WO2018193991A1 - Container, method for producing container, and method for evaluating amorphous carbon film - Google Patents

Container, method for producing container, and method for evaluating amorphous carbon film Download PDF

Info

Publication number
WO2018193991A1
WO2018193991A1 PCT/JP2018/015568 JP2018015568W WO2018193991A1 WO 2018193991 A1 WO2018193991 A1 WO 2018193991A1 JP 2018015568 W JP2018015568 W JP 2018015568W WO 2018193991 A1 WO2018193991 A1 WO 2018193991A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous carbon
carbon film
film
titanium
container
Prior art date
Application number
PCT/JP2018/015568
Other languages
French (fr)
Japanese (ja)
Inventor
佑来 高橋
真樹 森山
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2018193991A1 publication Critical patent/WO2018193991A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present invention relates to a container, a method for manufacturing the container, and a method for evaluating an amorphous carbon film.
  • the amorphous carbon film is an amorphous hard film formed from an allotrope of hydrocarbon or carbon.
  • Patent Document 1 describes an amorphous carbon synthesis apparatus and synthesis method.
  • an amorphous carbon film having a different composition is formed on a flat substrate (substrate), and the flat substrate is used as a predetermined container. It was common to house and evaluate. However, in this case, a process such as processing the base material so as to be accommodated in the container is necessary, and the test process is complicated.
  • a container includes a base material having one or more storage parts for storing a sample, a conductive film formed on at least a part of the base material, at least a part of the conductive film, or the An amorphous carbon film formed on at least a part of the substrate, and the accommodated sample can contact the amorphous carbon film.
  • a container manufacturing method is the above-described container manufacturing method, the step of forming the conductive film on at least a part of the base material, and applying a voltage to the conductive film, Forming the amorphous carbon film by vapor deposition or chemical vapor deposition.
  • An evaluation method of an amorphous carbon film includes a step of accommodating a sample in the container described above and bringing the sample and the amorphous carbon film into contact with each other, and evaluating an interaction between the sample and the amorphous carbon film. A process.
  • (A) And (b) is a schematic diagram explaining the structure of the container which concerns on one Embodiment. It is a schematic block diagram of a filtered cathodic vacuum arc (FCVA) apparatus.
  • (A) is a graph which shows the result of having measured the cell adhesion rate in Experimental example 6.
  • FIG. (B) is a graph which shows the result of having taken out only the standard deviation of the result of (a).
  • (A) is a graph which shows the result of having measured the albumin adsorption amount in Experimental example 7.
  • FIG. (B) is a graph which shows the result of having taken out only the standard deviation of the result of (a).
  • (A) is a graph which shows the result of having measured the amount of fibrinogen adsorption in Experimental Example 8.
  • (B) is a graph which shows the result of having taken out only the standard deviation of the result of (a).
  • the container of the present embodiment includes a base material having one or more storage portions for storing a sample, a conductive film formed on at least a part of the base material, at least a part of the conductive film, or the base An amorphous carbon film formed on at least a part of the material, and the contained sample can contact the amorphous carbon film. In other words, at least a part of the amorphous carbon film is exposed in the housing portion.
  • the container of this embodiment since it is not necessary to prepare a flat base material etc. separately from a container, the test process in the case of evaluating the influence which a film composition has on cell adhesion and protein adsorptivity is simple. Further, as will be described later in the examples, by using the container of the present embodiment, for example, when evaluating the influence of the film composition of the amorphous carbon film on cell adhesion and protein adsorption, with higher measurement accuracy, It can be easily evaluated. Moreover, if the container of this embodiment is used, the cost of the cutting
  • the amorphous carbon film in this specification refers to a carbon film containing both carbon atoms of sp 2 hybrid orbitals and carbon atoms of sp 3 hybrid orbitals. Regardless of the content of carbon atoms in sp 2 hybrid orbitals and carbon atoms in sp 3 hybrid orbitals, an amorphous carbon film is referred to as containing both carbon atoms. In the present specification, when the amorphous carbon film contains titanium atoms, it is called a titanium-doped amorphous carbon film.
  • the storage unit stores a sample.
  • the sample may be a substance to be evaluated for interaction with the amorphous carbon film.
  • Examples of the sample include biological samples such as proteins and cells.
  • the shape of the housing portion is not particularly limited, and examples thereof include a concave shape.
  • the bottom of the housing part may be planar or U-shaped. More specifically, for example, shapes such as petri dishes and well plates used in biological experiments and the like can be mentioned.
  • the number of wells in the well plate is not particularly limited, and may be, for example, 6 wells, 12 wells, 24 wells, 48 wells, 96 wells, or the like.
  • the substrate 110 is made of a resin material, glass, or the like, and may be insulating. In addition, the insulating property in this specification indicates that the volume resistivity is 10 11 ( ⁇ ⁇ cm) or more.
  • the conductive film 120 may be formed on at least a part of the substrate 110 so that a bias voltage can be applied.
  • the conductive film 120 is not particularly limited as long as a bias voltage can be applied, and examples thereof include a titanium film, a chromium film, and a tantalum film.
  • the film thickness of the conductive film may be about 50 to 100 nm.
  • the term “conductivity” means that the volume resistivity is approximately 10 ⁇ 4 ( ⁇ ⁇ cm) or less.
  • FIGS. 1A and 1B are schematic views for explaining the structure of a container according to an embodiment.
  • the container 100 is formed on a base material 110 having an accommodating portion, a conductive film 120 formed on at least a part of the base material 110, and at least a part of the conductive film 120.
  • the amorphous carbon film 130 is provided.
  • each accommodating part is connected via the base material 110.
  • the film thickness of the amorphous carbon film 130 may be about 10 to 20 nm.
  • the amorphous carbon film 130 may be disposed at a position where the sample accommodated in the accommodating portion comes into contact with the amorphous carbon film 130.
  • the amorphous carbon film 130 may be formed in a region including at least a part of the bottom of the housing portion.
  • the bottom part of a storage part means the area
  • a substrate 110, a conductive film 120, and an amorphous carbon film 130 are laminated in this order.
  • the order of arrangement of the base 110, the conductive film 120, and the amorphous carbon film 130 is not limited to this, and for example, as shown in FIG. 1B, the conductive film 120, the base 110, The amorphous carbon film 130 may be laminated in this order.
  • the conductive film 120 only needs to be disposed at a position where a bias voltage can be applied to the substrate 110. For this reason, as shown to Fig.1 (a), the electroconductive film 120 may be arrange
  • the amorphous carbon film 130 is formed on the substrate 110 or the conductive film 120 by a PVD method (physical vapor deposition method) or a CVD method (chemical vapor deposition method) using a carbon raw material as a raw material target.
  • a PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • Examples of the PVD method include an ion beam deposition method, an ion beam sputtering method, a magnetron sputtering method, a laser deposition method, a laser sputtering method, an arc ion plating method, and a filtered cathodic vacuum arc (FCVA) method.
  • the CVD method include a microwave plasma CVD method, a direct current plasma CVD method, a high frequency plasma CVD method, and a magnetic field plasma CVD method.
  • the FCVA method is preferable because it is a film forming method capable of uniformly coating with high adhesive force even at room temperature.
  • the FCVA method is a film forming method in which ionized particles are generated by causing arc discharge to a raw material target, and only the particles are guided on the substrate 110 or the conductive film 120 to form a film.
  • FIG. 2 is a schematic configuration diagram of the FCVA device 200.
  • an arc plasma generation chamber 201 in which a raw material target 202 is installed and a film formation chamber 206 are connected by a spatial filter 205.
  • the film forming chamber 206 includes a substrate holder 207 therein.
  • the base material holder 207 fixes the base material 110, and can tilt the base material 110 in the ⁇ X direction or rotate it in the ⁇ Y direction by a driving means (not shown).
  • the spatial filter 205 is double-bended in the ⁇ X axis direction and the Y axis direction.
  • An electromagnet coil 203 is wound around the spatial filter 205, and an ion scan coil 204 is wound near the communication portion with the film forming chamber 206.
  • the amorphous carbon film 130 can be formed by using a carbon raw material such as a graphite target as a raw material target.
  • the amorphous carbon film 130 doped with metal can be formed by using a target such as a graphite sintered body containing metal as a raw material target.
  • the titanium-doped amorphous carbon film 130 can be formed by using TiC as a raw material target.
  • the doped metal is not limited to Ti, but Na, K, Ca, B, Mg, Cu, Sr, Ba, Zn, Hf, Al, Zr, Fe, Co, Ni, V, Cr, Mo, W, Mn, Re, Ag, Au, Pt, Nb, Ta, or an alloy of two or more of these metals can be used.
  • it is not restricted to a metal You may dope semiconductor materials, such as Si, H, N, F, etc.
  • the ratio of the number of titanium atoms to the number of carbon atoms in the film may be about 2 to 30 atomic%.
  • is represented by the following formula (1).
  • ⁇ (atomic%) (Ti atom number) / ⁇ (sp 2 ⁇ C atom number) + (sp 3 ⁇ C atom number) ⁇ ⁇ 100 (1)
  • (Ti atom number) represents the number of Ti atoms in the amorphous carbon film
  • (sp 2 -C atom number) represents the number of carbon atoms in the sp 2 hybrid orbital in the amorphous carbon film
  • (sp 3 -C atom number) represents the number of carbon atoms in the sp 3 hybrid orbital in the amorphous carbon film.
  • an arc discharge is generated by applying a DC voltage to the target 202 in the arc plasma generation chamber 201 to generate arc plasma.
  • Neutral particles, C + ions, Ti + ions, Ti 2+ ions, Ti 3+ ions, Ti 4+ ions, and other ions in the generated arc plasma are transported to the spatial filter 205 and pass through the spatial filter 205.
  • the neutral particles are trapped by the electromagnet coil 203, and only C + ions, Ti + ions, Ti 2+ ions, Ti 3+ ions, Ti 4+ ions, and other ions are guided into the deposition chamber 206.
  • the ion scan coil 204 can move the flight direction of the ion flow in an arbitrary direction.
  • a negative bias voltage is applied to the conductive film 120 in the film formation chamber 206.
  • C + ions, Ti + ions, Ti 2+ ions, Ti 3+ ions, Ti 4+ ions, and other ions ionized by arc discharge are accelerated by a bias voltage and are deposited on the substrate 110 as a dense film.
  • the amorphous carbon film 130 thus formed is a solid film composed of carbon atoms, and is roughly classified into carbon atoms having sp 2 hybrid orbitals and carbon atoms having sp 3 hybrid orbitals.
  • the content of carbon atoms in the sp 2 hybrid orbital and sp 3 hybrid orbit in the amorphous carbon film 130 and the titanium-doped amorphous carbon film 130 is controlled by adjusting the bias voltage at the time of film formation. can do.
  • the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbital in the amorphous carbon film is 15 to 85 atoms. %.
  • the ratio of the number of atoms can be 40 atomic% or less.
  • is the following formula: It is represented by (2).
  • ⁇ (atomic%) (number of sp 3 -C atoms) / ⁇ (number of sp 2 -C atoms) + (number of sp 3 -C atoms) ⁇ ⁇ 100 (2)
  • (sp 2 -C atom number) represents the carbon atom number of sp 2 hybrid orbital in the amorphous carbon film
  • (sp 3 -C atom number) represents the sp 3 hybrid orbital in the amorphous carbon film. Represents the number of carbon atoms.
  • ⁇ (atomic%) (number of sp 3 -C atoms) / ⁇ (number of sp 2 -C atoms) + (number of sp 3 -C atoms) + (number of Ti atoms) ⁇ ⁇ 100 (3)
  • (sp 2 -C atom number) represents the carbon atom number of sp 2 hybrid orbital in the amorphous carbon film
  • (sp 3 -C atom number) represents the sp 3 hybrid orbital in the amorphous carbon film.
  • Ti atom number represents the number of Ti atoms in the amorphous carbon film.
  • a functional group such as a hydroxyl group or a carboxyl group may be formed on the surface of the amorphous carbon film 130.
  • the amorphous carbon film 130 formed by the FCVA method or the like has a pure water contact angle measured by the droplet method of about 50 ° regardless of the number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbital. That's it.
  • the contact angle of pure water can be reduced.
  • the degree of decrease in the contact angle of pure water varies depending on the amount of the functional group to be formed, and can be adjusted to, for example, 10 ° or less, for example, 5 ° or less, for example, 4 ° or less.
  • the method for forming the functional group on the amorphous carbon film 130 is not particularly limited, and can be performed, for example, by irradiating the amorphous carbon film 130 with light including ultraviolet rays.
  • the wavelength of ultraviolet light and the amount of ultraviolet light irradiation can be adjusted as appropriate, and examples include conditions of irradiating light containing ultraviolet light having a wavelength of 185 nm for about 20 minutes. At this time, for example, the irradiated light may include ultraviolet rays having a wavelength of 254 nm or the like.
  • amorphous carbon film 130 is a titanium-doped amorphous carbon film, and a functional group such as a hydroxyl group or a carboxyl group may be formed.
  • the contact angle of pure water measured by the droplet method is approximately 60 ° or more when the ratio of the number of titanium atoms to the number of carbon atoms is 2 atom% or more. .
  • the contact angle of pure water can be reduced.
  • the degree of decrease in the contact angle of pure water varies depending on the amount of the functional group to be formed, and can be adjusted to, for example, 10 ° or less, for example, 5 ° or less, for example, 4 ° or less.
  • the method for forming the functional group on the titanium-doped amorphous carbon film 130 is not particularly limited, and can be performed, for example, by irradiating the titanium-doped amorphous carbon film 130 with light containing ultraviolet rays.
  • the wavelength of ultraviolet light and the amount of ultraviolet light irradiation can be adjusted as appropriate, and examples include conditions of irradiating light containing ultraviolet light having a wavelength of 185 nm for about 20 minutes.
  • amorphous carbon film 130 is deposited, for example, when the ratio of the number of carbon atoms of the sp 3 hybrid orbital to the total number of carbon atoms of the carbon atoms and sp 3 hybrid orbital of sp 2 hybrid orbital is 50 to 85 atomic%,
  • the amorphous carbon film 130 has a high film stress and tends to peel off.
  • an intermediate layer having a low film stress may be formed between the amorphous carbon film 130 and the conductive film 120 or between the amorphous carbon film 130 and the substrate 110.
  • the thickness of the intermediate layer is suitably about 30 to 40 nm.
  • an amorphous carbon film having a low film stress can be used as the intermediate layer.
  • the amorphous carbon film in which the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbit is 15 atomic% or more and less than 50 atomic% is a film stress.
  • a titanium-doped amorphous carbon film is also suitable as the intermediate layer.
  • the film stress tends to be smaller. Therefore, further improvement in adhesion can be expected by using a titanium-doped amorphous carbon film.
  • the manufacturing method of the container of this embodiment is the manufacturing method of the container mentioned above, the step of forming the conductive film 120 on at least a part of the base material, the voltage is applied to the conductive film 120, and the physical vapor deposition is performed. Forming an amorphous carbon film 130 by a chemical vapor deposition method or a chemical vapor deposition method.
  • the physical vapor deposition method for forming the amorphous carbon film 130 may be an FCVA method.
  • the manufacturing method of the present embodiment can be preferably implemented by the FCVA apparatus described above.
  • the substrate 110 is insulative, it is difficult to form the amorphous carbon film 130 by the FCVA method because a bias voltage cannot be applied.
  • an amorphous carbon film can be suitably formed by the FCVA method even if the base material 110 has insulating properties.
  • the position where the amorphous carbon film 130 is formed differs depending on the arrangement of the conductive film 120.
  • a bias voltage is applied to the conductive film 120 to form amorphous carbon.
  • the amorphous carbon film 130 is formed on at least a part of the conductive film 120.
  • a bias voltage is applied to the conductive film 120 to form an amorphous film.
  • the amorphous carbon film 130 is formed on at least a part of the substrate 110. In other words, the amorphous carbon film is formed on the other surface side of the substrate.
  • the method for evaluating an amorphous carbon film includes a step of storing a sample in the container described above and bringing the sample and the amorphous carbon film into contact with each other, and a step of evaluating an interaction between the sample and the amorphous carbon film. And comprising.
  • the sample is a substance to be evaluated for interaction with the amorphous carbon film.
  • the sample include biological samples such as proteins and cells.
  • Evaluation of the interaction between the sample and the amorphous carbon film can be performed by an evaluation method appropriately selected according to the target evaluation content. For example, when cell adhesion to an amorphous carbon film is evaluated, the cell can be contacted with the amorphous carbon film, and then the number of cells adhered to the amorphous carbon film can be measured.
  • the protein when evaluating protein adsorption to the amorphous carbon film, the protein can be brought into contact with the amorphous carbon film, and then the amount of protein adhered to the amorphous carbon film can be measured.
  • the evaluation method of the present embodiment can evaluate the influence of the film composition of the amorphous carbon film on cell adhesion and protein adsorption more easily with higher measurement accuracy.
  • Example 1 Manufacture of containers
  • a 24-well plate for cell culture made of polystyrene was processed to produce a container.
  • titanium was deposited on the surface of a 24-well plate to impart conductivity.
  • the thickness of the titanium film was 100 nm.
  • polystyrene is insulative, a voltage can be applied using a conductive titanium film.
  • an amorphous carbon film was obtained in which the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbital was 50 to 85 atomic%.
  • the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbit in the amorphous carbon film can be controlled by adjusting the bias voltage during film formation,
  • this experiment confirmed that an amorphous carbon film can be formed on an insulating container.
  • the influence of the film composition on cell adhesion and protein adsorption can be more easily evaluated.
  • a polystyrene base material cut to about 1 cm ⁇ 1 cm was fixed to the well bottom of a 24-well plate similar to Experimental Example 1 with a conductive tape. Subsequently, a titanium film was formed on this substrate. The thickness of the titanium film was 100 nm.
  • an amorphous carbon film was formed on the formed titanium film by the FCVA method.
  • the conditions of the FCVA apparatus were an arc current value of 40 A and a base material bias of ⁇ 66 V.
  • Example 3 (Examination of film composition of amorphous carbon film 2)
  • an amorphous carbon film was formed on the titanium film formed on the 24-well plate by the FCVA method.
  • the conditions for the FCVA apparatus were an arc current value of 40 A and a base material bias of ⁇ 1980 V.
  • the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbital on the surface of the formed amorphous carbon film was measured by XPS measurement. As a result, it was 57 atomic% at the end of the 24-well plate (position of the well A1) and 57 atomic% near the center of the 24-well plate (position of the well B4). Further, the uniformity calculated by the above formula (4) was calculated to be 0%.
  • Example 4 (Examination of film composition of titanium-doped amorphous carbon film 1) A titanium-doped amorphous carbon film was formed on a titanium film formed on a 24-well plate in the same manner as in Experimental Example 2 by the FCVA method using a carbon target containing 4.0 atomic% titanium as a raw material.
  • the conditions of the FCVA apparatus were an arc current value of 60 A and a base material bias of 0 V.
  • the ratio of the number of titanium atoms to the number of carbon atoms on the surface of the titanium-doped amorphous carbon film was measured by Rutherford backscattering spectroscopy (RBS) measurement.
  • the ratio of the number of titanium atoms to the number of carbon atoms is 23.9 to 26.6 atomic% at the end of the 24-well plate (positions of wells A1, A6, D1, and D6). In the vicinity (positions of wells B4, B5, C2, and C4), it was 23.9 to 25.3 atomic%.
  • Example 5 (Investigation of film composition of titanium-doped amorphous carbon film 2) A titanium-doped amorphous carbon film was formed on a titanium film formed on a 24-well plate in the same manner as in Experimental Example 2 in the same manner as in Experimental Example 4.
  • the conditions of the FCVA apparatus were an arc current value of 60 A and a base material bias of ⁇ 1980 V.
  • the ratio of the number of titanium atoms to the number of carbon atoms on the surface of the titanium-doped amorphous carbon film was measured by RBS measurement.
  • the ratio of the number of titanium atoms to the number of carbon atoms is 23.8 to 26.4 atomic% at the end of the 24-well plate (positions of wells A1, A6, D1, and D6), and the center of the 24-well plate In the vicinity (position of well C4), it was 27.1 atomic%. Further, the uniformity calculated by the above formula (5) was calculated to be 6.5%.
  • Ti / C (at%) represents the ratio of the number of titanium atoms to the number of carbon atoms (atomic%).
  • Sp 2 -C (at%) in the case of amorphous carbon, sp 2 carbon atoms hybrid orbitals and sp 3 ratio of the number of carbon atoms of the sp 2 hybrid orbital to the total number of carbon atoms of the hybrid orbitals (atomic%
  • titanium-doped amorphous carbon the number of carbon atoms in the sp 2 hybrid orbital, the number of carbon atoms in the sp 3 hybrid orbital, and the ratio of the number of carbon atoms in the sp 2 hybrid orbital to the total number of titanium atoms (atomic%) Represents.
  • Sp 3 -C (at%) in the case of amorphous carbon, sp 2 carbon atoms hybrid orbitals and sp 3 ratio of the number of carbon atoms of the sp 3 hybrid orbital to the total number of carbon atoms of the hybrid orbitals (atomic% ) represents the case of titanium-doped amorphous carbon, sp 2 hybrid orbital of carbon atoms, sp 3 carbon atoms hybrid orbitals, and the ratio of the number of carbon atoms of the sp 3 hybrid orbital to the total number of titanium atoms (atomic%) Represents.
  • HUVECs were seeded at 5 ⁇ 10 4 cells / well in each sample container well, and cultured in an environment of 37 ° C. and 5% CO 2 for 24 ⁇ 2 hours. Subsequently, the cells in each well were fixed, the nucleus was stained, and observed with a fluorescence microscope to measure the cell adhesion rate.
  • each plate substrate as a control material was placed in a well of a cell culture plate, seeded with 5 ⁇ 10 4 HUVECs / well, and cultured at 37 ° C. for 24 ⁇ 2 hours. Subsequently, the cells in each well were fixed, the nucleus was stained, and observed with a fluorescence microscope to measure the cell adhesion rate.
  • FIG. 3A is a graph showing the results of measuring cell adhesion rates for each sample and control material. The graph represents a relative value in which the cell adhesion rate is 100% when HUVEC is seeded on a culture plate on which amorphous carbon is not formed.
  • FIG. 3B is a graph showing the result of taking out only the standard deviation of the result of FIG.
  • Example 7 (Albumin adsorption test) A protein adsorption test was performed using a container in which an amorphous carbon film was formed on the inner surface of a well of a 24-well plate as a sample. Albumin was used as the protein. Further, as a control material, an amorphous carbon film formed on a stainless steel (SUS316L) flat plate base material was used. As the amorphous carbon film, seven types of films similar to those used in Experimental Example 6 were used.
  • a phosphate buffer (PBS) solution containing albumin (30 mg / mL) was placed in the well of each sample container, and allowed to stand in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours. Subsequently, the PBS solution was removed and washed with pure water (500 ⁇ L) to remove unadsorbed albumin. Subsequently, a surfactant solution (PBS containing 2% Triton-X) was added, and the albumin adsorbed on the amorphous carbon film was peeled off by shaking at 37 ° C. for 30 minutes. Subsequently, the surfactant solution was recovered, and the amount of adsorbed albumin was quantified by the BCA method.
  • PBS phosphate buffer
  • each flat substrate is a control material, placed in cell culture plate wells placed PBS solution containing albumin (30mg / mL), CO 2 incubator (37 °C, 5% CO 2 ) 24 hours in static I put it. Subsequently, the PBS solution was removed and washed with pure water (500 ⁇ L) to remove unadsorbed albumin. Subsequently, each plate base material was transferred to each well of a new cell culture well plate, and washed with pure water again to remove unadsorbed albumin.
  • a surfactant solution (PBS containing 2% Triton-X) was added, and the albumin adsorbed on the amorphous carbon film was peeled off by shaking at 37 ° C. for 30 minutes. Subsequently, the surfactant solution was recovered, and the amount of adsorbed albumin was quantified by the BCA method.
  • FIG. 4A is a graph showing the results of measuring the amount of albumin adsorbed on each sample and control material.
  • FIG. 4B is a graph showing the result of extracting only the standard deviation of the result of FIG.
  • Example 8 Fibrinogen adsorption test
  • a protein using a container in which an amorphous carbon film was formed on the inner surface of a well of a 24-well plate as a sample, except that fibrinogen at a concentration of 3 mg / mL was used instead of albumin as a protein.
  • An adsorption test was performed.
  • an amorphous carbon film formed on a stainless steel (SUS316L) flat plate base material was used as the amorphous carbon film.
  • SUS316L stainless steel
  • FIG. 5 (a) is a graph showing the results of measuring the amount of adsorbed fibrinogen for each sample and control material.
  • FIG. 4B is a graph showing the result of extracting only the standard deviation of the result of FIG.
  • the fibrinogen adsorption test can be performed without problems even when a container formed with amorphous carbon is used.
  • the standard deviation of the measured fibrinogen adsorption amount tended to be smaller than that of the control material. This result further supports that it is possible to obtain an experimental result with small variations and improved measurement accuracy by using a container formed with amorphous carbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

A container which comprises: a base material that has one or more containing parts, in each of which a sample is to be contained; a conductive film that is formed on at least a part of the base material; and an amorphous carbon film that is formed on at least a part of the conductive film or on at least a part of the base material. At least a part of the amorphous carbon film is exposed to the inside of the containing parts.

