is preferably 5 The range is from 2 seconds to 3 minutes.
  • the laminating step is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less.
  • the laminating step can be performed using a commercially available vacuum laminator.
  • Examples of the commercially available vacuum laminator include a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a vacuum applicator manufactured by Nikko Materials, and the like.
  • a smoothing step of heating and pressurizing the adhesive film laminated on the core substrate 20 may be performed.
  • the smoothing step is generally carried out by heating and pressurizing the adhesive film laminated to the core substrate 20 with a heated metal plate or metal roll under normal pressure (atmospheric pressure).
  • the conditions for the heating and pressure treatment can be the same as the conditions for the laminating step.
  • the laminating step and the smoothing step can also be carried out continuously using the same vacuum laminator.
  • the process which peels the support body derived from an adhesive film at the arbitrary timings after implementation of the said lamination process or the said smoothing process is performed.
  • the process of peeling a support body can be mechanically implemented with a commercially available automatic peeling apparatus, for example.
  • thermosetting process is performed in which the resin composition layer laminated on the core substrate 20 is thermoset to form a magnetic layer (build-up magnetic layer).
  • the conditions for the thermosetting process are not particularly limited, and conditions usually employed when forming the insulating layer of the multilayer printed wiring board can be applied.
  • the conditions of the thermosetting step can be arbitrarily selected depending on the composition of the resin composition used for the resin composition layer.
  • the conditions of the heat curing step are, for example, a curing temperature in a range of 120 ° C. to 240 ° C. (preferably in a range of 150 ° C. to 210 ° C., more preferably in a range of 170 ° C. to 190 ° C.), and a curing time of 5 minutes to 90 minutes. (Preferably 10 minutes to 75 minutes, more preferably 15 minutes to 60 minutes).
  • a step of preheating the resin composition layer at a temperature lower than the curing temperature may be performed.
  • the resin composition layer Prior to carrying out the thermosetting step, the resin composition layer is kept at a temperature of, for example, 50 ° C. or more and less than 120 ° C. (preferably 60 ° C. or more and 110 ° C. or less, more preferably 70 ° C. or more and 100 ° C. or less) for 5 minutes or more (preferably May be preheated for 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes).
  • Preheating is preferably performed under atmospheric pressure (normal pressure).
  • the first magnetic layer 32 provided on the core base material 20 can be formed by the above steps.
  • the second magnetic layer 32 is provided in the first magnetic layer 32 by repeating the laminating step, the thermosetting step, and the wiring layer forming step described later once or more with respect to the core substrate 20 on which the magnetic layer is formed.
  • the magnetic part 34 including the magnetic layer 34 and the laminated magnetic layer can be formed.
  • the step of forming the first magnetic layer 32 on the core substrate 20 can be performed using a general vacuum hot press machine. For example, it can carry out by pressing from the support body side using metal plates, such as a heated SUS board.
  • the pressing condition is that the degree of vacuum is usually 1 ⁇ 10 ⁇ 2 MPa or less, preferably 1 ⁇ 10 ⁇ 3 MPa or less.
  • heating and pressurization can be carried out in one stage, it is preferable to carry out by changing the pressing conditions as two or more stages from the viewpoint of controlling the oozing of the resin.
  • the first stage pressing condition is a temperature of 70 ° C.
  • the pressure is 1 kgf / cm 2 to 15 kgf / cm 2
  • the second stage pressing condition is a temperature of 150 ° C. to 200 ° C. , preferably carried out at a pressure of range of 1kgf / cm 2 ⁇ 40kgf / cm 2.
  • the time for each stage is preferably 30 minutes to 120 minutes.
  • Examples of commercially available vacuum hot presses include “MNPC-V-750-5-200” manufactured by Meiki Seisakusho, “VH1-1603” manufactured by Kitagawa Seiki Co., Ltd., and the like.
  • a via hole 36 is formed in the formed first magnetic layer 32.
  • the via hole 36 becomes a path for electrically connecting the first wiring layer 42 and the second wiring layer 44.
  • the via hole 36 can be formed by a known method using a drill, laser, plasma or the like in consideration of the characteristics of the first magnetic layer 32. For example, if the protective film remains at this point, the via hole 36 can be formed by irradiating the first magnetic layer 32 with laser light through the protective film.
  • Examples of the laser light source that can be used for forming the via hole 36 include a carbon dioxide laser, a YAG laser, and an excimer laser. Among these, a carbon dioxide laser is preferable from the viewpoint of processing speed and cost.
  • the via hole 36 can be formed using a commercially available laser device.
  • commercially available carbon dioxide laser devices include “LC-2E21B / 1C” manufactured by Hitachi Via Mechanics, “ML605GTWII” manufactured by Mitsubishi Electric, and a substrate drilling laser processing machine manufactured by Matsushita Welding Systems.
  • a roughening process for roughening the first magnetic layer 32 in which the via hole 36 is formed is performed.
  • the procedure and conditions of the roughening step are not particularly limited, and known procedures and conditions that are usually used in the method for producing a multilayer printed wiring board can be employed.
  • the roughening step for example, the first magnetic layer 32 can be roughened by performing a swelling treatment with a swelling liquid, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing liquid in this order.
  • the swelling liquid that can be used in the roughening step is not particularly limited, and examples thereof include an alkaline solution and a surfactant solution, and an alkaline solution is preferable.
  • an alkaline solution which is a swelling liquid a sodium hydroxide solution and a potassium hydroxide solution are more preferable.
  • Examples of the commercially available swelling liquid include “Swelling Dip Securigans P”, “Swelling Dip Securigans SBU” manufactured by Atotech Japan.
  • the swelling treatment with the swelling liquid is not particularly limited, and can be performed, for example, by immersing the core substrate 20 provided with the first magnetic layer 32 in the swelling liquid at 30 ° C. to 90 ° C. for 1 minute to 20 minutes. .
  • the first magnetic layer 32 is preferably immersed in a swelling liquid at 40 ° C. to 80 ° C. for 5 minutes to 15 minutes.
  • the oxidizing agent that can be used for the roughening treatment with the oxidizing agent is not particularly limited, and examples thereof include an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide.
  • the roughening treatment with an oxidizing agent such as an alkaline permanganic acid solution is preferably performed by immersing the first magnetic layer 32 in an oxidizing agent solution heated to 60 ° C. to 80 ° C. for 10 to 30 minutes.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass.
  • Examples of commercially available oxidants include alkaline permanganate solutions such as “Concentrate Compact P” and “Dosing Solution Securigans P” manufactured by Atotech Japan.
  • an acidic aqueous solution is preferable, and as a commercially available product, for example, “Reduction Solution Securigans P” manufactured by Atotech Japan Co., Ltd. can be mentioned.
  • the neutralization treatment with the neutralizing solution can be performed by immersing the treated surface, which has been subjected to the roughening treatment with the oxidizing agent solution, in the neutralizing solution at 30 to 80 ° C. for 5 to 30 minutes. From the viewpoint of workability and the like, a method of immersing the first magnetic layer 32 that has been roughened with an oxidant solution in a neutralizing solution at 40 ° C. to 70 ° C. for 5 to 20 minutes is preferable.
  • the roughening process described above may also serve as a so-called desmear process for removing smear of the via hole 36 formed in the first magnetic layer 32.
  • a desmear process may be performed on the via hole 36 separately from the roughening process.
  • the desmear process may be a wet desmear process or a dry desmear process.
  • the specific process of the desmear process is not particularly limited, and for example, known processes and conditions that are normally used when forming an insulating layer of a multilayer printed wiring board can be employed.
  • Examples of the dry desmear process include plasma treatment, and examples of the wet desmear process include a swelling process using a swelling liquid, a process using an oxidizing agent, and a process using a neutralizing liquid in the same order as the roughening process. The method of performing is mentioned.
  • the second wiring layer 44 is formed on the first magnetic layer 32 that has been subjected to the roughening process (and the desmear process).
  • the second wiring layer 44 can be formed by plating.
  • the second wiring layer 44 is formed by a conventionally known technique such as a semi-additive method including a non-electrolytic plating process, a mask pattern forming process, an electrolytic plating process, and a flash etching process, or a full additive method. It can be formed as a wiring layer including a pattern.
  • the via hole wiring 36 a is also formed in the via hole 36 by the formation process of the second wiring layer 44.
  • the wiring board of this embodiment requires one or more build-up layers. For this, the series of steps already described from the step of forming the first magnetic layer 32 to the step of forming the second wiring layer 44 may be repeated one more time.
  • the second magnetic layer 34 is formed on the first magnetic layer 32 in which the second wiring layer 44 and the via-hole wiring 36a are formed.
  • the second magnetic layer 34 may be formed by the same process using the same material as the first magnetic layer 32 forming process including the adhesive film laminating process, smoothing process, and thermosetting process already described.
  • the coil-shaped conductive structure 40 is embedded at least in part in the magnetic part 30, and a part of the first wiring layer 42, a part of the second wiring layer 44, and the via-hole wiring 36a are connected.
  • Wiring board 10 including an inductor element including a coiled conductive structure 40 and a portion of magnetic part 30 extending in the thickness direction of magnetic part 30 and surrounded by coiled conductive structure 40. Can be manufactured.
  • the wiring board 11 has a magnetic layer that is a cured body of the resin composition (resin composition layer) and a conductive structure that is at least partially embedded in the magnetic layer.
  • the conductive element includes an inductor element that is configured by a part of the magnetic layer that extends in the thickness direction of the magnetic layer and is surrounded by the conductive structure.
  • the wiring board 11 is a build-up wiring board having a build-up magnetic layer.
  • the wiring board 11 is different from the wiring board 10 of the first embodiment in that it does not have a core base material.
  • the frequency at which the inductor element included in the wiring board 11 can function is assumed to be 10 MHz to 200 MHz. Further, the inductor element provided in the wiring board 11 is assumed to be a power supply system.
  • the wiring board 11 includes a first wiring layer 42, a second wiring layer 44, and a third wiring layer 46.
  • the first wiring layer 42, the second wiring layer 44, and the third wiring layer 46 usually include a plurality of wirings. In the example shown in the figure, only the wiring constituting the coiled conductive structure 40 of the inductor element is shown.
  • the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings are the same as the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings in the first embodiment. It is.
  • the conductor material that can constitute the third wiring layer 46 is the same as the conductor material that can constitute the first wiring layer 42 in the first embodiment.
  • the thickness of the third wiring layer 46 is the same as the thickness of the first wiring layer 42 in the first embodiment.
  • the third wiring layer 46 may have a single layer structure or a multilayer structure in which two or more single metal layers or alloy layers made of different kinds of metals or alloys are stacked.
  • the layer in contact with the magnetic layer is preferably a single metal layer of chromium, zinc or titanium, or an alloy layer of a nickel chromium alloy.
  • the first magnetic layer 32, the second magnetic layer 34, and the third magnetic layer 38 constitute a magnetic part 30 that can be viewed as an integral magnetic layer.
  • the first magnetic layer 32 and the second magnetic layer 34 are the same as the first magnetic layer 32 and the second magnetic layer 34 in the first embodiment.
  • the third magnetic layer 38 is a layer derived from the adhesive film already described, and the resin composition layer of the adhesive film is excellent in fluidity when forming the magnetic layer. Are better. Further, since the third magnetic layer 38 is formed using the adhesive film, the relative magnetic permeability in the frequency range of 10 MHz to 200 MHz is improved, and usually the magnetic loss is reduced.
  • a via hole wiring 36a is provided in the via hole 36.
  • the first wiring layer 42, the second wiring layer 44, and the third wiring layer 46 are electrically connected to each other by via-hole wiring 36a and the like.
  • the coiled conductive structure 40 includes three wiring layers of the first wiring layer 42, the second wiring layer 44, and the third wiring layer 46 has been described.
  • the coiled conductive structure 40 can also be constituted by a wiring layer (and four or more buildup magnetic layers).
  • the spiral wiring portion of the wiring layer (not shown) arranged so as to be sandwiched between the uppermost wiring layer and the lowermost wiring layer is arranged at the nearest side with one end on the uppermost layer side.
  • One end of the spiral wiring portion of the wiring layer that is electrically connected to one end of the spiral wiring portion of the wiring layer and the other end is the lowest layer side and is disposed nearest Electrically connected to the part.
  • the magnetic layer is formed by the adhesive film, the relative magnetic permeability and flame retardancy of the formed magnetic layer can be increased, and the amount of warpage can be reduced.
  • the manufacturing method of the wiring board according to the present embodiment is as follows: (1) The process of preparing the base material 50 with a carrier with a metal layer which has the base material 51 and the metal layer with a carrier 52 provided in the at least one surface of this base material 51, (2) A step of laminating a resin composition layer of an adhesive film on the substrate 50 with a metal layer with a carrier, and thermosetting the resin composition layer to form the first magnetic layer 32; (3) forming a first wiring layer 42 on the first magnetic layer 32; (4) laminating a resin composition layer of an adhesive film on the first wiring layer 42 and the first magnetic layer 32, and thermosetting the resin composition layer to form the second magnetic layer 34; (5) A step of forming a via hole 36 in the second magnetic layer 34 and roughening the second magnetic layer 34 in which the via hole 36 is formed,
  • Step (9) and step (10) may be performed in the reverse order, or may be performed simultaneously.
  • a process (11) and a process (12) may be performed by changing order, and may be performed simultaneously.
  • Step (1) is a step of preparing a substrate 50 with a metal layer with a carrier having a substrate 51 and a metal layer with a carrier 52 provided on at least one surface of the substrate 51.
  • the substrate 50 with a metal layer with a carrier is usually provided with a substrate 51 and a metal layer 52 with a carrier on at least one surface of the substrate 51.
  • the metal layer 52 with a carrier is a structure provided in order of the 1st metal layer 521 and the 2nd metal layer 522 from the base material 51 side from a viewpoint of improving workability
  • the material of the base material 51 is the same as that of the core base material in the first embodiment.
  • Examples of the material of the metal layer 52 with a carrier include a copper foil with a carrier and a metal foil with a support that can be peeled.
  • a commercially available product can be used for the base material 50 with a metal layer with a carrier. Examples of commercially available products include MT-EX manufactured by Mitsui Kinzoku Co., Ltd.
  • step (2) as shown in FIG. 4B, the resin composition layer of the adhesive film is laminated on the base material 50 with the metal layer with carrier, and the resin composition layer is thermoset to cause the first magnetic property. This is a step of forming the layer 32.
  • the formation of the first magnetic layer 32 in the step (2) can be performed by the same method as the formation of the first magnetic layer in the first embodiment.
  • a roughening step may be performed on the formed first magnetic layer as necessary.
  • the roughening step can be performed by the same method as the roughening step performed on the first magnetic layer in the first embodiment.
  • Step (3) is a step of forming the first wiring layer 42 on the first magnetic layer 32 as shown in FIG. 4C as an example.
  • the first wiring layer 42 can be formed by plating.
  • the first wiring layer 42 can be formed by the same method as the formation of the second wiring layer 44 in the first embodiment.
  • the first wiring layer 42 can be made of the same conductive material as that of the first wiring layer in the first embodiment.
  • step (4) as shown in FIG. 4D, an adhesive film resin composition layer is laminated on the first wiring layer 42 and the first magnetic layer 32, and the resin composition layer is thermoset. In this step, the second magnetic layer 34 is formed.
  • the second magnetic layer 34 can be formed by the same method as in step (2) described above.
  • the adhesive film for forming the second magnetic layer 34 may be the same as the adhesive film used when forming the first magnetic layer 32, or a different adhesive film may be used.
  • Step (5) is a step of forming a via hole 36 in the second magnetic layer 34 and roughening the second magnetic layer 34 in which the via hole 36 is formed, as shown in FIG. 4E. is there.
  • a via hole wiring 36 a is provided in the via hole 36.
  • the via hole 36 becomes a path for electrically connecting the first wiring layer 42 and the second wiring layer 44.
  • the via hole 36 can be formed by the same method as the via hole forming step in the first embodiment. Further, the roughening treatment can be performed by the same method as the roughening step performed on the first magnetic layer in the first embodiment.
  • Step (6) is a step of forming the second wiring layer 44 on the second magnetic layer 34 as shown in FIG. 4 (e) as an example.
  • the second wiring layer 44 is formed on the via hole 36 in the second magnetic layer 34.
  • the second wiring layer 44 can be formed by plating.
  • the second wiring layer 44 can be formed by the same method as the formation of the second wiring layer 44 in the first embodiment.
  • the second wiring layer 44 can be made of the same conductive material as that of the second wiring layer in the first embodiment.
  • step (7) as shown in FIG. 4F, an adhesive film resin composition layer is laminated on the second wiring layer 44 and the second magnetic layer 34, and the resin composition layer is thermoset. In this step, the third magnetic layer 38 is formed.
  • the third magnetic layer 38 can be formed by the same method as in step (2) described above.
  • the adhesive film for forming the third magnetic layer 38 may be the same as the adhesive film used when forming the first magnetic layer 32 and the second magnetic layer 34, or may be different.
  • a process (8) is a process of removing the base material 50 with a metal layer with a carrier so that an example may be shown in FIG.4 (g).
  • the removal method of the base material 50 with a metal layer with a carrier is not specifically limited.
  • the substrate 51 and the first metal layer 521 are peeled off at the interface between the first metal layer 521 and the second metal layer 522, and the second metal layer 522 is removed by etching with, for example, an aqueous copper chloride solution.
  • Step (9) is a step of forming a via hole (not shown in FIG. 4) in the third magnetic layer 38 and subjecting the third magnetic layer 38 with the via hole to a roughening treatment.
  • a via hole wiring in the via hole is provided.
  • the via hole serves as a path for electrically connecting the second wiring layer 44 and the third wiring layer 46.
  • This via hole can be formed by the same method as the via hole forming step in the first embodiment.
  • the roughening treatment can be performed by the same method as the roughening step performed on the first magnetic layer in the first embodiment.
  • Step (10) is a step of forming a via hole 36 in the first magnetic layer 32 and roughening the first magnetic layer 32 in which the via hole 36 is formed, as shown in FIG. is there.
  • the via hole 36 is formed on the surface side of the first magnetic layer 32 from which the substrate 50 with the metal layer with carrier is removed, and the external terminal 24 is formed on the via hole 36.
  • a via hole wiring 36 a is provided in the via hole 36.
  • the via hole 36 serves as a path for electrically connecting the first wiring layer 42 and the external terminal 24.
  • the via hole 36 can be formed by the same method as the via hole forming step in the first embodiment.
  • the roughening treatment can be performed by the same method as the roughening step performed on the first magnetic layer in the first embodiment.
  • Step (11) is a step of forming the third wiring layer 46 on the third magnetic layer 38 as shown in FIG. 4 (h) as an example. More specifically, after roughening a via hole (not shown) formed in the third magnetic layer 38, the third wiring layer 46 is formed on the via hole.
  • the third wiring layer 46 can be formed by the same method as the second wiring layer 44 in the first embodiment, and the same conductive material as that of the first and second wiring layers in the first embodiment is used. Can do.
  • Step (12) is a step of forming the external terminals 24 on the first magnetic layer 32 as shown in FIG. 4 (h) as an example. More specifically, after the via hole 36 formed in the first magnetic layer 32 is roughened, the external terminal 24 is connected to the via hole 36.
  • This inductor element includes a coiled conductive structure 40 and a part of the magnetic part 30 extending in the thickness direction of the magnetic part 30 and surrounded by the coiled conductive structure 40.
  • the coiled conductive structure 40 includes a part of the first wiring layer 42, a part of the second wiring layer 44, a part of the third wiring layer 46, and the via hole wiring 36a.
  • the wiring board of this embodiment requires one or more build-up layers. For this, the series of steps already described from the step of forming the first magnetic layer 32 to the step of forming the second wiring layer 44 may be repeated one more time.
  • the adhesive film of the present invention By using the adhesive film of the present invention, it is possible to improve the relative magnetic permeability at a frequency of 10 MHz to 200 MHz, and to form a magnetic layer with excellent flame retardancy and reduced warpage.
  • a wiring board in which a higher performance inductor element for a low frequency band including a core portion constituted by a part of a magnetic layer is formed without using a core structure can be provided by a simpler process.
  • the wiring board according to the present embodiment can be used as a wiring board for mounting electronic components such as semiconductor chips, and can also be used as a (multilayer) printed wiring board using such a wiring board as an inner layer substrate. Further, such a wiring board can be used as a chip inductor component obtained by dividing the wiring board into pieces, and can also be used as a printed wiring board on which the chip inductor component is surface-mounted. In addition, using such a wiring board, various types of semiconductor devices can be manufactured. A semiconductor device including such a wiring board can be suitably used for electrical products (for example, computers, mobile phones, digital cameras, and televisions) and vehicles (for example, motorcycles, automobiles, trains, ships, and aircrafts). .
  • electrical products for example, computers, mobile phones, digital cameras, and televisions
  • vehicles for example, motorcycles, automobiles, trains, ships, and aircrafts.
  • Example 1 Preparation of resin composition 1> “ZX1059” (mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 7 parts by mass, “HP-4700” (naphthalene type tetrafunctional epoxy resin, manufactured by DIC) 7 parts by mass, 35 parts by mass of “YX7553” (phenoxy resin, nonvolatile content 30% by mass, manufactured by Mitsubishi Chemical), 30 parts by mass of “KS-1” (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.), 10 parts by mass of MEK, 10 parts by mass of cyclohexanone The solution was dissolved in 40 parts by mass of ethanol and 40 parts by mass of toluene while stirring.
  • ZX1059 mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • HP-4700 naphthalene type t
  • Example 2 Preparation of resin composition 2> "ZX1059” (mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 14 parts by mass, "HP-4700” (naphthalene type tetrafunctional epoxy resin, manufactured by DIC) 14 parts by mass, 35 parts by mass of “YX7553” (phenoxy resin, non-volatile content 30% by mass, manufactured by Mitsubishi Chemical Corporation), 23 parts by mass of “KS-1” (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) 10 parts by mass of MEK, 10 parts by mass of cyclohexanone The mixture was dissolved in 30 parts by mass of ethanol and 30 parts by mass of toluene while stirring.
  • ZX1059 mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • HP-4700 naphthalene type
  • Example 3 Preparation of resin composition 3>
  • KS-1 polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.
  • SG-P3 epoxy group-containing acrylate copolymer resin, manufactured by Nagase ChemteX Corporation, number average molecular weight Mn: 850000 g / mol, epoxy value 0.21 eq / kg, glass transition temperature 12 ° C., nonvolatile content 15% by mass
  • a resin composition 3 was prepared in the same manner as in Example 1 except for the above items.
  • Example 4 Preparation of resin composition 4>
  • KS-1 polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.
  • BL-1 butyral resin, manufactured by Sekisui Chemical Co., Ltd.
  • Example 5 Preparation of resin composition 5>
  • the amount of YX7553 phenoxy resin, nonvolatile content 30% by mass, manufactured by Mitsubishi Chemical Corporation
  • KS-1 polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.
  • a resin composition 5 was prepared in the same manner as in Example 1 except for the above items.
  • Example 6 Preparation of resin composition 6>
  • the amount of AW2-08PF3F manufactured by Epson Atmix
  • a resin composition 6 was prepared in the same manner as in Example 1 except for the above items.
  • Example 7 Preparation of resin composition 7>
  • the amount of AW2-08PF3F manufactured by Epson Atmix
  • the amount of SO-C2 manufactured by Admatex
  • a resin composition 7 was prepared in the same manner as in Example 1 except for the above items.
  • Example 8 Preparation of resin composition 8>
  • the amount of SO-C2 manufactured by Admatechs
  • a resin composition 8 was prepared in the same manner as in Example 1 except for the above items.
  • Example 9 Preparation of resin composition 9>
  • the amount of AW2-08PF3F manufactured by Epson Atmix
  • SO-C2 manufactured by Admatex
  • a resin composition 9 was prepared in the same manner as in Example 1.
  • Example 10 Preparation of resin composition 10>
  • the amount of LA-7054 (phenolic curing agent, nonvolatile content 60% by mass, manufactured by DIC) was changed from 14 parts by mass to 7 parts by mass, and HPC-8000-65T (active ester curing agent, nonvolatile content) 65 parts by mass (manufactured by DIC Corporation) was included.
  • a resin composition 10 was prepared in the same manner as in Example 3. The surface of the prepared resin composition 10 was measured using a scanning electron microscope (SEM). An enlarged photograph of the surface of the resin composition 10 is shown in FIG.
  • Example 1 Preparation of resin composition 11>
  • the amount of KS-1 polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.
  • a resin composition 11 was prepared in the same manner as in Example 1 except for the above items.
  • Example 2 Preparation of resin composition 12>
  • KS-1 polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.
  • a resin composition 12 was prepared in the same manner as in Example 1.
  • Example 3 Preparation of resin composition 13>
  • the amount of KS-1 polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.
  • AW2-08PF3F manufactured by Epson Atmix
  • the amount was changed to 1800 parts by mass.
  • a resin composition 13 was prepared in the same manner as in Example 1.
  • Example 4 Preparation of resin composition 14>
  • the amount of AW2-08PF3F manufactured by Epson Atmix
  • the amount of SO-C2 manufactured by Admatex
  • a resin composition 14 was prepared in the same manner as in Example 1.
  • ⁇ Comparative Example 5 Preparation of resin composition 15>
  • KS-1 polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.
  • SG-P3 epoxy group-containing acrylate copolymer resin, manufactured by Nagase ChemteX Corporation, number average molecular weight Mn: 850000 g / mol, epoxy value 0.21 eq / kg, glass transition temperature 12 ° C., non-volatile content 15% by mass
  • AW2-08PF3F manufactured by Epson Atmix
  • a resin composition 15 was prepared in the same manner as in Example 9.
  • Example 6 Preparation of resin composition 16>
  • AW2-08PF3F manufactured by Epson Atmix
  • HQ carbonyl iron, manufactured by BASF
  • PET film (thickness: 38 ⁇ m) was prepared as a support.
  • the resin composition prepared in each example and each comparative example was uniformly applied on a PET film with a die coater so that the thickness of the resin composition layer after drying was 50 ⁇ m, and 70 ° C. to 120 ° C. (average) (100 ° C.) for 7 minutes so that the residual solvent amount in the resin composition layer is about 0.4% by mass to obtain an adhesive film.
  • Each adhesive film was laminated on both sides of the wiring board using a batch type vacuum pressure laminator “MVLP-500” manufactured by Meiki Seisakusho. Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressing force of 0.74 MPa for 30 seconds. Evaluation was performed by inspecting the appearance of the obtained laminated structure according to the following evaluation criteria. The results are shown in the table below. Evaluation standard (circle): There is no void in the circuit part of a wiring board, and the resin composition derived from an adhesive film has flowed sufficiently. X: Void is generated in the circuit portion of the wiring board, and the fluidity at the time of laminating the resin composition derived from the adhesive film is insufficient.
  • a PET film (“Fluoroge RL50KSE” manufactured by Mitsubishi Plastics) treated with a fluororesin-based release agent (ETFE) was prepared.
  • the resin composition produced in each example and each comparative example was uniformly applied on the PET film with a die coater so that the thickness of the resin composition layer after drying was 50 ⁇ m. It was dried at an average temperature of 100 ° C. for 7 minutes so that the residual solvent amount in the resin composition layer was about 0.4% by mass to obtain an adhesive film.
  • the obtained adhesive film was heated at 180 ° C. for 90 minutes to thermally cure the resin composition layer, and the support was peeled off to obtain a sheet-like cured body.
  • the obtained cured body was cut into a test piece having a width of 5 mm and a length of 18 mm to obtain an evaluation sample.
  • This evaluation sample was measured using a 3-turn coil method with a measurement frequency of 10 MHz to 100 MHz using “HP 8362B” (trade name) manufactured by Agilent Technologies, and a relative permeability ( ⁇ ') And magnetic loss ( ⁇ '') were measured.
  • the relative permeability ( ⁇ ′) and magnetic loss ( ⁇ ′′) were measured at a room temperature of 23 ° C. with a measurement frequency in the range of 100 MHz to 10 GHz by the short-circuit stripline method.
  • the relative magnetic permeability when the measurement frequency is 10 MHz, 100 MHz, 1 GHz, and 3 GHz, and the magnetic loss when the measurement frequency is 10 MHz and 100 MHz are shown in the following table.
  • a PET film (“Fluoroge RL50KSE” manufactured by Mitsubishi Plastics) treated with a fluororesin-based release agent (ETFE) was prepared.
  • the resin composition produced in each example and each comparative example was uniformly applied on the PET film with a die coater so that the thickness of the resin composition layer after drying was 50 ⁇ m. It was dried at an average temperature of 100 ° C. for 7 minutes so that the residual solvent amount in the resin composition layer was about 0.4% by mass to obtain an adhesive film.
  • the obtained adhesive film was heated at 180 ° C. for 90 minutes to thermally cure the resin composition layer, and the support was peeled off to obtain a sheet-like cured body.
  • the obtained cured product was subjected to a tensile test using a Tensilon universal testing machine (manufactured by A & D) in accordance with Japanese Industrial Standard (JIS K7127), and the tensile modulus was measured.
  • a polyethylene terephthalate (hereinafter referred to as “PET”) film (thickness: 38 ⁇ m) was prepared as a support.
  • PET polyethylene terephthalate
  • the resin composition prepared in each example and each comparative example was uniformly applied on a PET film with a die coater so that the thickness of the resin composition layer after drying was 50 ⁇ m, and 70 ° C. to 120 ° C. (average) (100 ° C.) for 7 minutes so that the residual solvent amount in the resin composition layer is about 0.4% by mass to obtain an adhesive film.
  • the obtained adhesive film was punched into a 100 mm square, the support was peeled off, and eight resin composition layers were stacked, and a 100 mm square 200 ⁇ m glass cloth base epoxy resin double-sided copper-clad laminate made by Panasonic Corporation “ R1515A ”was laminated on one side using a batch type vacuum pressure laminator“ MVLP-500 ”manufactured by Meiki Seisakusho.
  • Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressing force of 0.74 MPa for 30 seconds. Subsequently, thermosetting was performed at 180 ° C. for 30 minutes to obtain a laminated structure.
  • the laminated structure was placed on a horizontal table, the distance from the table to the end of the laminated structure was taken as the amount of warpage, and the evaluation was performed according to the following evaluation criteria.
  • PET film (thickness: 38 ⁇ m) was prepared as a support.
  • the resin composition prepared in each example and each comparative example was uniformly applied on a PET film with a die coater so that the thickness of the resin composition layer after drying was 50 ⁇ m, and 70 ° C. to 120 ° C. (average) (100 ° C.) for 7 minutes so that the residual solvent amount in the resin composition layer is about 0.4% by mass to obtain an adhesive film.
  • a batch type vacuum pressure laminator MVLP-500 was applied to both sides of a base material from which the copper foil of a copper clad laminate (“679-FG” manufactured by Hitachi Chemical Co., Ltd.) having a substrate thickness of 0.2 mm was removed by etching. (Made by Meiki Co., Ltd.) was laminated on both sides of the laminate. Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds. After peeling off the PET film of the support, the adhesive film was laminated on both surfaces of the resin composition layer under the laminating conditions described above.
  • the PET film was peeled off and thermally cured at 180 ° C. for 90 minutes to obtain a flame retardant test sample.
  • a width of 12.7 mm and a length of 127 mm were cut out, and the cut out surface was polished with a polishing machine (manufactured by Struers, RotoPol-22).
  • the above five samples were made into one set, and the flame retardant test was performed according to the UL94 vertical flame retardant test. The case where there were 5 unburned samples after the 10-second indirect flame was “ ⁇ ”, and the case where there were no unburned samples after the 10-second indirect flame was “ ⁇ ”.
  • Examples 1 to 10 are excellent in laminating properties, magnetic loss, relative magnetic permeability, elastic modulus, warpage amount, warpage test, and flame retardancy.
  • the relative permeability of 10 MHz to 200 MHz is remarkably improved and the magnetic loss is reduced.
  • the resin composition of Example 10 forms a sea-island structure composed of a matrix phase and a dispersed phase, and it can be seen that the component (D) is unevenly distributed on the matrix phase side.
  • D It is thought that the relative magnetic permeability of the cured product of the resin composition of Example 10 is improved because the component (D) is unevenly distributed on the matrix phase side.
  • Comparative Example 1 and Comparative Examples 4 to 6 having an elastic modulus of less than 7 GPa and Comparative Examples 2 to 3 having an elastic modulus of more than 18 GPa have laminate properties, relative magnetic permeability of 10 MHz to 200 MHz, magnetic loss, elastic modulus, warpage. Any of the amount, warpage test, and flame retardancy was worse than in Examples 1 to 10, and could not be used as a resin composition. In Comparative Examples 1 and 3, the amount of warpage was large, and the amount of warpage could not be measured because the measurement limit was exceeded. In addition, flame retardancy could not be evaluated.
  • Wiring board 20 Core substrate (inner layer circuit board) 20a First main surface 20b Second main surface 22 Through hole 22a Wiring in through hole 24 External terminal 30 Magnetic part 32 First magnetic layer 34 Second magnetic layer 36 Via hole 36a Wiring in via hole 38 Third magnetic layer 40 Coiled conductivity Structure 42 First wiring layer 42a Land 44 Second wiring layer 46 Third wiring layer 50 Substrate with metal layer with carrier 51 Substrate 52 Metal layer with carrier 521 First metal layer 522 Second metal layer

Abstract

This resin composition contains: (A) a thermosetting resin; (B) a curing agent; (C) a thermoplastic resin; and (D) a magnetic filler, wherein the modulus of elasticity of a cured product at 23°C is 7-18 GPa, the cured product being obtained by thermally curing the resin composition.

