WO2018193884A1 - Method for producing 1,1-dichloro-3,3,3-trifluoropropene - Google Patents

Method for producing 1,1-dichloro-3,3,3-trifluoropropene Download PDF

Info

Publication number
WO2018193884A1
WO2018193884A1 PCT/JP2018/014840 JP2018014840W WO2018193884A1 WO 2018193884 A1 WO2018193884 A1 WO 2018193884A1 JP 2018014840 W JP2018014840 W JP 2018014840W WO 2018193884 A1 WO2018193884 A1 WO 2018193884A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorination
reaction
catalyst
hydrogen fluoride
dichloro
Prior art date
Application number
PCT/JP2018/014840
Other languages
French (fr)
Japanese (ja)
Inventor
正宗 岡本
覚 岡本
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2019513554A priority Critical patent/JPWO2018193884A1/en
Publication of WO2018193884A1 publication Critical patent/WO2018193884A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to a method for producing 1,1-dichloro-3,3,3-trifluoropropene (CCl 2 ⁇ CHCF 3 ; hereinafter also referred to as 1223za).
  • the present invention provides a method for co-producing 1223za and 1,1-dichloro-1,3,3,3-tetrafluoropropane (CCl 2 FCH 2 CF 3 ; hereinafter also referred to as 234fb), and produces 234fb. Regarding the method.
  • Hydrofluoroolefins are hydrochlorofluorocarbons such as 1,3,3-dichloro-1,1,2,2,2-pentafluoropropane (CCIF 2 CF 3 CH 2 Cl; 225ca) ( Since it has a lower global warming potential (GWP) than HCFC compounds and is friendly to the global environment, if it can be used commercially, it is being replaced by various uses such as solvents. 1223za is also a kind of HFO compound.
  • GWP global warming potential
  • SbF 3 antimony fluoride
  • expensive SbF 3 is used in a stoichiometric amount or more, which is not suitable for mass production on an industrial scale.
  • Patent Document 2 discloses that 1,231-za is obtained by reacting a base with 1,1,1-trifluoro-3,3,3-trichloropropane (CF 3 CH 2 CCl 3 ; HCFC-233fb). A method of manufacturing is described. However, in the method of Patent Document 2, although 1223za is obtained with high yield and high selectivity, a large amount of basic waste water or organic base is discharged in the post-treatment.
  • the present invention has been made from the above viewpoint, and an object of the present invention is to provide an efficient method for producing 1223za. Another object of the present invention is to provide an efficient method for co-production of 1223za and 1222za and an efficient method for producing 1222za. Furthermore, an object of the present invention is to provide an efficient method for co-production of 1223za and 234fb and an efficient method for producing 234fb.
  • 1223za and 1222za can be produced in parallel by fluorinating 1220za using hydrogen fluoride as a fluorinating agent, and that 1222za can be produced, and the present invention has been completed. It was.
  • the present invention includes the following inventions.
  • invention 8 The method according to any one of inventions 1 to 7, wherein the fluorination is carried out at 0 to 10 MPaG.
  • invention 9 The method according to any one of inventions 1 to 8, wherein the fluorination is carried out in the presence or absence of a catalyst.
  • invention 10 The method according to any one of inventions 1 to 9, comprising a step of purifying 1,1-dichloro-3,3,3-trifluoropropene.
  • invention 12 Fluorinating 1,1,3,3,3-pentachloropropene with hydrogen fluoride to produce 1,1,3-trichloro-3,3-difluoropropene, A method for producing 1,3-trichloro-3,3-difluoropropene.
  • Invention 15 Inventions 12 to 14 are characterized in that 1,1-dichloro-3,3,3-trifluoropropene is produced together with 1,1,3-trichloro-3,3-difluoropropene by the fluorination. The method in any one of.
  • invention 16 Dehydrochlorination of 1,1,1,3,3,3-hexachloropropane in the liquid phase to obtain 1,1,3,3,3-pentachloropropene in the presence of a Lewis acid catalyst The method according to any one of inventions 1 to 15, further comprising a crystallization step.
  • 1,1,3,3,3-pentachloropropene (1220za) is reacted with hydrogen fluoride to fluorinate 1220za.
  • 1,1-dichloro-3,3,3-trifluoropropene (1223za) is produced.
  • the amount of hydrogen fluoride used is 3 to 40 moles, preferably 4 to 35 moles, and particularly preferably 8 to 30 moles per mole of 1220za.
  • the fluorination is performed at 0.1 to 10 MPaG (referred to as gauge pressure, hereinafter the same in this specification), preferably 0.15 to 6 MaG, particularly preferably more than 0.25 MPaG and 4.5 MPaG. It is as follows.
  • the fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst.
  • the fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type.
  • the fluorination is performed in a liquid phase or a gas phase.
  • the fluorination in the liquid phase is performed at 0 to 200 ° C., preferably 35 to 200 ° C., particularly preferably 35 to 140 ° C., and further preferably 40 to 130 ° C.
  • the fluorination in the gas phase is performed at 100 to 500 ° C., preferably 150 to 400 ° C., particularly preferably 200 to 350 ° C. Further, by the above fluorination, 1,1,3,3-tetrachloro-3-fluoropropene (hereinafter also referred to as 1221za), 1,1,3-trichloro-3,3-difluoropropene (1222za) together with 1223za 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb), 1,1,1,3,3-pentafluoropropane (CF 3 CH 2 CHF 2 ; hereinafter also referred to as 235fa), 1,1,1,3,3,3-hexafluoropropane (CF 3 CH 2 CF 3 ; hereinafter also referred to as 236fa) may be produced. Moreover, it is preferable to refine
  • 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride are reacted to fluorinate 1220za.
  • 1,1,3-trichloro-3,3-difluoropropene (1222za) is produced.
  • the amount of hydrogen fluoride used is 2 to 40 moles, preferably 3 to 35 moles, and particularly preferably 4 to 30 moles per mole of 1220za.
  • the fluorination is performed at 0.1 to 10 MPaG, preferably 0.1 to 3 MaG, and particularly preferably 0.1 to 2 MPaG.
  • the fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst.
  • the fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type. The fluorination is preferably performed in a liquid phase. The fluorination is preferably carried out at 0 to 70 ° C., particularly preferably 0 to 60 ° C., further preferably 10 to 55 ° C.
  • 1,1,3,3-tetrachloro-3-fluoropropene (1221za), 1,1-dichloro-3,3,3-trifluoropropene (1223za), 1,222za, 1-dichloro-1,3,3,3-tetrafluoropropane (234fb) and the like may be produced.
  • 1222za obtained by the said fluorination can also be used for the said fluorination with 1220za.
  • 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride are reacted to fluorinate 1220za.
  • 1,1-dichloro-3,3,3-trifluoropropene (1223za) and 1,1,3-trichloro-3,3-difluoropropene (1222za) are produced together.
  • the amount of hydrogen fluoride used is 3 to 40 moles, preferably 4 to 35 moles, and particularly preferably 8 to 30 moles per mole of 1220za.
  • the fluorination is preferably carried out at 0 to 70 ° C., particularly preferably 0 to 60 ° C., further preferably 10 to 55 ° C.
  • the fluorination is performed at 0.1 to 10 MPaG, preferably 0.1 to 3 MaG, and particularly preferably 0.1 to 2 MPaG.
  • the fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst.
  • the fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type.
  • the fluorination is preferably performed in a liquid phase.
  • the fluorination may produce 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb) together with 1223za and 1222za. Moreover, it is preferable to refine
  • the co-produced 1223za and 1222za can be separated and used for various purposes, and 1222za can be used for fluorination together with 1220za.
  • 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride are reacted to fluorinate 1220za.
  • 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb) is produced.
  • the amount of hydrogen fluoride used is preferably 4 to 40 mol, particularly preferably 8 to 40 mol, per 1220 za 1 mol.
  • the fluorination is carried out at 0.1 to 10 MPaG, preferably 1.5 to 6 MaG, particularly preferably 3 to 6 MPaG.
  • the fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst.
  • the fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type. The fluorination is preferably performed in a liquid phase. The fluorination is preferably carried out at 20 to 200 ° C., more preferably 70 to 200 ° C., particularly preferably 100 to 200 ° C., further preferably 140 to 200 ° C.
  • the fluorination produces 1,1-dichloro-3,3,3-trifluoropropene (1223za), 1,1,3-trichloro-3,3-difluoropropene (1222za) and the like together with 234fb. Sometimes. Moreover, it is preferable to refine
  • 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride are reacted to fluorinate 1220za.
  • 1,1-dichloro-3,3,3-trifluoropropene (1223za) and 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb) are produced together.
  • the amount of hydrogen fluoride used is 3 to 40 moles, preferably 4 to 40 moles, and particularly preferably 8 to 40 moles per mole of 1220za.
  • the fluorination is performed at 0.1 to 10 MPaG, preferably 1.5 to 6 MaG, and particularly preferably 2.0 to 4.5 MPaG.
  • the fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst.
  • the fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type.
  • the fluorination is preferably performed in a liquid phase.
  • the fluorination is preferably carried out at 20 to 200 ° C., more preferably 70 to 200 ° C., particularly preferably 100 to 200 ° C., further preferably 140 to 200 ° C.
  • the fluorination may produce 1,1,3-trichloro-3,3-difluoropropene (1222za) together with 1223za and 234fb. Moreover, it is preferable to refine
  • the co-produced 1223za and 234fb can be used for various purposes.
  • generated can also be used for fluorination with 1220za.
  • 1,1,3,3,3-pentachloropropene (1220za) is 1,1,1,3,3,3-hexachloropropane (CCl 3 CH 2 CCl 3 ; hereinafter referred to as 230fa).
  • 230fa 1,1,3,3,3-hexachloropropane
  • dehydrochlorination is preferably performed in the liquid phase.
  • the dehydrochlorination is preferably performed in the presence of a Lewis acid catalyst, and particularly preferably performed in the presence of a Lewis acid catalyst in the liquid phase.
  • the Lewis acid catalyst is preferably a metal halide, such as aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten. More preferred are halides of at least one metal selected from the group consisting of: chlorides of such metals are particularly preferred, chlorides of at least one metal selected from the group consisting of aluminum, iron, tin and antimony Is more preferable.
  • a metal halide such as aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten. More preferred are halides of at least one metal selected from the group consisting of: chlorides
  • the Lewis acid catalyst may be subjected to chlorination treatment of metal for the dehydrochlorination, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium.
  • metal for the dehydrochlorination aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium.
  • the dehydrochlorination is preferably performed at 40 to 200 ° C, more preferably 45 to 120 ° C.
  • 1,1,3,3,3-pentachloropropene (1220za) is 1,1,1,3,3-pentachloropropane (CCl 3 CH 2 CHCl 2 ; hereinafter also referred to as 240fa).
  • 240fa 1,1,1,3,3,3-hexachloropropane
  • the chlorination is preferably performed by contacting 240fa with a chlorinating agent, and more preferably the chlorinating agent is chlorine.
  • the contact is preferably performed in the presence of a radical initiator or under UV irradiation.
  • the chlorination is preferably carried out at 0 to 150 ° C., more preferably 40 to 80 ° C. Further, 230fa obtained by the chlorination is preferably subjected to the dehydrochlorination without purification, more preferably the chlorination and the dehydrochlorination are successively performed, It is particularly preferred that the dehydrochlorination is carried out in the same reactor.
  • co-production of 1,1-dichloro-3,3,3-trifluoropropene (1223za) and 1,1,3-trichloro-3,3-difluoropropene (1222za) This means that at least 1223za and 1222za are produced by the reaction according to the present invention, and preferably 1222za is produced by 0.0001 mol or more, particularly preferably 0.001 mol or more, per mol of 1223za.
  • co-production of 1,1-dichloro-3,3,3-trifluoropropene (1223za) and 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb) Means that at least 1223za and 234fb are produced by the reaction according to the present invention, and preferably 234fb is produced in an amount of 0.0001 mol or more, particularly preferably 0.001 mol or more, per mol of 1223za.
  • 1220za is fluorinated to produce 1,1-dichloro-3,3,3-trifluoropropene (1223za).
  • This fluorination uses hydrogen fluoride as a fluorinating agent. This fluorination is carried out in the liquid phase or in the gas phase.
  • 1220za used as a raw material is a known compound.
  • An example of the manufacturing method will be described later, but this does not prevent other manufacturing methods from being adopted.
  • 1220za can be advantageously manufactured by adopting the manufacturing method described later, it is preferable to employ this method.
  • the amount of hydrogen fluoride used is usually 3 to 40 moles, preferably 4 to 35 moles, more preferably 8 to 30 moles per mole of 1220za.
  • the amount of hydrogen fluoride used is expressed with respect to the charged amount of 1220 za when the reaction type is a batch type or semi-continuous flow type, and in the case of the continuous flow type, the steady amount of 1220 za present in the reactor. Expressed against quantity. When the amount of hydrogen fluoride is less than 3 mol, the theoretical amount of hydrogen fluoride necessary to produce 1223za is not reached, and both the selectivity of the reaction and the yield of the target product may decrease.
  • the amount of hydrogen fluoride used is preferably 2 to 40 mol, more preferably 3 to 35 mol. ⁇ 30 mol is particularly preferred. Further, when the fluorination of 1220za is carried out in the liquid phase and it is desired to produce 234fb predominantly, the amount of hydrogen fluoride used is preferably 4 to 40 mol, more preferably 8 to 40 mol. .
  • the reaction temperature is not particularly limited as long as the target product can be produced.
  • the reaction temperature is usually set in the range of 0 to 200 ° C, preferably 20 to 200 ° C, but is not limited thereto. In one embodiment of the present invention, the reaction temperature is preferably adjusted according to a desired object. For example, when it is desired to produce 1223za predominantly, 20 to 140 ° C. is preferable, and 20 to 130 ° C. is particularly preferable. In the case where 1223za and 1222za are co-produced, 0 to 70 ° C. is preferable, 0 to 60 ° C. is particularly preferable, and 10 to 55 ° C. is more preferable. When it is desired to produce 1222za predominantly, 0 to 70 ° C.
  • the temperature is preferably 20 to 200 ° C, more preferably 70 to 200 ° C, particularly preferably 100 to 200 ° C, and further preferably 140 to 200 ° C. Further, when it is desired to produce 234fb predominantly, it is preferably 20 to 200 ° C, more preferably 70 to 200 ° C, particularly preferably 100 to 200 ° C, and further preferably 140 to 200 ° C.
  • the reaction temperature is usually set in the range of 100 to 500 ° C, preferably 150 to 400 ° C, particularly preferably 200 to 350 ° C, but is not limited thereto. In one embodiment of the present invention, the reaction temperature is preferably adjusted according to a desired object.
  • the pressure is not limited, and may be any of reduced pressure, normal pressure (atmospheric pressure), and increased pressure.
  • the reaction pressure is usually 0.1 to 10 MPaG (referred to as gauge pressure, hereinafter the same), preferably 1.5 to 6 MPaG, more preferably 2.0 to 4.5 MPaG. If it is 0.1 MPaG or more, it can be easily raised to a suitable reaction temperature, and if it is 10 MPaG or less, the economic cost associated with the pressure resistance design of the reactor can be relatively low. However, these do not prevent the reaction from being performed at a pressure lower than 0.1 MPaG or higher than 10 MPaG.
  • the fluorination of 1220za may be carried out in the presence of a salt composed of an organic base such as an amine compound, an amide compound, a sulfonyl compound, or a phosphorus compound and hydrogen fluoride.
  • a salt composed of an organic base such as an amine compound, an amide compound, a sulfonyl compound, or a phosphorus compound and hydrogen fluoride.
  • examples include triethylamine, diisopropylamine, tri-n-butylamine, pyridine, 2,6-lutidine, 1,8-diazabicyclo [5.4.0] undec-7-ene, DMAC, DMF, DMSO, triphenylphosphine, and the like. However, it is not limited to these.
  • Fluorination of 1220za may be performed in the presence or absence of a catalyst.
  • the catalyst When fluorination of 1220za is carried out in the presence of a catalyst in the liquid phase, the catalyst includes alkali metals, alkaline earth metals, transition metals, base metals, metalloids, simple substances, derivatives, or two or more of these Use a mixture. More specifically, zero-valent metals, hydroxides, oxides, halides, organic or inorganic salts, and complexes selected from alkali metals, alkaline earth metals, transition metals, base metals, and semimetals. More specifically, chlorides, fluorides and the like selected from tin, titanium, antimony, aluminum, and iron are exemplified, but not limited thereto.
  • a metal catalyst is used as the catalyst.
  • the metal catalyst is aluminum, vanadium, chromium, titanium, magnesium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, zinc, It contains at least one metal selected from the group consisting of lanthanum, tantalum and tungsten, and compounds of such metals are preferred, and oxides, halides and oxyhalides of such metals are more preferred (where halogens Are specifically iodine, bromine, chlorine, and fluorine.
  • the metal catalyst is more preferably a partial halide or total halide of such a metal, particularly preferably a partial fluoride or total fluoride of such a metal.
  • the metal catalyst may be a supported catalyst or a non-supported catalyst.
  • the carrier in the case of the supported catalyst is not particularly limited, but it is preferable to employ carbon, the above-mentioned metal oxides, oxyhalides (preferably oxyfluorides), halides (preferably fluorides) and the like.
  • oxyhalides preferably oxyfluorides
  • halides preferably fluorides
  • Such carriers particularly preferably, activated carbon or an oxide of at least one metal selected from the group consisting of aluminum, chromium, zirconium and titanium, an oxyhalide (particularly preferably an oxyfluoride), a halide (particularly, Preferred is fluoride).
  • the supported material in the case of the supported catalyst is a compound of the above-mentioned metal, for example, as the above-mentioned metal fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, oxyfluorinated chloride, glass oxide, etc. Supported on a carrier. Such metal compounds may be supported alone or in combination of two or more.
  • the supported product in the case of a supported catalyst is chromium nitrate, chromium trichloride, potassium dichromate, titanium trichloride, manganese nitrate, manganese chloride, ferric chloride, nickel nitrate, nickel chloride, nitric acid.
  • Cobalt, cobalt chloride, antimony pentachloride, magnesium chloride, magnesium nitrate, zirconium chloride, zirconium oxychloride, zirconium nitrate, copper (II) chloride, zinc (II) chloride, lanthanum nitrate, tin tetrachloride and the like are used.
  • the metal catalyst is preferably subjected to a fluorination treatment for use in use.
  • the method of this fluorination treatment is not particularly limited, but is generally carried out by bringing the metal catalyst into contact with a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon.
  • a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon.
  • the fluorination treatment temperature is not particularly limited, it is usually carried out at 200 ° C. or higher, and there is no particular upper limit on the temperature, but practically it is preferably carried out at 600 ° C. or lower.
  • Fluorination of 1220za may be performed in the presence or absence of a filler.
  • a filler examples include carbon such as activated carbon, and metals such as heat-resistant plastic, ceramics, and stainless steel. Among these, activated carbon is particularly preferable.
  • productivity is often discussed in terms of the value (seconds) obtained by dividing the reaction zone volume A (mL) by the raw material supply rate B (mL / second). Call time.
  • B indicates “volume of the raw material gas introduced into the reactor per second”.
  • the raw material gas is regarded as an ideal gas, and the value of B is determined from the number of moles, pressure and temperature of the raw material gas. Is calculated.
  • by-products of other compounds than the raw material and the target product and a change in the number of moles may occur, but they are not taken into account when calculating the “contact time”.
  • the determination of the optimum contact time depends on the reaction raw material, reaction temperature, catalyst, type of filler, etc. used in the method of the present invention. For this reason, it is desirable to optimize the contact time by appropriately adjusting the supply rate of the reaction raw material for each reaction raw material, the set temperature of the reaction apparatus, and the type of catalyst.
  • the contact time is usually 0.1 to 300 seconds, preferably 5 to 150 seconds, more preferably 10 to 100 seconds. It is not limited and may be changed as appropriate.
  • a solvent can be used in consideration of the uniformity of the reaction and the operability after the reaction.
  • the kind of the solvent to be used is not particularly limited as long as the raw material 1220za can be dissolved.
  • an organic compound having a boiling point higher than 1223za and not fluorinated by hydrogen fluoride during the reaction is preferable.
  • solvents include, but are not limited to, tetramethylene sulfone (sulfolane), perfluoroalkanes, perfluoroalkenes, hydrofluorocarbons, and the like.
  • the amount of the solvent to be used is not particularly limited as long as the raw material 1220za can be dissolved. 80 mass% or less is preferable with respect to 1220za, and 40 mass% or less is more preferable.
  • Fluorination of 1220za may be performed by any of batch, semi-continuous flow, and continuous flow methods.
  • the reactor is preferably a liquid phase reactor or a gas phase reactor depending on the reaction.
  • the material for the reactor include, but are not limited to, stainless steel (for example, SUS304 and SUS316), Hastelloy (TM), Inconel (TM), Monel (TM), and the like. Such reactors are well known in the art.
  • the procedure for fluorination of 1220za is not particularly limited. An example is shown below. In batch-type operation and semi-continuous flow-type operation, for example, when a predetermined amount of a predetermined raw material is introduced into a reactor and the fluorination is performed by a liquid phase reaction, a predetermined amount of a solvent is introduced as desired. The procedure etc. which perform reaction by are illustrated. When using a catalyst, it is preferable to introduce the catalyst into the reactor in advance or together with the raw materials and the solvent. Moreover, the introduction procedure of the raw material to a reactor is not specifically limited. For example, 1220za may be introduced into the reactor and then hydrogen fluoride may be introduced into the reactor.
  • a part or all of the solvent may be introduced into the reactor before introducing hydrogen fluoride into the reactor, or separately with the introduction flow of hydrogen fluoride.
  • the solvent may be introduced into the reactor in a stream or in a stream with hydrogen fluoride.
  • a reactor is introduced with a predetermined amount of 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride in separate flows, and 1220za under predetermined conditions.
  • the procedure etc. which perform fluorination of are illustrated.
  • a solvent used as desired may be introduced into the reactor separately from 1220za and hydrogen fluoride, or as a 1220za solution or a hydrogen fluoride solution.
  • the method for purifying 1223za from the reaction product obtained by fluorination of 1220za is not particularly limited, and a known purification method can be employed. If necessary, the chlorine product and the acid component that may be contained in the reaction product may be removed by a method such as washing the reaction product with water. In addition, water in the reaction product may be removed by performing a dehydration treatment or the like, and this may be performed in combination with a removal treatment of a chlorine component or an acid component. Moreover, you may perform operation, such as distillation. Although an example of the purification method of 1223za is shown below, it is not limited to this.
  • reaction product is passed through a cooled condenser to be condensed, washed with water or / and alkaline solution to remove chlorine component, acid component, etc., dried with a desiccant such as zeolite, activated carbon, etc.
  • a desiccant such as zeolite, activated carbon, etc.
  • Fluorination of 1220za may produce by-products such as 1221za, 1222za, 234fb, 235fa, and 236fa.
  • these compounds can be separated from the reaction product and recovered by ordinary distillation operations.
  • these by-products for example, underfluorinated compounds such as 1221za and 1222za
  • they can be reused as a raw material for the reaction according to the present invention. These compounds may be used for various applications as they are.
  • underfluorinated compounds such as 1221za and 1222za can be converted to 1223za by further fluorination. Therefore, such underfluorinated products may be used as a reaction raw material in the reaction system in the same manner as 1220za. Thereby, 1223za can be manufactured efficiently. Further, such a small fluorinated product may be taken out from the reaction product and fluorinated separately.
  • the obtained 1,1-dichloro-3,3,3-trifluoropropene (1223za) exists as a liquid at normal temperature and normal pressure.
  • 1220za can be produced by a process including at least a step of dehydrochlorinating 230fa in the liquid phase in the presence of a Lewis acid catalyst (hereinafter sometimes referred to as “dehydrochlorination step”). it can.
  • 230fa can be manufactured by a method including at least a step of chlorinating 240fa (hereinafter, sometimes referred to as “chlorination step”), and it is preferable to do so. This does not preclude the use of 230fa produced by other methods in the dehydrochlorination step.
  • “Moisture” is described as common to both chlorination and dehydrochlorination processes. In both the reactions of the chlorination step and the dehydrochlorination step, water does not actively participate in the reaction. Therefore, in the present invention, there is no positive reason for adding water to the reaction system.
  • “moisture” is as low as possible (generally referred to as anhydrous conditions) in order to increase the activity of the Lewis acid.
  • the activity of the Lewis acid is sufficiently maintained as long as 1% by mass of water is present with respect to the total mass of the reaction solution. Therefore, the water content is desirably maintained at 1% by mass or less, more preferably 0.1% by mass or less, with respect to the total mass of the reaction solution.
  • Chlorination process is a process in which 1,1,1,3,3-pentachloropropane (240fa) is chlorinated to obtain 1,1,1,3,3,3-hexachloropropane (230fa). .
  • 240fa is a starting material of 1,1,1,3,3-pentafluoropropane (245fa) that is currently industrially produced as a blowing agent, and reacts carbon tetrachloride and vinyl chloride in the presence of a catalyst. (See, for example, US Pat. No. 7,094,936).
  • chlorination of 240fa is performed by contacting 240fa with a chlorinating agent (preferably chlorine).
  • a chlorinating agent preferably chlorine
  • This contact may be in any form, for example, contact by introducing 240fa into a reactor into which a chlorinating agent has been previously introduced, or introducing the chlorinating agent and 240fa into the reactor in separate flows. Examples of such contact include, but are not limited to, contact by introducing a chlorinating agent into a reactor into which 240 fa has been introduced in advance.
  • a gaseous chlorinating agent for example, chlorine gas
  • this reaction is preferably performed in the presence of a radical initiator or under UV irradiation, and particularly preferably performed in the presence of a radical initiator and under UV irradiation, from the viewpoint of reaction efficiency.
  • this reaction is performed under UV irradiation without using a radical initiator because it shows good acceleration of the chlorination reaction and easy purification after the reaction. It is preferable.
  • the chlorinating agent used is not particularly limited.
  • the chlorinating agent is not particularly limited as long as it generates chlorine (chlorine radical).
  • chlorine chlorine, sulfuryl chloride, N-chlorosuccinimide and the like can be mentioned, among which chlorine is preferable.
  • the amount of chlorinating agent used is not particularly limited as long as 230fa is produced.
  • a chlorinating agent is usually used in an amount of 0.3 to 1.5 equivalents, preferably 0.5 to 1 equivalent, relative to 240fa.
  • examples of the radical initiator used include azo compounds, organic peroxides, triethylborane, and diethylzinc.
  • a zero-valent metal complex or the like may be used.
  • Such radical initiators may be used alone or in combination.
  • examples of the azo compound include, but are not limited to, azobisisobutyronitrile (AIBN), 1,1'-azobis (cyclohexanecarbonitrile) (ABCN), and the like.
  • examples of the organic peroxide include, but are not limited to, tert-butyl hydroperoxide (TBHP) and benzoyl peroxide (BPO).
  • the amount of radical initiator used is not particularly limited as long as it is an effective amount. In one embodiment of the present invention, the amount of the radical initiator used is 0.01 to 1% by mass, preferably 0.1 to 0.3% by mass with respect to 240fa.
  • the reaction temperature in the chlorination step is not particularly limited. In one embodiment of the present invention, the reaction temperature in the chlorination step is preferably about 0 to 150 ° C., and particularly preferably 40 to 80 ° C. from the viewpoint of reaction efficiency.
  • the reaction time in the chlorination process is not particularly limited.
  • 240fa in the liquid phase inside the reactor is replaced with 230fa, which is the object, over time. It is preferable to adjust so that the highest selectivity to 230fa is achieved while confirming the progress of the reaction by gas chromatographic analysis or the like of the sampled reactant.
  • the reaction is preferably terminated when about 240 to 80% of the raw material is consumed, more preferably about 40 to 70%, and particularly preferably about 50 to 60%. Absent. Thereby, the byproduct of the compound in which 230fa is further chlorinated can be suppressed. This does not prevent the reaction from being terminated when less than 30% of the raw material 240fa is consumed or when more than 80% is consumed.
  • 1,1,1,2,3,3-hexachloropropane (hereinafter also referred to as 230da) may be generated by the chlorination reaction.
  • 230da is a kind of 240fa chlorinated derivative, and 1220za can be produced by dehydrochlorination of 230da. Therefore, in the dehydrochlorination step, pure 230fa may be used as a feedstock, or a mixture of 230fa and 230da may be used. Further, 230da may be used in place of 230fa as a feedstock for the dehydrochlorination step.
  • 230fa obtained in the chlorination step can be purified by a general purification operation.
  • the raw material 240fa can be easily separated from 230fa by an operation such as distillation, preferably vacuum distillation.
  • the separated 240fa can be reused as a raw material for the chlorination process.
  • 230fa synthesized by the chlorination step can be used as a raw material for the subsequent dehydrochlorination step without performing post-treatment such as catalyst separation and distillation purification. This does not prevent the post-treatment, but one of the great advantages of the present invention is that the chlorination step and the dehydrochlorination step can be carried out continuously without performing the post-treatment. As such, it is a preferred embodiment that no such post-processing is performed.
  • the material of the reactor is not particularly limited.
  • a highly oxidizing chlorinating agent for example, chlorine gas
  • those made of glass or stainless steel are preferred.
  • a reactor lined with glass or resin is also preferred.
  • the reactor is preferably equipped with various facilities such as a blowing tube, a stirring facility, a reflux tower and the like.
  • the dehydrochlorination step is a step of obtaining 1220za by dehydrochlorinating 230fa in the presence of a Lewis acid catalyst in the liquid phase.
  • the material of the reactor is not particularly limited. Since it is a reaction in which hydrogen chloride is generated, a material having acid resistance is preferable. Specifically, a material made of glass or stainless steel, a material lined with glass or resin, or the like can be given. Furthermore, the reactor is preferably equipped with various facilities such as a stirring facility and a reflux tower. In the case where the chlorination step and the dehydrochlorination step are performed in the same reactor, when a gaseous chlorinating agent (for example, chlorine) is used, it is preferable to include a blowing tube into which the chlorinating agent can be introduced.
  • a gaseous chlorinating agent for example, chlorine
  • reaction in the liquid phase and in the presence of a Lewis acid catalyst
  • the reaction proceeds sufficiently at a reaction temperature of 200 ° C. or lower as described later. This is not necessarily higher than the boiling point of 230fa or 1220za, so if a reflux tower is provided, the reaction mixture can be kept in a liquid state at normal pressure, so that the reaction is carried out at normal pressure (open system). be able to. This does not preclude the adoption of a method in which the reaction is performed using a pressure reactor and the generated hydrogen chloride is purged in a timely manner.
  • Examples of the Lewis acid catalyst used in the dehydrochlorination step include metal halides.
  • the metal halide refers to one having a bond between a metal atom and a halogen atom. If the bond between the metal atom and the halogen atom is confirmed by infrared spectroscopy (IR method), X-ray diffraction method (XRD method), X-ray photoelectron spectroscopy (XPS method), etc., it can be used as the catalyst of the present invention. .
  • Certain metal halides are preferred. Such metal halides may be fluorides, chlorides, bromides, and iodides. Of these, chlorides are preferred. More specifically, at least one metal chloride selected from the group consisting of aluminum, iron, tin and antimony is particularly preferred. Among these, aluminum chloride and iron chloride are more preferable, and in the case of iron chloride, ferric chloride is preferable.
  • An anhydrous Lewis acid catalyst is preferable because of its high catalytic activity. Commercially available anhydrides may be used as they are, or hydrates may be treated with a dehydrating agent such as thionyl chloride to obtain anhydrides.
  • the metal nitrate, carbonate, etc. or zero-valent metal powder can be derived into the above-mentioned metal chloride by treating with hydrogen chloride in advance. This can also be used as a Lewis acid catalyst.
  • the above metal zero-valent metal powders, carbonates and nitrates are produced by hydrogen chloride by-produced by chlorination of 240fa in the chlorination process and hydrogen chloride generated by the dehydrochlorination reaction of 230fa in the dehydrochlorination process.
  • the Lewis acid catalyst used in the chlorination step or dehydrochlorination step may be a zero-valent metal powder, a metal carbonate, or a metal nitrate. .
  • the amount of the Lewis acid catalyst is not particularly limited as long as it is an effective amount as a catalyst.
  • the optimum value varies depending on the operating conditions such as the type of catalyst and reaction temperature, but the reaction proceeds at a good reaction rate and unexpected side reactions are unlikely to occur.
  • the content is 0.01 to 10 mol%, more preferably 0.1 to 5 mol% with respect to the organic matter.
  • the reaction temperature is usually set in the range of 40 to 200 ° C., more preferably 45 to 120 ° C.
  • the optimum temperature also depends somewhat on the type of Lewis acid catalyst.
  • aluminum chloride typically 50 to 80 ° C.
  • ferric chloride typically 50 to 110 ° C. (typically higher than this)
  • 60 to 80 ° C. is particularly preferable.
  • the dehydrochlorination step there is a method in which a Lewis acid catalyst and 230fa are charged into a reactor equipped with a reflux tower, and the inside of the reactor is heated while stirring. Thereby, only hydrogen chloride can be discharged out of the reactor from the reflux tower through which water (tap water, industrial water, etc.) is circulated.
  • this reactor is not specifically limited, It is preferable to be comprised from the material resistant to reaction, for example, the reactor made from glass and the reactor made from glass lining are used.
  • the reaction time in the dehydrochlorination step is not particularly limited.
  • the liquid phase inside the reactor is replaced with the target 1220za as time passes. It is preferable to terminate the reaction when 230fa is almost consumed while confirming the progress of the reaction by gas chromatographic analysis or the like of the sampled reactant.
  • the reaction in the dehydrochlorination step can be carried out in the gas phase and without a catalyst.
  • the reaction temperature is usually 200 to 550 ° C., and the load on the apparatus is generally large due to the high temperature. May be advantageous.
  • 1220za obtained by the dehydrochlorination step can be used as a raw material for the subsequent fluorination reaction of 1220za without performing post-treatment such as separation of the catalyst and purification by distillation. This does not prevent the post-treatment such as separation of the catalyst and purification by distillation.
  • post-treatment such as separation of the catalyst and purification by distillation.
  • one of the great advantages of the present invention is that each step can be carried out continuously without performing the post-treatment. Therefore, it is a preferable aspect not to perform such post-processing.
  • FID% refers to the area% when the detector analyzes by FID gas chromatograph.
  • the simple purity conversion yield of 1223za, the simple purity conversion yield of 1222za, and the simple purity conversion yield of 234fb are respectively calculated according to the following formulas.
  • Simple purity conversion yield of 1223za 100 ⁇ (recovered organic matter amount ⁇ 1223zaFID% / 1223za molecular weight) / (1220za charge amount ⁇ 1220za purity / 1220za molecular weight)
  • Simple purity conversion yield of 1222za 100 ⁇ (recovered organic matter amount ⁇ 1222zaFID% / 1222za molecular weight) / (1220za charge amount ⁇ 1220za purity / 1220za molecular weight)
  • Simple purity conversion yield of 234fb 100 ⁇ (recovered organic matter amount ⁇ 234fbFID% / 234fb molecular weight) / (1220za charge amount ⁇ 1220za purity / 1220za molecular weight)
  • the reaction product gas was extracted from the needle valve at the condenser outlet so as to maintain 4.0 to 4.5 MPaG.
  • the extracted gas was passed through a fluororesin gas washing bottle containing ice water cooled in an ice water bath to absorb the acid, and the reaction product organic matter was recovered with a glass trap of a dry ice acetone bath.
  • the reactor was purged, and the extracted gas was a fluororesin gas cleaning bottle containing ice water cooled in an ice water bath and dry ice. It collected in the glass trap of the acetone bath.
  • reaction liquid in the autoclave and the glass trap collection from the dry ice acetone bath are all mixed in a fluororesin gas washing bottle containing ice water, and the combined solution is mixed with organic substances in a fluororesin separatory funnel.
  • the amount of the collected organic matter was 20.3 g.
  • Example 1-2 The reaction was carried out in the same manner as in Example 1-1 except that the reaction temperature was 80 ° C. Since the maximum pressure was 3.5 MPaG, no gas was extracted. The amount of recovered organic matter was 17.8 g.
  • Example 1-3 The reaction was performed in the same manner as in Example 1-1 except that the reaction temperature was 50 ° C. Since the maximum pressure was 2.5 MPaG, no gas was extracted. The amount of recovered organic matter was 18.6 g.
  • Example 1-4 The reaction was carried out in the same manner as in Example 1-1 except that the reaction temperature was 30 ° C., the reaction pressure was normal pressure, and the reaction time was 5 hours. The amount of recovered organic matter was 24.8 g.
  • Example 1-5 10 g (0.044 mol) of 1,1,3,3,3-pentachloropropene (1220za) having a reaction temperature of 160 ° C. and a purity of 94.7%, 27.0 g (1.35 mol, 12.20 mol) of hydrogen fluoride
  • the reaction was carried out in the same manner as in Example 1-1 except that the hydrogen / hydrogen fluoride molar ratio was about 1/30).
  • the amount of the collected organic matter was 7.1 g.
  • the extracted gas was passed through a fluororesin gas washing bottle containing ice water cooled in an ice water bath to absorb the acid, and the reaction product organic matter was recovered with a glass trap of a dry ice acetone bath. After confirming that no pressure increase was observed 5 hours after the start of temperature increase, the reactor was purged, and the extracted gas was a fluororesin gas cleaning bottle containing ice water cooled in an ice water bath and dry ice. It collected in the glass trap of the acetone bath.
  • reaction liquid in the autoclave and the glass trap collection from the dry ice acetone bath are all mixed in a fluororesin gas washing bottle containing ice water, and the combined solution is mixed with organic substances in a fluororesin separatory funnel.
  • the amount of the collected organic matter was 432 g.
  • Table 1 shows a summary of the reaction conditions (1220za / hydrogen fluoride molar ratio, reaction temperature, reaction pressure) for Examples 1-1 to 1-8.
  • the composition of the recovered organic substance was analyzed by gas chromatography, and the simple purity conversion yields of 1223za, 1222za, and 234fb were calculated. These results are shown in Table 2.
  • “-” indicates that no detection was made.
  • Example 2 A glass distillation column equipped with an electromagnetic reflux apparatus, a reflux timer, and a 2 L three-neck flask was filled with 20 stages of Helipac NO2. Next, the recovered organic substances obtained in Examples 1-6 to 1-8 were mixed, and 1100 g of the collected organic substances were charged and distilled. 450 g of a fraction having a tower top temperature of 55.0 to 55.3 ° C. (1223za purity of 99.97 FID%) was recovered (corresponding to fraction 2 in Table 3). In addition, each fraction shown in Table 3 was obtained. In Table 3, “-” indicates that no detection was made.
  • Example 3 The fraction 4 separately collected in the distillation of Example 2 and the kettle residue were mixed and washed with water and dried using molecular sieves. The same reaction as in Example 1-7 was carried out using 500 g of the dried organic substance and 440 g of hydrogen fluoride. The amount of collected organic matter was 380 g.
  • 1,1,3,3-tetrachloro-3-fluoropropene (1221za) and 1,1,3,3,3-pentachloropropene (1220za) were not detected.
  • the top of the Dimroth was connected to a 500 mL-PFA container containing a 5 L-water trap and then 250 g of a 25 wt% potassium hydroxide aqueous solution using a PFA tube.
  • Irradiation from a high-pressure UV lamp equipped with a water-cooling jacket over the glass from the upper outer side of the flask the lower part of the flask was heated to 60 ° C. with a water bath, and 673 g (9.5 mol) of chlorine was introduced from a ball filter over 360 minutes. After introducing chlorine, the reactor was cooled to complete the reaction. The residue in the flask was washed with water and with a weak alkaline aqueous solution to recover 2326 g of organic matter.
  • a glass distillation tower equipped with an electromagnetic reflux apparatus, a reflux timer, a pressure reduction line, a pressure gauge, and a 2 L three-necked flask was filled with 10 stages of glass Raschig rings, and 2300 g of the recovered organic matter was charged. Each distillate shown in Table 4 and a kettle residue liquid 253g were obtained.
  • Example 4-2 In a 2000 mL three-necked flask equipped with a ball filter, thermometer, Dimroth capable of flowing tap water and a stirrer, 910 g of fraction 3 obtained in Example 4-1 and 0.93 g (0.006 mol) of ferric chloride were obtained. ) And stirring was started. At the top of the Dimroth, an empty trap of a 500 mL-PFA container was connected using a PFA tube, and then a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution. While introducing nitrogen from the ball filter at a flow rate of 30 mL / min, the flask was heated to 80 ° C.
  • Example 4-3 A glass distillation column equipped with an electromagnetic reflux apparatus, a reflux timer, a pressure reduction line, a pressure gauge, and a 1 L three-necked flask was filled with 10 stages of glass Raschig rings, and the recovered organic matter obtained in Example 4-1 was charged at a temperature of 74 500 g of a fraction having a pressure of ⁇ 75.6 ° C. and a pressure of 2.0 KPaG was obtained.
  • Example 4-4 In a 2000 mL three-necked flask equipped with a ball filter, thermometer, Dimroth capable of flowing tap water and a stirrer, 250 g of fraction 4 obtained in Example 4-1, 0.31 g of ferric chloride (0.002 mol) ) And stirring was started. The same operation as in Example 4-2 was performed, except that the flask was heated to 120 ° C. in an oil bath for 3 hours.
  • Example 5-1 Chlorination of 1,1,1,3,3-pentachloropropane (240fa) under liquid phase, UV irradiation 3000 mL equipped with a ball filter, thermometer, Dimroth capable of running tap water and stir bar
  • 1000.0 g (4.7 mol) of 1,1,1,3,3-pentachloropropane (240fa) having a purity of 98.6FID% and fractions 1 and 2 of Example 4-1 were charged and stirred. Started.
  • the top of the Dimroth was connected to a 500 mL-PFA container containing a 5 L-water trap and then 250 g of a 25 wt% potassium hydroxide aqueous solution using a PFA tube.
  • the flask was heated to 60 ° C. in an oil bath, and 600 g (0.8 mol) of chlorine was introduced from a ball filter over 300 minutes. After introducing chlorine, nitrogen was blown in at 100 mL / min for 100 minutes, and then the reactor was cooled to complete the reaction. After the reaction was completed, 2284 g of the residual liquid (organic matter) in the flask was recovered.
  • Example 5-2 In a 2000 mL three-necked flask equipped with a ball filter, a thermometer, a Dimroth capable of running tap water and a stirrer, 2284 g of the residue from the vessel (organic matter) obtained in Example 5-1, 3.0 g of ferric chloride (0. 02 mol) was charged, and the same operation as in Example 4-2 was performed.
  • Example 6 A liquid phase, a radical initiator, chlorination of 1,1,1,3,3-pentachloropropane (240fa) under UV irradiation, a ball filter, a thermometer, a Dimroth capable of flowing tap water, and a stir bar A 200 mL three-necked flask was charged with 100.0 g (0.47 mol) of 1,1,1,3,3-pentachloropropane (240fa) with a purity of 98.6FID% and 0.1 g (0.6 mmol) of AIBN. Agitation was started.
  • the top of the Dimroth was connected to a 500 mL-PFA container containing a 1 LPFA water trap and then 250 g of 25 wt% potassium hydroxide aqueous solution using a PFA tube.
  • the flask was heated to 60 ° C. in an oil bath, and 34 g (0.48 mol) of chlorine was introduced from the ball filter over 200 minutes. After introducing chlorine, the reactor was cooled to complete the reaction. The kettle residue in the flask was washed with water and a weak alkaline aqueous solution to recover 114 g of organic matter.
  • 1,1,1,3,3,3-hexa obtained by chlorination of 1,1,1,3,3-pentachloropropane (240fa)
  • the 1,1,3,3,3-pentachloropropene (1220za) can also be obtained by subjecting the reaction product containing chloropropane (230fa) to the dehydrochlorination of 230fa without purification.
  • Example 7-2 The same operation as in Example 7-1 was performed except that the temperature in the reaction tube was raised to 270 ° C.
  • Example 7-3 The same operation as in Example 7-1 was performed except that the temperature in the reaction tube was raised to 300 ° C.
  • Table 5 shows the results of Examples 7-1 to 7-3. In Table 5, “-” indicates that no detection was made.
  • Example 8-1 The same operation as in Example 7-1 was performed except that activated carbon was filled instead of the Raschig ring.
  • Example 8-2 The same operation as in Example 7-1 was performed, except that a fluorinated alumina catalyst (hereinafter also referred to as catalyst 1) was filled instead of Raschig ring.
  • catalyst 1 used what was prepared according to the following catalyst preparation examples 1.
  • Example 8-3 Except for filling fluorinated chromium-supported activated carbon (hereinafter also referred to as catalyst 2) instead of Raschig ring, and introducing chlorine together with the raw material and hydrogen fluoride at a flow rate of 0.005 g / min. The same operation as in 7-1 was performed.
  • Catalyst 2 was prepared according to Catalyst Preparation Example 2 below.
  • Table 6 shows the results of Examples 8-1 to 8-3.
  • “-” indicates that no detection was made.
  • Example 9-1 Except for introducing 1,1,3,3,3-pentachloropropene (1220za) raw material at a flow rate of 0.200 g / min and hydrogen fluoride at a flow rate of 0.125 g / min (contact time with packing: 20 seconds) The same operation as in Example 1-1 was performed.
  • Example 9-2 The same operation as in Example 9-1 was performed except that activated carbon was filled instead of the Raschig ring.
  • Example 9-3 The same operation as in Example 7-1 was performed except that catalyst 2 was filled instead of Raschig ring and chlorine was introduced at a flow rate of 0.005 g / min together with the raw material and hydrogen fluoride.
  • Table 7 shows the results of Examples 9-1 to 9-3.
  • “-” indicates that no detection was made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The method for producing 1,1-dichloro-3,3,3-trifluoropropene (1223za) according to the present invention is characterized by comprising a step in which 1,1,3,3,3-pentachloropropene (1220za) is fluorinated with hydrogen fluoride to produce 1,1,-dichloro-3,3,3-trifluoropropene (1223za). By the method, 1223za can be efficiently produced from 1220za as a starting material.