Description

容器、容器の製造方法及びアモルファスカーボン膜の評価方法Container, container manufacturing method, and amorphous carbon film evaluation method
 本発明は、容器、容器の製造方法及びアモルファスカーボン膜の評価方法に関する。
本願は、2017年4月21日に日本に出願された特願2017-084213号に基づき優先権を主張し、それらの内容をここに援用する。
The present invention relates to a container, a method for manufacturing the container, and a method for evaluating an amorphous carbon film.
This application claims priority based on Japanese Patent Application No. 2017-084213 filed in Japan on April 21, 2017, the contents of which are incorporated herein by reference.
 アモルファスカーボン膜は、炭化水素又は炭素の同素体から形成された非晶質の硬質膜である。例えば、特許文献1には、アモルファスカーボンの合成装置及び合成方法が記載されている。 The amorphous carbon film is an amorphous hard film formed from an allotrope of hydrocarbon or carbon. For example, Patent Document 1 describes an amorphous carbon synthesis apparatus and synthesis method.
 従来、アモルファスカーボン膜の膜組成が細胞接着やタンパク質吸着に与える影響を評価する場合には、平板基材(基板)に組成の異なるアモルファスカーボン膜を成膜し、その平板基材を所定の容器に収容して評価することが一般的であった。しかし、この場合、容器に収容可能なように基材を加工する等の工程が必要であり、試験工程が煩雑である。 Conventionally, when evaluating the influence of the composition of an amorphous carbon film on cell adhesion or protein adsorption, an amorphous carbon film having a different composition is formed on a flat substrate (substrate), and the flat substrate is used as a predetermined container. It was common to house and evaluate. However, in this case, a process such as processing the base material so as to be accommodated in the container is necessary, and the test process is complicated.
特開平8-12492号公報JP-A-8-12492
 一実施形態に係る容器は、試料を収容する収容部を1つ以上有する基材と、前記基材の少なくとも一部に形成された導電性膜と、前記導電性膜の少なくとも一部、又は前記基材の少なくとも一部に形成されたアモルファスカーボン膜と、を備え、収容された前記試料が前記アモルファスカーボン膜に接触可能である。 A container according to an embodiment includes a base material having one or more storage parts for storing a sample, a conductive film formed on at least a part of the base material, at least a part of the conductive film, or the An amorphous carbon film formed on at least a part of the substrate, and the accommodated sample can contact the amorphous carbon film.
 一実施形態に係る容器の製造方法は、上述した容器の製造方法であって、前記基材の少なくとも一部に前記導電性膜を形成する工程と、前記導電性膜に電圧を印加し、物理気相成長法又は化学気相成長法により前記アモルファスカーボン膜を形成する工程と、を備える。 A container manufacturing method according to an embodiment is the above-described container manufacturing method, the step of forming the conductive film on at least a part of the base material, and applying a voltage to the conductive film, Forming the amorphous carbon film by vapor deposition or chemical vapor deposition.
 一実施形態に係るアモルファスカーボン膜の評価方法は、上述した容器に試料を収容して前記試料と前記アモルファスカーボン膜とを接触させる工程と、前記試料と前記アモルファスカーボン膜との相互作用を評価する工程と、を備える。 An evaluation method of an amorphous carbon film according to an embodiment includes a step of accommodating a sample in the container described above and bringing the sample and the amorphous carbon film into contact with each other, and evaluating an interaction between the sample and the amorphous carbon film. A process.
(a)及び(b)は、一実施形態に係る容器の構造を説明する模式図である。(A) And (b) is a schematic diagram explaining the structure of the container which concerns on one Embodiment. フィルタードカソーディックバキュームアーク(FCVA)装置の概略構成図である。It is a schematic block diagram of a filtered cathodic vacuum arc (FCVA) apparatus. (a)は、実験例6において細胞接着率を測定した結果を示すグラフである。(b)は、(a)の結果の標準偏差のみを取り出した結果を示すグラフである。(A) is a graph which shows the result of having measured the cell adhesion rate in Experimental example 6. FIG. (B) is a graph which shows the result of having taken out only the standard deviation of the result of (a). (a)は、実験例7においてアルブミン吸着量を測定した結果を示すグラフである。(b)は、(a)の結果の標準偏差のみを取り出した結果を示すグラフである。(A) is a graph which shows the result of having measured the albumin adsorption amount in Experimental example 7. FIG. (B) is a graph which shows the result of having taken out only the standard deviation of the result of (a). (a)は、実験例8においてフィブリノーゲン吸着量を測定した結果を示すグラフである。(b)は、(a)の結果の標準偏差のみを取り出した結果を示すグラフである。(A) is a graph which shows the result of having measured the amount of fibrinogen adsorption in Experimental Example 8. (B) is a graph which shows the result of having taken out only the standard deviation of the result of (a).
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。なお、各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same or corresponding reference numerals, and redundant description is omitted. Note that the dimensional ratio in each drawing is exaggerated for the sake of explanation, and does not necessarily match the actual dimensional ratio.
[容器]
 本実施形態の容器は、試料を収容する収容部を1つ以上有する基材と、前記基材の少なくとも一部に形成された導電性膜と、前記導電性膜の少なくとも一部、又は前記基材の少なくとも一部に形成されたアモルファスカーボン膜と、を備え、収容された前記試料が前記アモルファスカーボン膜に接触可能である。いいかえると、前記アモルファスカーボン膜の少なくとも一部は、前記収容部内に露出している。
[container]
The container of the present embodiment includes a base material having one or more storage portions for storing a sample, a conductive film formed on at least a part of the base material, at least a part of the conductive film, or the base An amorphous carbon film formed on at least a part of the material, and the contained sample can contact the amorphous carbon film. In other words, at least a part of the amorphous carbon film is exposed in the housing portion.
 本実施形態の容器を用いれば、容器とは別に平板基材等を準備する必要がないため、膜組成が細胞接着やタンパク質吸着性に与える影響を評価する場合の試験工程が簡便である。また、実施例において後述するように、本実施形態の容器を用いることにより、例えば、アモルファスカーボン膜の膜組成が細胞接着やタンパク質吸着に与える影響を評価する場合に、より高い測定精度で、より簡便に評価することができる。また、本実施形態の容器を用いれば、従来必要であった基材の切断や研磨等のコストを低減することができる。なお、本明細書におけるアモルファスカーボン膜とは、sp混成軌道の炭素原子とsp混成軌道の炭素原子の両方を含むカーボン膜のことである。sp混成軌道の炭素原子とsp混成軌道の炭素原子の含有量によらず、両方の炭素原子を含んでいればアモルファスカーボン膜と呼ぶ。また、本明細書では、上記アモルファスカーボン膜がチタン原子を含んでいる場合に、チタンドープアモルファスカーボン膜と呼ぶ。 If the container of this embodiment is used, since it is not necessary to prepare a flat base material etc. separately from a container, the test process in the case of evaluating the influence which a film composition has on cell adhesion and protein adsorptivity is simple. Further, as will be described later in the examples, by using the container of the present embodiment, for example, when evaluating the influence of the film composition of the amorphous carbon film on cell adhesion and protein adsorption, with higher measurement accuracy, It can be easily evaluated. Moreover, if the container of this embodiment is used, the cost of the cutting | disconnection of a base material, grinding | polishing, etc. which were conventionally required can be reduced. Note that the amorphous carbon film in this specification refers to a carbon film containing both carbon atoms of sp 2 hybrid orbitals and carbon atoms of sp 3 hybrid orbitals. Regardless of the content of carbon atoms in sp 2 hybrid orbitals and carbon atoms in sp 3 hybrid orbitals, an amorphous carbon film is referred to as containing both carbon atoms. In the present specification, when the amorphous carbon film contains titanium atoms, it is called a titanium-doped amorphous carbon film.
 本実施形態の容器において、収容部は、試料を収容するものである。試料は、アモルファスカーボン膜との相互作用を評価する対象となる物質であってよい。試料としては、例えば、タンパク質、細胞等の生体試料が挙げられる。 In the container of the present embodiment, the storage unit stores a sample. The sample may be a substance to be evaluated for interaction with the amorphous carbon film. Examples of the sample include biological samples such as proteins and cells.
 収容部の形状は特に限定されず、例えば凹部形状等の形状が挙げられる。例えば、収容部の底部は平面状であってよいし、U字形状であってもよい。より具体的には、例えば、生物実験等で用いられる、シャーレ、ウェルプレート等の形状が挙げられる。ウェルプレートのウェル数は特に限定されず、例えば、6ウェル、12ウェル、24ウェル、48ウェル、96ウェル等であってもよい。基材110は、樹脂材料やガラス等で形成されており、絶縁性であってもよい。なお、本明細書における絶縁性とは、体積抵抗率が1011(Ω・cm)以上であることを示す。 The shape of the housing portion is not particularly limited, and examples thereof include a concave shape. For example, the bottom of the housing part may be planar or U-shaped. More specifically, for example, shapes such as petri dishes and well plates used in biological experiments and the like can be mentioned. The number of wells in the well plate is not particularly limited, and may be, for example, 6 wells, 12 wells, 24 wells, 48 wells, 96 wells, or the like. The substrate 110 is made of a resin material, glass, or the like, and may be insulating. In addition, the insulating property in this specification indicates that the volume resistivity is 10 11 (Ω · cm) or more.
 後述するように、アモルファスカーボン膜を基材110上に成膜するためには、基材にバイアス電圧を印加することが好ましい。しかしながら、基材110が絶縁性である場合には、バイアス電圧を印加することができない。このような場合には、基材110の少なくとも一部に導電性膜120を形成し、バイアス電圧を印加することを可能にすればよい。導電性膜120は、バイアス電圧を印加することができれば特に制限されず、例えばチタン膜、クロム膜、タンタル膜等が挙げられる。導電性膜の膜厚は、50~100nm程度であってよい。なお、本明細書における導電性とは、体積抵抗率が概ね10-4(Ω・cm)以下であることを示す。 As will be described later, in order to form an amorphous carbon film on the substrate 110, it is preferable to apply a bias voltage to the substrate. However, when the substrate 110 is insulative, a bias voltage cannot be applied. In such a case, the conductive film 120 may be formed on at least a part of the substrate 110 so that a bias voltage can be applied. The conductive film 120 is not particularly limited as long as a bias voltage can be applied, and examples thereof include a titanium film, a chromium film, and a tantalum film. The film thickness of the conductive film may be about 50 to 100 nm. In this specification, the term “conductivity” means that the volume resistivity is approximately 10 −4 (Ω · cm) or less.
 図1(a)及び(b)は、一実施形態に係る容器の構造を説明する模式図である。図1(a)に示すように、容器100は、収容部を有する基材110と、基材110の少なくとも一部に形成された導電性膜120と、導電性膜120の少なくとも一部に形成されたアモルファスカーボン膜130と、を備える。また、各収容部は、基材110を介して連結している。アモルファスカーボン膜130の膜厚は10~20nm程度であってよい。 FIGS. 1A and 1B are schematic views for explaining the structure of a container according to an embodiment. As shown in FIG. 1A, the container 100 is formed on a base material 110 having an accommodating portion, a conductive film 120 formed on at least a part of the base material 110, and at least a part of the conductive film 120. The amorphous carbon film 130 is provided. Moreover, each accommodating part is connected via the base material 110. The film thickness of the amorphous carbon film 130 may be about 10 to 20 nm.
 アモルファスカーボン膜130は、収容部に収容された試料が、アモルファスカーボン膜130と接触する位置に配置されていればよい。例えば、アモルファスカーボン膜130は、収容部の底部の少なくとも一部を含む領域に形成されていてもよい。本明細書において、収容部の底部とは、収容部のうち、試料を収容部に収容した場合に試料が接触する領域をいう。すなわち、アモルファスカーボン膜130は、収容部の底部の少なくとも一部を含む領域に形成されていてもよい。 The amorphous carbon film 130 may be disposed at a position where the sample accommodated in the accommodating portion comes into contact with the amorphous carbon film 130. For example, the amorphous carbon film 130 may be formed in a region including at least a part of the bottom of the housing portion. In this specification, the bottom part of a storage part means the area | region where a sample contacts, when a sample is stored in a storage part among storage parts. That is, the amorphous carbon film 130 may be formed in a region including at least a part of the bottom portion of the housing portion.