Description

樹脂組成物Resin composition
 本発明は、樹脂組成物に関する。さらには、当該樹脂組成物を用いて得られる、接着フィルム、硬化物、インダクタ素子内蔵配線板、チップインダクタ部品、及びプリント配線板に関する。 The present invention relates to a resin composition. Furthermore, the present invention relates to an adhesive film, a cured product, a wiring board with a built-in inductor element, a chip inductor component, and a printed wiring board, which are obtained using the resin composition.
 近年の電子機器の小型化、薄型化の要求により、プリント配線板やプリント配線板に搭載されるインダクタ部品(コイル)も、小型化、薄型化の要求が高まっている。チップ部品としてインダクタ部品を搭載した場合、プリント配線板の薄型化に限界が生じる。よって、磁性材料を樹脂組成物層に含有する接着フィルムを用いて、プリント基板に磁性層を形成することで、プリント配線板内層にインダクタを形成することが考えられる(例えば、特許文献1参照)。 Due to recent demands for smaller and thinner electronic devices, printed wiring boards and inductor components (coils) mounted on printed wiring boards are also increasingly required to be smaller and thinner. When an inductor component is mounted as a chip component, there is a limit to reducing the thickness of the printed wiring board. Therefore, it is conceivable to form an inductor in the printed wiring board inner layer by forming a magnetic layer on the printed circuit board using an adhesive film containing a magnetic material in the resin composition layer (see, for example, Patent Document 1). .
特開2015-187260号公報JP 2015-187260 A
 インダクタ部品には、電源系と信号系とがあり、信号系では、ギガヘルツ以上の領域での比透磁率(透磁率)が要求される。特許文献1に記載の接着フィルムは、信号系に用いることを前提としており、1GHzから3GHzの範囲で比透磁率が良好となる。一方、電源系では、信号系よりも低周波の領域で高い比透磁率が求められており、10MHz未満の周波数で用いられることが一般的であった。よって、従来の樹脂組成物は、10MHz未満、又は1GHz以上の周波数に最適化されている。 Inductor parts include a power supply system and a signal system, and the signal system requires a relative magnetic permeability (permeability) in a region of gigahertz or higher. The adhesive film described in Patent Document 1 is premised on use in a signal system, and has a good relative magnetic permeability in the range of 1 GHz to 3 GHz. On the other hand, the power supply system is required to have a high relative permeability in a lower frequency region than the signal system, and is generally used at a frequency of less than 10 MHz. Therefore, the conventional resin composition is optimized for a frequency of less than 10 MHz or 1 GHz or more.
 これに対し、本発明者らは、新たに10MHz~200MHzという新たな周波数領域に注目し、この周波数領域で高い比透磁率を実現できれば、電源系の新たなインダクタ部品が得られるとの知見を得た。但し、このような樹脂組成物を用いた接着フィルムをプリント配線板の層間絶縁層部分に磁性層として置き換えて用いるためには、磁性層形成後に反りが発生しにくいこと、難燃性、及びラミネート性等も要求される。 On the other hand, the present inventors have paid attention to a new frequency range of 10 MHz to 200 MHz, and have found that if a high relative permeability can be realized in this frequency range, a new inductor component for a power supply system can be obtained. Obtained. However, in order to replace the adhesive film using such a resin composition as a magnetic layer in the interlayer insulating layer portion of the printed wiring board, it is difficult to warp after forming the magnetic layer, flame retardancy, and lamination Sex etc. are also required.
 本発明の課題は、難燃性に優れ、反り量が抑制され、特に、周波数が10~200MHzの範囲で比透磁率を向上させることができる硬化物を得ることができ、さらにはラミネート性に優れる樹脂組成物;当該樹脂組成物を用いて得られる、接着フィルム、硬化物、インダクタ素子内蔵配線板、チップインダクタ部品、及びプリント配線板を提供することにある。 The object of the present invention is to obtain a cured product that is excellent in flame retardancy, suppresses the amount of warpage, and can improve the relative permeability particularly in the frequency range of 10 to 200 MHz. Excellent resin composition: To provide an adhesive film, a cured product, a wiring board with a built-in inductor element, a chip inductor component, and a printed wiring board obtained by using the resin composition.
 一般に、磁性フィラーを含有する樹脂組成物は、周波数が10~200MHzの範囲での比透磁率が低いため、1GHzから3GHzの範囲での高周波用途であるか、0~10MHzの範囲での低周波用途に限定されていた。本発明者らが鋭意検討した結果、磁性フィラーを含有する樹脂組成物を熱硬化させた硬化物の23℃における弾性率が所定の範囲内となるように樹脂組成物中に含まれる各成分を調整すると、樹脂組成物を用いて得られる接着フィルムはラミネート性に優れ、樹脂組成物の硬化物は、難燃性に優れ、反り量が抑制され、特に、周波数が10~200MHzの範囲で比透磁率を向上させることができることを見出し、本発明を完成させるに至った。 In general, a resin composition containing a magnetic filler has a low relative permeability in the frequency range of 10 to 200 MHz, and therefore is suitable for high frequency applications in the range of 1 GHz to 3 GHz or low frequency in the range of 0 to 10 MHz. It was limited to use. As a result of intensive studies by the present inventors, the components contained in the resin composition were adjusted so that the elastic modulus at 23 ° C. of the cured product obtained by thermosetting the resin composition containing the magnetic filler was within a predetermined range. When adjusted, the adhesive film obtained using the resin composition is excellent in laminating properties, and the cured product of the resin composition is excellent in flame retardancy and the amount of warpage is suppressed, particularly in the frequency range of 10 to 200 MHz. The inventors have found that the magnetic permeability can be improved and have completed the present invention.
 すなわち、本発明は以下の内容を含む。
[1] (A)熱硬化性樹脂、
 (B)硬化剤、
 (C)熱可塑性樹脂、及び
 (D)磁性フィラー、を含有する樹脂組成物であって、
 樹脂組成物を熱硬化させた硬化物の23℃における弾性率が7GPa以上18GPa以下である、樹脂組成物。
[2] (D)成分の含有量が、樹脂組成物中の不揮発分を100質量%とした場合、75質量%以上95質量%未満である、[1]に記載の樹脂組成物。
[3] (E)磁性フィラー以外の無機充填材をさらに含有する、[1]又は[2]に記載の樹脂組成物。
[4] (D)成分の含有質量をd1とし、(E)成分の含有質量をe1とした場合、e1/d1が0.02以上0.19以下である、[3]に記載の樹脂組成物。
[5] 樹脂組成物中の樹脂成分の含有質量をa1とし、(C)成分の含有質量をc1とした場合、(c1/a1)×100が、35以上80以下である、[1]~[4]のいずれかに記載の樹脂組成物。
[6] (A)成分が、エポキシ樹脂である、[1]~[5]のいずれかに記載の樹脂組成物。
[7] エポキシ樹脂が、ビフェニル骨格を有するエポキシ樹脂、及び縮合環構造を有するエポキシ樹脂から選ばれる1種以上のエポキシ樹脂である、[6]に記載の樹脂組成物。
[8] (B)成分が、フェノール系硬化剤、及び活性エステル系硬化剤から選ばれる1種以上の硬化剤である、[1]~[7]のいずれかに記載の樹脂組成物。
[9] (C)成分が、重量平均分子量が3万以上100万以下の、フェノキシ樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、及びアクリル樹脂から選ばれる1種以上の熱可塑性樹脂である、[1]~[8]のいずれかに記載の樹脂組成物。
[10] 樹脂組成物が、マトリックス相と分散相とからなる海島構造を形成し、(D)成分がマトリックス相側に偏在している、[1]~[9]のいずれかに記載の樹脂組成物。
[11] (D)成分の平均粒径が、0.01μm以上8μm以下であり、かつ、(D)成分のアスペクト比が2以下である、[1]~[10]のいずれかに記載の樹脂組成物。
[12] (D)成分が、Si、Al、及びCrから選ばれる1種以上の元素を含むFe合金類である、[1]~[11]のいずれかに記載の樹脂組成物。
[13] (E)成分が、シリカである、[3]~[12]のいずれかに記載の樹脂組成物。
[14] 樹脂組成物を熱硬化させた硬化物の、周波数100MHzにおける比透磁率が5以上である、[1]~[13]のいずれかに記載の樹脂組成物。
[15] 樹脂組成物を熱硬化させた硬化物の、周波数100MHzにおける磁性損失が0.05以下である、[1]~[14]のいずれかに記載の樹脂組成物。
[16] 樹脂組成物を熱硬化させた硬化物の、周波数10MHzにおける比透磁率が5以上20以下であり、周波数100MHzにおける比透磁率が5以上20以下であり、周波数1GHzにおける比透磁率が4以上16以下であり、周波数3GHz以上における比透磁率が2以上10以下である、[1]~[15]のいずれかに記載の樹脂組成物。
[17] インダクタ素子を備える配線板の磁性層形成用である、[1]~[16]のいずれかに記載の樹脂組成物。
[18] インダクタ素子が機能する周波数が10~200MHzである、[17]に記載の樹脂組成物。
[19] [1]~[18]のいずれかに記載の樹脂組成物を熱硬化させた硬化物。
[20] 支持体と、該支持体上に設けられた、[1]~[18]のいずれかに記載の樹脂組成物で形成された樹脂組成物層を含む、接着フィルム。
[21] [20]に記載の接着フィルムの樹脂組成物層の硬化物である磁性層と、該磁性層に少なくとも一部分が埋め込まれた導電性構造体とを有しており、
 前記導電性構造体と、前記磁性層の厚さ方向に延在し、かつ前記導電性構造体に囲まれた前記磁性層のうちの一部分によって構成されるインダクタ素子を含む、インダクタ素子内蔵配線板。
[22] インダクタ素子が機能する周波数が10~200MHzである、[21]に記載のインダクタ素子内蔵配線板。
[23] [21]又は[22]に記載のインダクタ素子内蔵配線板を内層基板として使用したプリント配線板。
[24] [21]又は[22]に記載のインダクタ素子内蔵配線板を個片化したチップインダクタ部品。
[25] [24]に記載のチップインダクタ部品を表面実装したプリント配線板。
That is, the present invention includes the following contents.
[1] (A) thermosetting resin,
(B) a curing agent,
A resin composition containing (C) a thermoplastic resin, and (D) a magnetic filler,
The resin composition whose elastic modulus in 23 degreeC of the hardened | cured material which heat-cured the resin composition is 7 GPa or more and 18 GPa or less.
[2] The resin composition according to [1], wherein the content of the component (D) is 75% by mass or more and less than 95% by mass when the nonvolatile content in the resin composition is 100% by mass.
[3] The resin composition according to [1] or [2], further comprising (E) an inorganic filler other than the magnetic filler.
[4] The resin composition according to [3], wherein e1 / d1 is 0.02 or more and 0.19 or less when the content mass of the component (D) is d1 and the content mass of the component (E) is e1. object.
[5] When the content mass of the resin component in the resin composition is a1, and the content mass of the component (C) is c1, (c1 / a1) × 100 is 35 to 80, [1] to [4] The resin composition according to any one of [4].
[6] The resin composition according to any one of [1] to [5], wherein the component (A) is an epoxy resin.
[7] The resin composition according to [6], wherein the epoxy resin is one or more epoxy resins selected from an epoxy resin having a biphenyl skeleton and an epoxy resin having a condensed ring structure.
[8] The resin composition according to any one of [1] to [7], wherein the component (B) is at least one curing agent selected from a phenolic curing agent and an active ester curing agent.
[9] The component (C) is one or more thermoplastic resins selected from phenoxy resins, polyvinyl acetal resins, butyral resins, and acrylic resins having a weight average molecular weight of 30,000 to 1,000,000. [1] -The resin composition in any one of [8].
[10] The resin according to any one of [1] to [9], wherein the resin composition forms a sea-island structure composed of a matrix phase and a dispersed phase, and the component (D) is unevenly distributed on the matrix phase side. Composition.
[11] The average particle size of the component (D) is 0.01 μm or more and 8 μm or less, and the aspect ratio of the component (D) is 2 or less, according to any one of [1] to [10] Resin composition.
[12] The resin composition according to any one of [1] to [11], wherein the component (D) is an Fe alloy containing one or more elements selected from Si, Al, and Cr.
[13] The resin composition according to any one of [3] to [12], wherein the component (E) is silica.
[14] The resin composition according to any one of [1] to [13], wherein the cured product obtained by thermosetting the resin composition has a relative magnetic permeability of 5 or more at a frequency of 100 MHz.
[15] The resin composition according to any one of [1] to [14], wherein the cured product obtained by thermosetting the resin composition has a magnetic loss at a frequency of 100 MHz of 0.05 or less.
[16] The cured product obtained by thermosetting the resin composition has a relative permeability of 5 to 20 at a frequency of 10 MHz, a relative permeability of 5 to 20 at a frequency of 100 MHz, and a relative permeability at a frequency of 1 GHz. The resin composition according to any one of [1] to [15], which is 4 or more and 16 or less and has a relative permeability of 2 or more and 10 or less at a frequency of 3 GHz or more.
[17] The resin composition according to any one of [1] to [16], which is used for forming a magnetic layer of a wiring board including an inductor element.
[18] The resin composition according to [17], wherein the frequency at which the inductor element functions is 10 to 200 MHz.
[19] A cured product obtained by thermally curing the resin composition according to any one of [1] to [18].
[20] An adhesive film comprising a support and a resin composition layer formed on the support and formed from the resin composition according to any one of [1] to [18].
[21] A magnetic layer that is a cured product of the resin composition layer of the adhesive film according to [20], and a conductive structure that is at least partially embedded in the magnetic layer,
Inductor element built-in wiring board including the conductive element and an inductor element that extends in the thickness direction of the magnetic layer and is configured by a part of the magnetic layer surrounded by the conductive structure .
[22] The inductor element built-in wiring board according to [21], wherein the frequency at which the inductor element functions is 10 to 200 MHz.
[23] A printed wiring board using the inductor element built-in wiring board according to [21] or [22] as an inner layer board.
[24] A chip inductor component obtained by separating the inductor element built-in wiring board according to [21] or [22].
[25] A printed wiring board on which the chip inductor component according to [24] is surface-mounted.
 本発明によれば、難燃性に優れ、反り量が抑制され、特に、周波数が10~200MHzの範囲で比透磁率を向上させることができる硬化物を得ることができ、さらにはラミネート性に優れる樹脂組成物;当該樹脂組成物を用いて得られる、接着フィルム、硬化物、インダクタ素子内蔵配線板、チップインダクタ部品、及びプリント配線板を提供することができる。 According to the present invention, it is possible to obtain a cured product that is excellent in flame retardancy, suppresses the amount of warpage, and can improve the relative permeability particularly in the frequency range of 10 to 200 MHz. An excellent resin composition; an adhesive film, a cured product, a wiring board with a built-in inductor element, a chip inductor component, and a printed wiring board, which are obtained using the resin composition, can be provided.
図1は、一例としての第1実施形態のインダクタ素子内蔵配線板をその厚さ方向の一方からみた模式的な平面図である。FIG. 1 is a schematic plan view of an inductor element built-in wiring board according to the first embodiment as an example as seen from one side in the thickness direction. 図2は、一例としてのII-II一点鎖線で示した位置で切断した第1実施形態のインダクタ素子内蔵配線板の切断端面を示す模式的な図である。FIG. 2 is a schematic diagram showing a cut end surface of the inductor element built-in wiring board according to the first embodiment cut at a position indicated by a dashed line II-II as an example. 図3は、一例としての第1実施形態のインダクタ素子内蔵配線板のうちの第1配線層の構成を説明するための模式的な平面図である。FIG. 3 is a schematic plan view for explaining the configuration of the first wiring layer in the inductor element built-in wiring board according to the first embodiment as an example. 図4は、一例としての第2実施形態のインダクタ素子内蔵配線板の製造方法を説明するための模式的な断面図である。FIG. 4 is a schematic cross-sectional view for explaining a method of manufacturing the inductor element built-in wiring board according to the second embodiment as an example. 図5は、実施例10の樹脂組成物の断面の拡大写真である。FIG. 5 is an enlarged photograph of the cross section of the resin composition of Example 10.
 以下、図面を参照して、本発明の実施形態について説明する。なお、各図面は、発明が理解できる程度に、構成要素の形状、大きさおよび配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。以下の説明に用いる図面において、同様の構成要素については同一の符号を付して示し、重複する説明については省略する場合がある。また、本発明の実施形態にかかる構成は、必ずしも図示例の配置により、製造されたり、使用されたりするとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each drawing only schematically shows the shape, size, and arrangement of the components to the extent that the invention can be understood. The present invention is not limited to the following description, and each component can be appropriately changed without departing from the gist of the present invention. In the drawings used for the following description, the same components are denoted by the same reference numerals, and overlapping descriptions may be omitted. Moreover, the structure concerning embodiment of this invention is not necessarily manufactured or used by arrangement | positioning of the example of illustration.
[樹脂組成物]
 本発明の樹脂組成物は、(A)熱硬化性樹脂、(B)硬化剤、(C)熱可塑性樹脂、及び(D)磁性フィラー、を含有する樹脂組成物であって、樹脂組成物を熱硬化させた硬化物の23℃における弾性率が7GPa以上18GPa以下である。
[Resin composition]
The resin composition of the present invention is a resin composition containing (A) a thermosetting resin, (B) a curing agent, (C) a thermoplastic resin, and (D) a magnetic filler. The heat-cured cured product has an elastic modulus at 23 ° C. of 7 GPa or more and 18 GPa or less.
 先述したように、従来、磁性フィラーを含有する樹脂組成物は、周波数が10~200MHzの範囲での比透磁率が低いため、1GHzから3GHzの範囲での高周波用途であるか、0~10MHzの範囲での低周波用途に限定されていた。本発明では、熱硬化させた硬化物の23℃における弾性率が7GPa以上18GPa以下となるように樹脂組成物中に含まれる(A)成分~(D)成分の含有量を調整することにより、難燃性に優れ、反り量が抑制され、特に、周波数が10~200MHzの範囲での比透磁率を向上させることができる硬化物を得ることができ、さらには樹脂組成物を用いて得られる接着フィルムはラミネート性に優れる。 As described above, conventionally, a resin composition containing a magnetic filler has a low relative permeability in a frequency range of 10 to 200 MHz, so that the resin composition is used for a high frequency in a range of 1 GHz to 3 GHz or 0 to 10 MHz. Limited to low frequency applications in the range. In the present invention, by adjusting the content of the components (A) to (D) contained in the resin composition so that the elastic modulus at 23 ° C. of the cured product that has been heat-cured is 7 GPa or more and 18 GPa or less, A cured product that is excellent in flame retardancy, suppresses the amount of warpage, and can improve the relative permeability particularly in the frequency range of 10 to 200 MHz can be obtained, and further obtained using a resin composition. The adhesive film has excellent laminating properties.
 樹脂組成物は、必要に応じて、さらに(E)磁性フィラー以外の無機充填材、(F)硬化促進剤、(G)難燃剤、(H)有機充填材を含み得る。以下、樹脂組成物に含まれる各成分について詳細に説明する。 The resin composition may further contain (E) an inorganic filler other than the magnetic filler, (F) a curing accelerator, (G) a flame retardant, and (H) an organic filler as necessary. Hereinafter, each component contained in the resin composition will be described in detail.
<(A)熱硬化性樹脂>
 樹脂組成物は、(A)熱硬化性樹脂を含有する。(A)成分としては、配線板の絶縁層を形成する際に使用される熱硬化性樹脂を用いることができ、中でもエポキシ樹脂が好ましい。
<(A) Thermosetting resin>
The resin composition contains (A) a thermosetting resin. (A) As a component, the thermosetting resin used when forming the insulating layer of a wiring board can be used, and an epoxy resin is especially preferable.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;ビスフェノールAF型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;トリスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;tert-ブチル-カテコール型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂等の縮合環構造を有するエポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂(ビフェニル骨格を有するエポキシ樹脂);線状脂肪族エポキシ樹脂;ブタジエン構造を有するエポキシ樹脂;脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン型エポキシ樹脂、及び縮合環構造を有するエポキシ樹脂から選択される1種以上であることが好ましく、ビフェニル骨格を有するエポキシ樹脂、及び縮合環構造を有するエポキシ樹脂から選ばれる1種以上であることがより好ましい。 Examples of the epoxy resin include bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; trisphenol type epoxy resin; tert-butyl-catechol type epoxy resin; epoxy resin having a condensed ring structure such as naphthol novolac type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin; glycidylamine type epoxy resin; glycidyl ester type epoxy resin Cresol novolac type epoxy resin; biphenyl type epoxy resin (epoxy resin having biphenyl skeleton); linear aliphatic epoxy resin; butadiene structure Alicyclic epoxy resins; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexanedimethanol type epoxy resins; trimethylol type epoxy resin; tetraphenyl ethane epoxy resins epoxy resin. An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type. The epoxy resin is preferably at least one selected from a bisphenol A type epoxy resin, an epoxy resin having a biphenyl skeleton, a naphthalene type epoxy resin, and an epoxy resin having a condensed ring structure, an epoxy resin having a biphenyl skeleton, And more preferably one or more selected from epoxy resins having a condensed ring structure.
 エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。また、エポキシ樹脂は、芳香族構造を有することが好ましく、2種以上のエポキシ樹脂を用いる場合は少なくとも1種が芳香族構造を有することがより好ましい。エポキシ樹脂の不揮発成分を100質量%とした場合に、少なくとも50質量%以上は1分子中に2個以上のエポキシ基を有するエポキシ樹脂であるのが好ましい。中でも、1分子中に2個以上のエポキシ基を有し、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」という。)と、1分子中に3個以上のエポキシ基を有し、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」という。)とを含むことが好ましい。エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用することで、優れた可撓性を有する樹脂組成物が得られる。また、樹脂組成物の硬化物の破断強度も向上する。芳香族構造とは、一般に芳香族と定義される化学構造であり、多環芳香族及び芳香族複素環をも含む。 The epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule. Moreover, it is preferable that an epoxy resin has an aromatic structure, and when using 2 or more types of epoxy resins, it is more preferable that at least 1 type has an aromatic structure. When the nonvolatile component of the epoxy resin is 100% by mass, at least 50% by mass or more is preferably an epoxy resin having two or more epoxy groups in one molecule. Among them, it has two or more epoxy groups in one molecule, and has a liquid epoxy resin (hereinafter referred to as “liquid epoxy resin”) at a temperature of 20 ° C. and three or more epoxy groups in one molecule, It is preferable to contain a solid epoxy resin (hereinafter referred to as “solid epoxy resin”) at a temperature of 20 ° C. By using a liquid epoxy resin and a solid epoxy resin in combination as an epoxy resin, a resin composition having excellent flexibility can be obtained. Moreover, the breaking strength of the cured product of the resin composition is also improved. The aromatic structure is a chemical structure generally defined as aromatic, and includes polycyclic aromatics and aromatic heterocycles.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましく、グリシジルアミン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂及びナフタレン型エポキシ樹脂がより好ましい。液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂)、三菱化学社製の「828US」、「jER828EL」(ビスフェノールA型エポキシ樹脂)、「jER807」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂)、「630」、「630LSD」(グリシジルアミン型エポキシ樹脂)、新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)、ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂)、ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂)、「PB-3600」(ブタジエン構造を有するエポキシ樹脂)、新日鉄住金化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン)、三菱化学社製の「630LSD」(グリシジルアミン型エポキシ樹脂)、ADEKA社製の「EP-3980S」(グリシジルアミン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Liquid epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, phenol novolac type epoxy resins, and ester skeletons. Preferred are cycloaliphatic epoxy resins, cyclohexanedimethanol type epoxy resins, glycidylamine type epoxy resins, and epoxy resins having a butadiene structure. Glycidylamine type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF Type epoxy resin and naphthalene type epoxy resin are more preferable. Specific examples of the liquid epoxy resin include “HP4032”, “HP4032D”, “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC, “828US”, “jER828EL” (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation. "JER807" (bisphenol F type epoxy resin), "jER152" (phenol novolak type epoxy resin), "630", "630LSD" (glycidylamine type epoxy resin), "ZX1059" (bisphenol A) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Type epoxy resin and bisphenol F type epoxy resin), “EX-721” (glycidyl ester type epoxy resin) manufactured by Nagase ChemteX, and “Celoxide 2021P” manufactured by Daicel (an alicyclic epoxy having an ester skeleton) resin), "PB-3600" (epoxy resin having a butadiene structure), "ZX1658", "ZX1658GS" (liquid 1,4-glycidylcyclohexane) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., "630LSD" (glycidylamine type epoxy resin manufactured by Mitsubishi Chemical Corporation) And “EP-3980S” (glycidylamine type epoxy resin) manufactured by ADEKA. These may be used alone or in combination of two or more.
 固体状エポキシ樹脂としては、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、及びビフェニル型エポキシ樹脂がより好ましい。固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂)、「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂)、「N-690」(クレゾールノボラック型エポキシ樹脂)、「N-695」(クレゾールノボラック型エポキシ樹脂)、「HP-7200」(ジシクロペンタジエン型エポキシ樹脂)、「HP-7200HH」、「HP-7200H」、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂)、日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂)、「NC7000L」(ナフトールノボラック型エポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂)、新日鉄住金化学社製の「ESN475V」(ナフタレン型エポキシ樹脂)、「ESN485」(ナフトールノボラック型エポキシ樹脂)、三菱化学社製の「YX4000H」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)、「YX8800」(アントラセン型エポキシ樹脂)、大阪ガスケミカル社製の「PG-100」、「CG-500」、三菱化学社製の「YL7760」(ビスフェノールAF型エポキシ樹脂)、「YL7800」(フルオレン型エポキシ樹脂)、三菱化学社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂)、「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Solid epoxy resins include naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, Anthracene type epoxy resin, bisphenol A type epoxy resin, and tetraphenylethane type epoxy resin are preferable, and naphthalene type tetrafunctional epoxy resin, naphthol type epoxy resin, and biphenyl type epoxy resin are more preferable. Specific examples of the solid epoxy resin include “HP4032H” (naphthalene type epoxy resin), “HP-4700”, “HP-4710” (naphthalene type tetrafunctional epoxy resin), “N-690” (manufactured by DIC). Cresol novolac type epoxy resin), “N-695” (cresol novolac type epoxy resin), “HP-7200” (dicyclopentadiene type epoxy resin), “HP-7200HH”, “HP-7200H”, “EXA-7311” ”,“ EXA-7311-G3 ”,“ EXA-7311-G4 ”,“ EXA-7311-G4S ”,“ HP6000 ”(naphthylene ether type epoxy resin),“ EPPN-502H ”(manufactured by Nippon Kayaku Co., Ltd.) Trisphenol type epoxy resin), "NC7000L" (naphthol novolac type epoxy) Fat), “NC3000H”, “NC3000”, “NC3000L”, “NC3100” (biphenyl type epoxy resin), “ESN475V” (naphthalene type epoxy resin), “ESN485” (naphthol novolak type epoxy resin) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. ), “YX4000H”, “YL6121” (biphenyl type epoxy resin), “YX4000HK” (bixylenol type epoxy resin), “YX8800” (anthracene type epoxy resin) manufactured by Mitsubishi Chemical Corporation, “PG” manufactured by Osaka Gas Chemical Co., Ltd. -100 "," CG-500 ", Mitsubishi Chemical's" YL7760 "(bisphenol AF type epoxy resin)," YL7800 "(fluorene type epoxy resin), Mitsubishi Chemical's" jER1010 "(solid bisphenol A type) Epoxy resin)," ER1031S "(tetraphenyl ethane epoxy resin) and the like. These may be used alone or in combination of two or more.
 エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用する場合、それらの量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:0.1~1:4の範囲が好ましい。液状エポキシ樹脂と固体状エポキシ樹脂との量比を斯かる範囲とすることにより、i)接着フィルムの形態で使用する場合に適度な粘着性がもたらされる、ii)接着フィルムの形態で使用する場合に十分な可撓性が得られ、取り扱い性が向上する、並びにiii)十分な破断強度を有する硬化物を得ることができる等の効果が得られる。上記i)~iii)の効果の観点から、液状エポキシ樹脂と固体状エポキシ樹脂の量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:0.3~1:3.5の範囲であることがより好ましく、1:0.6~1:3の範囲であることがさらに好ましく、1:0.8~1:2.5の範囲であることが特に好ましい。 In the case where a liquid epoxy resin and a solid epoxy resin are used in combination as the epoxy resin, the amount ratio thereof (liquid epoxy resin: solid epoxy resin) is in a range of 1: 0.1 to 1: 4 by mass ratio. preferable. By making the quantitative ratio of the liquid epoxy resin and the solid epoxy resin within such a range, i) suitable adhesiveness is provided when used in the form of an adhesive film, ii) when used in the form of an adhesive film Sufficient flexibility can be obtained, handling properties can be improved, and iii) a cured product having sufficient breaking strength can be obtained. From the viewpoint of the above effects i) to iii), the quantitative ratio of liquid epoxy resin to solid epoxy resin (liquid epoxy resin: solid epoxy resin) is 1: 0.3 to 1: 3.5 by mass ratio. Is more preferably in the range of 1: 0.6 to 1: 3, and particularly preferably in the range of 1: 0.8 to 1: 2.5.
 (A)成分の含有量(質量%)は、良好な機械強度、絶縁信頼性を示す磁性層を得る観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上である。エポキシ樹脂の含有量の上限は、本発明の効果が奏される限りにおいて特に限定されないが、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。 The content (% by mass) of the component (A) is preferably 0.1 when the nonvolatile component in the resin composition is 100% by mass from the viewpoint of obtaining a magnetic layer exhibiting good mechanical strength and insulation reliability. It is at least 0.5% by mass, more preferably at least 0.5% by mass, even more preferably at least 1% by mass. Although the upper limit of content of an epoxy resin is not specifically limited as long as the effect of this invention is show | played, Preferably it is 10 mass% or less, More preferably, it is 5 mass% or less, More preferably, it is 3 mass% or less.
 (A)成分の含有量(体積%)は、樹脂組成物中の不揮発成分を100体積%とした場合、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。上限は、本発明の効果が奏される限りにおいて特に限定されないが、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。 The content (% by volume) of the component (A) is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more when the nonvolatile component in the resin composition is 100% by volume. It is. Although an upper limit is not specifically limited as long as the effect of this invention is show | played, Preferably it is 25 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less.
 エポキシ樹脂のエポキシ当量は、好ましくは50~5000、より好ましくは50~3000、さらに好ましくは80~2000、さらにより好ましくは110~1000である。この範囲となることで、硬化物の架橋密度が十分となり表面粗さの小さい磁性層をもたらすことができる。なお、エポキシ当量は、JIS K7236に従って測定することができ、1当量のエポキシ基を含む樹脂の質量である。 The epoxy equivalent of the epoxy resin is preferably 50 to 5000, more preferably 50 to 3000, still more preferably 80 to 2000, and even more preferably 110 to 1000. By being in this range, the crosslink density of the cured product is sufficient, and a magnetic layer having a small surface roughness can be provided. The epoxy equivalent can be measured according to JIS K7236, and is the mass of a resin containing 1 equivalent of an epoxy group.
 エポキシ樹脂の重量平均分子量は、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。ここで、エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the epoxy resin is preferably 100 to 5000, more preferably 250 to 3000, and still more preferably 400 to 1500. Here, the weight average molecular weight of the epoxy resin is a weight average molecular weight in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
<(B)硬化剤>
 樹脂組成物は、(B)硬化剤を含有する。(B)成分は、(A)成分を硬化する機能を有する限り特に限定されない。(A)成分がエポキシ樹脂である場合には、硬化剤はエポキシ樹脂硬化剤である。エポキシ樹脂硬化剤としては、例えば、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、およびシアネートエステル系硬化剤が挙げられる。エポキシ樹脂硬化剤は1種単独で用いてもよく、又は2種以上を併用してもよい。絶縁性の信頼性及び耐熱性の観点から、硬化剤としては、フェノール系硬化剤及び活性エステル系硬化剤から選ばれる1種以上であることが好ましい。
<(B) Curing agent>
The resin composition contains (B) a curing agent. The component (B) is not particularly limited as long as it has a function of curing the component (A). When the component (A) is an epoxy resin, the curing agent is an epoxy resin curing agent. Examples of the epoxy resin curing agent include phenolic curing agents, naphthol curing agents, active ester curing agents, benzoxazine curing agents, and cyanate ester curing agents. An epoxy resin hardening | curing agent may be used individually by 1 type, or may use 2 or more types together. From the viewpoint of insulating reliability and heat resistance, the curing agent is preferably at least one selected from a phenolic curing agent and an active ester curing agent.
 フェノール系硬化剤及びナフトール系硬化剤としては、耐熱性及び耐水性の観点から、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤が好ましい。また、導体層との密着性の観点から、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び導体層との密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック硬化剤が好ましい。 As the phenol-based curing agent and the naphthol-based curing agent, a phenol-based curing agent having a novolak structure or a naphthol-based curing agent having a novolak structure is preferable from the viewpoint of heat resistance and water resistance. Moreover, from a viewpoint of adhesiveness with a conductor layer, a nitrogen-containing phenol type hardening | curing agent is preferable and a triazine frame | skeleton containing phenol type hardening | curing agent is more preferable. Among these, a triazine skeleton-containing phenol novolac curing agent is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion to the conductor layer.
 フェノール系硬化剤及びナフトール系硬化剤の具体例としては、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495V」、「SN375」、「SN395」、DIC社製の「TD-2090」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018-50P」、「EXB-9500」、「HPC-9500」、「KA-1160」、「KA-1163」、「KA-1165」、群栄化学社製の「GDP-6115L」、「GDP-6115H」等が挙げられる。 Specific examples of the phenol-based curing agent and naphthol-based curing agent include “MEH-7700”, “MEH-7810”, “MEH-7785” manufactured by Meiwa Kasei Co., Ltd., “NHN”, “CBN” manufactured by Nippon Kayaku Co., Ltd. ”,“ GPH ”,“ SN170 ”,“ SN180 ”,“ SN190 ”,“ SN475 ”,“ SN485 ”,“ SN495V ”,“ SN375 ”,“ SN395 ”, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.,“ TD ” -2090 "," LA-7052 "," LA-7054 "," LA-1356 "," LA-3018-50P "," EXB-9500 "," HPC-9500 "," KA-1160 "," KA -1163 "," KA-1165 "," GDP-6115L "," GDP-6115H "manufactured by Gunei Chemical Co., Ltd., and the like.
 活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 The active ester curing agent is not particularly limited, but generally an ester group having high reaction activity such as phenol ester, thiophenol ester, N-hydroxyamine ester, heterocyclic hydroxy compound ester in one molecule. A compound having two or more in the above is preferably used. The active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- Cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, Benzenetriol, dicyclopentadiene type diphenol compound, phenol novolac and the like can be mentioned. Here, the “dicyclopentadiene type diphenol compound” refers to a diphenol compound obtained by condensing two molecules of phenol with one molecule of dicyclopentadiene.
 具体的には、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造を表す。 Specifically, an active ester compound containing a dicyclopentadiene-type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated product of a phenol novolac, and an active ester compound containing a benzoylated product of a phenol novolac are preferred, Of these, active ester compounds having a naphthalene structure and active ester compounds having a dicyclopentadiene type diphenol structure are more preferred. The “dicyclopentadiene type diphenol structure” represents a divalent structure composed of phenylene-dicyclopentylene-phenylene.
 活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」(DIC社製)、ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」(DIC社製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学社製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱化学社製)、フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱化学社製)、フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」(三菱化学社製)、「YLH1030」(三菱化学社製)、「YLH1048」(三菱化学社製)等が挙げられる。 Commercially available active ester curing agents include “EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T”, “HPC-8000H— as active ester compounds containing a dicyclopentadiene type diphenol structure. 65TM ”,“ EXB-8000L-65TM ”(manufactured by DIC),“ EXB9416-70BK ”(manufactured by DIC) as an active ester compound containing a naphthalene structure, and“ DC808 ”as an active ester compound containing an acetylated product of phenol novolac ( (Mitsubishi Chemical Co., Ltd.), “YLH1026” (manufactured by Mitsubishi Chemical) as an active ester compound containing a benzoylated phenol novolac, and “DC808” (manufactured by Mitsubishi Chemical) as an active ester-based curing agent which is an acetylated phenol novolac Phenol novolak "YLH1026" as an active ester-based curing agent is benzoyl fluoride (manufactured by Mitsubishi Chemical Corporation), "YLH1030" (manufactured by Mitsubishi Chemical Corporation), and "YLH1048" (manufactured by Mitsubishi Chemical Corporation).
 ベンゾオキサジン系硬化剤の具体例としては、昭和高分子社製の「HFB2006M」、四国化成工業社製の「P-d」、「F-a」が挙げられる。 Specific examples of the benzoxazine-based curing agent include “HFB2006M” manufactured by Showa Polymer Co., Ltd. and “Pd” and “Fa” manufactured by Shikoku Kasei Kogyo Co., Ltd.
 シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート、オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。 Examples of the cyanate ester curing agent include bisphenol A dicyanate, polyphenol cyanate, oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4 '-Ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3,5-dimethyl) Bifunctional cyanate resins such as phenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether, phenol Novolac and Polyfunctional cyanate resin derived from resol novolac, these cyanate resins and partially triazine of prepolymer. Specific examples of the cyanate ester curing agent include “PT30” and “PT60” (both phenol novolac polyfunctional cyanate ester resins), “BA230”, “BA230S75” (part of bisphenol A dicyanate) manufactured by Lonza Japan. Or a prepolymer which is all triazine-modified into a trimer).
 エポキシ樹脂と硬化剤との量比は、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.2~1:2の範囲であることが好ましく、1:0.3~1:1.5の範囲であることがより好ましく、1:0.4~1:1の範囲であることがさらに好ましい。ここで、硬化剤の反応基とは、活性水酸基、活性エステル基等であり、硬化剤の種類によって異なる。また、エポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の不揮発成分の質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の不揮発成分の質量を反応基当量で除した値をすべての硬化剤について合計した値である。エポキシ樹脂と硬化剤との量比をかかる範囲内とすることにより、硬化物としたときの耐熱性がより向上する。 The amount ratio between the epoxy resin and the curing agent is a ratio of [total number of epoxy groups of the epoxy resin]: [total number of reactive groups of the curing agent] and should be in the range of 1: 0.2 to 1: 2. Is more preferable, and the range of 1: 0.3 to 1: 1.5 is more preferable, and the range of 1: 0.4 to 1: 1 is more preferable. Here, the reactive group of the curing agent is an active hydroxyl group, an active ester group or the like, and varies depending on the type of the curing agent. Moreover, the total number of epoxy groups of the epoxy resin is a value obtained by totaling the values obtained by dividing the mass of the nonvolatile component of each epoxy resin by the epoxy equivalent for all epoxy resins, and the total number of reactive groups of the curing agent is The value obtained by dividing the mass of the non-volatile component of each curing agent by the reactive group equivalent is the total value for all curing agents. By setting the quantity ratio of the epoxy resin and the curing agent within such a range, the heat resistance when cured is further improved.
 樹脂組成物は、エポキシ樹脂として液状エポキシ樹脂と固体状エポキシ樹脂との混合物を、硬化剤としてフェノール系硬化剤、及び活性エステル系硬化剤からなる群から選択される1種以上をそれぞれ含むことが好ましい。 The resin composition may include a mixture of a liquid epoxy resin and a solid epoxy resin as an epoxy resin, and at least one selected from the group consisting of a phenolic curing agent and an active ester curing agent as a curing agent. preferable.
 (B)成分の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。また、下限は特に制限はないが0.1質量%以上が好ましい。 The content of the component (B) is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass or less when the nonvolatile component in the resin composition is 100% by mass. The lower limit is not particularly limited but is preferably 0.1% by mass or more.
<(C)熱可塑性樹脂>
 樹脂組成物は、(C)熱可塑性樹脂を含有する。(C)成分を含有させることで弾性率を低下させ、反りを低減させることができる。
<(C) Thermoplastic resin>
The resin composition contains (C) a thermoplastic resin. (C) By containing a component, an elasticity modulus can be reduced and curvature can be reduced.
 熱可塑性樹脂としては、例えば、フェノキシ樹脂、アクリル樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、及びポリスルホン樹脂等が挙げられ、フェノキシ樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、及びアクリル樹脂から選ばれる1種以上であることが好ましい。熱可塑性樹脂は1種単独で用いてもよく、又は2種以上を併用してもよい。 Examples of the thermoplastic resin include phenoxy resin, acrylic resin, polyvinyl acetal resin, butyral resin, polyimide resin, polyamide imide resin, polyether sulfone resin, and polysulfone resin. Phenoxy resin, polyvinyl acetal resin, butyral resin And at least one selected from acrylic resins. A thermoplastic resin may be used individually by 1 type, or may use 2 or more types together.
 熱可塑性樹脂のポリスチレン換算の重量平均分子量は、好ましくは3万以上、より好ましくは5万以上、さらに好ましくは10万以上である。また、好ましくは100万以下、より好ましくは75万以下、さらに好ましくは50万以下である。熱可塑性樹脂のポリスチレン換算の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される。具体的には、熱可塑性樹脂のポリスチレン換算の重量平均分子量は、測定装置として島津製作所社製「LC-9A/RID-6A」を、カラムとして昭和電工社製「Shodex K-800P/K-804L/K-804L」を、移動相としてクロロホルム等を用いて、カラム温度を40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The weight average molecular weight in terms of polystyrene of the thermoplastic resin is preferably 30,000 or more, more preferably 50,000 or more, and even more preferably 100,000 or more. Further, it is preferably 1 million or less, more preferably 750,000 or less, and further preferably 500,000 or less. The weight average molecular weight in terms of polystyrene of the thermoplastic resin is measured by a gel permeation chromatography (GPC) method. Specifically, the polystyrene-reduced weight average molecular weight of the thermoplastic resin is “LC-9A / RID-6A” manufactured by Shimadzu Corporation as a measuring device, and “Shodex K-800P / K-804L” manufactured by Showa Denko KK as a column. / K-804L ”can be calculated using a standard polystyrene calibration curve by measuring the column temperature at 40 ° C. using chloroform or the like as the mobile phase.
 フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、およびトリメチルシクロヘキサン骨格からなる群から選択される1種以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂は1種単独で用いてもよく、又は2種以上を併用してもよい。フェノキシ樹脂の具体例としては、三菱化学社製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)が挙げられ、その他にも、新日鉄住金化学社製の「FX280」及び「FX293」、三菱化学社製の「YL7500BH30」、「YX6954BH30」、「YX7553」、「YX7553BH30」、「YL7769BH30」、「YL6794」、「YL7213」、「YL7290」及び「YL7482」等が挙げられる。 Examples of the phenoxy resin include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene Examples thereof include phenoxy resins having a skeleton and one or more skeletons selected from the group consisting of a trimethylcyclohexane skeleton. The terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group. A phenoxy resin may be used individually by 1 type, or may use 2 or more types together. Specific examples of the phenoxy resin include “1256” and “4250” (both bisphenol A skeleton-containing phenoxy resin), “YX8100” (bisphenol S skeleton-containing phenoxy resin), and “YX6954” (bisphenolacetophenone) manufactured by Mitsubishi Chemical Corporation. In addition, “FX280” and “FX293” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., “YL7500BH30”, “YX6954BH30”, “YX7553”, “YX7553BH30”, “YL7769BH30” manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd. ”,“ YL6794 ”,“ YL7213 ”,“ YL7290 ”,“ YL7482 ”, and the like.
 アクリル樹脂としては、熱膨張率および弾性率をより低下させる観点から、官能基含有アクリル樹脂が好ましく、ガラス転移温度が25℃以下のエポキシ基含有アクリル樹脂がより好ましい。 The acrylic resin is preferably a functional group-containing acrylic resin, more preferably an epoxy group-containing acrylic resin having a glass transition temperature of 25 ° C. or less, from the viewpoint of further reducing the thermal expansion coefficient and the elastic modulus.
 官能基含有アクリル樹脂の数平均分子量(Mn)は、好ましくは10000~1000000であり、より好ましくは30000~900000である。 The number average molecular weight (Mn) of the functional group-containing acrylic resin is preferably 10,000 to 1,000,000, more preferably 30,000 to 900,000.
 官能基含有アクリル樹脂の官能基当量は、好ましくは1000~50000であり、より好ましくは2500~30000である。 The functional group equivalent of the functional group-containing acrylic resin is preferably 1000 to 50000, more preferably 2500 to 30000.
 ガラス転移温度が25℃以下のエポキシ基含有アクリル樹脂としては、ガラス転移温度が25℃以下のエポキシ基含有アクリル酸エステル共重合体樹脂が好ましく、その具体例としては、ナガセケムテックス社製「SG-80H」(エポキシ基含有アクリル酸エステル共重合体樹脂(数平均分子量Mn:350000g/mol、エポキシ価0.07eq/kg、ガラス転移温度11℃))、ナガセケムテックス社製「SG-P3」(エポキシ基含有アクリル酸エステル共重合体樹脂(数平均分子量Mn:850000g/mol、エポキシ価0.21eq/kg、ガラス転移温度12℃))が挙げられる。 As the epoxy group-containing acrylic resin having a glass transition temperature of 25 ° C. or lower, an epoxy group-containing acrylate copolymer resin having a glass transition temperature of 25 ° C. or lower is preferable. Specific examples thereof include “SG” manufactured by Nagase ChemteX Corporation. -80H "(epoxy group-containing acrylate copolymer resin (number average molecular weight Mn: 350,000 g / mol, epoxy value 0.07 eq / kg, glass transition temperature 11 ° C))," SG-P3 "manufactured by Nagase ChemteX Corporation (Epoxy group-containing acrylic ester copolymer resin (number average molecular weight Mn: 850000 g / mol, epoxy value 0.21 eq / kg, glass transition temperature 12 ° C.)).
 ポリビニルアセタール樹脂、ブチラール樹脂の具体例としては、電気化学工業社製の電化ブチラール「4000-2」、「5000-A」、「6000-C」、「6000-EP」、積水化学工業社製のエスレックBHシリーズ、BXシリーズ、「KS-1」などのKSシリーズ、「BL-1」などのBLシリーズ、BMシリーズ等が挙げられる。 Specific examples of the polyvinyl acetal resin and butyral resin include electric butyral “4000-2”, “5000-A”, “6000-C”, “6000-EP” manufactured by Denki Kagaku Kogyo Co., Ltd., manufactured by Sekisui Chemical Co., Ltd. Examples include ESREC BH series, BX series, KS series such as “KS-1”, BL series such as “BL-1”, and BM series.
 ポリイミド樹脂の具体例としては、新日本理化社製の「リカコートSN20」及び「リカコートPN20」が挙げられる。ポリイミド樹脂の具体例としてはまた、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006-37083号公報記載のポリイミド)、ポリシロキサン骨格含有ポリイミド(特開2002-12667号公報及び特開2000-319386号公報等に記載のポリイミド)等の変性ポリイミドが挙げられる。 Specific examples of polyimide resins include “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd. Specific examples of the polyimide resin also include a linear polyimide obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (polyimide described in JP-A-2006-37083), a polysiloxane skeleton. Examples thereof include modified polyimides such as containing polyimide (polyimides described in JP-A Nos. 2002-12667 and 2000-319386).
 ポリアミドイミド樹脂の具体例としては、東洋紡社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成社製の「KS9100」、「KS9300」(ポリシロキサン骨格含有ポリアミドイミド)等の変性ポリアミドイミドが挙げられる。 Specific examples of the polyamideimide resin include “Bilomax HR11NN” and “Vilomax HR16NN” manufactured by Toyobo. Specific examples of the polyamide-imide resin include modified polyamide-imides such as “KS9100” and “KS9300” (polysiloxane skeleton-containing polyamideimide) manufactured by Hitachi Chemical.
 ポリエーテルスルホン樹脂の具体例としては、住友化学社製の「PES5003P」等が挙げられる。ポリフェニレンエーテル樹脂の具体例としては、三菱ガス化学社製のビニル基を有するオリゴフェニレンエーテル・スチレン樹脂「OPE-2St 1200」等が挙げられる。 Specific examples of the polyethersulfone resin include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd. Specific examples of the polyphenylene ether resin include an oligophenylene ether / styrene resin “OPE-2St 1200” having a vinyl group manufactured by Mitsubishi Gas Chemical Company.
 ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」、「P3500」等が挙げられる。 Specific examples of the polysulfone resin include polysulfone “P1700” and “P3500” manufactured by Solvay Advanced Polymers.
 中でも、熱可塑性樹脂としては、重量平均分子量が3万以上100万以下の、フェノキシ樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、及びアクリル樹脂から選ばれる1種以上であることが好ましい。 Among them, the thermoplastic resin is preferably at least one selected from phenoxy resins, polyvinyl acetal resins, butyral resins, and acrylic resins having a weight average molecular weight of 30,000 to 1,000,000.
 (C)成分の含有量(c1)は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上である。また、好ましくは10質量%以下、より好ましくは9質量%以下、さらに好ましくは8質量%以下である。(C)成分の含有量をかかる範囲内とすることにより、樹脂組成物の粘度が適度となり、厚さやバルク性状の均一な樹脂組成物層を形成することができる。 The content (c1) of the component (C) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and still more preferably 0 when the nonvolatile component in the resin composition is 100% by mass. .3% by mass or more. Moreover, Preferably it is 10 mass% or less, More preferably, it is 9 mass% or less, More preferably, it is 8 mass% or less. By setting the content of the component (C) within such a range, the viscosity of the resin composition becomes appropriate, and a uniform resin composition layer having a thickness and a bulk property can be formed.
 樹脂組成物中の樹脂成分の含有質量をa1とし、(C)成分の含有質量をc1とした場合、(c1/a1)×100が、好ましくは35以上となるように(C)成分の含有量を調整することが好ましく、より好ましくは45以上、さらに好ましくは55以上、65以上、又は70以上である。上限は、好ましくは80以下、より好ましくは78以下、さらに好ましくは77以下である。(C)成分の含有量が斯かる範囲内となるように調整することにより、樹脂組成物を熱硬化させた硬化物の23℃における弾性率が7GPa以上18GPa以下としやすい。その結果、難燃性に優れ、反り量が抑制され、特に、周波数が10~200MHzの範囲で比透磁率を向上させることができるとともに、通常は磁性損失も低減させることができる硬化物を得られる。さらには樹脂組成物を用いて得られる接着フィルムはラミネート性に優れるようになる。
 ここで、「樹脂成分」とは、樹脂組成物を構成する不揮発成分のうち、(D)成分及び(E)成分を除いた成分をいう。
When the content mass of the resin component in the resin composition is a1, and the content mass of the component (C) is c1, the content of the component (C) is such that (c1 / a1) × 100 is preferably 35 or more. The amount is preferably adjusted, more preferably 45 or more, still more preferably 55 or more, 65 or more, or 70 or more. The upper limit is preferably 80 or less, more preferably 78 or less, and still more preferably 77 or less. By adjusting the content of the component (C) to be within such a range, the cured product obtained by thermosetting the resin composition easily has an elastic modulus at 23 ° C. of 7 GPa or more and 18 GPa or less. As a result, it is possible to obtain a cured product that is excellent in flame retardancy, suppresses the amount of warpage, and can improve the relative permeability, particularly in the frequency range of 10 to 200 MHz, and can usually reduce the magnetic loss. It is done. Furthermore, the adhesive film obtained using the resin composition has excellent laminating properties.
Here, the “resin component” means a component excluding the component (D) and the component (E) among the non-volatile components constituting the resin composition.
<(D)磁性フィラー>
 樹脂組成物は、(D)磁性フィラーを含有する。磁性フィラーの材料は特に限定されず、例えば、純鉄粉末、Fe-Si系合金粉末、Fe-Si-Al系合金粉末、Fe-Cr系合金粉末、Fe-Cr-Si系合金粉末、Fe-Ni-Cr系合金粉末、Fe-Cr-Al系合金粉末、Fe-Ni系合金粉末、Fe-Ni-Mo系合金粉末、Fe-Ni-Mo-Cu系合金粉末、Fe-Co系合金粉末、あるいはFe-Ni-Co系合金粉末などのFe合金類、Fe基アモルファス、Co基アモルファスなどのアモルファス合金類、Mg-Zn系フェライト、Mn-Zn系フェライト、Mn-Mg系フェライト、Cu-Zn系フェライト、Mg-Mn-Sr系フェライト、Ni-Zn系フェライトなどのスピネル型フェライト類、Ba-Zn系フェライト、Ba-Mg系フェライト、Ba-Ni系フェライト、Ba-Co系フェライト、Ba-Ni-Co系フェライトなどの六方晶型フェライト類、Y系フェライトなどのガーネット型フェライト類が挙げられる。中でも、(D)成分としては、Fe-Si系合金粉末、Fe-Si-Al系合金粉末、Fe-Cr系合金粉末、Fe-Cr-Si系合金粉末、Fe-Ni-Cr系合金粉末、Fe-Cr-Al系合金粉末等の、Si、Al、及びCrから選ばれる1種以上の元素を含むFe合金類が好ましい。
<(D) Magnetic filler>
The resin composition contains (D) a magnetic filler. The material of the magnetic filler is not particularly limited. For example, pure iron powder, Fe—Si alloy powder, Fe—Si—Al alloy powder, Fe—Cr alloy powder, Fe—Cr—Si alloy powder, Fe— Ni-Cr alloy powder, Fe-Cr-Al alloy powder, Fe-Ni alloy powder, Fe-Ni-Mo alloy powder, Fe-Ni-Mo-Cu alloy powder, Fe-Co alloy powder, Or Fe alloys such as Fe—Ni—Co alloy powder, amorphous alloys such as Fe-based amorphous and Co-based amorphous, Mg—Zn based ferrite, Mn—Zn based ferrite, Mn—Mg based ferrite, Cu—Zn based Spinel type ferrites such as ferrite, Mg—Mn—Sr ferrite, Ni—Zn ferrite, Ba—Zn ferrite, Ba—Mg ferrite, Ba—N System ferrite, Ba-Co ferrite, hexagonal ferrites such as Ba-Ni-Co ferrite, garnet type ferrite such as Y ferrites. Among them, as the component (D), Fe-Si alloy powder, Fe-Si-Al alloy powder, Fe-Cr alloy powder, Fe-Cr-Si alloy powder, Fe-Ni-Cr alloy powder, Fe alloys containing at least one element selected from Si, Al, and Cr, such as Fe—Cr—Al alloy powder, are preferable.
 磁性フィラーとしては、市販の磁性フィラーを用いることができる。用いられ得る市販の磁性フィラーの具体例としては、山陽特殊製鋼社製「PST-S」、エプソンアトミックス社製「AW2-08」、「AW2-08PF20F」、「AW2-08PF10F」、「AW2-08PF3F」、「Fe-3.5Si-4.5CrPF20F」、「Fe-50NiPF20F」、「Fe-80Ni-4MoPF20F」、JFEケミカル社製「LD-M」、「LD-MH」、「KNI-106」、「KNI-106GSM」、「KNI-106GS」、「KNI-109」、「KNI-109GSM」、「KNI-109GS」、戸田工業社製「KNS-415」、「BSF-547」、「BSF-029」、「BSN-125」、「BSN-714」、「BSN-828」、「S-1281」、「S-1641」、「S-1651」、「S-1470」、「S-1511」、「S-2430」、日本重化学工業社製「JR09P2」、CIKナノテック社製「Nanotek」、キンセイマテック社製「JEMK-S」、「JEMK-H」、ALDRICH社製「Yttrium iron oxide」等が挙げられる。磁性フィラーは1種単独で用いてもよく、又は2種以上を併用してもよい。 Commercially available magnetic filler can be used as the magnetic filler. Specific examples of commercially available magnetic fillers that can be used include “PST-S” manufactured by Sanyo Special Steel Co., Ltd., “AW2-08”, “AW2-08PF20F”, “AW2-08PF10F”, “AW2-” manufactured by Epson Atmix. 08PF3F "," Fe-3.5Si-4.5CrPF20F "," Fe-50NiPF20F "," Fe-80Ni-4MoPF20F "," LD-M "," LD-MH "," KNI-106 "manufactured by JFE Chemical Co., Ltd. , “KNI-106GSM”, “KNI-106GS”, “KNI-109”, “KNI-109GSM”, “KNI-109GS”, “KNS-415”, “BSF-547”, “BSF-” manufactured by Toda Kogyo Co., Ltd. 029 "," BSN-125 "," BSN-714 "," BSN-828 "," S-1281 "," S-164 " ”,“ S-1651 ”,“ S-1470 ”,“ S-1511 ”,“ S-2430 ”,“ JR09P2 ”manufactured by Nippon Heavy Industries, Ltd.,“ Nanotek ”manufactured by CIK Nanotech Co., Ltd.,“ JEMK- S ”,“ JEMK-H ”,“ Yttrium iron oxide ”manufactured by ALDRICH, and the like. A magnetic filler may be used individually by 1 type, or may use 2 or more types together.
 (D)成分は、球状であることが好ましい。(D)成分の粉体の長辺の長さを短辺の長さで除した値(アスペクト比)としては、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。一般に、磁性フィラーは球状ではない扁平な形状であるほうが、比透磁率を向上させやすい。しかし、(A)成分~(C)成分を組みあわせて所定の弾性率を実現するには、特に球状の(D)成分を用いる方が、所望の特性を有する樹脂組成物を容易に得ることができる。 The component (D) is preferably spherical. The value (aspect ratio) obtained by dividing the long side length of the powder of component (D) by the short side length is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less. It is. In general, it is easier to improve the relative magnetic permeability when the magnetic filler has a flat shape that is not spherical. However, in order to achieve a predetermined elastic modulus by combining the components (A) to (C), it is easier to obtain a resin composition having desired characteristics, particularly when the spherical component (D) is used. Can do.
 (D)成分の平均粒径は、好ましくは0.01μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。また、好ましくは8μm以下、より好ましくは5μm以下、さらに好ましくは4μm以下である。(D)成分の平均粒径は、後述する(E)成分の平均粒径と同様の方法で測定することができる。 The average particle diameter of the component (D) is preferably 0.01 μm or more, more preferably 0.5 μm or more, and further preferably 1 μm or more. Further, it is preferably 8 μm or less, more preferably 5 μm or less, and further preferably 4 μm or less. (D) The average particle diameter of a component can be measured by the method similar to the average particle diameter of the (E) component mentioned later.
 (D)成分として、平均粒径が0.01μm以上8μm以下の磁性フィラーを用いると、周波数が0~10MHzの場合では、平均粒径が25μmを超える磁性フィラーを用いた場合の比透磁率よりもやや劣る。しかし、10MHzを超えても急速に比透磁率が低下することはなく、0~200MHzの範囲で高い比透磁率を維持することができる。即ち、0~200MHzの広い範囲、特に10MHz~200MHzで高い比透磁率を維持しつつ、通常、磁性損失も低減される。 When a magnetic filler having an average particle diameter of 0.01 μm or more and 8 μm or less is used as the component (D), the relative magnetic permeability when using a magnetic filler having an average particle diameter exceeding 25 μm is used when the frequency is 0 to 10 MHz. Somewhat inferior. However, even if the frequency exceeds 10 MHz, the relative permeability does not rapidly decrease, and a high relative permeability can be maintained in the range of 0 to 200 MHz. That is, the magnetic loss is usually reduced while maintaining a high relative permeability in a wide range of 0 to 200 MHz, particularly 10 MHz to 200 MHz.
 (D)成分の含有量(体積%)は、比透磁率及び難燃性を向上させる観点から、樹脂組成物中の不揮発成分を100体積%とした場合、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上である。また、好ましくは85体積%以下、より好ましくは75体積%以下、さらに好ましくは65体積%以下である。 The content (% by volume) of component (D) is preferably 10% by volume or more, more preferably 100% by volume or more, more preferably from the viewpoint of improving the relative magnetic permeability and flame retardancy. Is 20% by volume or more, more preferably 30% by volume or more. Moreover, it is preferably 85% by volume or less, more preferably 75% by volume or less, and still more preferably 65% by volume or less.
 (D)成分の含有量(質量%:d1)は、比透磁率及び難燃性を向上させる観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは75質量%以上、より好ましくは76質量%以上、さらに好ましくは77質量%以上である。また、好ましくは95質量%未満、より好ましくは94質量%以下、さらに好ましくは93質量%以下である。 The content (mass%: d1) of the component (D) is preferably 75 mass% or more when the nonvolatile component in the resin composition is 100 mass% from the viewpoint of improving the relative magnetic permeability and flame retardancy. More preferably, it is 76 mass% or more, More preferably, it is 77 mass% or more. Further, it is preferably less than 95% by mass, more preferably 94% by mass or less, and further preferably 93% by mass or less.
 (B)成分として活性エステル系硬化剤を用いた場合、及び/又は(C)成分としてアクリル樹脂を用いた場合、(A)成分~(C)成分の相溶性が低くなることがある。このため、樹脂組成物は、マトリックス相(海)と分散相(島)とからなる海島構造を形成し、(D)成分がマトリックス相側に偏在することがある。その結果、樹脂組成物の硬化物全体としての比透磁率が向上する。この場合、マトリックス相は、(A)成分、(B)成分の混合成分であり、分散相は(C)成分であることが好ましい。 When the active ester curing agent is used as the component (B) and / or when the acrylic resin is used as the component (C), the compatibility of the components (A) to (C) may be lowered. For this reason, the resin composition forms a sea-island structure composed of a matrix phase (sea) and a dispersed phase (island), and the component (D) may be unevenly distributed on the matrix phase side. As a result, the relative permeability of the entire cured resin composition is improved. In this case, the matrix phase is preferably a mixed component of component (A) and component (B), and the dispersed phase is preferably component (C).
 (A)成分~(D)成分を含有させた樹脂組成物の組成を、熱硬化させた硬化物の23℃における弾性率が7GPa以上18GPa以下となるように調整することで、周波数が10MHz~200MHz、特に周波数が10MHz~100MHzであるときの比透磁率を5以上とすることができ、更に通常は周波数が10MHz~100MHzであるときの磁性損失を0.05以下とすることができる。 By adjusting the composition of the resin composition containing the components (A) to (D) so that the heat-cured cured product has an elastic modulus at 23 ° C. of 7 GPa to 18 GPa, a frequency of 10 MHz to The relative magnetic permeability can be 5 or more when the frequency is 200 MHz, particularly 10 MHz to 100 MHz, and the magnetic loss can be usually 0.05 or less when the frequency is 10 MHz to 100 MHz.
<(E)磁性フィラー以外の無機充填材>
 一実施形態において、樹脂組成物は、(E)磁性フィラー以外の無機充填材を含有し得る。(E)成分を含有することにより、磁性損失を低減させることができるとともに、磁性層の熱膨張を抑制し、信頼性を向上させることができる。
<(E) Inorganic filler other than magnetic filler>
In one embodiment, the resin composition may contain (E) an inorganic filler other than the magnetic filler. By containing the component (E), magnetic loss can be reduced, thermal expansion of the magnetic layer can be suppressed, and reliability can be improved.
 (E)成分の材料は無機化合物であれば特に限定されないが、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でもシリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。またシリカとしては球状シリカが好ましい。(E)成分は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The material of component (E) is not particularly limited as long as it is an inorganic compound. For example, silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydro Talcite, boehmite, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, Examples include bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium tungstate phosphate. . Of these, silica is particularly preferred. Examples of the silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica. Moreover, spherical silica is preferable as the silica. (E) A component may be used individually by 1 type and may be used in combination of 2 or more type.
 無機充填材の平均粒径は、樹脂組成物の流動性および成形性を良好にし、硬化物としたときの比透磁率及び磁性損失、並びに初期抵抗値を改善するために、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.1μm以上、0.3μm以上である。また、好ましくは5μm以下、より好ましくは2.5μm以下、さらに好ましくは1.5μm以下、1μm以下である。 The average particle diameter of the inorganic filler is preferably 0.01 μm in order to improve the fluidity and moldability of the resin composition, and to improve the relative magnetic permeability and magnetic loss when cured, and the initial resistance value. Above, more preferably 0.05 μm or more, still more preferably 0.1 μm or more, 0.3 μm or more. Further, it is preferably 5 μm or less, more preferably 2.5 μm or less, further preferably 1.5 μm or less, and 1 μm or less.
 無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波によりメチルエチルケトン中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、堀場製作所社製「LA-500」、島津製作所社製「SALD-2200」等を使用することができる。 The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be prepared on a volume basis by a laser diffraction / scattering particle size distribution measuring apparatus, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in methyl ethyl ketone by ultrasonic waves can be preferably used. As a laser diffraction / scattering particle size distribution measuring apparatus, “LA-500” manufactured by Horiba, Ltd., “SALD-2200” manufactured by Shimadzu, etc. can be used.
 無機充填材は、耐湿性及び分散性を高める観点から、フッ素含有シランカップリング剤、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、アルコキシシラン、オルガノシラザン化合物、チタネート系カップリング剤等の1種以上の表面処理剤で処理されていることが好ましい。表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM-7103」(3,3,3-トリフルオロプロピルトリメトキシシラン)等が挙げられる。 Inorganic fillers are fluorine-containing silane coupling agents, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, alkoxysilanes from the viewpoint of improving moisture resistance and dispersibility. It is preferably treated with one or more surface treatment agents such as an organosilazane compound and a titanate coupling agent. Examples of commercially available surface treatment agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu. “KBE903” (3-aminopropyltriethoxysilane) manufactured by Chemical Industry Co., Ltd. “KBM573” (N-phenyl-3-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “SZ-31” manufactured by Shin-Etsu Chemical Co., Ltd. ( Hexamethyldisilazane), “KBM103” (phenyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM-4803” (long-chain epoxy silane coupling agent) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM-” manufactured by Shin-Etsu Chemical Co., Ltd. 7103 "(3,3,3-trifluoropropyltrimethoxysilane) and the like.
 表面処理剤による表面処理の程度は、無機充填材の分散性向上の観点から、無機充填材100質量部に対して、0.2質量部~5質量部の表面処理剤で表面処理されていることが好ましく、0.2質量部~3質量部で表面処理されていることが好ましく、0.3質量部~2質量部で表面処理されていることが好ましい。 The degree of the surface treatment with the surface treatment agent is surface-treated with 0.2 to 5 parts by mass of the surface treatment agent with respect to 100 parts by mass of the inorganic filler from the viewpoint of improving the dispersibility of the inorganic filler. It is preferable that the surface treatment is performed at 0.2 to 3 parts by mass, and it is preferable that the surface treatment is performed at 0.3 to 2 parts by mass.
 表面処理剤による表面処理の程度は、無機充填材の単位表面積当たりのカーボン量によって評価することができる。無機充填材の単位表面積当たりのカーボン量は、無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上が更に好ましい。一方、樹脂ワニスの溶融粘度及びシート形態での溶融粘度の上昇を抑制する観点から、1mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下が更に好ましい。 The degree of surface treatment with the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler. Carbon content per unit surface area of the inorganic filler, from the viewpoint of improving dispersibility of the inorganic filler is preferably 0.02 mg / m 2 or more, 0.1 mg / m 2 or more preferably, 0.2 mg / m 2 The above is more preferable. On the other hand, 1 mg / m 2 or less is preferable, 0.8 mg / m 2 or less is more preferable, and 0.5 mg / m 2 or less is more preferable from the viewpoint of suppressing an increase in the melt viscosity of the resin varnish and the sheet form. preferable.
 無機充填材の単位表面積当たりのカーボン量は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。 The amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent and ultrasonically cleaned at 25 ° C. for 5 minutes. After removing the supernatant and drying the solid, the carbon amount per unit surface area of the inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, “EMIA-320V” manufactured by HORIBA, Ltd. can be used.
 樹脂組成物が(E)成分を含有する場合、(E)成分の含有量(質量%:e1)は、樹脂組成物を硬化物としたときの絶縁性の信頼性及び難燃性を高める観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは1質量%以上、より好ましくは1.5質量%以上、さらに好ましくは2質量%以上である。また、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。 When the resin composition contains the component (E), the content (mass%: e1) of the component (E) is a viewpoint that improves the insulation reliability and flame retardancy when the resin composition is a cured product. Therefore, when the non-volatile component in the resin composition is 100% by mass, it is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more. Further, it is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
 樹脂組成物が(E)成分を含有する場合、(E)成分の含有量(体積%)は、好ましくは1体積%以上、より好ましくは3体積%以上、さらに好ましくは5体積%以上である。また、上限は、好ましくは30体積%以下、より好ましくは25体積%以下、さらに好ましくは20体積%以下である。 When the resin composition contains the component (E), the content (volume%) of the component (E) is preferably 1% by volume or more, more preferably 3% by volume or more, and further preferably 5% by volume or more. . The upper limit is preferably 30% by volume or less, more preferably 25% by volume or less, and still more preferably 20% by volume or less.
 樹脂組成物が(E)成分を含有する場合、樹脂組成物中の、(D)成分の含有質量をd1とし、(E)成分の含有質量をe1とした場合、樹脂組成物を硬化物としたときの周波数が10~200MHzの範囲での比透磁率及び磁性損失を良好な範囲とするとともに、磁性層の熱膨張を抑制し、信頼性を高める観点から、e1/d1が、好ましくは0.02以上、より好ましくは0.025以上、さらに好ましくは0.03以上である。また、上限は、好ましくは0.19以下、さらに好ましくは0.185以下、より好ましくは0.18以下である。 When the resin composition contains the component (E), the content of the component (D) in the resin composition is d1, and when the content of the component (E) is e1, the resin composition is a cured product. E1 / d1 is preferably 0 from the viewpoints of making the relative permeability and magnetic loss in the range of 10 to 200 MHz in a favorable range, suppressing the thermal expansion of the magnetic layer, and improving the reliability. 0.02 or more, more preferably 0.025 or more, and still more preferably 0.03 or more. The upper limit is preferably 0.19 or less, more preferably 0.185 or less, and more preferably 0.18 or less.
 (E)成分の平均粒径は、(D)成分の平均粒径よりも小さいことが好ましい。(D)成分及び(E)成分の含有量の割合を前記のとおりとし、(E)成分の平均粒径を(D)成分の平均粒径よりも小さくすれば、磁性フィラー粒子の周囲を囲むように無機充填材を効果的に配置することができる。これにより、磁性フィラー粒子同士が凝集し互いに接触してしまうことを防止し、磁性フィラー粒子同士を互いに離間させることができるため、配合された磁性フィラーにより比透磁率を高めつつ良好な絶縁性を実現することができる。 The average particle size of the component (E) is preferably smaller than the average particle size of the component (D). If the content ratio of the component (D) and the component (E) is as described above, and the average particle size of the component (E) is smaller than the average particle size of the component (D), the magnetic filler particles are surrounded. Thus, the inorganic filler can be effectively arranged. As a result, the magnetic filler particles can be prevented from aggregating and coming into contact with each other, and the magnetic filler particles can be separated from each other. Can be realized.
<(F)硬化促進剤>
 一実施形態において、樹脂組成物は、(F)硬化促進剤を含有し得る。硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられ、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤が好ましく、イミダゾール系硬化促進剤がより好ましい。硬化促進剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<(F) Curing accelerator>
In one embodiment, the resin composition may contain (F) a curing accelerator. Examples of the curing accelerator include a phosphorus-based curing accelerator, an amine-based curing accelerator, an imidazole-based curing accelerator, a guanidine-based curing accelerator, a metal-based curing accelerator, and the like. A curing accelerator, an imidazole curing accelerator, and a metal curing accelerator are preferable, and an imidazole curing accelerator is more preferable. A hardening accelerator may be used individually by 1 type, and may be used in combination of 2 or more type.
 リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられ、トリフェニルホスフィン、テトラブチルホスホニウムデカン酸塩が好ましい。 Examples of phosphorus curing accelerators include triphenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate. , Tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate and the like, and triphenylphosphine and tetrabutylphosphonium decanoate are preferable.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましい。 Examples of amine curing accelerators include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. (5,4,0) -undecene and the like, and 4-dimethylaminopyridine and 1,8-diazabicyclo (5,4,0) -undecene are preferable.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましい。 Examples of the imidazole curing accelerator include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- -Phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl] -(1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino -6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl -4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2- Examples include imidazole compounds such as til-3-benzylimidazolium chloride, 2-methylimidazoline, 2-phenylimidazoline, and adducts of imidazole compounds and epoxy resins, such as 2-ethyl-4-methylimidazole, 1-benzyl-2 -Phenylimidazole is preferred.
 イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、三菱化学社製の「P200-H50」等が挙げられる。 Commercially available products may be used as the imidazole curing accelerator, and examples thereof include “P200-H50” manufactured by Mitsubishi Chemical Corporation.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンが好ましい。 Examples of the guanidine curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide, 1-cyclohexyl biguanide, 1 -Allyl biguanide, 1-phenyl biguanide, 1- o- tolyl) biguanide, and the like, dicyandiamide, 1,5,7-triazabicyclo [4.4.0] dec-5-ene are preferred.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of the metal-based curing accelerator include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
 樹脂組成物が硬化促進剤を含有する場合、硬化促進剤の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、0.001質量%~1質量%が好ましく、0.001質量%~0.1質量%がより好ましく、0.005質量%~0.05質量%がさらに好ましい。 When the resin composition contains a curing accelerator, the content of the curing accelerator is preferably 0.001% by mass to 1% by mass when the non-volatile component in the resin composition is 100% by mass, 0.001 More preferred is from 0.1% by weight to 0.1% by weight, and even more preferred is 0.005% by weight to 0.05% by weight.
<(G)難燃剤>
 一実施形態において、樹脂組成物は、(G)難燃剤を含有し得る。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。難燃剤は1種単独で用いてもよく、又は2種以上を併用してもよい。
<(G) Flame retardant>
In one embodiment, the resin composition may contain (G) a flame retardant. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. A flame retardant may be used individually by 1 type, or may use 2 or more types together.
 難燃剤としては、市販品を用いてもよく、例えば、三光社製の「HCA-HQ」、大八化学工業社製の「PX-200」等が挙げられる。難燃剤は1種単独で用いてもよく、又は2種以上を併用してもよい。 As the flame retardant, commercially available products may be used, and examples thereof include “HCA-HQ” manufactured by Sanko Co., Ltd. and “PX-200” manufactured by Daihachi Chemical Industry Co., Ltd. A flame retardant may be used individually by 1 type, or may use 2 or more types together.
 樹脂組成物が難燃剤を含有する場合、難燃剤の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、0.5質量%~10質量%の範囲であることが好ましく、1質量%~9質量%の範囲であることがより好ましく、1.5質量%~8質量%の範囲であることがさらに好ましい。 When the resin composition contains a flame retardant, the content of the flame retardant is preferably in the range of 0.5% by mass to 10% by mass when the nonvolatile component in the resin composition is 100% by mass, The range is more preferably 1% by mass to 9% by mass, and still more preferably 1.5% by mass to 8% by mass.