Description

1,1-ジクロロ-3,3,3-トリフルオロプロペンの製造方法Process for producing 1,1-dichloro-3,3,3-trifluoropropene
 本発明は1,1-ジクロロ-3,3,3-トリフルオロプロペン(CCl2=CHCF3;以下、1223zaともいう)の製造方法に関する。また、本発明は、1223zaと1,1,3-トリクロロ-3,3-ジフルオロプロペン(CCl2=CHCClF2;以下、1222zaともいう)を併産する方法、及び1222zaを製造する方法に関する。さらに、本発明は、1223zaと1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(CCl2FCH2CF3;以下、234fbともいう)を併産する方法、及び234fbを製造する方法に関する。 The present invention relates to a method for producing 1,1-dichloro-3,3,3-trifluoropropene (CCl 2 ═CHCF 3 ; hereinafter also referred to as 1223za). The present invention also relates to a method for co-producing 1223za and 1,1,3-trichloro-3,3-difluoropropene (CCl 2 = CHCCClF 2 ; hereinafter also referred to as 1222za) and a method for producing 1222za. Furthermore, the present invention provides a method for co-producing 1223za and 1,1-dichloro-1,3,3,3-tetrafluoropropane (CCl 2 FCH 2 CF 3 ; hereinafter also referred to as 234fb), and produces 234fb. Regarding the method.
 ハイドロフルオロオレフィン(以下、HFO化合物ともいう)は、1,3,-ジクロロ-1,1,2,2,2-ペンタフルオロプロパン(CClF2CF3CH2Cl;225ca)等のハイドロクロロフルオロカーボン(HCFC化合物)よりも地球温暖化係数(GWP)が小さく、地球環境に優しい化合物なので、商業的に使用可能であれば溶剤等の各種用途での代替が進んでいる。1223zaもHFO化合物の一種である。 Hydrofluoroolefins (hereinafter also referred to as HFO compounds) are hydrochlorofluorocarbons such as 1,3,3-dichloro-1,1,2,2,2-pentafluoropropane (CCIF 2 CF 3 CH 2 Cl; 225ca) ( Since it has a lower global warming potential (GWP) than HCFC compounds and is friendly to the global environment, if it can be used commercially, it is being replaced by various uses such as solvents. 1223za is also a kind of HFO compound.
 1223zaを製造する方法としては、種々の方法が知られている。例えば、特許文献1には各種弗素化プロペンの製造方法が記載されており、その中で、例IIのEx2Gでは、トリクロロエチレン(CCl2=CHCl;HCO-1120)とトリフルオロメタン(CHF3;R-32)を400℃で反応させて1223zaを製造する方法が報告されている。しかし、特許文献1による反応は、気相反応且つ高温条件で行われ、原料の転化率が12%前後であるため、大量生産を行うには適さない。 Various methods are known as a method for producing 1223za. For example, Patent Document 1 describes a method for producing various fluorinated propenes. Among them, in Ex2G of Example II, trichlorethylene (CCl 2 = CHCl; HCO-1120) and trifluoromethane (CHF 3 ; R— A method for producing 1223za by reacting 32) at 400 ° C. has been reported. However, the reaction according to Patent Document 1 is carried out under a gas phase reaction and a high temperature condition, and the conversion rate of the raw material is around 12%, which is not suitable for mass production.
 また、非特許文献1には、1,1,3,3,3-ペンタクロロプロペン(CCl2=CHCCl3;以下、1220zaともいう)に対して、フッ化アンチモン(SbF3)を液相反応させることにより、1223zaを製造する方法が記載されている。しかしながら、非特許文献1の方法においては、高価なSbF3を化学量論量以上使用しており、工業的規模の大量生産を行うのには適さない。 Non-Patent Document 1 discloses that 1,1,3,3,3-pentachloropropene (CCl 2 = CHCCl 3 ; hereinafter also referred to as 1220za) is reacted with antimony fluoride (SbF 3 ) in a liquid phase reaction. To produce 1223za. However, in the method of Non-Patent Document 1, expensive SbF 3 is used in a stoichiometric amount or more, which is not suitable for mass production on an industrial scale.
 また、特許文献2には、1,1,1-トリフルオロ-3,3,3-トリクロロプロパン(CF3CH2CCl3;HCFC-233fb)に対して、塩基を反応させることにより、1223zaを製造する方法が記載されている。しかしながら、特許文献2の方法では、高収率高選択性で1223zaが得られるものの、後処理において塩基性排水若しくは有機塩基が大量に排出される。 Patent Document 2 discloses that 1,231-za is obtained by reacting a base with 1,1,1-trifluoro-3,3,3-trichloropropane (CF 3 CH 2 CCl 3 ; HCFC-233fb). A method of manufacturing is described. However, in the method of Patent Document 2, although 1223za is obtained with high yield and high selectivity, a large amount of basic waste water or organic base is discharged in the post-treatment.
 1223zaを効率よく製造する方法(工業的に採用容易な1223zaの製造方法)の開発が、なお求められている。 There is still a need for development of a method for efficiently producing 1223za (a method for producing 1223za that is industrially easy to adopt).
特許第5706432号Japanese Patent No. 5706432 特開2016-79101号JP 2016-79101 A
 本発明は、上記観点からなされたものであり、効率的な1223zaの製造方法を提供することを課題とする。また、本発明は、効率的な1223zaと1222zaの併産方法、及び効率的な1222zaの製造方法を提供することを課題とする。さらに、本発明は、効率的な1223zaと234fbの併産方法、及び効率的な234fbの製造方法を提供することを課題とする。 The present invention has been made from the above viewpoint, and an object of the present invention is to provide an efficient method for producing 1223za. Another object of the present invention is to provide an efficient method for co-production of 1223za and 1222za and an efficient method for producing 1222za. Furthermore, an object of the present invention is to provide an efficient method for co-production of 1223za and 234fb and an efficient method for producing 234fb.
 本発明者らは、上記課題を解決すべく、鋭意検討を行った。その結果、フッ素化剤としてフッ化水素を用いて、1220zaを弗素化させることにより、1223zaを製造できることを見いだし、本発明を完成させるに至った。 The present inventors have intensively studied to solve the above problems. As a result, it was found that 1223za can be produced by fluorinating 1220za using hydrogen fluoride as a fluorinating agent, and the present invention has been completed.
 また、本発明者らは、フッ素化剤としてフッ化水素を用いて、1220zaをフッ素化させることにより、1223zaと1222zaを併産できることや、1222zaを製造できることを見いだし、本発明を完成させるに至った。 Further, the present inventors have found that 1223za and 1222za can be produced in parallel by fluorinating 1220za using hydrogen fluoride as a fluorinating agent, and that 1222za can be produced, and the present invention has been completed. It was.
 さらに、本発明者らは、フッ素化剤としてフッ化水素を用いて、1220zaをフッ素化させることにより、1223zaと234fbを併産できることや、234fbを製造できることを見いだし、本発明を完成させるに至った。 Furthermore, the present inventors have found that 1223za and 234fb can be produced in parallel by fluorinating 1220za using hydrogen fluoride as a fluorinating agent, and that 234fb can be produced, thereby completing the present invention. It was.
 すなわち、本発明は以下の各発明を含む。 That is, the present invention includes the following inventions.
 [発明1]
 1,1,3,3,3-ペンタクロロプロペンをフッ化水素でフッ素化して1,1-ジクロロ-3,3,3-トリフルオロプロペンを製造する工程、を含むことを特徴とする、1,1-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。
[Invention 1]
And fluorinating 1,1,3,3,3-pentachloropropene with hydrogen fluoride to produce 1,1-dichloro-3,3,3-trifluoropropene. , 1-Dichloro-3,3,3-trifluoropropene production method.
 [発明2]
 前記フッ化水素の使用量が、1,1,3,3,3-ペンタクロロプロペン1モルに対して3~40モルであることを特徴とする、発明1に記載の方法。
[Invention 2]
The method according to claim 1, wherein the amount of hydrogen fluoride used is 3 to 40 mol per mol of 1,1,3,3,3-pentachloropropene.
 [発明3]
 前記フッ素化を液相で行うことを特徴とする、発明1または2に記載の方法。
[Invention 3]
The method according to claim 1 or 2, wherein the fluorination is performed in a liquid phase.
 [発明4]
 前記フッ素化を0~200℃で行うことを特徴とする、発明3に記載の方法。
[Invention 4]
The method according to invention 3, wherein the fluorination is carried out at 0 to 200 ° C.
 [発明5]
 前記フッ素化により、1,1-ジクロロ-3,3,3-トリフルオロプロペンとともに、1,1,3-トリクロロ-3,3-ジフルオロプロペンまたは1,1-ジクロロ-1,3,3,3-テトラフルオロプロパンが生成されることを特徴とする、発明3または4に記載の方法。
[Invention 5]
By the fluorination, 1,1-dichloro-3,3,3-trifluoropropene and 1,1,3-trichloro-3,3-difluoropropene or 1,1-dichloro-1,3,3,3 -Process according to invention 3 or 4, characterized in that tetrafluoropropane is produced.
 [発明6]
 前記フッ素化を気相で行うことを特徴とする、発明1または2に記載の方法。
[Invention 6]
The method according to claim 1 or 2, wherein the fluorination is performed in a gas phase.
 [発明7]
 前記フッ素化を100~500℃で行うことを特徴とする、発明6に記載の方法。
[Invention 7]
The method according to claim 6, wherein the fluorination is performed at 100 to 500 ° C.
 [発明8]
 前記フッ素化を0~10MPaGで行うことを特徴とする、発明1~7のいずれかに記載の方法。
[Invention 8]
The method according to any one of inventions 1 to 7, wherein the fluorination is carried out at 0 to 10 MPaG.
 [発明9]
 前記フッ素化を触媒の存在下または非存在下で行うことを特徴とする、発明1~8のいずれかに記載の方法。
[Invention 9]
The method according to any one of inventions 1 to 8, wherein the fluorination is carried out in the presence or absence of a catalyst.
 [発明10]
 1,1-ジクロロ-3,3,3-トリフルオロプロペンを精製する工程を含むことを特徴とする、発明1~9のいずれかに記載の方法。
[Invention 10]
The method according to any one of inventions 1 to 9, comprising a step of purifying 1,1-dichloro-3,3,3-trifluoropropene.
 [発明11]
 1,1,3,3,3-ペンタクロロプロペンとともに、1,1,3,3-テトラクロロ-3-フルオロプロペンまたは1,1,3-トリクロロ-3,3-ジフルオロプロペンを前記フッ素化に供することを特徴とする、発明1~10のいずれかの記載の方法。
[Invention 11]
Together with 1,1,3,3,3-pentachloropropene, 1,1,3,3-tetrachloro-3-fluoropropene or 1,1,3-trichloro-3,3-difluoropropene is used for the fluorination. A method according to any one of inventions 1 to 10, wherein the method is provided.
 [発明12]
 1,1,3,3,3-ペンタクロロプロペンをフッ化水素でフッ素化して1,1,3-トリクロロ-3,3-ジフルオロプロペンを製造する工程、を含むことを特徴とする、1,1,3-トリクロロ-3,3-ジフルオロプロペンの製造方法。
[Invention 12]
Fluorinating 1,1,3,3,3-pentachloropropene with hydrogen fluoride to produce 1,1,3-trichloro-3,3-difluoropropene, A method for producing 1,3-trichloro-3,3-difluoropropene.
 [発明13]
 前記フッ素化を液相で行うことを特徴とする、発明12に記載の方法。
[Invention 13]
Process according to invention 12, characterized in that the fluorination is carried out in the liquid phase.
 [発明14]
 前記フッ素化を触媒の存在下または非存在下で行うことを特徴とする、発明12または13に記載の方法。
[Invention 14]
The method according to the invention 12 or 13, characterized in that the fluorination is carried out in the presence or absence of a catalyst.
 [発明15]
 前記フッ素化により、1,1,3-トリクロロ-3,3-ジフルオロプロペンとともに、1,1-ジクロロ-3,3,3-トリフルオロプロペンが生成されることを特徴とする、発明12~14のいずれかに記載の方法。
[Invention 15]
Inventions 12 to 14 are characterized in that 1,1-dichloro-3,3,3-trifluoropropene is produced together with 1,1,3-trichloro-3,3-difluoropropene by the fluorination. The method in any one of.
 [発明16]
 1,1,1,3,3,3-ヘキサクロロプロパンを、液相において、ルイス酸触媒の存在下、脱塩化水素化して1,1,3,3,3-ペンタクロロプロペンを得る脱塩化水素化工程、をさらに含むことを特徴とする、発明1~15のいずれかに記載の方法。
[Invention 16]
Dehydrochlorination of 1,1,1,3,3,3-hexachloropropane in the liquid phase to obtain 1,1,3,3,3-pentachloropropene in the presence of a Lewis acid catalyst The method according to any one of inventions 1 to 15, further comprising a crystallization step.
 [発明17]
 1,1,1,3,3-ペンタクロロプロパンを、液相において、UV照射下またはラジカル開始剤の存在下で、塩素化して1,1,1,3,3,3-ヘキサクロロプロパンを得る塩素化工程、をさらに含むことを特徴とする、発明16に記載の方法。
[Invention 17]
Chlorination of 1,1,1,3,3-pentachloropropane in the liquid phase to give 1,1,1,3,3,3-hexachloropropane under UV irradiation or in the presence of a radical initiator The method according to invention 16, further comprising a crystallization step.
 本発明の好ましい態様において、1,1,3,3,3-ペンタクロロプロペン(1220za)とフッ化水素とを反応させ、1220zaをフッ素化する。前記フッ素化により、1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)が製造される。また、前記フッ素化において、フッ化水素の使用量は、1220za 1モルに対して3~40モルであり、好ましくは4~35モルであり、特に好ましくは8~30モルである。また、前記フッ素化は、0.1~10MPaG(ゲージ圧をいう。以下本明細書において同じ。)で行われ、好ましくは0.15~6MaGであり、特に好ましくは0.25MPaG超4.5MPaG以下である。また、前記フッ素化は触媒の存在下あるいは非存在下で行われ、好ましくは触媒の非存在下で行われる。また、前記フッ素化は溶媒の存在下あるいは非存在下で行われ、好ましくは溶媒の非存在下で行われる。また、前記フッ素化はバッチ式、半連続流通式あるいは連続流通式で行われてもよく、好ましくは連続流通式で行われる。また、前記フッ素化は液相中または気相中で行われる。また、液相中での前記フッ素化は、0~200℃で行われ、35~200℃が好ましく、35~140℃が特に好ましく、40~130℃がさらに好ましい。また、気相中での前記フッ素化は、100~500℃で行われ、150~400℃が好ましく、200~350℃が特に好ましい。また、前記フッ素化により、1223zaとともに、1,1,3,3-テトラクロロ-3-フルオロプロペン(以下、1221zaともいう)、1,1,3-トリクロロ-3,3-ジフルオロプロペン(1222za)、1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb)、1,1,1,3,3-ペンタフルオロプロパン(CF3CH2CHF2;以下、235faともいう)、1,1,1,3,3,3-ヘキサフルオロプロパン(CF3CH2CF3;以下、236faともいう)等が生成することがある。また、前記フッ素化により得られる1223zaは精製することが好ましい。また、生成した副生物を分離して、1220zaとともに前記フッ素化に供することもできる。 In a preferred embodiment of the present invention, 1,1,3,3,3-pentachloropropene (1220za) is reacted with hydrogen fluoride to fluorinate 1220za. By the fluorination, 1,1-dichloro-3,3,3-trifluoropropene (1223za) is produced. In the fluorination, the amount of hydrogen fluoride used is 3 to 40 moles, preferably 4 to 35 moles, and particularly preferably 8 to 30 moles per mole of 1220za. The fluorination is performed at 0.1 to 10 MPaG (referred to as gauge pressure, hereinafter the same in this specification), preferably 0.15 to 6 MaG, particularly preferably more than 0.25 MPaG and 4.5 MPaG. It is as follows. The fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst. The fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type. The fluorination is performed in a liquid phase or a gas phase. The fluorination in the liquid phase is performed at 0 to 200 ° C., preferably 35 to 200 ° C., particularly preferably 35 to 140 ° C., and further preferably 40 to 130 ° C. The fluorination in the gas phase is performed at 100 to 500 ° C., preferably 150 to 400 ° C., particularly preferably 200 to 350 ° C. Further, by the above fluorination, 1,1,3,3-tetrachloro-3-fluoropropene (hereinafter also referred to as 1221za), 1,1,3-trichloro-3,3-difluoropropene (1222za) together with 1223za 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb), 1,1,1,3,3-pentafluoropropane (CF 3 CH 2 CHF 2 ; hereinafter also referred to as 235fa), 1,1,1,3,3,3-hexafluoropropane (CF 3 CH 2 CF 3 ; hereinafter also referred to as 236fa) may be produced. Moreover, it is preferable to refine | purify 1223za obtained by the said fluorination. Moreover, the produced by-product can be separated and subjected to the fluorination together with 1220za.
 本発明の好ましい態様において、1,1,3,3,3-ペンタクロロプロペン(1220za)とフッ化水素とを反応させ、1220zaをフッ素化する。前記フッ素化により、1,1,3-トリクロロ-3,3-ジフルオロプロペン(1222za)が製造される。また、前記フッ素化において、フッ化水素の使用量は、1220za 1モルに対して2~40モルであり、好ましくは3~35モルであり、特に好ましくは4~30モルである。また、前記フッ素化は、0.1~10MPaGで行われ、好ましくは0.1~3MaGであり、特に好ましくは0.1~2MPaGである。また、前記フッ素化は触媒の存在下あるいは非存在下で行われ、好ましくは触媒の非存在下で行われる。また、前記フッ素化は溶媒の存在下あるいは非存在下で行われ、好ましくは溶媒の非存在下で行われる。また、前記フッ素化はバッチ式、半連続流通式あるいは連続流通式で行われてもよく、好ましくは連続流通式で行われる。また、前記フッ素化は液相中で行われることが好ましい。また、前記フッ素化は、0~70℃での実施が好ましく、0~60℃が特に好ましく、10~55℃がさらに好ましい。また、前記フッ素化により、1222zaとともに、1,1,3,3-テトラクロロ-3-フルオロプロペン(1221za)、1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)、1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb)等が生成することがある。また、前記フッ素化により得られる1222zaは精製することが好ましい。また、前記フッ素化により得られる1222zaは、1220zaとともに前記フッ素化に供することもできる。 In a preferred embodiment of the present invention, 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride are reacted to fluorinate 1220za. By the fluorination, 1,1,3-trichloro-3,3-difluoropropene (1222za) is produced. In the fluorination, the amount of hydrogen fluoride used is 2 to 40 moles, preferably 3 to 35 moles, and particularly preferably 4 to 30 moles per mole of 1220za. The fluorination is performed at 0.1 to 10 MPaG, preferably 0.1 to 3 MaG, and particularly preferably 0.1 to 2 MPaG. The fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst. The fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type. The fluorination is preferably performed in a liquid phase. The fluorination is preferably carried out at 0 to 70 ° C., particularly preferably 0 to 60 ° C., further preferably 10 to 55 ° C. In addition, by the fluorination, 1,1,3,3-tetrachloro-3-fluoropropene (1221za), 1,1-dichloro-3,3,3-trifluoropropene (1223za), 1,222za, 1-dichloro-1,3,3,3-tetrafluoropropane (234fb) and the like may be produced. Moreover, it is preferable to refine | purify 1222za obtained by the said fluorination. Moreover, 1222za obtained by the said fluorination can also be used for the said fluorination with 1220za.
 本発明の好ましい態様において、1,1,3,3,3-ペンタクロロプロペン(1220za)とフッ化水素とを反応させ、1220zaをフッ素化する。前記フッ素化により、1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)と1,1,3-トリクロロ-3,3-ジフルオロプロペン(1222za)が併産される。また、前記フッ素化において、フッ化水素の使用量は、1220za 1モルに対して3~40モルであり、好ましくは4~35モルであり、特に好ましくは8~30モルである。また、前記フッ素化は、0~70℃での実施が好ましく、0~60℃が特に好ましく、10~55℃がさらに好ましい。また、前記フッ素化は、0.1~10MPaGで行われ、好ましくは0.1~3MaGであり、特に好ましくは0.1~2MPaGである。また、前記フッ素化は触媒の存在下あるいは非存在下で行われ、好ましくは触媒の非存在下で行われる。また、前記フッ素化は溶媒の存在下あるいは非存在下で行われ、好ましくは溶媒の非存在下で行われる。また、前記フッ素化はバッチ式、半連続流通式あるいは連続流通式で行われてもよく、好ましくは連続流通式で行われる。また、前記フッ素化は液相中で行われることが好ましい。また、前記フッ素化により、1223zaと1222zaとともに、1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb)が生成することがある。また、前記フッ素化により得られる1223zaと1222zaは精製することが好ましい。また、併産された1223zaと1222zaは分離して、それぞれ種々の用途に供することができ、1222zaは1220zaとともにフッ素化に供することもできる。 In a preferred embodiment of the present invention, 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride are reacted to fluorinate 1220za. By the fluorination, 1,1-dichloro-3,3,3-trifluoropropene (1223za) and 1,1,3-trichloro-3,3-difluoropropene (1222za) are produced together. In the fluorination, the amount of hydrogen fluoride used is 3 to 40 moles, preferably 4 to 35 moles, and particularly preferably 8 to 30 moles per mole of 1220za. The fluorination is preferably carried out at 0 to 70 ° C., particularly preferably 0 to 60 ° C., further preferably 10 to 55 ° C. The fluorination is performed at 0.1 to 10 MPaG, preferably 0.1 to 3 MaG, and particularly preferably 0.1 to 2 MPaG. The fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst. The fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type. The fluorination is preferably performed in a liquid phase. The fluorination may produce 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb) together with 1223za and 1222za. Moreover, it is preferable to refine | purify 1223za and 1222za obtained by the said fluorination. The co-produced 1223za and 1222za can be separated and used for various purposes, and 1222za can be used for fluorination together with 1220za.
 本発明の好ましい態様において、1,1,3,3,3-ペンタクロロプロペン(1220za)とフッ化水素とを反応させ、1220zaをフッ素化する。前記フッ素化により、1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb)が製造される。また、前記フッ素化において、フッ化水素の使用量は、1220za 1モルに対して、好ましくは4~40モルであり、特に好ましくは8~40モルである。また、前記フッ素化は、0.1~10MPaGで行われ、好ましくは1.5~6MaGであり、特に好ましくは3~6MPaGである。また、前記フッ素化は触媒の存在下あるいは非存在下で行われ、好ましくは触媒の非存在下で行われる。また、前記フッ素化は溶媒の存在下あるいは非存在下で行われ、好ましくは溶媒の非存在下で行われる。また、前記フッ素化はバッチ式、半連続流通式あるいは連続流通式で行われてもよく、好ましくは連続流通式で行われる。また、前記フッ素化は液相中で行われることが好ましい。また、前記フッ素化は、20~200℃での実施が好ましく、70~200℃がより好ましく、100~200℃が特に好ましく、140~200℃がさらに好ましい。また、前記フッ素化により、234fbとともに、1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)、1,1,3-トリクロロ-3,3-ジフルオロプロペン(1222za)等が生成することがある。また、前記フッ素化により得られる234fbは精製することが好ましい。また、生成された1222zaまたは1223zaは分離して、それぞれ種々の用途に供することができ、また、1220zaとともにフッ素化に供することもできる。 In a preferred embodiment of the present invention, 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride are reacted to fluorinate 1220za. By the fluorination, 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb) is produced. In the fluorination, the amount of hydrogen fluoride used is preferably 4 to 40 mol, particularly preferably 8 to 40 mol, per 1220 za 1 mol. The fluorination is carried out at 0.1 to 10 MPaG, preferably 1.5 to 6 MaG, particularly preferably 3 to 6 MPaG. The fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst. The fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type. The fluorination is preferably performed in a liquid phase. The fluorination is preferably carried out at 20 to 200 ° C., more preferably 70 to 200 ° C., particularly preferably 100 to 200 ° C., further preferably 140 to 200 ° C. In addition, the fluorination produces 1,1-dichloro-3,3,3-trifluoropropene (1223za), 1,1,3-trichloro-3,3-difluoropropene (1222za) and the like together with 234fb. Sometimes. Moreover, it is preferable to refine | purify 234fb obtained by the said fluorination. Further, the produced 1222za or 1223za can be separated and used for various applications, respectively, and can also be used for fluorination together with 1220za.
 本発明の好ましい態様において、1,1,3,3,3-ペンタクロロプロペン(1220za)とフッ化水素とを反応させ、1220zaをフッ素化する。前記フッ素化により、1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)と1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb)が併産される。また、前記フッ素化において、フッ化水素の使用量は、1220za 1モルに対して3~40モルであり、好ましくは4~40モルであり、特に好ましくは8~40モルである。また、前記フッ素化は、0.1~10MPaGで行われ、好ましくは1.5~6MaGであり、特に好ましくは2.0~4.5MPaGである。また、前記フッ素化は触媒の存在下あるいは非存在下で行われ、好ましくは触媒の非存在下で行われる。また、前記フッ素化は溶媒の存在下あるいは非存在下で行われ、好ましくは溶媒の非存在下で行われる。また、前記フッ素化はバッチ式、半連続流通式あるいは連続流通式で行われてもよく、好ましくは連続流通式で行われる。また、前記フッ素化は液相中で行われることが好ましい。また、前記フッ素化は、20~200℃での実施が好ましく、70~200℃がより好ましく、100~200℃が特に好ましく、140~200℃がさらに好ましい。また、前記フッ素化により、1223zaと234fbとともに、1,1,3-トリクロロ-3,3-ジフルオロプロペン(1222za)が生成することがある。また、前記フッ素化により得られる1223zaと234fbは精製することが好ましい。また、併産された1223zaと234fbは、それぞれ種々の用途に供することができる。また、生成された1222zaは、1220zaとともにフッ素化に供することもできる。 In a preferred embodiment of the present invention, 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride are reacted to fluorinate 1220za. By the fluorination, 1,1-dichloro-3,3,3-trifluoropropene (1223za) and 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb) are produced together. In the fluorination, the amount of hydrogen fluoride used is 3 to 40 moles, preferably 4 to 40 moles, and particularly preferably 8 to 40 moles per mole of 1220za. The fluorination is performed at 0.1 to 10 MPaG, preferably 1.5 to 6 MaG, and particularly preferably 2.0 to 4.5 MPaG. The fluorination is carried out in the presence or absence of a catalyst, preferably in the absence of a catalyst. The fluorination is performed in the presence or absence of a solvent, preferably in the absence of a solvent. Further, the fluorination may be carried out by a batch type, semi-continuous flow type or continuous flow type, and preferably by a continuous flow type. The fluorination is preferably performed in a liquid phase. The fluorination is preferably carried out at 20 to 200 ° C., more preferably 70 to 200 ° C., particularly preferably 100 to 200 ° C., further preferably 140 to 200 ° C. The fluorination may produce 1,1,3-trichloro-3,3-difluoropropene (1222za) together with 1223za and 234fb. Moreover, it is preferable to refine | purify 1223za and 234fb obtained by the said fluorination. The co-produced 1223za and 234fb can be used for various purposes. Moreover, 1222za produced | generated can also be used for fluorination with 1220za.