 図1(a)では、基材110と、導電性膜120と、アモルファスカーボン膜130とがこの順に積層されている。しかしながら、基材110と、導電性膜120と、アモルファスカーボン膜130の配置の順序はこれに限定されず、例えば、図1(b)に示すように、導電性膜120と、基材110と、アモルファスカーボン膜130とがこの順に積層されていてもよい。 In FIG. 1A, a substrate 110, a conductive film 120, and an amorphous carbon film 130 are laminated in this order. However, the order of arrangement of the base 110, the conductive film 120, and the amorphous carbon film 130 is not limited to this, and for example, as shown in FIG. 1B, the conductive film 120, the base 110, The amorphous carbon film 130 may be laminated in this order.
 導電性膜120は、基材110にバイアス電圧を印加することができる位置に配置されていればよい。このため、図1(a)に示すように、導電性膜120は、基材110上の、アモルファスカーボン膜130が形成される面上に配置されていてもよい。あるいは、図1(b)に示すように、導電性膜120は、基材110上の、アモルファスカーボン膜130が形成される面とは反対側の面上に配置されていてもよい。 The conductive film 120 only needs to be disposed at a position where a bias voltage can be applied to the substrate 110. For this reason, as shown to Fig.1 (a), the electroconductive film 120 may be arrange | positioned on the surface on the base material 110 in which the amorphous carbon film 130 is formed. Alternatively, as shown in FIG. 1B, the conductive film 120 may be disposed on the surface of the base 110 opposite to the surface on which the amorphous carbon film 130 is formed.
《アモルファスカーボン膜》
 ここで、アモルファスカーボン膜130について説明する。アモルファスカーボン膜130は、炭素原料を原料ターゲットに用いて、PVD法(物理気相成長法)、CVD法(化学気相成長法)により基材110上又は導電性膜120上に成膜することができる。PVD法としては、例えば、イオンビーム蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法、レーザ蒸着法、レーザスパッタ法、アークイオンプレーティング法、フィルタードカソーディックバキュームアーク(FCVA)法等が挙げられる。CVD法としては、マイクロ波プラズマCVD法、直流プラズマCVD法、高周波プラズマCVD法、有磁場プラズマCVD法等が挙げられる。
《Amorphous carbon film》
Here, the amorphous carbon film 130 will be described. The amorphous carbon film 130 is formed on the substrate 110 or the conductive film 120 by a PVD method (physical vapor deposition method) or a CVD method (chemical vapor deposition method) using a carbon raw material as a raw material target. Can do. Examples of the PVD method include an ion beam deposition method, an ion beam sputtering method, a magnetron sputtering method, a laser deposition method, a laser sputtering method, an arc ion plating method, and a filtered cathodic vacuum arc (FCVA) method. Examples of the CVD method include a microwave plasma CVD method, a direct current plasma CVD method, a high frequency plasma CVD method, and a magnetic field plasma CVD method.
 中でも、FCVA法は、室温でも高い付着力で均一にコーティングを行うことが可能な成膜法であり好ましい。FCVA法とは、原料ターゲットにアーク放電させることによりイオン化された粒子を発生させ、その粒子のみを基材110上又は導電性膜120上に導いて成膜させる成膜法である。 Above all, the FCVA method is preferable because it is a film forming method capable of uniformly coating with high adhesive force even at room temperature. The FCVA method is a film forming method in which ionized particles are generated by causing arc discharge to a raw material target, and only the particles are guided on the substrate 110 or the conductive film 120 to form a film.
 図2は、FCVA装置200の概略構成図である。FCVA装置200では、原料ターゲット202が設置されたアークプラズマ発生室201と、成膜チャンバ206とが、空間フィルタ205により連結されている。 FIG. 2 is a schematic configuration diagram of the FCVA device 200. In the FCVA apparatus 200, an arc plasma generation chamber 201 in which a raw material target 202 is installed and a film formation chamber 206 are connected by a spatial filter 205.
 成膜チャンバ206は、その内部に基材ホルダー207を具備する。基材ホルダー207は基材110を固定し、不図示の駆動手段により、基材110をθX方向に傾斜させたり、θY方向に回転させることができる。空間フィルタ205は、-X軸方向及びY軸方向にダブルベンドされる。空間フィルタ205の周囲には電磁石コイル203が巻回され、成膜チャンバ206との連通部付近にイオンスキャンコイル204が巻回されている。 The film forming chamber 206 includes a substrate holder 207 therein. The base material holder 207 fixes the base material 110, and can tilt the base material 110 in the θX direction or rotate it in the θY direction by a driving means (not shown). The spatial filter 205 is double-bended in the −X axis direction and the Y axis direction. An electromagnet coil 203 is wound around the spatial filter 205, and an ion scan coil 204 is wound near the communication portion with the film forming chamber 206.
 原料ターゲットとしてグラファイトターゲット等の炭素原料を用いることによりアモルファスカーボン膜130を成膜することができる。また、原料ターゲットとして金属を含有する黒鉛焼結体等のターゲットを用いることにより金属がドープされたアモルファスカーボン膜130を成膜することができる。例えば、原料ターゲットとしてTiCを用いることによりチタンドープアモルファスカーボン膜130を成膜することができる。なお、ドープされる金属はTiに限られず、Na、K、Ca、B、Mg、Cu、Sr、Ba、Zn、Hf、Al、Zr、Fe、Co、Ni、V、Cr、Mo、W、Mn、Re、Ag、Au、Pt、Nb、Ta、又は、これらのうちの2つ以上の金属の合金等を用いることができる。また、金属に限られず、Si等の半導体材料や、H、N、F等がドープされてもよい。 The amorphous carbon film 130 can be formed by using a carbon raw material such as a graphite target as a raw material target. Moreover, the amorphous carbon film 130 doped with metal can be formed by using a target such as a graphite sintered body containing metal as a raw material target. For example, the titanium-doped amorphous carbon film 130 can be formed by using TiC as a raw material target. The doped metal is not limited to Ti, but Na, K, Ca, B, Mg, Cu, Sr, Ba, Zn, Hf, Al, Zr, Fe, Co, Ni, V, Cr, Mo, W, Mn, Re, Ag, Au, Pt, Nb, Ta, or an alloy of two or more of these metals can be used. Moreover, it is not restricted to a metal, You may dope semiconductor materials, such as Si, H, N, F, etc.
 アモルファスカーボン膜130が、チタン原子を含有するチタンドープアモルファスカーボン膜である場合、当該膜における炭素原子数に対するチタン原子数の割合は2~30原子%程度であってもよい。なお、炭素原子数に対するチタン原子数の割合をα(原子%)とすると、αは下記式(1)により表される。
  α(原子%)=(Ti原子数)/{(sp-C原子数)+(sp-C原子数)}×100 …(1)
[式(1)中、(Ti原子数)はアモルファスカーボン膜に占めるTi原子数を表し、(sp-C原子数)はアモルファスカーボン膜に占めるsp混成軌道の炭素原子数を表し、(sp-C原子数)はアモルファスカーボン膜に占めるsp混成軌道の炭素原子数を表す。]
When the amorphous carbon film 130 is a titanium-doped amorphous carbon film containing titanium atoms, the ratio of the number of titanium atoms to the number of carbon atoms in the film may be about 2 to 30 atomic%. In addition, when the ratio of the number of titanium atoms to the number of carbon atoms is α (atomic%), α is represented by the following formula (1).
α (atomic%) = (Ti atom number) / {(sp 2 −C atom number) + (sp 3 −C atom number)} × 100 (1)
[In Formula (1), (Ti atom number) represents the number of Ti atoms in the amorphous carbon film, and (sp 2 -C atom number) represents the number of carbon atoms in the sp 2 hybrid orbital in the amorphous carbon film. (sp 3 -C atom number) represents the number of carbon atoms in the sp 3 hybrid orbital in the amorphous carbon film. ]
 FCVA法によりアモルファスカーボン膜130又はチタンドープアモルファスカーボン膜130を成膜するには、まず、アークプラズマ発生室201内のターゲット202に直流電圧を印加することによりアーク放電させて、アークプラズマを発生させる。 In order to form the amorphous carbon film 130 or the titanium-doped amorphous carbon film 130 by the FCVA method, first, an arc discharge is generated by applying a DC voltage to the target 202 in the arc plasma generation chamber 201 to generate arc plasma. .
 発生したアークプラズマ中の中性粒子、Cイオン、Tiイオン、Ti2+イオン、Ti3+イオン、Ti4+イオン、その他のイオンは、空間フィルタ205へと搬送され、空間フィルタ205を通過する過程で、中性粒子は電磁石コイル203によりトラップされ、Cイオン、Tiイオン、Ti2+イオン、Ti3+イオン、Ti4+イオン、その他のイオンのみが成膜チャンバ206内へと導かれる。 Neutral particles, C + ions, Ti + ions, Ti 2+ ions, Ti 3+ ions, Ti 4+ ions, and other ions in the generated arc plasma are transported to the spatial filter 205 and pass through the spatial filter 205. Thus, the neutral particles are trapped by the electromagnet coil 203, and only C + ions, Ti + ions, Ti 2+ ions, Ti 3+ ions, Ti 4+ ions, and other ions are guided into the deposition chamber 206.
 この際、イオンスキャンコイル204によって、イオン流はその飛行方向を任意方向へ動かすことができる。成膜チャンバ206内の導電性膜120には、負のバイアス電圧が印加されている。アーク放電によりイオン化されたCイオン、Tiイオン、Ti2+イオン、Ti3+イオン、Ti4+イオン、その他のイオンは、バイアス電圧により加速され、基材110上に緻密な膜として堆積する。 At this time, the ion scan coil 204 can move the flight direction of the ion flow in an arbitrary direction. A negative bias voltage is applied to the conductive film 120 in the film formation chamber 206. C + ions, Ti + ions, Ti 2+ ions, Ti 3+ ions, Ti 4+ ions, and other ions ionized by arc discharge are accelerated by a bias voltage and are deposited on the substrate 110 as a dense film.
 このようにして成膜されたアモルファスカーボン膜130は、炭素原子から構成される固体膜であり、sp混成軌道を有する炭素原子とsp混成軌道を有する炭素原子に大別される。 The amorphous carbon film 130 thus formed is a solid film composed of carbon atoms, and is roughly classified into carbon atoms having sp 2 hybrid orbitals and carbon atoms having sp 3 hybrid orbitals.
 FCVA法においては、成膜時のバイアス電圧を調整することによって、アモルファスカーボン膜130やチタンドープアモルファスカーボン膜130中のsp混成軌道の炭素原子及びsp混成軌道の炭素原子の含有量を制御することができる。 In the FCVA method, the content of carbon atoms in the sp 2 hybrid orbital and sp 3 hybrid orbit in the amorphous carbon film 130 and the titanium-doped amorphous carbon film 130 is controlled by adjusting the bias voltage at the time of film formation. can do.
 例えば、バイアス電圧を調整することにより、アモルファスカーボン膜中のsp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合を15~85原子%とすることができる。また、例えば、バイアス電圧を調整することにより、チタンドープアモルファスカーボン膜中のsp混成軌道の炭素原子数、sp混成軌道の炭素原子数、及びチタン原子数の合計に対するsp混成軌道の炭素原子数の割合を40原子%以下とすることができる。なお、アモルファスカーボン膜中のsp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合をβ(原子%)とすると、βは下記式(2)により表される。
  β(原子%)=(sp-C原子数)/{(sp-C原子数)+(sp-C原子数)}×100 …(2)
[式(2)中、(sp-C原子数)はアモルファスカーボン膜に占めるsp混成軌道の炭素原子数を表し、(sp-C原子数)はアモルファスカーボン膜に占めるsp混成軌道の炭素原子数を表す。]
For example, by adjusting the bias voltage, the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbital in the amorphous carbon film is 15 to 85 atoms. %. Further, for example, by adjusting the bias voltage, the number of carbon atoms of the sp 2 hybrid orbital of titanium-doped amorphous carbon film, sp 3 carbon atoms hybrid orbitals, and the sp 3 hybrid orbital to the total number of titanium atoms of carbon The ratio of the number of atoms can be 40 atomic% or less. When the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbit in the amorphous carbon film is β (atomic%), β is the following formula: It is represented by (2).
β (atomic%) = (number of sp 3 -C atoms) / {(number of sp 2 -C atoms) + (number of sp 3 -C atoms)} × 100 (2)
[In formula (2), (sp 2 -C atom number) represents the carbon atom number of sp 2 hybrid orbital in the amorphous carbon film, and (sp 3 -C atom number) represents the sp 3 hybrid orbital in the amorphous carbon film. Represents the number of carbon atoms. ]
 また、チタンドープアモルファスカーボン膜中のsp混成軌道の炭素原子数、sp混成軌道の炭素原子数、及びチタン原子数の合計に対するsp混成軌道の炭素原子数の割合をγ(原子%)とすると、γは下記式(3)により表される。
  γ(原子%)=(sp-C原子数)/{(sp-C原子数)+(sp-C原子数)+(Ti原子数)}×100 …(3)
[式(3)中、(sp-C原子数)はアモルファスカーボン膜に占めるsp混成軌道の炭素原子数を表し、(sp-C原子数)はアモルファスカーボン膜に占めるsp混成軌道の炭素原子数を表し、(Ti原子数)はアモルファスカーボン膜に占めるTi原子数を表す。]
Further, the number of carbon atoms of sp 2 hybrid orbital of titanium-doped amorphous carbon film, sp 3 carbon atoms hybrid orbitals, and the sp 3 hybrid orbital to the total number of titanium atoms to the percentage of the number of carbon atoms gamma (atomic%) Then, γ is expressed by the following formula (3).