<(H)有機充填材>
 一実施形態において、樹脂組成物は、(H)有機充填材を含有し得る。有機充填材の例としては、ゴム粒子が挙げられる。有機充填材であるゴム粒子としては、例えば、後述する有機溶剤に溶解せず、(A)成分~(C)成分などとも相溶しないゴム粒子が使用される。このようなゴム粒子は、一般には、ゴム粒子の成分の分子量を有機溶剤、樹脂に溶解しない程度まで大きくし、粒子状とすることで調製される。
<(H) Organic filler>
In one embodiment, the resin composition may contain (H) an organic filler. Examples of the organic filler include rubber particles. As the rubber particles that are organic fillers, for example, rubber particles that are not soluble in the organic solvent described later and are not compatible with the components (A) to (C) are used. Such rubber particles are generally prepared by increasing the molecular weight of the rubber particle components to such an extent that they do not dissolve in organic solvents or resins, and making them into particles.
 有機充填材であるゴム粒子としては、例えば、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、又は外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、内層のコア層がガラス状ポリマーで構成される3層構造のゴム粒子などが挙げられる。ガラス状ポリマー層は、例えば、メチルメタクリレート重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。用い得るゴム粒子の例としてはガンツ社製「スタフィロイドAC3816N」が挙げられる。ゴム粒子は1種単独で用いてもよく、又は2種以上を併用してもよい。 Examples of rubber particles that are organic fillers include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a two-layer structure in which an outer shell layer is made of a glassy polymer and an inner core layer is made of a rubbery polymer, or Examples thereof include a rubber particle having a three-layer structure in which an outer shell layer is made of a glassy polymer, an intermediate layer is made of a rubbery polymer, and an inner core layer is made of a glassy polymer. The glassy polymer layer is made of, for example, methyl methacrylate polymer, and the rubbery polymer layer is made of, for example, butyl acrylate polymer (butyl rubber). Examples of rubber particles that can be used include “STAPHYLOID AC3816N” manufactured by Ganz. A rubber particle may be used individually by 1 type, or may use 2 or more types together.
 有機充填材であるゴム粒子の平均粒径は、好ましくは0.005μm~1μmの範囲であり、より好ましくは0.2μm~0.6μmの範囲である。ゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー(大塚電子社製「FPAR-1000」)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。 The average particle diameter of the rubber particles as the organic filler is preferably in the range of 0.005 μm to 1 μm, more preferably in the range of 0.2 μm to 0.6 μm. The average particle diameter of the rubber particles can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of the rubber particles is created on a mass basis using a concentrated particle size analyzer (“FPAR-1000” manufactured by Otsuka Electronics Co., Ltd.). The median diameter can be measured by setting it as the average particle diameter.
 樹脂組成物が有機充填材を含有する場合、有機充填材の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、0.1~20質量%が好ましく、0.2~10質量%がより好ましく、0.3~5質量%、又は0.5~3質量%がさらに好ましい。 When the resin composition contains an organic filler, the content of the organic filler is preferably 0.1 to 20% by mass, and preferably 0.2 to 10% when the nonvolatile component in the resin composition is 100% by mass. % By mass is more preferable, and 0.3 to 5% by mass, or 0.5 to 3% by mass is more preferable.
<(I)任意の添加剤>
 一実施形態において、樹脂組成物は、さらに必要に応じて、他の添加剤を含んでいてもよく、斯かる他の添加剤としては、例えば、有機銅化合物、有機亜鉛化合物及び有機コバルト化合物等の有機金属化合物、並びに増粘剤、消泡剤、レベリング剤、密着性付与剤、及び着色剤等の樹脂添加剤等が挙げられる。
<(I) Optional additive>
In one embodiment, the resin composition may further contain other additives as necessary. Examples of such other additives include organic copper compounds, organic zinc compounds, and organic cobalt compounds. And organic additives such as thickeners, antifoaming agents, leveling agents, adhesion-imparting agents, and color additives.
<樹脂組成物の物性、用途>
 本実施形態の樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)の23℃における弾性率は7GPa以上であり、好ましくは7.5GPa以上、より好ましくは8GPa以上である。また、上限は18GPa以下であり、好ましくは17GPa以下、より好ましくは16GPa以下である。弾性率を斯かる範囲内とすることにより、難燃性に優れ、反り量が抑制され、特に、周波数が10~200MHzの範囲で比透磁率を向上させることができるとともに磁性損失を低減させる硬化物を得ることができる。さらには樹脂組成物を用いて得られる接着フィルムはラミネート性に優れるようになる。弾性率は、(A)成分~(D)成分を調整することにより斯かる範囲内とすることができる。弾性率は、後述する<弾性率の測定>に記載の方法に従って測定することができる。
<Physical properties and uses of resin composition>
The elastic modulus at 23 ° C. of a cured product obtained by thermosetting the resin composition of the present embodiment (for example, a cured product thermally cured at 180 ° C. for 90 minutes) is 7 GPa or more, preferably 7.5 GPa or more, more preferably 8 GPa or more. Moreover, an upper limit is 18 GPa or less, Preferably it is 17 GPa or less, More preferably, it is 16 GPa or less. By setting the elastic modulus within such a range, the flame retardancy is excellent, the amount of warpage is suppressed, and in particular, the relative permeability can be improved in the frequency range of 10 to 200 MHz and the magnetic loss can be reduced. You can get things. Furthermore, the adhesive film obtained using the resin composition has excellent laminating properties. The elastic modulus can be set within such a range by adjusting the components (A) to (D). The elastic modulus can be measured according to the method described in <Measurement of Elastic Modulus> described later.
 樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、周波数10MHzにおける比透磁率が高いという特性を示す。周波数10MHzにおける比透磁率は、好ましくは5以上、より好ましくは6以上、さらに好ましくは7以上である。また、好ましくは20以下、より好ましくは18以下、さらに好ましくは15以下である。比透磁率は、後述する<比透磁率、磁性損失の測定>に記載の方法に従って測定することができる。 A cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) has a characteristic of high relative permeability at a frequency of 10 MHz. The relative permeability at a frequency of 10 MHz is preferably 5 or more, more preferably 6 or more, and even more preferably 7 or more. Moreover, Preferably it is 20 or less, More preferably, it is 18 or less, More preferably, it is 15 or less. The relative permeability can be measured according to the method described in <Measurement of relative permeability and magnetic loss> described later.
 樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、周波数100MHzにおける比透磁率が高いという特性を示す。周波数100MHzにおける比透磁率は、好ましくは5以上、より好ましくは6以上、さらに好ましくは7以上である。また、好ましくは20以下、より好ましくは18以下、さらに好ましくは15以下である。 A cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) has a characteristic of high relative permeability at a frequency of 100 MHz. The relative permeability at a frequency of 100 MHz is preferably 5 or more, more preferably 6 or more, and even more preferably 7 or more. Moreover, Preferably it is 20 or less, More preferably, it is 18 or less, More preferably, it is 15 or less.
 樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、周波数1GHzにおける比透磁率は低くてもよい。周波数1GHzにおける比透磁率は、好ましくは4以上、より好ましくは5以上、さらに好ましくは6以上である。また、好ましくは16以下、より好ましくは15以下、さらに好ましくは14以下である。 The cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) may have a low relative permeability at a frequency of 1 GHz. The relative permeability at a frequency of 1 GHz is preferably 4 or more, more preferably 5 or more, and still more preferably 6 or more. Moreover, it is preferably 16 or less, more preferably 15 or less, and still more preferably 14 or less.
 樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、周波数3GHzにおける比透磁率は低くてもよい。周波数3GHzにおける比透磁率は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上である。また、好ましくは10以下、より好ましくは9以下、さらに好ましくは8以下である。 The cured product obtained by thermally curing the resin composition (for example, a cured product thermally cured at 180 ° C. for 90 minutes) may have a low relative magnetic permeability at a frequency of 3 GHz. The relative magnetic permeability at a frequency of 3 GHz is preferably 2 or more, more preferably 3 or more, and further preferably 4 or more. Moreover, Preferably it is 10 or less, More preferably, it is 9 or less, More preferably, it is 8 or less.
 樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、周波数10MHzにおける磁性損失が低いという特性を示す。周波数10MHzにおける磁性損失は、好ましくは0.05以下、より好ましくは0.04以下、さらに好ましくは0.03以下である。下限は特に限定されないが0.0001以上等とし得る。磁性損失は、後述する<比透磁率、磁性損失の測定>に記載の方法に従って測定することができる。 A cured product obtained by thermosetting a resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) exhibits a characteristic that magnetic loss at a frequency of 10 MHz is low. The magnetic loss at a frequency of 10 MHz is preferably 0.05 or less, more preferably 0.04 or less, and still more preferably 0.03 or less. The lower limit is not particularly limited, but may be 0.0001 or more. The magnetic loss can be measured according to the method described in <Measurement of relative permeability and magnetic loss> described later.
 樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、周波数100MHzにおける磁性損失が低いという特性を示す。周波数100MHzにおける磁性損失は、好ましくは0.05以下、より好ましくは0.04以下、さらに好ましくは0.03以下である。下限は特に限定されないが0.0001以上等とし得る。 A cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) has a characteristic that magnetic loss at a frequency of 100 MHz is low. The magnetic loss at a frequency of 100 MHz is preferably 0.05 or less, more preferably 0.04 or less, and still more preferably 0.03 or less. The lower limit is not particularly limited, but may be 0.0001 or more.
 樹脂組成物は(C)成分を含有するため、樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、反り量が低減されるという特性を示す。反り量は、好ましくは10mm以下、より好ましくは9mm以下、さらに好ましくは8mm以下である。上限は特に限定されないが、0.1mm以上等とし得る。反り量は、後述する<反り量の測定>に記載の方法に従って測定することができる。 Since the resin composition contains the component (C), a cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting for 90 minutes at 180 ° C.) exhibits a characteristic that the amount of warpage is reduced. The amount of warp is preferably 10 mm or less, more preferably 9 mm or less, and still more preferably 8 mm or less. The upper limit is not particularly limited, but may be 0.1 mm or more. The amount of warpage can be measured according to the method described in <Measurement of warpage amount> described later.
 樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、難燃性に優れるという特性を示す。難燃性は、UL94垂直難燃試験を5回行い、10秒間接炎後の燃え残ったサンプルが5個とも存在することが好ましい。難燃性の評価は、後述する<難燃性の評価>に記載の方法に従って測定することができる。 A cured product obtained by thermosetting the resin composition (for example, a cured product obtained by thermosetting at 180 ° C. for 90 minutes) exhibits excellent flame retardancy. As for flame retardancy, it is preferable that the UL94 vertical flame retardant test is performed 5 times, and there are five unburned samples after 10 seconds of indirect flame. The evaluation of flame retardancy can be measured according to the method described in <Flame retardance evaluation> described later.
 本実施形態の樹脂組成物は、磁性層形成時の流動性に優れており、磁性層(硬化物)としたときの配線層の封止性に優れている。また本発明の樹脂組成物を用いて形成された磁性層を形成すれば、周波数が10MHz~200MHz、特に周波数が10MHz~100MHzの範囲における比透磁率を向上させ、かつ磁性損失を低減することができる。また、本実施形態の樹脂組成物を熱硬化させて得られる磁性層(硬化物)は、絶縁性にも優れる。 The resin composition of this embodiment is excellent in fluidity when forming a magnetic layer, and excellent in sealing performance of a wiring layer when it is used as a magnetic layer (cured product). Further, if the magnetic layer formed using the resin composition of the present invention is formed, the relative permeability in the frequency range of 10 MHz to 200 MHz, particularly the frequency range of 10 MHz to 100 MHz can be improved, and the magnetic loss can be reduced. it can. Moreover, the magnetic layer (cured product) obtained by thermosetting the resin composition of the present embodiment is also excellent in insulation.
 よって、本実施形態の樹脂組成物は、磁性層(複数層の磁性層が積層された磁性体部)の厚さ内にコイルが作り込まれたいわゆるフィルム構造のインダクタ素子を備える配線板の磁性層の材料として好適に用いることができ、特にインダクタ素子が機能する周波数が10MHz~200MHzである場合により好適に用いることができる。 Therefore, the resin composition of the present embodiment has a magnetic property of a wiring board including an inductor element having a so-called film structure in which a coil is formed within the thickness of a magnetic layer (a magnetic body portion in which a plurality of magnetic layers are laminated). It can be suitably used as the material of the layer, and can be more suitably used particularly when the frequency at which the inductor element functions is 10 MHz to 200 MHz.
[硬化物]
 本発明の硬化物は、本発明の樹脂組成物を熱硬化させて得られる。本発明の硬化物は、180℃で90分間熱硬化させたときの23℃における弾性率が7GPa以上18GPa以下であり、好ましい範囲は上記したとおりである。
[Cured product]
The cured product of the present invention is obtained by thermally curing the resin composition of the present invention. The cured product of the present invention has an elastic modulus at 23 ° C. of 7 GPa or more and 18 GPa or less when thermally cured at 180 ° C. for 90 minutes, and the preferred range is as described above.
 樹脂組成物の熱硬化条件は特に限定されず、例えば、後述する第1磁性層の形成工程における熱硬化工程の条件を使用してよい。また、熱硬化させる前に熱硬化温度よりも低い温度にて予備加熱してもよい。 The thermosetting conditions of the resin composition are not particularly limited, and for example, the conditions of the thermosetting process in the first magnetic layer forming process described later may be used. Moreover, you may preheat at the temperature lower than thermosetting temperature before making it thermoset.
 硬化物の厚さは、用途によっても異なるが、インダクタ素子内蔵配線板の磁性層として使用する場合、好ましくは100μm以下、より好ましくは80μm以下、更に好ましくは60μm以下、更により好ましくは40μm以下である。硬化物の厚さの下限は、用途によっても異なるが、インダクタ素子内蔵配線板の磁性層として使用する場合、通常、10μm以上である。 The thickness of the cured product varies depending on the application, but when used as the magnetic layer of the inductor element built-in wiring board, it is preferably 100 μm or less, more preferably 80 μm or less, still more preferably 60 μm or less, and even more preferably 40 μm or less. is there. Although the minimum of the thickness of hardened | cured material changes with uses, when using as a magnetic layer of a wiring board with a built-in inductor element, it is usually 10 micrometers or more.
[接着フィルム]
 本発明の接着フィルムは、支持体と、該支持体上に設けられた本発明の樹脂組成物で形成された樹脂組成物層を含む。
[Adhesive film]
The adhesive film of the present invention includes a support and a resin composition layer formed of the resin composition of the present invention provided on the support.
 樹脂組成物層の厚さは特に限定されない。樹脂組成物層は、厚さが0.5μm~80μmであることが好ましく、10μm~60μmであることがより好ましい。 The thickness of the resin composition layer is not particularly limited. The resin composition layer preferably has a thickness of 0.5 μm to 80 μm, and more preferably 10 μm to 60 μm.
 支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。 Examples of the support include a film made of a plastic material, a metal foil, and release paper, and a film made of a plastic material and a metal foil are preferable.
 支持体としてプラスチック材料からなるフィルムを使用する場合、ガラス転移温度(Tg)の高いプラスチック材料を用いることが好適である。ガラス転移温度が100℃以上であるプラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドが好ましく、安価なポリエチレンテレフタレートが特に好ましい。 When a film made of a plastic material is used as the support, it is preferable to use a plastic material having a high glass transition temperature (Tg). Examples of the plastic material having a glass transition temperature of 100 ° C. or higher include polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”), and the like. Polyester, polycarbonate (hereinafter sometimes abbreviated as “PC”), acrylic such as polymethyl methacrylate (PMMA), cyclic polyolefin, triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide, etc. Is mentioned. Among these, polyethylene terephthalate, polyethylene naphthalate, and polyimide are preferable, and inexpensive polyethylene terephthalate is particularly preferable.
 支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。 When a metal foil is used as the support, examples of the metal foil include a copper foil and an aluminum foil, and a copper foil is preferable. As the copper foil, a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and another metal (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.). It may be used.
 支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理を施してあってもよい。 The support may be subjected to mat treatment or corona treatment on the surface to be bonded to the resin composition layer.
 また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。 Further, as the support, a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used. Examples of the release agent used for the release layer of the support with a release layer include one or more release agents selected from the group consisting of alkyd resins, polyolefin resins, urethane resins, and silicone resins. . Commercially available products may be used as the support with a release layer, for example, “SK-1”, “SK-1”, “PET film having a release layer mainly composed of an alkyd resin release agent” AL-5 "," AL-7 "," Lumirror T60 "manufactured by Toray Industries," Purex "manufactured by Teijin Ltd.," Unipeel "manufactured by Unitika, and the like.
 支持体の厚みとしては、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。 The thickness of the support is not particularly limited, but is preferably in the range of 5 μm to 75 μm, and more preferably in the range of 10 μm to 60 μm. In addition, when using a support body with a release layer, it is preferable that the thickness of the whole support body with a release layer is the said range.
 樹脂組成物層に用いられる樹脂組成物は、既に説明した前記成分を適宜混合し、また、必要に応じて混練手段(3本ロール、ボールミル、ビーズミル、サンドミル等)あるいは撹拌手段(スーパーミキサー、プラネタリーミキサー等)により混練又は混合することにより調製することができる。 The resin composition used in the resin composition layer is prepared by appropriately mixing the above-described components, and, if necessary, kneading means (three rolls, ball mill, bead mill, sand mill, etc.) or stirring means (super mixer, planetary) It can be prepared by kneading or mixing with a Lee mixer or the like.
 樹脂組成物層を有する接着フィルムの製造方法は、特に制限されず、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーターなどを用いて支持体に塗布し、塗布された樹脂ワニスの塗布膜を乾燥させることによって作製することができる。 The production method of the adhesive film having the resin composition layer is not particularly limited. For example, a resin varnish in which the resin composition is dissolved in an organic solvent is prepared, and this resin varnish is applied to a support using a die coater or the like. And it can produce by drying the coating film of the apply | coated resin varnish.
 有機溶剤としては、例えば、アセトン、メチルエチルケトンおよびシクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテートおよびカルビトールアセテート等の酢酸エステル類、セロソルブおよびブチルカルビトール等のカルビトール類、トルエンおよびキシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミドおよびN-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は1種単独で用いてもよく、又は2種以上を併用してもよい。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. , Aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. An organic solvent may be used individually by 1 type, or may use 2 or more types together.
 乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30質量%~60質量%の有機溶剤を含む樹脂ワニスを用いる場合、例えば、80℃~150℃で3分間~15分間程度乾燥させることにより、樹脂組成物層を形成することができる。 Drying may be performed by a known method such as heating or hot air blowing. The drying conditions are not particularly limited, but the drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less. Depending on the boiling point of the organic solvent in the resin varnish, for example, when using a resin varnish containing 30% by mass to 60% by mass of the organic solvent, for example, by drying at 80 ° C. to 150 ° C. for 3 minutes to 15 minutes. A resin composition layer can be formed.
 接着フィルムにおいて、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。接着フィルムは、ロール状に巻きとって保存することが可能である。接着フィルムが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。 In the adhesive film, a protective film according to the support can be further laminated on the surface of the resin composition layer that is not bonded to the support (that is, the surface opposite to the support). The thickness of the protective film is not particularly limited, but is, for example, 1 μm to 40 μm. By laminating the protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches. The adhesive film can be stored in a roll. When an adhesive film has a protective film, it can be used by peeling off the protective film.
 本発明の接着フィルムは、樹脂組成物を熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)の23℃における弾性率が7GPa以上18GPa以下となるように(A)成分~(D)成分の含有量を調整しているので、ラミネート性に優れるという特性を示す。配線板に接着フィルムをラミネートしても、通常、配線板の回路部分にボイドが無く、接着フィルムに由来する樹脂組成物が十分にフローしている。 The adhesive film of the present invention has a component (A) such that the elastic modulus at 23 ° C. of a cured product obtained by thermosetting the resin composition (for example, a cured product thermally cured at 180 ° C. for 90 minutes) is 7 GPa or more and 18 GPa or less. Since the content of the component (D) is adjusted, it exhibits excellent laminating properties. Even if the adhesive film is laminated on the wiring board, there is usually no void in the circuit portion of the wiring board, and the resin composition derived from the adhesive film is sufficiently flowing.
[インダクタ素子内蔵配線板及びインダクタ素子内蔵配線板の製造方法]
(第1実施形態)
 第1実施形態のインダクタ素子内蔵配線板の構成例について、図1、図2および図3を参照して説明する。図1は、インダクタ素子内蔵配線板をその厚さ方向の一方からみた模式的な平面図である。図2は、II-II一点鎖線で示した位置で切断したインダクタ素子内蔵配線板の切断端面を示す模式的な図である。図3は、インダクタ素子内蔵配線板のうちの第1配線層の構成を説明するための模式的な平面図である。以下、インダクタ素子内蔵配線板を、単に「配線板」ということがある。
[Inductor element built-in wiring board and inductor element built-in wiring board manufacturing method]
(First embodiment)
A configuration example of the inductor element built-in wiring board according to the first embodiment will be described with reference to FIGS. 1, 2, and 3. FIG. 1 is a schematic plan view of a wiring board with a built-in inductor element as viewed from one side in the thickness direction. FIG. 2 is a schematic diagram showing a cut end face of the inductor element built-in wiring board cut at a position indicated by a dashed line II-II. FIG. 3 is a schematic plan view for explaining the configuration of the first wiring layer in the inductor element built-in wiring board. Hereinafter, the inductor element built-in wiring board may be simply referred to as “wiring board”.
 配線板は、樹脂組成物(樹脂組成物層)の硬化体である磁性層と、この磁性層に少なくとも一部分が埋め込まれた導電性構造体とを有しており、この導電性構造体と、磁性層の厚さ方向に延在し、かつ導電性構造体に囲まれた磁性層のうちの一部分によって構成されるインダクタ素子を含んでいる。 The wiring board has a magnetic layer that is a cured body of the resin composition (resin composition layer), and a conductive structure at least partially embedded in the magnetic layer, and the conductive structure; The inductor element includes a part of the magnetic layer extending in the thickness direction of the magnetic layer and surrounded by the conductive structure.
 本実施形態の配線板が備えるインダクタ素子が機能し得る周波数は10MHz~200MHzであることが想定されている。また、本実施形態の配線板が備えるインダクタ素子は電源系が想定されている。 The frequency at which the inductor element included in the wiring board of the present embodiment can function is assumed to be 10 MHz to 200 MHz. In addition, a power supply system is assumed for the inductor element provided in the wiring board of the present embodiment.
 図1および図2に示されるように、配線板10は、ビルドアップ磁性層を有するビルドアップ配線板である。配線板10は、コア基材20を備えている。コア基材20は第1主表面20aおよび第1主表面20aとは反対側の第2主表面20bを有している。コア基材20は絶縁性の基板である。コア基材20は、その厚さ内に配線等が作り込まれた内層回路基板であってもよい。 1 and 2, the wiring board 10 is a build-up wiring board having a build-up magnetic layer. The wiring board 10 includes a core substrate 20. The core substrate 20 has a first main surface 20a and a second main surface 20b opposite to the first main surface 20a. The core base material 20 is an insulating substrate. The core base material 20 may be an inner layer circuit board in which wiring or the like is formed within the thickness.
 コア基材20の材料の例としては、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の絶縁性基材が挙げられる。 Examples of the material of the core base material 20 include insulating base materials such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
 コア基材20は、第1主表面20aに設けられる第1配線層42と、第2主表面20bに設けられる外部端子24とを有している。第1配線層42および第2配線層44は、複数の配線を含んでいる。図示例ではインダクタ素子のコイル状導電性構造体40を構成する配線のみが示されている。外部端子24は図示されていない外部の装置等と電気的に接続するための端子である。外部端子24は、第2主表面20bに設けられる配線層の一部として構成することができる。 The core substrate 20 has a first wiring layer 42 provided on the first main surface 20a and an external terminal 24 provided on the second main surface 20b. The first wiring layer 42 and the second wiring layer 44 include a plurality of wirings. In the example shown in the figure, only the wiring constituting the coiled conductive structure 40 of the inductor element is shown. The external terminal 24 is a terminal for electrically connecting to an external device or the like not shown. The external terminal 24 can be configured as a part of a wiring layer provided on the second main surface 20b.
 第1配線層42、第2配線層44、外部端子24、その他の配線を構成し得る導体材料としては、例えば、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズおよびインジウムからなる群から選択される1種以上の金属が挙げられる。第1配線層42、第2配線層44、外部端子24、その他の配線は、単金属により構成されていても合金により構成されていてもよく、合金としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケルクロム合金、銅ニッケル合金および銅チタン合金)が挙げられる。中でも、汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又はニッケルクロム合金、銅ニッケル合金、銅チタン合金を用いることが好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又はニッケルクロム合金を用いることがより好ましく、銅を用いることがさらに好ましい。 As the conductive material that can constitute the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wiring, for example, gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, One or more kinds of metals selected from the group consisting of titanium, tungsten, iron, tin, and indium are included. The first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings may be made of a single metal or an alloy, and the alloy is selected from the above group, for example. And alloys of two or more metals (for example, nickel chromium alloy, copper nickel alloy, and copper titanium alloy). Among these, from the viewpoint of versatility, cost, ease of patterning, etc., it is possible to use chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or nickel chromium alloy, copper nickel alloy, copper titanium alloy. Preferably, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel chromium alloy is more preferably used, and copper is further preferably used.
 第1配線層42、第2配線層44、外部端子24、その他の配線は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。第1配線層42、第2配線層44、外部端子24、その他の配線が複層構造である場合、磁性層と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケルクロム合金の合金層であることが好ましい。 Even if the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings have a single-layer structure, a single metal layer or an alloy layer composed of two or more different types of metals or alloys is laminated. It may be a layered structure. When the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings have a multilayer structure, the layer in contact with the magnetic layer is a single metal layer of chromium, zinc, or titanium, or an alloy of a nickel chromium alloy A layer is preferred.
 第1配線層42、第2配線層44、外部端子24、その他の配線の厚さは、所望の多層プリント配線板のデザインによるが、一般に3μm~35μm、好ましくは5μm~30μmである。 The thicknesses of the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings are generally 3 μm to 35 μm, preferably 5 μm to 30 μm, depending on the desired multilayer printed wiring board design.
 コア基材20が有する第1配線層42および外部端子24の厚さは特に限定されない。第1配線層42および外部端子24の厚さは、薄型化の観点から、好ましくは70μm以下であり、より好ましくは60μm以下であり、さらに好ましくは50μm以下、さらにより好ましくは40μm以下、特に好ましくは30μm以下、20μm以下、15μm以下又は10μm以下である。外部端子24の厚さの下限は特に制限されないが、好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上である。 The thickness of the first wiring layer 42 and the external terminal 24 included in the core base material 20 is not particularly limited. The thickness of the first wiring layer 42 and the external terminal 24 is preferably 70 μm or less, more preferably 60 μm or less, still more preferably 50 μm or less, even more preferably 40 μm or less, particularly preferably from the viewpoint of thinning. Is 30 μm or less, 20 μm or less, 15 μm or less, or 10 μm or less. The lower limit of the thickness of the external terminal 24 is not particularly limited, but is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more.
 第1配線層42および外部端子24のライン(L)/スペース(S)比は特に制限されないが、表面の凹凸を減少させて平滑性に優れる磁性層を得る観点から、通常、900/900μm以下、好ましくは700/700μm以下、より好ましくは500/500μm以下、さらに好ましくは300/300μm以下、さらにより好ましくは200/200μm以下である。ライン/スペース比の下限は特に制限されないが、スペースへの樹脂組成物の埋め込みを良好にする観点から、好ましくは1/1μm以上である。 The line (L) / space (S) ratio of the first wiring layer 42 and the external terminal 24 is not particularly limited, but is usually 900/900 μm or less from the viewpoint of obtaining a magnetic layer with excellent surface smoothness by reducing surface irregularities. The thickness is preferably 700/700 μm or less, more preferably 500/500 μm or less, still more preferably 300/300 μm or less, and even more preferably 200/200 μm or less. The lower limit of the line / space ratio is not particularly limited, but is preferably 1/1 μm or more from the viewpoint of improving the embedding of the resin composition in the space.
 コア基材20としては、例えば、ガラス布基材エポキシ樹脂両面銅張積層板であるパナソニック社製「R1515A」を用い、銅層をパターニングすることにより配線層とした配線板が挙げられる。 Examples of the core base material 20 include a wiring board formed as a wiring layer by patterning a copper layer using “R1515A” manufactured by Panasonic Corporation which is a glass cloth base material epoxy resin double-sided copper-clad laminate.
 コア基材20は第1主表面20aから第2主表面20bに至るようにコア基材20を貫通する複数のスルーホール22を有している。スルーホール22にはスルーホール内配線22aが設けられている。スルーホール内配線22aは、第1配線層42と外部端子24とを電気的に接続している。 The core base material 20 has a plurality of through holes 22 that penetrate the core base material 20 so as to extend from the first main surface 20a to the second main surface 20b. The through-hole 22 is provided with a through-hole wiring 22a. The through-hole wiring 22 a electrically connects the first wiring layer 42 and the external terminal 24.
 図3に示されるように、第1配線層42はコイル状導電性構造体40を構成するための渦巻状の配線部と、スルーホール内配線22aと電気的に接続される矩形状のランド42aとを含んでいる。図示例では渦巻状の配線部は直線状部と直角に屈曲する屈曲部とランド42aを迂回する迂回部を含んでいる。図示例では第1配線層42の渦巻状の配線部は全体の輪郭が略矩形状であって、中心側からその外側に向かうにあたり反時計回りに巻いている形状を有している。 As shown in FIG. 3, the first wiring layer 42 includes a spiral wiring portion for constituting the coiled conductive structure 40 and a rectangular land 42a electrically connected to the through-hole wiring 22a. Including. In the illustrated example, the spiral wiring portion includes a bent portion that bends at right angles to the linear portion and a bypass portion that bypasses the land 42a. In the illustrated example, the spiral wiring portion of the first wiring layer 42 has a generally rectangular outline, and has a shape that is wound counterclockwise from the center side toward the outside.
 第1配線層42が設けられたコア基材20の第1主表面20a側には第1配線層42および第1配線層42から露出する第1主表面20aを覆うように第1磁性層32が設けられている。 On the first main surface 20a side of the core base material 20 provided with the first wiring layer 42, the first magnetic layer 32 covers the first wiring layer 42 and the first main surface 20a exposed from the first wiring layer 42. Is provided.
 第1磁性層32は、既に説明した接着フィルムに由来する層であるので、第1配線層42の封止性に優れている。また第1磁性層32は、前記接着フィルムを用いて形成されるので、周波数が10MHz~200MHzの範囲における比透磁率が向上しており、さらに、通常は磁性損失が低減されている。 Since the first magnetic layer 32 is a layer derived from the adhesive film described above, the first wiring layer 42 is excellent in sealing performance. Further, since the first magnetic layer 32 is formed using the adhesive film, the relative magnetic permeability in the frequency range of 10 MHz to 200 MHz is improved, and usually the magnetic loss is reduced.
 第1磁性層32には、第1磁性層32をその厚さ方向に貫通するビアホール36が設けられている。 The first magnetic layer 32 is provided with a via hole 36 that penetrates the first magnetic layer 32 in the thickness direction.
 第1磁性層32には第2配線層44が設けられている。第2配線層44はコイル状導電性構造体40を構成するための渦巻状の配線部を含んでいる。図示例では渦巻状の配線部は直線状部と直角に屈曲する屈曲部とを含んでいる。図示例では第2配線層44の渦巻状の配線部は全体の輪郭が略矩形状であって、中心側からその外側に向かうにあたり時計回りに巻いている形状を有している。 A second wiring layer 44 is provided in the first magnetic layer 32. The second wiring layer 44 includes a spiral wiring portion for constituting the coiled conductive structure 40. In the illustrated example, the spiral wiring portion includes a linear portion and a bent portion bent at a right angle. In the illustrated example, the spiral wiring portion of the second wiring layer 44 has a generally rectangular outline, and has a shape that is wound clockwise from the center side toward the outside.
 ビアホール36内にはビアホール内配線36aが設けられている。第2配線層44の渦巻状の配線部のうちの中心側の一端はビアホール内配線36aにより第1配線層42の渦巻状の配線部のうちの中心側の一端に電気的に接続されている。第2配線層44の渦巻状の配線部のうちの外周側の他端はビアホール内配線36aにより第1配線層42のランド42aに電気的に接続されている。よって第2配線層44の渦巻状の配線部のうちの外周側の他端はビアホール内配線36a、ランド42a、スルーホール内配線22aを経て外部端子24に電気的に接続されている。 In the via hole 36, a via hole wiring 36a is provided. One end on the center side of the spiral wiring portion of the second wiring layer 44 is electrically connected to one end on the center side of the spiral wiring portion of the first wiring layer 42 by the via hole wiring 36a. . The other end on the outer peripheral side of the spiral wiring portion of the second wiring layer 44 is electrically connected to the land 42a of the first wiring layer 42 by the via hole wiring 36a. Therefore, the other end on the outer peripheral side of the spiral wiring portion of the second wiring layer 44 is electrically connected to the external terminal 24 via the via-hole wiring 36a, the land 42a, and the through-hole wiring 22a.
 コイル状導電性構造体40は、第1配線層42の一部分である渦巻状の配線部、第2配線層44の一部分である渦巻状の配線部、第1配線層42の渦巻状の配線部と第2配線層44の渦巻状の配線部とを電気的に接続しているビアホール内配線36aにより構成されている。 The coiled conductive structure 40 includes a spiral wiring part that is a part of the first wiring layer 42, a spiral wiring part that is a part of the second wiring layer 44, and a spiral wiring part of the first wiring layer 42. And a via-hole wiring 36a that electrically connects the spiral wiring portion of the second wiring layer 44 to each other.
 第2配線層44が設けられた第1磁性層32には第2配線層44および第2配線層44から露出する第1磁性層32を覆うように第2磁性層34が設けられている。 The first magnetic layer 32 provided with the second wiring layer 44 is provided with a second magnetic layer 34 so as to cover the second wiring layer 44 and the first magnetic layer 32 exposed from the second wiring layer 44.
 第2磁性層34は、第1磁性層32と同様に既に説明した接着フィルムに由来する層であり、接着フィルムの樹脂組成物層は磁性層形成時の流動性に優れているので、第2配線層44の封止性に優れている。また第2磁性層34は、前記接着フィルムを用いて形成されるので、周波数が10MHz~200MHzの範囲における比透磁率が向上しており、さらに通常は磁性損失が低減されている。 The second magnetic layer 34 is a layer derived from the adhesive film already described in the same manner as the first magnetic layer 32, and the resin composition layer of the adhesive film is excellent in fluidity when the magnetic layer is formed. The sealing property of the wiring layer 44 is excellent. Further, since the second magnetic layer 34 is formed using the adhesive film, the relative magnetic permeability in the frequency range of 10 MHz to 200 MHz is improved, and usually the magnetic loss is reduced.
 第1磁性層32および第2磁性層34は一体的な磁性層としてみることができる磁性部30を構成している。よってコイル状導電性構造体40は、磁性部30に少なくとも一部分が埋め込まれるように設けられている。すなわち、本実施形態の配線板10において、インダクタ素子はコイル状導電性構造体40と、磁性部30の厚さ方向に延在し、かつコイル状導電性構造体40に囲まれた磁性部30のうちの一部分である芯部によって構成されている。 The first magnetic layer 32 and the second magnetic layer 34 constitute a magnetic part 30 that can be viewed as an integral magnetic layer. Therefore, the coiled conductive structure 40 is provided so as to be at least partially embedded in the magnetic part 30. That is, in the wiring board 10 of this embodiment, the inductor element extends in the thickness direction of the coiled conductive structure 40 and the magnetic part 30 and is surrounded by the coiled conductive structure 40. It is comprised by the core part which is a part of them.