 本発明の好ましい態様において、1,1,3,3,3-ペンタクロロプロペン(1220za)は、1,1,1,3,3,3-ヘキサクロロプロパン(CCl3CH2CCl3;以下、230faともいう)を脱塩化水素化して製造される。前記脱塩化水素化は、液相中で行われることが好ましい。また、前記脱塩化水素化は、ルイス酸触媒存在下で行われることが好ましく、液相中ルイス酸触媒存在下で行われることが特に好ましい。前記ルイス酸触媒は、金属のハロゲン化物が好ましく、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物がより好ましく、このような金属の塩化物が特に好ましく、アルミニウム、鉄、スズおよびアンチモンからなる群より選ばれる少なくとも1種の金属の塩化物がさらに好ましい。また、前記ルイス酸触媒は、金属を塩素化処理したものを前記脱塩化水素化に供してもよく、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属を塩素化処理したものが好ましい。また、前記脱塩化水素化は、40~200℃で行われることが好ましく、45~120℃がより好ましい。 In a preferred embodiment of the present invention, 1,1,3,3,3-pentachloropropene (1220za) is 1,1,1,3,3,3-hexachloropropane (CCl 3 CH 2 CCl 3 ; hereinafter referred to as 230fa). (Also referred to as dehydrochlorination). The dehydrochlorination is preferably performed in the liquid phase. The dehydrochlorination is preferably performed in the presence of a Lewis acid catalyst, and particularly preferably performed in the presence of a Lewis acid catalyst in the liquid phase. The Lewis acid catalyst is preferably a metal halide, such as aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten. More preferred are halides of at least one metal selected from the group consisting of: chlorides of such metals are particularly preferred, chlorides of at least one metal selected from the group consisting of aluminum, iron, tin and antimony Is more preferable. In addition, the Lewis acid catalyst may be subjected to chlorination treatment of metal for the dehydrochlorination, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium. A material obtained by chlorinating at least one metal selected from the group consisting of rhodium, palladium, silver, tin, antimony, tantalum and tungsten. The dehydrochlorination is preferably performed at 40 to 200 ° C, more preferably 45 to 120 ° C.
 本発明の好ましい態様において、1,1,3,3,3-ペンタクロロプロペン(1220za)は、1,1,1,3,3-ペンタクロロプロパン(CCl3CH2CHCl2;以下、240faともいう)を塩素化して1,1,1,3,3,3-ヘキサクロロプロパン(230fa)を製造し、該230faを脱塩化水素化して製造される。前記塩素化は、240faを塩素化剤と接触させて行われることが好ましく、該塩素化剤が塩素であることがより好ましい。前記接触は、ラジカル開始剤の存在下もしくはUV照射下で行われることが好ましい。また、前記塩素化は0~150℃で行われることが好ましく、40~80℃がより好ましい。また、前記塩素化で得られた230faを精製することなく、前記脱塩化水素化に供することが好ましく、前記塩素化と前記脱塩化水素化を連続して行うことがより好ましく、前記塩素化と前記脱塩化水素化を同一の反応器内で行うことが特に好ましい。 In a preferred embodiment of the present invention, 1,1,3,3,3-pentachloropropene (1220za) is 1,1,1,3,3-pentachloropropane (CCl 3 CH 2 CHCl 2 ; hereinafter also referred to as 240fa). ) To produce 1,1,1,3,3,3-hexachloropropane (230fa), which is produced by dehydrochlorination of 230fa. The chlorination is preferably performed by contacting 240fa with a chlorinating agent, and more preferably the chlorinating agent is chlorine. The contact is preferably performed in the presence of a radical initiator or under UV irradiation. The chlorination is preferably carried out at 0 to 150 ° C., more preferably 40 to 80 ° C. Further, 230fa obtained by the chlorination is preferably subjected to the dehydrochlorination without purification, more preferably the chlorination and the dehydrochlorination are successively performed, It is particularly preferred that the dehydrochlorination is carried out in the same reactor.
 本明細書において、「1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)と1,1,3-トリクロロ-3,3-ジフルオロプロペン(1222za)の併産」とは、本発明に係る反応により1223zaと1222zaとが少なくとも製造されることを意味し、好ましくは1223za 1モル当たり、1222zaが0.0001モル以上製造され、特に好ましくは0.001モル以上である。 In this specification, “co-production of 1,1-dichloro-3,3,3-trifluoropropene (1223za) and 1,1,3-trichloro-3,3-difluoropropene (1222za)” This means that at least 1223za and 1222za are produced by the reaction according to the present invention, and preferably 1222za is produced by 0.0001 mol or more, particularly preferably 0.001 mol or more, per mol of 1223za.
 本明細書において、「1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)と1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb)の併産」とは、本発明に係る反応により1223zaと234fbとが少なくとも製造されることを意味し、好ましくは1223za 1モル当たり、234fbが0.0001モル以上製造され、特に好ましくは0.001モル以上である。 In the present specification, “co-production of 1,1-dichloro-3,3,3-trifluoropropene (1223za) and 1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb)” Means that at least 1223za and 234fb are produced by the reaction according to the present invention, and preferably 234fb is produced in an amount of 0.0001 mol or more, particularly preferably 0.001 mol or more, per mol of 1223za.
 本発明により、1220zaを原料として、フッ素化剤としてフッ化水素を用いて、効率的な(工業的に採用容易な)1223zaの製造方法を提供することができる。 According to the present invention, it is possible to provide an efficient (easily industrially adopted) production method of 1223za using 1220za as a raw material and hydrogen fluoride as a fluorinating agent.
 また、本発明により、効率的な1223zaと1222zaの併産方法や効率的な1222zaの製造方法を提供することができる。 Further, according to the present invention, it is possible to provide an efficient co-production method of 1223za and 1222za and an efficient production method of 1222za.
 さらに、本発明により、効率的な1223zaと234fbの併産方法や効率的な234fbの製造方法を提供することができる。 Furthermore, according to the present invention, it is possible to provide an efficient production method of 1223za and 234fb and an efficient production method of 234fb.
 以下、本発明について説明する。本発明は以下の実施態様に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施態様に対し適宜変更、改良が加えられたものも本発明に含まれるものとして扱う。 Hereinafter, the present invention will be described. The present invention is not limited to the following embodiments, and appropriate modifications and improvements are made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Are also included in the present invention.
 <1,1,3,3,3-ペンタクロロプロペン(1220za)のフッ素化>
 本発明の一態様においては、1220zaをフッ素化させて1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)を製造する。このフッ素化は、フッ素化剤としてフッ化水素を用いる。このフッ素化は、液相中あるいは気相中で行う。
<Fluorination of 1,1,3,3,3-pentachloropropene (1220za)>
In one embodiment of the present invention, 1220za is fluorinated to produce 1,1-dichloro-3,3,3-trifluoropropene (1223za). This fluorination uses hydrogen fluoride as a fluorinating agent. This fluorination is carried out in the liquid phase or in the gas phase.
 本発明において、原料として用いられる1220zaは公知の化合物である。その製造方法の一例を後述するが、これによって他の製造方法を採用することが妨げられるものではない。ただし、後述の製造方法を採用することによって、1220zaを有利に製造することができるため、採用することが好ましい。 In the present invention, 1220za used as a raw material is a known compound. An example of the manufacturing method will be described later, but this does not prevent other manufacturing methods from being adopted. However, since 1220za can be advantageously manufactured by adopting the manufacturing method described later, it is preferable to employ this method.
 1220zaのフッ素化において、フッ化水素の使用量は、1220za 1モルに対して通常3~40モルであり、4~35モルが好ましく、8~30モルがより好ましい。このフッ化水素の使用量は、反応形式がバッチ式あるいは半連続流通式の場合には、1220zaの仕込量に対して表され、連続流通式の場合には、反応器に存在する1220zaの定常量に対して表される。フッ化水素の量が3モル未満では、1223zaを生成するために必要なフッ化水素の理論量に達しておらず、反応の選択率、目的物の収率共に低下することがある。一方、フッ化水素の量が40モルを超えると、反応に関与しないフッ化水素の量が増加するため、生産性の観点から経済的に好ましくない。ただし、これらのことは、1220za 1モルに対して3モル未満40モル超のフッ化水素を使用することを妨げるものではない。 In the fluorination of 1220za, the amount of hydrogen fluoride used is usually 3 to 40 moles, preferably 4 to 35 moles, more preferably 8 to 30 moles per mole of 1220za. The amount of hydrogen fluoride used is expressed with respect to the charged amount of 1220 za when the reaction type is a batch type or semi-continuous flow type, and in the case of the continuous flow type, the steady amount of 1220 za present in the reactor. Expressed against quantity. When the amount of hydrogen fluoride is less than 3 mol, the theoretical amount of hydrogen fluoride necessary to produce 1223za is not reached, and both the selectivity of the reaction and the yield of the target product may decrease. On the other hand, when the amount of hydrogen fluoride exceeds 40 mol, the amount of hydrogen fluoride not involved in the reaction increases, which is not economically preferable from the viewpoint of productivity. However, these do not preclude the use of less than 3 moles and more than 40 moles of hydrogen fluoride per mole of 1220za.
 1220zaのフッ素化を液相で行う場合であって、1222zaを優位に製造することを所望する場合、フッ化水素の使用量は、2~40モルが好ましく、3~35モルがより好ましく、4~30モルが特に好ましい。また、1220zaのフッ素化を液相で行う場合であって、234fbを優位に製造することを所望する場合、フッ化水素の使用量は、4~40モルが好ましく、8~40モルがより好ましい。 When fluorination of 1220za is carried out in the liquid phase and it is desired to produce 1222za predominantly, the amount of hydrogen fluoride used is preferably 2 to 40 mol, more preferably 3 to 35 mol. ˜30 mol is particularly preferred. Further, when the fluorination of 1220za is carried out in the liquid phase and it is desired to produce 234fb predominantly, the amount of hydrogen fluoride used is preferably 4 to 40 mol, more preferably 8 to 40 mol. .
 1220zaのフッ素化において、未反応のフッ化水素は反応生成物から分離し、反応系へリサイクルすることが、工業的な生産の観点から好ましい。フッ化水素と反応生成物の分離は公知の方法で行うことができ、そのような方法としては、例えば、反応生成物を蒸留する方法等が挙げられる。 In the fluorination of 1220za, it is preferable from the viewpoint of industrial production that unreacted hydrogen fluoride is separated from the reaction product and recycled to the reaction system. Separation of hydrogen fluoride and the reaction product can be performed by a known method, and examples of such a method include a method of distilling the reaction product.
 1220zaのフッ素化において、反応温度は、目的物が生成できれば特に限定されない。 In the fluorination of 1220za, the reaction temperature is not particularly limited as long as the target product can be produced.
 1220zaのフッ素化を液相で行う場合、反応温度は、通常0~200℃の範囲で設定され、20~200℃が好ましいが、この限りではない。本発明の一態様において、所望する目的物に応じて反応温度を調整することが好ましい。例えば、1223zaを優位に製造することを所望する場合には、20~140℃が好ましく、20~130℃が特に好ましい。また、1223zaと1222zaとを併産する場合には、0~70℃が好ましく、0~60℃が特に好ましく、10~55℃がさらに好ましい。また、1222zaを優位に製造することを所望する場合には、0~70℃が好ましく、0~60℃が特に好ましく、10~55℃がさらに好ましい。また、1223zaと234fbとを併産する場合には、20~200℃が好ましく、70~200℃がより好ましく、100~200℃が特に好ましく、140~200℃がさらに好ましい。また、234fbを優位に製造することを所望する場合には、20~200℃が好ましく、70~200℃がより好ましく、100~200℃が特に好ましく、140~200℃がさらに好ましい。 When the fluorination of 1220za is carried out in the liquid phase, the reaction temperature is usually set in the range of 0 to 200 ° C, preferably 20 to 200 ° C, but is not limited thereto. In one embodiment of the present invention, the reaction temperature is preferably adjusted according to a desired object. For example, when it is desired to produce 1223za predominantly, 20 to 140 ° C. is preferable, and 20 to 130 ° C. is particularly preferable. In the case where 1223za and 1222za are co-produced, 0 to 70 ° C. is preferable, 0 to 60 ° C. is particularly preferable, and 10 to 55 ° C. is more preferable. When it is desired to produce 1222za predominantly, 0 to 70 ° C. is preferable, 0 to 60 ° C. is particularly preferable, and 10 to 55 ° C. is more preferable. In the case where 1223za and 234fb are produced together, the temperature is preferably 20 to 200 ° C, more preferably 70 to 200 ° C, particularly preferably 100 to 200 ° C, and further preferably 140 to 200 ° C. Further, when it is desired to produce 234fb predominantly, it is preferably 20 to 200 ° C, more preferably 70 to 200 ° C, particularly preferably 100 to 200 ° C, and further preferably 140 to 200 ° C.
 1220zaのフッ素化を気相で行う場合、反応温度は、通常100~500℃の範囲で設定され、150~400℃が好ましく、200~350℃が特に好ましいが、この限りではない。本発明の一態様において、所望する目的物に応じて反応温度を調整することが好ましい。 When the fluorination of 1220za is carried out in the gas phase, the reaction temperature is usually set in the range of 100 to 500 ° C, preferably 150 to 400 ° C, particularly preferably 200 to 350 ° C, but is not limited thereto. In one embodiment of the present invention, the reaction temperature is preferably adjusted according to a desired object.
 1220zaのフッ素化において、圧力は限定されず、減圧下、常圧下(大気圧下)、加圧下のいずれであってもよい。本発明の一態様において、反応圧力は通常0.1~10MPaG(ゲージ圧をいう。以下同じ。)であり、1.5~6MPaGが好ましく、2.0~4.5MPaGがより好ましい。0.1MPaG以上であれば、容易に好適な反応温度に上げることができ、また、10MPaG以下であれば、反応器の耐圧設計に伴う経済的コストも比較的低く済む。ただし、これらのことは、0.1MPaG未満や10MPaG超で反応を行うことを妨げるものではない。 In the fluorination of 1220za, the pressure is not limited, and may be any of reduced pressure, normal pressure (atmospheric pressure), and increased pressure. In one embodiment of the present invention, the reaction pressure is usually 0.1 to 10 MPaG (referred to as gauge pressure, hereinafter the same), preferably 1.5 to 6 MPaG, more preferably 2.0 to 4.5 MPaG. If it is 0.1 MPaG or more, it can be easily raised to a suitable reaction temperature, and if it is 10 MPaG or less, the economic cost associated with the pressure resistance design of the reactor can be relatively low. However, these do not prevent the reaction from being performed at a pressure lower than 0.1 MPaG or higher than 10 MPaG.
 1220zaのフッ素化を液相中で行う場合、1220zaのフッ素化は、アミン化合物、アミド化合物、スルホニル化合物、リン化合物などの有機塩基とフッ化水素からなる塩の存在下で行ってもよい。例えば、トリエチルアミン、ジイソプロピルアミン、トリn-ブチルアミン、ピリジン、2,6-ルチジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、DMAC、DMF、DMSO、トリフェニルホスフィン等が挙げられるが、これらに限定されない。 When the fluorination of 1220za is carried out in the liquid phase, the fluorination of 1220za may be carried out in the presence of a salt composed of an organic base such as an amine compound, an amide compound, a sulfonyl compound, or a phosphorus compound and hydrogen fluoride. Examples include triethylamine, diisopropylamine, tri-n-butylamine, pyridine, 2,6-lutidine, 1,8-diazabicyclo [5.4.0] undec-7-ene, DMAC, DMF, DMSO, triphenylphosphine, and the like. However, it is not limited to these.
 1220zaのフッ素化は、触媒の存在下または非存在下で行ってもよい。 Fluorination of 1220za may be performed in the presence or absence of a catalyst.
 1220zaのフッ素化を液相中、触媒の存在下で行う場合、触媒としては、アルカリ金属、アルカリ土類金属、遷移金属、卑金属、半金属を含む、単体、誘導体、あるいはこれらの2種以上の混合物を用いる。より具体的には、アルカリ金属、アルカリ土類金属、遷移金属、卑金属、半金属から選ばれる、0価の金属、水酸化物、酸化物、ハロゲン化物、有機または無機の塩、錯体である。さらに具体的には、スズ、チタン、アンチモン、アルミニウム、鉄から選ばれる、塩化物、フッ化物等が挙げられるが、これらに限定されない。 When fluorination of 1220za is carried out in the presence of a catalyst in the liquid phase, the catalyst includes alkali metals, alkaline earth metals, transition metals, base metals, metalloids, simple substances, derivatives, or two or more of these Use a mixture. More specifically, zero-valent metals, hydroxides, oxides, halides, organic or inorganic salts, and complexes selected from alkali metals, alkaline earth metals, transition metals, base metals, and semimetals. More specifically, chlorides, fluorides and the like selected from tin, titanium, antimony, aluminum, and iron are exemplified, but not limited thereto.
 1220zaのフッ素化を気相中、触媒の存在下で行う場合、触媒としては、金属触媒を用いる。前記金属触媒は、具体的には、アルミニウム、バナジウム、クロム、チタン、マグネシウム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、亜鉛、ランタン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属を含み、このような金属の化合物が好ましく、このような金属の酸化物、ハロゲン化物、オキシハロゲン化物がより好ましい(ここで、ハロゲンは、具体的には、沃素、臭素、塩素、フッ素である。以下同じ。)。前記金属触媒は、このような金属の部分ハロゲン化物または全ハロゲン化物がさらに好ましく、このような金属の部分フッ化物または全フッ化物が特に好ましい。 When performing fluorination of 1220za in the gas phase in the presence of a catalyst, a metal catalyst is used as the catalyst. Specifically, the metal catalyst is aluminum, vanadium, chromium, titanium, magnesium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, zinc, It contains at least one metal selected from the group consisting of lanthanum, tantalum and tungsten, and compounds of such metals are preferred, and oxides, halides and oxyhalides of such metals are more preferred (where halogens Are specifically iodine, bromine, chlorine, and fluorine. The metal catalyst is more preferably a partial halide or total halide of such a metal, particularly preferably a partial fluoride or total fluoride of such a metal.
 前記金属触媒は、担持触媒であってもよいし、非担持触媒であってもよい。担持触媒の場合の担体は、特に限定されないが、炭素や、前述の金属の酸化物、オキシハロゲン化物(好ましくはオキシフッ化物)、ハロゲン化物(好ましくはフッ化物)などを採用することが好ましい。このような担体の中でも、特に好ましくは、活性炭または、アルミニウム、クロム、ジルコニウムおよびチタニウムからなる群より選ばれる少なくとも一種の金属の酸化物、オキシハロゲン化物(特に好ましくはオキシフッ化物)、ハロゲン化物(特に好ましくは、フッ化物)である。担持触媒の場合の担持物は、前述の金属の化合物であり、例えば、前述の金属のフッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物、硝酸化物等として担体に担持される。このような金属の化合物は単独で担持させてもよいし、2種以上を併せて担持させてもよい。本発明の一態様において、担持触媒の場合の担持物は、硝酸クロム、三塩化クロム、重クロム酸カリウム、三塩化チタン、硝酸マンガン、塩化マンガン、塩化第二鉄、硝酸ニッケル、塩化ニッケル、硝酸コバルト、塩化コバルト、五塩化アンチモン、塩化マグネシウム、硝酸マグネシウム、塩化ジルコニウム、オキシ塩化ジルコニウム、硝酸ジルコニウム、塩化銅(II)、塩化亜鉛(II)、硝酸ランタン、四塩化スズなどを用いる。 The metal catalyst may be a supported catalyst or a non-supported catalyst. The carrier in the case of the supported catalyst is not particularly limited, but it is preferable to employ carbon, the above-mentioned metal oxides, oxyhalides (preferably oxyfluorides), halides (preferably fluorides) and the like. Among such carriers, particularly preferably, activated carbon or an oxide of at least one metal selected from the group consisting of aluminum, chromium, zirconium and titanium, an oxyhalide (particularly preferably an oxyfluoride), a halide (particularly, Preferred is fluoride). The supported material in the case of the supported catalyst is a compound of the above-mentioned metal, for example, as the above-mentioned metal fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, oxyfluorinated chloride, glass oxide, etc. Supported on a carrier. Such metal compounds may be supported alone or in combination of two or more. In one embodiment of the present invention, the supported product in the case of a supported catalyst is chromium nitrate, chromium trichloride, potassium dichromate, titanium trichloride, manganese nitrate, manganese chloride, ferric chloride, nickel nitrate, nickel chloride, nitric acid. Cobalt, cobalt chloride, antimony pentachloride, magnesium chloride, magnesium nitrate, zirconium chloride, zirconium oxychloride, zirconium nitrate, copper (II) chloride, zinc (II) chloride, lanthanum nitrate, tin tetrachloride and the like are used.
 本発明の一態様において、前記金属触媒は、使用に際してフッ素化処理を施して反応に供することが好ましい。このフッ素化処理の方法は特に限定されないが、一般的には、フッ化水素、フッ素化炭化水素、フッ素化塩素化炭化水素などのフッ素化剤と、前記金属触媒とを接触させることにより行う。フッ素化処理温度は特に限定されないが、通常200℃以上で行い、温度の上限は特にないが、実用的には600℃以下で行うのが好ましい。 In one embodiment of the present invention, the metal catalyst is preferably subjected to a fluorination treatment for use in use. The method of this fluorination treatment is not particularly limited, but is generally carried out by bringing the metal catalyst into contact with a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon. Although the fluorination treatment temperature is not particularly limited, it is usually carried out at 200 ° C. or higher, and there is no particular upper limit on the temperature, but practically it is preferably carried out at 600 ° C. or lower.
 また、1220zaのフッ素化は、充填材の存在下または非存在下で行ってもよい。このような充填材の材質としては、活性炭などの炭素や、耐熱プラスチック、セラミックス、ステンレス鋼などの金属が挙げられる。中でも、活性炭が特に好ましい。 Fluorination of 1220za may be performed in the presence or absence of a filler. Examples of the material for the filler include carbon such as activated carbon, and metals such as heat-resistant plastic, ceramics, and stainless steel. Among these, activated carbon is particularly preferable.
 通常、気相流通方式の反応の場合、反応ゾーンの容積A(mL)を原料供給速度B(mL/秒)で除した値(秒)で、生産性を議論することが多く、これを接触時間と呼ぶ。反応ゾーンに触媒および/または充填材を備える場合には、触媒および/または充填材の見掛け容積(mL)を上記Aとみなす。なお、Bの値は「毎秒あたりに反応器に導入される原料気体の容積」を示すが、この場合、原料気体を理想気体とみなして、原料気体のモル数、圧力および温度からBの値を算出する。反応器中では、原料や目的物以外の他の化合物の副生や、モル数の変化も起こり得るが、「接触時間」の計算に際しては考慮しないものとする。 Usually, in the case of a gas-phase flow reaction, productivity is often discussed in terms of the value (seconds) obtained by dividing the reaction zone volume A (mL) by the raw material supply rate B (mL / second). Call time. When the catalyst and / or filler is provided in the reaction zone, the apparent volume (mL) of the catalyst and / or filler is regarded as A above. The value of B indicates “volume of the raw material gas introduced into the reactor per second”. In this case, the raw material gas is regarded as an ideal gas, and the value of B is determined from the number of moles, pressure and temperature of the raw material gas. Is calculated. In the reactor, by-products of other compounds than the raw material and the target product and a change in the number of moles may occur, but they are not taken into account when calculating the “contact time”.
 最適な接触時間の決定に関しては、本発明の方法に用いる反応原料、反応温度、触媒、充填材の種類等にも依存する。そのため、反応原料、反応装置の設定温度、触媒の種類ごとに、反応原料の供給速度を適宜調整し、接触時間を最適化することが望ましい。 The determination of the optimum contact time depends on the reaction raw material, reaction temperature, catalyst, type of filler, etc. used in the method of the present invention. For this reason, it is desirable to optimize the contact time by appropriately adjusting the supply rate of the reaction raw material for each reaction raw material, the set temperature of the reaction apparatus, and the type of catalyst.
 1220zaのフッ素化を気相中、触媒の存在下で行う場合、接触時間は、通常0.1~300秒であり、好ましくは5~150秒、より好ましくは10~100秒であるが、この限りではなく、適宜変更されてもよい。 When fluorination of 1220za is carried out in the gas phase in the presence of a catalyst, the contact time is usually 0.1 to 300 seconds, preferably 5 to 150 seconds, more preferably 10 to 100 seconds. It is not limited and may be changed as appropriate.
 1220zaのフッ素化においては、生産性、経済性の観点から溶媒を使用しないことが好ましい。一方で、反応の均一性、反応後の操作性を考慮して溶媒を使用することもできる。使用する溶媒の種類は、原料の1220zaを溶解できれば特に限定されない。中でも、1223zaよりも高い沸点を有する有機化合物であって、本反応中にフッ化水素によってフッ素化されない有機化合物が好ましい。このような溶媒の例としては、テトラメチレンスルホン(スルホラン)、パーフルオロアルカン類、パーフルオロアルケン類、ヒドロフルオロカーボン類等が挙げられるが、これらに限定されるものではない。また、使用する溶媒の量は、原料の1220zaを溶解できれば特に限定されない。1220zaに対して80質量%以下が好ましく、40質量%以下がより好ましい。 In the fluorination of 1220za, it is preferable not to use a solvent from the viewpoint of productivity and economy. On the other hand, a solvent can be used in consideration of the uniformity of the reaction and the operability after the reaction. The kind of the solvent to be used is not particularly limited as long as the raw material 1220za can be dissolved. Among them, an organic compound having a boiling point higher than 1223za and not fluorinated by hydrogen fluoride during the reaction is preferable. Examples of such solvents include, but are not limited to, tetramethylene sulfone (sulfolane), perfluoroalkanes, perfluoroalkenes, hydrofluorocarbons, and the like. Further, the amount of the solvent to be used is not particularly limited as long as the raw material 1220za can be dissolved. 80 mass% or less is preferable with respect to 1220za, and 40 mass% or less is more preferable.
 1220zaのフッ素化は、バッチ式、半連続流通式、連続流通式のいずれの方式で行ってもよい。反応器は、反応に応じて、液相反応器あるいは気相反応器を採用することが好ましい。反応器の材質としては、例えば、ステンレス鋼(例えばSUS304やSUS316等)、ハステロイ(TM)、インコネル(TM)、モネル(TM)等が挙げられるが、この限りではない。このような反応器は、当該技術分野において周知である。 Fluorination of 1220za may be performed by any of batch, semi-continuous flow, and continuous flow methods. The reactor is preferably a liquid phase reactor or a gas phase reactor depending on the reaction. Examples of the material for the reactor include, but are not limited to, stainless steel (for example, SUS304 and SUS316), Hastelloy (TM), Inconel (TM), Monel (TM), and the like. Such reactors are well known in the art.
 1220zaのフッ素化の手順は、特に限定されない。以下にその一例を示す。バッチ式操作、半連続流通式操作においては、例えば、反応器に所定の原料を所定量導入し、前記フッ素化を液相反応で行う場合には所望により溶媒を所定量導入し、所定の条件で反応を行う手順等が例示される。触媒を用いる場合には、触媒をあらかじめ、あるいは、原料や溶媒とともに反応器内に導入することが好ましい。また、反応器への原料の導入手順は特に限定されない。例えば、反応器に1220zaを導入し、その後、フッ化水素が反応器に導入されてもよい。このとき、所望により溶媒を導入する場合には、フッ化水素を反応器に導入する前に該溶媒の一部または全部を反応器に導入してもよいし、フッ化水素の導入流れとともに別の流れで、あるいはフッ化水素と一緒の流れで該溶媒を反応器に導入してもよい。 The procedure for fluorination of 1220za is not particularly limited. An example is shown below. In batch-type operation and semi-continuous flow-type operation, for example, when a predetermined amount of a predetermined raw material is introduced into a reactor and the fluorination is performed by a liquid phase reaction, a predetermined amount of a solvent is introduced as desired. The procedure etc. which perform reaction by are illustrated. When using a catalyst, it is preferable to introduce the catalyst into the reactor in advance or together with the raw materials and the solvent. Moreover, the introduction procedure of the raw material to a reactor is not specifically limited. For example, 1220za may be introduced into the reactor and then hydrogen fluoride may be introduced into the reactor. At this time, when a solvent is introduced as desired, a part or all of the solvent may be introduced into the reactor before introducing hydrogen fluoride into the reactor, or separately with the introduction flow of hydrogen fluoride. The solvent may be introduced into the reactor in a stream or in a stream with hydrogen fluoride.
 連続流通式操作において、例えば、反応器に、1,1,3,3,3-ペンタクロロプロペン(1220za)と、フッ化水素とを、別々の流れで所定量導入し、所定の条件で1220zaのフッ素化を行う手順等が例示される。前記フッ素化を液相反応で行う場合に所望により用いられる溶媒は、1220zaとフッ化水素とは別々に、あるいは1220za溶液、フッ化水素溶液として、反応器に導入されてもよい。 In continuous flow operation, for example, a reactor is introduced with a predetermined amount of 1,1,3,3,3-pentachloropropene (1220za) and hydrogen fluoride in separate flows, and 1220za under predetermined conditions. The procedure etc. which perform fluorination of are illustrated. When the fluorination is performed in a liquid phase reaction, a solvent used as desired may be introduced into the reactor separately from 1220za and hydrogen fluoride, or as a 1220za solution or a hydrogen fluoride solution.
 1220zaのフッ素化により得られた反応生成物から1223zaを精製する方法は、特に限定されず、公知の精製方法を採用することができる。必要に応じて、反応生成物を水洗浄する等の方法により、反応生成物中に含まれ得る塩素成分や酸成分の除去処理を行ってもよい。また、脱水処理等を施して反応生成物中の水分を除去してもよく、塩素成分や酸成分の除去処理と組み合わせてこれを行ってもよい。また、蒸留等の操作を行ってもよい。以下に、1223zaの精製方法の一例を示すが、これに限定されない。例えば、反応生成物を、冷却したコンデンサーに流通させて凝縮させ、水または/およびアルカリ性溶液で洗浄して塩素成分、酸成分等を除去し、ゼオライト、活性炭等の乾燥剤で乾燥後、通常の蒸留操作によって、高純度の1223zaを得ることができる。 The method for purifying 1223za from the reaction product obtained by fluorination of 1220za is not particularly limited, and a known purification method can be employed. If necessary, the chlorine product and the acid component that may be contained in the reaction product may be removed by a method such as washing the reaction product with water. In addition, water in the reaction product may be removed by performing a dehydration treatment or the like, and this may be performed in combination with a removal treatment of a chlorine component or an acid component. Moreover, you may perform operation, such as distillation. Although an example of the purification method of 1223za is shown below, it is not limited to this. For example, the reaction product is passed through a cooled condenser to be condensed, washed with water or / and alkaline solution to remove chlorine component, acid component, etc., dried with a desiccant such as zeolite, activated carbon, etc. By the distillation operation, 1223za with high purity can be obtained.
 1220zaのフッ素化により、1221za、1222za、234fb、235fa、236fa等の副生物が生成することがある。反応生成物中に未反応原料の1220zaが存在する場合や、これらの副生物が存在する場合、通常の蒸留操作によってこれらの化合物を反応生成物中から分離してそれぞれ回収することができる。分離された1220zaやこれらの副生物の種類(例えば、1221zaや1222za等の過小フッ素化物)によっては、本発明に係る反応の原料として再利用することができる。また、これらの化合物は、そのまま種々の用途に供してもよい。 Fluorination of 1220za may produce by-products such as 1221za, 1222za, 234fb, 235fa, and 236fa. When the unreacted raw material 1220za is present in the reaction product, or when these by-products are present, these compounds can be separated from the reaction product and recovered by ordinary distillation operations. Depending on the separated 1220za and the types of these by-products (for example, underfluorinated compounds such as 1221za and 1222za), they can be reused as a raw material for the reaction according to the present invention. These compounds may be used for various applications as they are.
 また、1221zaや1222za等の過小フッ素化物は、さらなるフッ素化を行うことで1223zaに変換することもできる。したがって、このような過小フッ素化物は1220zaと同様に反応原料として反応系に供してもよい。これにより、1223zaを効率的に製造することができる。また、このような過小フッ素化物を反応生成物中から取り出して別途フッ素化してもよい。 Also, underfluorinated compounds such as 1221za and 1222za can be converted to 1223za by further fluorination. Therefore, such underfluorinated products may be used as a reaction raw material in the reaction system in the same manner as 1220za. Thereby, 1223za can be manufactured efficiently. Further, such a small fluorinated product may be taken out from the reaction product and fluorinated separately.
 本発明に係る反応において、得られた1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za)は、常温、常圧で液体として存在する。 In the reaction according to the present invention, the obtained 1,1-dichloro-3,3,3-trifluoropropene (1223za) exists as a liquid at normal temperature and normal pressure.
 <1,1,3,3,3-ペンタクロロプロペン(1220za)の製造方法>
 1220zaの製造方法の一例を以下に示す。この方法により1220zaを製造し、この1220zaを本発明に係る反応の原料として用いることで、後述の1,1,1,3,3,3-ヘキサクロロプロパン(230fa)や1,1,1,3,3-ペンタクロロプロパン(240fa)を出発原料として効率的に1223zaを製造することができる。
<Method for producing 1,1,3,3,3-pentachloropropene (1220za)>
An example of a manufacturing method of 1220za is shown below. By producing 1220za by this method and using this 1220za as a raw material for the reaction according to the present invention, 1,1,1,3,3,3-hexachloropropane (230fa) described later or 1,1,1,3 1,3-pentachloropropane (240fa) can be used as a starting material to produce 1223za efficiently.
 1220zaは、230faを、液相において、ルイス酸触媒の存在下、脱塩化水素化する工程(以下、「脱塩化水素化工程」と呼ぶことがある。)を少なくとも含む方法により、製造することができる。 1220za can be produced by a process including at least a step of dehydrochlorinating 230fa in the liquid phase in the presence of a Lewis acid catalyst (hereinafter sometimes referred to as “dehydrochlorination step”). it can.
 さらに、230faは、240faを塩素化する工程(以下、「塩素化工程」と呼ぶことがある。)を少なくとも含む方法により、製造することができ、そうすることが好ましい。なお、このことは、他の方法により製造された230faを脱塩化水素化工程に供することを妨げるものではない。 Furthermore, 230fa can be manufactured by a method including at least a step of chlorinating 240fa (hereinafter, sometimes referred to as “chlorination step”), and it is preferable to do so. This does not preclude the use of 230fa produced by other methods in the dehydrochlorination step.
 塩素化工程と脱塩化水素化工程の両工程に共通することとして、「水分」について述べる。塩素化工程、脱塩化水素化工程の反応ともに、水が積極的に反応に関与するわけではないから、本発明において、反応系中に水を添加する積極的な理由はない。特にルイス酸触媒存在下で反応を行う場合には、ルイス酸の活性を高めるために、「水分」は可能な限り低い(一般に無水条件と言われる)条件で、反応を行うことが好ましい。しかし、反応液の全質量に対して1質量%の水が存在する程度であれば、ルイス酸の活性は十分維持される。よって、水の含量は、反応液の全質量に対して1質量%以下に保つことが望ましく、さらに好ましくは0.1質量%以下である。 “Moisture” is described as common to both chlorination and dehydrochlorination processes. In both the reactions of the chlorination step and the dehydrochlorination step, water does not actively participate in the reaction. Therefore, in the present invention, there is no positive reason for adding water to the reaction system. In particular, when the reaction is carried out in the presence of a Lewis acid catalyst, it is preferable to carry out the reaction under conditions where “moisture” is as low as possible (generally referred to as anhydrous conditions) in order to increase the activity of the Lewis acid. However, the activity of the Lewis acid is sufficiently maintained as long as 1% by mass of water is present with respect to the total mass of the reaction solution. Therefore, the water content is desirably maintained at 1% by mass or less, more preferably 0.1% by mass or less, with respect to the total mass of the reaction solution.
 また、塩素化工程、脱塩化水素化工程の何れの反応についても、溶媒は必要でない。これらの反応を液相反応で行う場合、原料/生成物である240fa、1230za、230fa、1220zaは何れも、それ自体が安定な液相を形成し、これらを主成分とする液相中で、目的とする反応は進行する。なお、このことは、塩素化工程、脱塩化水素化工程の何れかの反応を溶媒存在下で行うことを妨げるものではないが、溶媒を用いる場合には、これらの反応に悪影響を与えず、液相反応を行うことができるものを採用することが好ましい。 Also, no solvent is required for any reaction in the chlorination step or the dehydrochlorination step. When these reactions are performed in a liquid phase reaction, the raw materials / products 240fa, 1230za, 230fa, and 1220za all form a stable liquid phase by themselves, and in the liquid phase mainly composed of these, The intended reaction proceeds. Note that this does not prevent the reaction of either the chlorination step or the dehydrochlorination step from being carried out in the presence of a solvent, but when a solvent is used, these reactions are not adversely affected. It is preferable to employ one capable of performing a liquid phase reaction.
 さらに、塩素化工程と脱塩化水素化工程の両反応に共通することとして、これらの工程の実施に際して、不活性ガス(窒素ガス、アルゴンガス等)存在下での実施は、必須ではない。しかし、窒素ガスを流通しながら反応を行うと、特に大きな規模で反応を実施するときには、より円滑な反応が行えることがある。このような最適な反応の実施態様は、当業者の知識によって適宜設定することができる。 Furthermore, as common to both reactions of the chlorination step and the dehydrochlorination step, it is not essential to perform these steps in the presence of an inert gas (nitrogen gas, argon gas, etc.). However, when the reaction is performed while flowing nitrogen gas, a smoother reaction may be performed particularly when the reaction is performed on a large scale. Such an optimal reaction embodiment can be appropriately set according to the knowledge of those skilled in the art.
 以下、塩素化工程と脱塩化水素化工程について、工程ごとに説明を行う。 Hereinafter, the chlorination process and the dehydrochlorination process will be described for each process.
 1.塩素化工程
 塩素化工程は、1,1,1,3,3-ペンタクロロプロパン(240fa)を塩素化して、1,1,1,3,3,3-ヘキサクロロプロパン(230fa)を得る工程である。
1. Chlorination process The chlorination process is a process in which 1,1,1,3,3-pentachloropropane (240fa) is chlorinated to obtain 1,1,1,3,3,3-hexachloropropane (230fa). .
 240faは、現在、発泡剤として工業的に製造されている1,1,1,3,3-ペンタフルオロプロパン(245fa)の出発原料であり、四塩化炭素と塩化ビニルを触媒存在下で反応させることによって合成可能である(例えば米国特許公報7094936号を参照)。 240fa is a starting material of 1,1,1,3,3-pentafluoropropane (245fa) that is currently industrially produced as a blowing agent, and reacts carbon tetrachloride and vinyl chloride in the presence of a catalyst. (See, for example, US Pat. No. 7,094,936).
 本発明の一態様において、240faの塩素化は、240faと、塩素化剤(好ましくは塩素)との接触により行う。この接触はどのような態様であってもよく、例えば、あらかじめ塩素化剤を導入した反応器に240faを導入することによる接触や、塩素化剤と240faとを別々の流れで反応器に導入することによる接触や、あらかじめ240faを導入した反応器に塩素化剤を導入することによる接触等が挙げられるが、これらに限定されない。中でも、液体状態の240faに対して気体状態の塩素化剤(例えば、塩素ガス)を吹き込み導入することによる接触が好適である。本発明の一態様において、この反応は、反応効率の観点から、ラジカル開始剤存在下またはUV照射下で行われることが好ましく、ラジカル開始剤存在下かつUV照射下で行われることが特に好ましい。また、本発明の別の一態様において、塩素化反応の良好な加速を示し、反応後の精製操作が容易であることから、この反応は、ラジカル開始剤を用いることなくUV照射下で行われることが好ましい。 In one embodiment of the present invention, chlorination of 240fa is performed by contacting 240fa with a chlorinating agent (preferably chlorine). This contact may be in any form, for example, contact by introducing 240fa into a reactor into which a chlorinating agent has been previously introduced, or introducing the chlorinating agent and 240fa into the reactor in separate flows. Examples of such contact include, but are not limited to, contact by introducing a chlorinating agent into a reactor into which 240 fa has been introduced in advance. Especially, the contact by blowing in and introducing a gaseous chlorinating agent (for example, chlorine gas) with respect to 240fa of a liquid state is suitable. In one embodiment of the present invention, this reaction is preferably performed in the presence of a radical initiator or under UV irradiation, and particularly preferably performed in the presence of a radical initiator and under UV irradiation, from the viewpoint of reaction efficiency. In another embodiment of the present invention, this reaction is performed under UV irradiation without using a radical initiator because it shows good acceleration of the chlorination reaction and easy purification after the reaction. It is preferable.
 塩素化工程において、使用する塩素化剤は特に限定されない。本発明の一態様において、塩素化剤は、塩素(塩素ラジカル)を発生させるものであれば特に限定されない。例えば、塩素、塩化スルフリル、N-クロロスクシンイミド等が挙げられ、中でも塩素が好ましい。 In the chlorination step, the chlorinating agent used is not particularly limited. In one embodiment of the present invention, the chlorinating agent is not particularly limited as long as it generates chlorine (chlorine radical). For example, chlorine, sulfuryl chloride, N-chlorosuccinimide and the like can be mentioned, among which chlorine is preferable.
 塩素化工程において、塩素化剤の使用量は、230faが生成されれば特に限定されない。240faに対し、塩素化剤を通常0.3~1.5当量用い、好ましくは0.5~1当量である。 In the chlorination step, the amount of chlorinating agent used is not particularly limited as long as 230fa is produced. A chlorinating agent is usually used in an amount of 0.3 to 1.5 equivalents, preferably 0.5 to 1 equivalent, relative to 240fa.
 塩素化工程において、使用するラジカル開始剤としては、アゾ化合物、有機過酸化物、トリエチルボラン、ジエチル亜鉛等が挙げられる。その他にもゼロ価の金属錯体等を用いてもよい。このようなラジカル開始剤は単独で用いてもよいし、複数を併用してもよい。このアゾ化合物としては、アゾビスイソブチロニトリル(AIBN)、1,1’-アゾビス(シクロヘキサンカルボニトリル)(ABCN)等が例示できるが、これらに限定されない。有機過酸化物としては、tert-ブチルヒドロペルオキシド(TBHP)、過酸化ベンゾイル(BPO)等が例示できるが、これらに限定されない。 In the chlorination step, examples of the radical initiator used include azo compounds, organic peroxides, triethylborane, and diethylzinc. In addition, a zero-valent metal complex or the like may be used. Such radical initiators may be used alone or in combination. Examples of the azo compound include, but are not limited to, azobisisobutyronitrile (AIBN), 1,1'-azobis (cyclohexanecarbonitrile) (ABCN), and the like. Examples of the organic peroxide include, but are not limited to, tert-butyl hydroperoxide (TBHP) and benzoyl peroxide (BPO).
 塩素化工程において、ラジカル開始剤の使用量は、有効量であれば特に制限されない。本発明の一態様において、ラジカル開始剤の使用量は、240faに対し、0.01~1質量%であり、好ましくは0.1~0.3質量%である。 In the chlorination step, the amount of radical initiator used is not particularly limited as long as it is an effective amount. In one embodiment of the present invention, the amount of the radical initiator used is 0.01 to 1% by mass, preferably 0.1 to 0.3% by mass with respect to 240fa.
 塩素化工程における反応温度は特に限定されない。本発明の一態様において、塩素化工程における反応温度は0~150℃程度が好ましく、反応効率の観点から、40~80℃が特に好ましい。 The reaction temperature in the chlorination step is not particularly limited. In one embodiment of the present invention, the reaction temperature in the chlorination step is preferably about 0 to 150 ° C., and particularly preferably 40 to 80 ° C. from the viewpoint of reaction efficiency.
 塩素化工程における反応時間は特に限定されない。塩素化工程においては、反応器内部の液相部の240faが、時間の経過とともに目的物である230faに置き換わっていく。サンプリングした反応物のガスクロマトグラフ分析等によって、反応の進行を確認しながら、230faへの最も高い選択率が達成されるように調整することが好ましい。本発明の一態様において、原料の240faが3~8割程度消費されたところで反応を終了することが好ましく、4~7割程度がより好ましく、5~6割程度が特に好ましいが、この限りではない。これにより、230faがさらに塩素化された化合物の副生を抑制することができる。なお、このことは、原料の240faが3割未満消費されたところで、あるいは、8割超消費されたところで反応を終了することを妨げるものではない。 The reaction time in the chlorination process is not particularly limited. In the chlorination step, 240fa in the liquid phase inside the reactor is replaced with 230fa, which is the object, over time. It is preferable to adjust so that the highest selectivity to 230fa is achieved while confirming the progress of the reaction by gas chromatographic analysis or the like of the sampled reactant. In one embodiment of the present invention, the reaction is preferably terminated when about 240 to 80% of the raw material is consumed, more preferably about 40 to 70%, and particularly preferably about 50 to 60%. Absent. Thereby, the byproduct of the compound in which 230fa is further chlorinated can be suppressed. This does not prevent the reaction from being terminated when less than 30% of the raw material 240fa is consumed or when more than 80% is consumed.
 塩素化工程において、塩素化反応により1,1,1,2,3,3-ヘキサクロロプロパン(以下、230daともいう)が生成することがある。230daは240faの塩素化誘導体の一種であり、230daの脱塩化水素化によっても1220zaを製造することができる。したがって、脱塩化水素化工程においては、供給原料として純粋な230faを用いてもよいし、230faと230daの混合物を用いてもよい。また、脱塩化水素化工程の供給原料として230faの代わりに230daを用いてもよい。 In the chlorination step, 1,1,1,2,3,3-hexachloropropane (hereinafter also referred to as 230da) may be generated by the chlorination reaction. 230da is a kind of 240fa chlorinated derivative, and 1220za can be produced by dehydrochlorination of 230da. Therefore, in the dehydrochlorination step, pure 230fa may be used as a feedstock, or a mixture of 230fa and 230da may be used. Further, 230da may be used in place of 230fa as a feedstock for the dehydrochlorination step.
 塩素化工程で得られた230faは、一般的な精製操作により精製することができる。例えば、蒸留、好ましくは減圧蒸留等の操作によって、230faから原料の240faを容易に分離することができる。分離した240faは塩素化工程の原料として再利用できる。 230fa obtained in the chlorination step can be purified by a general purification operation. For example, the raw material 240fa can be easily separated from 230fa by an operation such as distillation, preferably vacuum distillation. The separated 240fa can be reused as a raw material for the chlorination process.
 なお、塩素化工程によって合成された230faは、触媒の分離、蒸留精製といった後処理を行うことなく、続く脱塩化水素化工程の原料として用いることができる。このことは、後処理を行うことを妨げるものではないが、後処理を行うことなく、塩素化工程と脱塩化水素化工程とを連続して実施できる点も本発明の大きなメリットの1つであるので、そのような後処理を行わないことは、好ましい一態様である。 In addition, 230fa synthesized by the chlorination step can be used as a raw material for the subsequent dehydrochlorination step without performing post-treatment such as catalyst separation and distillation purification. This does not prevent the post-treatment, but one of the great advantages of the present invention is that the chlorination step and the dehydrochlorination step can be carried out continuously without performing the post-treatment. As such, it is a preferred embodiment that no such post-processing is performed.
 塩素化工程において、反応器(反応装置)の材質は特に制限はない。酸化性の強い塩素化剤(例えば、塩素ガス)を使用する場合には、ガラス製またはステンレススチール製のものが好ましい。また、ガラスや樹脂でライニングされた反応器も好ましい。また、反応器は、吹き込み管、攪拌設備、還流塔等の各種設備を備えるものが好ましい。 In the chlorination process, the material of the reactor (reactor) is not particularly limited. When a highly oxidizing chlorinating agent (for example, chlorine gas) is used, those made of glass or stainless steel are preferred. A reactor lined with glass or resin is also preferred. The reactor is preferably equipped with various facilities such as a blowing tube, a stirring facility, a reflux tower and the like.
 2.脱塩化水素化工程
 脱塩化水素化工程は、液相において、ルイス酸触媒の存在下、230faを脱塩化水素化して1220zaを得る工程である。
2. Dehydrochlorination Step The dehydrochlorination step is a step of obtaining 1220za by dehydrochlorinating 230fa in the presence of a Lewis acid catalyst in the liquid phase.
 脱塩化水素化工程において、反応器(反応装置)の材質は特に制限はない。塩化水素が発生する反応であるので、耐酸性を有する材質のものが好ましく、具体的には、ガラス製やステンレススチール製のもの、また、ガラスや樹脂でライニングされたもの等が挙げられる。さらに、反応器は攪拌設備、還流塔等の各種設備を備えるものが好ましい。塩素化工程と脱塩化水素化工程を同一反応器で行う場合は、気体の塩素化剤(例えば、塩素)を用いる場合には、該塩素化剤が導入可能な吹き込み管を備えるものが好ましい。また、この「液相中、ルイス酸触媒存在下」の反応の場合、後述の通り、反応温度は200℃ないしそれ以下で十分進行する。これは、230faや1220zaの沸点に比べて必ずしも高くないので、還流塔を備えていれば、常圧において反応混合物を液体状態に保てるので、常圧(開放系)の状態で、反応を実施することができる。なお、このことは、加圧反応器を用いて反応を行い、発生する塩化水素を適時パージする、という方法を採用することを妨げるものではない。 In the dehydrochlorination step, the material of the reactor (reactor) is not particularly limited. Since it is a reaction in which hydrogen chloride is generated, a material having acid resistance is preferable. Specifically, a material made of glass or stainless steel, a material lined with glass or resin, or the like can be given. Furthermore, the reactor is preferably equipped with various facilities such as a stirring facility and a reflux tower. In the case where the chlorination step and the dehydrochlorination step are performed in the same reactor, when a gaseous chlorinating agent (for example, chlorine) is used, it is preferable to include a blowing tube into which the chlorinating agent can be introduced. In the case of the reaction “in the liquid phase and in the presence of a Lewis acid catalyst”, the reaction proceeds sufficiently at a reaction temperature of 200 ° C. or lower as described later. This is not necessarily higher than the boiling point of 230fa or 1220za, so if a reflux tower is provided, the reaction mixture can be kept in a liquid state at normal pressure, so that the reaction is carried out at normal pressure (open system). be able to. This does not preclude the adoption of a method in which the reaction is performed using a pressure reactor and the generated hydrogen chloride is purged in a timely manner.
 脱塩化水素化工程に用いるルイス酸触媒としては、金属のハロゲン化物が例示される。金属のハロゲン化物とは、金属原子とハロゲン原子の結合を有するものを指す。赤外分光法(IR法)、X線回折法(XRD法)、X線光電子分光法(XPS法)等によって金属原子-ハロゲン原子の結合が確認されれば本発明の触媒として使用可能である。具体的には、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物が好ましい。このような金属のハロゲン化物は、フッ化物、塩化物、臭化物、沃化物であってもよく、これらの中でも塩化物が好ましい。より具体的には、アルミニウム、鉄、スズおよびアンチモンからなる群より選ばれる少なくとも1種の金属の塩化物が特に好ましい。中でも、塩化アルミニウムと塩化鉄が一層好ましく、塩化鉄の場合は塩化第二鉄が好ましい。ルイス酸触媒は無水のものが、触媒活性が高く、好ましい。市販の無水物をそのまま使用しても良いし、水和物を塩化チオニル等の脱水剤で処理して無水物を得ることもできる。 Examples of the Lewis acid catalyst used in the dehydrochlorination step include metal halides. The metal halide refers to one having a bond between a metal atom and a halogen atom. If the bond between the metal atom and the halogen atom is confirmed by infrared spectroscopy (IR method), X-ray diffraction method (XRD method), X-ray photoelectron spectroscopy (XPS method), etc., it can be used as the catalyst of the present invention. . Specifically, at least one selected from the group consisting of aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten. Certain metal halides are preferred. Such metal halides may be fluorides, chlorides, bromides, and iodides. Of these, chlorides are preferred. More specifically, at least one metal chloride selected from the group consisting of aluminum, iron, tin and antimony is particularly preferred. Among these, aluminum chloride and iron chloride are more preferable, and in the case of iron chloride, ferric chloride is preferable. An anhydrous Lewis acid catalyst is preferable because of its high catalytic activity. Commercially available anhydrides may be used as they are, or hydrates may be treated with a dehydrating agent such as thionyl chloride to obtain anhydrides.
 ルイス酸触媒として上述の金属の塩化物を使用する場合、金属の硝酸塩、炭酸塩等や0価金属粉末を、予め塩化水素処理することによって、上述の金属の塩化物に誘導することができるので、これをルイス酸触媒として用いることも可能である。また、塩素化工程における240faの塩素化によって副生する塩化水素や、脱塩化水素化工程における230faの脱塩化水素反応によって発生する塩化水素により、上述の金属の0価金属粉末や炭酸塩や硝酸塩等を上述の金属の塩化物に誘導することも可能であるため、塩素化工程や脱塩化水素化工程に供するルイス酸触媒は、0価金属粉末や金属炭酸塩や金属硝酸塩であってもよい。 When the above-mentioned metal chloride is used as the Lewis acid catalyst, the metal nitrate, carbonate, etc. or zero-valent metal powder can be derived into the above-mentioned metal chloride by treating with hydrogen chloride in advance. This can also be used as a Lewis acid catalyst. In addition, the above metal zero-valent metal powders, carbonates and nitrates are produced by hydrogen chloride by-produced by chlorination of 240fa in the chlorination process and hydrogen chloride generated by the dehydrochlorination reaction of 230fa in the dehydrochlorination process. Can be derived into the above-mentioned metal chloride, the Lewis acid catalyst used in the chlorination step or dehydrochlorination step may be a zero-valent metal powder, a metal carbonate, or a metal nitrate. .
 ルイス酸触媒の量は、触媒としての有効量であれば特に限定されない。触媒の種類や反応温度等の操業条件によってその最適値は変化するが、良好な反応速度で反応が進行し、予期せぬ副反応も起こりにくいことから、ルイス酸触媒の量は、通常、原料の有機物に対して0.01~10mol%であり、より好ましくは0.1~5mol%である。 The amount of the Lewis acid catalyst is not particularly limited as long as it is an effective amount as a catalyst. The optimum value varies depending on the operating conditions such as the type of catalyst and reaction temperature, but the reaction proceeds at a good reaction rate and unexpected side reactions are unlikely to occur. The content is 0.01 to 10 mol%, more preferably 0.1 to 5 mol% with respect to the organic matter.
 「液相中、ルイス酸触媒存在下」で脱塩化水素化工程の反応を行う場合、反応温度は通常40~200℃の範囲で設定され、より好ましくは45~120℃である。最適な温度はルイス酸触媒の種類にも若干依存する。例えば、ルイス酸触媒として塩化アルミニウムを用いる場合は、40~100℃(典型的には50~80℃)が特に好ましく、塩化第二鉄を用いる場合は、これより若干高い50~110℃(典型的には60~80℃)が特に好ましい。これにより、良好な反応速度で反応が進行し、また、副生物の生成も抑制されるため、良好な選択率で1220zaを得ることができる。 When the reaction in the dehydrochlorination step is performed “in the liquid phase in the presence of a Lewis acid catalyst”, the reaction temperature is usually set in the range of 40 to 200 ° C., more preferably 45 to 120 ° C. The optimum temperature also depends somewhat on the type of Lewis acid catalyst. For example, when aluminum chloride is used as the Lewis acid catalyst, 40 to 100 ° C. (typically 50 to 80 ° C.) is particularly preferable, and when ferric chloride is used, 50 to 110 ° C. (typically higher than this) In particular, 60 to 80 ° C. is particularly preferable. Thereby, the reaction proceeds at a good reaction rate, and the production of by-products is also suppressed, so that 1220za can be obtained with a good selectivity.
 脱塩化水素化工程の好ましい態様として、還流塔を備えた反応器にルイス酸触媒と230faを仕込み、反応器内を攪拌しながら加熱する方法が挙げられる。これにより、水(水道水、工水等)を流通させた還流塔から、反応器外に塩化水素だけを排出させることができる。この反応器は特に限定されないが、反応に耐性のある材料から構成されることが好ましく、例えば、ガラス製の反応器やガラスライニング製の反応器が用いられる。 As a preferred embodiment of the dehydrochlorination step, there is a method in which a Lewis acid catalyst and 230fa are charged into a reactor equipped with a reflux tower, and the inside of the reactor is heated while stirring. Thereby, only hydrogen chloride can be discharged out of the reactor from the reflux tower through which water (tap water, industrial water, etc.) is circulated. Although this reactor is not specifically limited, It is preferable to be comprised from the material resistant to reaction, for example, the reactor made from glass and the reactor made from glass lining are used.
 脱塩化水素化工程における反応時間は特に限定されない。脱塩化水素化工程においては、反応器内部の液相が、時間の経過とともに目的物である1220zaに置き換わっていく。サンプリングした反応物のガスクロマトグラフ分析等によって、反応の進行を確認しつつ、230faがほぼ消費されたところで反応を終了することが好ましい。 The reaction time in the dehydrochlorination step is not particularly limited. In the dehydrochlorination step, the liquid phase inside the reactor is replaced with the target 1220za as time passes. It is preferable to terminate the reaction when 230fa is almost consumed while confirming the progress of the reaction by gas chromatographic analysis or the like of the sampled reactant.
 なお、脱塩化水素化工程の反応は、気相中かつ無触媒において実施することもできる。この気相無触媒反応の場合、反応温度は通常200~550℃となり、高温のため装置への負荷が概して大きくなるが、連続流通式の反応形式で行うことで、大量規模での1220zaの製造に有利なことがある。 The reaction in the dehydrochlorination step can be carried out in the gas phase and without a catalyst. In the case of this gas phase non-catalytic reaction, the reaction temperature is usually 200 to 550 ° C., and the load on the apparatus is generally large due to the high temperature. May be advantageous.
 脱塩化水素化工程によって得られた1220zaは、触媒の分離、蒸留精製といった後処理を行うことなく、続く1220zaのフッ素化反応の原料として供することができる。このことは、触媒の分離や蒸留精製等の後処理を行うことを妨げるものではないが、これらの後処理を行うことなく、連続して各工程を実施できる点も本発明の大きなメリットの1つであるので、そのような後処理を行わないことは、好ましい一態様である。 1220za obtained by the dehydrochlorination step can be used as a raw material for the subsequent fluorination reaction of 1220za without performing post-treatment such as separation of the catalyst and purification by distillation. This does not prevent the post-treatment such as separation of the catalyst and purification by distillation. However, one of the great advantages of the present invention is that each step can be carried out continuously without performing the post-treatment. Therefore, it is a preferable aspect not to perform such post-processing.
 本発明を以下の実施例により説明するが、本発明は以下の実施例により、限定されるものではない。 The present invention will be described with reference to the following examples, but the present invention is not limited to the following examples.
 本明細書中、FID%とは、検出器がFIDのガスクロマトグラフで分析した時の面積%を指す。また、文中、1223zaの単純純度換算収率、1222zaの単純純度換算収率、および、234fbの単純純度換算収率は、対応する下記式に従ってそれぞれ算出される。
 1223zaの単純純度換算収率=100×(回収有機物量×1223zaFID%/1223za分子量)/(1220za仕込み量×1220za純度/1220za分子量)
 1222zaの単純純度換算収率=100×(回収有機物量×1222zaFID%/1222za分子量)/(1220za仕込み量×1220za純度/1220za分子量)
 234fbの単純純度換算収率=100×(回収有機物量×234fbFID%/234fb分子量)/(1220za仕込み量×1220za純度/1220za分子量)
In this specification, FID% refers to the area% when the detector analyzes by FID gas chromatograph. In the text, the simple purity conversion yield of 1223za, the simple purity conversion yield of 1222za, and the simple purity conversion yield of 234fb are respectively calculated according to the following formulas.
Simple purity conversion yield of 1223za = 100 × (recovered organic matter amount × 1223zaFID% / 1223za molecular weight) / (1220za charge amount × 1220za purity / 1220za molecular weight)
Simple purity conversion yield of 1222za = 100 × (recovered organic matter amount × 1222zaFID% / 1222za molecular weight) / (1220za charge amount × 1220za purity / 1220za molecular weight)
Simple purity conversion yield of 234fb = 100 × (recovered organic matter amount × 234fbFID% / 234fb molecular weight) / (1220za charge amount × 1220za purity / 1220za molecular weight)
 (A)1220zaのフッ素化
 (A-1)1220zaの液相フッ素化
 [実施例1-1]
 20℃の冷却液を循環させた凝縮器と圧力計とを備えた300mLのステンレス鋼製オートクレーブに、純度94.7%の1,1,3,3,3-ペンタクロロプロペン(1220za)30g(0.131モル)と、フッ化水素26.0g(1.30モル、1220za/フッ化水素モル比=約1/10)とを導入した後、オートクレーブを120℃に加熱した。圧力が約4MPaGを超えたところで、4.0~4.5MPaGを維持するように凝縮器出口のニードルバルブから反応生成ガスを抜き出した。抜き出したガスは、氷水浴中で冷却した氷水入りのフッ素樹脂製ガス洗浄瓶に通して酸を吸収し、ドライアイスアセトン浴のガラストラップで反応生成有機物を回収した。昇温開始から3時間後、圧力の上昇が観察されなくなったことを確認した後、反応器をパージし、抜き出したガスは氷水浴中で冷却した氷水入りのフッ素樹脂製ガス洗浄瓶及びドライアイスアセトン浴のガラストラップに回収した。反応器を冷却後、オートクレーブ内の反応液とドライアイスアセトン浴のガラストラップ回収物を氷水入りのフッ素樹脂製ガス洗浄瓶にすべて混合し、併せた混合溶液をフッ素樹脂製分液ロートにて有機物を水相から分離し回収した。この回収した有機物の量は、20.3gであった。
(A) Fluorination of 1220za (A-1) Liquid phase fluorination of 1220za [Example 1-1]
30 g of 1,1,3,3,3-pentachloropropene (1220za) with a purity of 94.7% was added to a 300 mL stainless steel autoclave equipped with a condenser and a pressure gauge in which a coolant at 20 ° C. was circulated. 0.131 mol) and 26.0 g of hydrogen fluoride (1.30 mol, 12.20 za / hydrogen fluoride molar ratio = about 1/10) were introduced, and then the autoclave was heated to 120 ° C. When the pressure exceeded about 4 MPaG, the reaction product gas was extracted from the needle valve at the condenser outlet so as to maintain 4.0 to 4.5 MPaG. The extracted gas was passed through a fluororesin gas washing bottle containing ice water cooled in an ice water bath to absorb the acid, and the reaction product organic matter was recovered with a glass trap of a dry ice acetone bath. Three hours after the start of temperature increase, after confirming that the pressure increase was no longer observed, the reactor was purged, and the extracted gas was a fluororesin gas cleaning bottle containing ice water cooled in an ice water bath and dry ice. It collected in the glass trap of the acetone bath. After cooling the reactor, the reaction liquid in the autoclave and the glass trap collection from the dry ice acetone bath are all mixed in a fluororesin gas washing bottle containing ice water, and the combined solution is mixed with organic substances in a fluororesin separatory funnel. Was separated from the aqueous phase and recovered. The amount of the collected organic matter was 20.3 g.
 [実施例1-2]
 反応温度を80℃とした以外は実施例1-1と同様に反応を実施した。最大圧力は3.5MPaGであったため、ガスの抜出は行わなかった。回収した有機物の量は17.8gであった。
[Example 1-2]
The reaction was carried out in the same manner as in Example 1-1 except that the reaction temperature was 80 ° C. Since the maximum pressure was 3.5 MPaG, no gas was extracted. The amount of recovered organic matter was 17.8 g.
 [実施例1-3]
 反応温度を50℃とした以外は実施例1-1と同様に反応を実施した。最大圧力は2.5MPaGであったため、ガスの抜出は行わなかった。回収した有機物の量は18.6gであった。
[Example 1-3]
The reaction was performed in the same manner as in Example 1-1 except that the reaction temperature was 50 ° C. Since the maximum pressure was 2.5 MPaG, no gas was extracted. The amount of recovered organic matter was 18.6 g.
 [実施例1-4]
 反応温度を30℃、反応圧力を常圧、反応時間を5時間とした以外は実施例1-1と同様に反応を実施した。回収した有機物の量は24.8gであった。
[Example 1-4]
The reaction was carried out in the same manner as in Example 1-1 except that the reaction temperature was 30 ° C., the reaction pressure was normal pressure, and the reaction time was 5 hours. The amount of recovered organic matter was 24.8 g.
 [実施例1-5]
 反応温度を160℃、純度94.7%の1,1,3,3,3-ペンタクロロプロペン(1220za)10g(0.044モル)と、フッ化水素27.0g(1.35モル、1220za/フッ化水素モル比=約1/30)とを導入した以外は実施例1-1と同様に反応を実施した。回収した有機物の量は7.1gであった。
[Example 1-5]
10 g (0.044 mol) of 1,1,3,3,3-pentachloropropene (1220za) having a reaction temperature of 160 ° C. and a purity of 94.7%, 27.0 g (1.35 mol, 12.20 mol) of hydrogen fluoride The reaction was carried out in the same manner as in Example 1-1 except that the hydrogen / hydrogen fluoride molar ratio was about 1/30). The amount of the collected organic matter was 7.1 g.
 [実施例1-6]
 20℃の冷却液を循環させた凝縮器と圧力計とを備えた1000mLのステンレス鋼製オートクレーブの外側を氷水浴で冷却を行い、純度94.7%の1,1,3,3,3-ペンタクロロプロペン(1220za)500g(2.2モル)と、フッ化水素220.0g(11.0モル、1220za/フッ化水素モル比=約1/5)とを導入した後、オートクレーブを50℃に加熱した。圧力が約0.2MPaGを超えたところで、0.20~0.25MPaGを維持するように凝縮器出口のニードルバルブから反応生成ガスを抜き出した。抜き出したガスは、氷水浴中で冷却した氷水入りのフッ素樹脂製ガス洗浄瓶に通して酸を吸収し、ドライアイスアセトン浴のガラストラップで反応生成有機物を回収した。昇温開始から5時間後、圧力の上昇が観察されなくなったことを確認した後、反応器をパージし、抜き出したガスは氷水浴中で冷却した氷水入りのフッ素樹脂製ガス洗浄瓶及びドライアイスアセトン浴のガラストラップに回収した。反応器を冷却後、オートクレーブ内の反応液とドライアイスアセトン浴のガラストラップ回収物を氷水入りのフッ素樹脂製ガス洗浄瓶にすべて混合し、併せた混合溶液をフッ素樹脂製分液ロートにて有機物を水相から分離し回収した。この回収した有機物の量は、432gであった。
[Example 1-6]
The outside of a 1000 mL stainless steel autoclave equipped with a condenser and a pressure gauge in which a coolant at 20 ° C. was circulated was cooled with an ice-water bath, and 1,1,3,3,3- After introducing 500 g (2.2 mol) of pentachloropropene (1220za) and 220.0 g of hydrogen fluoride (11.0 mol, 12.20 za / hydrogen fluoride molar ratio = about 1/5), the autoclave was heated to 50 ° C. Heated. When the pressure exceeded about 0.2 MPaG, the reaction product gas was extracted from the needle valve at the condenser outlet so as to maintain 0.20 to 0.25 MPaG. The extracted gas was passed through a fluororesin gas washing bottle containing ice water cooled in an ice water bath to absorb the acid, and the reaction product organic matter was recovered with a glass trap of a dry ice acetone bath. After confirming that no pressure increase was observed 5 hours after the start of temperature increase, the reactor was purged, and the extracted gas was a fluororesin gas cleaning bottle containing ice water cooled in an ice water bath and dry ice. It collected in the glass trap of the acetone bath. After cooling the reactor, the reaction liquid in the autoclave and the glass trap collection from the dry ice acetone bath are all mixed in a fluororesin gas washing bottle containing ice water, and the combined solution is mixed with organic substances in a fluororesin separatory funnel. Was separated from the aqueous phase and recovered. The amount of the collected organic matter was 432 g.
 [実施例1-7]
 フッ化水素440.0g(22.0モル、1220za/フッ化水素モル比=約1/10)を導入後、オートクレーブを加熱して、圧力が約0.3MPaGを超えたところで0.30~0.35MPaGを維持するように凝縮器出口のニードルバルブから反応生成ガスを抜き出した以外は実施例1-6と同様に反応を実施した。回収した有機物の量は350gであった。
[Example 1-7]
After introducing 440.0 g of hydrogen fluoride (22.0 mol, 1220 za / hydrogen fluoride molar ratio = about 1/10), the autoclave was heated, and when the pressure exceeded about 0.3 MPaG, 0.30-0 The reaction was carried out in the same manner as in Example 1-6, except that the reaction product gas was extracted from the needle valve at the outlet of the condenser so as to maintain 35 MPaG. The amount of organic matter recovered was 350 g.
 [実施例1-8]
 1,1,3,3,3-ペンタクロロプロペン(1220za)500gを仕込み、温度50℃に加熱したオートクレーブにフッ化水素440.0g(22.0モル、1220za/フッ化水素モル比=約1/10)を4時間かけて導入し、圧力が約0.3MPaGを超えたところで0.30~0.35MPaGを維持するように凝縮器出口のニードルバルブから反応生成ガスを抜き出した以外は実施例1-6と同様に反応を実施した。回収した有機物の量は343gであった。
[Example 1-8]
An autoclave charged with 500 g of 1,1,3,3,3-pentachloropropene (1220za) and heated to 50 ° C. had 440.0 g of hydrogen fluoride (22.0 mol, 1220 za / hydrogen fluoride molar ratio = about 1). / 10) is introduced over 4 hours, and the reaction product gas is extracted from the needle valve at the outlet of the condenser so as to maintain 0.30 to 0.35 MPaG when the pressure exceeds about 0.3 MPaG. The reaction was carried out in the same manner as 1-6. The amount of the collected organic matter was 343 g.
 実施例1-1~1-8について、反応条件(1220za/フッ化水素モル比、反応温度、反応圧力)をまとめたものを表1に示す。また、実施例1-1~1-8について、回収した有機物の組成をガスクロマトグラフィーでそれぞれ分析するとともに、1223za、1222za、および234fbの単純純度換算収率をそれぞれ算出した。これらの結果を表2に示す。なお、表2中、「―」は検出されなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Table 1 shows a summary of the reaction conditions (1220za / hydrogen fluoride molar ratio, reaction temperature, reaction pressure) for Examples 1-1 to 1-8. For Examples 1-1 to 1-8, the composition of the recovered organic substance was analyzed by gas chromatography, and the simple purity conversion yields of 1223za, 1222za, and 234fb were calculated. These results are shown in Table 2. In Table 2, “-” indicates that no detection was made.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [実施例2]
 電磁式還流装置、還流タイマー、2Lの三口フラスコを設置したガラス蒸留塔にヘリパックNO2を20段充填した。次いで、実施例1-6~1-8で得られた回収有機物を混合し、そのうちの1100gを仕込んで蒸留を行った。塔頂温度55.0~55.3℃の留分450g(1223za純度99.97FID%)を回収した(表3中の留分2に該当)。その他にも表3に示す各留分を得た。なお、表3中、「―」は検出されなかったことを示す。
Figure JPOXMLDOC01-appb-T000003
[Example 2]
A glass distillation column equipped with an electromagnetic reflux apparatus, a reflux timer, and a 2 L three-neck flask was filled with 20 stages of Helipac NO2. Next, the recovered organic substances obtained in Examples 1-6 to 1-8 were mixed, and 1100 g of the collected organic substances were charged and distilled. 450 g of a fraction having a tower top temperature of 55.0 to 55.3 ° C. (1223za purity of 99.97 FID%) was recovered (corresponding to fraction 2 in Table 3). In addition, each fraction shown in Table 3 was obtained. In Table 3, “-” indicates that no detection was made.
Figure JPOXMLDOC01-appb-T000003
 [実施例3]
 実施例2の蒸留において別途回収した留分4と、釜残液とを混合させ、水洗及びモレキュラーシーブスを用いて乾燥を実施した。乾燥後の有機物500gとフッ化水素440gを用いて、実施例1-7と同様の反応を実施した。回収した有機物の量は380gだった。
 回収した有機物の組成をガスクロマトグラフィーで分析した結果を以下に示す:
 1,1-ジクロロ-3,3,3-トリフルオロプロペン(1223za):80.3FID%;
 1,1,3-トリクロロ-3,3-ジフルオロプロペン(1222za):0.9FID%;
 1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb):0.1FID%;
 ヘキサクロロエタン(C2Cl6):3.5FID%;
 1-クロロ-3,3,3-トリフルオロプロペン(1233zd):12.0FID%;
 その他の化合物:3.2FID%。
 なお、1,1,3,3-テトラクロロ-3-フルオロプロペン(1221za)と1,1,3,3,3-ペンタクロロプロペン(1220za)は検出されなかった。
[Example 3]
The fraction 4 separately collected in the distillation of Example 2 and the kettle residue were mixed and washed with water and dried using molecular sieves. The same reaction as in Example 1-7 was carried out using 500 g of the dried organic substance and 440 g of hydrogen fluoride. The amount of collected organic matter was 380 g.
The result of analyzing the composition of the collected organic matter by gas chromatography is shown below:
1,1-dichloro-3,3,3-trifluoropropene (1223za): 80.3 FID%;
1,1,3-trichloro-3,3-difluoropropene (1222za): 0.9FID%;
1,1-dichloro-1,3,3,3-tetrafluoropropane (234fb): 0.1 FID%;
Hexachloroethane (C2Cl6): 3.5FID%;
1-chloro-3,3,3-trifluoropropene (1233zd): 12.0FID%;
Other compounds: 3.2 FID%.
In addition, 1,1,3,3-tetrachloro-3-fluoropropene (1221za) and 1,1,3,3,3-pentachloropropene (1220za) were not detected.
 (B)1,1,3,3,3-ペンタクロロプロペン(1220za)の調製とフッ素化
 [実施例4-1] 液相、UV照射下における1,1,1,3,3-ペンタクロロプロパン(240fa)の塩素化
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた3000mL四つ口フラスコに純度98.6FID%の1,1,1,3,3-ペンタクロロプロパン(240fa) 2000.0g(9.4mol)を仕込み、攪拌を開始した。ジムロートの上部に、PFAチューブを用いて5L-の水トラップ、次いで濃度25重量%の水酸化カリウム水溶液 250gを入れた500mL-PFA容器に接続した。フラスコ上部外側からガラス越しに水冷ジャケットを備えた高圧UVランプより照射、フラスコ下部を水バスで60℃に加熱し、ボールフィルターより塩素 673g(9.5mol)を360分間かけて導入した。塩素導入後に反応器を冷却し、反応を終了した。フラスコ内の釜残液に対し水洗浄と弱アルカリ水溶液での洗浄を実施し、有機物を2326g回収した。
 回収した有機物をガスクロマトグラフィーで分析した結果を以下に示す:
 1,1,1,3,3,3-ヘキサクロロプロパン(230fa):49.3FID%;
 1,1,1,2,3,3-ヘキサクロロプロパン(230da):9.8FID%;
 1,1,1,3,3-ペンタクロロプロパン(240fa):33.4FID%;
 2種類のヘプタクロロプロパン異性体(220 isomers):6.1FID%;
 その他の化合物:1.4FID%。
 電磁式還流装置、還流タイマー、減圧ライン、圧力計、2Lの三口フラスコを設置したガラス蒸留塔にガラス製ラシヒリングを10段充填し、前述の回収有機物2300gを仕込んだ。表4に示す各留出分と、釜残液253gを得た。
Figure JPOXMLDOC01-appb-T000004
(B) Preparation and fluorination of 1,1,3,3,3-pentachloropropene (1220za) [Example 4-1] 1,1,1,3,3-pentachloropropane under liquid phase and UV irradiation Chlorination of (240fa) 1,1,1,3,3-pentachloropropane (240fa) with a purity of 98.6FID% in a 3000 mL four-necked flask equipped with a ball filter, thermometer, Dimroth capable of running tap water and a stir bar 2000.0 g (9.4 mol) was charged and stirring was started. The top of the Dimroth was connected to a 500 mL-PFA container containing a 5 L-water trap and then 250 g of a 25 wt% potassium hydroxide aqueous solution using a PFA tube. Irradiation from a high-pressure UV lamp equipped with a water-cooling jacket over the glass from the upper outer side of the flask, the lower part of the flask was heated to 60 ° C. with a water bath, and 673 g (9.5 mol) of chlorine was introduced from a ball filter over 360 minutes. After introducing chlorine, the reactor was cooled to complete the reaction. The residue in the flask was washed with water and with a weak alkaline aqueous solution to recover 2326 g of organic matter.
The results of analyzing the collected organic matter by gas chromatography are shown below:
1,1,1,3,3,3-hexachloropropane (230fa): 49.3FID%;
1,1,1,2,3,3-hexachloropropane (230da): 9.8FID%;
1,1,1,3,3-pentachloropropane (240fa): 33.4FID%;
Two heptachloropropane isomers (220 isomers): 6.1 FID%;
Other compounds: 1.4 FID%.
A glass distillation tower equipped with an electromagnetic reflux apparatus, a reflux timer, a pressure reduction line, a pressure gauge, and a 2 L three-necked flask was filled with 10 stages of glass Raschig rings, and 2300 g of the recovered organic matter was charged. Each distillate shown in Table 4 and a kettle residue liquid 253g were obtained.
Figure JPOXMLDOC01-appb-T000004
 [実施例4-2]
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた2000mL三つ口フラスコに、実施例4-1で得られた留分3を910g、塩化第二鉄0.93g(0.006mol)を仕込み攪拌を開始した。ジムロートの上部に、PFAチューブを用いて500mL-PFA容器の空のトラップ、次いで濃度25重量%の水酸化ナトリウム水溶液250gを入れた500mL-PFA容器に接続した。ボールフィルターより流量30mL/分で窒素を導入しながら、フラスコをオイルバスで3時間かけて80℃に加熱し、そのまま1時間保持したところで釜残液をサンプリングした。
 サンプリングした釜残液をガスクロマトグラフィーで分析した結果を以下に示す:
 1,1,1,3,3-ペンタクロロプロパン(240fa):1.3FID%;
 1,1,3,3-テトラクロロプロペン(1230za):3.0FID%;
 1,1,3,3,3-ペンタクロロプロペン(1220za):83.8FID%;
 1,1,1,3,3,3-ヘキサクロロプロパン(230fa):0.05FID%;
 1,1,1,2,3,3-ヘキサクロロプロパン(230da):10.5FID%;
 その他の化合物:1.5FID%。
[Example 4-2]
In a 2000 mL three-necked flask equipped with a ball filter, thermometer, Dimroth capable of flowing tap water and a stirrer, 910 g of fraction 3 obtained in Example 4-1 and 0.93 g (0.006 mol) of ferric chloride were obtained. ) And stirring was started. At the top of the Dimroth, an empty trap of a 500 mL-PFA container was connected using a PFA tube, and then a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution. While introducing nitrogen from the ball filter at a flow rate of 30 mL / min, the flask was heated to 80 ° C. in an oil bath over 3 hours, and held for 1 hour, and the residual liquid in the kettle was sampled.
The results of analyzing the sampled kettle residue by gas chromatography are shown below:
1,1,1,3,3-pentachloropropane (240fa): 1.3FID%;
1,1,3,3-tetrachloropropene (1230za): 3.0FID%;
1,1,3,3,3-pentachloropropene (1220za): 83.8FID%;
1,1,1,3,3,3-hexachloropropane (230fa): 0.05 FID%;
1,1,1,2,3,3-hexachloropropane (230da): 10.5FID%;
Other compounds: 1.5 FID%.
 [実施例4-3]
 電磁式還流装置、還流タイマー、減圧ライン、圧力計、1Lの三口フラスコを設置したガラス蒸留塔にガラス製ラシヒリングを10段充填し、実施例4-1で得られた回収有機物を仕込み、温度74~75.6℃、圧力2.0KPaGの留分500gを得た。
 この留分のガスクロマトグラフィーで分析した結果を以下に示す:
 1,1,1,3,3-ペンタクロロプロパン(240fa):2.7FID%;
 1,1,3,3-テトラクロロプロペン(1230za):0.1FID%;
 1,1,3,3,3-ペンタクロロプロペン(1220za):94.7FID%;
 1,1,1,3,3,3-ヘキサクロロプロパン(230fa):0.1FID%;
 1,1,1,2,3,3-ヘキサクロロプロパン(230da):0.05FID%;
 その他の化合物:2.3FID%。
[Example 4-3]
A glass distillation column equipped with an electromagnetic reflux apparatus, a reflux timer, a pressure reduction line, a pressure gauge, and a 1 L three-necked flask was filled with 10 stages of glass Raschig rings, and the recovered organic matter obtained in Example 4-1 was charged at a temperature of 74 500 g of a fraction having a pressure of ˜75.6 ° C. and a pressure of 2.0 KPaG was obtained.
The results of gas fraction analysis of this fraction are shown below:
1,1,1,3,3-pentachloropropane (240fa): 2.7 FID%;
1,1,3,3-tetrachloropropene (1230za): 0.1 FID%;
1,1,3,3,3-pentachloropropene (1220za): 94.7 FID%;
1,1,1,3,3,3-hexachloropropane (230fa): 0.1 FID%;
1,1,1,2,3,3-hexachloropropane (230da): 0.05 FID%;
Other compounds: 2.3 FID%.
 [実施例4-4]
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた2000mL三つ口フラスコに、実施例4-1で得られた留分4を250g、塩化第二鉄0.31g(0.002mol)を仕込み攪拌を開始した。フラスコをオイルバスで3時間かけて120℃に加熱したこと以外は実施例4-2と同様の操作を行った。
 サンプリングした釜残液をガスクロマトグラフィーで分析した結果を以下に示す:
 1,1,3,3-テトラクロロプロペン(1230za):0.1FID%;
 1,1,3,3,3-ペンタクロロプロペン(1220za):62.8FID%;
 1,1,1,3,3,3-ヘキサクロロプロパン(230fa):0.01FID%;
 1,1,1,2,3,3-ヘキサクロロプロパン(230da):1.5FID%;
 1,1,2,3,3-ペンタクロロプロペン(1220xa):30.2FID%;
 2種類のヘプタクロロプロパン異性体(220 isomers):2.0FID%;
 ヘキサクロロ-1,3-ブタジエン(C4Cl6):1.0FID%;
 その他の化合物:2.5FID%。
 なお、1,1,1,3,3-ペンタクロロプロパン(240fa)は検出されなかった。
[Example 4-4]
In a 2000 mL three-necked flask equipped with a ball filter, thermometer, Dimroth capable of flowing tap water and a stirrer, 250 g of fraction 4 obtained in Example 4-1, 0.31 g of ferric chloride (0.002 mol) ) And stirring was started. The same operation as in Example 4-2 was performed, except that the flask was heated to 120 ° C. in an oil bath for 3 hours.
The results of analyzing the sampled kettle residue by gas chromatography are shown below:
1,1,3,3-tetrachloropropene (1230za): 0.1 FID%;
1,1,3,3,3-pentachloropropene (1220za): 62.8FID%;
1,1,1,3,3,3-hexachloropropane (230fa): 0.01 FID%;
1,1,1,2,3,3-hexachloropropane (230da): 1.5FID%;
1,1,2,3,3-pentachloropropene (1220xa): 30.2FID%;
Two heptachloropropane isomers (220 isomers): 2.0 FID%;
Hexachloro-1,3-butadiene (C4Cl6): 1.0 FID%;
Other compounds: 2.5 FID%.
In addition, 1,1,1,3,3-pentachloropropane (240fa) was not detected.
 [実施例5-1] 液相、UV照射下における1,1,1,3,3-ペンタクロロプロパン(240fa)の塩素化
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた3000mL四つ口フラスコに純度98.6FID%の1,1,1,3,3-ペンタクロロプロパン(240fa) 1000.0g(4.7mol)、実施例4-1の留分1、2を仕込み攪拌を開始した。ジムロートの上部に、PFAチューブを用いて5L-の水トラップ、次いで濃度25重量%の水酸化カリウム水溶液250gを入れた500mL-PFA容器に接続した。フラスコをオイルバスで60℃に加熱し、ボールフィルターより塩素600g(0.8mol)を300分間かけて導入した。塩素導入後、窒素を100mL/分で100分間吹き込んだ後、反応器を冷却し、反応を終了した。反応終了後のフラスコ内の釜残液(有機物)を2284g回収した。
 回収した釜残液のガスクロマトグラフィーで分析した結果を以下に示す;
 1,1,1,3,3,3-ヘキサクロロプロパン(230fa):50.9FID%;
 1,1,1,2,3,3-ヘキサクロロプロパン(230da):9.5FID%;
 1,1,1,3,3-ペンタクロロプロパン(240fa):26.8FID%;
 2種類のヘプタクロロプロパン異性体(220 isomers):10.1FID%;
 その他の化合物:2.7FID%。
[Example 5-1] Chlorination of 1,1,1,3,3-pentachloropropane (240fa) under liquid phase, UV irradiation 3000 mL equipped with a ball filter, thermometer, Dimroth capable of running tap water and stir bar In a four-necked flask, 1000.0 g (4.7 mol) of 1,1,1,3,3-pentachloropropane (240fa) having a purity of 98.6FID% and fractions 1 and 2 of Example 4-1 were charged and stirred. Started. The top of the Dimroth was connected to a 500 mL-PFA container containing a 5 L-water trap and then 250 g of a 25 wt% potassium hydroxide aqueous solution using a PFA tube. The flask was heated to 60 ° C. in an oil bath, and 600 g (0.8 mol) of chlorine was introduced from a ball filter over 300 minutes. After introducing chlorine, nitrogen was blown in at 100 mL / min for 100 minutes, and then the reactor was cooled to complete the reaction. After the reaction was completed, 2284 g of the residual liquid (organic matter) in the flask was recovered.
The results of gas chromatography analysis of the recovered kettle residue are shown below:
1,1,1,3,3,3-hexachloropropane (230fa): 50.9FID%;
1,1,1,2,3,3-hexachloropropane (230da): 9.5FID%;
1,1,1,3,3-pentachloropropane (240fa): 26.8FID%;
Two heptachloropropane isomers (220 isomers): 10.1 FID%;
Other compounds: 2.7% FID.
 [実施例5-2]
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた2000mL三つ口フラスコに実施例5-1で得られた釜残液(有機物)2284g、塩化第二鉄3.0g(0.02mol)を仕込んだこと以外、実施例4-2と同様の操作を行った。4時間反応したところでガスクロマトグラフィー分析した結果を以下に示す:
 1,1,1,3,3-ペンタクロロプロパン(240fa):1.5FID%;
 1,1,3,3-テトラクロロプロペン(1230za):25.7FID%;
 1,1,3,3,3-ペンタクロロプロペン(1220za):51.8FID%;
 1,1,1,3,3,3-ヘキサクロロプロパン(230fa):0.2FID%;
 1,1,1,2,3,3-ヘキサクロロプロパン(230da):9.5FID%;
 2種類のヘプタクロロプロパン異性体(220 isomers):9.2FID%;
 その他の化合物:2.1FID%。
[Example 5-2]
In a 2000 mL three-necked flask equipped with a ball filter, a thermometer, a Dimroth capable of running tap water and a stirrer, 2284 g of the residue from the vessel (organic matter) obtained in Example 5-1, 3.0 g of ferric chloride (0. 02 mol) was charged, and the same operation as in Example 4-2 was performed. The results of gas chromatographic analysis after 4 hours of reaction are shown below:
1,1,1,3,3-pentachloropropane (240fa): 1.5 FID%;
1,1,3,3-tetrachloropropene (1230za): 25.7FID%;
1,1,3,3,3-pentachloropropene (1220za): 51.8FID%;
1,1,1,3,3,3-hexachloropropane (230fa): 0.2FID%;
1,1,1,2,3,3-hexachloropropane (230da): 9.5FID%;
Two heptachloropropane isomers (220 isomers): 9.2 FID%;
Other compounds: 2.1 FID%.
 [実施例6] 液相、ラジカル開始剤、UV照射下における1,1,1,3,3-ペンタクロロプロパン(240fa)の塩素化
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた200mL3つ口フラスコに、純度98.6FID%の1,1,1,3,3-ペンタクロロプロパン(240fa) 100.0g(0.47mol)と、AIBN 0.1g(0.6mmol)とを仕込み攪拌を開始した。ジムロートの上部に、PFAチューブを用いて1LPFA水トラップ、次いで濃度25重量%の水酸化カリウム水溶液 250gを入れた500mL-PFA容器に接続した。フラスコをオイルバスで60℃に加熱し、ボールフィルターより塩素34g(0.48mol)を200分間かけて導入した。塩素導入後に反応器を冷却し、反応を終了した。フラスコ内の釜残液に対し水洗浄と弱アルカリ水溶液での洗浄を実施し、有機物を114g回収した。
 回収した有機物をガスクロマトグラフィーで分析した結果を以下に示す:
 1,1,1,3,3,3-ヘキサクロロプロパン(230fa):51.3FID%;
 1,1,1,2,3,3-ヘキサクロロプロパン(230da):10.8FID%;
 1,1,1,3,3-ペンタクロロプロパン(240fa):29.2FID%;
 2種類のヘプタクロロプロパン異性体(220 isomers):7.1FID%;
 その他の化合物:1.6FID%。
[Example 6] A liquid phase, a radical initiator, chlorination of 1,1,1,3,3-pentachloropropane (240fa) under UV irradiation, a ball filter, a thermometer, a Dimroth capable of flowing tap water, and a stir bar A 200 mL three-necked flask was charged with 100.0 g (0.47 mol) of 1,1,1,3,3-pentachloropropane (240fa) with a purity of 98.6FID% and 0.1 g (0.6 mmol) of AIBN. Agitation was started. The top of the Dimroth was connected to a 500 mL-PFA container containing a 1 LPFA water trap and then 250 g of 25 wt% potassium hydroxide aqueous solution using a PFA tube. The flask was heated to 60 ° C. in an oil bath, and 34 g (0.48 mol) of chlorine was introduced from the ball filter over 200 minutes. After introducing chlorine, the reactor was cooled to complete the reaction. The kettle residue in the flask was washed with water and a weak alkaline aqueous solution to recover 114 g of organic matter.
The results of analyzing the collected organic matter by gas chromatography are shown below:
1,1,1,3,3,3-hexachloropropane (230fa): 51.3FID%;
1,1,1,2,3,3-hexachloropropane (230 da): 10.8 FID%;
1,1,1,3,3-pentachloropropane (240fa): 29.2FID%;
Two heptachloropropane isomers (220 isomers): 7.1 FID%;
Other compounds: 1.6 FID%.
 実施例5-1~5-3で示されるように、1,1,1,3,3-ペンタクロロプロパン(240fa)の塩素化により得られた1,1,1,3,3,3-ヘキサクロロプロパン(230fa)を含む反応生成物に精製操作を施すことなく、そのまま230faの脱塩化水素化に供することによっても、1,1,3,3,3-ペンタクロロプロペン(1220za)が得られる。 As shown in Examples 5-1 to 5-3, 1,1,1,3,3,3-hexa obtained by chlorination of 1,1,1,3,3-pentachloropropane (240fa) The 1,1,3,3,3-pentachloropropene (1220za) can also be obtained by subjecting the reaction product containing chloropropane (230fa) to the dehydrochlorination of 230fa without purification.
 (A-2)1220zaの気相フッ素化
 [実施例7-1]
 電気炉を備えた1インチ、長さ40cmの円筒形ステンレス鋼製(SUS316)反応管にラシヒリング(SUS316L,5Φ×5mm)50mLを充填し、約30cc/分の流量で窒素ガスを流しながら反応管内を240℃に昇温した。窒素フィードを止め、気化させた1,1,3,3,3-ペンタクロロプロペン(1220za)原料0.110g/分、フッ化水素0.120g/分の流速で導入した(充填物との接触時間:20秒間)。流速が安定したところで、反応管出口に氷水で冷却した500mL水トラップを設置し、約100分間有機物の回収及び副生した酸分を吸収させた。すり抜けたガス成分はドライアイストラップで回収し、氷水トラップと合わせて重量回収率を算出した。酸除去を行った有機成分をガスクロマトグラフィーで分析を行った。
(A-2) Gas phase fluorination of 1220za [Example 7-1]
A 1 inch, 40 cm long cylindrical stainless steel (SUS316) reaction tube equipped with an electric furnace is filled with 50 mL of Raschig ring (SUS316L, 5Φ × 5 mm), and nitrogen gas is allowed to flow at a flow rate of about 30 cc / min. The temperature was raised to 240 ° C. Nitrogen feed was stopped and vaporized 1,1,3,3,3-pentachloropropene (1220za) raw material was introduced at a flow rate of 0.110 g / min and hydrogen fluoride at a flow rate of 0.120 g / min (contact with packing) Time: 20 seconds). When the flow rate was stabilized, a 500 mL water trap cooled with ice water was installed at the outlet of the reaction tube to collect organic matter and absorb by-product acid content for about 100 minutes. The slipped gas component was collected with a dry ice strap, and the weight recovery rate was calculated together with the ice water trap. The organic component from which the acid was removed was analyzed by gas chromatography.
 [実施例7-2]
 反応管内を270℃に昇温した以外は、実施例7-1と同様の操作を行った。
[Example 7-2]
The same operation as in Example 7-1 was performed except that the temperature in the reaction tube was raised to 270 ° C.
 [実施例7-3]
 反応管内を300℃に昇温した以外は、実施例7-1と同様の操作を行った。
[Example 7-3]
The same operation as in Example 7-1 was performed except that the temperature in the reaction tube was raised to 300 ° C.
 実施例7-1~7-3の結果を表5に示す。なお、表5中、「―」は検出されなかったことを示す。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows the results of Examples 7-1 to 7-3. In Table 5, “-” indicates that no detection was made.
Figure JPOXMLDOC01-appb-T000005
 [実施例8-1]
 ラシヒリングの代わりに活性炭を充填した以外は、実施例7-1と同様の操作を行った。
[Example 8-1]
The same operation as in Example 7-1 was performed except that activated carbon was filled instead of the Raschig ring.
 [実施例8-2]
 ラシヒリングの代わりにフッ素化処理を施したアルミナ触媒(以下、触媒1ともいう)を充填した以外は、実施例7-1と同様の操作を行った。なお、触媒1は下記の触媒調製例1に従って調製したものを用いた。
[Example 8-2]
The same operation as in Example 7-1 was performed, except that a fluorinated alumina catalyst (hereinafter also referred to as catalyst 1) was filled instead of Raschig ring. In addition, the catalyst 1 used what was prepared according to the following catalyst preparation examples 1.
 [実施例8-3]
 ラシヒリングの代わりにフッ素化処理を施したクロム担持活性炭(以下、触媒2ともいう)を充填し、また、原料、フッ化水素とともに塩素を0.005g/分の流速で導入した以外は、実施例7-1と同様の操作を行った。なお、触媒2は下記の触媒調製例2に従って調製したものを用いた。
[Example 8-3]
Except for filling fluorinated chromium-supported activated carbon (hereinafter also referred to as catalyst 2) instead of Raschig ring, and introducing chlorine together with the raw material and hydrogen fluoride at a flow rate of 0.005 g / min. The same operation as in 7-1 was performed. Catalyst 2 was prepared according to Catalyst Preparation Example 2 below.
 実施例8-1~8-3の結果を表6に示す。なお、表6中、「―」は検出されなかったことを示す。
Figure JPOXMLDOC01-appb-T000006
Table 6 shows the results of Examples 8-1 to 8-3. In Table 6, “-” indicates that no detection was made.
Figure JPOXMLDOC01-appb-T000006
 [実施例9-1]
 1,1,3,3,3-ペンタクロロプロペン(1220za)原料0.200g/分、フッ化水素0.125g/分の流速で導入した(充填物との接触時間:20秒間)こと以外は、実施例1-1と同様の操作を行った。
[Example 9-1]
Except for introducing 1,1,3,3,3-pentachloropropene (1220za) raw material at a flow rate of 0.200 g / min and hydrogen fluoride at a flow rate of 0.125 g / min (contact time with packing: 20 seconds) The same operation as in Example 1-1 was performed.
 [実施例9-2]
 ラシヒリングの代わりに活性炭を充填した以外は、実施例9-1と同様の操作を行った。
[Example 9-2]
The same operation as in Example 9-1 was performed except that activated carbon was filled instead of the Raschig ring.
 [実施例9-3]
 ラシヒリングの代わりに触媒2を充填し、また、原料、フッ化水素とともに塩素を0.005g/分の流速で導入した以外は、実施例7-1と同様の操作を行った。
[Example 9-3]
The same operation as in Example 7-1 was performed except that catalyst 2 was filled instead of Raschig ring and chlorine was introduced at a flow rate of 0.005 g / min together with the raw material and hydrogen fluoride.
 実施例9-1~9-3の結果を表7に示す。なお、表7中、「―」は検出されなかったことを示す。
Figure JPOXMLDOC01-appb-T000007
Table 7 shows the results of Examples 9-1 to 9-3. In Table 7, “-” indicates that no detection was made.
Figure JPOXMLDOC01-appb-T000007
 [触媒調製例1]
 活性アルミナ(住友化学製KHS-46:粒径4~6mm、比表面積155m2/g)300gを測り取り、水で表面に付着した粉を洗浄した。洗浄後のアルミナに10重量%フッ化水素水溶液1150gをゆっくり加え、攪拌後、約4時間静定した。水洗後、濾過を行い、常温で終夜乾燥し、次に電気炉において200℃で2時間乾燥を行った。この乾燥後の活性アルミナを、内径1インチ長さ40cmのステンレス鋼製(SUS316)反応管に150mL入れ、窒素150cc/秒を流しながら電気炉で200℃まで昇温し、更にフッ化水素を0.1g/分同伴させた。このようなフッ化水素処理を行うにつれて温度が上昇するが、内温が400℃を超えないように、窒素とフッ化水素の流速を調整した。発熱が収まった時点で、窒素の流速を30cc/秒に落とし、電気炉の設定温度を30分間ごとに50℃ずつ昇温し、最終的に400℃まで上げ、その状態を2時間保持した。このようにして、フッ素化処理したアルミナ触媒(触媒1)を調製した。
[Catalyst Preparation Example 1]
300 g of activated alumina (KHS-46 manufactured by Sumitomo Chemical Co., Ltd .: particle size 4 to 6 mm, specific surface area 155 m 2 / g) was weighed, and the powder adhering to the surface was washed with water. To the washed alumina, 1150 g of a 10 wt% hydrogen fluoride aqueous solution was slowly added, and the mixture was stirred and then allowed to stand for about 4 hours. After washing with water, it was filtered, dried at room temperature overnight, and then dried at 200 ° C. for 2 hours in an electric furnace. 150 mL of this dried activated alumina was put into a stainless steel (SUS316) reaction tube having an inner diameter of 1 inch and a length of 40 cm, and heated to 200 ° C. in an electric furnace while flowing nitrogen at 150 cc / sec. .1 g / min. Although the temperature rises as the hydrogen fluoride treatment is performed, the flow rates of nitrogen and hydrogen fluoride are adjusted so that the internal temperature does not exceed 400 ° C. When the exotherm subsided, the flow rate of nitrogen was reduced to 30 cc / sec, the electric furnace set temperature was raised by 50 ° C. every 30 minutes, finally raised to 400 ° C., and this state was maintained for 2 hours. Thus, a fluorinated alumina catalyst (catalyst 1) was prepared.
 [触媒調製例2]
 三角フラスコに20質量%塩化クロム水溶液を調製し、活性炭(白鷺G2X)100mLを浸漬させ、3時間保持した。これを濾過して得た濾物を、ロータリーエバポレーターを用いて、減圧下、70℃で乾燥させた。このようにして得たクロム担持活性炭100mLを、電気炉を備えた1インチ長さ40cmの円筒形ステンレス鋼製(SUS316)反応管に充填し、窒素ガスを流しながら200℃まで昇温し、水の流出が見られなくなった時点で、窒素ガス150cc/秒にフッ化水素(HF)0.1g/秒を同伴させ内温が400℃を超えないように、窒素とフッ化水素の流速を調整した。充填したクロム担持活性炭のフッ素化によるホットスポットが反応管出口端に達したところで窒素の流速を30cc/秒に落とし、電気炉の設定温度を30分間ごとに50℃ずつ昇温し、最終的に400℃まで上げ、その状態を2時間保持した、このようにして、フッ素化処理したクロム担持活性炭(触媒2)を調製した。
[Catalyst Preparation Example 2]
A 20% by mass chromium chloride aqueous solution was prepared in an Erlenmeyer flask, and 100 mL of activated carbon (Shirakaba G2X) was immersed therein and held for 3 hours. The residue obtained by filtering this was dried at 70 ° C. under reduced pressure using a rotary evaporator. 100 mL of the chromium-supported activated carbon thus obtained was charged into a 1-inch-long cylindrical stainless steel (SUS316) reaction tube equipped with an electric furnace, heated to 200 ° C. while flowing nitrogen gas, The flow rate of nitrogen and hydrogen fluoride is adjusted so that the internal temperature does not exceed 400 ° C by entraining 0.1 g / sec of hydrogen fluoride (HF) with 150 cc / sec of nitrogen gas. did. When the hot spot due to the fluorination of the loaded chromium-supported activated carbon reaches the outlet end of the reaction tube, the flow rate of nitrogen is reduced to 30 cc / second, and the set temperature of the electric furnace is increased by 50 ° C. every 30 minutes. The temperature was raised to 400 ° C. and the state was maintained for 2 hours. Thus, fluorinated chromium-supported activated carbon (catalyst 2) was prepared.

Claims (17)

  1.  1,1,3,3,3-ペンタクロロプロペンをフッ化水素でフッ素化して1,1-ジクロロ-3,3,3-トリフルオロプロペンを製造する工程、を含むことを特徴とする、1,1-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。 And fluorinating 1,1,3,3,3-pentachloropropene with hydrogen fluoride to produce 1,1-dichloro-3,3,3-trifluoropropene. , 1-Dichloro-3,3,3-trifluoropropene production method.
  2.  前記フッ化水素の使用量が、1,1,3,3,3-ペンタクロロプロペン1モルに対して3~40モルであることを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the amount of the hydrogen fluoride used is 3 to 40 mol per 1 mol of 1,1,3,3,3-pentachloropropene.
  3.  前記フッ素化を液相で行うことを特徴とする、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the fluorination is performed in a liquid phase.
  4.  前記フッ素化を0~200℃で行うことを特徴とする、請求項3に記載の方法。 The method according to claim 3, wherein the fluorination is performed at 0 to 200 ° C.
  5.  前記フッ素化により、1,1-ジクロロ-3,3,3-トリフルオロプロペンとともに、1,1,3-トリクロロ-3,3-ジフルオロプロペンまたは1,1-ジクロロ-1,3,3,3-テトラフルオロプロパンが生成されることを特徴とする、請求項3または4に記載の方法。 By the fluorination, 1,1-dichloro-3,3,3-trifluoropropene and 1,1,3-trichloro-3,3-difluoropropene or 1,1-dichloro-1,3,3,3 -Process according to claim 3 or 4, characterized in that tetrafluoropropane is produced.
  6.  前記フッ素化を気相で行うことを特徴とする、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the fluorination is performed in a gas phase.
  7.  前記フッ素化を100~500℃で行うことを特徴とする、請求項6に記載の方法。 The method according to claim 6, wherein the fluorination is performed at 100 to 500 ° C.
  8.  前記フッ素化を0~10MPaGで行うことを特徴とする、請求項1~7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the fluorination is performed at 0 to 10 MPaG.
  9.  前記フッ素化を触媒の存在下または非存在下で行うことを特徴とする、請求項1~8のいずれかに記載の方法。 The method according to any one of claims 1 to 8, wherein the fluorination is carried out in the presence or absence of a catalyst.
  10.  1,1-ジクロロ-3,3,3-トリフルオロプロペンを精製する工程を含むことを特徴とする、請求項1~9のいずれかに記載の方法。 The method according to any one of claims 1 to 9, comprising a step of purifying 1,1-dichloro-3,3,3-trifluoropropene.
  11.  1,1,3,3,3-ペンタクロロプロペンとともに1,1,3,3-テトラクロロ-3-フルオロプロペンまたは1,1,3-トリクロロ-3,3-ジフルオロプロペンを前記フッ素化に供することを特徴とする、請求項1~10のいずれかの記載の方法。 1,1,3,3,3-pentachloropropene and 1,1,3,3-tetrachloro-3-fluoropropene or 1,1,3-trichloro-3,3-difluoropropene are subjected to the fluorination The method according to any one of claims 1 to 10, characterized in that:
  12.  1,1,3,3,3-ペンタクロロプロペンをフッ化水素でフッ素化して1,1,3-トリクロロ-3,3-ジフルオロプロペンを製造する工程、を含むことを特徴とする、1,1,3-トリクロロ-3,3-ジフルオロプロペンの製造方法。 Fluorinating 1,1,3,3,3-pentachloropropene with hydrogen fluoride to produce 1,1,3-trichloro-3,3-difluoropropene, A method for producing 1,3-trichloro-3,3-difluoropropene.
  13.  前記フッ素化を液相で行うことを特徴とする、請求項12に記載の方法。 The method according to claim 12, wherein the fluorination is performed in a liquid phase.
  14.  前記フッ素化を触媒の存在下または非存在下で行うことを特徴とする、請求項12または13に記載の方法。 The method according to claim 12 or 13, characterized in that the fluorination is carried out in the presence or absence of a catalyst.
  15.  前記フッ素化により、1,1,3-トリクロロ-3,3-ジフルオロプロペンとともに、1,1-ジクロロ-3,3,3-トリフルオロプロペンが生成されることを特徴とする、請求項12~14のいずれかに記載の方法。 The fluorination produces 1,1-dichloro-3,3,3-trifluoropropene together with 1,1,3-trichloro-3,3-difluoropropene. 14. The method according to any one of 14.
  16.  1,1,1,3,3,3-ヘキサクロロプロパンを、液相において、ルイス酸触媒の存在下、脱塩化水素化して1,1,3,3,3-ペンタクロロプロペンを得る脱塩化水素化工程、をさらに含むことを特徴とする、請求項1~15のいずれかに記載の方法。 Dehydrochlorination of 1,1,1,3,3,3-hexachloropropane in the liquid phase to obtain 1,1,3,3,3-pentachloropropene in the presence of a Lewis acid catalyst The method according to any one of claims 1 to 15, further comprising a crystallization step.
  17.  1,1,1,3,3-ペンタクロロプロパンを、液相において、UV照射下またはラジカル開始剤の存在下で、塩素化して1,1,1,3,3,3-ヘキサクロロプロパンを得る塩素化工程、をさらに含むことを特徴とする、請求項16に記載の方法。 Chlorination of 1,1,1,3,3-pentachloropropane in the liquid phase to give 1,1,1,3,3,3-hexachloropropane under UV irradiation or in the presence of a radical initiator The method according to claim 16, further comprising a crystallization step.
PCT/JP2018/014840 2017-04-18 2018-04-09 Method for producing 1,1-dichloro-3,3,3-trifluoropropene WO2018193884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019513554A JPWO2018193884A1 (en) 2017-04-18 2018-04-09 Method for producing 1,1-dichloro-3,3,3-trifluoropropene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017082261 2017-04-18
JP2017-082261 2017-04-18
JP2018065052 2018-03-29
JP2018-065052 2018-03-29