γ (atomic%) = (number of sp 3 -C atoms) / {(number of sp 2 -C atoms) + (number of sp 3 -C atoms) + (number of Ti atoms)} × 100 (3)
[In the formula (3), (sp 2 -C atom number) represents the carbon atom number of sp 2 hybrid orbital in the amorphous carbon film, and (sp 3 -C atom number) represents the sp 3 hybrid orbital in the amorphous carbon film. (Ti atom number) represents the number of Ti atoms in the amorphous carbon film. ]
 FCVA法では、飛行エネルギーの揃ったCイオン、Tiイオン、Ti2+イオン、Ti3+イオン、Ti4+イオン、その他のイオンのみが成膜チャンバ206内に導かれ、導電性膜120に印加するバイアス電圧をコントロールすることにより、基材110に入射する各種イオン粒子のイオン衝撃エネルギーを制御することができる。したがって、複雑な形状の基材110においても、均一に成膜することが可能である。 In the FCVA method, only C + ions, Ti + ions, Ti 2+ ions, Ti 3+ ions, Ti 4+ ions, and other ions with uniform flight energy are introduced into the deposition chamber 206 and applied to the conductive film 120. By controlling the bias voltage, the ion bombardment energy of various ion particles incident on the substrate 110 can be controlled. Therefore, it is possible to form a uniform film even on the substrate 110 having a complicated shape.
 アモルファスカーボン膜130の表面には、水酸基、カルボキシル基等の官能基が形成されていてもよい。FCVA法等により形成したアモルファスカーボン膜130は、sp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の割合によらず、液滴法により測定した純水の接触角が概ね50°以上である。 A functional group such as a hydroxyl group or a carboxyl group may be formed on the surface of the amorphous carbon film 130. The amorphous carbon film 130 formed by the FCVA method or the like has a pure water contact angle measured by the droplet method of about 50 ° regardless of the number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbital. That's it.
 このアモルファスカーボン膜130の表面に、水酸基、カルボキシル基等の官能基を形成することにより、純水の接触角を低下させることができる。純水の接触角の低下の程度は、形成する官能基の量に応じて変化し、例えば10°以下、例えば5°以下、例えば4°以下に調整することができる。 By forming a functional group such as a hydroxyl group or a carboxyl group on the surface of the amorphous carbon film 130, the contact angle of pure water can be reduced. The degree of decrease in the contact angle of pure water varies depending on the amount of the functional group to be formed, and can be adjusted to, for example, 10 ° or less, for example, 5 ° or less, for example, 4 ° or less.
 アモルファスカーボン膜130への官能基の形成方法は特に限定されず、例えば、アモルファスカーボン膜130に紫外線を含む光を照射することにより行うことができる。紫外線の波長及び紫外線の照射量は適宜調整することができ、例えば波長185nmの紫外線を含む光を約20分間照射する条件等が挙げられる。このとき、例えば、照射される光は波長254nm等の紫外線を含んでいてもよい。 The method for forming the functional group on the amorphous carbon film 130 is not particularly limited, and can be performed, for example, by irradiating the amorphous carbon film 130 with light including ultraviolet rays. The wavelength of ultraviolet light and the amount of ultraviolet light irradiation can be adjusted as appropriate, and examples include conditions of irradiating light containing ultraviolet light having a wavelength of 185 nm for about 20 minutes. At this time, for example, the irradiated light may include ultraviolet rays having a wavelength of 254 nm or the like.
 また、アモルファスカーボン膜130がチタンドープアモルファスカーボン膜である場合についても同様であり、水酸基、カルボキシル基等の官能基が形成されていてもよい。 The same applies to the case where the amorphous carbon film 130 is a titanium-doped amorphous carbon film, and a functional group such as a hydroxyl group or a carboxyl group may be formed.
 FCVA法等により形成したチタンドープアモルファスカーボン膜130は、炭素原子数に対するチタン原子数の割合が2原子%以上の範囲において、液滴法により測定した純水の接触角が概ね60°以上である。 In the titanium-doped amorphous carbon film 130 formed by the FCVA method or the like, the contact angle of pure water measured by the droplet method is approximately 60 ° or more when the ratio of the number of titanium atoms to the number of carbon atoms is 2 atom% or more. .
 このチタンドープアモルファスカーボン膜130の表面に、水酸基、カルボキシル基等の官能基を形成することにより、純水の接触角を低下させることができる。純水の接触角の低下の程度は、形成する官能基の量に応じて変化し、例えば10°以下、例えば5°以下、例えば4°以下に調整することができる。 By forming a functional group such as a hydroxyl group or a carboxyl group on the surface of the titanium-doped amorphous carbon film 130, the contact angle of pure water can be reduced. The degree of decrease in the contact angle of pure water varies depending on the amount of the functional group to be formed, and can be adjusted to, for example, 10 ° or less, for example, 5 ° or less, for example, 4 ° or less.
 チタンドープアモルファスカーボン膜130への官能基の形成方法は特に限定されず、例えば、チタンドープアモルファスカーボン膜130に紫外線を含む光を照射することにより行うことができる。紫外線の波長及び紫外線の照射量は適宜調整することができ、例えば波長185nmの紫外線を含む光を約20分間照射する条件等が挙げられる。 The method for forming the functional group on the titanium-doped amorphous carbon film 130 is not particularly limited, and can be performed, for example, by irradiating the titanium-doped amorphous carbon film 130 with light containing ultraviolet rays. The wavelength of ultraviolet light and the amount of ultraviolet light irradiation can be adjusted as appropriate, and examples include conditions of irradiating light containing ultraviolet light having a wavelength of 185 nm for about 20 minutes.
《中間層》
 成膜するアモルファスカーボン膜130において、例えばsp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合が50~85原子%である場合、アモルファスカーボン膜130は膜応力が高く、剥離しやすい傾向がある。このような場合、アモルファスカーボン膜130と導電性膜120との間、又は、アモルファスカーボン膜130と基材110との間に膜応力が低い中間層を形成するとよい。これにより、アモルファスカーボン膜130の密着性が向上し、剥離を抑制することができる。中間層の膜厚は、30~40nm程度が適当である。
《Middle layer》
In the amorphous carbon film 130 is deposited, for example, when the ratio of the number of carbon atoms of the sp 3 hybrid orbital to the total number of carbon atoms of the carbon atoms and sp 3 hybrid orbital of sp 2 hybrid orbital is 50 to 85 atomic%, The amorphous carbon film 130 has a high film stress and tends to peel off. In such a case, an intermediate layer having a low film stress may be formed between the amorphous carbon film 130 and the conductive film 120 or between the amorphous carbon film 130 and the substrate 110. Thereby, the adhesiveness of the amorphous carbon film 130 is improved, and peeling can be suppressed. The thickness of the intermediate layer is suitably about 30 to 40 nm.
 中間層としては、膜応力が低いアモルファスカーボン膜を用いることができる。例えば、sp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合が15原子%以上50原子%未満であるアモルファスカーボン膜は、膜応力が低いため中間層として好適である。 As the intermediate layer, an amorphous carbon film having a low film stress can be used. For example, the amorphous carbon film in which the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbit is 15 atomic% or more and less than 50 atomic% is a film stress. Is suitable as an intermediate layer.
 また、チタンドープアモルファスカーボン膜も中間層として好適である。チタンを含有することで膜応力がより小さくなる傾向にある。そのため、チタンドープアモルファスカーボン膜を用いることで、密着性の更なる向上が期待できる。 A titanium-doped amorphous carbon film is also suitable as the intermediate layer. By containing titanium, the film stress tends to be smaller. Therefore, further improvement in adhesion can be expected by using a titanium-doped amorphous carbon film.
[容器の製造方法]
 本実施形態の容器の製造方法は、上述した容器の製造方法であり、基材の少なくとも一部に導電性膜120を形成する工程と、導電性膜120に電圧を印加し、物理気相成長法又は化学気相成長法によりアモルファスカーボン膜130を形成する工程と、を備える。
[Manufacturing method of container]
The manufacturing method of the container of this embodiment is the manufacturing method of the container mentioned above, the step of forming the conductive film 120 on at least a part of the base material, the voltage is applied to the conductive film 120, and the physical vapor deposition is performed. Forming an amorphous carbon film 130 by a chemical vapor deposition method or a chemical vapor deposition method.
 アモルファスカーボン膜130を形成する物理気相成長法は、FCVA法であってもよい。すなわち、本実施形態の製造方法は、上述したFCVA装置により好適に実施することができる。基材110が絶縁性である場合、バイアス電圧を印加できないため、FCVA法でアモルファスカーボン膜130を形成することが困難である。しかし、本実施形態の製造方法であれば、基材110が絶縁性を有していてもFCVA法でアモルファスカーボン膜を好適に形成することができる。 The physical vapor deposition method for forming the amorphous carbon film 130 may be an FCVA method. In other words, the manufacturing method of the present embodiment can be preferably implemented by the FCVA apparatus described above. When the substrate 110 is insulative, it is difficult to form the amorphous carbon film 130 by the FCVA method because a bias voltage cannot be applied. However, with the manufacturing method of the present embodiment, an amorphous carbon film can be suitably formed by the FCVA method even if the base material 110 has insulating properties.
 その結果、例えば、アモルファスカーボン膜の膜組成が細胞接着やタンパク質吸着に与える影響を評価する場合に、より高い測定精度で、より簡便に評価することができる容器を製造することができる。 As a result, for example, when the influence of the film composition of the amorphous carbon film on cell adhesion or protein adsorption is evaluated, a container that can be more easily evaluated with higher measurement accuracy can be manufactured.
 本実施形態の製造方法において、アモルファスカーボン膜130を形成する位置は、導電性膜120の配置により異なる。 In the manufacturing method of the present embodiment, the position where the amorphous carbon film 130 is formed differs depending on the arrangement of the conductive film 120.
 例えば、図1(a)に示すように、基材110と、導電性膜120と、アモルファスカーボン膜130とがこの順に形成されている場合、導電性膜120にバイアス電圧を印加してアモルファスカーボン膜130を成膜すると、アモルファスカーボン膜130は導電性膜120の少なくとも一部に形成されることになる。 For example, as shown in FIG. 1A, when a substrate 110, a conductive film 120, and an amorphous carbon film 130 are formed in this order, a bias voltage is applied to the conductive film 120 to form amorphous carbon. When the film 130 is formed, the amorphous carbon film 130 is formed on at least a part of the conductive film 120.
 あるいは、例えば図1(b)に示すように、導電性膜120と、基材110と、アモルファスカーボン膜130とがこの順に積層されている場合、導電性膜120にバイアス電圧を印加してアモルファスカーボン膜130を成膜すると、アモルファスカーボン膜130は基材110の少なくとも一部に形成されることになる。いいかえると、前記アモルファスカーボン膜は前記基材の他面側に形成されることになる。 Alternatively, for example, as shown in FIG. 1B, when a conductive film 120, a substrate 110, and an amorphous carbon film 130 are laminated in this order, a bias voltage is applied to the conductive film 120 to form an amorphous film. When the carbon film 130 is formed, the amorphous carbon film 130 is formed on at least a part of the substrate 110. In other words, the amorphous carbon film is formed on the other surface side of the substrate.
[アモルファスカーボン膜の評価方法]
 本実施形態のアモルファスカーボン膜の評価方法は、上述した容器に試料を収容して前記試料と前記アモルファスカーボン膜とを接触させる工程と、前記試料と前記アモルファスカーボン膜との相互作用を評価する工程と、を備える。
[Evaluation method of amorphous carbon film]
The method for evaluating an amorphous carbon film according to the present embodiment includes a step of storing a sample in the container described above and bringing the sample and the amorphous carbon film into contact with each other, and a step of evaluating an interaction between the sample and the amorphous carbon film. And comprising.
 ここで、試料は、アモルファスカーボン膜との相互作用を評価する対象となる物質である。試料としては、例えば、タンパク質、細胞等の生体試料が挙げられる。 Here, the sample is a substance to be evaluated for interaction with the amorphous carbon film. Examples of the sample include biological samples such as proteins and cells.