 本実施形態では、コイル状導電性構造体40が、第1配線層42および第2配線層44の2層の配線層を含む例を説明したが、3層以上の配線層(および3層以上のビルドアップ磁性層)によりコイル状導電性構造体40を構成することもできる。この場合には、最上層の配線層と最下層の配線層とに挟まれるように配置される図示しない配線層の渦巻状の配線部は、その一端が最上層側であって直近に配置される配線層の渦巻状の配線部のいずれか一方の端部に電気的接続され、その他端が最下層側であって直近に配置される配線層の渦巻状の配線部のいずれか一方の端部に電気的接続される。 In the present embodiment, the example in which the coiled conductive structure 40 includes the two wiring layers of the first wiring layer 42 and the second wiring layer 44 has been described. However, the wiring layer has three or more wiring layers (and three or more layers). The coiled conductive structure 40 can also be constituted by the build-up magnetic layer. In this case, the spiral wiring portion of the wiring layer (not shown) arranged so as to be sandwiched between the uppermost wiring layer and the lowermost wiring layer is arranged at the nearest side with one end on the uppermost layer side. One end of the spiral wiring portion of the wiring layer that is electrically connected to one end of the spiral wiring portion of the wiring layer and the other end is the lowest layer side and is disposed nearest Electrically connected to the part.
 本実施形態にかかる配線板によれば、磁性層を前記接着フィルムにより形成するので、形成される磁性層の比透磁率、難燃性を高めることができ、反り量を低減することができる。 According to the wiring board according to the present embodiment, since the magnetic layer is formed by the adhesive film, the relative magnetic permeability and flame retardancy of the formed magnetic layer can be increased, and the amount of warpage can be reduced.
 以下、第1実施形態にかかるインダクタ素子内蔵配線板の製造方法について図2を参照して説明する。
 本実施形態にかかる配線板の製造方法は、第1磁性層および第2磁性層を含む磁性部と、磁性部に少なくとも一部分が埋め込まれたコイル状導電性構造体とを有しており、コイル状導電性構造体と磁性部のうちの一部分とにより構成されるインダクタ素子を含む配線板の製造方法であって、本実施形態にかかる接着フィルム、および第1配線層が設けられたコア基材を用意する工程と、コア基材に接着フィルムの樹脂組成物層をラミネートする工程と、樹脂組成物層を熱硬化して第1磁性層を形成する工程と、第1磁性層にビアホールを形成する工程と、ビアホールが形成された第1磁性層に対して粗化処理する工程と、第1磁性層に第2配線層を形成し、第1配線層と第2配線層とを電気的に接続するビアホール内配線を形成する工程と、第2配線層およびビアホール内配線が形成された第1磁性層にさらに本実施形態にかかる接着フィルムをラミネートし、熱硬化して第2磁性層を形成する工程と、第1配線層の一部分と第2配線層の一部分とビアホール内配線とを含むコイル状導電性構造体、および磁性部の厚さ方向に延在し、かつコイル状導電性構造体に囲まれた磁性部の一部分を含むインダクタ素子を形成する工程とを含む。
Hereinafter, the manufacturing method of the inductor element built-in wiring board according to the first embodiment will be described with reference to FIG.
The method for manufacturing a wiring board according to the present embodiment includes a magnetic part including a first magnetic layer and a second magnetic layer, and a coiled conductive structure at least partially embedded in the magnetic part. A method of manufacturing a wiring board including an inductor element composed of a conductive structure and a part of a magnetic part, the core substrate provided with the adhesive film according to the present embodiment and the first wiring layer A step of laminating a resin composition layer of an adhesive film on a core substrate, a step of thermosetting the resin composition layer to form a first magnetic layer, and forming a via hole in the first magnetic layer A step of roughening the first magnetic layer in which the via hole is formed, a second wiring layer is formed on the first magnetic layer, and the first wiring layer and the second wiring layer are electrically connected to each other. Forming via-hole wiring to be connected; A step of laminating the adhesive film according to the present embodiment on the first magnetic layer on which the two wiring layers and the via-hole wiring are formed, and thermally curing to form a second magnetic layer; a part of the first wiring layer; Coiled conductive structure including part of two wiring layers and via-hole wiring, and inductor element including part of magnetic part extending in thickness direction of magnetic part and surrounded by coiled conductive structure Forming the step.
 まず、第1主表面20aに設けられる第1配線層42と、第2主表面20bに設けられる外部端子24と、スルーホール22と、スルーホール内配線22aが設けられているコア基材(内層回路基板)20および接着フィルムを用意する。 First, a core substrate (inner layer) provided with a first wiring layer 42 provided on the first main surface 20a, an external terminal 24 provided on the second main surface 20b, a through hole 22, and an inner wiring 22a in the through hole. Circuit board) 20 and an adhesive film are prepared.
<第1磁性層の形成工程>
 次に第1磁性層32を形成する。まずコア基材の第1配線層42に接触するように接着フィルムの樹脂組成物層をラミネートするラミネート工程を行う。
<Step of forming the first magnetic layer>
Next, the first magnetic layer 32 is formed. First, a laminating step of laminating the resin composition layer of the adhesive film so as to come into contact with the first wiring layer 42 of the core base material is performed.
 ラミネート工程の条件は特に限定されず、接着フィルムを用いて磁性層(ビルドアップ磁性層)を形成するにあたり使用される条件を採用することができる。例えば、加熱されたステンレス鏡板等の金属板を接着フィルムの支持体側からプレスすることにより行うことができる。この場合、金属板を直接的にプレスするのではなく、コア基材20の表面の凹凸に接着フィルムが十分に追随するよう、耐熱ゴム等からなる弾性部材を介してプレスを行うことが好ましい。プレス温度は、好ましくは70℃~140℃の範囲であり、プレス圧力は好ましくは1kgf/cm~11kgf/cm(0.098MPa~1.079MPa)の範囲であり、プレス時間は好ましくは5秒間~3分間の範囲である。 The conditions for the laminating step are not particularly limited, and conditions used for forming a magnetic layer (build-up magnetic layer) using an adhesive film can be employed. For example, it can be performed by pressing a heated metal plate such as a stainless steel mirror plate from the support side of the adhesive film. In this case, it is preferable not to press the metal plate directly, but to press through an elastic member made of heat-resistant rubber or the like so that the adhesive film sufficiently follows the irregularities on the surface of the core substrate 20. The pressing temperature is preferably in the range of 70 ° C. to 140 ° C., the pressing pressure is preferably in the range of 1 kgf / cm 2 to 11 kgf / cm 2 (0.098 MPa to 1.079 MPa), and the pressing time is preferably 5 The range is from 2 seconds to 3 minutes.
 また、ラミネート工程は、好ましくは20mmHg(26.7hPa)以下の減圧下で実施される。ラミネート工程は、市販されている真空ラミネーターを用いて実施することができる。市販されている真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアプリケーター等が挙げられる。 The laminating step is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less. The laminating step can be performed using a commercially available vacuum laminator. Examples of the commercially available vacuum laminator include a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a vacuum applicator manufactured by Nikko Materials, and the like.
 ラミネート工程の終了後、コア基材20にラミネートされた接着フィルムを、加熱および加圧処理する平滑化工程を実施してもよい。 After completion of the laminating step, a smoothing step of heating and pressurizing the adhesive film laminated on the core substrate 20 may be performed.
 平滑化工程は、一般に、常圧(大気圧)下、加熱された金属板又は金属ロールにより、コア基材20にラミネートされている接着フィルムを加熱および加圧処理することにより実施される。加熱および加圧処理の条件は、上記ラミネート工程の条件と同様の条件を用いることができる。 The smoothing step is generally carried out by heating and pressurizing the adhesive film laminated to the core substrate 20 with a heated metal plate or metal roll under normal pressure (atmospheric pressure). The conditions for the heating and pressure treatment can be the same as the conditions for the laminating step.
 ラミネート工程および平滑化工程は、同一の真空ラミネーターを用いて連続的に実施することもできる。 The laminating step and the smoothing step can also be carried out continuously using the same vacuum laminator.
 なお、前記ラミネート工程又は前記平滑化工程の実施後の任意のタイミングで接着フィルムに由来する支持体を剥離する工程を行う。支持体を剥離する工程は、例えば、市販の自動剥離装置により機械的に実施することができる。 In addition, the process which peels the support body derived from an adhesive film at the arbitrary timings after implementation of the said lamination process or the said smoothing process is performed. The process of peeling a support body can be mechanically implemented with a commercially available automatic peeling apparatus, for example.
 次いで、コア基材20にラミネートされた樹脂組成物層を熱硬化して磁性層(ビルドアップ磁性層)を形成する熱硬化工程を実施する。 Next, a thermosetting process is performed in which the resin composition layer laminated on the core substrate 20 is thermoset to form a magnetic layer (build-up magnetic layer).
 熱硬化工程の条件は特に限定されず、多層プリント配線板の絶縁層を形成するに際して通常採用される条件を適用することができる。 The conditions for the thermosetting process are not particularly limited, and conditions usually employed when forming the insulating layer of the multilayer printed wiring board can be applied.
 熱硬化工程の条件は、樹脂組成物層に用いられる樹脂組成物の組成等により任意好適な条件とすることができる。熱硬化工程の条件は、例えば硬化温度を120℃~240℃の範囲(好ましくは150℃~210℃の範囲、より好ましくは170℃~190℃の範囲)とし、硬化時間を5分間~90分間の範囲(好ましくは10分間~75分間、より好ましくは15分間~60分間)とすることができる。 The conditions of the thermosetting step can be arbitrarily selected depending on the composition of the resin composition used for the resin composition layer. The conditions of the heat curing step are, for example, a curing temperature in a range of 120 ° C. to 240 ° C. (preferably in a range of 150 ° C. to 210 ° C., more preferably in a range of 170 ° C. to 190 ° C.), and a curing time of 5 minutes to 90 minutes. (Preferably 10 minutes to 75 minutes, more preferably 15 minutes to 60 minutes).
 熱硬化工程を実施する前に、樹脂組成物層を硬化温度よりも低い温度にて予備加熱する工程を実施してもよい。熱硬化工程の実施に先立ち、例えば50℃以上120℃未満(好ましくは60℃以上110℃以下、より好ましくは70℃以上100℃以下)の温度にて、樹脂組成物層を5分間以上(好ましくは5分間~150分間、より好ましくは15分間~120分間)予備加熱してもよい。予備加熱は、大気圧下(常圧下)にて行うことが好ましい。 Before performing the thermosetting step, a step of preheating the resin composition layer at a temperature lower than the curing temperature may be performed. Prior to carrying out the thermosetting step, the resin composition layer is kept at a temperature of, for example, 50 ° C. or more and less than 120 ° C. (preferably 60 ° C. or more and 110 ° C. or less, more preferably 70 ° C. or more and 100 ° C. or less) for 5 minutes or more (preferably May be preheated for 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes). Preheating is preferably performed under atmospheric pressure (normal pressure).
 以上の工程によりコア基材20に設けられる第1磁性層32を形成することができる。また、磁性層が形成されたコア基材20に対して前記ラミネート工程および前記熱硬化工程並びに後述する配線層の形成工程をさらに1回以上繰り返すことにより、第1磁性層32に設けられる第2磁性層34、さらに積層される磁性層を含む磁性部30を形成することができる。 The first magnetic layer 32 provided on the core base material 20 can be formed by the above steps. The second magnetic layer 32 is provided in the first magnetic layer 32 by repeating the laminating step, the thermosetting step, and the wiring layer forming step described later once or more with respect to the core substrate 20 on which the magnetic layer is formed. The magnetic part 34 including the magnetic layer 34 and the laminated magnetic layer can be formed.
 また、コア基材20に第1磁性層32を形成する工程は、一般の真空ホットプレス機を用いて行うことも可能である。例えば、加熱されたSUS板等の金属板を用いて支持体側からプレスすることにより行うことができる。プレス条件は、減圧度を通常1×10-2MPa以下、好ましくは1×10-3MPa以下の減圧下とする。加熱及び加圧は、1段階で行うこともできるが、樹脂のしみだしを制御する観点から2段階以上の工程としてそれぞれプレス条件を変えて行うことが好ましい。例えば、1段階目のプレス条件を、温度を70℃~150℃とし、圧力を1kgf/cm~15kgf/cmの範囲とし、2段階目のプレス条件を、温度を150℃~200℃とし、圧力を1kgf/cm~40kgf/cmの範囲として行うのが好ましい。各段階の時間は30分間~120分間として行うのが好ましい。市販されている真空ホットプレス機としては、例えば、名機製作所社製「MNPC-V-750-5-200」、北川精機社製「VH1-1603」等が挙げられる。 Further, the step of forming the first magnetic layer 32 on the core substrate 20 can be performed using a general vacuum hot press machine. For example, it can carry out by pressing from the support body side using metal plates, such as a heated SUS board. The pressing condition is that the degree of vacuum is usually 1 × 10 −2 MPa or less, preferably 1 × 10 −3 MPa or less. Although heating and pressurization can be carried out in one stage, it is preferable to carry out by changing the pressing conditions as two or more stages from the viewpoint of controlling the oozing of the resin. For example, the first stage pressing condition is a temperature of 70 ° C. to 150 ° C., the pressure is 1 kgf / cm 2 to 15 kgf / cm 2 , and the second stage pressing condition is a temperature of 150 ° C. to 200 ° C. , preferably carried out at a pressure of range of 1kgf / cm 2 ~ 40kgf / cm 2. The time for each stage is preferably 30 minutes to 120 minutes. Examples of commercially available vacuum hot presses include “MNPC-V-750-5-200” manufactured by Meiki Seisakusho, “VH1-1603” manufactured by Kitagawa Seiki Co., Ltd., and the like.
<ビアホールの形成工程>
 形成された第1磁性層32にビアホール36を形成する。ビアホール36は、第1配線層42と第2配線層44とを電気的に接続するための経路となる。ビアホール36は第1磁性層32の特性を考慮して、ドリル、レーザー、プラズマ等を用いる公知の方法により形成することができる。例えば、この時点で保護フィルムが残存している場合には、保護フィルムを介してレーザー光を第1磁性層32に照射することにより、ビアホール36を形成することもできる。
<Via hole formation process>
A via hole 36 is formed in the formed first magnetic layer 32. The via hole 36 becomes a path for electrically connecting the first wiring layer 42 and the second wiring layer 44. The via hole 36 can be formed by a known method using a drill, laser, plasma or the like in consideration of the characteristics of the first magnetic layer 32. For example, if the protective film remains at this point, the via hole 36 can be formed by irradiating the first magnetic layer 32 with laser light through the protective film.
 ビアホール36の形成に用いられ得るレーザー光源としては、例えば、炭酸ガスレーザー、YAGレーザー、エキシマレーザー等が挙げられる。中でも、加工速度、コストの観点から、炭酸ガスレーザーが好ましい。 Examples of the laser light source that can be used for forming the via hole 36 include a carbon dioxide laser, a YAG laser, and an excimer laser. Among these, a carbon dioxide laser is preferable from the viewpoint of processing speed and cost.
 ビアホール36の形成は、市販されているレーザー装置を用いて実施することができる。市販されている炭酸ガスレーザー装置としては、例えば、日立ビアメカニクス社製「LC-2E21B/1C」、三菱電機社製「ML605GTWII」、松下溶接システム社製の基板穴あけレーザー加工機が挙げられる。 The via hole 36 can be formed using a commercially available laser device. Examples of commercially available carbon dioxide laser devices include “LC-2E21B / 1C” manufactured by Hitachi Via Mechanics, “ML605GTWII” manufactured by Mitsubishi Electric, and a substrate drilling laser processing machine manufactured by Matsushita Welding Systems.
<粗化工程>
 次にビアホール36が形成された第1磁性層32に対して粗化処理する粗化工程を行う。粗化工程の手順、条件は特に限定されず、多層プリント配線板の製造方法に際して通常使用される公知の手順、条件を採用することができる。粗化工程として、例えば、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に実施することにより第1磁性層32を粗化処理することができる。
<Roughening process>
Next, a roughening process for roughening the first magnetic layer 32 in which the via hole 36 is formed is performed. The procedure and conditions of the roughening step are not particularly limited, and known procedures and conditions that are usually used in the method for producing a multilayer printed wiring board can be employed. As the roughening step, for example, the first magnetic layer 32 can be roughened by performing a swelling treatment with a swelling liquid, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing liquid in this order.
 粗化工程に用いられ得る膨潤液としては特に限定されないが、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液である。膨潤液であるアルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン社製「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等が挙げられる。 The swelling liquid that can be used in the roughening step is not particularly limited, and examples thereof include an alkaline solution and a surfactant solution, and an alkaline solution is preferable. As an alkaline solution which is a swelling liquid, a sodium hydroxide solution and a potassium hydroxide solution are more preferable. Examples of the commercially available swelling liquid include “Swelling Dip Securigans P”, “Swelling Dip Securigans SBU” manufactured by Atotech Japan.
 膨潤液による膨潤処理は、特に限定されないが、例えば、30℃~90℃の膨潤液に第1磁性層32が設けられたコア基材20を1分間~20分間浸漬することにより行うことができる。第1磁性層32を構成する樹脂の膨潤を適度なレベルに抑える観点から、40℃~80℃の膨潤液に第1磁性層32を5分間~15分間浸漬させることが好ましい。 The swelling treatment with the swelling liquid is not particularly limited, and can be performed, for example, by immersing the core substrate 20 provided with the first magnetic layer 32 in the swelling liquid at 30 ° C. to 90 ° C. for 1 minute to 20 minutes. . From the viewpoint of suppressing the swelling of the resin constituting the first magnetic layer 32 to an appropriate level, the first magnetic layer 32 is preferably immersed in a swelling liquid at 40 ° C. to 80 ° C. for 5 minutes to 15 minutes.
 酸化剤による粗化処理に用いられ得る酸化剤としては、特に限定されないが、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液が挙げられる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、60℃~80℃に加熱した酸化剤の溶液に第1磁性層32を10分間~30分間浸漬させることにより行うことが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5質量%~10質量%とすることが好ましい。市販されている酸化剤としては、例えば、アトテックジャパン社製「コンセントレート・コンパクトP」、「ドージングソリューション・セキュリガンスP」等のアルカリ性過マンガン酸溶液が挙げられる。 The oxidizing agent that can be used for the roughening treatment with the oxidizing agent is not particularly limited, and examples thereof include an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide. The roughening treatment with an oxidizing agent such as an alkaline permanganic acid solution is preferably performed by immersing the first magnetic layer 32 in an oxidizing agent solution heated to 60 ° C. to 80 ° C. for 10 to 30 minutes. The concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass. Examples of commercially available oxidants include alkaline permanganate solutions such as “Concentrate Compact P” and “Dosing Solution Securigans P” manufactured by Atotech Japan.
 中和処理に用いられ得る中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン社製「リダクションソリューション・セキュリガンスP」が挙げられる。中和液による中和処理は、酸化剤溶液による粗化処理がなされた処理面を30℃~80℃の中和液に5分間~30分間浸漬させることにより行うことができる。作業性等の点から、酸化剤溶液による粗化処理がなされた第1磁性層32を、40℃~70℃の中和液に5分間~20分間浸漬する方法が好ましい。 As the neutralizing solution that can be used for the neutralization treatment, an acidic aqueous solution is preferable, and as a commercially available product, for example, “Reduction Solution Securigans P” manufactured by Atotech Japan Co., Ltd. can be mentioned. The neutralization treatment with the neutralizing solution can be performed by immersing the treated surface, which has been subjected to the roughening treatment with the oxidizing agent solution, in the neutralizing solution at 30 to 80 ° C. for 5 to 30 minutes. From the viewpoint of workability and the like, a method of immersing the first magnetic layer 32 that has been roughened with an oxidant solution in a neutralizing solution at 40 ° C. to 70 ° C. for 5 to 20 minutes is preferable.
 上記の通り説明した粗化工程は、第1磁性層32に形成されたビアホール36のスミア除去を行うためのいわゆるデスミア工程を兼ねていてもよい。 The roughening process described above may also serve as a so-called desmear process for removing smear of the via hole 36 formed in the first magnetic layer 32.
 また、粗化工程とは別に、ビアホール36に対してデスミア工程を実施してもよい。なお、このデスミア工程は、湿式のデスミア工程であっても、乾式のデスミア工程であってもよい。 In addition, a desmear process may be performed on the via hole 36 separately from the roughening process. The desmear process may be a wet desmear process or a dry desmear process.
 デスミア工程の具体的な工程は特に限定されず、例えば、多層プリント配線板の絶縁層を形成するに際して通常使用される公知の工程、条件を採用することができる。乾式のデスミア工程の例としてはプラズマ処理等が挙げられ、湿式のデスミア工程の例としては、前記粗化工程と同様の膨潤液による膨潤処理、酸化剤による処理および中和液による処理をこの順に行う方法が挙げられる。 The specific process of the desmear process is not particularly limited, and for example, known processes and conditions that are normally used when forming an insulating layer of a multilayer printed wiring board can be employed. Examples of the dry desmear process include plasma treatment, and examples of the wet desmear process include a swelling process using a swelling liquid, a process using an oxidizing agent, and a process using a neutralizing liquid in the same order as the roughening process. The method of performing is mentioned.
<第2配線層の形成>
 次に粗化工程(およびデスミア工程)が行われた第1磁性層32に第2配線層44を形成する。
<Formation of second wiring layer>
Next, the second wiring layer 44 is formed on the first magnetic layer 32 that has been subjected to the roughening process (and the desmear process).
 第2配線層44は、めっきにより形成することができる。第2配線層44は、例えば、無電解めっき工程、マスクパターン形成工程、電解めっき工程、フラッシュエッチング工程を含むセミアディティブ法、フルアディティブ法等の従来公知の技術により形成することにより、所望の配線パターンを含む配線層として形成することができる。なお、この第2配線層44の形成工程により、ビアホール36内にビアホール内配線36aが併せて形成される。 The second wiring layer 44 can be formed by plating. The second wiring layer 44 is formed by a conventionally known technique such as a semi-additive method including a non-electrolytic plating process, a mask pattern forming process, an electrolytic plating process, and a flash etching process, or a full additive method. It can be formed as a wiring layer including a pattern. The via hole wiring 36 a is also formed in the via hole 36 by the formation process of the second wiring layer 44.
 第1磁性層32がビルドアップ磁性層であり、第2配線層44がビルドアップ配線層であるビルドアップ層としてみた場合、本実施形態の配線板においてビルドアップ層がさらに1層以上必要な場合には、前記第1磁性層32の形成工程から前記第2配線層44の形成工程までの既に説明した一連の工程をさらに1回以上繰り返して実施すればよい。 When the first magnetic layer 32 is a build-up magnetic layer and the second wiring layer 44 is a build-up layer that is a build-up wiring layer, the wiring board of this embodiment requires one or more build-up layers. For this, the series of steps already described from the step of forming the first magnetic layer 32 to the step of forming the second wiring layer 44 may be repeated one more time.
<第2磁性層の形成>
 次に、第2配線層44およびビアホール内配線36aが形成された第1磁性層32に第2磁性層34を形成する。第2磁性層34は既に説明した接着フィルムのラミネート工程、平滑化工程、熱硬化工程を含む第1磁性層32の形成工程と同様の材料を用いて同様の工程により形成すればよい。
<Formation of second magnetic layer>
Next, the second magnetic layer 34 is formed on the first magnetic layer 32 in which the second wiring layer 44 and the via-hole wiring 36a are formed. The second magnetic layer 34 may be formed by the same process using the same material as the first magnetic layer 32 forming process including the adhesive film laminating process, smoothing process, and thermosetting process already described.
 以上の工程により、磁性部30に少なくとも一部分が埋め込まれたコイル状導電性構造体40を有しており、第1配線層42の一部分と第2配線層44の一部分とビアホール内配線36aとを含むコイル状導電性構造体40と磁性部30の厚さ方向に延在し、かつコイル状導電性構造体40に囲まれた磁性部30のうちの一部分とを含むインダクタ素子を含む配線板10を製造することができる。 Through the above steps, the coil-shaped conductive structure 40 is embedded at least in part in the magnetic part 30, and a part of the first wiring layer 42, a part of the second wiring layer 44, and the via-hole wiring 36a are connected. Wiring board 10 including an inductor element including a coiled conductive structure 40 and a portion of magnetic part 30 extending in the thickness direction of magnetic part 30 and surrounded by coiled conductive structure 40. Can be manufactured.
(第2実施形態)
 第2実施形態のインダクタ素子内蔵配線板の構成例について、図4(h)を参照して説明する。第1実施形態と同様の構成要素については同一の符号を付して示し、重複する説明を省略する場合がある。
(Second Embodiment)
A configuration example of the inductor element built-in wiring board according to the second embodiment will be described with reference to FIG. Constituent elements similar to those in the first embodiment are denoted by the same reference numerals, and redundant description may be omitted.
 図4(h)に示すように、配線板11は、樹脂組成物(樹脂組成物層)の硬化体である磁性層と、この磁性層に少なくとも一部分が埋め込まれた導電性構造体とを有しており、この導電性構造体と、磁性層の厚さ方向に延在し、かつ導電性構造体に囲まれた磁性層のうちの一部分によって構成されるインダクタ素子を含んでいる。配線板11は、ビルドアップ磁性層を有するビルドアップ配線板である。配線板11は、コア基材を有さない点で第1実施形態の配線板10と異なる。 As shown in FIG. 4 (h), the wiring board 11 has a magnetic layer that is a cured body of the resin composition (resin composition layer) and a conductive structure that is at least partially embedded in the magnetic layer. The conductive element includes an inductor element that is configured by a part of the magnetic layer that extends in the thickness direction of the magnetic layer and is surrounded by the conductive structure. The wiring board 11 is a build-up wiring board having a build-up magnetic layer. The wiring board 11 is different from the wiring board 10 of the first embodiment in that it does not have a core base material.
 配線板11が備えるインダクタ素子が機能し得る周波数は10MHz~200MHzであることが想定されている。また、配線板11が備えるインダクタ素子は電源系が想定されている。 The frequency at which the inductor element included in the wiring board 11 can function is assumed to be 10 MHz to 200 MHz. Further, the inductor element provided in the wiring board 11 is assumed to be a power supply system.
 配線板11は、第1配線層42、第2配線層44、及び第3配線層46を含む。第1配線層42、第2配線層44、及び第3配線層46は、通常複数の配線を含んでいる。図示例ではインダクタ素子のコイル状導電性構造体40を構成する配線のみが示されている。第1配線層42、第2配線層44、外部端子24、及びその他の配線については、第1実施形態における第1配線層42、第2配線層44、外部端子24、及びその他の配線と同様である。 The wiring board 11 includes a first wiring layer 42, a second wiring layer 44, and a third wiring layer 46. The first wiring layer 42, the second wiring layer 44, and the third wiring layer 46 usually include a plurality of wirings. In the example shown in the figure, only the wiring constituting the coiled conductive structure 40 of the inductor element is shown. The first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings are the same as the first wiring layer 42, the second wiring layer 44, the external terminal 24, and other wirings in the first embodiment. It is.
 第3配線層46を構成し得る導体材料としては、第1実施形態における第1配線層42を構成し得る導体材料と同様である。また、第3配線層46の厚さとしては、第1実施形態における第1配線層42の厚さと同様である。 The conductor material that can constitute the third wiring layer 46 is the same as the conductor material that can constitute the first wiring layer 42 in the first embodiment. The thickness of the third wiring layer 46 is the same as the thickness of the first wiring layer 42 in the first embodiment.
 第3配線層46は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。第3配線層46が複層構造である場合、磁性層と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケルクロム合金の合金層であることが好ましい。 The third wiring layer 46 may have a single layer structure or a multilayer structure in which two or more single metal layers or alloy layers made of different kinds of metals or alloys are stacked. When the third wiring layer 46 has a multilayer structure, the layer in contact with the magnetic layer is preferably a single metal layer of chromium, zinc or titanium, or an alloy layer of a nickel chromium alloy.
 第1磁性層32、第2磁性層34、及び第3磁性層38は一体的な磁性層としてみることができる磁性部30を構成している。第1磁性層32及び第2磁性層34は、第1実施形態における第1磁性層32及び第2磁性層34と同様である。 The first magnetic layer 32, the second magnetic layer 34, and the third magnetic layer 38 constitute a magnetic part 30 that can be viewed as an integral magnetic layer. The first magnetic layer 32 and the second magnetic layer 34 are the same as the first magnetic layer 32 and the second magnetic layer 34 in the first embodiment.
 第3磁性層38は、既に説明した接着フィルムに由来する層であり、接着フィルムの樹脂組成物層は磁性層形成時の流動性に優れているので、第2配線層44の封止性に優れている。また第3磁性層38は、前記接着フィルムを用いて形成されるので、周波数が10MHz~200MHzの範囲における比透磁率が向上しており、さらに通常は磁性損失が低減されている。 The third magnetic layer 38 is a layer derived from the adhesive film already described, and the resin composition layer of the adhesive film is excellent in fluidity when forming the magnetic layer. Are better. Further, since the third magnetic layer 38 is formed using the adhesive film, the relative magnetic permeability in the frequency range of 10 MHz to 200 MHz is improved, and usually the magnetic loss is reduced.
 ビアホール36内にはビアホール内配線36aが設けられている。第1配線層42、第2配線層44、及び第3配線層46はビアホール内配線36a等によりに電気的に接続されている。 In the via hole 36, a via hole wiring 36a is provided. The first wiring layer 42, the second wiring layer 44, and the third wiring layer 46 are electrically connected to each other by via-hole wiring 36a and the like.
 本実施形態では、コイル状導電性構造体40が、第1配線層42、第2配線層44、及び第3配線層46の3層の配線層を含む例を説明したが、4層以上の配線層(及び4層以上のビルドアップ磁性層)によりコイル状導電性構造体40を構成することもできる。この場合には、最上層の配線層と最下層の配線層とに挟まれるように配置される図示しない配線層の渦巻状の配線部は、その一端が最上層側であって直近に配置される配線層の渦巻状の配線部のいずれか一方の端部に電気的接続され、その他端が最下層側であって直近に配置される配線層の渦巻状の配線部のいずれか一方の端部に電気的接続される。 In the present embodiment, an example in which the coiled conductive structure 40 includes three wiring layers of the first wiring layer 42, the second wiring layer 44, and the third wiring layer 46 has been described. The coiled conductive structure 40 can also be constituted by a wiring layer (and four or more buildup magnetic layers). In this case, the spiral wiring portion of the wiring layer (not shown) arranged so as to be sandwiched between the uppermost wiring layer and the lowermost wiring layer is arranged at the nearest side with one end on the uppermost layer side. One end of the spiral wiring portion of the wiring layer that is electrically connected to one end of the spiral wiring portion of the wiring layer and the other end is the lowest layer side and is disposed nearest Electrically connected to the part.
 本実施形態にかかる配線板によれば、磁性層を前記接着フィルムにより形成するので、形成される磁性層の比透磁率、難燃性を高めることができ、反り量を低減することができる。 According to the wiring board according to the present embodiment, since the magnetic layer is formed by the adhesive film, the relative magnetic permeability and flame retardancy of the formed magnetic layer can be increased, and the amount of warpage can be reduced.
 以下、第2実施形態にかかるインダクタ素子内蔵配線板の製造方法について図4を参照して説明する。第1実施形態と説明が重複する箇所については適宜説明を省略する。
 本実施形態に係る配線板の製造方法は、
 (1)基材51と、該基材51の少なくとも一方の面に設けられたキャリア付金属層52とを有するキャリア付金属層付き基材50を準備する工程、
 (2)キャリア付金属層付き基材50に接着フィルムの樹脂組成物層をラミネートし、該樹脂組成物層を熱硬化させ第1磁性層32を形成する工程、
 (3)第1磁性層32上に第1配線層42を形成する工程、
 (4)第1配線層42および第1磁性層32上に接着フィルムの樹脂組成物層をラミネートし、該樹脂組成物層を熱硬化して第2磁性層34を形成する工程、
 (5)第2磁性層34にビアホール36を形成し、ビアホール36が形成された第2磁性層34に対して粗化処理する工程、
 (6)第2磁性層34上に第2配線層44を形成する工程、
 (7)第2配線層44および第2磁性層34上に接着フィルムの樹脂組成物層をラミネートし、該樹脂組成物層を熱硬化して第3磁性層38を形成する工程、
 (8)キャリア付金属層付き基材50を除去する工程、
 (9)第3磁性層38にビアホール36を形成し、ビアホール36が形成された第3磁性層38に対して粗化処理する工程と、
 (10)第1磁性層32にビアホール36を形成し、ビアホール36が形成された第1磁性層32に対して粗化処理する工程と、
 (11)第3磁性層38上に第3配線層46を形成する工程、及び
 (12)第1磁性層32上に外部端子24を形成する工程、を含む。
Hereinafter, the manufacturing method of the inductor element built-in wiring board according to the second embodiment will be described with reference to FIG. A description of portions that are the same as those in the first embodiment will be omitted as appropriate.
The manufacturing method of the wiring board according to the present embodiment is as follows:
(1) The process of preparing the base material 50 with a carrier with a metal layer which has the base material 51 and the metal layer with a carrier 52 provided in the at least one surface of this base material 51,
(2) A step of laminating a resin composition layer of an adhesive film on the substrate 50 with a metal layer with a carrier, and thermosetting the resin composition layer to form the first magnetic layer 32;
(3) forming a first wiring layer 42 on the first magnetic layer 32;
(4) laminating a resin composition layer of an adhesive film on the first wiring layer 42 and the first magnetic layer 32, and thermosetting the resin composition layer to form the second magnetic layer 34;
(5) A step of forming a via hole 36 in the second magnetic layer 34 and roughening the second magnetic layer 34 in which the via hole 36 is formed,
(6) forming a second wiring layer 44 on the second magnetic layer 34;
(7) a step of laminating a resin composition layer of an adhesive film on the second wiring layer 44 and the second magnetic layer 34, and thermosetting the resin composition layer to form a third magnetic layer 38;
(8) The process of removing the base material 50 with a metal layer with a carrier,
(9) forming a via hole 36 in the third magnetic layer 38 and roughening the third magnetic layer 38 in which the via hole 36 is formed;
(10) forming a via hole 36 in the first magnetic layer 32 and roughening the first magnetic layer 32 in which the via hole 36 is formed;
(11) forming a third wiring layer 46 on the third magnetic layer 38; and (12) forming an external terminal 24 on the first magnetic layer 32.
 工程(9)と工程(10)とは順序を入れ替えて行ってもよく、同時に行ってもよい。また、工程(11)と工程(12)とは、順序を入れ替えて行ってもよく、同時に行ってもよい。 Step (9) and step (10) may be performed in the reverse order, or may be performed simultaneously. Moreover, a process (11) and a process (12) may be performed by changing order, and may be performed simultaneously.
<工程(1)>
 工程(1)は、基材51と、該基材51の少なくとも一方の面に設けられたキャリア付金属層52とを有するキャリア付金属層付き基材50を準備する工程である。図4(a)に一例を示すように、通常、キャリア付金属層付き基材50は、基材51と、該基材51の少なくとも一方の面にキャリア付金属層52が設けられている。キャリア付金属層52は、後述する工程(8)の作業性を高める観点から、基材51側から第1金属層521、第2金属層522の順で備える構成であることが好ましい。
<Step (1)>
Step (1) is a step of preparing a substrate 50 with a metal layer with a carrier having a substrate 51 and a metal layer with a carrier 52 provided on at least one surface of the substrate 51. As shown in an example in FIG. 4A, the substrate 50 with a metal layer with a carrier is usually provided with a substrate 51 and a metal layer 52 with a carrier on at least one surface of the substrate 51. It is preferable that the metal layer 52 with a carrier is a structure provided in order of the 1st metal layer 521 and the 2nd metal layer 522 from the base material 51 side from a viewpoint of improving workability | operativity of the process (8) mentioned later.
 基材51の材料としては、第1実施形態におけるコア基材と同様である。キャリア付金属層52の材料としては、例えば、キャリア付銅箔、その他、剥離可能な支持体付き金属箔等が挙げられる。キャリア付金属層付き基材50は、市販品を用いることができる。市販品としては、例えば三井金属社製MT-EX等が挙げられる。 The material of the base material 51 is the same as that of the core base material in the first embodiment. Examples of the material of the metal layer 52 with a carrier include a copper foil with a carrier and a metal foil with a support that can be peeled. A commercially available product can be used for the base material 50 with a metal layer with a carrier. Examples of commercially available products include MT-EX manufactured by Mitsui Kinzoku Co., Ltd.
<工程(2)>
 工程(2)は、図4(b)に一例を示すように、キャリア付金属層付き基材50に接着フィルムの樹脂組成物層をラミネートし、該樹脂組成物層を熱硬化させ第1磁性層32を形成する工程である。
<Step (2)>
In step (2), as shown in FIG. 4B, the resin composition layer of the adhesive film is laminated on the base material 50 with the metal layer with carrier, and the resin composition layer is thermoset to cause the first magnetic property. This is a step of forming the layer 32.
 工程(2)における第1磁性層32の形成は、第1実施形態における第1磁性層の形成と同様の方法により形成することができる。 The formation of the first magnetic layer 32 in the step (2) can be performed by the same method as the formation of the first magnetic layer in the first embodiment.
 工程(2)終了後、必要に応じて、形成した第1磁性層上に粗化工程を施してもよい。粗化工程は、第1実施形態における、第1磁性層に対して行う粗化工程と同様の方法により行うことができる。 After step (2), a roughening step may be performed on the formed first magnetic layer as necessary. The roughening step can be performed by the same method as the roughening step performed on the first magnetic layer in the first embodiment.
<工程(3)>
 工程(3)は、図4(c)に一例を示すように、第1磁性層32上に第1配線層42を形成する工程である。第1配線層42は、めっきにより形成することができる。第1配線層42は、第1実施形態における第2配線層44の形成と同様の方法により形成することができる。また、第1配線層42は、第1実施形態における第1配線層と同様の導体材料を用いることができる。
<Step (3)>
Step (3) is a step of forming the first wiring layer 42 on the first magnetic layer 32 as shown in FIG. 4C as an example. The first wiring layer 42 can be formed by plating. The first wiring layer 42 can be formed by the same method as the formation of the second wiring layer 44 in the first embodiment. The first wiring layer 42 can be made of the same conductive material as that of the first wiring layer in the first embodiment.
<工程(4)>
 工程(4)は、図4(d)に一例を示すように、第1配線層42及び第1磁性層32上に接着フィルムの樹脂組成物層をラミネートし、該樹脂組成物層を熱硬化して第2磁性層34を形成する工程である。
<Process (4)>
In step (4), as shown in FIG. 4D, an adhesive film resin composition layer is laminated on the first wiring layer 42 and the first magnetic layer 32, and the resin composition layer is thermoset. In this step, the second magnetic layer 34 is formed.
