WO2017047795A1 - Titanium pipe-forming roll, titanium pipe-forming apparatus, and titanium pipe-manufacturing method - Google Patents

Titanium pipe-forming roll, titanium pipe-forming apparatus, and titanium pipe-manufacturing method Download PDF

Info

Publication number
WO2017047795A1
WO2017047795A1 PCT/JP2016/077561 JP2016077561W WO2017047795A1 WO 2017047795 A1 WO2017047795 A1 WO 2017047795A1 JP 2016077561 W JP2016077561 W JP 2016077561W WO 2017047795 A1 WO2017047795 A1 WO 2017047795A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
titanium tube
tube forming
film
flange portion
Prior art date
Application number
PCT/JP2016/077561
Other languages
French (fr)
Japanese (ja)
Inventor
美昭 伊丹
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016575271A priority Critical patent/JP6217871B2/en
Publication of WO2017047795A1 publication Critical patent/WO2017047795A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Definitions

  • the present invention relates to a titanium tube forming roll, a titanium tube forming apparatus, and a method for manufacturing a titanium tube.
  • the forming roll is required to have excellent wear resistance capable of maintaining the state of the roll surface over a long period of time.
  • a roll for forming a steel pipe is required to have a long-life roll that has both wear resistance and adhesion resistance that can reduce seizure flaws and can reduce the frequency of roll replacement.
  • a method of securing a hardness by forming a ceramic film on the roll surface (Patent Document 1), and forming a surface hardened layer selected from a sulfur nitrided layer, a nitrided layer and TiC on the roll surface to improve the hardness and
  • a surface hardened layer selected from a sulfur nitrided layer, a nitrided layer and TiC on the roll surface
  • the carbide dispersed in the roll surface layer is refined to ensure adhesion between the roll and the hard coating, and to prevent peeling of the hard coating.
  • a method for securing wear resistance and adhesion resistance (Patent Document 3) and the like have been studied.
  • tool steel such as die steel is often used as the material of the forming roll, but measures to use cemented carbide instead of tool steel are also available to improve wear resistance and adhesion resistance. Has been taken.
  • titanium has been developed as a constituent material for various chemical reaction towers, containers, pipes, and the like because it has significantly superior corrosion resistance in various environments compared to other metal materials.
  • titanium pipes are often used as heat transfer pipes for steam turbine condensers and evaporative seawater desalination equipment for thermal power and nuclear power plants.
  • roundness and residual stress are controlled by forming with a plurality of forming rolls arranged in a plurality in the conveying direction.
  • the drive roll consists of a pair of rolls arranged opposite to each other in the vertical direction.
  • the rolls are driven by applying a driving rotational force to the upper and lower rolls to pull the titanium tube in the conveying direction. It consists of a pair of made rolls, and no driving torque is applied.
  • the present inventors investigated in detail the characteristics required for the drive roll and the non-drive roll.
  • the driving roll has a larger peripheral speed difference than the non-driving roll, and thus it has been found that the roll surface is particularly peeled off at the flange portion, and the titanium tube which is a molding object is easily wrinkled. Furthermore, it was found that even when a hard film was applied for the purpose of hardening the roll surface, the drive roll was easier to peel off than the non-drive roll, and the roll life was shortened.
  • the driving roll is used in a harsher environment than the non-driving roll, so it has not only wear resistance and adhesion resistance, but also peeling resistance, and excellent sliding properties of the roll surface, that is, low friction. Was found to be required.
  • the present invention has been made in view of the above problems, and is excellent in wear resistance, adhesion resistance, peel resistance, and friction coefficient of the roll surface in a roll used when forming and forming a titanium tube. It is another object of the present invention to provide an inexpensive titanium tube forming roll, a titanium tube forming apparatus capable of extending the life of the roll, and a titanium tube manufacturing method.
  • the present inventors have studied titanium tube forming rolls that are inexpensive and have excellent wear resistance, adhesion resistance, peeling resistance, and friction coefficient of the roll surface, and have a long roll life.
  • the alloy tool steel used as a base material forming a nitride layer and a CrN film having low affinity with titanium on the base material, and further forming a diamond-like carbon film thereon. It has been found that it is possible to provide a long-life roll that can achieve both wear resistance, adhesion resistance, peel resistance, and low friction on the roll surface, and can reduce the frequency of roll replacement.
  • the gist of the present invention is as follows.
  • a substrate having a chemical composition with the balance being iron and inevitable impurities A substrate having a chemical composition with the balance being iron and inevitable impurities; A nitride layer formed on at least the rolled surface on the substrate; A CrN film formed on the nitride layer; A diamond-like carbon film formed on the CrN film,
  • the substrate has a Vickers hardness of 600 to 700, The nitride layer has a Vickers hardness of 800 to 1200;
  • the CrN film has a Vickers hardness of 800 to 2000,
  • the diamond-like carbon film has a Vickers hardness of 3000 to 3500 in the region from the film surface to 0.20 t (where t is the film thickness), and 1500 to 3000 in the region from the interface with the CrN film to 0.20
  • the ratio I 1380 / I 1540 of the absorption intensity I 1380 at a wave number of 1380 cm ⁇ 1 and the absorption intensity I 1540 at a wave number of 1540 cm ⁇ 1 measured by Raman spectroscopy is 0.20 t from the film surface. 0.5 to 0.7 in the region up to 0.3, and 0.3 to 0.5 in the region up to 0.20 t from the interface between the diamond-like carbon film and the CrN film. Titanium tube forming roll.
  • the thickness of the diamond-like carbon film is preferably 0.5 ⁇ m to 2.0 ⁇ m.
  • the thickness of the CrN film is preferably 0.5 ⁇ m to 5.0 ⁇ m.
  • the thickness of the nitride layer is preferably 0.5 ⁇ m to 50.0 ⁇ m.
  • the average nitrogen concentration of the nitrided layer is preferably 10.0 to 25.0% by mass.
  • the nitrogen concentration distribution in the nitride layer has a concentration gradient that decreases in the depth direction from the surface layer of the nitride layer.
  • the base material contains one or more selected from Mo: 0.70 to 1.20%, V: 0.15 to 1.00% and W: 0.60 to 0.80% by mass. Is preferred.
  • the titanium tube forming roll of (1) is a perforated roll provided with a semi-circular roll recess in cross-section over the entire circumference of the roll body, and the rolling surface is the surface of the roll recess.
  • the roll main body includes a roll center portion and a pair of rotating flange portions that are arranged on both sides of the roll center portion and are rotatable with respect to the roll center portion, and the roll recess portion includes the roll It is preferable that the center portion and the rotating flange portion are divided.
  • the roll center portion is fixed to a rotating shaft that drives the roll body, and the rotating flange portion is rotatable with respect to the rotating shaft and the roll center portion.
  • the width of the roll recess at the center of the roll is preferably in the range of 0.7D to 0.87D.
  • the roll center part includes a base part and a protrusion part protruding from the center part in the roll width direction of the base part toward the outer periphery of the roll, and the rotating flange part is on the base part and protrudes from the base part. It is preferable that a first bearing portion is provided between the base portion of the central portion of the roll and the rotating flange portion.
  • the opposing surfaces that face each other between the base portion and the rotating flange portion at the center of the roll are the raceway surfaces of the rolling elements of the first bearing portion, and the opposing surfaces are the nitride layer
  • the CrN film and the diamond-like carbon film are preferably provided.
  • a fixed flange portion disposed on both sides of the pair of rotating flange portions in the roll width direction and fixed to the center portion of the roll, and a second bearing portion disposed between the fixed flange portion and the rotating flange portion Are preferably provided.
  • the opposing surfaces facing each other between the fixed flange portion and the rotating flange portion are raceway surfaces of the rolling elements of the second bearing portion, and the opposing surfaces are the nitride layer and the CrN. It is preferable to provide a film and the diamond-like carbon film.
  • a pulling screw portion for pulling and fixing the rotating flange portion is provided on the fixing flange portion.
  • a titanium tube forming apparatus including the titanium tube forming roll according to (1), wherein the titanium tube has a lubrication nozzle for supplying a lubricant to the part of the titanium tube forming roll during the titanium tube forming. Molding equipment.
  • the position of the lubrication nozzle can be varied in accordance with the forming size of the titanium tube.
  • the position of the lubrication nozzle can be varied according to the diameter of the titanium tube forming roll.
  • the position and orientation of the lubricating nozzle can be arbitrarily adjusted.
  • the lubrication nozzle is preferably a tube having an inner diameter of 0.5 to 3.0 mm.
  • a soluble oil lubricant as the lubricant, and supply the lubricant dropwise in a small amount at 1.0 to 20.0 ml / hr or less.
  • a method for manufacturing a titanium tube which is formed using the titanium tube forming roll of (1) above.
  • a method for manufacturing a titanium tube which is formed using the titanium tube forming apparatus of (2) above.
  • a titanium tube forming roll excellent in wear resistance, adhesion resistance, peeling resistance, and friction coefficient of the roll surface, and inexpensive. It is possible to provide a titanium tube forming apparatus capable of extending the life of a roll and a method for manufacturing a titanium tube.
  • FIG. 1 is a schematic side view illustrating a titanium tube manufacturing method using a titanium tube forming roll as a first example of an embodiment of the present invention.
  • FIG. 2 is a schematic front view showing a titanium tube forming roll according to an embodiment of the present invention.
  • FIG. 3 is a schematic front sectional view showing a titanium tube forming roll which is a second example of the embodiment of the present invention.
  • FIG. 4 is a front sectional exploded schematic view showing a titanium tube forming roll as a second example of the embodiment of the present invention.
  • FIG. 5 is a schematic front sectional view showing a roll center portion and a rotating flange portion of a titanium tube forming roll which is a second example of the embodiment of the present invention.
  • FIG. 1 is a schematic side view illustrating a titanium tube manufacturing method using a titanium tube forming roll as a first example of an embodiment of the present invention.
  • FIG. 2 is a schematic front view showing a titanium tube forming roll according to an embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the slip ratio in the titanium tube forming roll
  • (a) is a schematic diagram for explaining the slip ratio in the drive roll
  • (b) is a schematic diagram for explaining the slip ratio in the non-drive roll. It is a figure
  • (c) is a schematic diagram explaining the slip ratio in the titanium tube forming roll of this embodiment.
  • FIG. 7 is a schematic front sectional view showing another example of the titanium tube forming roll of the present embodiment.
  • FIG. 8 is a schematic front sectional view showing still another example of the titanium tube forming roll of this embodiment.
  • FIG. 9 is a schematic front sectional view showing a titanium tube forming roll which is a third example of the embodiment of the present invention.
  • FIG. 10 is a schematic front view for explaining a lubrication method and apparatus using a titanium tube forming apparatus.
  • FIG. 11 is a schematic front view for explaining an arrangement example of the lubricating nozzle 1 shown in FIG. 10.
  • 12 is a schematic top view and schematic side view for explaining the width direction adjusting mechanism and the vertical direction adjusting mechanism of the lubricating nozzle 1 shown in FIG.
  • FIG. 13 is a view showing a structure of a roller pump (lubricant supply device) for dripping a small amount of lubricant using the lubrication nozzle 1.
  • 14 is a graph showing the result of component analysis in the forming roll of Example 1.
  • FIG. FIG. 15 is a graph showing the result of component analysis in the forming roll of Example 1.
  • FIG. 16 is a graph showing the result of component analysis in the forming roll of Example 1.
  • 17 (a) is a micrograph of the surface layer of the forming roll of Example 1
  • FIG. 17 (b) is a Raman spectrum of the surface layer of the forming roll of Example 1
  • FIG. 17 (c) is the forming roll of Example 1.
  • 18A is a micrograph of the surface layer of the forming roll of Comparative Example 1
  • FIG. 18B is a Raman spectrum of the surface layer of the forming roll of Comparative Example 1
  • FIG. 18C is the forming roll of Comparative Example 1.
  • FIG. 19A is a view showing a measurement result of roundness of a titanium tube formed using the forming roll of Example 2
  • FIG. 19B is formed using the forming roll of Example 3. It is a figure which shows the measurement result of the roundness of the made titanium tube. In each case, the deviation from the perfect circle is enlarged.
  • FIG. 1 is a schematic side view of a titanium tube forming roll and a titanium tube manufacturing method using the titanium tube forming roll, which is a first example of the present embodiment.
  • the front schematic diagram of a titanium pipe forming roll is shown.
  • the titanium tube forming roll 1 of the present embodiment is a so-called hole-type roll (caliber roll), and a roll body 2 made of a steel material and a rotating shaft 3 inserted through the roll body 2. And are provided.
  • a roll recess 4 formed in a semicircular shape in cross section is provided over the entire circumference of the roll body 2.
  • a nitride layer, a CrN film, and a diamond-like carbon film are formed in this order on the base material on the surface of the roll recess 4 that is a rolled surface.
  • the rotation shafts 3 of the pair of titanium tube forming rolls 1 are arranged horizontally, and the rotation shafts 3 are parallel to each other. Arrange so that In this way, the respective titanium tube forming rolls 1 are arranged to face each other in the vertical direction.
  • molding is passed between a pair of titanium pipe shaping
  • a hole having a perfect circle shape when viewed from the front side is provided by the roll recess 4 of each titanium tube roll 1.
  • the titanium tube 10 is formed into a perfect circle.
  • positioning of the titanium tube forming roll 1 is not restricted to an up-down direction, A horizontal direction or the diagonal direction may be sufficient.
  • the rotating shaft 3 of the titanium tube forming roll 1 may be a driving shaft driven by driving means or a non-driving shaft. Even if the titanium tube forming roll 1 of this embodiment is connected to the drive shaft, the titanium tube forming roll 1 is provided with a diamond-like carbon film formed on the CrN film, so that it has wear resistance, adhesion resistance, and peeling resistance. And excellent friction coefficient on the roll surface.
  • the base material of the roll body 2 of the titanium tube forming roll 1 according to the present embodiment is C: 1.00-2.30%, Si: 0.10-0.60%, Mn: 0.00% by mass.
  • a CrN film and a diamond-like carbon film are provided on the surface of the roll recess 4 of the titanium tube forming roll 1 made of this base material.
  • the ratio I 1380 / I 1540 between the absorption intensity I 1380 at a wave number of 1380 cm ⁇ 1 and the absorption intensity I 1540 at a wave number of 1540 cm ⁇ 1 measured by Raman spectroscopy is 0.20 t from the film surface. In the region up to 0.5 to 0.7, and 0.3 to 0.5 in the region from the interface between the diamond-like carbon film and the CrN film to 0.20 t.
  • C carbon 1.00-2.30%
  • C is an element necessary for forming carbide and ensuring hardness. Moreover, since it combines with Cr, Mo, V, etc. to form a hard carbide, it is important as an element that increases the quenching and tempering hardness and constitutes the wear resistance. Therefore, in this embodiment, C is contained by 1.00% or more. From the viewpoint of ensuring hardness, it is preferable to contain 1.4% or more.
  • the C content is limited to 2.30% or less.
  • the upper limit of the C content is preferably 2.20%, and more preferably 2.00% or less.
  • Si silicon 0.10 to 0.60% Si is contained as a deoxidizer. Further, Si is contained because it has an effect of increasing softening resistance during high-temperature tempering. From these viewpoints, Si is contained by 0.10% or more. On the other hand, if the Si content exceeds 0.60%, hot workability and toughness are reduced, and nonmetallic inclusions may increase. Therefore, the Si content is set to 0.60% or less. From the viewpoint of securing toughness, the upper limit of Si content is preferably 0.50%.
  • Mn Manganese 0.20 to 0.80%
  • Mn is an element having a deoxidizing effect like Si, and is an element that improves hardenability and at the same time increases retained austenite. From this viewpoint, Mn is contained by 0.20% or more. In addition, it is preferable to contain 0.30 or more from a viewpoint of ensuring hardness. In consideration of the balance with toughness, the upper limit of the amount of Mn is set to 0.8% in the present embodiment. Preferably, it is 0.6% or less.
  • P Phosphorus
  • S Sulfur
  • Cr Chromium 4.80-13.00% Cr is an element that is in demand to improve wear resistance by combining with C to form carbides. Moreover, in this embodiment, since a CrN film (hard film) is formed on the base material of the titanium tube forming roll 1, it is very important also in ensuring adhesion with the CrN film. From these viewpoints, the Cr content is 4.80% or more, preferably 8.00% or more, and more preferably 11.00% or more.
  • the upper limit of Cr content is 13.00%. In addition, Preferably it is 12.50% or less.
  • Mo Molybdenum
  • Mo is preferably contained in an amount of 1.20% or less, and more preferably 1.10% or less.
  • V Vanadium 0-1.00% V is effective for improving the hardenability of the base material, suppressing temper softening, and further miniaturizing the carbide.
  • V is preferably contained in an amount of 0.15% or more, more preferably 0.20% or more.
  • V is preferably contained in an amount of 1.00% or less, and more preferably 0.50% or less.
  • W Tungsten 0 ⁇ 0.80% W, like V, is effective for improving the hardenability of the base material, suppressing temper softening, and further miniaturizing the carbide, and therefore may be contained.
  • W is preferably contained in an amount of 0.6% or more.
  • W is preferably contained in an amount of 0.80% or less.
  • the balance other than the above-described elements is substantially made of Fe, and trace amounts of elements that do not impair the effects of the present invention, such as inevitable impurities, can be added.
  • the titanium tube forming roll 1 of this embodiment what has the said chemical composition is used as a material of a base material, but Among these, it is cheaper and a viewpoint which ensures abrasion resistance and adhesion resistance in good balance. Therefore, it is preferable to use SKD1, SKD2, SKD10, SKD11 or SKD12 (all within the above chemical composition range) defined in JIS G 4404, and among these, it is more preferable to use SKD11.
  • the hardness of the base material having the above chemical composition is 600 to 700 in terms of Vickers hardness. That is, when the titanium tube 10 is formed in the state of the base material without forming a film or the like on the base material, the hardness of the base material itself can be secured, so that the wear resistance is relatively good. However, with respect to adhesion resistance, titanium is baked on the base material, and a large number of wrinkles are generated in the titanium tube forming roll 1.
  • a CrN film is formed on the base material surface (rolled surface). This is very important.
  • adhesion between the titanium tube 10 and the titanium tube forming roll 1 can be secured, and adhesion resistance can be improved.
  • a hardness disparity stress tends to concentrate at the interface between the CrN layer and the base material, and depending on the thickness of the CrN film, sufficient adhesion between the CrN film and the base material may not be ensured.
  • the hardness disparity is reduced by providing a nitride layer capable of connecting the CrN film and the base material between the high hardness CrN film and the relatively soft base material. It was found that the adhesion between the CrN film and the base material and the strength of the titanium tube forming roll 1 can be made compatible.
  • a nitride layer obtained by plasma nitriding the substrate surface layer between the substrate and the CrN layer is preferable to provide.
  • the nitride layer obtained by plasma nitriding the substrate surface layer between the substrate and the CrN layer.
  • the hardness difference between the CrN film and the base material can be relaxed, and the concentration of stress can be suppressed.
  • adhesion and strength between the CrN layer and the base material can be improved, peeling of the CrN layer can be reduced, and adhesion resistance can be improved.
  • the titanium tube forming roll 1 forms a nitride layer on a base material and forms a CrN film and a high-hardness diamond carbon film on the nitride layer. Ensures adhesion resistance and low friction.
  • the Vickers hardness of the nitrided layer is 800-1200. If the Vickers hardness is less than 800, the hardness difference from the CrN film becomes too large, and if it exceeds 1200, the hardness difference from the base material becomes large.
  • the thickness of the nitride layer is not particularly limited, but is preferably 0.5 ⁇ m to 50.0 ⁇ m in the present embodiment. In order to reduce the difference in strength between the high hardness CrN layer and the relatively soft base material, it is preferable to secure a thickness of the nitride layer of 0.5 ⁇ m or more. More preferably, it is 1.0 ⁇ m or more. On the other hand, when the thickness of the nitrided layer is excessively increased, the time required for the plasma nitriding treatment becomes longer and the productivity is lowered, and the manufacturing cost is increased.
  • the thickness of the nitride layer is preferably 50.0 ⁇ m or less.
  • the average nitrogen concentration in the nitrided layer is preferably 10.0-25.0% by mass.
  • the average nitrogen concentration in the nitrided layer may be 10.0% by mass or more. preferable. More preferably, it is 12.0% or more.
  • the average nitrogen concentration in the nitride layer is preferably 25.0% by mass or less. More preferably, it is 23.0% or less.
  • the nitrogen concentration distribution in the nitride layer has a concentration gradient that decreases from the surface layer of the nitride layer in the depth direction.
  • the difference in strength between the CrN layer, the substrate surface layer, and the inside of the substrate, that is, the strength gradient along the depth direction inside the roll is made gentle.
  • the plasma nitridation treatment for the substrate surface layer for forming the nitride layer is divided into a plurality of times,
  • the concentration distribution of nitrogen in the nitride layer may be adjusted by performing each process under different conditions.
  • the determination of the “nitride layer” can be performed by a glow discharge emission spectrometer (GDS). Specifically, first, in the base material surface layer nitrided by the plasma nitriding treatment, the analysis region is set to a diameter of 1 mm, and normal glow discharge emission analysis is performed. Subsequently, the analysis proceeds in the depth direction, and a region where the nitrogen amount in the analysis region exceeds the average nitrogen concentration of the base material (base material) is defined as a “nitriding layer”. That is, the glow discharge emission analysis is performed in the depth direction, and the point where the nitrogen amount has decreased to the average nitrogen concentration of the substrate is determined as the boundary between the substrate and the “nitriding layer”.
  • GDS glow discharge emission spectrometer
  • the average nitrogen concentration in the nitride layer can also be measured using GDS.
  • the analysis region is 1 mm in diameter
  • analysis is performed in the depth direction using GDS
  • the QDP (Quantitative Depth Profile) method defined in JIS K 0150 is applied to each depth of 50 nm. Measure the nitrogen concentration.
  • the nitrogen concentration distribution in the nitride layer can be obtained.
  • the average nitrogen concentration of the whole nitride layer can be calculated
  • the surface of the roll (base material) be mirror-polished. It is also desirable to perform shot blasting. As a result, the roll surface properties can be improved, the adhesion between the CrN film and the substrate can be improved, and as a result, excellent adhesion resistance can be obtained.
  • the Vickers hardness of the CrN film is 800 to 2000.
  • the hardness of the CrN film is preferably high from the viewpoint of improving the wear resistance of the titanium tube forming roll 1. Therefore, in the present embodiment, the Vickers hardness of the CrN film is preferably 800 or more, more preferably 1200 or more, and even more preferably 1500 or more.
  • the Vickers hardness of the CrN film is preferably 2000 or less.
  • the thickness of the CrN film is not particularly limited, but is preferably 0.5 ⁇ m to 5.0 ⁇ m. If the CrN film is too thin, unevenness may occur during film formation, and adhesion resistance may be insufficient. On the other hand, if the CrN film is excessively thick, the hardness is improved, but the film is liable to be cracked and may become brittle, and the production cost is increased from an economical viewpoint, which is not preferable. For these reasons, the thickness of the CrN film is preferably 0.5 ⁇ m to 5.0 ⁇ m.
  • the film forming method of the CrN film is not particularly limited, but it is preferable to use a PVD method (physical vapor deposition method) because adhesion to the substrate can be secured and the hardness of the formed film can be improved.
  • a PVD method physical vapor deposition method
  • the CrN film according to the present embodiment can be formed by other vapor deposition methods (for example, CVD method), there is a risk that the hardness may be insufficient or the film thickness of the CrN film may be excessively increased.
  • the PVD method is preferably used as the film forming method.
  • the CrN film may have a single layer structure or a multilayer structure in which two or more layers are laminated. However, as described above, if the film thickness of the CrN film becomes too thick, cracks may occur, and a multi-layer structure causes a decrease in productivity and an increase in manufacturing cost. A single layer structure is preferable.
  • the driving roll for pulling the titanium tube 10 in the conveying direction is more severe in use environment and usage conditions than the non-driving roll, so that it has not only wear resistance and adhesion resistance. That is, the anti-peeling property and the excellent low friction property of the surface of the roll recess 4 are required.
  • a high-hardness DLC film made of carbon with sp 2 hybrid orbitals (sp 2 structure) and carbon with sp 3 hybrid orbitals (sp 3 structure) is formed on the CrN film.
  • the ratio I 1380 / I 1540 between the absorption intensity I 1380 at a wave number of 1380 cm ⁇ 1 and the absorption intensity I 1540 at a wave number of 1540 cm ⁇ 1 measured by Raman spectroscopy is measured from the film surface.
  • Control to be 0.5 to 0.7 in the region up to 0.20 t (upper layer region) and 0.3 to 0.5 in the region (lower layer region) from the interface between the DLC film and the CrN film to 0.20 t.
  • a hardness gradient is applied such that the proportion of the sp 3 structure decreases (hardness decreases) from the film surface toward the CrN film side.
  • I 1380 is an absorption intensity at a wave number of 1380 cm ⁇ 1 measured in Raman spectroscopy, a so-called “D band”, and the other I 1540 is a wave number of 1540 cm measured in Raman spectroscopy.
  • the absorption intensity at ⁇ 1 the so-called “G band” can be used as a measure of the sp 3 structure by calculating I 1380 / I 1540 (D / G).
  • DLC is a mixture of carbon having a relatively high carbon ratio in sp 3 hybrid orbitals (diamond structure) and carbon having a relatively high carbon ratio in sp 2 hybrid orbitals (graphite structure). That is, when the sp 3 structure is increased, the properties are closer to diamond (high hardness), and when the sp 2 structures are increased, the properties are closer to graphite (soft).
  • the film thickness direction of the DLC film is controlled by controlling the ratio of the sp 3 structure and the sp 2 structure in the DLC film so that the lower layer area on the CrN film side is soft and the upper layer area on the film surface side is hard.
  • the hardness difference between the CrN layer and the DLC film can be reduced.
  • the Vickers hardness of the CrN layer is 800 to 2000, it is desirable that the lower layer region of the DLC film has a Vickers hardness of 1500 to 3000 and the upper layer region of 3000 to 3500.
  • the upper layer region of the DLC film hard with an increased proportion of the sp 3 structure, it is possible to exhibit excellent wear resistance with respect to the titanium tube 10, and the upper layer region has an sp 2 hybrid orbital ( Low friction is also ensured because it contains some carbon (graphite structure).
  • the lower layer region of the DLC film soft with the ratio of the sp 3 structure being suppressed, the hardness difference with the CrN layer can be alleviated and peeling resistance can be ensured.
  • the DLC film has a low affinity with titanium, it can also have good adhesion resistance.
  • I 1380 / I 1540 can be measured by Raman spectroscopy.
  • Raman spectroscopy the sample surface is irradiated with laser light, etc., and the Raman scattered light emitted by the sample is dispersed, and the molecular structure and bonding state of the sample surface are revealed from the difference in wavelength between the incident light and the Raman scattered light. It is a technique to make.
  • the thickness of the DLC film is not particularly limited and is preferably in the range of 0.5 to 2.0 ⁇ m, but may be appropriately determined depending on the production method, its conditions, the usage environment of the titanium tube forming roll 1, and the like.
  • the DLC film according to this embodiment can be formed by, for example, a plasma CVD method.
  • each condition (film formation condition) of the plasma CVD method may be adjusted.
  • the ratio of the sp 3 structure and the sp 2 structure in the DLC film can be adjusted by appropriately adjusting the type and ratio of the reaction gas, the substrate temperature, the cathode voltage, the degree of vacuum, and the like.
  • the film formation may be performed while appropriately adjusting the film formation conditions. May be.
  • the reaction gas can be a mixed gas of CH 4 and H 2 or only CH 4 gas.
  • a mixed gas used as the reaction gas
  • the ratio of the sp 3 structure and the sp 2 structure can be adjusted by adjusting the flow rate of each gas, and when only the CH 4 gas is used, other conditions may be adjusted.
  • the ratio of the sp 3 structure and the sp 2 structure may be adjusted while examining the Raman peak of the generated DLC film.
  • the DLC film according to the present embodiment can be formed by an unbalanced magnetron sputtering (UBMS) method. At this time, it is possible to gradually increase the hardness of the film from the interface with the CrN film toward the surface by changing the flow ratio of methane gas to Ar gas.
  • UBMS unbalanced magnetron sputtering
  • the surface of the CrN film is exposed to the atmosphere and is easily contaminated. Therefore, in this embodiment, it is desirable to perform plasma cleaning on the surface of the CrN film before forming the DLC film, and to decompose and remove the dirt on the surface before forming the DLC film. Thereby, the adhesiveness between the CrN film and the DLC film can be further improved.
  • FIGS. 3 and 4 show a titanium tube forming roll 11 which is a second example of the present embodiment.
  • the titanium tube forming roll 11 shown in FIGS. 3 and 4 is a so-called perforated roll (caliber roll), and includes a roll body 12 made of a steel material and a rotating shaft 3 inserted through the roll body 12.
  • a roll recess 14 formed in a semicircular shape in cross section is provided over the entire circumference of the roll body 12.
  • a nitride layer, a CrN film, and a DLC film are formed in this order on the base material on the surface of the roll recess 14 that is a rolled surface.
  • the roll body 12 includes a roll center portion 21, a pair of rotating flange portions 22 that are disposed on both sides of the roll center portion 21 and are rotatable with respect to the roll center portion 21, and a pair of fixed flange portions 23. Is provided.
  • the roll recess 14 is divided by a roll center portion 21 and a rotating flange portion 22.
  • a first bearing portion 24 is provided between the roll center portion 21 and the rotating flange portion 22, and a second bearing portion 25 is provided between the fixed flange portion 23 and the rotating flange portion 22.
  • the roll center portion 21 and the fixing flange portion 23 are fixed to each other by a fixing bolt 26.
  • the roll center portion 21 is fixed to the rotary shaft 3 that drives the roll body 12.
  • the rotating flange portion 22 is rotatable with respect to the rotating shaft 3 and the roll center portion 21.
  • the fixing flange portion 23 is fixed to the roll center portion 21 by fixing bolts 26. That is, the fixed flange portion 23 is fixed to the rotating shaft 3 integrally with the roll center portion 21.
  • the rotation flange portion 22 is rotatable with respect to the roll center portion 21 and the fixed flange portion 23 by the first and second bearing portions 24 and 25, the roll center portion 21 and the fixed flange portion 23. Does not work with.
  • each part will be described in detail.
  • the roll center portion 21 includes a cylindrical base portion 21a through which the rotary shaft 3 is inserted, and a protruding portion 21b protruding from the center of the base portion 21a in the roll width direction.
  • the base portion 21a is provided with an insertion hole 21c for allowing the rotary shaft 3 to pass therethrough.
  • the upper surface 21d of the protruding portion 21b is formed in a round groove shape that is recessed toward the rotating shaft 3 and is continuous over the entire circumference of the roll body 12, and this upper surface 21d constitutes a part of the roll concave portion 14. Yes.
  • the roll center portion 21 is composed of a base material having the chemical composition described in the first example.
  • the upper surface 21d of the roll central portion 21 is provided with the CrN film and the DLC film described in the first example.
  • the rotating flange portion 22 is a substantially ring-shaped member, and is fitted on the outer peripheral side of the base portion 21a of the roll center portion 21 and on both sides of the protruding portion 21b in the roll width direction. In this manner, the rotating flange portion 22 is disposed on both sides of the protruding portion 21b in the roll width direction on the base portion 21a.
  • a first bearing 24 is disposed between the base portion 21 a of the roll center portion 21 and the rotating flange portion 22. Further, a gap of about 0.1 mm is provided between the side wall surface 21 b 1 of the protruding portion 21 b of the roll center portion 21 and the rotating flange portion 22.
  • the rotating flange portion 22 is rotatable without sliding with respect to the roll center portion 21.
  • the outer peripheral inclined surface 22 a of the rotating flange portion 22 is formed into a concave arc surface when viewed in cross section, and is an arc surface continuous with the upper surface 21 d of the roll center portion 21.
  • the roll concave portion 14 is constituted by the outer peripheral inclined surface 22 a of the rotating flange portion 22 and the upper surface 21 d of the roll center portion 21.
  • the tip end portion 22d including the outer peripheral inclined surface 22a of the rotating flange portion 22 is bent so as to cover the tip of the protruding portion 21b.
  • Rotating flange portion 22 is composed of a base material having the chemical composition described in the first example. Further, the outer peripheral inclined surface 22a of the rotating flange portion 22 is provided with the CrN film and the DLC film described in the first example. Further, a CrN film and a DLC film may be provided on the entire surface of the rotating flange portion 22.
  • the 1st bearing part 24 is provided with the rolling element which consists of needle rollers which are not shown in figure, and the holder
  • the base 21a of the roll center portion 21 and the rotating flange portion 22 are an inner race and an outer race of the first bearing portion 24, respectively.
  • a nitride layer, CrN coatings and DLC film are formed in this order.
  • the fixed flange portion 23 is a substantially disk-like member, and is a member provided with an insertion hole 23a through which the rotary shaft 3 can be inserted at the center.
  • the fixed flange portions 23 are disposed on both sides of the roll body 12 in the roll width direction.
  • a portion of the fixed flange portion 23 near the rotation axis is fixed to the base portion 21 a of the roll center portion 21 by a fixing bolt 26.
  • the portions near the outer periphery of the fixed flange portion 23 are located on both sides of the rotating flange portion 22 in the roll width direction and face the rotating flange portion 22.
  • a second bearing portion 25 is disposed between the fixed flange portion 23 and the rotating flange portion 22.
  • the fixed flange portion 23 is composed of a base material having the chemical composition described in the first example. Moreover, the nitrided layer, CrN film
  • FIG. 1 is a base material having the chemical composition described in the first example.
  • membrane, and DLC film which were demonstrated in the 1st example may be provided in the opposing surface 23b facing the rotation flange part 22 among the fixed flange parts 23.
  • the second bearing portion 25 includes a rolling element made of needle rollers (not shown) and a cage (not shown) that holds a plurality of rolling elements.
  • the opposing surface 23b of the fixed flange portion 23 and the side surface 22c of the rotating flange portion 22, which are surfaces adjacent to the second bearing portion 25, are raceway surfaces of the rolling elements of the second bearing portion 25.
  • the facing surface 23b of the fixed flange portion 23 and the side surface 22c of the rotating flange portion 22 are races of the second bearing portion 25, respectively.
  • a nitride layer, a CrN film, and a DLC film are formed in this order on the base material on the facing surface 23b and the side surface 22c as in the first example.
  • the titanium tube forming roll 1 of this example removes the fixing bolt 26, thereby removing the roll main body 12 from the roll center portion 21, the rotating flange portion 22, the fixing flange portion 23, and the first.
  • the bearing part 24 and the second bearing part 25 can be disassembled.
  • the roll center portion 21 and the fixed flange portion 23 are rotated by the rotational drive of the rotary shaft 3.
  • the upper surface 21 d of the roll center portion 21 contacts the titanium tube 10 and transmits the rotational torque of the rotating shaft 3 to the titanium tube 10.
  • the titanium tube 10 also contacts the outer peripheral inclined surface 22 a of the rotating flange portion 22, but the rotating flange portion 22 is rotated by the titanium tube 10 in accordance with the movement of the titanium tube 10.
  • the rotational speed of the rotating flange portion 22 is smaller than the rotational speed of the roll center portion 21.
  • the rotating flange portion 22 is rotatable with respect to the roll center portion 21 and the fixed flange portion 23 by the first and second bearing portions 24 and 25, respectively. Since there is a gap of about 0.1 mm between the protruding portion 21 b of the portion 21, the rotating flange portion 22 rotates at a rotation speed smaller than the rotation speed of the roll center portion 21. Thereby, the slip rate of the roll with respect to the titanium tube 10 is reduced as a whole, and the generation of wrinkles in the titanium tube 10 is suppressed.
  • the rotating flange portion 22 is slightly pushed outward in the roll width direction and the fixed flange portion 23.
  • a gap of about 0.1 mm is secured between the rotating flange portion 22 and the protruding portion 21b of the roll center portion 21.
  • the width W of the upper surface 21d of the protruding portion 21b of the roll central portion 21 is in the range of 0.7D to 0.87D, where D is the outer diameter of the titanium tube serving as the workpiece. preferable.
  • FIG. 6A is a schematic diagram for explaining the slip ratio in the non-dividing type driving roll.
  • the pinch position where the rotational torque can be most efficiently transmitted to the titanium tube 10 is the bottom of the roll recess 4. Therefore, the roll diameter at the lowermost portion of the roll recess 14 and R d, the roll diameter at the pinch position and R p, when the roll diameter of the flange portion upper surface of the roll and R f, slip ratio to titanium pipe in the flange portion near the top surface Is as follows.
  • FIG. 6B is a schematic diagram for explaining the slip ratio in the non-dividing type non-driving roll.
  • the pinch position in the case of a non-driving roll is in the middle between the bottom of the roll recess 4 and the upper surface of the flange.
  • the driving roll has a higher slip rate than the non-driving roll, and the titanium tube 10 is easily wrinkled, and the roll itself is easily worn. .
  • the split type driving roll of this embodiment will be examined.
  • the roll center part 21 functions as a driving roll
  • the rotating flange part 22 functions as a non-driving roll.
  • R f , R p and R d are as shown in FIG.
  • the angle ⁇ shown in FIG. 5 is preferably in the range of 30 to 45 °.
  • the width W is in the range of 0.7D to 0.87D, where D is the outer diameter of the titanium tube 10 serving as a workpiece. .
  • the titanium tube 10 can be molded without causing wrinkles, and damage to the rotating flange portion 22 can be prevented.
  • the roll main body 12 is disposed on both sides of the roll central portion 21 and the roll central portion 21 so as to be in the roll central portion 21. Since the roll recess 14 is divided by the roll center portion 21 and the rotation flange portion 22, the rotation flange portion 22 and the titanium tube are formed. Accordingly, the titanium tube 10 is less likely to be wrinkled, and the CrN film and the DLC film formed on the rotating flange portion 22 are not easily peeled off. Thus, according to the titanium tube forming roll 1 of this example, wear resistance, adhesion resistance, and peel resistance are improved, and the friction coefficient of the roll surface can be reduced.
  • the roll center portion 21 is fixed to the rotating shaft 3 that drives the roll body 12, while the rotating flange portion 22 is rotatable with respect to the rotating shaft 3 and the roll center portion 21.
  • the shaft 3 is a drive shaft
  • the roll central portion 21 is a drive roll
  • the rotation flange portion 22 is a non-drive roll
  • the slip rate in the rotation flange portion 22 that is a non-drive roll is reduced. 10 can be prevented, and peeling of the CrN film and the DLC film formed on the rotating flange portion 22 can be suppressed. Thereby, the durability of the titanium tube forming roll 1 can be improved, and the frequency of maintenance can be reduced.
  • the slip ratio with respect to the titanium tube 10 is reduced by setting the width of the roll concave portion 14 in the roll central portion 21 in the range of 0.7D to 0.87D.
  • the rotating flange portion 22 can be prevented from being damaged.
  • the roll central portion 21 is provided with a base portion 21a and a protruding portion 21b.
  • the rotating flange portions 22 are disposed on both sides of the protruding portion 21b in the roll width direction on the base portion 21a. Since the first bearing portion 24 is provided between the rotation flange portion 22 and the roll center portion 21, the rotation flange portion 22 can be smoothly rotated.
  • the rotating flange portion 22 is slightly pushed outward in the roll width direction, and a gap of about 0.1 mm is secured between the rotating flange portion 22 and the protruding portion 21 b.
  • the rotating flange portion 22 can be smoothly rotated without the rotating flange portion 22 and the protruding portion 21b rubbing against each other.
  • the opposing surface which mutually opposes between the base 21a of the roll center part 21 and the rotation flange part 22 is made into the track surface of the rolling element of the 1st bearing part 24, and CrN membrane
  • membrane are formed in these opposing surfaces. Therefore, the life of the first bearing portion 24 can be extended. In addition, since the first bearing portion 24 itself can be reduced in size, the roll body 12 can be made smaller and the equipment can be made compact.
  • the roll main body 12 is provided with a fixed flange portion 23 and a second bearing portion 25, and the second flange portion 23 prevents the turning flange portion 22 from falling off from the roll center portion 21 by the fixed flange portion 23.
  • the rotating flange portion 22 can be smoothly rotated by the bearing portion 25.
  • the opposing surfaces that face each other between the fixed flange portion 23 and the rotating flange portion 22 are the raceway surfaces of the rolling elements of the second bearing portion 25, and on these opposing surfaces, the nitride layer, the CrN coating, and the DLC Since the film is provided, the life of the second bearing portion 25 can be extended. In addition, since the second bearing portion 25 itself can be reduced in size, the roll body 12 can be reduced in size and the equipment can be made compact.
  • the titanium tube forming roll 1 of the present example removes the fixing bolt 26, so that the roll main body 12 is moved to the roll center portion 21, the rotating flange portion 22, the fixing flange portion 23, Since the first bearing portion 24 and the second bearing portion 25 can be disassembled, maintenance work can be easily performed. For example, when only the rotating flange portion 22 is worn and the CrN film and the DLC film are peeled off, it can be immediately used by replacing the spare rotating flange portion 22 with the titanium tube. Can continue. Further, the removed rotating flange portion 22 can be made into a reusable state only by forming a nitride layer, a CrN film, and a DLC film at a place where repair is necessary.
  • the CrN film and the DLC film according to the present embodiment can extend the life of the titanium tube forming roll 1 by forming the film on not only the surface of the roll recess 14 but also every part.
  • a nitride layer, a CrN film, and a DLC film are originally formed on the portions that serve as the raceway surfaces of the rolling elements of the first and second bearing portions 24 and 25, so that the wear resistance and fatigue resistance are inherently achieved. Even if it is a place where the material for bearings excellent in is applied, it becomes possible to make a raceway surface of the rolling element by forming a nitride layer, a CrN film and a DLC film on the base material of the roll body 14. .
  • the titanium tube forming roll of the second example has been described above, but in this example, the modification shown in FIG. 7 or FIG. 8 may be adopted.
  • the boundary surface between the rotating flange portion 22 and the protruding portion 21b extends straight toward the outer peripheral direction of the roll body 12.
  • the shapes of the rotating flange portion 22 and the protruding portion 21 b can be made relatively simple as compared with the case of FIG. Accuracy can be increased.
  • the example of FIG. 7 can be applied when the load received from the titanium tube 10 is relatively small.
  • the distal end portion 22d of the rotating flange portion 22 is bent almost right side.
  • the shapes of the rotating flange portion 22 and the protruding portion 21 b can be made relatively simple compared to the case of FIG. Can be increased.
  • the example of FIG. 8 can also be applied when the load received from the titanium tube 10 is relatively small.
  • FIG. 9 shows a titanium tube forming roll 31 which is a third example of the present embodiment.
  • the titanium tube forming roll 31 is provided with a pulling screw portion 32 that pulls and fixes the rotating flange portion 22 to the fixing flange portion 23.
  • the pulling screw portion 32 is provided at three locations of the fixing flange portion 23.
  • the pulling screw portion 32 includes a detachable bolt 32a and a screw hole 32b into which the detachable bolt 32a is inserted.
  • the screw holes 32b are provided in the fixed flange portion 23 and the rotating flange portion 22, respectively.
  • the detachable bolt 32 a When forming the titanium tube 10, the detachable bolt 32 a is removed so that the rotating flange portion 22 is rotatable with respect to the fixed flange portion 23 and the roll center portion 21.
  • the inner surface of the roll recess 14 is polished so as to restore the roundness when the roll recess 14 is partially worn and the roundness is lowered. That is, repair is performed in the same state as when the rotating tube 22 is pulled toward the fixed flange 23 and the titanium tube 10 is molded.
  • the titanium tube forming roll 31 of this example is provided with the pulling screw portion 32 that fixes the rotating flange portion 22 and the fixing flange portion 23 in close contact with each other, and repairs the roll recess 14.
  • the rotating flange portion 22 can be in the same state as when the titanium tube 10 is molded, so that the roundness of the roll recess after repair can be increased.
  • the titanium tube forming apparatus includes any of the titanium tube forming rolls 1, 21, and 31 described above, and lubricates a part of the titanium tube forming rolls 1, 21, and 31 during titanium tube forming.
  • a lubrication nozzle for supplying the agent is provided.
  • the supply of the lubricant is not essential because the production is possible without using the lubricant.
  • it is preferable to use a lubrication nozzle for supplying the lubricant but other methods may be used.
  • a water-soluble lubricant is often used for prevention of pipe flaws and cooling in a standard process after welding the titanium pipe.
  • the titanium tube forming apparatus has a It is preferable to provide a lubricating nozzle for supplying a lubricant.
  • FIG. 10A and 10B are diagrams showing a titanium tube forming apparatus according to the present embodiment, in which FIG. 10A is a schematic front view, FIG. 10B is a side view showing a configuration in the vicinity of the lubricating nozzle 101, and FIG. ) Is a cross-sectional view showing a configuration in the vicinity of the lubricating nozzle 101.
  • 11A and 11B are diagrams for explaining an arrangement example of the lubricating nozzle 101, where FIG. 11A is a schematic front view, and FIG. 11B is a schematic side view.
  • 12A and 12B are diagrams for explaining in detail the width direction adjusting mechanism and the vertical direction adjusting mechanism of the lubricating nozzle 101, wherein FIG. 12A is a schematic top view of the titanium tube forming apparatus, and FIG. 12B is a schematic side view.
  • FIG. 12A is a schematic top view of the titanium tube forming apparatus
  • FIG. 12B is a schematic side view.
  • FIG. 12A is a schematic
  • the titanium tube 10 is conveyed while being formed by titanium tube forming rolls 1, 21, 31 arranged so as to face each other in the vertical direction.
  • the position of the roll flange portion changes each time due to a change in the diameter of the titanium tube forming rolls 1, 21, 31 or the like. Therefore, the position of the lubricating nozzle 101 for dropping the lubricant must be adjusted each time. Therefore, in this embodiment, when the lubricating nozzle 101 for dropping the lubricant is disposed, it is preferable to provide an expansion / contraction mechanism that can adjust the dropping position of the lubricant in the width direction and the vertical direction.
  • a pipe-like horizontal movement guide 103 provided with a width movement groove (long groove) 118 is disposed in front of the forming rolls 1, 21, 31, and on the horizontal movement guide 103,
  • the lubrication nozzle fixing base 102 and the lubrication nozzle 101 placed on the lubrication nozzle fixing base 102 are provided via a width movement guide 119 fitted in the width movement groove 118.
  • the width moving guide part 115 connected to the lubrication nozzle angle adjusting jig 109 provided so as to be slidable is a width adjusting screw (left and right from the center are forward and reverse screws, respectively, and when the adjusting screw is rotated,
  • the right guide portion 115 is symmetrically moved in the opposite direction) (see FIG. 12) and has a mechanism that expands and contracts in the width direction.
  • a dovetail base 107 fixed to the forming stand column 117 and a center position adjusting jig 106 provided so as to be slidable in the vertical direction with respect to the dovetail base 107 are provided.
  • the vertical position of the lubricating nozzle 101 is adjusted by the vertical movement screw 116 inserted into the center position adjusting jig 106. Since the center position adjustment jig 106 is also connected to the horizontal movement guide 103, when the center position adjustment jig 106 moves in the vertical direction on the dovetail pedestal 107, the horizontal movement guide 103, that is, the lubrication nozzle 101 is similarly moved up and down. Will move in the direction.
  • the vertical movement screw 116 is connected to the vertical position adjustment handle 104.
  • the vertical position adjustment handle 104 By turning the vertical position adjustment handle 104, the vertical movement of the center position adjustment jig 106 can be controlled, and lubrication according to the roll flange portion is performed.
  • the nozzle 101 can be adjusted in the vertical direction.
  • the angle adjustment for positioning the lubricating nozzle 101 in consideration of the contact with the titanium tube 10 due to the variation of the diameters of the titanium tube forming rolls 1, 21, 31 is performed by a lubricating nozzle sandwiching jig (lubricating nozzle front-rear adjusting jig) 113.
  • the lubrication nozzle angle adjustment jig 109 can be adjusted by rotating it with the lubrication nozzle angle fixing screw 112.
  • the mechanism in which the lubrication nozzle 101 moves back and forth can be adjusted by the lubrication nozzle angle fixing screw 112 in an apparatus having a lubrication nozzle sandwiching jig (lubricating nozzle longitudinal adjustment jig) 113.
  • the lubricant can be dropped in the vicinity of the roll flange portion where the titanium tube forming rolls 1, 21, 31 and the titanium tube 10 are in contact.
  • the lubricant water or an emulsion or a soluble oil-based lubricant that is usually used for forming a metal tube can be used as the lubricant.
  • the lubrication performance and the ease of removing the lubricant adhering to the product are eliminated. From this point of view, a soluble oil lubricant which is a water-soluble cutting fluid is most suitable.
  • the lubrication nozzle 101 needs to be adjusted in position so as to correspond to the roll flange portion according to the titanium tube size (roll flange width). In addition, depending on the state of roll lubrication, it is necessary to drop the upper part of the titanium tube forming rolls 1, 21, and 31 from the top of the roll.
  • FIG. 11 is a schematic front view for explaining an arrangement example of the lubrication nozzle 101.
  • the titanium pipe forming apparatus as described above is provided with front / rear / up / down and left / right adjustment mechanisms of the lubrication nozzle 101.
  • FIG. Therefore, the position of the lubrication nozzle 101 can be appropriately changed to a desired position in accordance with the flange width of the titanium tube forming rolls 1, 21, 31.
  • width adjusting screws 114 (left and right screws) that are reversed in the forward and reverse directions are arranged.
  • the width adjusting screw 114 is connected to a left / right position adjusting handle 105 installed in the horizontal moving guide 103, and the horizontal moving guide 103 can be moved in the horizontal direction by turning the left / right position adjusting handle 105.
  • the expansion / contraction of the lubricating nozzle 101 in the width direction in accordance with the roll flange portion can be adjusted.
  • center positions of the titanium tube forming rolls 1, 21, and 31 can be adjusted by moving around the width adjusting screw 114 and adjusting the center position adjusting jig 106 provided on the dovetail pedestal 107. it can.
  • the dripping position of the lubricant can be freely changed by adjusting the front and rear of the lubrication nozzle 101 and adjusting the expansion / contraction movement position, and the titanium tube 10 and the titanium tube forming rolls 1, 21, Adjustment of the dropping position of the lubricant to the contact portion with 31 is possible.
  • the dovetail pedestal 107 is fixed to the molding stand column 117 via the stand column mounting jig 108, but when the stand column mounting jig 108 is fixed to the molding stand column 117, it is easily attached by the stand fixing screw 120. It is a cantilever format that you can.
  • FIG. 13 is a view showing the structure of a roller pump (lubricant supply device) for dripping a small amount of lubricant using the lubrication nozzle 101.
  • Lubricant is transported while crushing a tube 132 called a tube pump by a roller 130 that rotates and revolves around a central axis 131 in order to attach a small amount of a thick lubricant equivalent to the stock solution to the roll.
  • a tube 132 having an inner diameter of 3 mm or less is used, and a minute amount is dropped using a contamination-free tube (roller) pump having a dropping speed of 20.0 ml / hr or less.
  • a tube having an inner diameter of 0.5 mm or more and 3.0 mm or less as the lubrication nozzle 101 in order to supply an appropriate amount of lubricant.
  • the titanium tube forming roll according to the present invention a CrN coating that is hard and has low affinity with titanium and excellent affinity with Cr in the substrate, and Since the DLC film is formed, wear resistance and adhesion resistance can be improved.
  • the hardness difference between the CrN layer and the DLC film can be reduced by providing an inclination of the hardness in the film thickness direction of the DLC film.
  • the upper layer region of the DLC film is made hard so that it can exhibit excellent wear resistance against the titanium tube, and it also contains some sp 2 hybrid orbital (graphite structure) carbon and has low friction. Can be secured.
  • the hardness disparity with the CrN layer can be relaxed and peeling resistance can be secured.
  • the friction coefficient of the forming roll, particularly the driving roll can be reduced by forming the lubricant while dropping a small amount of lubricant on a part of the forming roll.
  • the life of the forming roll can be remarkably improved, the replacement frequency of the forming roll can be reduced, and the manufacturing cost can be greatly reduced.
  • the frequency of replacement of the forming rolls by improving the life of the forming rolls, it is possible to prevent the yield from being lowered due to roll adjustment (position adjustment, etc.) at the time of roll replacement, and to improve the yield (high accuracy) by improving the forming dimensional accuracy. Can be achieved.
  • the obtained substrate surface was subjected to nitriding treatment to form a nitride layer having a thickness of 25 ⁇ m and an average nitrogen concentration of 0.20% by mass on the substrate surface layer.
  • the nitriding treatment used was a radical nitriding treatment in which nitriding was performed using active species having high reactivity generated by direct current glow discharge in a mixed gas atmosphere of ammonia and hydrogen (NH 3 , H 2 , Ar).
  • the treatment temperature was 500 ° C. and the treatment was performed for 3 hours.
  • a 1.5 ⁇ m ⁇ m CrN film (single layer) was formed on the surface layer (nitrided layer) subjected to nitriding treatment by PVD vapor deposition.
  • the base material on which the CrN film was formed was processed into a roll with dimensions of a hole type R: 12.6 mm, a roll bottom diameter Dr: 100 mm, a roll outer diameter Do: 124 mm, and a roll width W: 60.0 mm.
  • the forming roll shown in 2 was manufactured.
  • FIG. 16 is a graph in which the vertical axis range of the graph of FIG. 14 is changed in order to confirm the concentration behavior of the element contained in a trace amount in the depth direction. From the graph of FIG. 16, it can be seen that a nitride layer is formed between the CrN film and the substrate. Further, as is apparent from the graph, it shows a gradient in which the nitrogen concentration gradually decreases from the CrN film side to the base material side, and the hardness fluctuation in the depth direction in the nitride layer is also gentle. I understand.
  • the film thickness was 1.0 ⁇ m.
  • the DLC film was formed by a plasma CVD method.
  • the apparatus used was a capacitively coupled high-frequency plasma CVD apparatus, and the temperature was 500 ° C.
  • a high frequency power supply of 13.56 MHz was used as the plasma generation power supply.
  • As the reaction gas a mixed gas of CH 4 and H 2 was used. At this time, the hardness of the film gradually increased from the interface with the CrN film toward the surface by changing the mixing ratio of the mixed gas of CH 4 and H 2 .
  • Example 1 (Comparative Example 1) Using the tool steel SKD11 employed in Example 1 as a base material, a forming roll was produced by processing into a nitrided layer and a CrN film (single layer) roll in the same manner as in Example 1.
  • a DLC film having a thickness of 1.0 ⁇ m was formed on the CrN film by ion plating. At this time, as usual, the mixing ratio of the mixed gas of CH 4 and H 2 was constant.
  • FIG. 17A is a micrograph of the surface layer of the forming roll of Example 1
  • FIG. 17B is the Raman spectrum of the surface layer of the DLC film of the forming roll of Example 1
  • FIG. The Raman spectrum inside the DLC film of a forming roll is shown.
  • 18A is a micrograph of the surface layer of the forming roll of Comparative Example 1
  • FIG. 18B is the Raman spectrum of the surface layer of the DLC film of the forming roll of Comparative Example 1
  • FIG. 18C is the forming of Comparative Example 1.
  • the Raman spectrum inside the DLC film of the roll is shown.
  • “near the surface” is a surface layer of the DLC film
  • “near the interface” is a Raman spectrum near the interface between the DLC film and the CrN film.
  • Table 1 shows the Raman band parameters of Example 1, and Table 2 shows the Raman band parameters of Comparative Example 1.
  • I 1380 / I 1540 increases as it goes from the CrN film to the DLC film. That is, it can be seen that the hardness gradient increases as the hardness increases from the CrN film toward the DLC film.
  • Example 1 and Comparative Example 1 the Vickers hardness of the nitride layer, CrN film, and DLC film obtained in Example 1 and Comparative Example 1 were measured.
  • the substrate and the nitride layer were measured with a micro Vickers hardness meter.
  • the indentation test of the very low load was performed by the nanoindentation (indentation) method, and it converted into Vickers hardness.
  • the nitrided layer was measured in the vicinity of the interface with the base material (region up to 2 ⁇ m depth: inner region) and in the vicinity of the interface with the CrN coating (region up to 2 ⁇ m depth: outer region).
  • the DLC film includes a region from the film surface to 0.20 t (near the surface), a region from the interface between the DLC film and the CrN film to 0.20 t (near the interface), and a central portion in the film thickness direction of the DLC film (DLC film). Measurements were made at a total of three locations.
  • Example 1 the average Vickers hardness of each layer / film is 1000 for the nitride layer, 2000 for the CrN film, 2500 for “near the interface” of the DLC film, and “inside the DLC film” 3000, “near the surface” of the DLC film was 3500, and a hardness gradient was given in the film thickness direction.
  • the DLC film obtained in Comparative Example 1 has large I 1380 / I 1540 in both “near the surface” and “inside the DLC film”. It can be seen that no hardness gradient is given in the film thickness direction.
  • Example 1 As a result, in Example 1, even when the molding time was 24 hours, roll wrinkles did not occur, adhesion resistance and wear resistance were good, and generation of wrinkles and roll marks on the roll flange portion was suppressed. did it.
  • Example 2 Example 3
  • the clearance gap between the rotation flange part 22 and the protrusion part 21b of the roll center part 21 was adjusted to 50 micrometers.
  • Example 3 the forming roll shown in FIG. 3 was manufactured, and the gap between the rotating flange portion 22 and the protruding portion 21b of the roll central portion 21 was adjusted to 10 ⁇ m or less.
  • the quality of the CrN film and the DLC film in each forming roll was the same as in Example 1.
  • JIS type 3 titanium tubes having a diameter of 25.0 mm and a thickness of 0.5 mm were formed using the forming rolls of Examples 2 and 3. Molding conditions are TIG welding using JIS type 3 titanium, pipe forming speed is 6 m / min, and after TIG welding, the roll of FIG. 3 is used in the molding apparatus shown in FIG. Using this agent, molding was performed while dripping this lubricant in a small amount at 10 ml / hr.
  • the evaluation result of the roundness of the titanium tube after forming is shown in FIG. In FIG. 19, the measurement result of the roundness of the titanium tube after 300 hours of continuous pipe production is shown by a solid line, and the allowable roundness of the product is shown by a triple circle (dotted line). The inner and outer circles of the triple circle indicate the allowable range, and the remaining circles indicate the forming target.
  • Example 2 As shown in FIG. 19, the roundness is good in both Example 2 (see FIG. 19 (a)) and Example 3 (see FIG. 19 (b)), and is within the allowable range of roundness as a product. However, Example 3 showed higher roundness. Moreover, in Example 2, the clearance gap between the rotation flange part 22 and the protrusion part 21b of the roll center part 21 produced the wrinkle of the grade which is accept
  • Example 3 adjusting the gap between the rotating flange portion 22 and the protruding portion 21b of the roll center portion 21 to 10 ⁇ m or less means that even if they slide relative to each other during pipe making, The friction coefficient is reduced by the CrN film and the DLC film, so that they are not worn out and can be continuously produced without problems, and it is desirable from the viewpoint of maintaining the roundness of the titanium tube product and preventing wrinkles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A titanium pipe-forming roll provided with a base material having, in mass%, C:1.00-2.30%, Si: 0.10-0.60%, Mn: 0.20-0.80%, P: 0.030 or less, S: 0.030% or less, Cr: 4.80-13.00% with the balance being iron and unavoidable impurities, a nitride layer (800-1200 Hv) on said base material (600-700 Hv), a CrN film (800-2000 Hv), and a DLC film, wherein: in said DLC film, Vickers hardness is 3000-3500 in the region from the film surface to 0.20t (wherein t is the film thickness), and is 1500-3000 in the region from the interface with said CrN film to 0.20t; the ratio I1380/I1540 of absorption intensities at wave number 1380 cm-1 and 1540 cm-1 measured by Raman spectroscopy is 0.5-0.7 in the region from the film surface to 0.20t and is 0.3-0.5 in the region from the interface between the DLC film and the CrN film to 0.20t. Said titanium pipe-forming roll has excellent adhesion resistance, abrasion resistance, peeling resistance and roll surface friction coefficient.