 試料とアモルファスカーボン膜との相互作用の評価は、目的とする評価内容により適宜選択した評価方法により行うことができる。例えば、アモルファスカーボン膜に対する細胞接着性を評価する場合には、アモルファスカーボン膜に細胞を接触させ、その後、アモルファスカーボン膜に接着した細胞数を計測することにより評価することができる。 Evaluation of the interaction between the sample and the amorphous carbon film can be performed by an evaluation method appropriately selected according to the target evaluation content. For example, when cell adhesion to an amorphous carbon film is evaluated, the cell can be contacted with the amorphous carbon film, and then the number of cells adhered to the amorphous carbon film can be measured.
 あるいは、アモルファスカーボン膜に対するタンパク質吸着を評価する場合には、アモルファスカーボン膜にタンパク質を接触させ、その後、アモルファスカーボン膜に接着したタンパク質量を計測することにより評価することができる。 Alternatively, when evaluating protein adsorption to the amorphous carbon film, the protein can be brought into contact with the amorphous carbon film, and then the amount of protein adhered to the amorphous carbon film can be measured.
 実施例において後述するように、本実施形態の評価方法により、より高い測定精度で、より簡便に、アモルファスカーボン膜の膜組成が細胞接着やタンパク質吸着に与える影響等を評価することができる。 As will be described later in the Examples, the evaluation method of the present embodiment can evaluate the influence of the film composition of the amorphous carbon film on cell adhesion and protein adsorption more easily with higher measurement accuracy.
 次に実施例を示して本実施形態を説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present embodiment will be described with reference to examples, but the present invention is not limited to the following examples.
[実験例1]
(容器の製造)
 ポリスチレン製の細胞培養用24ウェルプレートを加工して容器を製造した。まず、24ウェルプレートの表面にチタンを成膜し、導電性を付与した。チタン膜の膜厚は100nmであった。この結果、ポリスチレンは絶縁性であるが、導電性のチタン膜を利用して電圧を印加することが可能になった。
[Experimental Example 1]
(Manufacture of containers)
A 24-well plate for cell culture made of polystyrene was processed to produce a container. First, titanium was deposited on the surface of a 24-well plate to impart conductivity. The thickness of the titanium film was 100 nm. As a result, although polystyrene is insulative, a voltage can be applied using a conductive titanium film.
 続いて、上記のチタン膜にバイアス電圧を印加し、FCVA法によりチタン膜上にアモルファスカーボン膜を形成した。次に、バイアス電圧を変えて複数のアモルファスカーボン膜を形成した。そして、sp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合が50~85原子%のアモルファスカーボン膜が得られた。 Subsequently, a bias voltage was applied to the titanium film, and an amorphous carbon film was formed on the titanium film by the FCVA method. Next, a plurality of amorphous carbon films were formed by changing the bias voltage. Thus, an amorphous carbon film was obtained in which the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbital was 50 to 85 atomic%.
 アモルファスカーボン膜におけるsp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合が、成膜時のバイアス電圧を調整することにより制御でき、かつ、絶縁性の容器に対してアモルファスカーボン膜を成膜できることが本実験により確認された。実施形態で述べたとおり、アモルファスカーボン膜が成膜された容器を使用することで、より簡便に、膜組成が細胞接着やタンパク質吸着に与える影響等を評価することができる。 The ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbit in the amorphous carbon film can be controlled by adjusting the bias voltage during film formation, In addition, this experiment confirmed that an amorphous carbon film can be formed on an insulating container. As described in the embodiment, by using a container in which an amorphous carbon film is formed, the influence of the film composition on cell adhesion and protein adsorption can be more easily evaluated.
[実験例2]
(アモルファスカーボン膜の膜組成の検討1)
 実験例1と同様の24ウェルプレートの表面にアモルファスカーボン膜を成膜し、24ウェルプレート上の位置による膜組成の均一性への影響を検討した。
[Experiment 2]
(Examination of film composition of amorphous carbon film 1)
An amorphous carbon film was formed on the surface of a 24-well plate similar to Experimental Example 1, and the influence of the position on the 24-well plate on the uniformity of the film composition was examined.
 まず、約1cm×1cmにカットしたポリスチレン製の基材を、実験例1と同様の24ウェルプレートのウェル底に導電テープで固定した。続いて、この基材にチタン膜を成膜した。チタン膜の膜厚は100nmであった。 First, a polystyrene base material cut to about 1 cm × 1 cm was fixed to the well bottom of a 24-well plate similar to Experimental Example 1 with a conductive tape. Subsequently, a titanium film was formed on this substrate. The thickness of the titanium film was 100 nm.
 続いて、FCVA法により、成膜したチタン膜上にアモルファスカーボン膜を成膜した。FCVA装置の条件は、アーク電流値を40A、基材バイアスを-66Vに設定した。 Subsequently, an amorphous carbon film was formed on the formed titanium film by the FCVA method. The conditions of the FCVA apparatus were an arc current value of 40 A and a base material bias of −66 V.
 続いて、X線光電子分光(XPS)測定により、成膜したアモルファスカーボン膜表面の、sp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合を測定した。その結果、24ウェルプレートの端(ウェルD1の位置)においては85原子%であり、24ウェルプレートの中央付近(ウェルB4の位置)においては83原子%であった。また、下記式(4)で計算される均一性は1.2%であると計算された。
  均一性(%)=(膜厚の最大値-膜厚の最小値)/(膜厚の最大値+膜厚の最小値)×100 …(4)
Subsequently, by X-ray photoelectron spectroscopy (XPS) measurement, of the formed amorphous carbon film surface, sp 2 carbon atoms hybrid orbitals and sp 3 sp 3 carbon atoms hybridized to the total number of carbon atoms of the hybrid orbitals The proportion of was measured. As a result, it was 85 atomic% at the end of the 24-well plate (the position of the well D1) and 83 atomic% near the center of the 24-well plate (the position of the well B4). Moreover, the uniformity calculated by the following formula (4) was calculated to be 1.2%.
Uniformity (%) = (maximum value of film thickness−minimum value of film thickness) / (maximum value of film thickness + minimum value of film thickness) × 100 (4)
 この結果から、上記の方法によりアモルファスカーボンを成膜した場合、24ウェルプレート上の位置によらず均一性の高いアモルファスカーボン膜が得られることが明らかとなった。 From this result, it has been clarified that when amorphous carbon is formed by the above method, an amorphous carbon film having high uniformity can be obtained regardless of the position on the 24-well plate.
[実験例3]
(アモルファスカーボン膜の膜組成の検討2)
 実験例2と同様にして24ウェルプレート上に成膜したチタン膜上に、FCVA法によりアモルファスカーボン膜を成膜した。FCVA装置の条件は、アーク電流値を40A、基材バイアスを-1980Vに設定した。
[Experiment 3]
(Examination of film composition of amorphous carbon film 2)
In the same manner as in Experimental Example 2, an amorphous carbon film was formed on the titanium film formed on the 24-well plate by the FCVA method. The conditions for the FCVA apparatus were an arc current value of 40 A and a base material bias of −1980 V.
 続いて、XPS測定により、成膜したアモルファスカーボン膜表面の、sp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合を測定した。その結果、24ウェルプレートの端(ウェルA1の位置)においては57原子%であり、24ウェルプレートの中央付近(ウェルB4の位置)においては57原子%であった。また、上記式(4)で計算される均一性は0%であると計算された。 Subsequently, the ratio of the number of carbon atoms in the sp 3 hybrid orbital to the total number of carbon atoms in the sp 2 hybrid orbital and the number of carbon atoms in the sp 3 hybrid orbital on the surface of the formed amorphous carbon film was measured by XPS measurement. As a result, it was 57 atomic% at the end of the 24-well plate (position of the well A1) and 57 atomic% near the center of the 24-well plate (position of the well B4). Further, the uniformity calculated by the above formula (4) was calculated to be 0%.
 この結果は、上記の方法によりアモルファスカーボンを成膜した場合、24ウェルプレート上の位置によらず均一性の高いアモルファスカーボン膜が得られることを更に支持するものである。 This result further supports that an amorphous carbon film with high uniformity can be obtained regardless of the position on the 24-well plate when the amorphous carbon film is formed by the above method.
[実験例4]
(チタンドープアモルファスカーボン膜の膜組成の検討1)
 実験例2と同様にして24ウェルプレート上に成膜したチタン膜上に、4.0原子%のチタンを含む炭素ターゲットを原料として用いたFCVA法により、チタンドープアモルファスカーボン膜を成膜した。FCVA装置の条件は、アーク電流値を60A、基材バイアスを0Vに設定した。
[Experimental Example 4]
(Examination of film composition of titanium-doped amorphous carbon film 1)
A titanium-doped amorphous carbon film was formed on a titanium film formed on a 24-well plate in the same manner as in Experimental Example 2 by the FCVA method using a carbon target containing 4.0 atomic% titanium as a raw material. The conditions of the FCVA apparatus were an arc current value of 60 A and a base material bias of 0 V.
 続いて、チタンドープアモルファスカーボン膜表面における、炭素原子数に対するチタン原子数の割合を、ラザフォード後方散乱分光(RBS)測定により測定した。 Subsequently, the ratio of the number of titanium atoms to the number of carbon atoms on the surface of the titanium-doped amorphous carbon film was measured by Rutherford backscattering spectroscopy (RBS) measurement.
 その結果、炭素原子数に対するチタン原子数の割合は、24ウェルプレートの端(ウェルA1、A6、D1、D6の位置)においては23.9~26.6原子%であり、24ウェルプレートの中央付近(ウェルB4、B5、C2、C4の位置)においては23.9~25.3原子%であった。また、下記式(5)で計算される均一性は5.3%であると計算された。
  均一性(%)=(チタン原子数の割合の最大値-チタン原子数の割合の最小値)/(チタン原子数の割合の最大値+チタン原子数の割合の最小値)×100 …(5)
As a result, the ratio of the number of titanium atoms to the number of carbon atoms is 23.9 to 26.6 atomic% at the end of the 24-well plate (positions of wells A1, A6, D1, and D6). In the vicinity (positions of wells B4, B5, C2, and C4), it was 23.9 to 25.3 atomic%. Moreover, the uniformity calculated by the following formula (5) was calculated to be 5.3%.
Uniformity (%) = (maximum value of the proportion of titanium atoms−minimum value of the proportion of titanium atoms) / (maximum value of the proportion of titanium atoms + minimum value of the proportion of titanium atoms) × 100 (5) )
 この結果から、上記の方法によりチタンドープアモルファスカーボンを成膜した場合、24ウェルプレート上の位置によらず均一性の高いチタンドープアモルファスカーボン膜が得られることが明らかとなった。 From this result, it was clarified that a titanium-doped amorphous carbon film having high uniformity can be obtained regardless of the position on the 24-well plate when the titanium-doped amorphous carbon film is formed by the above method.
[実験例5]
(チタンドープアモルファスカーボン膜の膜組成の検討2)
 実験例2と同様にして24ウェルプレート上に成膜したチタン膜上に、実験例4と同様にして、チタンドープアモルファスカーボン膜を成膜した。FCVA装置の条件は、アーク電流値を60A、基材バイアスを-1980Vに設定した。
[Experimental Example 5]
(Investigation of film composition of titanium-doped amorphous carbon film 2)
A titanium-doped amorphous carbon film was formed on a titanium film formed on a 24-well plate in the same manner as in Experimental Example 2 in the same manner as in Experimental Example 4. The conditions of the FCVA apparatus were an arc current value of 60 A and a base material bias of −1980 V.
 続いて、チタンドープアモルファスカーボン膜表面における、炭素原子数に対するチタン原子数の割合を、RBS測定により測定した。 Subsequently, the ratio of the number of titanium atoms to the number of carbon atoms on the surface of the titanium-doped amorphous carbon film was measured by RBS measurement.
 その結果、炭素原子数に対するチタン原子数の割合は、24ウェルプレートの端(ウェルA1、A6、D1、D6の位置)においては23.8~26.4原子%であり、24ウェルプレートの中央付近(ウェルC4の位置)においては27.1原子%であった。また、上記式(5)で計算される均一性は6.5%であると計算された。 As a result, the ratio of the number of titanium atoms to the number of carbon atoms is 23.8 to 26.4 atomic% at the end of the 24-well plate (positions of wells A1, A6, D1, and D6), and the center of the 24-well plate In the vicinity (position of well C4), it was 27.1 atomic%. Further, the uniformity calculated by the above formula (5) was calculated to be 6.5%.