 第2磁性層34は、先述した工程(2)と同様の方法により形成することができる。第2磁性層34を形成する接着フィルムは、第1磁性層32を形成する際に使用した接着フィルムと同様のものを用いてもよく、異なる接着フィルムを用いてもよい。 The second magnetic layer 34 can be formed by the same method as in step (2) described above. The adhesive film for forming the second magnetic layer 34 may be the same as the adhesive film used when forming the first magnetic layer 32, or a different adhesive film may be used.
<工程(5)>
 工程(5)は、図4(e)に一例を示すように、第2磁性層34にビアホール36を形成し、ビアホール36が形成された第2磁性層34に対して粗化処理する工程である。ビアホール36内にはビアホール内配線36aが設けられている。ビアホール36は、第1配線層42と第2配線層44とを電気的に接続するための経路となる。
<Step (5)>
Step (5) is a step of forming a via hole 36 in the second magnetic layer 34 and roughening the second magnetic layer 34 in which the via hole 36 is formed, as shown in FIG. 4E. is there. A via hole wiring 36 a is provided in the via hole 36. The via hole 36 becomes a path for electrically connecting the first wiring layer 42 and the second wiring layer 44.
 ビアホール36の形成は、第1実施形態におけるビアホールの形成工程と同様の方法により形成することができる。また、粗化処理は、第1実施形態における、第1磁性層に対して行う粗化工程と同様の方法により行うことができる。 The via hole 36 can be formed by the same method as the via hole forming step in the first embodiment. Further, the roughening treatment can be performed by the same method as the roughening step performed on the first magnetic layer in the first embodiment.
<工程(6)>
 工程(6)は、図4(e)に一例を示すように、第2磁性層34上に第2配線層44を形成する工程である。詳細は、第2磁性層34におけるビアホール36上に第2配線層44を形成する。第2配線層44は、めっきにより形成することができる。第2配線層44は、第1実施形態における第2配線層44の形成と同様の方法により形成することができる。また、第2配線層44は、第1実施形態における第2配線層と同様の導体材料を用いることができる。
<Step (6)>
Step (6) is a step of forming the second wiring layer 44 on the second magnetic layer 34 as shown in FIG. 4 (e) as an example. Specifically, the second wiring layer 44 is formed on the via hole 36 in the second magnetic layer 34. The second wiring layer 44 can be formed by plating. The second wiring layer 44 can be formed by the same method as the formation of the second wiring layer 44 in the first embodiment. The second wiring layer 44 can be made of the same conductive material as that of the second wiring layer in the first embodiment.
<工程(7)>
 工程(7)は、図4(f)に一例を示すように、第2配線層44及び第2磁性層34上に接着フィルムの樹脂組成物層をラミネートし、該樹脂組成物層を熱硬化して第3磁性層38を形成する工程である。
<Step (7)>
In step (7), as shown in FIG. 4F, an adhesive film resin composition layer is laminated on the second wiring layer 44 and the second magnetic layer 34, and the resin composition layer is thermoset. In this step, the third magnetic layer 38 is formed.
 第3磁性層38は、先述した工程(2)と同様の方法により形成することができる。第3磁性層38を形成する接着フィルムは、第1磁性層32及び第2磁性層34を形成する際に使用した接着フィルムと同様のものを用いてもよく、異なるものを用いてもよい。 The third magnetic layer 38 can be formed by the same method as in step (2) described above. The adhesive film for forming the third magnetic layer 38 may be the same as the adhesive film used when forming the first magnetic layer 32 and the second magnetic layer 34, or may be different.
<工程(8)>
 工程(8)は、図4(g)に一例を示すように、キャリア付金属層付き基材50を除去する工程である。キャリア付金属層付き基材50の除去方法は特に限定されない。好適な一実施形態は、第1金属層521及び第2金属層522の界面で基材51及び第1金属層521を剥離し、第2金属層522を例えば塩化銅水溶液などでエッチング除去する。必要に応じて、第3磁性層38を保護フィルムで保護した状態でキャリア付金属層付き基材50を剥離してもよい。
<Step (8)>
A process (8) is a process of removing the base material 50 with a metal layer with a carrier so that an example may be shown in FIG.4 (g). The removal method of the base material 50 with a metal layer with a carrier is not specifically limited. In a preferred embodiment, the substrate 51 and the first metal layer 521 are peeled off at the interface between the first metal layer 521 and the second metal layer 522, and the second metal layer 522 is removed by etching with, for example, an aqueous copper chloride solution. As needed, you may peel the base material 50 with a metal layer with a carrier in the state which protected the 3rd magnetic layer 38 with the protective film.
<工程(9)>
 工程(9)は、第3磁性層38に、図4に図示しないビアホールを形成し、ビアホールが形成された第3磁性層38に対して粗化処理する工程である。ビアホール内にはビアホール内配線が設けられている。ビアホールは、第2配線層44と第3配線層46とを電気的に接続するための経路となる。このビアホールの形成は、第1実施形態におけるビアホールの形成工程と同様の方法により形成することができる。また、粗化処理は、第1実施形態における、第1磁性層に対して行う粗化工程と同様の方法により行うことができる。
<Step (9)>
Step (9) is a step of forming a via hole (not shown in FIG. 4) in the third magnetic layer 38 and subjecting the third magnetic layer 38 with the via hole to a roughening treatment. In the via hole, wiring in the via hole is provided. The via hole serves as a path for electrically connecting the second wiring layer 44 and the third wiring layer 46. This via hole can be formed by the same method as the via hole forming step in the first embodiment. Further, the roughening treatment can be performed by the same method as the roughening step performed on the first magnetic layer in the first embodiment.
<工程(10)>
 工程(10)は、図4(h)に一例を示すように、第1磁性層32にビアホール36を形成し、ビアホール36が形成された第1磁性層32に対して粗化処理する工程である。詳細は、第1磁性層32のキャリア付金属層付き基材50を除去した側の面側にビアホール36を形成し、該ビアホール36上に外部端子24を形成する。ビアホール36内にはビアホール内配線36aが設けられている。このビアホール36は、第1配線層42と外部端子24とを電気的に接続するための経路となる。このビアホール36の形成は、第1実施形態におけるビアホールの形成工程と同様の方法により形成することができる。また、粗化処理は、第1実施形態における、第1磁性層に対して行う粗化工程と同様の方法により行うことができる。
<Step (10)>
Step (10) is a step of forming a via hole 36 in the first magnetic layer 32 and roughening the first magnetic layer 32 in which the via hole 36 is formed, as shown in FIG. is there. Specifically, the via hole 36 is formed on the surface side of the first magnetic layer 32 from which the substrate 50 with the metal layer with carrier is removed, and the external terminal 24 is formed on the via hole 36. A via hole wiring 36 a is provided in the via hole 36. The via hole 36 serves as a path for electrically connecting the first wiring layer 42 and the external terminal 24. The via hole 36 can be formed by the same method as the via hole forming step in the first embodiment. Further, the roughening treatment can be performed by the same method as the roughening step performed on the first magnetic layer in the first embodiment.
<工程(11)>
 工程(11)は、図4(h)に一例を示すように、第3磁性層38上に第3配線層46を形成する工程である。詳細は、第3磁性層38に形成した、図示しないビアホールの粗化処理を行った後、該ビアホール上に第3配線層46を形成する。第3配線層46は、第1実施形態における第2配線層44と同様の方法により形成することができ、また、第1実施形態における第1及び第2配線層と同様の導体材料を用いることができる。
<Step (11)>
Step (11) is a step of forming the third wiring layer 46 on the third magnetic layer 38 as shown in FIG. 4 (h) as an example. More specifically, after roughening a via hole (not shown) formed in the third magnetic layer 38, the third wiring layer 46 is formed on the via hole. The third wiring layer 46 can be formed by the same method as the second wiring layer 44 in the first embodiment, and the same conductive material as that of the first and second wiring layers in the first embodiment is used. Can do.
<工程(12)>
 工程(12)は、図4(h)に一例を示すように、第1磁性層32上に外部端子24を形成する工程である。詳細は、第1磁性層32に形成したビアホール36の粗化処理を行った後、該ビアホール36上に外部端子24を接続する。
<Step (12)>
Step (12) is a step of forming the external terminals 24 on the first magnetic layer 32 as shown in FIG. 4 (h) as an example. More specifically, after the via hole 36 formed in the first magnetic layer 32 is roughened, the external terminal 24 is connected to the via hole 36.
 以上の工程により、基材がなく、且つインダクタ素子を含む配線板を製造することができる。このインダクタ素子は、コイル状導電性構造体40と磁性部30の厚さ方向に延在し、且つコイル状導電性構造体40に囲まれた磁性部30のうち一部分とを含む。そして、コイル状導電性構造体40は、第1配線層42の一部分と第2配線層44の一部分と第3配線層46の一部分とビアホール内配線36aとを含む。 Through the above steps, a wiring board having no base material and including an inductor element can be manufactured. This inductor element includes a coiled conductive structure 40 and a part of the magnetic part 30 extending in the thickness direction of the magnetic part 30 and surrounded by the coiled conductive structure 40. The coiled conductive structure 40 includes a part of the first wiring layer 42, a part of the second wiring layer 44, a part of the third wiring layer 46, and the via hole wiring 36a.
 第1磁性層32がビルドアップ磁性層であり、第2配線層44がビルドアップ配線層であるビルドアップ層としてみた場合、本実施形態の配線板においてビルドアップ層がさらに1層以上必要な場合には、前記第1磁性層32の形成工程から前記第2配線層44の形成工程までの既に説明した一連の工程をさらに1回以上繰り返して実施すればよい。 When the first magnetic layer 32 is a build-up magnetic layer and the second wiring layer 44 is a build-up layer that is a build-up wiring layer, the wiring board of this embodiment requires one or more build-up layers. For this, the series of steps already described from the step of forming the first magnetic layer 32 to the step of forming the second wiring layer 44 may be repeated one more time.
 本発明の接着フィルムを用いれば、周波数が10MHz~200MHzでの比透磁率を向上させることができ、かつ難燃性に優れ、反り量が低減された磁性層を形成することができるので、空芯構造とすることなく磁性層の一部分により構成される芯部を含む、より高性能な低周波帯域用インダクタ素子が作り込まれた配線板を、より簡便な工程で提供することができる。 By using the adhesive film of the present invention, it is possible to improve the relative magnetic permeability at a frequency of 10 MHz to 200 MHz, and to form a magnetic layer with excellent flame retardancy and reduced warpage. A wiring board in which a higher performance inductor element for a low frequency band including a core portion constituted by a part of a magnetic layer is formed without using a core structure can be provided by a simpler process.
 本実施形態にかかる配線板は、半導体チップ等の電子部品を搭載するための配線板として用いることができ、かかる配線板を内層基板として使用した(多層)プリント配線板として用いることもできる。また、かかる配線板を個片化したチップインダクタ部品として用いることもでき、該チップインダクタ部品を表面実装したプリント配線板として用いることもできる。
 またかかる配線板を用いて、種々の態様の半導体装置を製造することができる。かかる配線板を含む半導体装置は、電気製品(例えば、コンピューター、携帯電話、デジタルカメラおよびテレビ等)および乗物(例えば、自動二輪車、自動車、電車、船舶および航空機等)等に好適に用いることができる。
The wiring board according to the present embodiment can be used as a wiring board for mounting electronic components such as semiconductor chips, and can also be used as a (multilayer) printed wiring board using such a wiring board as an inner layer substrate. Further, such a wiring board can be used as a chip inductor component obtained by dividing the wiring board into pieces, and can also be used as a printed wiring board on which the chip inductor component is surface-mounted.
In addition, using such a wiring board, various types of semiconductor devices can be manufactured. A semiconductor device including such a wiring board can be suitably used for electrical products (for example, computers, mobile phones, digital cameras, and televisions) and vehicles (for example, motorcycles, automobiles, trains, ships, and aircrafts). .
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. In the following description, “parts” and “%” representing amounts mean “parts by mass” and “% by mass”, respectively, unless otherwise specified.
<実施例1:樹脂組成物1の調製>
 「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、新日鉄住金化学社製)7質量部、「HP-4700」(ナフタレン型4官能エポキシ樹脂、DIC社製)7質量部、「YX7553」(フェノキシ樹脂、不揮発分30質量%、三菱化学社製)35質量部、「KS-1」(ポリビニルアセタール樹脂、積水化学工業社製)30質量部をMEK10質量部、シクロヘキサノン10質量部、エタノール40質量部、トルエン40質量部に撹拌しながら加熱溶解させた。そこへ、「LA-7054」(トリアジン骨格含有フェノール系硬化剤の不揮発分60質量%、DIC社製)14質量部、「2E4MZ」(硬化促進剤、四国化成工業社製)0.1質量部、無機充填材(「SO-C2」(シリカ、平均粒子径0.5μm、アドマテックス社製)を「KBM-573」(アミノシラン系カップリング剤、信越化学工業社製)で処理したシリカ)35質量部、「AW2-08PF3F」(磁性フィラー、Fe-Cr-Si系合金(アモルファス)、平均粒径3.0μm、エプソンアトミックス社製)850質量部を混合し、高速回転ミキサーで均一に分散して、樹脂組成物1を調製した。
<Example 1: Preparation of resin composition 1>
“ZX1059” (mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 7 parts by mass, “HP-4700” (naphthalene type tetrafunctional epoxy resin, manufactured by DIC) 7 parts by mass, 35 parts by mass of “YX7553” (phenoxy resin, nonvolatile content 30% by mass, manufactured by Mitsubishi Chemical), 30 parts by mass of “KS-1” (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.), 10 parts by mass of MEK, 10 parts by mass of cyclohexanone The solution was dissolved in 40 parts by mass of ethanol and 40 parts by mass of toluene while stirring. Thereto, 14 parts by mass of “LA-7054” (non-volatile content of triazine skeleton-containing phenolic curing agent 60% by mass, manufactured by DIC), “2E4MZ” (curing accelerator, Shikoku Kasei Kogyo Co., Ltd.) 0.1 parts by mass , Inorganic filler (“SO-C2” (silica, average particle size 0.5 μm, manufactured by Admatechs) treated with “KBM-573” (aminosilane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.)) 35 850 parts by mass of “AW2-08PF3F” (magnetic filler, Fe—Cr—Si alloy (amorphous), average particle size 3.0 μm, manufactured by Epson Atmix Co., Ltd.) is mixed and uniformly dispersed with a high-speed rotary mixer Thus, a resin composition 1 was prepared.
<実施例2:樹脂組成物2の調製>
 「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、新日鉄住金化学社製)14質量部、「HP-4700」(ナフタレン型4官能エポキシ樹脂、DIC社製)14質量部、「YX7553」(フェノキシ樹脂、不揮発分30質量%、三菱化学社製)35質量部、「KS-1」(ポリビニルアセタール樹脂、積水化学工業社製)23質量部をMEK10質量部、シクロヘキサノン10質量部、エタノール30質量部、トルエン30質量部に撹拌しながら加熱溶解させた。そこへ、「LA-7054」(トリアジン骨格含有フェノール系硬化剤、不揮発分60質量%、DIC社製)28質量部、「2E4MZ」(硬化促進剤、四国化成工業社製)0.1質量部、無機充填材(「SO-C2」(シリカ、平均粒子径0.5μm、アドマテックス社製)を「KBM-573」(アミノシラン系カップリング剤、信越化学工業社製)で処理したシリカ)35質量部、「AW2-08PF3F」(磁性フィラー、Fe-Cr-Si系合金(アモルファス)、平均粒径3.0μm、エプソンアトミックス社製)1010質量部を混合し、高速回転ミキサーで均一に分散して、樹脂組成物2を調製した。
<Example 2: Preparation of resin composition 2>
"ZX1059" (mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 14 parts by mass, "HP-4700" (naphthalene type tetrafunctional epoxy resin, manufactured by DIC) 14 parts by mass, 35 parts by mass of “YX7553” (phenoxy resin, non-volatile content 30% by mass, manufactured by Mitsubishi Chemical Corporation), 23 parts by mass of “KS-1” (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) 10 parts by mass of MEK, 10 parts by mass of cyclohexanone The mixture was dissolved in 30 parts by mass of ethanol and 30 parts by mass of toluene while stirring. There, 28 parts by mass of “LA-7054” (triazine skeleton-containing phenolic curing agent, non-volatile content 60% by mass, manufactured by DIC Corporation), “2E4MZ” (curing accelerator, manufactured by Shikoku Kasei Kogyo Co., Ltd.) 0.1 parts by mass , Inorganic filler (“SO-C2” (silica, average particle size 0.5 μm, manufactured by Admatechs) treated with “KBM-573” (aminosilane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.)) 35 1010 parts by mass of “AW2-08PF3F” (magnetic filler, Fe—Cr—Si alloy (amorphous), average particle size 3.0 μm, manufactured by Epson Atmix Co., Ltd.) is mixed and dispersed uniformly with a high-speed rotary mixer Thus, a resin composition 2 was prepared.
<実施例3:樹脂組成物3の調製>
 実施例1において、KS-1(ポリビニルアセタール樹脂、積水化学工業社製)30質量部を、SG-P3(エポキシ基含有アクリル酸エステル共重合体樹脂、ナガセケムテックス社製、数平均分子量Mn:850000g/mol、エポキシ価0.21eq/kg、ガラス転移温度12℃、不揮発分15質量%)200質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物3を調製した。
<Example 3: Preparation of resin composition 3>
In Example 1, 30 parts by mass of KS-1 (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) was mixed with SG-P3 (epoxy group-containing acrylate copolymer resin, manufactured by Nagase ChemteX Corporation, number average molecular weight Mn: 850000 g / mol, epoxy value 0.21 eq / kg, glass transition temperature 12 ° C., nonvolatile content 15% by mass) was changed to 200 parts by mass. A resin composition 3 was prepared in the same manner as in Example 1 except for the above items.
<実施例4:樹脂組成物4の調製>
 実施例1において、KS-1(ポリビニルアセタール樹脂、積水化学工業社製)30質量部を、BL-1(ブチラール樹脂、積水化学工業社製)23質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物4を調製した。
<Example 4: Preparation of resin composition 4>
In Example 1, 30 parts by mass of KS-1 (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) was changed to 23 parts by mass of BL-1 (butyral resin, manufactured by Sekisui Chemical Co., Ltd.). A resin composition 4 was prepared in the same manner as in Example 1 except for the above items.
<実施例5:樹脂組成物5の調製>
 実施例1において、YX7553(フェノキシ樹脂、不揮発分30質量%、三菱化学社製)の量を、35質量部から135質量部に変え、KS-1(ポリビニルアセタール樹脂、積水化学工業社製)を添加しなかった。以上の事項以外は実施例1と同様にして樹脂組成物5を調製した。
<Example 5: Preparation of resin composition 5>
In Example 1, the amount of YX7553 (phenoxy resin, nonvolatile content 30% by mass, manufactured by Mitsubishi Chemical Corporation) was changed from 35 parts by mass to 135 parts by mass, and KS-1 (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) was used. Not added. A resin composition 5 was prepared in the same manner as in Example 1 except for the above items.
<実施例6:樹脂組成物6の調製>
 実施例1において、AW2-08PF3F(エプソンアトミックス社製)の量を、850質量部から1500質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物6を調製した。
<Example 6: Preparation of resin composition 6>
In Example 1, the amount of AW2-08PF3F (manufactured by Epson Atmix) was changed from 850 parts by weight to 1500 parts by weight. A resin composition 6 was prepared in the same manner as in Example 1 except for the above items.
<実施例7:樹脂組成物7の調製>
 実施例1において、AW2-08PF3F(エプソンアトミックス社製)の量を、850質量部から500質量部に変え、SO-C2(アドマテックス社製)の量を、35質量部から52.5質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物7を調製した。
<Example 7: Preparation of resin composition 7>
In Example 1, the amount of AW2-08PF3F (manufactured by Epson Atmix) was changed from 850 parts by mass to 500 parts by mass, and the amount of SO-C2 (manufactured by Admatex) was changed from 35 parts by mass to 52.5 parts by mass. I changed it to a department. A resin composition 7 was prepared in the same manner as in Example 1 except for the above items.
<実施例8:樹脂組成物8の調製>
 実施例1において、SO-C2(アドマテックス社製)の量を、35質量部から150質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物8を調製した。
<Example 8: Preparation of resin composition 8>
In Example 1, the amount of SO-C2 (manufactured by Admatechs) was changed from 35 parts by mass to 150 parts by mass. A resin composition 8 was prepared in the same manner as in Example 1 except for the above items.
<実施例9:樹脂組成物9の調製>
 実施例1において、AW2-08PF3F(エプソンアトミックス社製)の量を、850質量部から600質量部に変え、SO-C2(アドマテックス社製)を含有させなかった。以上の事項以外は実施例1と同様にして樹脂組成物9を調製した。
<Example 9: Preparation of resin composition 9>
In Example 1, the amount of AW2-08PF3F (manufactured by Epson Atmix) was changed from 850 parts by mass to 600 parts by mass, and SO-C2 (manufactured by Admatex) was not contained. Except for the above, a resin composition 9 was prepared in the same manner as in Example 1.
<実施例10:樹脂組成物10の調製>
 実施例3において、LA-7054(フェノール系硬化剤、不揮発分60質量%、DIC社製)の量を14質量部から7質量部に変え、HPC-8000-65T(活性エステル硬化剤、不揮発分65質量%、DIC社製)7部を含有させた。以上の事項以外は実施例3と同様にして樹脂組成物10を調製した。
 調製した樹脂組成物10の表面を、走査型電子顕微鏡(SEM)を用いて測定した。樹脂組成物10の表面の拡大写真を図5に示した。
<Example 10: Preparation of resin composition 10>
In Example 3, the amount of LA-7054 (phenolic curing agent, nonvolatile content 60% by mass, manufactured by DIC) was changed from 14 parts by mass to 7 parts by mass, and HPC-8000-65T (active ester curing agent, nonvolatile content) 65 parts by mass (manufactured by DIC Corporation) was included. Except for the above, a resin composition 10 was prepared in the same manner as in Example 3.
The surface of the prepared resin composition 10 was measured using a scanning electron microscope (SEM). An enlarged photograph of the surface of the resin composition 10 is shown in FIG.
<比較例1:樹脂組成物11の調製>
 実施例1において、KS-1(ポリビニルアセタール樹脂、積水化学工業社製)の量を30質量部から100質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物11を調製した。
<Comparative Example 1: Preparation of resin composition 11>
In Example 1, the amount of KS-1 (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) was changed from 30 parts by mass to 100 parts by mass. A resin composition 11 was prepared in the same manner as in Example 1 except for the above items.
<比較例2:樹脂組成物12の調製>
 実施例1において、KS-1(ポリビニルアセタール樹脂、積水化学工業社製)30質量部を含有しなかった。以上の事項以外は実施例1と同様にして樹脂組成物12を調製した。
<Comparative Example 2: Preparation of resin composition 12>
In Example 1, 30 parts by mass of KS-1 (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) was not contained. Except for the above, a resin composition 12 was prepared in the same manner as in Example 1.
<比較例3:樹脂組成物13の調製>
 実施例1において、KS-1(ポリビニルアセタール樹脂、積水化学工業社製)の量を30質量部から5質量部に変え、AW2-08PF3F(エプソンアトミックス社製)の量を、850質量部から1800質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物13を調製した。
<Comparative Example 3: Preparation of resin composition 13>
In Example 1, the amount of KS-1 (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) was changed from 30 parts by mass to 5 parts by mass, and the amount of AW2-08PF3F (manufactured by Epson Atmix) was changed from 850 parts by mass. The amount was changed to 1800 parts by mass. Except for the above, a resin composition 13 was prepared in the same manner as in Example 1.
<比較例4:樹脂組成物14の調製>
 実施例1において、AW2-08PF3F(エプソンアトミックス社製)の量を、850質量部から250質量部に変え、SO-C2(アドマテックス社製)の量を、35質量部から52.5質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物14を調製した。
<Comparative Example 4: Preparation of resin composition 14>
In Example 1, the amount of AW2-08PF3F (manufactured by Epson Atmix) was changed from 850 parts by weight to 250 parts by weight, and the amount of SO-C2 (manufactured by Admatex) was changed from 35 parts by weight to 52.5 parts by weight. I changed it to a department. Except for the above, a resin composition 14 was prepared in the same manner as in Example 1.
<比較例5:樹脂組成物15の調製>
 実施例9において、KS-1(ポリビニルアセタール樹脂、積水化学工業社製)30質量部を、SG-P3(エポキシ基含有アクリル酸エステル共重合体樹脂、ナガセケムテックス社製、数平均分子量Mn:850000g/mol、エポキシ価0.21eq/kg、ガラス転移温度12℃、不揮発分15質量%)50質量部に変え、AW2-08PF3F(エプソンアトミックス社製)の量を、600質量部から150質量部に変えた。以上の事項以外は実施例9と同様にして樹脂組成物15を調製した。
<Comparative Example 5: Preparation of resin composition 15>
In Example 9, 30 parts by mass of KS-1 (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd.) was added to SG-P3 (epoxy group-containing acrylate copolymer resin, manufactured by Nagase ChemteX Corporation, number average molecular weight Mn: 850000 g / mol, epoxy value 0.21 eq / kg, glass transition temperature 12 ° C., non-volatile content 15% by mass) 50 parts by mass, and the amount of AW2-08PF3F (manufactured by Epson Atmix) is changed from 600 parts by mass to 150 masses I changed it to a department. Except for the above, a resin composition 15 was prepared in the same manner as in Example 9.
<比較例6:樹脂組成物16の調製>
 実施例1において、AW2-08PF3F(エプソンアトミックス社製)850質量部を、HQ(カルボニル鉄、BASF社製)500質量部に変えた。以上の事項以外は実施例1と同様にして樹脂組成物16を調製した。
<Comparative Example 6: Preparation of resin composition 16>
In Example 1, 850 parts by mass of AW2-08PF3F (manufactured by Epson Atmix) was changed to 500 parts by mass of HQ (carbonyl iron, manufactured by BASF). Except for the above, a resin composition 16 was prepared in the same manner as in Example 1.
<ラミネート性の評価>
 支持体として、ポリエチレンテレフタレート(以下「PET」という。)フィルム(厚さ38μm)を用意した。各実施例及び各比較例で作製した樹脂組成物をPETフィルム上に、乾燥後の樹脂組成物層の厚みが50μmとなるよう、ダイコーターにて均一に塗布し、70℃から120℃(平均100℃)で7分間、樹脂組成物層中の残留溶媒量が約0.4質量%となるように乾燥し、接着フィルムを得た。
<Evaluation of laminating properties>
A polyethylene terephthalate (hereinafter referred to as “PET”) film (thickness: 38 μm) was prepared as a support. The resin composition prepared in each example and each comparative example was uniformly applied on a PET film with a die coater so that the thickness of the resin composition layer after drying was 50 μm, and 70 ° C. to 120 ° C. (average) (100 ° C.) for 7 minutes so that the residual solvent amount in the resin composition layer is about 0.4% by mass to obtain an adhesive film.
 接着フィルムそれぞれを名機製作所社製のバッチ式真空加圧ラミネーター「MVLP-500」を用いて、配線板の両面にラミネートした。ラミネートは30秒間減圧して気圧を13hPa以下とし、その後100℃、押圧力を0.74MPaとして30秒間プレスすることにより行った。評価は、下記の評価基準に従って、得られた積層構造体の外観を検査することによって行った。結果を下記表に示す。
評価基準
○:配線板の回路部分にボイドが無く、接着フィルムに由来する樹脂組成物が十分にフローしている。
×:配線板の回路部分にボイドが発生しており、接着フィルムに由来する樹脂組成物のラミネート時の流動性が不足している。
Each adhesive film was laminated on both sides of the wiring board using a batch type vacuum pressure laminator “MVLP-500” manufactured by Meiki Seisakusho. Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressing force of 0.74 MPa for 30 seconds. Evaluation was performed by inspecting the appearance of the obtained laminated structure according to the following evaluation criteria. The results are shown in the table below.
Evaluation standard (circle): There is no void in the circuit part of a wiring board, and the resin composition derived from an adhesive film has flowed sufficiently.
X: Void is generated in the circuit portion of the wiring board, and the fluidity at the time of laminating the resin composition derived from the adhesive film is insufficient.
<比透磁率、磁性損失の測定>
 支持体として、フッ素樹脂系離型剤(ETFE)処理を施したPETフィルム(三菱樹脂社製「フルオロージュRL50KSE」)を用意した。各実施例及び各比較例で作製した樹脂組成物を上記PETフィルム上に、乾燥後の樹脂組成物層の厚みが50μmとなるよう、ダイコーターにて均一に塗布し、70℃から120℃(平均100℃)で7分間、樹脂組成物層中の残留溶媒量が約0.4質量%となるように乾燥し、接着フィルムを得た。得られた接着フィルムを180℃で90分間加熱することにより樹脂組成物層を熱硬化し、支持体を剥離することによりシート状の硬化体を得た。得られた硬化体を、幅5mm、長さ18mmの試験片に切断し、評価サンプルとした。この評価サンプルを、アジレントテクノロジーズ(Agilent Technologies)社製「HP8362B」(商品名)を用いて、3ターンコイル法にて測定周波数を10MHzから100MHzの範囲とし、室温23℃にて比透磁率(μ’)および磁性損失(μ’’)を測定した。また、短絡ストリップライン法にて測定周波数を100MHzから10GHzの範囲とし、室温23℃にて比透磁率(μ’)および磁性損失(μ’’)を測定した。測定周波数が10MHz、100MHz、1GHz及び3GHzである場合の比透磁率、測定周波数が10MHz及び100MHzである場合の磁性損失を下記表に示す。
<Measurement of relative permeability and magnetic loss>
As a support, a PET film ("Fluoroge RL50KSE" manufactured by Mitsubishi Plastics) treated with a fluororesin-based release agent (ETFE) was prepared. The resin composition produced in each example and each comparative example was uniformly applied on the PET film with a die coater so that the thickness of the resin composition layer after drying was 50 μm. It was dried at an average temperature of 100 ° C. for 7 minutes so that the residual solvent amount in the resin composition layer was about 0.4% by mass to obtain an adhesive film. The obtained adhesive film was heated at 180 ° C. for 90 minutes to thermally cure the resin composition layer, and the support was peeled off to obtain a sheet-like cured body. The obtained cured body was cut into a test piece having a width of 5 mm and a length of 18 mm to obtain an evaluation sample. This evaluation sample was measured using a 3-turn coil method with a measurement frequency of 10 MHz to 100 MHz using “HP 8362B” (trade name) manufactured by Agilent Technologies, and a relative permeability (μ ') And magnetic loss (μ'') were measured. In addition, the relative permeability (μ ′) and magnetic loss (μ ″) were measured at a room temperature of 23 ° C. with a measurement frequency in the range of 100 MHz to 10 GHz by the short-circuit stripline method. The relative magnetic permeability when the measurement frequency is 10 MHz, 100 MHz, 1 GHz, and 3 GHz, and the magnetic loss when the measurement frequency is 10 MHz and 100 MHz are shown in the following table.
<弾性率の測定>
 支持体として、フッ素樹脂系離型剤(ETFE)処理を施したPETフィルム(三菱樹脂社製「フルオロージュRL50KSE」)を用意した。各実施例及び各比較例で作製した樹脂組成物を上記PETフィルム上に、乾燥後の樹脂組成物層の厚みが50μmとなるよう、ダイコーターにて均一に塗布し、70℃から120℃(平均100℃)で7分間、樹脂組成物層中の残留溶媒量が約0.4質量%となるように乾燥し、接着フィルムを得た。得られた接着フィルムを180℃で90分間加熱することにより樹脂組成物層を熱硬化し、支持体を剥離することによりシート状の硬化体を得た。得られた硬化体を、日本工業規格(JIS K7127)に準拠し、テンシロン万能試験機(エー・アンド・デイ社製)を用いて引っ張り試験し、引っ張り弾性率を測定した。
<Measurement of elastic modulus>
As a support, a PET film ("Fluoroge RL50KSE" manufactured by Mitsubishi Plastics) treated with a fluororesin-based release agent (ETFE) was prepared. The resin composition produced in each example and each comparative example was uniformly applied on the PET film with a die coater so that the thickness of the resin composition layer after drying was 50 μm. It was dried at an average temperature of 100 ° C. for 7 minutes so that the residual solvent amount in the resin composition layer was about 0.4% by mass to obtain an adhesive film. The obtained adhesive film was heated at 180 ° C. for 90 minutes to thermally cure the resin composition layer, and the support was peeled off to obtain a sheet-like cured body. The obtained cured product was subjected to a tensile test using a Tensilon universal testing machine (manufactured by A & D) in accordance with Japanese Industrial Standard (JIS K7127), and the tensile modulus was measured.
<反り量の測定>
 支持体として、ポリエチレンテレフタレート(以下「PET」という。)フィルム(厚さ38μm)を用意した。各実施例及び各比較例で作製した樹脂組成物をPETフィルム上に、乾燥後の樹脂組成物層の厚みが50μmとなるよう、ダイコーターにて均一に塗布し、70℃から120℃(平均100℃)で7分間、樹脂組成物層中の残留溶媒量が約0.4質量%となるように乾燥し、接着フィルムを得た。得られた接着フィルムを100mm角に打ち抜き、支持体を剥離し、樹脂組成物層を8枚重ねた状態で、100mm角200μmのガラス布基材エポキシ樹脂両面銅張積層板であるパナソニック社製「R1515A」の片面に、名機製作所社製のバッチ式真空加圧ラミネーター「MVLP-500」を用いてラミネートした。ラミネートは30秒間減圧して気圧を13hPa以下とし、その後100℃、押圧力を0.74MPaとして30秒間プレスすることで行った。ついで、180℃30分間熱硬化し、積層構造体を得た。積層構造体を水平な台の上に置き、台から積層構造体端部まで距離を反り量とし、評価は、下記の評価基準に従って行った。
評価基準
○:反り量が7mm以上、20mm未満
×:反り量が20mm以上、もしくは6mm以下
<Measurement of warpage>
A polyethylene terephthalate (hereinafter referred to as “PET”) film (thickness: 38 μm) was prepared as a support. The resin composition prepared in each example and each comparative example was uniformly applied on a PET film with a die coater so that the thickness of the resin composition layer after drying was 50 μm, and 70 ° C. to 120 ° C. (average) (100 ° C.) for 7 minutes so that the residual solvent amount in the resin composition layer is about 0.4% by mass to obtain an adhesive film. The obtained adhesive film was punched into a 100 mm square, the support was peeled off, and eight resin composition layers were stacked, and a 100 mm square 200 μm glass cloth base epoxy resin double-sided copper-clad laminate made by Panasonic Corporation “ R1515A ”was laminated on one side using a batch type vacuum pressure laminator“ MVLP-500 ”manufactured by Meiki Seisakusho. Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressing force of 0.74 MPa for 30 seconds. Subsequently, thermosetting was performed at 180 ° C. for 30 minutes to obtain a laminated structure. The laminated structure was placed on a horizontal table, the distance from the table to the end of the laminated structure was taken as the amount of warpage, and the evaluation was performed according to the following evaluation criteria.
Evaluation criteria ○: Warpage amount is 7 mm or more and less than 20 mm ×: Warpage amount is 20 mm or more, or 6 mm or less
<難燃性の評価>
 支持体として、ポリエチレンテレフタレート(以下「PET」という。)フィルム(厚さ38μm)を用意した。各実施例及び各比較例で作製した樹脂組成物をPETフィルム上に、乾燥後の樹脂組成物層の厚みが50μmとなるよう、ダイコーターにて均一に塗布し、70℃から120℃(平均100℃)で7分間、樹脂組成物層中の残留溶媒量が約0.4質量%となるように乾燥し、接着フィルムを得た。得られた接着フィルムを、基板厚み0.2mmの銅張積層板(日立化成社製「679-FG」)の銅箔をエッチング除去した基材の両面に、バッチ式真空加圧ラミネーターMVLP-500(名機社製)を用いて、積層板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。支持体のPETフィルムを剥離後、接着フィルムを上記したラミネート条件で樹脂組成物層の両面にラミネートした。その後、PETフィルムを剥離し180℃で90分熱硬化させ、難燃試験用サンプルを得た。幅12.7mm、長さ127mmに切り出し、切り出した面を研磨機(Struers製、RotoPol-22)で研磨した。以上5個のサンプルを一組とし、UL94垂直難燃試験に従って、難燃試験を実施した。10秒間接炎後の燃え残りサンプルが5個ともある場合を「○」とし、10秒間接炎後の燃え残りサンプルがない場合は「×」とした。
<Evaluation of flame retardancy>
A polyethylene terephthalate (hereinafter referred to as “PET”) film (thickness: 38 μm) was prepared as a support. The resin composition prepared in each example and each comparative example was uniformly applied on a PET film with a die coater so that the thickness of the resin composition layer after drying was 50 μm, and 70 ° C. to 120 ° C. (average) (100 ° C.) for 7 minutes so that the residual solvent amount in the resin composition layer is about 0.4% by mass to obtain an adhesive film. A batch type vacuum pressure laminator MVLP-500 was applied to both sides of a base material from which the copper foil of a copper clad laminate (“679-FG” manufactured by Hitachi Chemical Co., Ltd.) having a substrate thickness of 0.2 mm was removed by etching. (Made by Meiki Co., Ltd.) was laminated on both sides of the laminate. Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds. After peeling off the PET film of the support, the adhesive film was laminated on both surfaces of the resin composition layer under the laminating conditions described above. Thereafter, the PET film was peeled off and thermally cured at 180 ° C. for 90 minutes to obtain a flame retardant test sample. A width of 12.7 mm and a length of 127 mm were cut out, and the cut out surface was polished with a polishing machine (manufactured by Struers, RotoPol-22). The above five samples were made into one set, and the flame retardant test was performed according to the UL94 vertical flame retardant test. The case where there were 5 unburned samples after the 10-second indirect flame was “◯”, and the case where there were no unburned samples after the 10-second indirect flame was “×”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~10は、ラミネート性、磁性損失、比透磁率、弾性率、反り量、反り試験、及び難燃性に優れていることがわかる。実施例1~10は、10MHz~200MHzの比透磁率が著しく向上しており、かつ磁性損失が低減されていることがわかる。
 実施例10の樹脂組成物は、図5に示すように、マトリックス相と分散相とからなる海島構造を形成し、(D)成分がマトリックス相側に偏在していることがわかる。(D)成分がマトリックス相側に偏在していることにより、実施例10の樹脂組成物の硬化物は比透磁率が向上していると考えられる。
It can be seen that Examples 1 to 10 are excellent in laminating properties, magnetic loss, relative magnetic permeability, elastic modulus, warpage amount, warpage test, and flame retardancy. In Examples 1 to 10, it can be seen that the relative permeability of 10 MHz to 200 MHz is remarkably improved and the magnetic loss is reduced.
As shown in FIG. 5, the resin composition of Example 10 forms a sea-island structure composed of a matrix phase and a dispersed phase, and it can be seen that the component (D) is unevenly distributed on the matrix phase side. (D) It is thought that the relative magnetic permeability of the cured product of the resin composition of Example 10 is improved because the component (D) is unevenly distributed on the matrix phase side.
 一方、弾性率が7GPa未満である比較例1、比較例4~6、弾性率が18GPaを超える比較例2~3は、ラミネート性、10MHz~200MHzの比透磁率、磁性損失、弾性率、反り量、反り試験、及び難燃性のいずれかが実施例1~10よりも悪く、樹脂組成物として使用できるものではなかった。なお、比較例1、比較例3は反り量が大きく、測定限界を超えたことから反り量を測定することができなった。また、難燃性も評価することができなかった。 On the other hand, Comparative Example 1 and Comparative Examples 4 to 6 having an elastic modulus of less than 7 GPa and Comparative Examples 2 to 3 having an elastic modulus of more than 18 GPa have laminate properties, relative magnetic permeability of 10 MHz to 200 MHz, magnetic loss, elastic modulus, warpage. Any of the amount, warpage test, and flame retardancy was worse than in Examples 1 to 10, and could not be used as a resin composition. In Comparative Examples 1 and 3, the amount of warpage was large, and the amount of warpage could not be measured because the measurement limit was exceeded. In addition, flame retardancy could not be evaluated.
 各実施例において、(E)~(F)成分を含有しない場合であっても、程度に差はあるものの上記実施例と同様の結果に帰着することを確認している。 In each example, it was confirmed that even if the components (E) to (F) were not contained, the result was the same as that of the above example although there was a difference in the degree.
 10 配線板
 20 コア基材(内層回路基板)
 20a 第1主表面
 20b 第2主表面
 22 スルーホール
 22a スルーホール内配線
 24 外部端子
 30 磁性部
 32 第1磁性層
 34 第2磁性層
 36 ビアホール
 36a ビアホール内配線
 38 第3磁性層
 40 コイル状導電性構造体
 42 第1配線層
 42a ランド
 44 第2配線層
 46 第3配線層
 50 キャリア付金属層付き基材
 51 基材
 52 キャリア付金属層
 521 第1金属層
 522 第2金属層
10 Wiring board 20 Core substrate (inner layer circuit board)
20a First main surface 20b Second main surface 22 Through hole 22a Wiring in through hole 24 External terminal 30 Magnetic part 32 First magnetic layer 34 Second magnetic layer 36 Via hole 36a Wiring in via hole 38 Third magnetic layer 40 Coiled conductivity Structure 42 First wiring layer 42a Land 44 Second wiring layer 46 Third wiring layer 50 Substrate with metal layer with carrier 51 Substrate 52 Metal layer with carrier 521 First metal layer 522 Second metal layer

Claims (25)

  1.  (A)熱硬化性樹脂、
     (B)硬化剤、
     (C)熱可塑性樹脂、及び
     (D)磁性フィラー、を含有する樹脂組成物であって、
     樹脂組成物を熱硬化させた硬化物の23℃における弾性率が7GPa以上18GPa以下である、樹脂組成物。
    (A) thermosetting resin,
    (B) a curing agent,
    A resin composition containing (C) a thermoplastic resin, and (D) a magnetic filler,
    The resin composition whose elastic modulus in 23 degreeC of the hardened | cured material which heat-cured the resin composition is 7 GPa or more and 18 GPa or less.
  2.  (D)成分の含有量が、樹脂組成物中の不揮発分を100質量%とした場合、75質量%以上95質量%未満である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the component (D) is 75% by mass or more and less than 95% by mass when the nonvolatile content in the resin composition is 100% by mass.
  3.  (E)磁性フィラー以外の無機充填材をさらに含有する、請求項1又は2に記載の樹脂組成物。 (E) The resin composition according to claim 1 or 2, further comprising an inorganic filler other than the magnetic filler.
  4.  (D)成分の含有質量をd1とし、(E)成分の含有質量をe1とした場合、e1/d1が0.02以上0.19以下である、請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein e1 / d1 is 0.02 or more and 0.19 or less, where (D) component mass is d1 and (E) component mass is e1.
  5.  樹脂組成物中の樹脂成分の含有質量をa1とし、(C)成分の含有質量をc1とした場合、(c1/a1)×100が、35以上80以下である、請求項1~4のいずれか1項に記載の樹脂組成物。 Any one of claims 1 to 4, wherein (c1 / a1) × 100 is 35 or more and 80 or less, where a1 is a content of the resin component in the resin composition and c1 is a content of the component (C). 2. The resin composition according to item 1.
  6.  (A)成分が、エポキシ樹脂である、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the component (A) is an epoxy resin.
  7.  エポキシ樹脂が、ビフェニル骨格を有するエポキシ樹脂、及び縮合環構造を有するエポキシ樹脂から選ばれる1種以上のエポキシ樹脂である、請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the epoxy resin is one or more epoxy resins selected from an epoxy resin having a biphenyl skeleton and an epoxy resin having a condensed ring structure.
  8.  (B)成分が、フェノール系硬化剤、及び活性エステル系硬化剤から選ばれる1種以上の硬化剤である、請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the component (B) is at least one curing agent selected from a phenolic curing agent and an active ester curing agent.
  9.  (C)成分が、重量平均分子量が3万以上100万以下の、フェノキシ樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、及びアクリル樹脂から選ばれる1種以上の熱可塑性樹脂である、請求項1~8のいずれか1項に記載の樹脂組成物。 The component (C) is one or more thermoplastic resins selected from phenoxy resins, polyvinyl acetal resins, butyral resins, and acrylic resins having a weight average molecular weight of 30,000 to 1,000,000. The resin composition according to any one of the above.
  10.  樹脂組成物が、マトリックス相と分散相とからなる海島構造を形成し、(D)成分がマトリックス相側に偏在している、請求項1~9のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, wherein the resin composition forms a sea-island structure composed of a matrix phase and a dispersed phase, and the component (D) is unevenly distributed on the matrix phase side.
  11.  (D)成分の平均粒径が、0.01μm以上8μm以下であり、かつ、(D)成分のアスペクト比が2以下である、請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the average particle diameter of the component (D) is 0.01 µm or more and 8 µm or less, and the aspect ratio of the component (D) is 2 or less. .
  12.  (D)成分が、Si、Al、及びCrから選ばれる1種以上の元素を含むFe合金類である、請求項1~11のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the component (D) is an Fe alloy containing one or more elements selected from Si, Al, and Cr.
  13.  (E)成分が、シリカである、請求項3~12のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 3 to 12, wherein the component (E) is silica.
  14.  樹脂組成物を熱硬化させた硬化物の、周波数100MHzにおける比透磁率が5以上である、請求項1~13のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 13, wherein a cured product obtained by thermally curing the resin composition has a relative permeability of 5 or more at a frequency of 100 MHz.
  15.  樹脂組成物を熱硬化させた硬化物の、周波数100MHzにおける磁性損失が0.05以下である、請求項1~14のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 14, wherein the cured product obtained by thermosetting the resin composition has a magnetic loss at a frequency of 100 MHz of 0.05 or less.
  16.  樹脂組成物を熱硬化させた硬化物の、周波数10MHzにおける比透磁率が5以上20以下であり、周波数100MHzにおける比透磁率が5以上20以下であり、周波数1GHzにおける比透磁率が4以上16以下であり、周波数3GHz以上における比透磁率が2以上10以下である、請求項1~15のいずれか1項に記載の樹脂組成物。 The cured product obtained by thermosetting the resin composition has a relative permeability of 5 to 20 at a frequency of 10 MHz, a relative permeability of 5 to 20 at a frequency of 100 MHz, and a relative permeability of 4 to 16 at a frequency of 1 GHz. The resin composition according to any one of claims 1 to 15, which has a relative permeability of 2 or more and 10 or less at a frequency of 3 GHz or more.
  17.  インダクタ素子を備える配線板の磁性層形成用である、請求項1~16のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 16, which is used for forming a magnetic layer of a wiring board provided with an inductor element.
  18.  インダクタ素子が機能する周波数が10~200MHzである、請求項17に記載の樹脂組成物。 The resin composition according to claim 17, wherein the frequency at which the inductor element functions is 10 to 200 MHz.
  19.  請求項1~18のいずれか1項に記載の樹脂組成物を熱硬化させた硬化物。 A cured product obtained by thermally curing the resin composition according to any one of claims 1 to 18.
  20.  支持体と、該支持体上に設けられた、請求項1~18のいずれか1項に記載の樹脂組成物で形成された樹脂組成物層を含む、接着フィルム。 An adhesive film comprising a support and a resin composition layer formed on the support and formed from the resin composition according to any one of claims 1 to 18.
  21.  請求項20に記載の接着フィルムの樹脂組成物層の硬化物である磁性層と、該磁性層に少なくとも一部分が埋め込まれた導電性構造体とを有しており、
     前記導電性構造体と、前記磁性層の厚さ方向に延在し、かつ前記導電性構造体に囲まれた前記磁性層のうちの一部分によって構成されるインダクタ素子を含む、インダクタ素子内蔵配線板。
    A magnetic layer that is a cured product of the resin composition layer of the adhesive film according to claim 20, and a conductive structure at least partially embedded in the magnetic layer,
    Inductor element built-in wiring board including the conductive element and an inductor element that extends in the thickness direction of the magnetic layer and is configured by a part of the magnetic layer surrounded by the conductive structure .
  22.  インダクタ素子が機能する周波数が10~200MHzである、請求項21に記載のインダクタ素子内蔵配線板。 The inductor element built-in wiring board according to claim 21, wherein the frequency at which the inductor element functions is 10 to 200 MHz.
  23.  請求項21又は22に記載のインダクタ素子内蔵配線板を内層基板として使用したプリント配線板。 A printed wiring board using the inductor element built-in wiring board according to claim 21 or 22 as an inner layer substrate.
  24.  請求項21又は22に記載のインダクタ素子内蔵配線板を個片化したチップインダクタ部品。 23. A chip inductor component obtained by separating the inductor element built-in wiring board according to claim 21 or 22.
  25.  請求項24に記載のチップインダクタ部品を表面実装したプリント配線板。 A printed wiring board on which the chip inductor component according to claim 24 is surface-mounted.
PCT/JP2018/016029 2017-04-19 2018-04-18 Resin composition WO2018194099A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880024025.1A CN110494493B (en) 2017-04-19 2018-04-18 Resin composition
JP2019513669A JP7287274B2 (en) 2017-04-19 2018-04-18 resin composition
KR1020197030498A KR102500417B1 (en) 2017-04-19 2018-04-18 resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-083237 2017-04-19
JP2017083237 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018194099A1 true WO2018194099A1 (en) 2018-10-25