Publications (1)

Publication Number Publication Date
WO2018193884A1 true WO2018193884A1 (en) 2018-10-25

Family

ID=63856596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014840 WO2018193884A1 (en) 2017-04-18 2018-04-09 Method for producing 1,1-dichloro-3,3,3-trifluoropropene

Country Status (2)

Country Link
JP (1) JPWO2018193884A1 (en)
WO (1) WO2018193884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159766A1 (en) * 2018-02-16 2019-08-22 セントラル硝子株式会社 Method for manufacturing 1,2-dichloro-3,3-difluoro-1-propene, and solvent composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194557B (en) * 2020-06-09 2022-05-24 浙江省化工研究院有限公司 Process for preparing 1, 1-dichloro-3, 3, 3-trifluoropropene and 1, 2-dichloro-3, 3, 3-trifluoropropene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254943A (en) * 2011-06-07 2012-12-27 Tokuyama Corp Method for producing polychloropropene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750917B2 (en) * 2011-02-01 2015-07-22 セントラル硝子株式会社 Process for producing cis-1-chloro-3,3,3-trifluoropropene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254943A (en) * 2011-06-07 2012-12-27 Tokuyama Corp Method for producing polychloropropene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HENNE, A. L. ET AL., J. AM. CHEM. SOC., 1941, pages 3478 *
OPERATIONS OF UNIT REACTION IN ORGANIC SYNTHESIS, vol. 1, 1960, pages 133 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159766A1 (en) * 2018-02-16 2019-08-22 セントラル硝子株式会社 Method for manufacturing 1,2-dichloro-3,3-difluoro-1-propene, and solvent composition
JPWO2019159766A1 (en) * 2018-02-16 2021-01-28 セントラル硝子株式会社 Method for Producing 1,2-Dichloro-3,3-Difluoro-1-propene and Solvent Composition
US11339106B2 (en) 2018-02-16 2022-05-24 Central Glass Company, Limited Method for producing 1,2-dichloro-3,3-difluoro-1-propene and solvent composition
US11667594B2 (en) 2018-02-16 2023-06-06 Central Glass Company, Limited Method for producing 1,2-dichloro-3,3-difluoro-1-propene and solvent composition
JP7348531B2 (en) 2018-02-16 2023-09-21 セントラル硝子株式会社 Method for producing 1,2-dichloro-3,3-difluoro-1-propene

Also Published As

Publication number Publication date
JPWO2018193884A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US9120716B2 (en) Process for the preparation of 2,3,3,3 tetrafluoropropene
JP5491392B2 (en) Method for producing fluorinated organic compounds
JP6084168B2 (en) For producing trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane together Integration method
JP6935423B2 (en) Method for manufacturing 2,3,3,3-tetrafluoropropene
JP6245013B2 (en) Process for producing 1,2-dichloro-3,3,3-trifluoropropene
JP5884130B2 (en) Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene
EP2563750A1 (en) Process for the manufacture of 2-chloro-3, 3, 3-trifluoropropene (hcfo 1233xf) by liquid phase fluorination of pentachloropropane
EP2374782B1 (en) Processes for producing 2-chloro-1,1,1,2-tetrafluoropropane and 2,3,3,3-tetrafluoropropene
US9284240B2 (en) Process for the manufacture of 2-chloro-3,3,3-trifluoropropene by gas phase fluorination of pentachloropropane
KR20140077958A (en) Process for producing 2,3,3,3-tetrafluoropropene
JP2018525403A (en) Method for producing C3 chlorinated alkane and alkene compound
EP2640681A1 (en) Process for the manufacture of 2 - chloro - 3, 3, 3 - trifluoropropene (hcfo 1233xf) by liquid phase fluorination of pentachloropropane
KR20140075790A (en) Process for producing 2,3,3,3-tetrafluoropropene
JP2018090512A (en) Method for producing fluorocarbon using hydrohalofluoropropene
JP6751239B2 (en) Method for producing 1,2-dichloro-3,3,3-trifluoropropene
WO2018193884A1 (en) Method for producing 1,1-dichloro-3,3,3-trifluoropropene
WO2017183501A1 (en) Method for producing 1,2-dichloro-3,3,3-trifluoropropene
WO2011135395A1 (en) Process for the manufacture of 2-chloro-3, 3,3-trifluoropropene (hcfo1233xf) by liquid phase fluorination of pentachloropropane
CN110520401A (en) The preparation method of the chloro- 3,3- difluoropropenes of 1,3- bis-
JP5990990B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JP6043415B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP6360084B2 (en) Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788313

Country of ref document: EP

Kind code of ref document: A1