 この結果は、上記の方法によりチタンドープアモルファスカーボンを成膜した場合、24ウェルプレート上の位置によらず均一性の高いチタンドープアモルファスカーボン膜が得られることを更に支持するものである。 This result further supports that when a titanium-doped amorphous carbon film is formed by the above method, a highly uniform titanium-doped amorphous carbon film can be obtained regardless of the position on the 24-well plate.
[実験例6]
(細胞接着試験)
 24ウェルプレートのウェルの内面にアモルファスカーボン膜を成膜した容器をサンプルとして用いて細胞接着試験を行った。細胞としては、ヒト正常臍帯静脈内皮細胞(HUVEC)を使用した。また、対照材料として、ステンレス(SUS316L)製の平板基材(1cm×1cm、全面鏡面研磨)上にアモルファスカーボン膜を成膜したものを用いた。
[Experimental Example 6]
(Cell adhesion test)
A cell adhesion test was performed using a container in which an amorphous carbon film was formed on the inner surface of a well of a 24-well plate as a sample. As cells, human normal umbilical vein endothelial cells (HUVEC) were used. Further, as a control material, an amorphous carbon film formed on a flat plate substrate (1 cm × 1 cm, full mirror polishing) made of stainless steel (SUS316L) was used.
 アモルファスカーボン膜としては、下記表1に示す7種類の膜を用いた。表1中、「Ti/C(at%)」は炭素原子数に対するチタン原子数の割合(原子%)を表す。「sp-C(at%)」は、アモルファスカーボンの場合、sp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合(原子%)を表し、チタンドープアモルファスカーボンの場合、sp混成軌道の炭素原子数、sp混成軌道の炭素原子数、及びチタン原子数の合計に対するsp混成軌道の炭素原子数の割合(原子%)を表す。「sp-C(at%)」は、アモルファスカーボンの場合、sp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合(原子%)を表し、チタンドープアモルファスカーボンの場合、sp混成軌道の炭素原子数、sp混成軌道の炭素原子数、及びチタン原子数の合計に対するsp混成軌道の炭素原子数の割合(原子%)を表す。 Seven types of films shown in Table 1 below were used as the amorphous carbon film. In Table 1, “Ti / C (at%)” represents the ratio of the number of titanium atoms to the number of carbon atoms (atomic%). "Sp 2 -C (at%)" in the case of amorphous carbon, sp 2 carbon atoms hybrid orbitals and sp 3 ratio of the number of carbon atoms of the sp 2 hybrid orbital to the total number of carbon atoms of the hybrid orbitals (atomic% In the case of titanium-doped amorphous carbon, the number of carbon atoms in the sp 2 hybrid orbital, the number of carbon atoms in the sp 3 hybrid orbital, and the ratio of the number of carbon atoms in the sp 2 hybrid orbital to the total number of titanium atoms (atomic%) Represents. "Sp 3 -C (at%)" in the case of amorphous carbon, sp 2 carbon atoms hybrid orbitals and sp 3 ratio of the number of carbon atoms of the sp 3 hybrid orbital to the total number of carbon atoms of the hybrid orbitals (atomic% ) represents the case of titanium-doped amorphous carbon, sp 2 hybrid orbital of carbon atoms, sp 3 carbon atoms hybrid orbitals, and the ratio of the number of carbon atoms of the sp 3 hybrid orbital to the total number of titanium atoms (atomic%) Represents.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
《容器を用いた細胞接着試験》
 各サンプルの容器のウェルに、HUVECを5×10個/ウェルずつ播種し、37℃、5%COの環境下で24±2時間培養した。続いて、各ウェルの細胞を固定して核を染色し、蛍光顕微鏡で観察して細胞接着率を測定した。
<Cell adhesion test using containers>
HUVECs were seeded at 5 × 10 4 cells / well in each sample container well, and cultured in an environment of 37 ° C. and 5% CO 2 for 24 ± 2 hours. Subsequently, the cells in each well were fixed, the nucleus was stained, and observed with a fluorescence microscope to measure the cell adhesion rate.
《平板基材を用いた細胞接着試験》
 また、対照材料である各平板基材を、細胞培養プレートのウェルに入れ、HUVECを5×10個/ウェルずつ播種し、37℃で24±2時間培養した。続いて、各ウェルの細胞を固定して核を染色し、蛍光顕微鏡で観察して細胞接着率を測定した。
<Cell adhesion test using flat plate substrate>
In addition, each plate substrate as a control material was placed in a well of a cell culture plate, seeded with 5 × 10 4 HUVECs / well, and cultured at 37 ° C. for 24 ± 2 hours. Subsequently, the cells in each well were fixed, the nucleus was stained, and observed with a fluorescence microscope to measure the cell adhesion rate.
《結果》
 図3(a)は、各サンプル及び対照材料に対する細胞接着率をそれぞれ測定した結果を示すグラフである。グラフは、アモルファスカーボンを成膜していない培養プレートにHUVECを播種した場合の細胞接着率を100%とした相対値で表す。また、図3(b)は、図3(a)の結果の標準偏差のみを取り出した結果を示すグラフである。
"result"
FIG. 3A is a graph showing the results of measuring cell adhesion rates for each sample and control material. The graph represents a relative value in which the cell adhesion rate is 100% when HUVEC is seeded on a culture plate on which amorphous carbon is not formed. FIG. 3B is a graph showing the result of taking out only the standard deviation of the result of FIG.
 その結果、アモルファスカーボンを成膜した容器を用いた場合も問題なく細胞接着試験を行えることが確認された。 As a result, it was confirmed that the cell adhesion test can be performed without any problem even when a container formed with amorphous carbon is used.
[実験例7]
(アルブミン吸着試験)
 24ウェルプレートのウェルの内面にアモルファスカーボン膜を成膜した容器をサンプルとして用いてタンパク質吸着試験を行った。タンパク質としては、アルブミンを使用した。また、対照材料として、ステンレス(SUS316L)製の平板基材上にアモルファスカーボン膜を成膜したものを用いた。アモルファスカーボン膜としては、実験例6で使用したものと同様の7種類の膜を用いた。
[Experimental Example 7]
(Albumin adsorption test)
A protein adsorption test was performed using a container in which an amorphous carbon film was formed on the inner surface of a well of a 24-well plate as a sample. Albumin was used as the protein. Further, as a control material, an amorphous carbon film formed on a stainless steel (SUS316L) flat plate base material was used. As the amorphous carbon film, seven types of films similar to those used in Experimental Example 6 were used.
《容器を用いたアルブミン吸着試験》
 各サンプルの容器のウェルに、アルブミン(30mg/mL)を含むリン酸バッファー(PBS)溶液を入れ、COインキュベーター(37℃、5%CO)内に24時間静置した。続いて、PBS溶液を除去し、純水(500μL)を用いて洗浄することにより、未吸着のアルブミンを除去した。続いて、界面活性剤溶液(2% Triton-Xを含有するPBS)を加え、37℃で30分間振とうすることにより、アモルファスカーボン膜に吸着したアルブミンを剥がした。続いて、界面活性剤溶液を回収し、BCA法により、吸着したアルブミンの量を定量した。
<< Albumin adsorption test using containers >>
A phosphate buffer (PBS) solution containing albumin (30 mg / mL) was placed in the well of each sample container, and allowed to stand in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours. Subsequently, the PBS solution was removed and washed with pure water (500 μL) to remove unadsorbed albumin. Subsequently, a surfactant solution (PBS containing 2% Triton-X) was added, and the albumin adsorbed on the amorphous carbon film was peeled off by shaking at 37 ° C. for 30 minutes. Subsequently, the surfactant solution was recovered, and the amount of adsorbed albumin was quantified by the BCA method.
《平板基材を用いたアルブミン吸着試験》
 また、対照材料である各平板基材を、細胞培養プレートのウェルに入れ、アルブミン(30mg/mL)を含むPBS溶液を入れ、COインキュベーター(37℃、5%CO)内に24時間静置した。続いて、PBS溶液を除去し、純水(500μL)を用いて洗浄することにより、未吸着のアルブミンを除去した。続いて、各平板基材を新しい細胞培養ウェルプレートのウェルにそれぞれ移し、再度純水を用いて洗浄することで未吸着のアルブミンを除去した。
《Albumin adsorption test using flat plate substrate》
Further, each flat substrate is a control material, placed in cell culture plate wells placed PBS solution containing albumin (30mg / mL), CO 2 incubator (37 ℃, 5% CO 2 ) 24 hours in static I put it. Subsequently, the PBS solution was removed and washed with pure water (500 μL) to remove unadsorbed albumin. Subsequently, each plate base material was transferred to each well of a new cell culture well plate, and washed with pure water again to remove unadsorbed albumin.
 続いて、界面活性剤溶液(2% Triton-Xを含有するPBS)を加え、37℃で30分間振とうすることにより、アモルファスカーボン膜に吸着したアルブミンを剥がした。続いて、界面活性剤溶液を回収し、BCA法により、吸着したアルブミンの量を定量した。 Subsequently, a surfactant solution (PBS containing 2% Triton-X) was added, and the albumin adsorbed on the amorphous carbon film was peeled off by shaking at 37 ° C. for 30 minutes. Subsequently, the surfactant solution was recovered, and the amount of adsorbed albumin was quantified by the BCA method.
《結果》
 図4(a)は、各サンプル及び対照材料に対するアルブミン吸着量をそれぞれ測定した結果を示すグラフである。また、図4(b)は、図4(a)の結果の標準偏差のみを取り出した結果を示すグラフである。
"result"
FIG. 4A is a graph showing the results of measuring the amount of albumin adsorbed on each sample and control material. FIG. 4B is a graph showing the result of extracting only the standard deviation of the result of FIG.
 その結果、アモルファスカーボンを成膜した容器を用いた場合も問題なくアルブミン吸着試験を行えることが確認された。また、アモルファスカーボンを成膜した容器を用いることにより、対照材料と比較して、測定したアルブミン吸着量の標準偏差が顕著に小さくなることが明らかとなった。この結果は、アモルファスカーボンを成膜した容器を用いることにより、ばらつきが小さく、測定精度が向上した実験結果を得ることができることを更に支持するものである。 As a result, it was confirmed that the albumin adsorption test can be performed without problems even when a container formed with amorphous carbon is used. Moreover, it became clear that the standard deviation of the measured amount of adsorbed albumin was significantly reduced by using a container in which amorphous carbon was formed as compared with the control material. This result further supports that it is possible to obtain an experimental result with small variations and improved measurement accuracy by using a container formed with amorphous carbon.
[実験例8]
(フィブリノーゲン吸着試験)
 タンパク質として、アルブミンの代わりに3mg/mLの濃度のフィブリノーゲンを用いた点以外は実験例7と同様にして、24ウェルプレートのウェルの内面にアモルファスカーボン膜を成膜した容器をサンプルとして用いてタンパク質吸着試験を行った。また、対照材料として、ステンレス(SUS316L)製の平板基材上にアモルファスカーボン膜を成膜したものを用いた。アモルファスカーボン膜としては、実験例6で使用したものと同様の7種類の膜を用いた。
[Experimental Example 8]
(Fibrinogen adsorption test)
As a protein, using a container in which an amorphous carbon film was formed on the inner surface of a well of a 24-well plate as a sample, except that fibrinogen at a concentration of 3 mg / mL was used instead of albumin as a protein. An adsorption test was performed. Further, as a control material, an amorphous carbon film formed on a stainless steel (SUS316L) flat plate base material was used. As the amorphous carbon film, seven types of films similar to those used in Experimental Example 6 were used.
 図5(a)は、各サンプル及び対照材料に対するフィブリノーゲン吸着量をそれぞれ測定した結果を示すグラフである。また、図4(b)は、図4(a)の結果の標準偏差のみを取り出した結果を示すグラフである。 FIG. 5 (a) is a graph showing the results of measuring the amount of adsorbed fibrinogen for each sample and control material. FIG. 4B is a graph showing the result of extracting only the standard deviation of the result of FIG.
 その結果、アモルファスカーボンを成膜した容器を用いた場合も問題なくフィブリノーゲン吸着試験を行えることが確認された。また、アモルファスカーボンを成膜した容器を用いることにより、対照材料と比較して、測定したフィブリノーゲン吸着量の標準偏差が小さくなる傾向が認められた。この結果は、アモルファスカーボンを成膜した容器を用いることにより、ばらつきが小さく、測定精度が向上した実験結果を得ることができることを更に支持するものである。 As a result, it was confirmed that the fibrinogen adsorption test can be performed without problems even when a container formed with amorphous carbon is used. In addition, by using a container on which amorphous carbon was formed, the standard deviation of the measured fibrinogen adsorption amount tended to be smaller than that of the control material. This result further supports that it is possible to obtain an experimental result with small variations and improved measurement accuracy by using a container formed with amorphous carbon.
 100…容器、110…基材、120…導電性膜、130…アモルファスカーボン膜、200…FCVA装置、201…アークプラズマ発生室、202…原料ターゲット、203…電磁石コイル、204…イオンスキャンコイル、205…空間フィルタ、206…成膜チャンバ、207…基材ホルダー。 DESCRIPTION OF SYMBOLS 100 ... Container, 110 ... Base material, 120 ... Conductive film, 130 ... Amorphous carbon film, 200 ... FCVA apparatus, 201 ... Arc plasma generation chamber, 202 ... Raw material target, 203 ... Electromagnetic coil, 204 ... Ion scan coil, 205 ... Spatial filter, 206 ... Deposition chamber, 207 ... Substrate holder.