Family

ID=63856136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016029 WO2018194099A1 (en) 2017-04-19 2018-04-18 Resin composition

Country Status (5)

Country Link
JP (1) JP7287274B2 (en)
KR (1) KR102500417B1 (en)
CN (1) CN110494493B (en)
TW (1) TWI781166B (en)
WO (1) WO2018194099A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065208A (en) * 2017-10-02 2019-04-25 味の素株式会社 Resin composition
JP2020088285A (en) * 2018-11-29 2020-06-04 味の素株式会社 Method of manufacturing substrate
WO2020175590A1 (en) * 2019-02-27 2020-09-03 味の素株式会社 Magnetic film
JP2020178096A (en) * 2019-04-22 2020-10-29 イビデン株式会社 Inductor built-in substrate
JP2020205341A (en) * 2019-06-17 2020-12-24 株式会社村田製作所 Inductor component
JP2021070795A (en) * 2019-11-01 2021-05-06 味の素株式会社 Resin composition
EP3859757A1 (en) * 2020-01-24 2021-08-04 Ajinomoto Co., Inc. Resin composition
WO2022065183A1 (en) 2020-09-24 2022-03-31 富士フイルム株式会社 Composition, magnetic particle-containing cured product, magnetic particle introduced substrate, and electronic material
CN114555739A (en) * 2019-09-30 2022-05-27 富士胶片株式会社 Adhesive sheet and electronic component
WO2023181742A1 (en) * 2022-03-22 2023-09-28 味の素株式会社 Manufacturing method for magnetic substrate
JP7387528B2 (en) 2020-04-28 2023-11-28 株式会社豊田中央研究所 Powder magnetic core and its manufacturing method
KR102658326B1 (en) 2019-04-26 2024-04-18 에스에이치피피 글로벌 테크놀러지스 비.브이. Laser-platable thermoplastic composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640567B (en) * 2020-05-29 2022-02-11 深圳顺络电子股份有限公司 Preparation method of soft magnetic alloy material and soft magnetic alloy material
CN114479417B (en) * 2020-10-27 2023-09-12 广东生益科技股份有限公司 Magneto-dielectric resin composition, prepreg comprising magneto-dielectric resin composition and copper-clad plate
CN112652434B (en) * 2020-12-28 2022-11-25 横店集团东磁股份有限公司 Thin film power inductance magnetic sheet and preparation method and application thereof
CN112967856B (en) * 2021-03-11 2022-11-08 横店集团东磁股份有限公司 Soft magnetic resin slurry and preparation method and application thereof
CN113234407A (en) * 2021-04-02 2021-08-10 广东美信科技股份有限公司 Magnetic conductive glue and preparation method thereof
CN113113223A (en) * 2021-04-13 2021-07-13 横店集团东磁股份有限公司 Soft magnetic alloy magnetic sheet and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222425A (en) * 1986-03-24 1987-09-30 Hitachi Ltd Magnetic recording medium
JP2002363382A (en) * 2001-06-08 2002-12-18 Sony Corp Semiconductor sealing resin composition and semiconductor device using the same
JP2015187260A (en) * 2014-03-11 2015-10-29 味の素株式会社 adhesive film
JP2016172790A (en) * 2015-03-16 2016-09-29 パナソニックIpマネジメント株式会社 Resin sheet, method for producing resin sheet and inductor component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050007232A1 (en) * 2003-06-12 2005-01-13 Nec Tokin Corporation Magnetic core and coil component using the same
JP2007154041A (en) * 2005-12-05 2007-06-21 Nissan Motor Co Ltd Thermosetting resin composition and foamed thermosetting resin produced by foaming and curing the composition
JP2016108561A (en) * 2014-12-04 2016-06-20 日東電工株式会社 Soft magnetic resin composition and soft magnetic film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222425A (en) * 1986-03-24 1987-09-30 Hitachi Ltd Magnetic recording medium
JP2002363382A (en) * 2001-06-08 2002-12-18 Sony Corp Semiconductor sealing resin composition and semiconductor device using the same
JP2015187260A (en) * 2014-03-11 2015-10-29 味の素株式会社 adhesive film
JP2016172790A (en) * 2015-03-16 2016-09-29 パナソニックIpマネジメント株式会社 Resin sheet, method for producing resin sheet and inductor component

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065208A (en) * 2017-10-02 2019-04-25 味の素株式会社 Resin composition
JP7031206B2 (en) 2017-10-02 2022-03-08 味の素株式会社 Resin composition
JP7222228B2 (en) 2018-11-29 2023-02-15 味の素株式会社 Substrate manufacturing method
JP2020088285A (en) * 2018-11-29 2020-06-04 味の素株式会社 Method of manufacturing substrate
WO2020175590A1 (en) * 2019-02-27 2020-09-03 味の素株式会社 Magnetic film
JP2020178096A (en) * 2019-04-22 2020-10-29 イビデン株式会社 Inductor built-in substrate
JP7368693B2 (en) 2019-04-22 2023-10-25 イビデン株式会社 Inductor built-in board
KR102658326B1 (en) 2019-04-26 2024-04-18 에스에이치피피 글로벌 테크놀러지스 비.브이. Laser-platable thermoplastic composition
JP2020205341A (en) * 2019-06-17 2020-12-24 株式会社村田製作所 Inductor component
JP7078016B2 (en) 2019-06-17 2022-05-31 株式会社村田製作所 Inductor parts
US11476036B2 (en) 2019-06-17 2022-10-18 Murata Manufacturing Co., Ltd. Inductor component
CN114555739A (en) * 2019-09-30 2022-05-27 富士胶片株式会社 Adhesive sheet and electronic component
JP7354774B2 (en) 2019-11-01 2023-10-03 味の素株式会社 resin composition
JP2021070795A (en) * 2019-11-01 2021-05-06 味の素株式会社 Resin composition
EP3859757A1 (en) * 2020-01-24 2021-08-04 Ajinomoto Co., Inc. Resin composition
JP7387528B2 (en) 2020-04-28 2023-11-28 株式会社豊田中央研究所 Powder magnetic core and its manufacturing method
WO2022065183A1 (en) 2020-09-24 2022-03-31 富士フイルム株式会社 Composition, magnetic particle-containing cured product, magnetic particle introduced substrate, and electronic material
WO2023181742A1 (en) * 2022-03-22 2023-09-28 味の素株式会社 Manufacturing method for magnetic substrate

Also Published As

Publication number Publication date
KR20190133019A (en) 2019-11-29
JPWO2018194099A1 (en) 2020-03-05
KR102500417B1 (en) 2023-02-20
JP7287274B2 (en) 2023-06-06
TWI781166B (en) 2022-10-21
TW201904759A (en) 2019-02-01
CN110494493B (en) 2022-03-11
CN110494493A (en) 2019-11-22

Similar Documents

Publication Publication Date Title
JP7287274B2 (en) resin composition
JP6492801B2 (en) Adhesive film
WO2018194100A1 (en) Resin composition
JP2022113767A (en) Method for manufacturing inductor substrate
JP6866858B2 (en) Resin composition layer
JP6350093B2 (en) Method for manufacturing component-embedded substrate and semiconductor device
JP2017103329A (en) Resin sheet
JP2017059779A (en) Method for manufacturing printed wiring board
JP2021181229A (en) Resin composition
TW202138591A (en) Magnetic composition capable of obtaining a cured product having improved relative permeability and reduced magnetic loss
JP6176294B2 (en) Resin sheet with support
JP6413444B2 (en) Resin sheet, laminated sheet, laminated board, and semiconductor device
JP2019073603A (en) Resin composition layer
JPWO2020175590A1 (en) Magnetic film
JP2021075650A (en) Resin composition
JP6776874B2 (en) Manufacturing method of printed wiring board
JP2017103332A (en) Method of manufacturing semiconductor chip package
JP2022017350A (en) Adhesive sheet with support medium
JP2021044569A (en) Support body-attached resin sheet
JP6911311B2 (en) Resin composition
JP7081323B2 (en) A method for manufacturing a cured body layer, a printed wiring board, a semiconductor device, a resin sheet, a printed wiring board, and a method for manufacturing a resin sheet.
JP6610612B2 (en) Resin sheet with support
WO2023068032A1 (en) Resin composition
JP2022060293A (en) Method for manufacturing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513669

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197030498

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787455

Country of ref document: EP

Kind code of ref document: A1