Description

チタン管成形ロール、チタン管成形装置およびチタン管の製造方法Titanium tube forming roll, titanium tube forming apparatus, and titanium tube manufacturing method
 本発明は、チタン管成形ロール、チタン管成形装置およびチタン管の製造方法に関するものである。 The present invention relates to a titanium tube forming roll, a titanium tube forming apparatus, and a method for manufacturing a titanium tube.
 通常、鋼管その他の金属管を製造する場合、高精度の外径および真円度の確保、ならびに管の曲がり矯正を目的として、溶接後に成形ロールによる成形工程を行う。 Usually, when manufacturing steel pipes and other metal pipes, a forming process using a forming roll is performed after welding for the purpose of ensuring a highly accurate outer diameter and roundness and correcting the bending of the pipe.
 成形ロールの摩耗が激しいと、精度の良い成形ができなくなり、成形する鋼管において高精度な真円度を確保できなくなる。そのため、成形ロールには、ロール表面の状態を長期間にわたって維持できる優れた耐摩耗性が要求される。 ¡If the forming roll is heavily worn, it will not be possible to form with high precision, and it will not be possible to ensure high accuracy roundness in the steel pipe to be formed. For this reason, the forming roll is required to have excellent wear resistance capable of maintaining the state of the roll surface over a long period of time.
 さらに近年では、鋼管の生産性の向上を図るべく、成形工程における通搬速度を増加させた過酷な条件で成形することが多い。このような条件で操業すると、鋼管表面と成形ロール表面との間の周速差によって、その部分において凝着(焼付き)が生じやすくなり、焼付き疵が発生するおそれがある。このように、成形ロールと鋼管との間で凝着が発生すると、鋼管表面に疵が残り商品価値を下げてしまうため、摩耗や凝着が起きる前に成形ロールの交換を行わなければならない。 In recent years, in order to improve the productivity of steel pipes, molding is often performed under harsh conditions with increased transport speed in the molding process. When operating under such conditions, adhesion (seizure) is likely to occur in the portion due to the difference in peripheral speed between the steel pipe surface and the forming roll surface, and seizure flaws may occur. As described above, if adhesion occurs between the forming roll and the steel pipe, soot remains on the surface of the steel pipe, reducing the commercial value. Therefore, the forming roll must be replaced before wear or adhesion occurs.
 よって、鋼管を成形するロールには、耐摩耗性と、焼き付き疵を低減させうる耐凝着性を両立させ、ロールの交換頻度を低減できる長寿命なロールが要求される。 Therefore, a roll for forming a steel pipe is required to have a long-life roll that has both wear resistance and adhesion resistance that can reduce seizure flaws and can reduce the frequency of roll replacement.
 このような成形ロールに対する耐摩耗性及び耐凝着性の要求に対して、従来、様々な技術が検討されてきている。 Conventionally, various techniques have been studied for the demands of wear resistance and adhesion resistance for such forming rolls.
 例えば、ロール表面にセラミックス皮膜を成膜し硬度を確保する方法(特許文献1)、ロール表面に、浸硫窒化層、窒化層及びTiCから選ばれる1種の表面硬化層を形成させ硬度と向上させる方法(特許文献2)、表面に硬質皮膜を備えたロールにおいて、ロール表層に分散する炭化物を微細化してロールと硬質皮膜との密着性を確保し、硬質皮膜の剥離を防止することで耐摩耗性と耐凝着性を確保する方法(特許文献3)、等が検討されている。 For example, a method of securing a hardness by forming a ceramic film on the roll surface (Patent Document 1), and forming a surface hardened layer selected from a sulfur nitrided layer, a nitrided layer and TiC on the roll surface to improve the hardness and In a roll having a hard coating on the surface (Patent Document 2), the carbide dispersed in the roll surface layer is refined to ensure adhesion between the roll and the hard coating, and to prevent peeling of the hard coating. A method for securing wear resistance and adhesion resistance (Patent Document 3) and the like have been studied.
 また一般に、成形ロールの材質としてダイス鋼などの工具鋼が使用される場合が多いが、耐摩耗性や耐凝着性を向上させるために、工具鋼の代わりに超硬合金を使用する対策も取られている。 In general, tool steel such as die steel is often used as the material of the forming roll, but measures to use cemented carbide instead of tool steel are also available to improve wear resistance and adhesion resistance. Has been taken.
 ここで、チタンは他の金属材料と比較して、各種環境中における耐食性が著しく優れていることから、各種化学用の反応塔や容器、配管などの構成材料として発展してきた。近年では、火力・原子力発電所等の蒸気タービン復水器や蒸発法海水淡水化装置の伝熱管としてもチタン管が多く使用されている。 Here, titanium has been developed as a constituent material for various chemical reaction towers, containers, pipes, and the like because it has significantly superior corrosion resistance in various environments compared to other metal materials. In recent years, titanium pipes are often used as heat transfer pipes for steam turbine condensers and evaporative seawater desalination equipment for thermal power and nuclear power plants.
特開平8-174014号公報JP-A-8-174014 特開平1-201443号公報JP-A-1-201443 国際公開第00/51756号公報International Publication No. 00/51756
 上述のように、鋼管を成形する際の成形ロールの耐摩耗性および耐凝着性については、様々な検討がされている。しかし、チタン管を成形する成形ロール特性についてはほとんど言及されてきていない。さらに、チタン管成形時の成形ロールに対し、上記のような従来技術を採用しても、耐摩耗性および耐凝着性が不十分である場合があった。 As described above, various studies have been made on the wear resistance and adhesion resistance of a forming roll when forming a steel pipe. However, little mention has been made of the characteristics of the forming roll for forming the titanium tube. Furthermore, even when the above-described conventional technology is adopted for the forming roll at the time of forming the titanium tube, the wear resistance and adhesion resistance may be insufficient.
 また近年では、ロールの表面性状を良好に維持できることから、チタン管成形ロールの材質として銅合金を用いることが多いが、銅合金では硬度が不十分なことから、十分な耐摩耗性を確保できない場合があった。 In recent years, a copper alloy is often used as the material of the titanium tube forming roll because the surface properties of the roll can be maintained well. However, since the hardness of the copper alloy is insufficient, sufficient wear resistance cannot be ensured. There was a case.
 一般的に、チタン管を成形する場合、搬送方向に対して複数配置された多段の成形ロールにて成形することで、真円度や残留応力の制御を行う。 Generally, when a titanium tube is formed, roundness and residual stress are controlled by forming with a plurality of forming rolls arranged in a plurality in the conveying direction.
 複数の成形ロールはおおまかに、駆動ロールと無駆動ロールに大別される。駆動ロールは上下に対向配置された一対のロールからなり、この上下ロールに駆動回転力を付与して駆動させてチタン管を搬送方向へ引っ張るロールであり、一方の無駆動ロールは左右に対向配置された一対のロールからなり、駆動回転力は付与されない。 ¡A plurality of forming rolls are roughly divided into drive rolls and non-drive rolls. The drive roll consists of a pair of rolls arranged opposite to each other in the vertical direction. The rolls are driven by applying a driving rotational force to the upper and lower rolls to pull the titanium tube in the conveying direction. It consists of a pair of made rolls, and no driving torque is applied.
 ここで、本発明者らは駆動ロールと無駆動ロールに要求される特性についてより詳細に調査した。その結果、駆動ロールは無駆動ロールよりもロールの周速差が大きいことから、特にフランジの部分でロール表面が剥離、成形対象物であるチタン管にも疵が付きやすいことが分かった。さらに、ロール表面の硬質化を目的として硬質膜を付与した場合でも、駆動ロールは無駆動ロールによりもその硬質膜が剥離しやすく、ロール寿命が短くなることが分かった。 Here, the present inventors investigated in detail the characteristics required for the drive roll and the non-drive roll. As a result, the driving roll has a larger peripheral speed difference than the non-driving roll, and thus it has been found that the roll surface is particularly peeled off at the flange portion, and the titanium tube which is a molding object is easily wrinkled. Furthermore, it was found that even when a hard film was applied for the purpose of hardening the roll surface, the drive roll was easier to peel off than the non-drive roll, and the roll life was shortened.
 つまり、駆動ロールは、無駆動ロールよりも使用環境が過酷であることから、耐摩耗性や耐凝着性は勿論のこと、耐剥離性、ならびにロール表面の優れたすべり性、つまり低摩擦性が求められることが分かった。 In other words, the driving roll is used in a harsher environment than the non-driving roll, so it has not only wear resistance and adhesion resistance, but also peeling resistance, and excellent sliding properties of the roll surface, that is, low friction. Was found to be required.
 本発明は、上記問題に鑑みてなされたものであり、チタン管を成形、造管する際に用いるロールにおいて、耐摩耗性、耐凝着性、耐剥離性およびロール表面の摩擦係数に優れ、かつ安価なチタン管成形ロール、ロールの長寿命化を図り得るチタン管成形装置、ならびに、チタン管の製造方法を提供することを目的とするものである。 The present invention has been made in view of the above problems, and is excellent in wear resistance, adhesion resistance, peel resistance, and friction coefficient of the roll surface in a roll used when forming and forming a titanium tube. It is another object of the present invention to provide an inexpensive titanium tube forming roll, a titanium tube forming apparatus capable of extending the life of the roll, and a titanium tube manufacturing method.
 本発明者らは、安価でかつ耐摩耗性、耐凝着性、耐剥離性およびロール表面の摩擦係数に優れ、ロール寿命の長いチタン管成形ロールを検討した結果、通常、成形ロールの材質として用いられる合金工具鋼鋼材を基材とし、当該基材上に、窒化層、さらにはチタンとの親和性の低いCrN皮膜を形成し、さらにその上にダイヤモンドライクカーボン膜を形成することで、耐摩耗性、耐凝着性、耐剥離性およびロール表面の低摩擦性を両立でき、ロールの交換頻度を低減できる長寿命なロールを提供できることが分かった。 The present inventors have studied titanium tube forming rolls that are inexpensive and have excellent wear resistance, adhesion resistance, peeling resistance, and friction coefficient of the roll surface, and have a long roll life. By using the alloy tool steel used as a base material, forming a nitride layer and a CrN film having low affinity with titanium on the base material, and further forming a diamond-like carbon film thereon, It has been found that it is possible to provide a long-life roll that can achieve both wear resistance, adhesion resistance, peel resistance, and low friction on the roll surface, and can reduce the frequency of roll replacement.
 本発明の要旨は、以下の通りである。 The gist of the present invention is as follows.
 (1)質量%で、
C:1.00~2.30%、
Si:0.10~0.60%、
Mn:0.20~0.80%、
P:0.030%以下、
S:0.030%以下、
Cr:4.80~13.00%、
Mo:0~1.20%、
V:0~1.00%、
W:0~0.80%、
残部が鉄および不可避的不純物である化学組成を有する基材と、
 前記基材上の少なくとも圧延面に形成された窒化層と、
 前記窒化層上に形成されたCrN皮膜と、
 前記CrN皮膜上に形成されたダイヤモンドライクカーボン膜と、を備え、
 前記基材のビッカース硬さが600~700であり、
 前記窒化層のビッカース硬さが800~1200であり、
 前記CrN皮膜のビッカース硬さが800~2000であり、
 前記ダイヤモンドライクカーボン膜のビッカース硬さが、膜表面から0.20t(ただし、tは膜厚)までの領域において3000~3500、前記CrN皮膜との界面から0.20tまでの領域において1500~3000であり、
 前記ダイヤモンドライクカーボン膜において、ラマン分光法により測定された波数1380cm-1における吸収強度I1380と、波数1540cm-1における吸収強度I1540との比I1380/I1540が、膜表面から0.20tまでの領域において0.5~0.7、前記ダイヤモンドライクカーボン膜と前記CrN皮膜との界面から0.20tまでの領域において0.3~0.5である、
チタン管成形ロール。
(1) In mass%,
C: 1.00-2.30%,
Si: 0.10 to 0.60%,
Mn: 0.20 to 0.80%,
P: 0.030% or less,
S: 0.030% or less,
Cr: 4.80 to 13.00%,
Mo: 0 to 1.20%,
V: 0 to 1.00%,
W: 0 to 0.80%,
A substrate having a chemical composition with the balance being iron and inevitable impurities;
A nitride layer formed on at least the rolled surface on the substrate;
A CrN film formed on the nitride layer;
A diamond-like carbon film formed on the CrN film,
The substrate has a Vickers hardness of 600 to 700,
The nitride layer has a Vickers hardness of 800 to 1200;
The CrN film has a Vickers hardness of 800 to 2000,
The diamond-like carbon film has a Vickers hardness of 3000 to 3500 in the region from the film surface to 0.20 t (where t is the film thickness), and 1500 to 3000 in the region from the interface with the CrN film to 0.20 t. And
In the diamond-like carbon film, the ratio I 1380 / I 1540 of the absorption intensity I 1380 at a wave number of 1380 cm −1 and the absorption intensity I 1540 at a wave number of 1540 cm −1 measured by Raman spectroscopy is 0.20 t from the film surface. 0.5 to 0.7 in the region up to 0.3, and 0.3 to 0.5 in the region up to 0.20 t from the interface between the diamond-like carbon film and the CrN film.
Titanium tube forming roll.
 前記ダイヤモンドライクカーボン膜の厚さは、0.5μm~2.0μmであるのが好ましい。 The thickness of the diamond-like carbon film is preferably 0.5 μm to 2.0 μm.
 前記CrN皮膜の厚さは、0.5μm~5.0μmであるのが好ましい。 The thickness of the CrN film is preferably 0.5 μm to 5.0 μm.
 前記窒化層の厚さは、0.5μm~50.0μmであるのが好ましい。 The thickness of the nitride layer is preferably 0.5 μm to 50.0 μm.
 前記窒化層の平均窒素濃度は、10.0~25.0質量%であるであるのが好ましい。 The average nitrogen concentration of the nitrided layer is preferably 10.0 to 25.0% by mass.
 前記窒化層における窒素の濃度分布は、前記窒化層表層から深さ方向に向かって減少する濃度勾配を有するのが好ましい。 It is preferable that the nitrogen concentration distribution in the nitride layer has a concentration gradient that decreases in the depth direction from the surface layer of the nitride layer.
 前記基材は、質量%で、Mo:0.70~1.20%、V:0.15~1.00%およびW:0.60~0.80%から選択される一種以上を含有するのが好ましい。 The base material contains one or more selected from Mo: 0.70 to 1.20%, V: 0.15 to 1.00% and W: 0.60 to 0.80% by mass. Is preferred.
 上記(1)のチタン管成形ロールは、ロール本体の全周に渡って断面視半円状のロール凹部を設けた孔型ロールであって、前記圧延面が、前記ロール凹部表面であるのが好ましい。前記ロール本体が、ロール中央部と、前記ロール中央部の両側に配置されて前記ロール中央部に対して回動自在とされた一対の回動フランジ部とを備え、前記ロール凹部が、前記ロール中央部と前記回動フランジ部とによって分割されているのが好ましい。 The titanium tube forming roll of (1) is a perforated roll provided with a semi-circular roll recess in cross-section over the entire circumference of the roll body, and the rolling surface is the surface of the roll recess. preferable. The roll main body includes a roll center portion and a pair of rotating flange portions that are arranged on both sides of the roll center portion and are rotatable with respect to the roll center portion, and the roll recess portion includes the roll It is preferable that the center portion and the rotating flange portion are divided.
 前記ロール中央部は、前記ロール本体を駆動する回転軸に固定されており、前記回動フランジ部は前記回転軸及び前記ロール中央部に対して回動自在とされているのが好ましい。 It is preferable that the roll center portion is fixed to a rotating shaft that drives the roll body, and the rotating flange portion is rotatable with respect to the rotating shaft and the roll center portion.
 ワークとなるチタン管の外径をDとしたとき、前記ロール中央部における前記ロール凹部の幅は、0.7D~0.87Dの範囲であるのが好ましい。 When the outer diameter of the titanium tube serving as a workpiece is D, the width of the roll recess at the center of the roll is preferably in the range of 0.7D to 0.87D.
 前記ロール中央部には、基部と、前記基部のロール幅方向中央部からロール外周方向に向けて突出された突出部とが備えられ、前記回動フランジ部は、前記基部上にあって前記突出部のロール幅方向両側に配置され、前記ロール中央部の前記基部と前記回動フランジ部との間に、第1軸受部が設けられているのが好ましい。 The roll center part includes a base part and a protrusion part protruding from the center part in the roll width direction of the base part toward the outer periphery of the roll, and the rotating flange part is on the base part and protrudes from the base part. It is preferable that a first bearing portion is provided between the base portion of the central portion of the roll and the rotating flange portion.
 前記ロール中央部の前記基部と前記回動フランジ部との間で互いに対向する対向面がそれぞれ、前記第1軸受部の転動体の軌道面とされており、前記対向面が、前記窒化層と、前記CrN皮膜と、前記ダイヤモンドライクカーボン膜を備えるのが好ましい。 The opposing surfaces that face each other between the base portion and the rotating flange portion at the center of the roll are the raceway surfaces of the rolling elements of the first bearing portion, and the opposing surfaces are the nitride layer The CrN film and the diamond-like carbon film are preferably provided.
 一対の前記回動フランジ部のロール幅方向両側に配置されて前記ロール中央部に固定された固定フランジ部と、前記固定フランジ部と前記回動フランジ部との間に配置された第2軸受部と、を備えるのが好ましい。 A fixed flange portion disposed on both sides of the pair of rotating flange portions in the roll width direction and fixed to the center portion of the roll, and a second bearing portion disposed between the fixed flange portion and the rotating flange portion Are preferably provided.
 前記固定フランジ部と前記回動フランジ部との間で互いに対向する対向面がそれぞれ、前記第2軸受部の転動体の軌道面とされており、前記対向面が、前記窒化層と、前記CrN皮膜と、前記ダイヤモンドライクカーボン膜を備えるのが好ましい。 The opposing surfaces facing each other between the fixed flange portion and the rotating flange portion are raceway surfaces of the rolling elements of the second bearing portion, and the opposing surfaces are the nitride layer and the CrN. It is preferable to provide a film and the diamond-like carbon film.
 前記固定フランジ部に、前記回動フランジ部を引き寄せて固定する引きねじ部が設けられているのが好ましい。 It is preferable that a pulling screw portion for pulling and fixing the rotating flange portion is provided on the fixing flange portion.
 (2)上記(1)のチタン管成形ロールを備えたチタン管成形装置であって、前記チタン管成形ロールの一部分に対し、チタン管成形中に潤滑剤を供給する潤滑ノズルを有する、チタン管成形装置。 (2) A titanium tube forming apparatus including the titanium tube forming roll according to (1), wherein the titanium tube has a lubrication nozzle for supplying a lubricant to the part of the titanium tube forming roll during the titanium tube forming. Molding equipment.
 上記(2)のチタン管成形装置において、チタン管の成形サイズに合わせて前記潤滑ノズルの位置を可変できるのが好ましい。 In the above titanium tube forming apparatus (2), it is preferable that the position of the lubrication nozzle can be varied in accordance with the forming size of the titanium tube.
 上記(2)のチタン管成形装置において、前記チタン管成形ロールの径に合わせて前記潤滑ノズルの位置を可変できるのが好ましい。 In the titanium tube forming apparatus of (2), it is preferable that the position of the lubrication nozzle can be varied according to the diameter of the titanium tube forming roll.
 上記(2)のチタン管成形装置において、前記潤滑ノズルの位置および向きを任意に調整できるのが好ましい。 In the titanium tube forming apparatus (2), it is preferable that the position and orientation of the lubricating nozzle can be arbitrarily adjusted.
 前記潤滑ノズルは、内径0.5~3.0mmのチューブであるのが好ましい。 The lubrication nozzle is preferably a tube having an inner diameter of 0.5 to 3.0 mm.
 上記(2)のチタン管成形装置において、前記潤滑剤としてソリュブル油系潤滑剤を用い、該潤滑剤を1.0~20.0ml/hr以下で微量滴下して供給するのが好ましい。 In the titanium tube forming apparatus of (2) above, it is preferable to use a soluble oil lubricant as the lubricant, and supply the lubricant dropwise in a small amount at 1.0 to 20.0 ml / hr or less.
 上記(1)のチタン管成形ロールを用いて成形する、チタン管の製造方法。 A method for manufacturing a titanium tube, which is formed using the titanium tube forming roll of (1) above.
 上記(2)のチタン管成形装置を用いて成形する、チタン管の製造方法。 A method for manufacturing a titanium tube, which is formed using the titanium tube forming apparatus of (2) above.
 本発明によれば、チタン管を成形、造管する際に用いるロールにおいて、耐摩耗性、耐凝着性、耐剥離性、およびロール表面の摩擦係数に優れ、かつ安価なチタン管成形ロール、ロールの長寿命化を図り得るチタン管成形装置、ならびに、チタン管の製造方法を提供することができる。 According to the present invention, in a roll used for forming and forming a titanium tube, a titanium tube forming roll excellent in wear resistance, adhesion resistance, peeling resistance, and friction coefficient of the roll surface, and inexpensive. It is possible to provide a titanium tube forming apparatus capable of extending the life of a roll and a method for manufacturing a titanium tube.
図1は、本発明の実施形態の第1の例であるチタン管成形ロールを用いたチタン管の製造方法を示す側面模式図。FIG. 1 is a schematic side view illustrating a titanium tube manufacturing method using a titanium tube forming roll as a first example of an embodiment of the present invention. 図2は、本発明の実施形態であるチタン管成形ロールを示す正面模式図。FIG. 2 is a schematic front view showing a titanium tube forming roll according to an embodiment of the present invention. 図3は、本発明の実施形態の第2の例であるチタン管成形ロールを示す正面断面模式図。FIG. 3 is a schematic front sectional view showing a titanium tube forming roll which is a second example of the embodiment of the present invention. 図4は、本発明の実施形態の第2の例であるチタン管成形ロールを示す正面断面分解模式図。FIG. 4 is a front sectional exploded schematic view showing a titanium tube forming roll as a second example of the embodiment of the present invention. 図5は、本発明の実施形態の第2の例であるチタン管成形ロールのロール中央部と回動フランジ部とを示す正面断面模式図。FIG. 5 is a schematic front sectional view showing a roll center portion and a rotating flange portion of a titanium tube forming roll which is a second example of the embodiment of the present invention. 図6は、チタン管成形ロールにおける滑り率を説明する図であって、(a)は駆動ロールにおける滑り率を説明する模式図であり、(b)は無駆動ロールにおける滑り率を説明する模式図であり、(c)は本実施形態のチタン管成形ロールにおける滑り率を説明する模式図。FIG. 6 is a diagram for explaining the slip ratio in the titanium tube forming roll, (a) is a schematic diagram for explaining the slip ratio in the drive roll, and (b) is a schematic diagram for explaining the slip ratio in the non-drive roll. It is a figure, (c) is a schematic diagram explaining the slip ratio in the titanium tube forming roll of this embodiment. 図7は、本実施形態のチタン管成形ロールの別の例を示す正面断面模式図。FIG. 7 is a schematic front sectional view showing another example of the titanium tube forming roll of the present embodiment. 図8は、本実施形態のチタン管成形ロールの更に別の例を示す正面断面模式図。FIG. 8 is a schematic front sectional view showing still another example of the titanium tube forming roll of this embodiment. 図9は、本発明の実施形態の第3の例であるチタン管成形ロールを示す正面断面模式図。FIG. 9 is a schematic front sectional view showing a titanium tube forming roll which is a third example of the embodiment of the present invention. 図10は、チタン管成形装置を用いた潤滑方法および装置を説明するための正面概略図。FIG. 10 is a schematic front view for explaining a lubrication method and apparatus using a titanium tube forming apparatus. 図11は、図10に示す潤滑ノズル1の配置例を説明するための正面模式図。FIG. 11 is a schematic front view for explaining an arrangement example of the lubricating nozzle 1 shown in FIG. 10. 図12は、図10に示す潤滑ノズル1の幅方向調整機構、上下方向調整機構を説明するための上面概略図と側面概略図。12 is a schematic top view and schematic side view for explaining the width direction adjusting mechanism and the vertical direction adjusting mechanism of the lubricating nozzle 1 shown in FIG. 図13は、潤滑ノズル1を用いて潤滑剤を微量滴下するためのローラーポンプ(潤滑剤供給装置)の構造を示す図。FIG. 13 is a view showing a structure of a roller pump (lubricant supply device) for dripping a small amount of lubricant using the lubrication nozzle 1. 図14は、実施例1の成形ロールにおける成分分析結果を示すグラフ。14 is a graph showing the result of component analysis in the forming roll of Example 1. FIG. 図15は、実施例1の成形ロールにおける成分分析結果を示すグラフ。FIG. 15 is a graph showing the result of component analysis in the forming roll of Example 1. 図16は、実施例1の成形ロールにおける成分分析結果を示すグラフ。FIG. 16 is a graph showing the result of component analysis in the forming roll of Example 1. 図17(a)は、実施例1の成形ロールの表層の顕微鏡写真、図17(b)は実施例1の成形ロール表層のラマンスペクトルであり、図17(c)は実施例1の成形ロールのDLC膜内部のラマンスペクトル。17 (a) is a micrograph of the surface layer of the forming roll of Example 1, FIG. 17 (b) is a Raman spectrum of the surface layer of the forming roll of Example 1, and FIG. 17 (c) is the forming roll of Example 1. Raman spectrum inside the DLC film. 図18(a)は、比較例1の成形ロールの表層の顕微鏡写真、図18(b)は比較例1の成形ロール表層のラマンスペクトルであり、図18(c)は比較例1の成形ロールのDLC膜内部のラマンスペクトル。18A is a micrograph of the surface layer of the forming roll of Comparative Example 1, FIG. 18B is a Raman spectrum of the surface layer of the forming roll of Comparative Example 1, and FIG. 18C is the forming roll of Comparative Example 1. Raman spectrum inside the DLC film. 図19(a)は、実施例2の成形ロールを用いて成形したチタン管の真円度の測定結果を示す図であり、図19(b)は、実施例3の成形ロールを用いて成形したチタン管の真円度の測定結果を示す図である。それぞれ、真円からの乖離を拡大表示している。FIG. 19A is a view showing a measurement result of roundness of a titanium tube formed using the forming roll of Example 2, and FIG. 19B is formed using the forming roll of Example 3. It is a figure which shows the measurement result of the roundness of the made titanium tube. In each case, the deviation from the perfect circle is enlarged.
 以下、本発明の実施形態であるチタン管成形ロール、チタン管成形装置及びチタン管の製造方法について説明する。 Hereinafter, a titanium tube forming roll, a titanium tube forming apparatus, and a titanium tube manufacturing method according to embodiments of the present invention will be described.
 なお、本実施形態は、本発明のチタン管成形ロールの趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。 In addition, since this embodiment is described in detail for better understanding of the purpose of the titanium tube forming roll of the present invention, the present invention is not limited unless otherwise specified.
[チタン管ロール及びチタン管の製造方法の第1の例]
 図1に、本実施形態の第1の例である、チタン管成形ロール及びそのチタン管成形ロールを用いたチタン管の製造方法の側面模式図を示す。また、図2には、チタン管成形ロールの正面模式図を示す。図1及び図2に示すように、本実施形態のチタン管成形ロール1は、所謂孔型ロール(カリバーロール)であり、鋼材からなるロール本体2と、ロール本体2に挿通された回転軸3とが備えられている。ロール本体2のロール面2aには、断面視半円状に成形されたロール凹部4がロール本体2の全周に渡って設けられている。また、圧延面であるロール凹部4の表面には、基材上に、窒化層、CrN皮膜およびダイヤモンドライクカーボン膜がこの順で形成されている。
[First example of titanium tube roll and titanium tube manufacturing method]
FIG. 1 is a schematic side view of a titanium tube forming roll and a titanium tube manufacturing method using the titanium tube forming roll, which is a first example of the present embodiment. Moreover, in FIG. 2, the front schematic diagram of a titanium pipe forming roll is shown. As shown in FIGS. 1 and 2, the titanium tube forming roll 1 of the present embodiment is a so-called hole-type roll (caliber roll), and a roll body 2 made of a steel material and a rotating shaft 3 inserted through the roll body 2. And are provided. On the roll surface 2 a of the roll body 2, a roll recess 4 formed in a semicircular shape in cross section is provided over the entire circumference of the roll body 2. In addition, a nitride layer, a CrN film, and a diamond-like carbon film are formed in this order on the base material on the surface of the roll recess 4 that is a rolled surface.
 図1に示すように、円筒管であるチタン管10を真円に成形する際には、一対のチタン管成形ロール1の回転軸3をそれぞれ水平に配置し、かつ、各回転軸3が平行になるように配置する。このようにして各チタン管成形ロール1を上下方向に対向して配置させる。そして、上下に配置した一対のチタン管成形ロール1の間に成形前のチタン管10を通過させる。一対のチタン管成形ロール1の間には、各チタン管ロール1のロール凹部4によって、正面側から視た場合に真円形状となる孔部が設けられており、この孔部をチタン管10が通過する際にチタン管10が真円状に成形される。なお、チタン管成形ロール1の配置は上下方向に限らず、水平方向でも斜め方向でもよい。 As shown in FIG. 1, when the titanium tube 10 that is a cylindrical tube is formed into a perfect circle, the rotation shafts 3 of the pair of titanium tube forming rolls 1 are arranged horizontally, and the rotation shafts 3 are parallel to each other. Arrange so that In this way, the respective titanium tube forming rolls 1 are arranged to face each other in the vertical direction. And the titanium pipe | tube 10 before shaping | molding is passed between a pair of titanium pipe shaping | molding roll 1 arrange | positioned up and down. Between the pair of titanium tube forming rolls 1, a hole having a perfect circle shape when viewed from the front side is provided by the roll recess 4 of each titanium tube roll 1. When the tube passes, the titanium tube 10 is formed into a perfect circle. In addition, arrangement | positioning of the titanium tube forming roll 1 is not restricted to an up-down direction, A horizontal direction or the diagonal direction may be sufficient.
 チタン管成形ロール1の回転軸3は、駆動手段によって駆動される駆動軸でもよく、無駆動軸でもよい。本実施形態のチタン管成形ロール1は駆動軸に接続されたとしても、CrN皮膜上に形成されたダイヤモンドライクカーボン膜とが備えられているために、耐摩耗性、耐凝着性、耐剥離性、およびロール表面の摩擦係数に優れたものとなる。 The rotating shaft 3 of the titanium tube forming roll 1 may be a driving shaft driven by driving means or a non-driving shaft. Even if the titanium tube forming roll 1 of this embodiment is connected to the drive shaft, the titanium tube forming roll 1 is provided with a diamond-like carbon film formed on the CrN film, so that it has wear resistance, adhesion resistance, and peeling resistance. And excellent friction coefficient on the roll surface.
 本実施系形態に係るチタン管成形ロール1のロール本体2の基材は、質量%で、C:1.00~2.30%、Si:0.10~0.60%、Mn:0.20~0.80%、P:0.030%以下、S:0.030%以下、Cr:4.80~13.00%、を含有し、残部が鉄及び不可避的不純物である化学組成を有する鋼材からなる。この基材からなるチタン管成形ロール1のロール凹部4の表面にCrN皮膜とダイヤモンドライクカーボン膜とが備えられる。ダイヤモンドライクカーボン膜においては、ラマン分光法により測定された波数1380cm-1における吸収強度I1380と、波数1540cm-1における吸収強度I1540との比I1380/I1540が、膜表面から0.20tまでの領域において0.5~0.7となり、ダイヤモンドライクカーボン膜とCrN皮膜との界面から0.20tまでの領域において0.3~0.5となっている。 The base material of the roll body 2 of the titanium tube forming roll 1 according to the present embodiment is C: 1.00-2.30%, Si: 0.10-0.60%, Mn: 0.00% by mass. A chemical composition containing 20 to 0.80%, P: 0.030% or less, S: 0.030% or less, Cr: 4.80 to 13.00%, the balance being iron and inevitable impurities It consists of steel material. A CrN film and a diamond-like carbon film are provided on the surface of the roll recess 4 of the titanium tube forming roll 1 made of this base material. In the diamond-like carbon film, the ratio I 1380 / I 1540 between the absorption intensity I 1380 at a wave number of 1380 cm −1 and the absorption intensity I 1540 at a wave number of 1540 cm −1 measured by Raman spectroscopy is 0.20 t from the film surface. In the region up to 0.5 to 0.7, and 0.3 to 0.5 in the region from the interface between the diamond-like carbon film and the CrN film to 0.20 t.
 以下に、本実施形態におけるチタン管成形ロールの限定理由について詳しく説明する。 Hereinafter, the reasons for limitation of the titanium tube forming roll in this embodiment will be described in detail.
[基材の化学組成]
 まず、本実施形態のチタン管成形ロール1における基材の化学組成に関し、各元素の限定理由について詳述する。
[Chemical composition of substrate]
First, the reason for limitation of each element is explained in full detail regarding the chemical composition of the base material in the titanium tube forming roll 1 of this embodiment.
 なお、以下の説明においては、特に指定の無い限り、「%」は質量%を表すものとする。 In the following description, “%” represents mass% unless otherwise specified.
(C:炭素) 1.00~2.30%
 Cは、炭化物の形成および硬さの確保に必要な元素である。また、Cr、Mo、V等と結合して硬い炭化物を形成するので、焼入れ焼き戻し硬さを高め、耐摩耗性を構成させる元素として重要である。そのため、本実施形態ではCを1.00%以上含有させる。硬さの確保の観点から、1.4%以上含有させることが好ましい。
(C: carbon) 1.00-2.30%
C is an element necessary for forming carbide and ensuring hardness. Moreover, since it combines with Cr, Mo, V, etc. to form a hard carbide, it is important as an element that increases the quenching and tempering hardness and constitutes the wear resistance. Therefore, in this embodiment, C is contained by 1.00% or more. From the viewpoint of ensuring hardness, it is preferable to contain 1.4% or more.
 一方、C含有量が2.30%を超えると、靱性を著しく劣化させる。そこで、本実施形態では、C含有量は2.30%以下と限定する。なお、靭性確保の観点から、C含有量の上限は、2.20%であることが好ましく、2.00%以下であることがさらに好ましい。 On the other hand, if the C content exceeds 2.30%, the toughness is remarkably deteriorated. Therefore, in this embodiment, the C content is limited to 2.30% or less. From the viewpoint of ensuring toughness, the upper limit of the C content is preferably 2.20%, and more preferably 2.00% or less.
(Si:ケイ素) 0.10~0.60%
 Siは、脱酸剤として含有される。また、Siは、高温焼戻し中の軟化抵抗性を高める作用があるため含有される。これらの観点から、Siは0.10%以上含有させる。一方、Si含有量が0.60%を超えると、熱間加工性や靱性を低下させるほか、非金属介在物が増加するおそれがある。そのため、Si含有量は0.60%以下とする。なお、靭性確保の観点から、Si含有量の上限は0.50%であることが好ましい。
(Si: silicon) 0.10 to 0.60%
Si is contained as a deoxidizer. Further, Si is contained because it has an effect of increasing softening resistance during high-temperature tempering. From these viewpoints, Si is contained by 0.10% or more. On the other hand, if the Si content exceeds 0.60%, hot workability and toughness are reduced, and nonmetallic inclusions may increase. Therefore, the Si content is set to 0.60% or less. From the viewpoint of securing toughness, the upper limit of Si content is preferably 0.50%.
(Mn:マンガン) 0.20~0.80%
 Mnは、Siと同様に脱酸効果のある元素であり、焼入れ性を向上させると同時に、残留オーステナイトを増加させる元素である。この観点から、Mnは0.20%以上含有させる。なお、硬度確保の観点から、0.30以上含有させることが好ましい。なお、靭性とのバランスを考慮し、本実施形態ではMn量の上限を0.8%とする。好ましくは、0.6%以下である。
(Mn: Manganese) 0.20 to 0.80%
Mn is an element having a deoxidizing effect like Si, and is an element that improves hardenability and at the same time increases retained austenite. From this viewpoint, Mn is contained by 0.20% or more. In addition, it is preferable to contain 0.30 or more from a viewpoint of ensuring hardness. In consideration of the balance with toughness, the upper limit of the amount of Mn is set to 0.8% in the present embodiment. Preferably, it is 0.6% or less.
(P:リン) 0.030%以下
(S:硫黄) 0.030%以下
 P,Sともに、鋼中に存在しない方が好ましい不純物元素である。このことから、P,Sともに、その含有量を0.030%以下に制限する。なお好ましくは、0.020%以下に制限する。
(P: Phosphorus) 0.030% or less (S: Sulfur) 0.030% or less Both P and S are preferable impurity elements that do not exist in steel. For this reason, the content of both P and S is limited to 0.030% or less. Preferably, it is limited to 0.020% or less.
(Cr:クロム) 4.80~13.00%
 CrはCと結合して、結合して炭化物を形成することにより、耐摩耗性を向上させる需要な元素である。また、本実施形態ではチタン管成形ロール1の基材上にCrN皮膜(硬質皮膜)を形成することから、当該CrN皮膜との密着性を確保する上でも非常に重要である。これらの観点から、Cr量は4.80%以上とし、好ましくは8.00%以上、さらに好ましくは11.00%以上とする。
(Cr: Chromium) 4.80-13.00%
Cr is an element that is in demand to improve wear resistance by combining with C to form carbides. Moreover, in this embodiment, since a CrN film (hard film) is formed on the base material of the titanium tube forming roll 1, it is very important also in ensuring adhesion with the CrN film. From these viewpoints, the Cr content is 4.80% or more, preferably 8.00% or more, and more preferably 11.00% or more.
 一方、Crを過剰に添加すると、粗大な炭化物の生成によって靭性が劣化するおそれがあるので、Cr量の上限を13.00%とする。なお、好ましくは12.50%以下である。 On the other hand, if Cr is added excessively, toughness may be deteriorated due to the formation of coarse carbides, so the upper limit of Cr content is 13.00%. In addition, Preferably it is 12.50% or less.
(Mo:モリブデン) 0~1.20%
 Moは、焼戻し軟化抵抗性を向上させるとともに、炭化物の形成により耐摩耗性を付与する効果も有するので、含有させてもよい。これらの観点から、Moは0.70%以上含有させることが好ましく、より好ましくは0.80%以上である。
(Mo: Molybdenum) 0 to 1.20%
Mo improves resistance to temper softening and also has an effect of imparting wear resistance by the formation of carbides, so it may be contained. From these viewpoints, Mo is preferably contained in an amount of 0.70% or more, and more preferably 0.80% or more.
 一方、Moを過剰に添加すると靱性を劣化させるおそれがある。このことから、Moは1.20%以下含有させることが好ましく、より好ましくは1.10%以下である。 On the other hand, if Mo is added excessively, the toughness may be deteriorated. Therefore, Mo is preferably contained in an amount of 1.20% or less, and more preferably 1.10% or less.
(V:バナジウム) 0~1.00%
 Vは、基材の焼入れ性向上、焼戻し軟化抑制さらには炭化物の微細化に有効であるので、含有させてもよい。Vは0.15%以上含有させることが好ましく、より好ましくは0.20%以上である。
(V: Vanadium) 0-1.00%
V is effective for improving the hardenability of the base material, suppressing temper softening, and further miniaturizing the carbide. V is preferably contained in an amount of 0.15% or more, more preferably 0.20% or more.
 一方、Vを過剰に添加すると、冷間加工性を阻害するおそれがあるため、Vは1.00%以下含有させることが好ましく、より好ましくは0.50%以下である。 On the other hand, when V is added excessively, cold workability may be hindered. Therefore, V is preferably contained in an amount of 1.00% or less, and more preferably 0.50% or less.
(W:タングステン) 0~0.80%
 Wは、Vと同様に、基材の焼入れ性向上、焼戻し軟化抑制さらには炭化物の微細化に有効であるので、含有させてもよい。Wは0.6%以上含有させることが好ましい。一方、Wを過剰に添加すると、冷間加工性を阻害するおそれがあるため、Wは0.80%以下含有させることが好ましい。
(W: Tungsten) 0 ~ 0.80%
W, like V, is effective for improving the hardenability of the base material, suppressing temper softening, and further miniaturizing the carbide, and therefore may be contained. W is preferably contained in an amount of 0.6% or more. On the other hand, if W is added excessively, cold workability may be impaired, so W is preferably contained in an amount of 0.80% or less.
 本実施形態においては、上記した元素以外の残部は実質的にFeからなり、不可避不純物をはじめ、本発明の作用効果を害さない元素を微量に添加することができる。 In the present embodiment, the balance other than the above-described elements is substantially made of Fe, and trace amounts of elements that do not impair the effects of the present invention, such as inevitable impurities, can be added.
 なお、本実施形態のチタン管成形ロール1においては、基材の材質として上記化学組成を有するものを用いるが、その中でも、より安価でかつ耐摩耗性と耐凝着性をバランスよく確保する観点から、JIS G 4404にて規定されている、SKD1,SKD2,SKD10,SKD11もしくはSKD12(いずれも上記化学組成範囲内)を用いることが好ましく、これらの中でも特に、SKD11を用いることがより好ましい。 In addition, in the titanium tube forming roll 1 of this embodiment, what has the said chemical composition is used as a material of a base material, However, Among these, it is cheaper and a viewpoint which ensures abrasion resistance and adhesion resistance in good balance. Therefore, it is preferable to use SKD1, SKD2, SKD10, SKD11 or SKD12 (all within the above chemical composition range) defined in JIS G 4404, and among these, it is more preferable to use SKD11.
 上記化学組成を有するような基材の硬度は、ビッカース硬さで600~700である。つまり、上記基材上に皮膜等を形成せず、基材ままの状態でチタン管10を成形した場合、基材自体の硬度は確保できていることから耐摩耗性に関しては比較的良好な結果が得られるが、耐凝着性に関しては、チタンが基材に焼付いてしまい、チタン管成形ロール1に多数の疵が生じてしまう。 The hardness of the base material having the above chemical composition is 600 to 700 in terms of Vickers hardness. That is, when the titanium tube 10 is formed in the state of the base material without forming a film or the like on the base material, the hardness of the base material itself can be secured, so that the wear resistance is relatively good. However, with respect to adhesion resistance, titanium is baked on the base material, and a large number of wrinkles are generated in the titanium tube forming roll 1.
 そのため、本実施形態では、Tiとの親和性が非常に低く、基材中のCrとの連続性(素材連続性)保つことができることから、基材表面(圧延面)にCrN皮膜を形成することが重要である。基材表面上にCrN皮膜を形成することにより、チタン管10とチタン管成形ロール1との密着性を確保でき、耐凝着性を向上させることができる。しかしながら、高硬度(ビッカース硬さで800~2000)のCrN層と比較的軟質な基材との間(界面)では硬度格差(強度の不連続性)が生じる。その結果、CrN層と基材との界面において応力が集中しやすくなり、CrN皮膜の厚みによってはCrN皮膜と基材との密着性が十分に確保できない場合がある。 Therefore, in this embodiment, since affinity with Ti is very low and continuity (raw material continuity) with Cr in the base material can be maintained, a CrN film is formed on the base material surface (rolled surface). This is very important. By forming a CrN film on the surface of the base material, adhesion between the titanium tube 10 and the titanium tube forming roll 1 can be secured, and adhesion resistance can be improved. However, a hardness disparity (strength discontinuity) occurs between a CrN layer having a high hardness (800 to 2000 in Vickers hardness) and a relatively soft substrate (interface). As a result, stress tends to concentrate at the interface between the CrN layer and the base material, and depending on the thickness of the CrN film, sufficient adhesion between the CrN film and the base material may not be ensured.
 そこで、本発明者らが検討した結果、高硬度なCrN皮膜と、比較的軟質な基材との間に、CrN皮膜と基材とを連結させうる窒化層を設けることで、硬度格差を緩和させることができ、CrN皮膜と基材との密着性、及びチタン管成形ロール1の強度を両立させうることを知見した。 Therefore, as a result of investigations by the present inventors, the hardness disparity is reduced by providing a nitride layer capable of connecting the CrN film and the base material between the high hardness CrN film and the relatively soft base material. It was found that the adhesion between the CrN film and the base material and the strength of the titanium tube forming roll 1 can be made compatible.
 以上のことから、基材とCrN層との間に、基材表層をプラズマ窒化処理することによって得られる窒化層を設けることが好ましい。このように、基材の表層に窒化層を形成することで、CrN皮膜と基材との間の硬度差を緩和することができ、応力の集中を抑制することができる。その結果、CrN層と基材との密着性、ならびに強度を向上させることができ、CrN層の剥離を低減し、耐凝着性を向上させることが可能となる。 From the above, it is preferable to provide a nitride layer obtained by plasma nitriding the substrate surface layer between the substrate and the CrN layer. Thus, by forming the nitride layer on the surface layer of the base material, the hardness difference between the CrN film and the base material can be relaxed, and the concentration of stress can be suppressed. As a result, adhesion and strength between the CrN layer and the base material can be improved, peeling of the CrN layer can be reduced, and adhesion resistance can be improved.
[窒化層]
 本実施形態に係るチタン管成形ロール1は、基材上に窒化層を形成し、その上にCrN皮膜および高硬度なダイヤモンドカーボン膜を成膜することで、チタン管成形ロール1の耐摩耗性、耐凝着性、低摩擦性を確保する。
[Nitride layer]
The titanium tube forming roll 1 according to the present embodiment forms a nitride layer on a base material and forms a CrN film and a high-hardness diamond carbon film on the nitride layer. Ensures adhesion resistance and low friction.
 窒化層のビッカース硬さは、800~1200である。ビッカース硬さが、800未満では、CrN皮膜との硬度差が大きくなりすぎ、また、1200を超えると、基材との硬度差が大きくなる。 The Vickers hardness of the nitrided layer is 800-1200. If the Vickers hardness is less than 800, the hardness difference from the CrN film becomes too large, and if it exceeds 1200, the hardness difference from the base material becomes large.
 窒化層の厚さは特に限定しないが、本実施形態では、0.5μm~50.0μmとするのが好ましい。高硬度のCrN層と比較的軟質な基材との間における強度の差を低減するためには、窒化層の厚みを0.5μm以上確保することが好ましい。より好ましくは1.0μm以上である。一方、窒化層の厚みを過度に厚くしすぎることは、プラズマ窒化処理に要する時間が長くなり生産性を低下させるほか、製造コストも高くなる。また、窒化層の厚みを過度に厚くすると、基材の表面粗度が大きくなってしまい、CrN皮膜成膜前に基材表面を研磨する必要がでてくる。これらの観点から、窒化層の厚みは50.0μm以下とすることが好ましい。 The thickness of the nitride layer is not particularly limited, but is preferably 0.5 μm to 50.0 μm in the present embodiment. In order to reduce the difference in strength between the high hardness CrN layer and the relatively soft base material, it is preferable to secure a thickness of the nitride layer of 0.5 μm or more. More preferably, it is 1.0 μm or more. On the other hand, when the thickness of the nitrided layer is excessively increased, the time required for the plasma nitriding treatment becomes longer and the productivity is lowered, and the manufacturing cost is increased. Moreover, if the thickness of the nitride layer is excessively increased, the surface roughness of the base material increases, and it is necessary to polish the base material surface before forming the CrN film. From these viewpoints, the thickness of the nitride layer is preferably 50.0 μm or less.
 窒化層中の平均窒素濃度は、10.0~25.0質量%とすることが好ましい。 The average nitrogen concentration in the nitrided layer is preferably 10.0-25.0% by mass.
 窒化層中の窒素濃度が低すぎると、強度向上の効果が小さく、十分な耐摩耗性が得られないおそれがあるため、窒化層中の平均窒素濃度は10.0質量%以上とすることが好ましい。より好ましくは、12.0%以上である。 If the nitrogen concentration in the nitrided layer is too low, the effect of improving the strength is small, and sufficient abrasion resistance may not be obtained. Therefore, the average nitrogen concentration in the nitrided layer may be 10.0% by mass or more. preferable. More preferably, it is 12.0% or more.
 一方、窒化層中の窒素濃度が高すぎると、窒化層表面が脆化する傾向となりやすく、割れが生じるおそれがある。このことから、窒化層中の平均窒素濃度は25.0質量%以下とすることが好ましい。より好ましくは、23.0%以下である。 On the other hand, if the nitrogen concentration in the nitrided layer is too high, the surface of the nitrided layer tends to become brittle and cracks may occur. Therefore, the average nitrogen concentration in the nitride layer is preferably 25.0% by mass or less. More preferably, it is 23.0% or less.
 また、窒化層における窒素の濃度分布が、窒化層表層から深さ方向に向かって減少するような濃度勾配を有することが好ましい。 Further, it is preferable that the nitrogen concentration distribution in the nitride layer has a concentration gradient that decreases from the surface layer of the nitride layer in the depth direction.
 上述したように、ロール内部で強度格差が生じることは、CrN層と基材との密着性、及び強度の観点から好ましくない。従って、CrN層、基材表層、基材内部それぞれの間の強度の格差、すなわちロール内部の深さ方向に沿った強度勾配は緩やかにすることが好ましい。そのためには、CrN層と基材との間に形成する窒化層内の窒素の濃度分布を、窒化層表層から基材側に向かって減少するような濃度勾配となるよう制御することが好ましい。 As described above, it is not preferable from the viewpoint of the adhesion between the CrN layer and the base material and the strength that the strength difference occurs inside the roll. Therefore, it is preferable that the difference in strength between the CrN layer, the substrate surface layer, and the inside of the substrate, that is, the strength gradient along the depth direction inside the roll is made gentle. For this purpose, it is preferable to control the concentration distribution of nitrogen in the nitride layer formed between the CrN layer and the base material so as to have a concentration gradient that decreases from the surface layer of the nitride layer toward the base material side.
 なお、窒素の濃度分布を、窒化層表層から深さ方向に向かって減少する勾配となるよう制御するためには、窒化層を形成するための基材表層に対するプラズマ窒化処理を複数回に分け、かつ、各回の処理を異なる条件で行うことにより、窒化層内における窒素の濃度分布を調整すればよい。 In order to control the nitrogen concentration distribution so as to have a gradient that decreases in the depth direction from the surface layer of the nitride layer, the plasma nitridation treatment for the substrate surface layer for forming the nitride layer is divided into a plurality of times, In addition, the concentration distribution of nitrogen in the nitride layer may be adjusted by performing each process under different conditions.
 なお、「窒化層」の判別(基材と「窒化層」との境界の判定)は、グロー放電発光分析装置(GDS)によって行うことができる。具体的には、まず、上記プラズマ窒化処理によって窒化させた基材表層において、分析領域を直径1mmとし、通常のグロー放電発光分析を行う。引き続き、深さ方向に分析を進め、分析領域の窒素量が母材(基材)の平均窒素濃度を超えているところまでの領域を「窒化層」とする。つまり、グロー放電発光分析を深さ方向に行い、窒素量が基材の平均窒素濃度まで下がった地点を基材と「窒化層」との境界の判定することとする。 Note that the determination of the “nitride layer” (determination of the boundary between the base material and the “nitride layer”) can be performed by a glow discharge emission spectrometer (GDS). Specifically, first, in the base material surface layer nitrided by the plasma nitriding treatment, the analysis region is set to a diameter of 1 mm, and normal glow discharge emission analysis is performed. Subsequently, the analysis proceeds in the depth direction, and a region where the nitrogen amount in the analysis region exceeds the average nitrogen concentration of the base material (base material) is defined as a “nitriding layer”. That is, the glow discharge emission analysis is performed in the depth direction, and the point where the nitrogen amount has decreased to the average nitrogen concentration of the substrate is determined as the boundary between the substrate and the “nitriding layer”.
 また、窒化層中の平均窒素濃度についても、GDSを用いて測定することができる。なお、本実施形態では、分析領域を直径1mmとし、GDSを用いて深さ方向に分析を行い、JIS K 0150に規定されているQDP(Quantitative Depth Profile)法を適用し、深さ50nmごとの窒素濃度を測定する。これにより、窒化層における窒素の濃度分布を得る事ができる。また、窒化層全体の平均窒素濃度は、深さ50nmごとの各窒素濃度の平均を算出することで求めることができる。 The average nitrogen concentration in the nitride layer can also be measured using GDS. In this embodiment, the analysis region is 1 mm in diameter, analysis is performed in the depth direction using GDS, and the QDP (Quantitative Depth Profile) method defined in JIS K 0150 is applied to each depth of 50 nm. Measure the nitrogen concentration. Thereby, the nitrogen concentration distribution in the nitride layer can be obtained. Moreover, the average nitrogen concentration of the whole nitride layer can be calculated | required by calculating the average of each nitrogen concentration for every 50 nm depth.
 窒化層の形成前には、ロール(基材)表面を鏡面研磨することが望ましい。また、ショットブラストを行うことが望ましい。これにより、ロール表面性状を良好なものとし、CrN皮膜と基材との密着性を向上させることができ、結果、優れた耐凝着性を得ることが可能となる。 Before forming the nitrided layer, it is desirable that the surface of the roll (base material) be mirror-polished. It is also desirable to perform shot blasting. As a result, the roll surface properties can be improved, the adhesion between the CrN film and the substrate can be improved, and as a result, excellent adhesion resistance can be obtained.
[CrN皮膜(硬質皮膜)]
 CrN皮膜のビッカース硬さが800~2000である。CrN皮膜の硬度は、チタン管成形ロール1の耐摩耗性を向上させる観点から、高硬度とすることが好ましい。したがって、本実施形態では、CrN皮膜のビッカース硬さを800以上とすることが好ましく、1200以上とすることがさらに好ましく、1500以上とすることがより好ましい。
[CrN coating (hard coating)]
The Vickers hardness of the CrN film is 800 to 2000. The hardness of the CrN film is preferably high from the viewpoint of improving the wear resistance of the titanium tube forming roll 1. Therefore, in the present embodiment, the Vickers hardness of the CrN film is preferably 800 or more, more preferably 1200 or more, and even more preferably 1500 or more.
 一方、CrN皮膜の硬度の過度な上昇は、クラックの発生を招くおそれがあることから、CrN皮膜のビッカース硬さは2000以下とすることが好ましい。 On the other hand, since an excessive increase in the hardness of the CrN film may cause cracks, the Vickers hardness of the CrN film is preferably 2000 or less.
 CrN皮膜の厚さは特に限定しないが、0.5μm~5.0μmとするのが好ましい。CrN皮膜を薄くしすぎると、皮膜形成時にムラが生じ、耐凝着性が不十分となるおそれがある。また、CrN皮膜を過度に厚くすると、硬度は向上する一方で、皮膜にき裂(クラック)が生じやすくなり、脆くなるおそれがあるほか、経済的観点から製造コストが高くなり好ましくない。これらのことから、CrN皮膜の厚さは0.5μm~5.0μmとすることが好ましい。 The thickness of the CrN film is not particularly limited, but is preferably 0.5 μm to 5.0 μm. If the CrN film is too thin, unevenness may occur during film formation, and adhesion resistance may be insufficient. On the other hand, if the CrN film is excessively thick, the hardness is improved, but the film is liable to be cracked and may become brittle, and the production cost is increased from an economical viewpoint, which is not preferable. For these reasons, the thickness of the CrN film is preferably 0.5 μm to 5.0 μm.
 CrN皮膜の成膜方法に関しては特に限定しないが、基材との密着性を確保でき、更に成膜した皮膜の硬度を向上させうることから、PVD法(物理蒸着法)を用いることが好ましい。他の蒸着法(例えばCVD法)によっても本実施形態に係るCrN皮膜は形成できるが、硬度が不十分であったり、CrN皮膜の膜厚が過度に厚くなったりするおそれがあるため、CrN皮膜の成膜法としてはPVD法を用いることが好ましい。 The film forming method of the CrN film is not particularly limited, but it is preferable to use a PVD method (physical vapor deposition method) because adhesion to the substrate can be secured and the hardness of the formed film can be improved. Although the CrN film according to the present embodiment can be formed by other vapor deposition methods (for example, CVD method), there is a risk that the hardness may be insufficient or the film thickness of the CrN film may be excessively increased. As the film forming method, the PVD method is preferably used.
 なお、CrN皮膜は単層構造でもよく、2層以上積層する複層構造でもよい。しかし、上述したように、CrN皮膜の膜厚が厚くなりすぎるとクラックが生じるおそれがあるほか、複層構造とすることで、生産性の低下、製造コストの上昇を招くことから、CrN皮膜は単層構造とすることが好ましい。 The CrN film may have a single layer structure or a multilayer structure in which two or more layers are laminated. However, as described above, if the film thickness of the CrN film becomes too thick, cracks may occur, and a multi-layer structure causes a decrease in productivity and an increase in manufacturing cost. A single layer structure is preferable.
[ダイヤモンドライクカーボン膜(DLC膜)]
 チタン管成形ロール1のうち、チタン管10を搬送方向へ引張る役割の駆動ロールは、無駆動ロールよりも使用環境・使用条件が過酷であることから、耐摩耗性や耐凝着性は勿論のこと、耐剥離性、ならびにロール凹部4の表面の優れた低摩擦性がより求められる。
[Diamond-like carbon film (DLC film)]
Of the titanium tube forming roll 1, the driving roll for pulling the titanium tube 10 in the conveying direction is more severe in use environment and usage conditions than the non-driving roll, so that it has not only wear resistance and adhesion resistance. That is, the anti-peeling property and the excellent low friction property of the surface of the roll recess 4 are required.
 本実施形態では、CrN皮膜上に、sp混成軌道の炭素(sp構造)とsp混成軌道の炭素(sp構造)からなる高硬度なDLC膜を成膜する。 In this embodiment, a high-hardness DLC film made of carbon with sp 2 hybrid orbitals (sp 2 structure) and carbon with sp 3 hybrid orbitals (sp 3 structure) is formed on the CrN film.
 しかし、CrN層上に高硬度なDLC膜を成膜しただけでは、CrN層とDLC膜との間(界面)では硬度格差(強度の不連続性)が生じ、CrN層とDLC膜との界面において応力が集中しやすくなる結果、CrN層とDLC膜との密着性が十分に確保できなくなり、チタン管10の成形中にDLC膜が剥離するおそれがある。 However, just forming a high-hardness DLC film on the CrN layer causes a hardness disparity (strength discontinuity) between the CrN layer and the DLC film (interface), and the interface between the CrN layer and the DLC film. As a result, stress is easily concentrated in the steel layer, and as a result, sufficient adhesion between the CrN layer and the DLC film cannot be secured, and the DLC film may be peeled off during the formation of the titanium tube 10.
 そのため、CrN層とDLC膜との間における硬度の格差を緩和させるようDLC膜の膜厚方向の硬度分布(硬度傾斜)を制御することが重要である。 Therefore, it is important to control the hardness distribution (hardness gradient) in the film thickness direction of the DLC film so as to reduce the hardness difference between the CrN layer and the DLC film.
 具体的には、DLC膜において、ラマン分光法におり測定された波数1380cm-1における吸収強度I1380と、波数1540cm-1における吸収強度I1540との比I1380/I1540を、膜表面から0.20tまでの領域(上層領域)で0.5~0.7、DLC膜とCrN皮膜との界面から0.20tまでの領域(下層領域)で0.3~0.5となるよう制御し、膜表面からCrN皮膜側に向かってsp構造の割合が減少(硬度が減少)するような硬度傾斜を付与する。 Specifically, in the DLC film, the ratio I 1380 / I 1540 between the absorption intensity I 1380 at a wave number of 1380 cm −1 and the absorption intensity I 1540 at a wave number of 1540 cm −1 measured by Raman spectroscopy is measured from the film surface. Control to be 0.5 to 0.7 in the region up to 0.20 t (upper layer region) and 0.3 to 0.5 in the region (lower layer region) from the interface between the DLC film and the CrN film to 0.20 t. Then, a hardness gradient is applied such that the proportion of the sp 3 structure decreases (hardness decreases) from the film surface toward the CrN film side.
 なお、前述のとおり、I1380とはラマン分光法におり測定された波数1380cm-1における吸収強度、いわゆる「Dバンド」であり、他方のI1540とはラマン分光法におり測定された波数1540cm-1における吸収強度、いわゆる「Gバンド」であり、I1380/I1540(D/G)を算出することでsp構造性の目安とすることができる。 As described above, I 1380 is an absorption intensity at a wave number of 1380 cm −1 measured in Raman spectroscopy, a so-called “D band”, and the other I 1540 is a wave number of 1540 cm measured in Raman spectroscopy. The absorption intensity at −1 , the so-called “G band”, can be used as a measure of the sp 3 structure by calculating I 1380 / I 1540 (D / G).
 DLCは、sp混成軌道(ダイヤモンド構造)の炭素の割合が比較的多いものと、sp混成軌道(グラファイト構造)の炭素の割合が比較的多いものが混在したものである。つまりsp構造が多くなるとダイヤモンド寄りの性質(高硬度)となり、sp構造が多くなるとグラファイト寄りの性質(軟質)となる。 DLC is a mixture of carbon having a relatively high carbon ratio in sp 3 hybrid orbitals (diamond structure) and carbon having a relatively high carbon ratio in sp 2 hybrid orbitals (graphite structure). That is, when the sp 3 structure is increased, the properties are closer to diamond (high hardness), and when the sp 2 structures are increased, the properties are closer to graphite (soft).
 したがって、CrN皮膜側の下層領域は軟質、膜表面側である上層領域は硬質なものとなるよう、DLC膜におけるsp構造とsp構造の割合を制御することで、DLC膜の膜厚方向における硬度の傾斜をつけ、CrN層とDLC膜との間における硬度格差を緩和させることができる。 Therefore, the film thickness direction of the DLC film is controlled by controlling the ratio of the sp 3 structure and the sp 2 structure in the DLC film so that the lower layer area on the CrN film side is soft and the upper layer area on the film surface side is hard. The hardness difference between the CrN layer and the DLC film can be reduced.
 上述したようにCrN層のビッカース硬度は800~2000であるので、DLC膜の下層領域はビッカース硬度で1500~3000、上層領域は3000~3500とすることが望ましい。 As described above, since the Vickers hardness of the CrN layer is 800 to 2000, it is desirable that the lower layer region of the DLC film has a Vickers hardness of 1500 to 3000 and the upper layer region of 3000 to 3500.
 このように、DLC膜の上層領域をsp構造の割合を高めた硬質なものとすることで、チタン管10に対し優れた耐摩耗性を発揮できる上、この上層領域はsp混成軌道(グラファイト構造)の炭素も多少含んでいることから低摩擦性をも確保できる。一方で、DLC膜の下層領域をsp構造の割合を抑えた軟質なものとすることで、CrN層との硬度格差を緩和でき、耐剥離性を確保できる。 Thus, by making the upper layer region of the DLC film hard with an increased proportion of the sp 3 structure, it is possible to exhibit excellent wear resistance with respect to the titanium tube 10, and the upper layer region has an sp 2 hybrid orbital ( Low friction is also ensured because it contains some carbon (graphite structure). On the other hand, by making the lower layer region of the DLC film soft with the ratio of the sp 3 structure being suppressed, the hardness difference with the CrN layer can be alleviated and peeling resistance can be ensured.
 さらに、DLC膜はチタンとの親和性が低いことから、耐凝着性も良好なものとできる。 Furthermore, since the DLC film has a low affinity with titanium, it can also have good adhesion resistance.
 なお、I1380/I1540は、ラマン分光分析法によって測定できる。ラマン分光分析法は、試料表面にレーザー光等を照射し、それによって発せられるラマン散乱光を分光し、入射光とラマン散乱光との波長の差から試料表面の分子の構造および結合状態を明らかにする手法である。 It should be noted that I 1380 / I 1540 can be measured by Raman spectroscopy. In Raman spectroscopy, the sample surface is irradiated with laser light, etc., and the Raman scattered light emitted by the sample is dispersed, and the molecular structure and bonding state of the sample surface are revealed from the difference in wavelength between the incident light and the Raman scattered light. It is a technique to make.
 DLC膜の膜厚については特に限定せず、0.5~2.0μmの範囲内とすることが望ましいが、製法やその条件、チタン管成形ロール1の使用環境等により適宜決定してよい。 The thickness of the DLC film is not particularly limited and is preferably in the range of 0.5 to 2.0 μm, but may be appropriately determined depending on the production method, its conditions, the usage environment of the titanium tube forming roll 1, and the like.
 本実施形態に係るDLC膜は、例えば、プラズマCVD法によって成膜できる。 The DLC film according to this embodiment can be formed by, for example, a plasma CVD method.
 DLC膜におけるsp構造とsp構造の割合を上記のように制御するためには、プラズマCVD法の各条件(成膜条件)を調整すればよい。具体的には、反応ガスの種類や割合、基板温度、陰極電圧、真空度等を適宜調整することで、DLC膜におけるsp構造とsp構造の割合を調整できる。つまり、DLC膜の膜厚方向に上記のような硬度傾斜が付与されるのであれば、成膜条件を適宜調整しながら成膜してもよく、成膜開始から一定の条件の下で成膜してもよい。 In order to control the ratio of the sp 3 structure and the sp 2 structure in the DLC film as described above, each condition (film formation condition) of the plasma CVD method may be adjusted. Specifically, the ratio of the sp 3 structure and the sp 2 structure in the DLC film can be adjusted by appropriately adjusting the type and ratio of the reaction gas, the substrate temperature, the cathode voltage, the degree of vacuum, and the like. In other words, as long as the above-described hardness gradient is provided in the film thickness direction of the DLC film, the film formation may be performed while appropriately adjusting the film formation conditions. May be.
 反応ガスはCHとHの混合ガス、あるいはCHガスのみとすることができる。反応ガスとして混合ガスを用いる場合は、各ガスの流量を調整することでsp構造とsp構造の割合を調整でき、CHガスのみを用いる場合は他の各条件を調整すればよい。
また、本実施形態におけるDLC膜は、sp構造とsp構造を所望の割合とすることが重要であるため、膜中にH(水素)が多量に混入することは好ましくない。そのため、反応ガスとしてHは適当な量に抑えるほうがよい。
The reaction gas can be a mixed gas of CH 4 and H 2 or only CH 4 gas. When a mixed gas is used as the reaction gas, the ratio of the sp 3 structure and the sp 2 structure can be adjusted by adjusting the flow rate of each gas, and when only the CH 4 gas is used, other conditions may be adjusted.
In the DLC film according to the present embodiment, it is important that the sp 3 structure and the sp 2 structure have a desired ratio, and therefore it is not preferable that a large amount of H (hydrogen) is mixed in the film. Therefore, it is better to suppress H 2 to an appropriate amount as a reaction gas.
 以上述べた成膜条件は、用いるプラズマCVD装置の種類、スペック等に影響されるため、生成させているDLC膜のラマンピークを調べながらsp構造とsp構造の割合を調整すればよい。 Since the film formation conditions described above are affected by the type and specifications of the plasma CVD apparatus used, the ratio of the sp 3 structure and the sp 2 structure may be adjusted while examining the Raman peak of the generated DLC film.
 本実施形態に係るDLC膜は、上記のほか、アンバランストマグネトロンスパッタ(UBMS)法によって成膜することもできる。このとき、メタンガスとArガスとの流量比を変更することにより、CrN皮膜との界面から表面に向かって膜の硬さが徐々に増加するようすることが可能である。 In addition to the above, the DLC film according to the present embodiment can be formed by an unbalanced magnetron sputtering (UBMS) method. At this time, it is possible to gradually increase the hardness of the film from the interface with the CrN film toward the surface by changing the flow ratio of methane gas to Ar gas.
 また、基材上にCrN皮膜を成膜し、DLC膜を成膜するまでの間、CrN皮膜表面は大気に曝され汚れが付着しやすい環境下にある。そのため本実施形態では、DLC膜を成膜する前にCrN皮膜表面に対しプラズマクリーニングを施し、表面の汚れを分解・除去した上でDLC膜を成膜することが望ましい。これにより、CrN皮膜とDLC膜との密着性をより向上させることができる。 In addition, until the CrN film is formed on the substrate and the DLC film is formed, the surface of the CrN film is exposed to the atmosphere and is easily contaminated. Therefore, in this embodiment, it is desirable to perform plasma cleaning on the surface of the CrN film before forming the DLC film, and to decompose and remove the dirt on the surface before forming the DLC film. Thereby, the adhesiveness between the CrN film and the DLC film can be further improved.
[チタン管ロール及びチタン管の製造方法の第2の例]
 次に、本発明の実施形態であるチタン管ロール及びチタン管の製造方法の第2の例について、図3~8を参照して説明する。
[Second example of titanium tube roll and titanium tube manufacturing method]
Next, a second example of a titanium tube roll and a titanium tube manufacturing method according to an embodiment of the present invention will be described with reference to FIGS.
 図3及び図4には、本実施形態の第2の例であるチタン管成形ロール11を示す。図3及び図4に示すチタン管成形ロール11は、所謂孔型ロール(カリバーロール)であり、鋼材からなるロール本体12と、ロール本体12に挿通された回転軸3とが備えられている。ロール本体12のロール面12aには、断面視半円状に成形されたロール凹部14がロール本体12の全周に渡って設けられている。また、また、圧延面であるロール凹部14の表面には、基材上に、窒化層、CrN皮膜およびDLC膜がこの順で形成されている。 3 and 4 show a titanium tube forming roll 11 which is a second example of the present embodiment. The titanium tube forming roll 11 shown in FIGS. 3 and 4 is a so-called perforated roll (caliber roll), and includes a roll body 12 made of a steel material and a rotating shaft 3 inserted through the roll body 12. On the roll surface 12 a of the roll body 12, a roll recess 14 formed in a semicircular shape in cross section is provided over the entire circumference of the roll body 12. Moreover, a nitride layer, a CrN film, and a DLC film are formed in this order on the base material on the surface of the roll recess 14 that is a rolled surface.
 ロール本体12は、ロール中央部21と、ロール中央部21の両側に配置されてロール中央部21に対して回動自在とされた一対の回動フランジ部22と、一対の固定フランジ部23とが備えられている。ロール凹部14は、ロール中央部21と回動フランジ部22とによって分割されている。また、ロール中央部21と回動フランジ部22との間には第1軸受部24が備えられ、固定フランジ部23と回動フランジ部22との間には第2軸受部25が備えられている。更に、ロール中央部21と固定フランジ部23とは、固定ボルト26によって相互に固定されている。 The roll body 12 includes a roll center portion 21, a pair of rotating flange portions 22 that are disposed on both sides of the roll center portion 21 and are rotatable with respect to the roll center portion 21, and a pair of fixed flange portions 23. Is provided. The roll recess 14 is divided by a roll center portion 21 and a rotating flange portion 22. A first bearing portion 24 is provided between the roll center portion 21 and the rotating flange portion 22, and a second bearing portion 25 is provided between the fixed flange portion 23 and the rotating flange portion 22. Yes. Further, the roll center portion 21 and the fixing flange portion 23 are fixed to each other by a fixing bolt 26.
 ロール中央部21は、ロール本体12を駆動する回転軸3に固定されている。一方、回動フランジ部22は回転軸3及びロール中央部21に対して回動自在とされている。固定フランジ部23は固定ボルト26によってロール中央部21に固定されている。すなわち、固定フランジ部23は、ロール中央部21と一体になって回転軸3に固定されている。回転軸3が回転することでロール中央部21と固定フランジ部23とが回転する。一方、回動フランジ部22は、第1、第2軸受部24、25によってロール中央部21及び固定フランジ部23に対して回動自在とされているため、ロール中央部21及び固定フランジ部23とは連動しない。以下、各部について詳細に説明する。 The roll center portion 21 is fixed to the rotary shaft 3 that drives the roll body 12. On the other hand, the rotating flange portion 22 is rotatable with respect to the rotating shaft 3 and the roll center portion 21. The fixing flange portion 23 is fixed to the roll center portion 21 by fixing bolts 26. That is, the fixed flange portion 23 is fixed to the rotating shaft 3 integrally with the roll center portion 21. As the rotating shaft 3 rotates, the roll center portion 21 and the fixed flange portion 23 rotate. On the other hand, since the rotation flange portion 22 is rotatable with respect to the roll center portion 21 and the fixed flange portion 23 by the first and second bearing portions 24 and 25, the roll center portion 21 and the fixed flange portion 23. Does not work with. Hereinafter, each part will be described in detail.
 ロール中央部21は、回転軸3が挿通される円筒状の基部21aと、基部21aのロール幅方向中央から突出する突出部21bとからなる。基部21aには、回転軸3を挿通させるための挿通孔21cが設けられている。突出部21bの上面21dは、回転軸3側に凹み、かつロール本体12の全周に渡って連続する丸溝状に成形されており、この上面21dがロール凹部14の一部を構成している。ロール中央部21は、第1の例で説明した化学組成を有する基材から構成される。また、ロール中央部21の上面21dには、第1の例で説明したCrN皮膜とDLC膜とが備えられている。 The roll center portion 21 includes a cylindrical base portion 21a through which the rotary shaft 3 is inserted, and a protruding portion 21b protruding from the center of the base portion 21a in the roll width direction. The base portion 21a is provided with an insertion hole 21c for allowing the rotary shaft 3 to pass therethrough. The upper surface 21d of the protruding portion 21b is formed in a round groove shape that is recessed toward the rotating shaft 3 and is continuous over the entire circumference of the roll body 12, and this upper surface 21d constitutes a part of the roll concave portion 14. Yes. The roll center portion 21 is composed of a base material having the chemical composition described in the first example. The upper surface 21d of the roll central portion 21 is provided with the CrN film and the DLC film described in the first example.
 回動フランジ部22は、略リング状の部材であり、ロール中央部21の基部21aの外周側かつ突出部21bのロール幅方向両側に嵌められている。このように、回動フランジ部22は、基部21aの上にあって突出部21bのロール幅方向両側に配置される。ロール中央部21の基部21aと回転フランジ部22との間には第1軸受24が配設されている。また、ロール中央部21の突出部21bの側壁面21bと、回転フランジ部22との間には0.1mm程度の隙間が設けられている。この隙間と、第1軸受部24とにより、回転フランジ部22はロール中央部21に対して摺動することなく回動自在になっている。また、回転フランジ部22の外周傾斜面22aは、断面視したときに凹んだ円弧面に成形されており、ロール中央部21の上面21dと連続する円弧面になっている。これにより、回動フランジ部22の外周傾斜面22aとロール中央部21の上面21dとによってロール凹部14が構成される。 The rotating flange portion 22 is a substantially ring-shaped member, and is fitted on the outer peripheral side of the base portion 21a of the roll center portion 21 and on both sides of the protruding portion 21b in the roll width direction. In this manner, the rotating flange portion 22 is disposed on both sides of the protruding portion 21b in the roll width direction on the base portion 21a. A first bearing 24 is disposed between the base portion 21 a of the roll center portion 21 and the rotating flange portion 22. Further, a gap of about 0.1 mm is provided between the side wall surface 21 b 1 of the protruding portion 21 b of the roll center portion 21 and the rotating flange portion 22. By this gap and the first bearing portion 24, the rotating flange portion 22 is rotatable without sliding with respect to the roll center portion 21. Further, the outer peripheral inclined surface 22 a of the rotating flange portion 22 is formed into a concave arc surface when viewed in cross section, and is an arc surface continuous with the upper surface 21 d of the roll center portion 21. Thereby, the roll concave portion 14 is constituted by the outer peripheral inclined surface 22 a of the rotating flange portion 22 and the upper surface 21 d of the roll center portion 21.
 また、回転フランジ部22を断面視してわかるように、回転フランジ部22の外周傾斜面22aを含む先端部22dは、突出部21bの先端に覆い被さるように屈曲している。これにより、回転フランジ部22がチタン管10からの荷重を受けた際に、荷重を十分に受け止めることが可能になっている。 Further, as can be seen from a cross-sectional view of the rotating flange portion 22, the tip end portion 22d including the outer peripheral inclined surface 22a of the rotating flange portion 22 is bent so as to cover the tip of the protruding portion 21b. Thereby, when the rotation flange part 22 receives the load from the titanium pipe | tube 10, it becomes possible to fully receive a load.
 回動フランジ部22は、第1の例で説明した化学組成を有する基材から構成される。また、回動フランジ部22の外周傾斜面22aには、第1の例で説明したCrN皮膜とDLC膜とが備えられている。また、回転フランジ部22の表面全面に、CrN皮膜とDLC膜とが備えられていてもよい。 Rotating flange portion 22 is composed of a base material having the chemical composition described in the first example. Further, the outer peripheral inclined surface 22a of the rotating flange portion 22 is provided with the CrN film and the DLC film described in the first example. Further, a CrN film and a DLC film may be provided on the entire surface of the rotating flange portion 22.
 次に、第1軸受部24は、図示略の針状ころからなる転動体と、複数の転動体を保持する図示略の保持器とを備えている。そして、第1軸受部24に隣接する面である、ロール中央部21の基部21aの外周面21aと、回転フランジ部22の内周面22bとが、第1軸受部24の転動体の軌道面となっている。言い換えると、ロール中央部21の基部21aと回転フランジ部22とがそれぞれ、第1軸受部24の内周レース及び外周レースになっている。本実施形態では、これらの外周面21aと内周面22bにも、第1の例と同様に、基材上に、窒化層、CrN皮膜およびDLC膜がこの順で形成されている。 Next, the 1st bearing part 24 is provided with the rolling element which consists of needle rollers which are not shown in figure, and the holder | retainer which is not shown in figure which hold | maintains several rolling elements. Then, a face adjacent to the first bearing portion 24, and the outer peripheral surface 21a 1 of the base portion 21a of the roll central portion 21, and the inner peripheral surface 22b of the rotating flange 22, the trajectory of the rolling elements of the first bearing portion 24 It is a surface. In other words, the base 21a of the roll center portion 21 and the rotating flange portion 22 are an inner race and an outer race of the first bearing portion 24, respectively. In this embodiment, also on the inner peripheral surface 22b and these outer peripheral surfaces 21a 1, as in the first example, on a substrate, a nitride layer, CrN coatings and DLC film are formed in this order.
 次に、固定フランジ部23は、略円板状の部材であって、中央に回転軸3が挿通可能な挿通孔23aが設けられている部材である。固定フランジ部23は、ロール本体12のロール幅方向両側に配置されている。固定フランジ部23の回転軸寄りの部分は固定ボルト26によってロール中央部21の基部21aに固定されている。また、固定フランジ部23の外周寄りの部分は、回転フランジ部22のロール幅方向両側に位置しており、回転フランジ部22と対向している。固定フランジ部23と回動フランジ部22との間には第2軸受部25が配置されている。 Next, the fixed flange portion 23 is a substantially disk-like member, and is a member provided with an insertion hole 23a through which the rotary shaft 3 can be inserted at the center. The fixed flange portions 23 are disposed on both sides of the roll body 12 in the roll width direction. A portion of the fixed flange portion 23 near the rotation axis is fixed to the base portion 21 a of the roll center portion 21 by a fixing bolt 26. Further, the portions near the outer periphery of the fixed flange portion 23 are located on both sides of the rotating flange portion 22 in the roll width direction and face the rotating flange portion 22. A second bearing portion 25 is disposed between the fixed flange portion 23 and the rotating flange portion 22.
 固定フランジ部23は、第1の例で説明した化学組成を有する基材から構成される。また、固定フランジ部23のうち、回転フランジ部22と対向する対向面23bに、第1の例で説明した窒化層、CrN皮膜及びDLC膜とが備えられていてもよい。 The fixed flange portion 23 is composed of a base material having the chemical composition described in the first example. Moreover, the nitrided layer, CrN film | membrane, and DLC film which were demonstrated in the 1st example may be provided in the opposing surface 23b facing the rotation flange part 22 among the fixed flange parts 23. FIG.
 第2軸受部25は、図示略の針状ころからなる転動体と、複数の転動体を保持する図示略の保持器とからなる。一方、第2軸受部25に隣接する面である、固定フランジ部23の対向面23bと、回動フランジ部22の側面22cとは、第2軸受部25の転動体の軌道面となっている。言い換えると、固定フランジ部23の対向面23bと回動フランジ部22の側面22cとがそれぞれ、第2軸受部25のレースになっている。本実施形態では、これらの対向面23bと側面22cにも、第1の例と同様に、基材上に、窒化層、CrN皮膜およびDLC膜がこの順で形成されている。 The second bearing portion 25 includes a rolling element made of needle rollers (not shown) and a cage (not shown) that holds a plurality of rolling elements. On the other hand, the opposing surface 23b of the fixed flange portion 23 and the side surface 22c of the rotating flange portion 22, which are surfaces adjacent to the second bearing portion 25, are raceway surfaces of the rolling elements of the second bearing portion 25. . In other words, the facing surface 23b of the fixed flange portion 23 and the side surface 22c of the rotating flange portion 22 are races of the second bearing portion 25, respectively. In the present embodiment, a nitride layer, a CrN film, and a DLC film are formed in this order on the base material on the facing surface 23b and the side surface 22c as in the first example.
 なお、図4に示すように、本例のチタン管成形ロール1は、固定ボルト26を取り外すことにより、ロール本体12を、ロール中央部21、回動フランジ部22、固定フランジ部23、第1軸受部24及び第2軸受部25に分解可能となっている。 As shown in FIG. 4, the titanium tube forming roll 1 of this example removes the fixing bolt 26, thereby removing the roll main body 12 from the roll center portion 21, the rotating flange portion 22, the fixing flange portion 23, and the first. The bearing part 24 and the second bearing part 25 can be disassembled.
 以上の構成により、チタン管10を成形する際には、回転軸3の回転駆動によってロール中央部21及び固定フランジ部23を回転させる。この状態でチタン管10を一対のチタン管ロール1の間に挿通させると、ロール中央部21の上面21dがチタン管10に接触してチタン管10に回転軸3の回転トルクを伝達する。一方、回動フランジ部22の外周傾斜面22aにもチタン管10が接触するが、回動フランジ部22はチタン管10の動きに合わせてチタン管10によって回動させられる。このとき、外周傾斜面22aの周速度はロール中央部の上面21dの周速度より小さくなるため、回動フランジ部22の回転速度はロール中央部21の回転速度よりも小さくなる。回動フランジ部22は、第1、第2軸受部24、25によってそれぞれ、ロール中央部21及び固定フランジ部23に対して回動自在とされており、また、回動フランジ部22とロール中央部21の突出部21bとの間には0.1mm程度の隙間があるため、回動フランジ部22は、ロール中央部21の回転速度よりも小さな回転速度で回動する。これにより、チタン管10に対するロールの滑り率が全体的に小さくなり、チタン管10における疵の発生が抑制される。 With the above configuration, when the titanium tube 10 is formed, the roll center portion 21 and the fixed flange portion 23 are rotated by the rotational drive of the rotary shaft 3. When the titanium tube 10 is inserted between the pair of titanium tube rolls 1 in this state, the upper surface 21 d of the roll center portion 21 contacts the titanium tube 10 and transmits the rotational torque of the rotating shaft 3 to the titanium tube 10. On the other hand, the titanium tube 10 also contacts the outer peripheral inclined surface 22 a of the rotating flange portion 22, but the rotating flange portion 22 is rotated by the titanium tube 10 in accordance with the movement of the titanium tube 10. At this time, since the peripheral speed of the outer peripheral inclined surface 22 a is smaller than the peripheral speed of the upper surface 21 d of the roll center portion, the rotational speed of the rotating flange portion 22 is smaller than the rotational speed of the roll center portion 21. The rotating flange portion 22 is rotatable with respect to the roll center portion 21 and the fixed flange portion 23 by the first and second bearing portions 24 and 25, respectively. Since there is a gap of about 0.1 mm between the protruding portion 21 b of the portion 21, the rotating flange portion 22 rotates at a rotation speed smaller than the rotation speed of the roll center portion 21. Thereby, the slip rate of the roll with respect to the titanium tube 10 is reduced as a whole, and the generation of wrinkles in the titanium tube 10 is suppressed.
 また、一対のチタン管成形ロール1の間にチタン管10が挿入されて、ロール凹部14にチタン管10が侵入すると、回転フランジ部22がロール幅方向外側に僅かに押されて固定フランジ部23に押しつけられる一方で、回転フランジ部22とロール中央部21の突出部21bとの間には0.1mm程度の隙間が確保される。これにより、回転フランジ部22と突出部21bとが擦れ合うことなく回動フランジ部22が円滑に回転する。 Further, when the titanium tube 10 is inserted between the pair of titanium tube forming rolls 1 and the titanium tube 10 enters the roll recess 14, the rotating flange portion 22 is slightly pushed outward in the roll width direction and the fixed flange portion 23. On the other hand, a gap of about 0.1 mm is secured between the rotating flange portion 22 and the protruding portion 21b of the roll center portion 21. Thereby, the rotation flange part 22 rotates smoothly, without the rotation flange part 22 and the protrusion part 21b rubbing.
 次に、ロール中央部21の突出部21bの幅の好適範囲とロールの滑り率について、図5及び図6により説明する。 Next, the preferred range of the width of the protruding portion 21b of the roll center portion 21 and the slip rate of the roll will be described with reference to FIGS.
 図5に示すように、ロール中央部21の突出部21bの上面21dの幅Wは、ワークとなるチタン管の外径をDとしたとき、0.7D~0.87Dの範囲であることが好ましい。ここで、図5に示すように、ロール中央部21の上面21dと回動フランジ部22の外周傾斜面22aとの境界位置をAとし、チタン管10の中心軸Oから境界位置Aに向かう方向と水平方向とのなす角度をθとしたとき、幅Wが0.7Dの場合の境界位置Aはθ=45°の位置となり、また、幅Wが0.87Dの場合の境界位置Aはθ=30°の位置となる。すなわち、本実施形態では、角度θが30~45°の範囲になるように境界位置Aを設定するとよい。この理由を以下に説明する。 As shown in FIG. 5, the width W of the upper surface 21d of the protruding portion 21b of the roll central portion 21 is in the range of 0.7D to 0.87D, where D is the outer diameter of the titanium tube serving as the workpiece. preferable. Here, as shown in FIG. 5, the boundary position between the upper surface 21 d of the roll center portion 21 and the outer peripheral inclined surface 22 a of the rotating flange portion 22 is A, and the direction from the central axis O of the titanium tube 10 toward the boundary position A And the horizontal direction is θ, the boundary position A when the width W is 0.7D is θ = 45 °, and the boundary position A when the width W is 0.87D is θ = 30 ° position. That is, in the present embodiment, the boundary position A may be set so that the angle θ is in the range of 30 to 45 °. The reason for this will be described below.
 図6(a)は非分割型の駆動ロールにおける滑り率を説明する模式図である。駆動ロールの場合、チタン管10に対して最も効率よく回転トルクを伝達できるピンチ位置は、ロール凹部4の最底部になる。そこで、ロール凹部14の最底部におけるロール径をRとし、ピンチ位置におけるロール径をRとし、ロールのフランジ部上面におけるロール径をRとすると、フランジ部上面近傍におけるチタン管に対する滑り率は以下の通りとなる。 FIG. 6A is a schematic diagram for explaining the slip ratio in the non-dividing type driving roll. In the case of a driving roll, the pinch position where the rotational torque can be most efficiently transmitted to the titanium tube 10 is the bottom of the roll recess 4. Therefore, the roll diameter at the lowermost portion of the roll recess 14 and R d, the roll diameter at the pinch position and R p, when the roll diameter of the flange portion upper surface of the roll and R f, slip ratio to titanium pipe in the flange portion near the top surface Is as follows.
 (フランジ部)滑り率=(R-R)/R …(1) (Flange portion) Slip rate = (R f −R p ) / R p (1)
 例えばチタン管の外径Dを25mmとし、R=50mm、R=62.25mmとした場合、RはRにほぼ一致するから(R=R=50mm)、駆動ロールにおける滑り率は0.245になる。 For example the outer diameter D of the titanium tube and 25mm, R d = 50mm, when the R f = 62.25mm, because R p is substantially equal to R d (R p = R d = 50mm), the slip in the drive roll The rate is 0.245.
 次に、図6(b)は非分割型の無駆動ロールにおける滑り率を説明する模式図である。無駆動ロールの場合のピンチ位置は、ロール凹部4の最底部と、フランジ部の上面との間の中間になる。この場合のフランジ部の上面近傍におけるチタン管に対する滑り率は、例えばチタン管の外径Dを25mmとし、R=50mm、R=62.25mm、R=56.125mmとなるから、これらを上記式(1)に導入すると、無駆動ロールにおける滑り率は0.109になる。 Next, FIG. 6B is a schematic diagram for explaining the slip ratio in the non-dividing type non-driving roll. The pinch position in the case of a non-driving roll is in the middle between the bottom of the roll recess 4 and the upper surface of the flange. In this case, the slip ratio with respect to the titanium tube in the vicinity of the upper surface of the flange portion is, for example, that the outer diameter D of the titanium tube is 25 mm, R d = 50 mm, R f = 62.25 mm, R p = 56.125 mm. Is introduced into the above equation (1), the slip ratio of the non-driving roll becomes 0.109.
 図6(a)と図6(b)との対比から明らかなように、駆動ロールは無駆動ロールに比べて滑り率が大きく、チタン管10に疵が発生しやすく、ロール自体も摩耗しやすい。 As is clear from the comparison between FIG. 6A and FIG. 6B, the driving roll has a higher slip rate than the non-driving roll, and the titanium tube 10 is easily wrinkled, and the roll itself is easily worn. .
 次に、図6(c)に示すように、本実施形態の分割型の駆動ロールについて検討する。本実施形態のチタン管成形ロール11においては、ロール中央部21が駆動ロールとして機能し、回転フランジ部22が無駆動ロールとして機能する。そうすると、R、R及びRは図6(c)に図示した通りになる。 Next, as shown in FIG. 6C, the split type driving roll of this embodiment will be examined. In the titanium tube forming roll 11 of this embodiment, the roll center part 21 functions as a driving roll, and the rotating flange part 22 functions as a non-driving roll. Then, R f , R p and R d are as shown in FIG.
 ここで、図5に示すように境界位置Aがθ=30°の位置にある場合、ロール中央部21における滑り率は0.1225となり、回動フランジ部22における滑り率は0.0517となり、いずれも図6(b)における非分割型の無駆動ロールの滑り率(0.125)よりも小さくなる。しかしながら、角度θが30°未満になると、非分割型の無駆動ロールの滑り率(0.125)よりも滑り率が大きくなってしまう。 Here, as shown in FIG. 5, when the boundary position A is at the position of θ = 30 °, the slip rate at the roll center portion 21 is 0.1225, the slip rate at the rotating flange portion 22 is 0.0517, Both are smaller than the slip ratio (0.125) of the non-split type non-driving roll in FIG. However, when the angle θ is less than 30 °, the slip ratio becomes larger than the slip ratio (0.125) of the non-split type non-driving roll.
 また、図5に示すように境界位置Aがθ=45°の位置にある場合は、ロール中央部21における滑り率は0.073となり、回動フランジ部22における滑り率は0.076となり、いずれも図6(b)における非分割型の無駆動ロールの滑り率(0.125)よりも大幅に小さくなる。しかしながら、角度θが45°を超えると、回動フランジ部22の外周傾斜面22aの幅が小さくなりすぎ、チタン管10の荷重を十分に受け止めきれなくなり、回転フランジ部22が破損するおそれがある。 Further, as shown in FIG. 5, when the boundary position A is at a position of θ = 45 °, the slip ratio at the roll center portion 21 is 0.073, and the slip ratio at the rotating flange portion 22 is 0.076. In either case, the slip ratio (0.125) of the non-split type non-driving roll in FIG. However, when the angle θ exceeds 45 °, the width of the outer peripheral inclined surface 22a of the rotating flange portion 22 becomes too small to fully receive the load of the titanium tube 10, and the rotating flange portion 22 may be damaged. .
 以上のことから、図5に示す角度θは30~45°の範囲が好ましい。これをロール中央部21の突出部21bの上面21dの幅Wで表すと、ワークとなるチタン管10の外径をDとしたときに、幅Wは0.7D~0.87Dの範囲となる。この範囲であれば、チタン管10に疵を生じさせることなく成形が可能になり、かつ、回動フランジ部22の破損も防止される。 From the above, the angle θ shown in FIG. 5 is preferably in the range of 30 to 45 °. When this is represented by the width W of the upper surface 21d of the protruding portion 21b of the roll central portion 21, the width W is in the range of 0.7D to 0.87D, where D is the outer diameter of the titanium tube 10 serving as a workpiece. . Within this range, the titanium tube 10 can be molded without causing wrinkles, and damage to the rotating flange portion 22 can be prevented.
 以上説明したように、本実施形態の第2の例のチタン管成形ロール11によれば、ロール本体12が、ロール中央部21と、ロール中央部21の両側に配置されてロール中央部21に対して回動自在とされた一対の回動フランジ部22とからなり、ロール凹部14が、ロール中央部21と回動フランジ部22とによって分割されているので、回動フランジ部22とチタン管10とが互いに滑りにくくなり、これにより、チタン管10に疵が発生しにくくなり、また、回転フランジ部22に形成したCrN膜及びDLC膜が剥がれにくくなる。このように本例のチタン管成形ロール1によれば、耐摩耗性、耐凝着性、耐剥離性が向上し、ロール表面の摩擦係数を小さくできる。 As described above, according to the titanium tube forming roll 11 of the second example of the present embodiment, the roll main body 12 is disposed on both sides of the roll central portion 21 and the roll central portion 21 so as to be in the roll central portion 21. Since the roll recess 14 is divided by the roll center portion 21 and the rotation flange portion 22, the rotation flange portion 22 and the titanium tube are formed. Accordingly, the titanium tube 10 is less likely to be wrinkled, and the CrN film and the DLC film formed on the rotating flange portion 22 are not easily peeled off. Thus, according to the titanium tube forming roll 1 of this example, wear resistance, adhesion resistance, and peel resistance are improved, and the friction coefficient of the roll surface can be reduced.
 また、ロール中央部21がロール本体12を駆動する回転軸3に固定される一方で、回動フランジ部22が回転軸3及びロール中央部21に対して回動自在とされているので、回転軸3が駆動軸となる場合にはロール中央部21が駆動ロールとなり、回動フランジ部22が無駆動ロールとなり、無駆動ロールとなる回動フランジ部22における滑り率が小さくなるので、チタン管10における疵発生を防止し、また、回転フランジ部22に形成したCrN膜及びDLC膜の剥がれを抑制できる。これにより、チタン管成形ロール1の耐久性を向上でき、メンテナンスの頻度を低減できる。 Further, the roll center portion 21 is fixed to the rotating shaft 3 that drives the roll body 12, while the rotating flange portion 22 is rotatable with respect to the rotating shaft 3 and the roll center portion 21. When the shaft 3 is a drive shaft, the roll central portion 21 is a drive roll, the rotation flange portion 22 is a non-drive roll, and the slip rate in the rotation flange portion 22 that is a non-drive roll is reduced. 10 can be prevented, and peeling of the CrN film and the DLC film formed on the rotating flange portion 22 can be suppressed. Thereby, the durability of the titanium tube forming roll 1 can be improved, and the frequency of maintenance can be reduced.
 また、ワークとなるチタン管10の外径をDとしたとき、ロール中央部21におけるロール凹部14の幅を0.7D~0.87Dの範囲とすることで、チタン管10に対する滑り率を低減し、かつ、回動フランジ部22の破損を防止できる。 Further, when the outer diameter of the titanium tube 10 serving as a workpiece is D, the slip ratio with respect to the titanium tube 10 is reduced by setting the width of the roll concave portion 14 in the roll central portion 21 in the range of 0.7D to 0.87D. In addition, the rotating flange portion 22 can be prevented from being damaged.
 更に、ロール中央部21に基部21aと突出部21bとが備えられ、回動フランジ部22が基部21a上にあって突出部21bのロール幅方向両側に配置され、基部21aと回動フランジ部22との間に第1軸受部24が設けられることで、回動フランジ部22をロール中央部21に対して円滑に回動させることができる。 Further, the roll central portion 21 is provided with a base portion 21a and a protruding portion 21b. The rotating flange portions 22 are disposed on both sides of the protruding portion 21b in the roll width direction on the base portion 21a. Since the first bearing portion 24 is provided between the rotation flange portion 22 and the roll center portion 21, the rotation flange portion 22 can be smoothly rotated.
 また、ロール凹部14にチタン管10が侵入した際に回転フランジ部22がロール幅方向外側に僅かに押され、回転フランジ部22と突出部21bとの間に0.1mm程度の隙間が確保されることで、回転フランジ部22と突出部21bとが擦れ合うことなく回動フランジ部22を円滑に回転させることができる。 Further, when the titanium tube 10 enters the roll recess 14, the rotating flange portion 22 is slightly pushed outward in the roll width direction, and a gap of about 0.1 mm is secured between the rotating flange portion 22 and the protruding portion 21 b. Thus, the rotating flange portion 22 can be smoothly rotated without the rotating flange portion 22 and the protruding portion 21b rubbing against each other.
 また、ロール中央部21の基部21aと回動フランジ部22との間で互いに対向する対向面が第1軸受部24の転動体の軌道面とされており、これら対向面にCrN皮膜とDLC膜とが備えられているので、第1軸受部24の長寿命化を図ることができる。また、第1軸受部24自体を小型にすることができるため、ロール本体12を小さくして設備のコンパクト化が図れる。 Moreover, the opposing surface which mutually opposes between the base 21a of the roll center part 21 and the rotation flange part 22 is made into the track surface of the rolling element of the 1st bearing part 24, and CrN membrane | film | coat and DLC film | membrane are formed in these opposing surfaces. Therefore, the life of the first bearing portion 24 can be extended. In addition, since the first bearing portion 24 itself can be reduced in size, the roll body 12 can be made smaller and the equipment can be made compact.
 更に、ロール本体12には、固定フランジ部23と第2軸受部25とが備えられており、固定フランジ部23によってロール中央部21からの回動フランジ部22の脱落を防止しつつ、第2軸受け部25によって回動フランジ部22を円滑に回動させることができる。 Further, the roll main body 12 is provided with a fixed flange portion 23 and a second bearing portion 25, and the second flange portion 23 prevents the turning flange portion 22 from falling off from the roll center portion 21 by the fixed flange portion 23. The rotating flange portion 22 can be smoothly rotated by the bearing portion 25.
 また、固定フランジ部23と回動フランジ部22との間で互いに対向する対向面が第2軸受部25の転動体の軌道面とされており、これら対向面において、窒化層、CrN皮膜およびDLC膜が備えられているので、第2軸受部25の長寿命化を図ることができる。また、第2軸受部25自体を小型にすることができるため、ロール本体12を小さくして設備のコンパクト化が図れる。 Further, the opposing surfaces that face each other between the fixed flange portion 23 and the rotating flange portion 22 are the raceway surfaces of the rolling elements of the second bearing portion 25, and on these opposing surfaces, the nitride layer, the CrN coating, and the DLC Since the film is provided, the life of the second bearing portion 25 can be extended. In addition, since the second bearing portion 25 itself can be reduced in size, the roll body 12 can be reduced in size and the equipment can be made compact.
 更に、図4に示したように、本例のチタン管成形ロール1は、固定ボルト26を取り外すことで、ロール本体12を、ロール中央部21、回動フランジ部22、固定フランジ部23、第1軸受部24及び第2軸受部25に分解可能となっているため、保守作業を容易に行うことができる。例えば、回動フランジ部22のみが摩耗してCrN膜及びDLC膜が剥がれた場合は、予備の回動フランジ部22に交換することで、直ちに使用可能な状態になり、チタン管の成形加工を継続することができる。また、取り外した回動フランジ部22については、補修が必要な箇所に窒化層、CrN膜及びDLC膜を形成するだけで、再利用可能な状態にすることができる。 Further, as shown in FIG. 4, the titanium tube forming roll 1 of the present example removes the fixing bolt 26, so that the roll main body 12 is moved to the roll center portion 21, the rotating flange portion 22, the fixing flange portion 23, Since the first bearing portion 24 and the second bearing portion 25 can be disassembled, maintenance work can be easily performed. For example, when only the rotating flange portion 22 is worn and the CrN film and the DLC film are peeled off, it can be immediately used by replacing the spare rotating flange portion 22 with the titanium tube. Can continue. Further, the removed rotating flange portion 22 can be made into a reusable state only by forming a nitride layer, a CrN film, and a DLC film at a place where repair is necessary.
 また、本実施形態に係るCrN膜及びDLC膜は、ロール凹部14の表面のみならず、あらゆる部分に成膜することで、チタン管成形ロール1の寿命を延長することができる。例えば、上述したように、第1、第2軸受部24,25の転動体の軌道面となる箇所に窒化層、CrN皮膜およびDLC膜を形成することで、本来は耐摩耗性や対疲労性に優れた軸受用の素材を適用すべき箇所であっても、ロール本体14の基材に窒化層、CrN膜及びDLC膜を形成することで転動体の軌道面とすることができるようになる。また、ロール中央部21の突出部21bと回動フランジ部22とが対向する面にも窒化層、CrN膜及びDLC膜を形成することで、突出部21bと回動フランジ部22との摩耗を防止できる。 Moreover, the CrN film and the DLC film according to the present embodiment can extend the life of the titanium tube forming roll 1 by forming the film on not only the surface of the roll recess 14 but also every part. For example, as described above, a nitride layer, a CrN film, and a DLC film are originally formed on the portions that serve as the raceway surfaces of the rolling elements of the first and second bearing portions 24 and 25, so that the wear resistance and fatigue resistance are inherently achieved. Even if it is a place where the material for bearings excellent in is applied, it becomes possible to make a raceway surface of the rolling element by forming a nitride layer, a CrN film and a DLC film on the base material of the roll body 14. . In addition, by forming a nitride layer, a CrN film, and a DLC film on the surface of the roll center portion 21 where the protruding portion 21b and the rotating flange portion 22 face each other, wear of the protruding portion 21b and the rotating flange portion 22 is prevented. Can be prevented.
 以上、第2の例のチタン管成形ロールについて説明したが、本例では、図7または図8に示す変形例を採用してもよい。 The titanium tube forming roll of the second example has been described above, but in this example, the modification shown in FIG. 7 or FIG. 8 may be adopted.
 図7に示す変形例では、ロール本体12を断面視した際に、回動フランジ部22と突出部21bとの境界面がロール本体12の外周方向に向けて真っ直ぐに伸びている。図7の例によれば、回動フランジ部22及び突出部21bの形状を図3の場合よりも比較的単純な形状にすることができ、がたつきが起きにくくなり、チタン管10の成形精度を高めることができる。この図7の例では、チタン管10から受ける荷重が比較的小さい場合に適用できる。 7, when the roll body 12 is viewed in cross section, the boundary surface between the rotating flange portion 22 and the protruding portion 21b extends straight toward the outer peripheral direction of the roll body 12. According to the example of FIG. 7, the shapes of the rotating flange portion 22 and the protruding portion 21 b can be made relatively simple as compared with the case of FIG. Accuracy can be increased. The example of FIG. 7 can be applied when the load received from the titanium tube 10 is relatively small.
 また、図8に示す変形例では、ロール本体12を断面視した際に、回動フランジ部22の先端部22dが、ほぼ真横に屈曲している。図8の例においても、回動フランジ部22及び突出部21bの形状を図3の場合よりも比較的単純な形状にすることができ、がたつきが起きにくくなり、チタン管10の成形精度を高めることができる。図8の例についても、チタン管10から受ける荷重が比較的小さい場合に適用できる。 Further, in the modification shown in FIG. 8, when the roll main body 12 is viewed in cross section, the distal end portion 22d of the rotating flange portion 22 is bent almost right side. Also in the example of FIG. 8, the shapes of the rotating flange portion 22 and the protruding portion 21 b can be made relatively simple compared to the case of FIG. Can be increased. The example of FIG. 8 can also be applied when the load received from the titanium tube 10 is relatively small.
[チタン管ロール及びチタン管の製造方法の第3の例]
 次に、本発明の実施形態であるチタン管ロール及びチタン管の製造方法の第3の例について、図9を参照して説明する。図9に示すチタン管成形ロール31と、図3~図4に示す第2の例のチタン管成形ロール11との違いは、回動フランジ部22を固定フランジ部23に固定するための機構が備えられた点であり、その他の点には違いがない。以下の説明では、回動フランジ部22を固定フランジ部23に固定する機構について説明する。
[Third example of titanium tube roll and titanium tube manufacturing method]
Next, a third example of a titanium tube roll and a titanium tube manufacturing method according to an embodiment of the present invention will be described with reference to FIG. The difference between the titanium tube forming roll 31 shown in FIG. 9 and the titanium tube forming roll 11 of the second example shown in FIGS. 3 to 4 is that the mechanism for fixing the rotating flange portion 22 to the fixed flange portion 23 is different. There are no differences in other points. In the following description, a mechanism for fixing the rotating flange portion 22 to the fixed flange portion 23 will be described.
 図9には、本実施形態の第3の例であるチタン管成形ロール31を示す。このチタン管成形ロール31には、固定フランジ部23に、回動フランジ部22を引き寄せて固定する引きねじ部32が設けられている。引きねじ部32は例えば、固定フランジ部23の3箇所に備えられている。引きねじ部32は、着脱ボルト32aと、この着脱ボルト32aが挿入されるねじ穴32bとから構成されている。ねじ穴32bは、固定フランジ部23及び回動フランジ部22にそれぞれ設けられている。 FIG. 9 shows a titanium tube forming roll 31 which is a third example of the present embodiment. The titanium tube forming roll 31 is provided with a pulling screw portion 32 that pulls and fixes the rotating flange portion 22 to the fixing flange portion 23. For example, the pulling screw portion 32 is provided at three locations of the fixing flange portion 23. The pulling screw portion 32 includes a detachable bolt 32a and a screw hole 32b into which the detachable bolt 32a is inserted. The screw holes 32b are provided in the fixed flange portion 23 and the rotating flange portion 22, respectively.
 チタン管10を成形する際には、着脱ボルト32aを取り外して、回動フランジ部22を固定フランジ部23及びロール中央部21に対して回動自在な状態にする。 When forming the titanium tube 10, the detachable bolt 32 a is removed so that the rotating flange portion 22 is rotatable with respect to the fixed flange portion 23 and the roll center portion 21.
 一方、チタン管成形ロール31のロール凹部14を補修する際には、着脱ボルト32aをねじ穴32bに挿入してねじ締めする。これにより回動フランジ部22は、固定フランジ部23側に引き寄せられて固定フランジ部23と密着する一方で、回動フランジ部22とロール中央部21の突出部21bとの間には0.1mm程度の隙間が生じる。この状態は、チタン管10を成形加工中に回動フランジ部32が固定フランジ部23側に押された状態とほぼ同じになる。そして、回動フランジ部22と固定フランジ部23とが密着した状態で、ロール凹部14の補修を行う。補修内容として具体的には、ロール凹部14が部分的に摩耗して真円度が低下した場合に、真円度を回復させるようにロール凹部14の内面を研磨加工する。すなわち、回動フランジ部22を固定フランジ部23側に引き寄せてチタン管10を成形加工する場合と同じ状態にして、補修を行う。 On the other hand, when repairing the roll recess 14 of the titanium tube forming roll 31, the detachable bolt 32a is inserted into the screw hole 32b and tightened. As a result, the rotating flange portion 22 is drawn toward the fixed flange portion 23 and is in close contact with the fixed flange portion 23, while 0.1 mm is provided between the rotating flange portion 22 and the protruding portion 21 b of the roll center portion 21. A gap of a degree is generated. This state is substantially the same as the state in which the rotating flange portion 32 is pushed toward the fixed flange portion 23 while the titanium tube 10 is being formed. And the roll recessed part 14 is repaired in the state which the rotation flange part 22 and the fixed flange part 23 contact | adhered. Specifically, the inner surface of the roll recess 14 is polished so as to restore the roundness when the roll recess 14 is partially worn and the roundness is lowered. That is, repair is performed in the same state as when the rotating tube 22 is pulled toward the fixed flange 23 and the titanium tube 10 is molded.
 以上説明したように、本例のチタン管成形ロール31には、回動フランジ部22と固定フランジ部23とを密着した状態で固定する引きねじ部32が備えられており、ロール凹部14を補修する際に、回動フランジ部22を、チタン管10を成形加工する場合と同じ状態することができるので、補修後のロール凹部の真円度を高めることができる。 As described above, the titanium tube forming roll 31 of this example is provided with the pulling screw portion 32 that fixes the rotating flange portion 22 and the fixing flange portion 23 in close contact with each other, and repairs the roll recess 14. In doing so, the rotating flange portion 22 can be in the same state as when the titanium tube 10 is molded, so that the roundness of the roll recess after repair can be increased.
[チタン管の製造方法および装置]
 本実施形態に係るチタン管成形装置は、上述してきたチタン管成形ロール1、21、31のいずれかを備えるとともに、チタン管成形ロール1、21、31の一部分に対し、チタン管成形中に潤滑剤を供給する潤滑ノズルを備える。なお、潤滑剤は用いた方が好ましいが、潤滑剤を用いなくても製造は可能なので潤滑剤の供給は必須ではない。また、潤滑材の供給には潤滑ノズルを用いるのが好ましいが、他の方法で供給することとしても構わない。
[Method and apparatus for manufacturing titanium tube]
The titanium tube forming apparatus according to the present embodiment includes any of the titanium tube forming rolls 1, 21, and 31 described above, and lubricates a part of the titanium tube forming rolls 1, 21, and 31 during titanium tube forming. A lubrication nozzle for supplying the agent is provided. Although it is preferable to use a lubricant, the supply of the lubricant is not essential because the production is possible without using the lubricant. In addition, it is preferable to use a lubrication nozzle for supplying the lubricant, but other methods may be used.
 一般的に、実際にチタン管を造管するに際し、チタン管溶接後の定型工程では、パイプ疵の防止および冷却のために水溶性の潤滑剤が用いられることが多い。 In general, when a titanium pipe is actually formed, a water-soluble lubricant is often used for prevention of pipe flaws and cooling in a standard process after welding the titanium pipe.
 そこで、本実施形態に係るチタン管成形ロールの更なる寿命の向上およびロール表面のロールマーク・疵を防止するためにも、本実施形態に係るチタン管成形装置においては、チタン管成形ロールに対して潤滑剤を供給する潤滑ノズルを備えることが好ましい。 Therefore, in order to further improve the life of the titanium tube forming roll according to the present embodiment and prevent roll marks and wrinkles on the roll surface, the titanium tube forming apparatus according to the present embodiment has a It is preferable to provide a lubricating nozzle for supplying a lubricant.
 以下、潤滑ノズルを備えたチタン管成形装置の一例について図面を用いて説明するが、尚、以下に示す図面は、チタン管成形装置の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の加熱炉の寸法関係等とは異なる場合がある。
なお、チタン管の溶接には様々な方法が適用可能であるが、TIG溶接が好ましい。
Hereinafter, an example of a titanium tube forming apparatus having a lubrication nozzle will be described with reference to the drawings. However, the drawings shown below are for explaining the configuration of the titanium tube forming apparatus, The size, thickness, dimensions, and the like may differ from the actual dimensional relationship of the heating furnace.
Various methods can be applied to the welding of the titanium tube, but TIG welding is preferable.
 図10は、本実施形態に係るチタン管成形装置を示す図であって、(a)は正面概略図であり、(b)は潤滑ノズル101の近傍の構成を示す側面図であり、(c)は潤滑ノズル101の近傍の構成を示す断面図である。図11は、潤滑ノズル101の配置例を説明するための図であって、(a)は正面模式図であり、(b)は側面模式図である。図12は、潤滑ノズル101の幅方向調整機構、上下方向調整機構を詳細に説明するための図であって、(a)はチタン管成形装置の上面概略図であり、(b)は側面概略図である。 10A and 10B are diagrams showing a titanium tube forming apparatus according to the present embodiment, in which FIG. 10A is a schematic front view, FIG. 10B is a side view showing a configuration in the vicinity of the lubricating nozzle 101, and FIG. ) Is a cross-sectional view showing a configuration in the vicinity of the lubricating nozzle 101. 11A and 11B are diagrams for explaining an arrangement example of the lubricating nozzle 101, where FIG. 11A is a schematic front view, and FIG. 11B is a schematic side view. 12A and 12B are diagrams for explaining in detail the width direction adjusting mechanism and the vertical direction adjusting mechanism of the lubricating nozzle 101, wherein FIG. 12A is a schematic top view of the titanium tube forming apparatus, and FIG. 12B is a schematic side view. FIG.
 チタン管10は、上下に対向するように配置されたチタン管成形ロール1,21、31により成形されながら搬送される。 The titanium tube 10 is conveyed while being formed by titanium tube forming rolls 1, 21, 31 arranged so as to face each other in the vertical direction.
 このとき、成形ロール1、21、31とチタン管10が接するロールフランジ部(孔型の終端のロール平行部)近傍では、他の部位よりも摩擦による摩耗、疵の発生が起こりやすくなっている。そのため、チタン管10を成形するに際し、潤滑剤は、ロールフランジ部近傍に滴下することが必要である。 At this time, in the vicinity of the roll flange part (roll parallel part at the end of the hole mold) where the forming rolls 1, 21, 31 and the titanium tube 10 are in contact, wear due to friction and generation of wrinkles are more likely to occur than other parts. . Therefore, when forming the titanium tube 10, the lubricant needs to be dropped in the vicinity of the roll flange portion.
 しかしながら、ロールフランジ部は、チタン管成形ロール1,21、31の径の変更等によってその都度その位置が変わる。そのため、潤滑剤を滴下するための潤滑ノズル101の位置もその都度調整しなければならない。したがって本実施形態においては、潤滑剤を滴下するための潤滑ノズル101を配置する際は、潤滑剤の滴下位置を幅方向および上下方向に調整できるような拡縮機構を設けることが好ましい。 However, the position of the roll flange portion changes each time due to a change in the diameter of the titanium tube forming rolls 1, 21, 31 or the like. Therefore, the position of the lubricating nozzle 101 for dropping the lubricant must be adjusted each time. Therefore, in this embodiment, when the lubricating nozzle 101 for dropping the lubricant is disposed, it is preferable to provide an expansion / contraction mechanism that can adjust the dropping position of the lubricant in the width direction and the vertical direction.
 本実施形態に係る潤滑ノズル101を幅方向に拡縮する機構について説明する。 A mechanism for expanding and contracting the lubricating nozzle 101 according to the present embodiment in the width direction will be described.
 図10に示すように、幅移動溝(長溝)118が設けられたパイプ状の水平移動ガイド103が成形ロール1、21、31の前方に配置されており、この水平移動ガイド103上には、幅移動溝118内に嵌め込まれた幅移動ガイド119を介して、潤滑ノズル固定台102ならびに潤滑ノズル固定台102上に載置された潤滑ノズル101が設けられている。スライド可能に設けてある潤滑ノズル角度調整冶具109に接続した幅移動用ガイド部品115が、幅調整用ねじ(中心から左・右をそれぞれ正・逆ねじとし、調整ねじを回転させるとその左・右のガイド部115が対称的に反対方向に移動する)114(図12参照)により幅方向に拡縮する機構を有している。 As shown in FIG. 10, a pipe-like horizontal movement guide 103 provided with a width movement groove (long groove) 118 is disposed in front of the forming rolls 1, 21, 31, and on the horizontal movement guide 103, The lubrication nozzle fixing base 102 and the lubrication nozzle 101 placed on the lubrication nozzle fixing base 102 are provided via a width movement guide 119 fitted in the width movement groove 118. The width moving guide part 115 connected to the lubrication nozzle angle adjusting jig 109 provided so as to be slidable is a width adjusting screw (left and right from the center are forward and reverse screws, respectively, and when the adjusting screw is rotated, The right guide portion 115 is symmetrically moved in the opposite direction) (see FIG. 12) and has a mechanism that expands and contracts in the width direction.
 また、潤滑ノズル101を上下方向に拡縮する機構としては、成形スタンド支柱117に固定されたあり型台座107と、あり型台座107に対して上下方向にスライド可能に設けられた中心位置調整冶具106と、中心位置調整冶具106に差し込まれた上下移動ねじ116とにて潤滑ノズル101の上下位置を調整する。中心位置調整冶具106は水平移動ガイド103とも連結しているため、あり型台座107上をこの中心位置調整冶具106が上下方向に移動すると、水平移動ガイド103、すなわち潤滑ノズル101も同じように上下方向に移動することとなる。 Further, as a mechanism for expanding and contracting the lubricating nozzle 101 in the vertical direction, a dovetail base 107 fixed to the forming stand column 117 and a center position adjusting jig 106 provided so as to be slidable in the vertical direction with respect to the dovetail base 107 are provided. And the vertical position of the lubricating nozzle 101 is adjusted by the vertical movement screw 116 inserted into the center position adjusting jig 106. Since the center position adjustment jig 106 is also connected to the horizontal movement guide 103, when the center position adjustment jig 106 moves in the vertical direction on the dovetail pedestal 107, the horizontal movement guide 103, that is, the lubrication nozzle 101 is similarly moved up and down. Will move in the direction.
 なお、上下移動ねじ116は上下位置調整ハンドル104と連結しており、この上下位置調整ハンドル104を回すことで、中心位置調整冶具106の上下方向の移動を制御でき、ロールフランジ部に合わせた潤滑ノズル101の上下方向の調整が可能となっている。 The vertical movement screw 116 is connected to the vertical position adjustment handle 104. By turning the vertical position adjustment handle 104, the vertical movement of the center position adjustment jig 106 can be controlled, and lubrication according to the roll flange portion is performed. The nozzle 101 can be adjusted in the vertical direction.
 また、チタン管成形ロール1、21、31の径の変動によるチタン管10との接触を考慮した潤滑ノズル101の位置合わせのための角度調整は、潤滑ノズル挟み込み冶具(潤滑ノズル前後調整冶具)113と潤滑ノズル角度調整冶具109を潤滑ノズル角度固定ねじ112にて回転させることで調整が可能である。 Further, the angle adjustment for positioning the lubricating nozzle 101 in consideration of the contact with the titanium tube 10 due to the variation of the diameters of the titanium tube forming rolls 1, 21, 31 is performed by a lubricating nozzle sandwiching jig (lubricating nozzle front-rear adjusting jig) 113. The lubrication nozzle angle adjustment jig 109 can be adjusted by rotating it with the lubrication nozzle angle fixing screw 112.
 潤滑ノズル101が前後する機構は潤滑ノズル挟み込み冶具(潤滑ノズル前後調整冶具)113を有する装置にて、潤滑ノズル角度固定ねじ112によって調整ができる。 The mechanism in which the lubrication nozzle 101 moves back and forth can be adjusted by the lubrication nozzle angle fixing screw 112 in an apparatus having a lubrication nozzle sandwiching jig (lubricating nozzle longitudinal adjustment jig) 113.
 これらの機構によりチタン管成形ロール1、21、31とチタン管10が接するロールフランジ部近傍に潤滑剤が滴下をすることができる。 By these mechanisms, the lubricant can be dropped in the vicinity of the roll flange portion where the titanium tube forming rolls 1, 21, 31 and the titanium tube 10 are in contact.
 ここで、潤滑剤としては、水または通常金属管の成形で用いられるエマルジョンまたはソリュブル油系潤滑剤を潤滑剤として用いることができるが、潤滑性能及び製品に付着した潤滑剤の除去のし易さの観点から、水溶性切削油剤であるソリュブル油系潤滑剤が最も適している。 Here, as the lubricant, water or an emulsion or a soluble oil-based lubricant that is usually used for forming a metal tube can be used as the lubricant. However, the lubrication performance and the ease of removing the lubricant adhering to the product are eliminated. From this point of view, a soluble oil lubricant which is a water-soluble cutting fluid is most suitable.
 潤滑ノズル101は、チタン管サイズ(ロールフランジ幅)に応じて適宜、ロールフランジ部に対応するようその配置位置を調節する必要がある。また、ロール潤滑の状況によりチタン管成形ロール1、21、31のうち上部ロールへはロールの上からの滴下も必要となる。 The lubrication nozzle 101 needs to be adjusted in position so as to correspond to the roll flange portion according to the titanium tube size (roll flange width). In addition, depending on the state of roll lubrication, it is necessary to drop the upper part of the titanium tube forming rolls 1, 21, and 31 from the top of the roll.
 図11は潤滑ノズル101の配置例を説明するための正面模式図であるが、上述にて説明したような、チタン管成装置には潤滑ノズル101の前後・上下ならびに左右の調整機構が備えられているので、チタン管成形ロール1、21、31のフランジ幅の大小に合わせて、潤滑ノズル101の位置を所望の位置へ適宜変更できる。 FIG. 11 is a schematic front view for explaining an arrangement example of the lubrication nozzle 101. The titanium pipe forming apparatus as described above is provided with front / rear / up / down and left / right adjustment mechanisms of the lubrication nozzle 101. FIG. Therefore, the position of the lubrication nozzle 101 can be appropriately changed to a desired position in accordance with the flange width of the titanium tube forming rolls 1, 21, 31.
 図12を用いて、潤滑ノズル101の幅方向調整機構、上下方向調整機構を詳細に説明する。
なお、潤滑ノズル101の各方向調整機構を説明しやすくするため、図12中において、一部の部材については記載を省略している。
The width direction adjusting mechanism and the vertical direction adjusting mechanism of the lubricating nozzle 101 will be described in detail with reference to FIG.
In addition, in order to make it easy to explain each direction adjustment mechanism of the lubrication nozzle 101, description is omitted about some members in FIG.
 パイプ状の水平移動ガイド103内の略中央部分には、正逆反転する2つの幅調整用ねじ114(左、右ねじ)が配置されている。そしてこの幅調整用ねじ114は、水平移動ガイド103内に敷設された左右位置調整ハンドル105と連結しており、左右位置調整ハンドル105を回すことで水平移動ガイド103を水平方向に移動させることができ、結果、ロールフランジ部に合わせた潤滑ノズル101の幅方向拡縮が調整できる。 At the substantially central portion in the pipe-shaped horizontal movement guide 103, two width adjusting screws 114 (left and right screws) that are reversed in the forward and reverse directions are arranged. The width adjusting screw 114 is connected to a left / right position adjusting handle 105 installed in the horizontal moving guide 103, and the horizontal moving guide 103 can be moved in the horizontal direction by turning the left / right position adjusting handle 105. As a result, the expansion / contraction of the lubricating nozzle 101 in the width direction in accordance with the roll flange portion can be adjusted.
 また、幅調整用ねじ114を中心に移動すること、ならびにあり型台座107に設けられた中心位置調整冶具106を調整することで、チタン管成形ロール1、21、31の中央位置を合わせることができる。 Further, the center positions of the titanium tube forming rolls 1, 21, and 31 can be adjusted by moving around the width adjusting screw 114 and adjusting the center position adjusting jig 106 provided on the dovetail pedestal 107. it can.
 また、図12の側面図に示すように、潤滑ノズル101の前後調整、拡縮移動位置調整により、自在に潤滑剤の滴下位置を変えることができ、チタン管10とチタン管成形ロール1、21、31との接触部への潤滑剤の滴下位置の調整が可能となっている。 Further, as shown in the side view of FIG. 12, the dripping position of the lubricant can be freely changed by adjusting the front and rear of the lubrication nozzle 101 and adjusting the expansion / contraction movement position, and the titanium tube 10 and the titanium tube forming rolls 1, 21, Adjustment of the dropping position of the lubricant to the contact portion with 31 is possible.
 なお、あり型台座107はスタンド支柱取付冶具108を介して成形スタンド支柱117に固定されているが、成形スタンド支柱117にスタンド支柱取付冶具108を固定する際は、スタンド固定ねじ120により容易に装着できるような片持ち形式となっている。 The dovetail pedestal 107 is fixed to the molding stand column 117 via the stand column mounting jig 108, but when the stand column mounting jig 108 is fixed to the molding stand column 117, it is easily attached by the stand fixing screw 120. It is a cantilever format that you can.
 図13に、潤滑ノズル101を用いて潤滑剤を微量滴下するためのローラーポンプ(潤滑剤供給装置)の構造を示す図である。 FIG. 13 is a view showing the structure of a roller pump (lubricant supply device) for dripping a small amount of lubricant using the lubrication nozzle 101.
 潤滑剤は、原液と同等な濃い潤滑剤をロールに微量添付するため、チューブポンプといわれるチューブ132を、中心軸131を中心に自公転するローラー130で押しつぶしながら搬送する。 Lubricant is transported while crushing a tube 132 called a tube pump by a roller 130 that rotates and revolves around a central axis 131 in order to attach a small amount of a thick lubricant equivalent to the stock solution to the roll.
 潤滑方法としては、内径3mm以下のチューブ132を用いて、滴下速度が20.0ml/hr以下の汚染のないチューブ(ローラー)ポンプを用いた微量滴下する方法となっている。 As a lubrication method, a tube 132 having an inner diameter of 3 mm or less is used, and a minute amount is dropped using a contamination-free tube (roller) pump having a dropping speed of 20.0 ml / hr or less.
 ここで、潤滑ノズル101としては、内径0.5mm以上3.0mm以下のチューブを用いるのが、潤滑剤を適量供給する上で適切である。 Here, it is appropriate to use a tube having an inner diameter of 0.5 mm or more and 3.0 mm or less as the lubrication nozzle 101 in order to supply an appropriate amount of lubricant.
 さらに、該潤滑剤を1ml/hr以上20ml/hr以下の滴下速度で微量滴下して該潤滑剤を供給することが適している。 Furthermore, it is suitable to supply the lubricant by dripping a small amount of the lubricant at a dropping speed of 1 ml / hr or more and 20 ml / hr or less.
 該潤滑剤の供給速度が1.0ml/hr未満では、潤滑剤としての機能を十分に発揮できず、一方、その供給速度が20.0ml/hrを超えると潤滑剤としての機能は飽和し、むしろチタン管成形ロール1、21、31の空転を招き、チタン管成形に支障が出たり、最終製品から除去すべき潤滑剤が多量となり、製造コストが嵩むことになる。 When the supply rate of the lubricant is less than 1.0 ml / hr, the function as a lubricant cannot be sufficiently exhibited. On the other hand, when the supply rate exceeds 20.0 ml / hr, the function as a lubricant is saturated, Rather, the titanium tube forming rolls 1, 21, and 31 are idled, which may interfere with titanium tube forming and increase the amount of lubricant to be removed from the final product, increasing the manufacturing cost.
 以上説明したような、本発明に係るチタン管成形ロールによれば、基材上に、硬質でチタンとの親和性が低く、かつ基材中とのCrとの親和性に優れたCrN皮膜ならびにDLC膜を形成するため、耐摩耗性及び耐凝着性を向上させることができる。またDLC膜において、DLC膜の膜厚方向に硬度の傾斜をつけることで、CrN層とDLC膜との間における硬度の格差を緩和させることができる。その結果、DLC膜の上層領域は、硬質なものとすることで、チタン管に対し優れた耐摩耗性を発揮できる上、sp混成軌道(グラファイト構造)の炭素も多少含んでおり低摩擦性を確保できる。一方の下層領域は軟質なものとすることで、CrN層との硬度格差を緩和でき、耐剥離性の確保できる。 As described above, according to the titanium tube forming roll according to the present invention, a CrN coating that is hard and has low affinity with titanium and excellent affinity with Cr in the substrate, and Since the DLC film is formed, wear resistance and adhesion resistance can be improved. In addition, in the DLC film, the hardness difference between the CrN layer and the DLC film can be reduced by providing an inclination of the hardness in the film thickness direction of the DLC film. As a result, the upper layer region of the DLC film is made hard so that it can exhibit excellent wear resistance against the titanium tube, and it also contains some sp 2 hybrid orbital (graphite structure) carbon and has low friction. Can be secured. By making one lower layer region soft, the hardness disparity with the CrN layer can be relaxed and peeling resistance can be secured.
 また、チタン管を成形する際、潤滑剤を成形ロールの一部に微量滴下しながら成形することで、成形ロール、特に駆動ロールの摩擦係数を低減することができる。その効果による、周速差の大きい(すべりの大きい)ことによる、ロールフランジ部の凝着を防止することにより、駆動ロールで発生するロールフランジ部の疵や、ロールマークの発生を抑えることができる。 Also, when the titanium tube is formed, the friction coefficient of the forming roll, particularly the driving roll, can be reduced by forming the lubricant while dropping a small amount of lubricant on a part of the forming roll. By preventing the adhesion of the roll flange portion due to the large peripheral speed difference (large slip) due to the effect, wrinkles on the roll flange portion and roll marks generated on the drive roll can be suppressed. .
 すなわち、本発明に係るチタン管成形ロール、チタン管成形装置、チタン管の製造方法によれば、成形ロール寿命を格段に向上でき、成形ロールの交換頻度を低減でき、製造コストを大幅に削減できる。また、成形ロール寿命の向上による成形ロールの交換頻度を低減によって、ロール交換時のロール調整(位置調整等)に伴う歩留まり低下の防止、及び、成形寸法精度向上による歩留まり向上(高精度化)を達成することができる。 That is, according to the titanium tube forming roll, the titanium tube forming apparatus, and the titanium tube manufacturing method according to the present invention, the life of the forming roll can be remarkably improved, the replacement frequency of the forming roll can be reduced, and the manufacturing cost can be greatly reduced. . In addition, by reducing the frequency of replacement of the forming rolls by improving the life of the forming rolls, it is possible to prevent the yield from being lowered due to roll adjustment (position adjustment, etc.) at the time of roll replacement, and to improve the yield (high accuracy) by improving the forming dimensional accuracy. Can be achieved.
 次に、本発明を実施例によって更に詳細に説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。 Next, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the conditions used in the following examples.
<成形ロール>
(実施例1)
 まず、成形ロールの基材としてJIS G 4404にて規定されている工具鋼SKD11を採用し、焼入れ及び焼戻し処理を行った。
<Forming roll>
Example 1
First, the tool steel SKD11 prescribed | regulated by JISG4404 was employ | adopted as a base material of a forming roll, and quenching and tempering processing were performed.
 次に、得られた基材表面に対して、窒化処理を行い、基材表層に、25μm厚、平均窒素濃度が0.20質量%である窒化層を形成した。 Next, the obtained substrate surface was subjected to nitriding treatment to form a nitride layer having a thickness of 25 μm and an average nitrogen concentration of 0.20% by mass on the substrate surface layer.
 なお、窒化処理は、アンモニアと水素の混合ガス雰囲気中(NH、H、Ar)で直流グロー放電により生じた反応性の高い活性種を利用し窒化するラジカル窒化処理を用いた。処理温度は500℃とし3時間の処理を施した。 The nitriding treatment used was a radical nitriding treatment in which nitriding was performed using active species having high reactivity generated by direct current glow discharge in a mixed gas atmosphere of ammonia and hydrogen (NH 3 , H 2 , Ar). The treatment temperature was 500 ° C. and the treatment was performed for 3 hours.
 次に、窒化処理を施した基材表層(窒化層)上に、PVD蒸着法により、1.5μmμmのCrN皮膜(単層)を成膜した。 Next, a 1.5 μm μm CrN film (single layer) was formed on the surface layer (nitrided layer) subjected to nitriding treatment by PVD vapor deposition.
 次に、CrN皮膜を形成した基材を、孔型R:12.6mm、ロール底径Dr:100mm、ロール外径Do:124mm、ロール幅W:60.0mmの寸法でロールに加工し、図2に示す成形ロールを製造した。 Next, the base material on which the CrN film was formed was processed into a roll with dimensions of a hole type R: 12.6 mm, a roll bottom diameter Dr: 100 mm, a roll outer diameter Do: 124 mm, and a roll width W: 60.0 mm. The forming roll shown in 2 was manufactured.
 成形ロールについて、CrN皮膜表面から深さ方向に、グロー放電発光分析装置(GDS)を用いて成分分析を行った。分析結果を図14~16に示す。図14~16における横軸は、CrN層表面からの深さ(μm)、縦軸は各成分の濃度(質量%)を示す。 For the forming roll, component analysis was performed in the depth direction from the CrN coating surface using a glow discharge emission spectrometer (GDS). The analysis results are shown in FIGS. 14 to 16, the horizontal axis represents the depth (μm) from the CrN layer surface, and the vertical axis represents the concentration (mass%) of each component.
 図14及び図15に示すように、基材表層に、厚さ1.5μmのCrN層が形成されていることが分かる。また、図16は、微量に含有する元素の深さ方向への濃度挙動を確認するために、図14のグラフの縦軸範囲を変化させ表したグラフである。図16のグラフより、CrN皮膜と基材との間には、窒化層が形成されていることが分かる。また、グラフからも明らかなように、CrN皮膜側から基材側に向けて窒素濃度が緩やかに減少する勾配を示しており、窒化層内における深さ方向に対する硬さ変動も緩やかであることが分かる。 14 and 15, it can be seen that a CrN layer having a thickness of 1.5 μm is formed on the surface layer of the base material. FIG. 16 is a graph in which the vertical axis range of the graph of FIG. 14 is changed in order to confirm the concentration behavior of the element contained in a trace amount in the depth direction. From the graph of FIG. 16, it can be seen that a nitride layer is formed between the CrN film and the substrate. Further, as is apparent from the graph, it shows a gradient in which the nitrogen concentration gradually decreases from the CrN film side to the base material side, and the hardness fluctuation in the depth direction in the nitride layer is also gentle. I understand.
 次に、予め上記成形ロールの表面に対してプラズマクリーニングを施し、CrN皮膜上の汚れを除去した上で、CrN皮膜上にDLC膜を成膜した。膜厚は1.0μmとした。 Next, plasma cleaning was performed on the surface of the molding roll in advance to remove dirt on the CrN film, and a DLC film was formed on the CrN film. The film thickness was 1.0 μm.
 DLC膜はプラズマCVD法によって成膜した。装置は容量結合型高周波プラズマCVD装置を用い、温度は500℃とした。プラズマ発生用電源には、13.56MHzの高周波電源を用いた。反応ガスとしては、CHとHの混合ガスを用いた。このとき、CHとHの混合ガスの混合比を変えることにより、CrN皮膜との界面から表面に向かって膜の硬さが徐々に増加するようにした。 The DLC film was formed by a plasma CVD method. The apparatus used was a capacitively coupled high-frequency plasma CVD apparatus, and the temperature was 500 ° C. A high frequency power supply of 13.56 MHz was used as the plasma generation power supply. As the reaction gas, a mixed gas of CH 4 and H 2 was used. At this time, the hardness of the film gradually increased from the interface with the CrN film toward the surface by changing the mixing ratio of the mixed gas of CH 4 and H 2 .
(比較例1)
 実施例1で採用した工具鋼SKD11を基材とし、実施例1と同様に、窒化層およびCrN皮膜(単層)ロールに加工し成形ロールを製造した。
(Comparative Example 1)
Using the tool steel SKD11 employed in Example 1 as a base material, a forming roll was produced by processing into a nitrided layer and a CrN film (single layer) roll in the same manner as in Example 1.
 次に、CrN皮膜上に、イオンプレーティング法によりDLC膜を1.0μmの厚さで成膜した。このとき、通常どおり、CHとHの混合ガスの混合比が一定の条件で行った。 Next, a DLC film having a thickness of 1.0 μm was formed on the CrN film by ion plating. At this time, as usual, the mixing ratio of the mixed gas of CH 4 and H 2 was constant.
<ラマン分光法>
 実施例1および比較例1で得られた成形ロールの表層の、sp混成軌道の炭素とsp混成軌道の炭素の割合(sp/sp)をラマン分光分析によって測定した。
<Raman spectroscopy>
The ratio of sp 2 hybrid orbital carbon to sp 3 hybrid orbital carbon (sp 3 / sp 2 ) in the surface layer of the molding roll obtained in Example 1 and Comparative Example 1 was measured by Raman spectroscopy.
 結果を図17(a)~(c)及び図18(a)~(c)、表1、2に示す。 Results are shown in FIGS. 17A to 17C and FIGS. 18A to 18C and Tables 1 and 2.
 図17(a)は、実施例1の成形ロールの表層の顕微鏡写真、図17(b)は実施例1の成形ロールのDLC膜の表層のラマンスペクトル、図17(c)は実施例1の成形ロールのDLC膜内部のラマンスペクトルを示す。図18(a)は比較例1の成形ロールの表層の顕微鏡写真、図18(b)は比較例1の成形ロールのDLC膜の表層のラマンスペクトル、図18(c)は比較例1の成形ロールのDLC膜内部のラマンスペクトルを示す。なお、図中の「表面付近」とはDLC膜の表層、「DLC膜内部」DLC膜の内部、「界面付近」とはDLC膜とCrN皮膜との界面付近のラマンスペクトルである。 17A is a micrograph of the surface layer of the forming roll of Example 1, FIG. 17B is the Raman spectrum of the surface layer of the DLC film of the forming roll of Example 1, and FIG. The Raman spectrum inside the DLC film of a forming roll is shown. 18A is a micrograph of the surface layer of the forming roll of Comparative Example 1, FIG. 18B is the Raman spectrum of the surface layer of the DLC film of the forming roll of Comparative Example 1, and FIG. 18C is the forming of Comparative Example 1. The Raman spectrum inside the DLC film of the roll is shown. In the figure, “near the surface” is a surface layer of the DLC film, “inside the DLC film”, inside the DLC film, and “near the interface” is a Raman spectrum near the interface between the DLC film and the CrN film.
 また表1に、実施例1のラマンバンドパラメータを、表2に比較例1のラマンバンドパラメータを示す。 Table 1 shows the Raman band parameters of Example 1, and Table 2 shows the Raman band parameters of Comparative Example 1.
 図17(a)~(c)、表1から明らかなように、実施例1で得られたDLC膜は、CrN皮膜からDLC膜に向かうにしたがい、I1380/I1540が大きくなっている。
つまり、CrN皮膜からDLC膜に向かうにしたがい硬度が大きくなる硬度傾斜となっていることが分かる。
As is apparent from FIGS. 17A to 17C and Table 1, in the DLC film obtained in Example 1, I 1380 / I 1540 increases as it goes from the CrN film to the DLC film.
That is, it can be seen that the hardness gradient increases as the hardness increases from the CrN film toward the DLC film.
 次に、実施例1および比較例1で得られた窒化層、CrN皮膜、ならびにDLC膜のビッカース硬さについて測定した。基材および窒化層については、マイクロビッカース硬度計により測定した。また、CrN皮膜およびDLC膜については、ナノインデンテーション(押込み)法によって、極低荷重の押込み試験を行い、ビッカース硬さに換算した。具体的には、ナノインデンテーション(押込み)法に従い、三角錐型圧子(バーコビッチ圧子)を用いて、0.005~0.1mN の荷重を20秒負荷したとき(負荷20s、保持5s、除荷20s)の押し込み硬さをナノインデンテーション硬さとして求めた。このとき、押し込み深さの10倍以上になる条件で測定した。また、面研削による測定と埋め込み研磨による側面(断面)押し込みを併用した。得られたナノインデンテーション硬さから、下記の換算式によってビッカース硬さを求めた。
  Hv=0.0945×HIT
 ただし、上記式中のHvはビッカース硬さを、HITはナノインデンテーション硬さをそれぞれ意味する。
Next, the Vickers hardness of the nitride layer, CrN film, and DLC film obtained in Example 1 and Comparative Example 1 were measured. The substrate and the nitride layer were measured with a micro Vickers hardness meter. Moreover, about the CrN film | membrane and the DLC film | membrane, the indentation test of the very low load was performed by the nanoindentation (indentation) method, and it converted into Vickers hardness. Specifically, when a load of 0.005 to 0.1 mN is applied for 20 seconds using a triangular pyramid indenter (Berkovic indenter) according to the nanoindentation (indentation) method (load 20 s, holding 5 s, unloading) The indentation hardness of 20 s) was determined as nanoindentation hardness. At this time, it measured on the conditions which become 10 times or more of indentation depth. In addition, measurement by surface grinding and side (cross-sectional) indentation by embedded polishing were used in combination. From the obtained nanoindentation hardness, Vickers hardness was calculated | required by the following conversion formula.
H v = 0.0945 × H IT
However, H v in the above formula the Vickers hardness, H IT means respectively nanoindentation hardness.
 何れの層、膜においても、断面において3点測定しその平均をもって「ビッカース硬さ」とした。窒化層については基材との界面近傍(2μm深さまでの領域:内側領域)およびCrN皮膜との界面近傍(2μm深さまでの領域:外側領域)において測定した。DLC膜は、膜表面から0.20tまでの領域(表面付近)、DLC膜とCrN皮膜との界面から0.20tまでの領域(界面付近)、およびDLC膜の膜厚方向中心部(DLC膜内部)の計3か所において測定した。 In any layer or film, three points were measured in the cross section, and the average was defined as “Vickers hardness”. The nitrided layer was measured in the vicinity of the interface with the base material (region up to 2 μm depth: inner region) and in the vicinity of the interface with the CrN coating (region up to 2 μm depth: outer region). The DLC film includes a region from the film surface to 0.20 t (near the surface), a region from the interface between the DLC film and the CrN film to 0.20 t (near the interface), and a central portion in the film thickness direction of the DLC film (DLC film). Measurements were made at a total of three locations.
 その結果を表3に示す。表3に示すように、実施例1では、各層・各膜の平均ビッカース硬さはそれぞれ、窒化層は1000、CrN皮膜は2000、DLC膜の「界面付近」は2500、「DLC膜内部」は3000、DLC膜の「表面付近」は3500となり、膜厚方向において硬度傾斜が付与されていた。 The results are shown in Table 3. As shown in Table 3, in Example 1, the average Vickers hardness of each layer / film is 1000 for the nitride layer, 2000 for the CrN film, 2500 for “near the interface” of the DLC film, and “inside the DLC film” 3000, “near the surface” of the DLC film was 3500, and a hardness gradient was given in the film thickness direction.
 一方、図18(a)~(c)、表2から明らかなように、比較例1で得られたDLC膜は、「表面付近」、「DLC膜内部」ともにI1380/I1540が大きく、膜厚方向において硬度傾斜が付与されていないことが分かる。 On the other hand, as is clear from FIGS. 18A to 18C and Table 2, the DLC film obtained in Comparative Example 1 has large I 1380 / I 1540 in both “near the surface” and “inside the DLC film”. It can be seen that no hardness gradient is given in the film thickness direction.
 また、表3に示すように、比較例1で得られたDLC膜の「表面付近」、「DLC膜内部」、「界面付近」それぞれおいて実施例1と同様にビッカース硬度を測定したところ、「界面付近」は2000、「DLC膜内部」は2000、「界面付近」は2000となり、膜厚方向において均一な硬度分布であった。 Further, as shown in Table 3, when the Vickers hardness was measured in the same manner as in Example 1 in “near the surface”, “inside the DLC film”, and “near the interface” of the DLC film obtained in Comparative Example 1, The “near the interface” was 2000, the “inside the DLC film” was 2000, and the “near the interface” was 2000, and the hardness distribution was uniform in the film thickness direction.
<機械特性評価>
 実施例1及び比較例1の各成形ロールにおいて、機械特性を評価した。評価条件は、径25.0mm、0.5mm厚の工業用チタン管を用い、造管速度を6m/minとして、図10に示す成形装置を用いて成形を行った。このとき、潤滑剤としてはソリュブル油系潤滑剤を用い、この潤滑剤を10ml/hrで微量に滴下しながら成形を行った。
<Mechanical property evaluation>
In each forming roll of Example 1 and Comparative Example 1, mechanical properties were evaluated. As the evaluation conditions, an industrial titanium pipe having a diameter of 25.0 mm and a thickness of 0.5 mm was used, and the pipe making speed was 6 m / min, and molding was performed using the molding apparatus shown in FIG. At this time, a soluble oil-based lubricant was used as the lubricant, and molding was performed while dripping this lubricant in a small amount at 10 ml / hr.
 その結果、実施例1は、成形時間が24時間経過しても、ロール疵は発生せず、耐凝着性、耐摩耗性は良好であり、ロールフランジ部の疵、ロールマークの発生を抑制できた。 As a result, in Example 1, even when the molding time was 24 hours, roll wrinkles did not occur, adhesion resistance and wear resistance were good, and generation of wrinkles and roll marks on the roll flange portion was suppressed. did it.
 一方、比較例1のロールを用いチタン管の成形を行うと、30分も立たずにロール疵、膜剥離が発生し、CrN皮膜が露出した。 On the other hand, when the titanium tube was formed using the roll of Comparative Example 1, roll wrinkles and film peeling occurred without standing for 30 minutes, and the CrN film was exposed.
(実施例2、実施例3)
 実施例2として、図3に示す成形ロールを製造した。その際、回動フランジ部22とロール中央部21の突出部21bとの間の隙間を50μmに調整した。
(Example 2, Example 3)
As Example 2, the forming roll shown in FIG. In that case, the clearance gap between the rotation flange part 22 and the protrusion part 21b of the roll center part 21 was adjusted to 50 micrometers.
 また、実施例3として、図3に示す成形ロールを製造し、その際、回動フランジ部22とロール中央部21の突出部21bとの間の隙間を10μm以下に調整した。各成形ロールにおけるCrN膜とDLC膜の品質は、実施例1と同等であった。 Further, as Example 3, the forming roll shown in FIG. 3 was manufactured, and the gap between the rotating flange portion 22 and the protruding portion 21b of the roll central portion 21 was adjusted to 10 μm or less. The quality of the CrN film and the DLC film in each forming roll was the same as in Example 1.
 これら実施例2及び実施例3の成形ロールを用いて、径25.0mm、0.5mm厚のJIS3種チタン管を成形した。成形条件は、JIS3種チタンを用いてTIG溶接を行い、造管速度を6m/minとし、TIG溶接後に、図10に示す成形装置において図3のロールを用い、潤滑剤としてはソリュブル油系潤滑剤を用い、この潤滑剤を10ml/hrで微量に滴下しながら成形を行った。成形後のチタン管の真円度の評価結果を図19に示す。図19には、300時間連続製管後のチタン管の真円度の測定結果を実線で示し、製品としての真円度の許容範囲を三重円(点線)で示している。三重円のうちの内側と外側の円が許容範囲を示しており、残りの円は成形目標を示している。 JIS type 3 titanium tubes having a diameter of 25.0 mm and a thickness of 0.5 mm were formed using the forming rolls of Examples 2 and 3. Molding conditions are TIG welding using JIS type 3 titanium, pipe forming speed is 6 m / min, and after TIG welding, the roll of FIG. 3 is used in the molding apparatus shown in FIG. Using this agent, molding was performed while dripping this lubricant in a small amount at 10 ml / hr. The evaluation result of the roundness of the titanium tube after forming is shown in FIG. In FIG. 19, the measurement result of the roundness of the titanium tube after 300 hours of continuous pipe production is shown by a solid line, and the allowable roundness of the product is shown by a triple circle (dotted line). The inner and outer circles of the triple circle indicate the allowable range, and the remaining circles indicate the forming target.
 図19に示すように、実施例2(図19(a)参照)、実施例3(図19(b)参照)とも真円度は良好で、製品としての真円度の許容範囲内であったが、実施例3のほうがより高い真円度を示した。また、実施例2では、回動フランジ部22とロール中央部21の突出部21bとの間の隙間によって、チタン管の表面に製品として許容できる程度の疵が生じた。 As shown in FIG. 19, the roundness is good in both Example 2 (see FIG. 19 (a)) and Example 3 (see FIG. 19 (b)), and is within the allowable range of roundness as a product. However, Example 3 showed higher roundness. Moreover, in Example 2, the clearance gap between the rotation flange part 22 and the protrusion part 21b of the roll center part 21 produced the wrinkle of the grade which is accept | permitted as a product on the surface of a titanium pipe | tube.
 また、実施例2及び実施例3のいずれにおいても、チタン管に対するロールとの焼き付きや、ロール中央部または固定フランジ部と回動フランジ部との間の焼き付きは、300時間連続製管後も発生することがなく、連続製管を更に続け出ることができる状態であった。 Further, in both Example 2 and Example 3, seizure with the roll on the titanium pipe and seizure between the roll center part or the fixed flange part and the rotating flange part occurred even after 300 hours of continuous pipe making. In this state, the continuous pipe making could be continued.
 よって、実施例3のように、回動フランジ部22とロール中央部21の突出部21bとの間の隙間を10μm以下に調整することは、それらが製管中に互いに摺動したとしても、CrN膜とDLC膜による摩擦係数の低減により、互いに磨耗することがなく、問題がなく連続製管することができ、チタン管製品の真円度を保ち、疵発生を防ぐ点から望ましい。 Therefore, as in Example 3, adjusting the gap between the rotating flange portion 22 and the protruding portion 21b of the roll center portion 21 to 10 μm or less means that even if they slide relative to each other during pipe making, The friction coefficient is reduced by the CrN film and the DLC film, so that they are not worn out and can be continuously produced without problems, and it is desirable from the viewpoint of maintaining the roundness of the titanium tube product and preventing wrinkles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1、21、31…チタン管成形ロール、3…回転軸、10…チタン管、12…ロール本体、4、14…ロール凹部、21…ロール中央部、21a1…外周面(対向面)、21a…基部、21b…突出部、22…回動フランジ部、22b…内周面(対向面)、22c…側面(対向面)、23…固定フランジ部、23b…対向面、24…第1軸受部、25…第2軸受部、32…引きねじ部、101…潤滑ノズル、102…潤滑ノズル固定台、103…水平移動ガイド、104…上下位置調整ハンドル、105…左右位置調整ハンドル、106…中心位置調整冶具、107…あり型台座、108…スタンド支柱取り付け冶具、109…潤滑ノズル角度調整冶具、112…潤滑ノズル角度固定ねじ、113…潤滑ノズル前後調整冶具、114…幅調整用ねじ(正・ねじ使用)、115…幅移動用ガイド部品、116…上下移動ねじ、117…成形スタンド支柱、118…幅移動溝、119…幅移動ガイド、120…スタンド固定ねじ、130…ローラー、131…中心軸、132…シリコンチューブ 1, 21, 31 ... Titanium tube forming roll, 3 ... Rotating shaft, 10 ... Titanium tube, 12 ... Roll main body, 4,14 ... Roll recess, 21 ... Roll center, 21a1 ... Outer peripheral surface (opposing surface), 21a ... Base part, 21b ... Projection part, 22 ... Turning flange part, 22b ... Inner peripheral surface (opposing surface), 22c ... Side surface (opposing surface), 23 ... Fixed flange part, 23b ... Opposing surface, 24 ... First bearing part, 25: Second bearing portion, 32: Pull screw portion, 101: Lubrication nozzle, 102: Lubrication nozzle fixing base, 103: Horizontal movement guide, 104: Vertical position adjustment handle, 105: Left / right position adjustment handle, 106: Center position adjustment Jig 107, Dovetail type pedestal 108, Stand post mounting jig 109, Lubrication nozzle angle adjustment jig 112, Lubrication nozzle angle fixing screw 113, Lubrication nozzle front / rear adjustment jig 114, Width adjustment Screws (positive and screw used), 115 ... Guide parts for width movement, 116 ... Vertical movement screws, 117 ... Molding stand column, 118 ... Width movement groove, 119 ... Width movement guide, 120 ... Stand fixing screw, 130 ... Roller 131 ... Center axis 132 ... Silicon tube

Claims (24)

  1.  質量%で、
    C:1.00~2.30%、
    Si:0.10~0.60%、
    Mn:0.20~0.80%、
    P:0.030%以下、
    S:0.030%以下、
    Cr:4.80~13.00%、
    Mo:0~1.20%、
    V:0~1.00%、
    W:0~0.80%、
    残部が鉄および不可避的不純物である化学組成を有する基材と、
     前記基材上の少なくとも圧延面に形成された窒化層と、
     前記窒化層上に形成されたCrN皮膜と、
     前記CrN皮膜上に形成されたダイヤモンドライクカーボン膜と、を備え、
     前記基材のビッカース硬さが600~700であり、
     前記窒化層のビッカース硬さが800~1200であり、
     前記CrN皮膜のビッカース硬さが800~2000であり、
     前記ダイヤモンドライクカーボン膜のビッカース硬さが、膜表面から0.20t(ただし、tは膜厚)までの領域において3000~3500、前記CrN皮膜との界面から0.20tまでの領域において1500~3000であり、
     前記ダイヤモンドライクカーボン膜において、ラマン分光法により測定された波数1380cm-1における吸収強度I1380と、波数1540cm-1における吸収強度I1540との比I1380/I1540が、膜表面から0.20tまでの領域において0.5~0.7、前記ダイヤモンドライクカーボン膜と前記CrN皮膜との界面から0.20tまでの領域において0.3~0.5である、
    チタン管成形ロール。
    % By mass
    C: 1.00-2.30%,
    Si: 0.10 to 0.60%,
    Mn: 0.20 to 0.80%,
    P: 0.030% or less,
    S: 0.030% or less,
    Cr: 4.80 to 13.00%,
    Mo: 0 to 1.20%,
    V: 0 to 1.00%,
    W: 0 to 0.80%,
    A substrate having a chemical composition with the balance being iron and inevitable impurities;
    A nitride layer formed on at least the rolled surface on the substrate;
    A CrN film formed on the nitride layer;
    A diamond-like carbon film formed on the CrN film,
    The substrate has a Vickers hardness of 600 to 700,
    The nitride layer has a Vickers hardness of 800 to 1200;
    The CrN film has a Vickers hardness of 800 to 2000,
    The diamond-like carbon film has a Vickers hardness of 3000 to 3500 in the region from the film surface to 0.20 t (where t is the film thickness), and 1500 to 3000 in the region from the interface with the CrN film to 0.20 t. And
    In the diamond-like carbon film, the ratio I 1380 / I 1540 of the absorption intensity I 1380 at a wave number of 1380 cm −1 and the absorption intensity I 1540 at a wave number of 1540 cm −1 measured by Raman spectroscopy is 0.20 t from the film surface. 0.5 to 0.7 in the region up to 0.3, and 0.3 to 0.5 in the region up to 0.20 t from the interface between the diamond-like carbon film and the CrN film.
    Titanium tube forming roll.
  2.  前記ダイヤモンドライクカーボン膜の厚さが0.5~2.0μmである、
    請求項1に記載のチタン管成形ロール。
    The diamond-like carbon film has a thickness of 0.5 to 2.0 μm.
    The titanium tube forming roll according to claim 1.
  3.  前記CrN皮膜の厚さが0.5~5.0μmである、
    請求項1または2に記載のチタン管成形ロール。
    The CrN film has a thickness of 0.5 to 5.0 μm.
    The titanium tube forming roll according to claim 1 or 2.
  4.  前記窒化層の厚さが0.5μm~50.0μmである、
    請求項1から3までのいずれかに記載のチタン管成形ロール。
    The nitride layer has a thickness of 0.5 μm to 50.0 μm.
    The titanium tube forming roll according to any one of claims 1 to 3.
  5.  前記窒化層の平均窒素濃度が、10.0~25.0質量%である
    請求項1から4までのいずれかに記載のチタン管成形ロール。
    The titanium tube forming roll according to any one of claims 1 to 4, wherein the nitride layer has an average nitrogen concentration of 10.0 to 25.0 mass%.
  6.  前記窒化層における窒素の濃度分布が、前記窒化層表層から深さ方向に向かって減少する濃度勾配を有する、
    請求項1から5までのいずれかに記載のチタン管成形ロール。
    The concentration distribution of nitrogen in the nitride layer has a concentration gradient that decreases in the depth direction from the surface of the nitride layer.
    The titanium tube forming roll according to any one of claims 1 to 5.
  7.  前記基材が、質量%で、
     Mo:0.70~1.20%、
     V:0.15~1.00%および
     W:0.60~0.80%から選択される一種以上を含有する
    請求項1から6までのいずれかに記載のチタン管成形ロール。
    The base material is in mass%,
    Mo: 0.70 to 1.20%,
    The titanium tube forming roll according to any one of claims 1 to 6, comprising at least one selected from V: 0.15 to 1.00% and W: 0.60 to 0.80%.
  8.  ロール本体の全周に渡って断面視半円状のロール凹部を設けた孔型ロールであって、
     前記圧延面が、前記ロール凹部表面である、
    請求項1から7までのいずれかに記載のチタン管成形ロール。
    A hole-type roll provided with a semicircular roll recess in cross-sectional view over the entire circumference of the roll body,
    The rolling surface is the surface of the roll recess.
    The titanium tube forming roll according to any one of claims 1 to 7.
  9.  前記ロール本体が、ロール中央部と、前記ロール中央部の両側に配置されて前記ロール中央部に対して回動自在とされた一対の回動フランジ部とを備え、
    前記ロール凹部が、前記ロール中央部と前記回動フランジ部とによって分割されている、
    請求項8に記載のチタン管成形ロール。
    The roll body includes a roll center portion and a pair of rotating flange portions disposed on both sides of the roll center portion and rotatable with respect to the roll center portion,
    The roll recess is divided by the roll center and the rotating flange.
    The titanium tube forming roll according to claim 8.
  10.  前記ロール中央部は、前記ロール本体を駆動する回転軸に固定されており、前記回動フランジ部は前記回転軸及び前記ロール中央部に対して回動自在とされている、
    請求項9に記載のチタン管成形ロール。
    The roll center portion is fixed to a rotating shaft that drives the roll body, and the rotating flange portion is rotatable with respect to the rotating shaft and the roll center portion.
    The titanium tube forming roll according to claim 9.
  11.  ワークとなるチタン管の外径をDとしたとき、前記ロール中央部における前記ロール凹部の幅が0.7D~0.87Dの範囲である、
    請求項8から10までのいずれかに記載のチタン管成形ロール。
    When the outer diameter of the titanium tube used as a workpiece is D, the width of the roll recess at the roll center is in the range of 0.7D to 0.87D.
    The titanium tube forming roll according to any one of claims 8 to 10.
  12.  前記ロール中央部には、基部と、前記基部のロール幅方向中央部からロール外周方向に向けて突出された突出部とが備えられ、
     前記回動フランジ部は、前記基部上にあって前記突出部のロール幅方向両側に配置され、
     前記ロール中央部の前記基部と前記回動フランジ部との間に、第1軸受部が設けられている、
    請求項9から11までのいずれかに記載のチタン管成形ロール。
    The roll center part is provided with a base part and a protruding part that protrudes from the center part in the roll width direction of the base part toward the outer periphery of the roll,
    The rotating flange portion is disposed on both sides in the roll width direction of the protruding portion on the base portion,
    A first bearing portion is provided between the base portion of the roll central portion and the rotating flange portion.
    The titanium tube forming roll according to any one of claims 9 to 11.
  13.  前記ロール中央部の前記基部と前記回動フランジ部との間で互いに対向する対向面がそれぞれ、前記第1軸受部の転動体の軌道面とされており、前記対向面が、前記窒化層と、前記CrN皮膜と、前記ダイヤモンドライクカーボン膜を備える、
    請求項12に記載のチタン管成形ロール。
    The opposing surfaces that face each other between the base portion and the rotating flange portion at the center of the roll are the raceway surfaces of the rolling elements of the first bearing portion, and the opposing surfaces are the nitride layer , Comprising the CrN film and the diamond-like carbon film,
    The titanium tube forming roll according to claim 12.
  14.  一対の前記回動フランジ部のロール幅方向両側に配置されて前記ロール中央部に固定された固定フランジ部と、前記固定フランジ部と前記回動フランジ部との間に配置された第2軸受部と、を備える、
    請求項8から13までのいずれかに記載のチタン管成形ロール。
    A fixed flange portion disposed on both sides of the pair of rotating flange portions in the roll width direction and fixed to the center portion of the roll, and a second bearing portion disposed between the fixed flange portion and the rotating flange portion And comprising
    The titanium tube forming roll according to any one of claims 8 to 13.
  15.  前記固定フランジ部と前記回動フランジ部との間で互いに対向する対向面がそれぞれ、前記第2軸受部の転動体の軌道面とされており、前記対向面が、前記窒化層と、前記CrN皮膜と、前記ダイヤモンドライクカーボン膜を備える、
    請求項14に記載のチタン管成形ロール。
    The opposing surfaces facing each other between the fixed flange portion and the rotating flange portion are raceway surfaces of the rolling elements of the second bearing portion, and the opposing surfaces are the nitride layer and the CrN. A coating and the diamond-like carbon film;
    The titanium tube forming roll according to claim 14.
  16.  前記固定フランジ部に、前記回動フランジ部を引き寄せて固定する引きねじ部が設けられている、
    請求項14または15に記載のチタン管成形ロール。
    The fixing flange portion is provided with a pulling screw portion that pulls and fixes the rotating flange portion.
    The titanium tube forming roll according to claim 14 or 15.
  17.  請求項1から16までに記載のチタン管成形ロールを備えたチタン管成形装置であって、前記チタン管成形ロールの一部分に対し、チタン管成形中に潤滑剤を供給する潤滑ノズルを有する、
    チタン管成形装置。
    A titanium tube forming apparatus comprising the titanium tube forming roll according to claim 1, comprising a lubricating nozzle for supplying a lubricant during titanium tube forming to a part of the titanium tube forming roll.
    Titanium tube forming equipment.
  18.  チタン管の成形サイズに合わせて前記潤滑ノズルの位置を可変できる、
    請求項17に記載のチタン管成形装置。
    The position of the lubrication nozzle can be varied according to the forming size of the titanium tube.
    The titanium tube forming apparatus according to claim 17.
  19.  前記チタン管成形ロールの径に合わせて前記潤滑ノズルの位置を可変できる、
    請求項17または18に記載のチタン管成形装置。
    The position of the lubricating nozzle can be varied according to the diameter of the titanium tube forming roll.
    The titanium tube forming apparatus according to claim 17 or 18.
  20.  前記潤滑ノズルの位置および向きを任意に調整できる、
    請求項17から19までのいずれかに記載のチタン管成形装置。
    The position and orientation of the lubricating nozzle can be adjusted arbitrarily,
    The titanium tube forming apparatus according to any one of claims 17 to 19.
  21.  前記潤滑ノズルが、内径0.5~3.0mmのチューブである、
    請求項17から20までのいずれかに記載のチタン管成形装置。
    The lubricating nozzle is a tube having an inner diameter of 0.5 to 3.0 mm;
    The titanium tube forming apparatus according to any one of claims 17 to 20.
  22.  前記潤滑剤としてソリュブル油系潤滑剤を用い、該潤滑剤を1.0~20.0ml/hr以下で微量滴下して供給する、
    請求項17から21までのいずれかに記載のチタン管成形装置。
    A soluble oil-based lubricant is used as the lubricant, and the lubricant is supplied in a small amount at 1.0 to 20.0 ml / hr or less.
    The titanium tube forming apparatus according to any one of claims 17 to 21.
  23.  請求項1から16でのいずれかに記載のチタン管成形ロールを用いて成形する、
    チタン管の製造方法。
    Forming using the titanium tube forming roll according to any one of claims 1 to 16,
    A method for manufacturing a titanium tube.
  24.  請求項17から22までのいずれかに記載のチタン管成形装置を用いて成形する、
    チタン管の製造方法。
    Forming using the titanium tube forming apparatus according to any one of claims 17 to 22,
    A method for manufacturing a titanium tube.
PCT/JP2016/077561 2015-09-17 2016-09-16 Titanium pipe-forming roll, titanium pipe-forming apparatus, and titanium pipe-manufacturing method WO2017047795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016575271A JP6217871B2 (en) 2015-09-17 2016-09-16 Titanium tube forming roll, titanium tube forming apparatus, and titanium tube manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015183950 2015-09-17
JP2015-183950 2015-09-17

Publications (1)

Publication Number Publication Date
WO2017047795A1 true WO2017047795A1 (en) 2017-03-23

Family

ID=58289480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077561 WO2017047795A1 (en) 2015-09-17 2016-09-16 Titanium pipe-forming roll, titanium pipe-forming apparatus, and titanium pipe-manufacturing method

Country Status (2)

Country Link
JP (1) JP6217871B2 (en)
WO (1) WO2017047795A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108277437A (en) * 2018-03-28 2018-07-13 山西太钢不锈钢股份有限公司 Oil gas field martensitic stain less steel circular pipe blank and its manufacturing method
JP2018159126A (en) * 2017-03-22 2018-10-11 新日鐵住金株式会社 Titanium tube molding roll, titanium tube molding apparatus and method for manufacturing titanium tube
JP2018158356A (en) * 2017-03-22 2018-10-11 新日鐵住金株式会社 Metal tube molding roll, metal tube molding device, and metal tube molding method
WO2018193991A1 (en) * 2017-04-21 2018-10-25 株式会社ニコン Container, method for producing container, and method for evaluating amorphous carbon film
WO2018197933A1 (en) * 2017-04-26 2018-11-01 BP BLISTER PACK d.o.o. Wear-resistant welding plate
JP2020089311A (en) * 2018-12-06 2020-06-11 株式会社クボタ Cutting blade, agricultural machine, and manufacturing method of cutting blade
CN114045458A (en) * 2022-01-13 2022-02-15 艾瑞森表面技术(苏州)股份有限公司 Coating method applied to tool steel material cutter for aluminum alloy machining

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160102A (en) * 1988-12-14 1990-06-20 Sumitomo Metal Ind Ltd Method for reducing rolling titanium stock
JP2001239308A (en) * 2000-02-25 2001-09-04 Kanto Special Steel Works Ltd Roll for rolling and method of cold rolling metal plate
JP2004269991A (en) * 2003-03-11 2004-09-30 National Institute Of Advanced Industrial & Technology Diamond like carbon multilayer film having excellent wear resistance in different environment
JP2005161431A (en) * 2003-12-01 2005-06-23 Kiwa Tekkosho:Kk Machine tool guide device and its coating method
JP2006144848A (en) * 2004-11-17 2006-06-08 Jtekt Corp Bearing for rocker arm
JP2012097821A (en) * 2010-11-02 2012-05-24 Hitachi Ltd Slide part and equipment including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160102A (en) * 1988-12-14 1990-06-20 Sumitomo Metal Ind Ltd Method for reducing rolling titanium stock
JP2001239308A (en) * 2000-02-25 2001-09-04 Kanto Special Steel Works Ltd Roll for rolling and method of cold rolling metal plate
JP2004269991A (en) * 2003-03-11 2004-09-30 National Institute Of Advanced Industrial & Technology Diamond like carbon multilayer film having excellent wear resistance in different environment
JP2005161431A (en) * 2003-12-01 2005-06-23 Kiwa Tekkosho:Kk Machine tool guide device and its coating method
JP2006144848A (en) * 2004-11-17 2006-06-08 Jtekt Corp Bearing for rocker arm
JP2012097821A (en) * 2010-11-02 2012-05-24 Hitachi Ltd Slide part and equipment including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGEO HOSHINO: "NP Series Katai Hyomen -Tsukurikata to Hyokaho", MAKI SHOTEN, 30 September 1998 (1998-09-30), pages 167, 169 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159126A (en) * 2017-03-22 2018-10-11 新日鐵住金株式会社 Titanium tube molding roll, titanium tube molding apparatus and method for manufacturing titanium tube
JP2018158356A (en) * 2017-03-22 2018-10-11 新日鐵住金株式会社 Metal tube molding roll, metal tube molding device, and metal tube molding method
WO2018193991A1 (en) * 2017-04-21 2018-10-25 株式会社ニコン Container, method for producing container, and method for evaluating amorphous carbon film
WO2018197933A1 (en) * 2017-04-26 2018-11-01 BP BLISTER PACK d.o.o. Wear-resistant welding plate
CN108277437A (en) * 2018-03-28 2018-07-13 山西太钢不锈钢股份有限公司 Oil gas field martensitic stain less steel circular pipe blank and its manufacturing method
CN108277437B (en) * 2018-03-28 2019-11-08 山西太钢不锈钢股份有限公司 Oil gas field martensitic stain less steel circular pipe blank and its manufacturing method
JP2020089311A (en) * 2018-12-06 2020-06-11 株式会社クボタ Cutting blade, agricultural machine, and manufacturing method of cutting blade
JP7080163B2 (en) 2018-12-06 2022-06-03 株式会社クボタ Manufacturing method of cutting blade, agricultural machine and cutting blade
CN114045458A (en) * 2022-01-13 2022-02-15 艾瑞森表面技术(苏州)股份有限公司 Coating method applied to tool steel material cutter for aluminum alloy machining
CN114045458B (en) * 2022-01-13 2022-06-17 艾瑞森表面技术(苏州)股份有限公司 Coating method applied to tool steel material cutter for aluminum alloy machining

Also Published As

Publication number Publication date
JPWO2017047795A1 (en) 2017-09-14
JP6217871B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6217871B2 (en) Titanium tube forming roll, titanium tube forming apparatus, and titanium tube manufacturing method
JP2018159126A (en) Titanium tube molding roll, titanium tube molding apparatus and method for manufacturing titanium tube
US5718519A (en) Continuous hot dipping apparatus and slide bearing structure thereof
CN102822546B (en) Rolling bearing
CN103814150B (en) Hard films, hard films organizer and rolling bearing
JP5202978B2 (en) Thrust roller bearing
WO2012118036A1 (en) Piston ring
WO2014196614A1 (en) Piston ring, raw material therefor, and production method for both
JP2006348342A (en) Rolling supporter
JP2018158356A (en) Metal tube molding roll, metal tube molding device, and metal tube molding method
CN103797144A (en) Rolled steel bar or wire for hot forging
JP2018043286A (en) Metal tube molding roll, metal tube molding device, and metal tube molding method
JP3559048B2 (en) Rolling bearing manufacturing method
JP2007291466A (en) Surface-treating method of metal, rolling-sliding member and rolling device
JP2005030569A (en) Cam follower
JPH11303874A (en) Rolling member
JP2009150507A (en) Thrust roller bearing
JP2009150508A (en) Thrust roller bearing
JP2007155022A (en) Rolling device
CN112412966A (en) Sliding bearing friction pair for hot-dip production line zinc pot roller based on mixed wear strategy
JP2020118292A (en) Rolling bearing and wind power generation spindle support device
JP6855863B2 (en) Titanium plate press die and titanium plate press molding method
JP2018158355A (en) Mold for press of titanium plate and method for press-molding titanium plate
JP2007127263A (en) Rolling member and rolling device
JP2019218607A (en) Member, titanium tube forming roll, titanium tube molding device and method for manufacturing titanium tube

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016575271

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846666

Country of ref document: EP

Kind code of ref document: A1