Claims (16)

  1.  試料を収容する収容部を1つ以上有する基材と、
     前記基材の少なくとも一部に形成された導電性膜と、
     前記導電性膜の少なくとも一部、又は前記基材の少なくとも一部に形成されたアモルファスカーボン膜と、を含み、
     前記アモルファスカーボン膜の少なくとも一部は、前記収容部内に露出している、容器。
    A base material having one or more storage portions for storing samples;
    A conductive film formed on at least a portion of the substrate;
    Including at least a part of the conductive film, or an amorphous carbon film formed on at least a part of the base material,
    A container in which at least a part of the amorphous carbon film is exposed in the housing portion.
  2.  前記基材は絶縁性の材料からなる、請求項1に記載の容器。 The container according to claim 1, wherein the base material is made of an insulating material.
  3.  前記基材は樹脂材料からなる、請求項1又は2に記載の容器。 The container according to claim 1 or 2, wherein the substrate is made of a resin material.
  4.  前記基材はシャーレ又はウェルプレートである、請求項1~3のいずれか一項に記載の容器。 The container according to any one of claims 1 to 3, wherein the substrate is a petri dish or a well plate.
  5.  前記試料は生体試料である、請求項1~4のいずれか一項に記載の容器。 The container according to any one of claims 1 to 4, wherein the sample is a biological sample.
  6.  前記基材と、前記導電性膜と、前記アモルファスカーボン膜とがこの順に積層された、請求項1~5のいずれか一項に記載の容器。 The container according to any one of claims 1 to 5, wherein the base material, the conductive film, and the amorphous carbon film are laminated in this order.
  7.  前記導電性膜と、前記基材と、前記アモルファスカーボン膜とがこの順に積層された、請求項1~5のいずれか一項に記載の容器。 The container according to any one of claims 1 to 5, wherein the conductive film, the base material, and the amorphous carbon film are laminated in this order.
  8.  前記アモルファスカーボン膜は、前記収容部の底部の少なくとも一部を含む領域に形成されている、請求項6又は7に記載の容器。 The container according to claim 6 or 7, wherein the amorphous carbon film is formed in a region including at least a part of a bottom portion of the housing portion.
  9.  前記アモルファスカーボン膜は、sp混成軌道の炭素原子数及びsp混成軌道の炭素原子数の合計に対するsp混成軌道の炭素原子数の割合が15~85原子%である、請求項1~8のいずれか一項に記載の容器。 The amorphous carbon film, the ratio of the number of carbon atoms of the sp 3 hybrid orbital to the total number of carbon atoms of the carbon atoms and sp 3 hybrid orbital of sp 2 hybrid orbital is 15 to 85 atomic%, claims 1 to 8, The container according to any one of the above.
  10.  前記アモルファスカーボン膜は、チタン原子を含有するチタンドープアモルファスカーボン膜であり、
     前記チタンドープアモルファスカーボン膜は、炭素原子数に対するチタン原子数の割合が2~30原子%である、
     請求項1~9のいずれか一項に記載の容器。
    The amorphous carbon film is a titanium-doped amorphous carbon film containing titanium atoms,
    The titanium-doped amorphous carbon film has a ratio of the number of titanium atoms to the number of carbon atoms of 2 to 30 atomic%.
    The container according to any one of claims 1 to 9.
  11.  前記チタンドープアモルファスカーボン膜は、sp混成軌道の炭素原子数、sp混成軌道の炭素原子数、及びチタン原子数の合計に対するsp混成軌道の炭素原子数の割合が40原子%以下である、請求項10に記載の容器。 The titanium-doped amorphous carbon film, sp 2 hybrid orbital of carbon atoms, sp 3 carbon atoms hybrid orbitals, and the ratio of the number of carbon atoms of the sp 3 hybrid orbital to the total number of titanium atoms is 40 atomic% or less The container according to claim 10.
  12.  請求項1~11のいずれか一項に記載の容器の製造方法であって、
     前記基材の少なくとも一部に前記導電性膜を形成する工程と、
     前記導電性膜に電圧を印加し、物理気相成長法又は化学気相成長法により前記アモルファスカーボン膜を形成する工程と、
     を備える、容器の製造方法。
    A method for producing a container according to any one of claims 1 to 11,
    Forming the conductive film on at least a portion of the substrate;
    Applying a voltage to the conductive film and forming the amorphous carbon film by physical vapor deposition or chemical vapor deposition;
    A method for manufacturing a container.
  13.  前記物理気相成長法は、フィルタードカソーディックバキュームアーク法である、請求項12に記載の容器の製造方法。 The method for producing a container according to claim 12, wherein the physical vapor deposition method is a filtered cathodic vacuum arc method.
  14.  前記アモルファスカーボン膜を形成する工程において、前記アモルファスカーボン膜を前記導電性膜の少なくとも一部に積層形成する、請求項12又は13に記載の製造方法。 The manufacturing method according to claim 12 or 13, wherein, in the step of forming the amorphous carbon film, the amorphous carbon film is laminated and formed on at least a part of the conductive film.
  15.  前記導電性膜を形成する工程において、前記導電性膜を前記基材の一面側に形成し、前記アモルファスカーボン膜を形成する工程において、前記アモルファスカーボン膜を前記基材の他面側に形成する、請求項12又は13に記載の製造方法。 In the step of forming the conductive film, the conductive film is formed on one surface side of the base material, and in the step of forming the amorphous carbon film, the amorphous carbon film is formed on the other surface side of the base material. The manufacturing method according to claim 12 or 13.
  16.  請求項1~11のいずれか一項に記載の容器に試料を収容して前記試料と前記アモルファスカーボン膜とを接触させる工程と、
     前記試料と前記アモルファスカーボン膜との相互作用を評価する工程と、
     を備える、前記アモルファスカーボン膜の評価方法。
    Storing the sample in the container according to any one of claims 1 to 11 and bringing the sample into contact with the amorphous carbon film;
    Evaluating the interaction between the sample and the amorphous carbon film;
    A method for evaluating the amorphous carbon film.
PCT/JP2018/015568 2017-04-21 2018-04-13 Container, method for producing container, and method for evaluating amorphous carbon film WO2018193991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084213 2017-04-21
JP2017084213A JP2020105535A (en) 2017-04-21 2017-04-21 Container, manufacturing method of container, and evaluation method of amorphous carbon membrane

Publications (1)

Publication Number Publication Date
WO2018193991A1 true WO2018193991A1 (en) 2018-10-25

Family

ID=63857046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015568 WO2018193991A1 (en) 2017-04-21 2018-04-13 Container, method for producing container, and method for evaluating amorphous carbon film

Country Status (2)

Country Link
JP (1) JP2020105535A (en)
WO (1) WO2018193991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123570A (en) * 2020-02-07 2021-08-30 株式会社ニコン Member having amorphous carbon film, and method of producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204825A (en) * 2000-11-13 2002-07-23 Utec:Kk Dlc membrane, medical appliance, artificial organs and deposition method of dlc membrane
JP2002313289A (en) * 2001-02-08 2002-10-25 Denso Corp Battery
JP2006224992A (en) * 2005-02-17 2006-08-31 Kirin Brewery Co Ltd Plastic container coated with gas barrier membrane, its manufacturing device, and its manufacturing method
JP2008127054A (en) * 2006-11-20 2008-06-05 Kirin Brewery Co Ltd Manufacturing method for plastic container coated with barrier film and manufacturing apparatus therefor
WO2014115755A1 (en) * 2013-01-22 2014-07-31 株式会社ニコン Functional coating, liquid immersion member, method for manufacturing liquid immersion member, light exposure apparatus, and device manufacturing method
WO2016056466A1 (en) * 2014-10-05 2016-04-14 太陽誘電ケミカルテクノロジー株式会社 Antibacterial laminate structure and method for manufacturing same
WO2017047795A1 (en) * 2015-09-17 2017-03-23 新日鐵住金株式会社 Titanium pipe-forming roll, titanium pipe-forming apparatus, and titanium pipe-manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204825A (en) * 2000-11-13 2002-07-23 Utec:Kk Dlc membrane, medical appliance, artificial organs and deposition method of dlc membrane
JP2002313289A (en) * 2001-02-08 2002-10-25 Denso Corp Battery
JP2006224992A (en) * 2005-02-17 2006-08-31 Kirin Brewery Co Ltd Plastic container coated with gas barrier membrane, its manufacturing device, and its manufacturing method
JP2008127054A (en) * 2006-11-20 2008-06-05 Kirin Brewery Co Ltd Manufacturing method for plastic container coated with barrier film and manufacturing apparatus therefor
WO2014115755A1 (en) * 2013-01-22 2014-07-31 株式会社ニコン Functional coating, liquid immersion member, method for manufacturing liquid immersion member, light exposure apparatus, and device manufacturing method
WO2016056466A1 (en) * 2014-10-05 2016-04-14 太陽誘電ケミカルテクノロジー株式会社 Antibacterial laminate structure and method for manufacturing same
WO2017047795A1 (en) * 2015-09-17 2017-03-23 新日鐵住金株式会社 Titanium pipe-forming roll, titanium pipe-forming apparatus, and titanium pipe-manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123570A (en) * 2020-02-07 2021-08-30 株式会社ニコン Member having amorphous carbon film, and method of producing the same
JP7456177B2 (en) 2020-02-07 2024-03-27 株式会社ニコン A member having an amorphous carbon film and its manufacturing method

Also Published As

Publication number Publication date
JP2020105535A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
Slepička et al. Surface modification of biopolymers by argon plasma and thermal treatment
JP2000064047A5 (en)
JP6311963B2 (en) Film formation method and magnetic recording medium manufacturing method
Hee et al. Corrosion behaviour and microstructure of tantalum film on Ti6Al4V substrate by filtered cathodic vacuum arc deposition
Panjan et al. Surface topography of PVD hard coatings
WO2016171627A1 (en) A substantially transparent coating
Vasilescu et al. Microstructure, surface characterization, and electrochemical behavior of new Ti-Zr-Ta-Ag alloy in simulated human electrolyte
Balasubramanian et al. Nanocomposite Ti–Si–N coatings deposited by reactive dc magnetron sputtering for biomedical applications
Akhavan et al. External magnetic field guiding in HiPIMS to control sp3 fraction of tetrahedral amorphous carbon films
WO2018193991A1 (en) Container, method for producing container, and method for evaluating amorphous carbon film
Jelínek et al. Dual laser deposition of Ti: DLC composite for implants
JP2019010013A (en) Cell sorting article and cell sorting method
Saitoh Classification of diamond-like carbon films
Goikhman et al. Ion beam deposition for novel thin film materials and coatings
Major et al. Wear mechanisms of the biotribological nanocomposite a‐C: H coatings implanted by metallic nanoparticles
Tanase et al. SEM, XPS studies, and magnetoresistance properties of Co, Ni, Co–N, and Ni–N thin films prepared by electrodeposition
Günzel et al. Corrosion protection of titanium by deposition of niobium thin films
JPH05230249A (en) Method of treating base surface
TW201226612A (en) Method and apparatus to produce high density overcoats
JP2014082176A (en) Corrosion resistant electroconductive material, corrosion resistant electroconductive film and corrosion resistant electroconductive member
Gatzen et al. Deposition Technologies
JP5659362B2 (en) Endothelial cell proliferating material
WO2019160011A1 (en) Method for preserving amorphous carbon film
Juan et al. Zinc ion implantation-deposition modification of titanium for enhanced adhesion of focal plaques of osteoblast-like cells
Wang et al. Ion‐beam‐sputtering/mixing deposition of calcium phosphate coatings. I. Effects of ion‐mixing beams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP