JP6360084B2 - Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene - Google Patents

Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene Download PDF

Info

Publication number
JP6360084B2
JP6360084B2 JP2016004953A JP2016004953A JP6360084B2 JP 6360084 B2 JP6360084 B2 JP 6360084B2 JP 2016004953 A JP2016004953 A JP 2016004953A JP 2016004953 A JP2016004953 A JP 2016004953A JP 6360084 B2 JP6360084 B2 JP 6360084B2
Authority
JP
Japan
Prior art keywords
reaction
chloro
process according
catalyst
starting compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016004953A
Other languages
Japanese (ja)
Other versions
JP2016104789A (en
Inventor
ピガモ,アンヌ
ロラン ヴェンドランジャ,
ロラン ヴェンドランジャ,
ボネ,フィリップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Priority to JP2016004953A priority Critical patent/JP6360084B2/en
Publication of JP2016104789A publication Critical patent/JP2016104789A/en
Application granted granted Critical
Publication of JP6360084B2 publication Critical patent/JP6360084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、2−クロロ−3,3,3−トリフルオロプロペン(HCFO1233xf)の液相触媒フッ素化によって製品の2−クロロ−1,1,1、2−テトラフルオロプロパン(HCF244bb)を製造する方法に関するものである。 The present invention provides the product 2-chloro-1,1,1,2-tetrafluoropropane (HCF C 244bb) by liquid phase catalytic fluorination of 2-chloro-3,3,3-trifluoropropene (HCFO1233xf). It relates to a method of manufacturing.

オゾン層保護のためのモントリオールプロトコルによってクロロフルオロカーボン(CFC)の使用は禁止された。クロロフルオロカーボンの代わりにオゾン層への影響がより少ない化合物、例えばハイドロフルオロカーボン、HFC、例えばHFC−134aが用いられるようになった。しかし、これらの化合物は温室効果ガスとなる。従って、ODE(オゾン減損ポテンシャル)が低く且つGWP(地球温暖化ポテンシャル)が低いものを開発するというニーズが存在する。ハイドロフルオロカーボン(HFC)はオゾン層に影響を及ぼさない化合物の重要な候補物質と認定されたが、それでも相対的に高いGWP値を示し、さらに低いGWP値を示す化合物を見つけるというニーズが存在している。ヒドロフルオロオレフィン(HFO)はODEおよびGWP値が非常に低い代替物であると考えられている。   The use of chlorofluorocarbons (CFCs) was prohibited by the Montreal protocol for ozone layer protection. Instead of chlorofluorocarbons, compounds that have less impact on the ozone layer, such as hydrofluorocarbons, HFCs, such as HFC-134a, have come to be used. However, these compounds become greenhouse gases. Accordingly, there is a need to develop one with low ODE (ozone depletion potential) and low GWP (global warming potential). Hydrofluorocarbons (HFCs) have been identified as important candidates for compounds that do not affect the ozone layer, but there is still a need to find compounds that exhibit relatively high GWP values and even lower GWP values. Yes. Hydrofluoroolefins (HFO) are considered to be an alternative with very low ODE and GWP values.

このHFO化合物、特にプロピレンの製造方法がいくつか開発されている。化合物244bb(2−クロロ−1,1,1、2−テトラフルオロプロパン)は1234yf(2,3,3,3−テトラフルオロプロペン)製造の中間体として特に望まれている。   Several methods for producing this HFO compound, particularly propylene, have been developed. Compound 244bb (2-chloro-1,1,1,2-tetrafluoropropane) is particularly desired as an intermediate in the production of 1234yf (2,3,3,3-tetrafluoropropene).

特許文献1には1233xf(2−クロロ−3,3,3−トリフルオロプロペンから液相フッ素化または気相フッ素化で244bbを合成する方法が記載されている。液体のフッ素化で87%の収率が記載されているが、オーバーヘッドガスのみが考慮され、反応装置に残った液相は分析されていない。   Patent Document 1 describes a method for synthesizing 244bb from 1233xf (2-chloro-3,3,3-trifluoropropene by liquid phase fluorination or gas phase fluorination. 87% by liquid fluorination. Although the yield is stated, only overhead gas is considered and the liquid phase remaining in the reactor is not analyzed.

特許文献2〜6には1233xfから出発して244bbを製造する方法が開示されている。これらの全ての文献で触媒としてはSbCl5が使われている。最高90%の高い選択率が報告されている。液相反応装置へのHC1の添加または混合触媒SbCl3/SbC15の使用の具体化は記載がない。 Patent Documents 2 to 6 disclose a method for producing 244bb starting from 1233xf. In all these documents, SbCl 5 is used as the catalyst. A high selectivity of up to 90% has been reported. Implementation of the use of additives or mixing the catalyst SbCl 3 / SbC1 5 of HC1 into the liquid phase reactor is not stated.

特許文献7には液相フッ素化で244bbを製造するための原料として1233xfを使用した例が記載されている。244bbの収率は87〜89%の間にある。     Patent Document 7 describes an example in which 1233xf is used as a raw material for producing 244bb by liquid phase fluorination. The yield of 244bb is between 87-89%.

この反応のキーとなるファクタは選択性にある。事実、未反応のフィードは再循環するのが容易であり、副生成物および反応生成物、特に塩素化物の工業プロセスでの用途が見あたらないので、選択性が高ければ転化率が低くても許される。   The key factor for this reaction is selectivity. In fact, unreacted feeds are easy to recycle, and there is no use for by-products and reaction products, especially chlorinated products in industrial processes, so high selectivity allows low conversion. It is.

国際特許公開第W02007/079431号公報International Patent Publication No. W02007 / 079431 米国特許公開第US2009/0182179号明細書US Patent Publication No. US2009 / 0182179 米国特許公開第US2009/0240090号明細書US Patent Publication No. US2009 / 0240090 米国特許公開第US2009/0312585号明細書US Patent Publication No. US2009 / 0312585 米国特許公開第US2010/0036179号明細書US Patent Publication No. US2010 / 0036179 国際特許公開第WO2009/137658号公報International Patent Publication No. WO2009 / 137658

従って、化合物244bbを高い選択性で製造するプロセスに対するニーズが存在する。   Accordingly, there is a need for a process for producing compound 244bb with high selectivity.

本発明は、触媒の存在で製品2−クロロ−3,3,3−トリフルオロプロペン(HCFO 1233xf)を液相で触媒フッ素化して製品2−クロロ−1,1,1,2−テトラフルオロプロパンを製造する方法を提供する。   The present invention relates to the product 2-chloro-1,1,1,2-tetrafluoropropane by catalytic fluorination of the product 2-chloro-3,3,3-trifluoropropene (HCFO 1233xf) in the liquid phase in the presence of a catalyst. A method of manufacturing the same is provided.

以下はその具体例である:
(1)イオン性液体は、アルミニウム、チタン、ニオブ、タンタル、錫、アンチモン、ニッケル、亜鉛または鉄をベースにした少なくとも一種のハロゲン化またはオキシハロゲン化したルイス酸と、一般式:Y+-の塩(A-はハロゲン化物のアニオンまたはヘキサフルオロアンチモン酸塩のアニオンを表し、Y+は第四アンモニウムカチオン、第四ホスホニウムカチオンまたは第三スルホニウムカチオンを表す)との反応によって得られ、触媒はフッ素化錯体触媒emim+Sb211 -であるのが好ましい。
(2)本発明方法は触媒エッチな相、好ましくは触媒/有機物のモル比が50モル%以上で実行する。
(3)反応中に出発化合物の1モル当たりモル比で0.05〜20モル%、好ましくは1〜17モル%の塩素を加える。
(4)ガス、好ましくは希ガス、好ましくは窒素またはヘリウムを注入し、出発製品の流れと比較した上記ガスの流の比を0.5:1〜5:1、好ましくは1:1〜3:1にする。
(5)反応生成物はガスで抜き出す。
(6)反応温度は30℃〜200℃の間、好ましくは40℃〜170℃の間、有利には50℃〜150℃の間にする。
(7)反応圧力は2バール以上、好ましくは4〜50バールの間、特に5〜15バールの間にする。
(8)HF:出発化合物のモル比を0.5:1〜50:1の間、好ましくは3:1〜20:1の間、より好ましくは5:1〜15:1の間にする。
Here is an example:
(1) The ionic liquid comprises at least one halogenated or oxyhalogenated Lewis acid based on aluminum, titanium, niobium, tantalum, tin, antimony, nickel, zinc or iron, and a general formula: Y + A Wherein A represents a halide anion or a hexafluoroantimonate anion, and Y + represents a quaternary ammonium cation, a quaternary phosphonium cation or a tertiary sulfonium cation. fluorinated complex catalyst emim + Sb 2 F 11 - a is preferably.
(2) The process of the present invention is carried out in a catalyst-etched phase, preferably with a catalyst / organic molar ratio of 50 mol% or more.
(3) During the reaction, 0.05 to 20 mol%, preferably 1 to 17 mol% of chlorine is added in a molar ratio per mol of the starting compound.
(4) A gas, preferably a noble gas, preferably nitrogen or helium, is injected and the ratio of the gas flow compared to the starting product flow is 0.5: 1 to 5: 1, preferably 1: 1 to 3. : 1.
(5) The reaction product is extracted with gas.
(6) The reaction temperature is between 30 ° C and 200 ° C, preferably between 40 ° C and 170 ° C, advantageously between 50 ° C and 150 ° C.
(7) The reaction pressure is at least 2 bar, preferably between 4 and 50 bar, in particular between 5 and 15 bar.
(8) The molar ratio of HF: starting compound is between 0.5: 1 and 50: 1, preferably between 3: 1 and 20: 1, more preferably between 5: 1 and 15: 1.

一般に、本発明方法は下記(i)〜(iv)の段階を有する:
(i)2−クロロ−3,3,3−トリフルオロプロペンを、2−クロロ−1,1,1、2−テトラフルオロプロパンを含む反応生成物(反応混合物)を形成するのに十分な条件下で、液相でイオン性液体ベースの触媒の存在下で弗化水素と接触させ、
(ii)分離プロセスで上記反応生成物からHC1およびHFを分離して有機混合物を形成し、
(iii)この有機混合物を2−クロロ−1,1,1、2−テトラフルオロプロパンから成る第1流と、未反応の2−クロロ−3,3,3−トリフルオロプロペンから成る第2流とに分離し、
(iv)未反応の2−クロロ−3,3,3−トリフルオロプロペンを段階(i)へ再循環させる。
In general, the method of the present invention comprises the following steps (i) to (iv):
(I) Conditions sufficient to form 2-chloro-3,3,3-trifluoropropene to form a reaction product (reaction mixture) containing 2-chloro-1,1,1,2-tetrafluoropropane Under contact with hydrogen fluoride in the presence of an ionic liquid-based catalyst in the liquid phase,
(Ii) separating the HC1 and HF from the reaction product to form an organic mixture in the separation process,
(Iii) This organic mixture is divided into a first stream consisting of 2-chloro-1,1,1,2-tetrafluoropropane and a second stream consisting of unreacted 2-chloro-3,3,3-trifluoropropene. And separated into
(Iv) Recycle unreacted 2-chloro-3,3,3-trifluoropropene to step (i).

具体的には、
11:26 2016/01/14(ii)では蒸留によってHClを分離し、HFはデカンテーションまたは洗浄プロセスによって分離することができ、
段階(iii)は抽出蒸留段階またはメンブレンを使用した分離プロセスにすることができ、あるいは、有機混合物を脱塩化水素反応に供給して2−クロロ−1,1,1、2−テトラフルオロプロパンを1,1,1,2−テトラフルオロプロペンに変え、得られた製品を2−クロロ−3.3.3−トリフルオロプロペンから分離することができる。
In particular,
11:26 2016/01/14 (ii) can separate HCl by distillation, HF can be separated by decantation or washing process,
Stage (iii) can be an extractive distillation stage or a separation process using a membrane, or the organic mixture can be fed into a dehydrochlorination reaction to give 2-chloro-1,1,1,2-tetrafluoropropane. Instead of 1,1,1,2-tetrafluoropropene, the product obtained can be separated from 2-chloro-3.3.3-trifluoropropene.

本発明方法は連続法で行うのが好ましい。   The method of the present invention is preferably carried out by a continuous method.

本発明はさらに、下記段階から成る2,3,3,3−テトラフルオロプロペンの製造方法を提供する:
(i)本発明の上記方法で2−クロロ−1,1,1、2−テトラフルオロプロパンを作り、
(ii)上記2−クロロ−1,1,1、2−テトラフルオロプロパンを脱塩化水素化して2,3,3,3−テトラフルオロプロペンにする。
The present invention further provides a process for producing 2,3,3,3-tetrafluoropropene comprising the following steps:
(I) making 2-chloro-1,1,1,2-tetrafluoropropane by the above method of the present invention;
(Ii) The above 2-chloro-1,1,1,2-tetrafluoropropane is dehydrochlorinated to 2,3,3,3-tetrafluoropropene.

本発明はさらに、本発明方法の上記段階で得られる製品、特に、主として244bbと不純物および/または未反応の出発原料および/または副生成物を含む混合物にも関するものである。   The invention further relates to the product obtained at the above stage of the process according to the invention, in particular a mixture comprising mainly 244bb and impurities and / or unreacted starting materials and / or by-products.

本発明は、液体のイオン性ベース触媒が1233xfの液相フッ素化反応で244bbの選択性にポジティブなインパクトを与えるという発見に基づいている。工業的な観点からは転化率より選択性が重要である。すなわち、(転化率が低い場合)未反応の製品を再循環できるが、(選択性が低い場合には)それ以上化学的に変成できない化合物は明らかなロスとなる。   The present invention is based on the discovery that liquid ionic base catalysts have a positive impact on the selectivity of 244bb in a 1233xf liquid phase fluorination reaction. From an industrial point of view, selectivity is more important than conversion. That is, the unreacted product can be recycled (if the conversion is low), but compounds that cannot be further chemically modified (if the selectivity is low) are an obvious loss.

液体のイオンベースの触媒は例えば特許文献7(特にその第4頁第1行目〜第6頁第1行目)や、本出願人の特許文献8、さらには非特許文献1に記載されている。
国際特許公開第W02008/149011号公報 国際特許公開第W001/81353号公報 「liquid-phase HF Fluorination」, Multiphase Homogeneous Catalysis, Ed. Wiley-VCH, (2002), 535
Liquid ion-based catalysts are described in, for example, Patent Document 7 (particularly, page 4, line 1 to page 6, line 1), patent document 8 of the present applicant, and non-patent document 1. Yes.
International Patent Publication No. W02008 / 149011 International Patent Publication No. W001 / 81353 "Liquid-phase HF Fluorination", Multiphase Homogeneous Catalysis, Ed. Wiley-VCH, (2002), 535

適した触媒はアルミニウム、チタン、ニオブ、タンタル、錫、アンチモン、ニッケル、亜鉛または鉄をベースにしたルイス酸の誘導体である。イオン性液体は特に適度な温度(好ましくは120℃以下の温度)で液体であるイオン特性を有する非水塩である。   Suitable catalysts are derivatives of Lewis acids based on aluminum, titanium, niobium, tantalum, tin, antimony, nickel, zinc or iron. The ionic liquid is a non-aqueous salt having an ionic characteristic that is a liquid at a particularly moderate temperature (preferably a temperature of 120 ° C. or less).

イオン性液体をベースにした触媒は、アルミニウム、チタン、ニオブ、タンタル、錫、アンチモン、ニッケル、亜鉛または鉄をベースにした少なくとも一種のハロゲン化またはオキシハロゲン化されたルイス酸と一般式:Y+-の塩との反応によって得るのが好ましい。ここで、A-はハロゲン化物(臭化物、沃化物、好ましくは塩化物またはフッ化物)アニオンまたはヘキサフルオロアンチモン酸塩(SbF6-)アニオンであり、Y+は第四級アンモニウムカチオン、第四級ホスホニウムカチオンまたは第三級スルホニウムカチオンである。 Catalysts based on ionic liquids are at least one halogenated or oxyhalogenated Lewis acid based on aluminum, titanium, niobium, tantalum, tin, antimony, nickel, zinc or iron and the general formula: Y + It is preferably obtained by reaction of A -with a salt. Where A is a halide (bromide, iodide, preferably chloride or fluoride) anion or hexafluoroantimonate (SbF 6 ) anion, and Y + is a quaternary ammonium cation, quaternary phosphonium. Cation or tertiary sulfonium cation.

五塩化アンチモンとエチル−メチル−イミダゾリウムクロライド化合物との反応生成物であるフッ素化錯体触媒emim+Sb211 -のようなアンチモンベースのイオン性液体が好ましい触媒である。 Pentachloride, antimony and ethyl - methyl - imidazolium chloride is the reaction product of a ride Compound fluorinated complex catalyst emim + Sb 2 F 11 - antimony-based ionic liquids, such as the preferred catalyst.

反応条件(特に圧力)は反応物が液体となる圧力である。本発明の一つの実施例では反応生成物がガスで、反応物が液体である。反応生成物がガスであるということは、反応帯域の出口で気相で回収できるということを意味する。従って、反応温度は30℃〜200℃の間、好ましくは40℃〜170℃の間、有利には50℃〜150の間である。反応圧力は一般に2バール以上、好ましくは4〜50バール、特に5〜15バールの間である。   The reaction condition (particularly pressure) is the pressure at which the reactant becomes liquid. In one embodiment of the invention, the reaction product is a gas and the reactant is a liquid. The fact that the reaction product is a gas means that it can be recovered in the gas phase at the outlet of the reaction zone. The reaction temperature is therefore between 30 ° C. and 200 ° C., preferably between 40 ° C. and 170 ° C., advantageously between 50 ° C. and 150 ° C. The reaction pressure is generally at least 2 bar, preferably between 4 and 50 bar, in particular between 5 and 15 bar.

HF:出発化合物のモル比は一般に0.5:1〜50:1の間、好ましくは3:1〜20:1の間、有利には5:1〜15:1の間である。その他の反応条件、特に流速は温度、圧力、触媒、反応物比等に従って通常の一般的な知識によって当業者が決できる。選択性が最も高い値となるように注意する。   The molar ratio of HF: starting compound is generally between 0.5: 1 and 50: 1, preferably between 3: 1 and 20: 1, advantageously between 5: 1 and 15: 1. Other reaction conditions, in particular the flow rate, can be determined by those skilled in the art according to ordinary general knowledge according to temperature, pressure, catalyst, reactant ratio and the like. Care is taken to achieve the highest selectivity.

好ましい実施例ではないが、溶剤を使うことができる。この溶剤は反応条件下で非活性の有機溶剤である。この溶剤は付加反応を避けるために一般に飽和したC2〜C6溶媒である。この種の溶剤は例えば特許文献9に記載されている。
フランス特許公開第FR2733227号公報
Although not a preferred embodiment, a solvent can be used. This solvent is an organic solvent which is inert under the reaction conditions. This solvent is generally a saturated C2-C6 solvent to avoid addition reactions. This type of solvent is described in Patent Document 9, for example.
French Patent Publication No. FR 2733227

この溶剤は例えば40℃以上、有利には50℃以上、特に60℃以上の沸点(大気圧下)を有する。反応温度が高い場合にはより高い圧力になり、反応条件下の溶剤の沸点は反応で使用する温度より高くなる。   This solvent has a boiling point (under atmospheric pressure) of, for example, 40 ° C. or higher, preferably 50 ° C. or higher, in particular 60 ° C. or higher. When the reaction temperature is high, the pressure is higher, and the boiling point of the solvent under the reaction conditions is higher than the temperature used in the reaction.

触媒/有機物比を種々に変えて運転できるが、一般には触媒リッチな相が好ましい。触媒/有機物のモル比は例えば50モル%以上にするのが好ましい。出発媒体は純粋の触媒であるのが好ましい。   Although it is possible to operate with various catalyst / organic ratios, a catalyst rich phase is generally preferred. The molar ratio of catalyst / organic matter is preferably 50 mol% or more, for example. The starting medium is preferably a pure catalyst.

触媒寿命を延ばすために塩素流を用いることができる。一般には1モルの出発材料1233xf当たり、0.05〜20モル%、好ましくは1〜17モル%の塩素を混合する。塩素は純粋な塩素の形か、希ガス(例えば窒素またはヘリウム)と混合して導入できる。イオン触媒を使用することで少量の塩素を使用することができる。   Chlorine streams can be used to extend catalyst life. In general, 0.05 to 20 mol%, preferably 1 to 17 mol% of chlorine is mixed per 1 mol of starting material 1233xf. Chlorine can be introduced in the form of pure chlorine or mixed with a noble gas (eg nitrogen or helium). A small amount of chlorine can be used by using an ion catalyst.

出発材料の安定剤は必要に応じて使うことができる。その量は一般に5〜1000ppm、好ましくは10〜500ppmである。安定剤の例はp−メトキシフェノール、t−アミルフェノール、チモール、リモネン、d,l−リモネン、キノン類、ヒドロキノン誘導体、エポキシド、アミンおよびこれらの混合物である。   Starting material stabilizers can be used as needed. The amount is generally 5 to 1000 ppm, preferably 10 to 500 ppm. Examples of stabilizers are p-methoxyphenol, t-amylphenol, thymol, limonene, d, l-limonene, quinones, hydroquinone derivatives, epoxides, amines and mixtures thereof.

反生成物をストリッピングガスを使用してストリッピングして、機械的に随伴除去することもできる。液相反応装置からガス状の244bbを除去するのが有利である(副反応が少なくなる)。また、ガス状化合物の添加は反応に有利であり、例えば攪拌(バブリング)が改良され、好ましい。このガスは窒素またはヘリウムのような不活性ガスにすることができる。このガスはHC1とは異なるのが好ましい。一般に、出発材料と比較したガス流の比は0.5:1〜5:1の間、有利には1:1〜3:1の間である。   The counterproduct can also be stripped using a stripping gas and mechanically removed. It is advantageous to remove gaseous 244bb from the liquid phase reactor (less side reactions). Further, the addition of a gaseous compound is advantageous for the reaction, and is preferable because, for example, stirring (bubbling) is improved. This gas can be an inert gas such as nitrogen or helium. This gas is preferably different from HC1. In general, the ratio of gas flow compared to the starting material is between 0.5: 1 and 5: 1, preferably between 1: 1 and 3: 1.

本発明の液相でのフッ素化プロセスは連続法または半連続法で実行できる。好ましい実施例のプロセスは連続法である。反応物(出発材料とHF)と、反応で使われその他の化合物(塩素、希ガス)は反応装置の同じ場所または反応装置の異なる場所で供給できる。好ましい実施例ではガス状化合物を反応装置の底部から注入して、機械的ストリッピングと攪拌性を改良する。   The liquid phase fluorination process of the present invention can be carried out in a continuous or semi-continuous process. The preferred embodiment process is a continuous process. The reactants (starting material and HF) and other compounds used in the reaction (chlorine, noble gases) can be supplied at the same location in the reactor or at different locations in the reactor. In a preferred embodiment, gaseous compounds are injected from the bottom of the reactor to improve mechanical stripping and agitation.

再循環する場合には反応装置の入口へ直接戻すか、別のディップ・パイプへ戻すことができる。   If recirculated, it can be returned directly to the reactor inlet or returned to another dip pipe.

反応はハロゲンを含む反応用の反応装置で実行される。この種の反応装置は当業者に公知で、Hastelloy(登録商標)、Inconel(登録商標)、Monel(登録商標)またはフルオロポリマーを含む被覆を有することができる。反応装置は伝熱手段を備えてることができる。   The reaction is carried out in a reaction apparatus for reaction containing halogen. This type of reactor is known to those skilled in the art and can have a coating comprising Hastelloy®, Inconel®, Monel® or a fluoropolymer. The reactor can be equipped with heat transfer means.

本発明の具体的プロセスは一般に以下のように実行される。液相反応用の(例えば触媒ストリップ塔を備えた)反応装置にイオン性液体ベースの触媒を入れる。次いで、1233xfとHFを連続的に供給する。また、希ガスや無水塩素流も注入できる。反応帯域から抜き出した流れはガスの形をしており、主として244bbと、240系の異性(241+242+243)と、塩素および希ガスと、未反応1233xfと、HFとから成る。この流れから244bbを分離し、その他の化合物(1233xf、HFおよび240系列の異性体)は反応装置に再循環する。   The specific process of the present invention is generally performed as follows. An ionic liquid-based catalyst is placed in a reactor for a liquid phase reaction (eg, equipped with a catalyst strip column). Next, 1233xf and HF are continuously supplied. A rare gas or anhydrous chlorine stream can also be injected. The stream withdrawn from the reaction zone is in the form of a gas and mainly comprises 244bb, 240 series isomerism (241 + 242 + 243), chlorine and rare gases, unreacted 1233xf, and HF. 244bb is separated from this stream and other compounds (1233xf, HF and 240 series isomers) are recycled to the reactor.

本発明方法に従って製造された244bbを使用して1234yfを作る。244bbから出発して1234yfを製造する方法は公知で、脱塩化水素触媒を使用する。この反応は当業者に公知のように気相では実行するのが好ましい。脱塩化水素触媒はハロゲン化金属、ハロゲン化金属酸化物、中性(またはゼロ酸化状態の)金属または金属合金、さらにはバルクまたは担持された活性炭にすることができる。   1244yf is made using 244bb produced according to the method of the present invention. The process for producing 1234yf starting from 244bb is known and uses a dehydrochlorination catalyst. This reaction is preferably carried out in the gas phase as is known to those skilled in the art. The dehydrochlorination catalyst can be a metal halide, a metal halide oxide, a neutral (or zero oxidation state) metal or metal alloy, as well as a bulk or supported activated carbon.

244bbから1234yfへの反応に関しては下記文献が参照できる。
米国特許公開第US2009/0182179号明細書 米国特許公開第US2009/0240090号明細書 米国特許公開第US2009/0312585号明細書 米国特許公開第US2010/0036179号明細書 米国特許公開第号明細書
Regarding the reaction from 244bb to 1234yf, the following documents can be referred to.
US Patent Publication No. US2009 / 0182179 US Patent Publication No. US2009 / 0240090 US Patent Publication No. US2009 / 0312585 US Patent Publication No. US2010 / 0036179 US Patent Publication No.

これらの内容は本願発明の一部をなす。この反応は当業者に公知である。
以下、本発明の実施例を示すが、本発明が下記実施例に限定されるものではない。
These contents form part of the present invention. This reaction is known to those skilled in the art.
Examples of the present invention will be described below, but the present invention is not limited to the following examples.

磁気攪拌機を備え、圧力計および温度計を備えてた、ジャケット付きのステンレス鋼316L製の1リットル容積のオートクレーブを使用した。オートクレーブのヘッドの孔から反応物を導入でき、脱気でき、また、頂部に圧力制御弁と凝縮器とを有する。凝縮器は独立したサーモスタット浴を使用して温度管理する。
反応中に反生成物を連続的に取り出し、スクラバーに入れて水素酸HFとHC1とを回収し、液体窒素中にトラップする。スクラバーの重量およびトラップ量の増加から質量収支を計算する。
A 1 liter autoclave made of stainless steel 316L with jacket, equipped with a magnetic stirrer and equipped with a pressure gauge and a thermometer was used. Reactants can be introduced and degassed through the holes in the head of the autoclave and have a pressure control valve and a condenser at the top. The condenser is temperature controlled using an independent thermostat bath.
During the reaction, the reaction product is continuously taken out and placed in a scrubber to recover HF and HC1 and trapped in liquid nitrogen. Calculate the mass balance from the increase in scrubber weight and trap volume.

反応期間の終わりに、反応媒体を脱気して残留HFを排気する。この脱気中に同時に抜出されるであろう有機物を、HFとHC1をガス流から除去するために常にスクラバーを通した後に、トラップする。最後の段階にオートクレーブを開き、排出し、触媒を加水分解および塩酸溶液で抽出した後に、有機相のサンプルを分析する。   At the end of the reaction period, the reaction medium is degassed and the residual HF is evacuated. Organics that would be withdrawn simultaneously during this degassing are trapped after always passing through a scrubber to remove HF and HC1 from the gas stream. In the last stage, the autoclave is opened and discharged, and after the catalyst is hydrolyzed and extracted with hydrochloric acid solution, a sample of the organic phase is analyzed.

次いで、液体サンプルを気相クロマトグラフィで分析した。クロマトグラフィ分析はカラムCP Sil8(寸法50m・0.32mm・5μm)を使用して実行した。炉の温度は40℃で10分間、それから4℃/分の勾配で200℃になるようにプログラミングした。xiを材料の初期モル量、xfを材料の全モル利卯とすると、転化率(%)は(xi−xf)/xi*100になる。生成物の選択性はこの生成物の回収されたモル量と反応した生成物のモル量の合計と比から計算される。   The liquid sample was then analyzed by gas phase chromatography. Chromatographic analysis was performed using column CP Sil8 (dimensions 50 m, 0.32 mm, 5 μm). The furnace temperature was programmed for 10 minutes at 40 ° C. and then 200 ° C. with a 4 ° C./min ramp. The conversion (%) is (xi−xf) / xi * 100 where xi is the initial molar amount of the material and xf is the total molar yield of the material. Product selectivity is calculated from the sum and ratio of the recovered molar amount of product and the molar amount of product reacted.

実施例1(比較例)
150mlのSbC15触媒を反応装置に入れ、無水HF流を60℃で2時間、導入してフッ素化した。HF流は触媒量に対するモル比を5:1にして加えた。また、アンチモンの酸化を高いレベルに維持するために塩素を連続的に加えた。塩素流は実験中、パーフルオロ化段階の間、1g/時で供給した(転化段階、15%)。
Example 1 (Comparative Example)
Placed in a reactor to SBC1 5 catalyst 150 ml, 2 h of anhydrous HF flow at 60 ° C., it was fluorinated by introducing. The HF stream was added at a 5: 1 molar ratio to the amount of catalyst. In addition, chlorine was added continuously to maintain antimony oxidation at a high level. A chlorine stream was fed at 1 g / hr during the experiment during the perfluorination stage (conversion stage, 15%).

このパーフルオロ化段階後に反応装置に0.5モルの1233xfを導入した。温度は85℃に調節した。実験中、5時間、1モル/時の流速で無水HFを流した。圧力は8バールにした。凝縮器の設定点は90℃にした(反応装置への還流がないことを意味する)。反応装置のデープチューブを介してヘリウムを3.4N1/hの流速で流した(比1.5)。   After this perfluorination step, 0.5 mole of 1233xf was introduced into the reactor. The temperature was adjusted to 85 ° C. During the experiment, anhydrous HF was flowed at a flow rate of 1 mol / hour for 5 hours. The pressure was 8 bar. The condenser set point was 90 ° C. (meaning no reflux to the reactor). Helium was allowed to flow at a flow rate of 3.4 N1 / h through the reactor deep tube (ratio 1.5).

5時間後、圧力を下げ、反応装置を加熱して、残留HFを除去した。反応装置を開くと289gの触媒が底に残っていた。実験中、有機物および反応物質はコールドトラップに回収した。転化率および選択率の結果は[表1]に示した。   After 5 hours, the pressure was reduced and the reactor was heated to remove residual HF. When the reactor was opened, 289 g of catalyst remained at the bottom. During the experiment, organic substances and reactants were collected in a cold trap. The results of conversion and selectivity are shown in [Table 1].

実施例2(本発明)
100mlのSbCl5と、50m1のフッ素化錯体触媒emim+Sb2F11-となるエチル−メチルイミダゾリウムクロライド化合物とを反応装置に導入し、無水のHFを60℃で2時間流してフッ素化した。HF流は触媒量に対して5:1のモル比で加えた。また、アンチモンの酸化を高いレベルにするために塩素を連続的に加えた。実験中、ペルフルオロ化段階の間、塩素流をlg/時で供給した。実施例1の条件を適用した。結果は[表1]に示す。
Example 2 (Invention)
And SbCl 5 in 100 ml, fluorination of 50m1 complex catalyst emim + Sb2F11 - become ethyl - introducing a methyl imidazolium chloride compound into the reactor, it was fluorinated by flowing 2 hours anhydrous HF at 60 ° C.. The HF stream was added at a 5: 1 molar ratio to the amount of catalyst. In addition, chlorine was continuously added to increase the oxidation level of antimony. During the experiment, a chlorine stream was fed at lg / hour during the perfluorination stage. The conditions of Example 1 were applied. The results are shown in [Table 1].

Figure 0006360084
Figure 0006360084

比較例では未知の化合物が有為量存在するが、本発明ではそのレベが低くなることが分かる(9.1対2.6)。また、1223xd(CF3−CCl=CHC)と233ab(CF3−CCl2−CHCl)は塩素化副生成物であるが、比較例ではその量が多く、が本発明ではその量が少なく、低いレベルにある(1.3+4.5=5.8対0.06+0.5=0.56)。比較例では不必要な副生成物が14.9%できるが、本発明では3.2%以下であり、その差は約12%で、それは非常に有意な差である。従って、本発明の選択性はきわめて高く、再純化が可能かつ容易である。 Although a significant amount of unknown compound is present in the comparative example, it can be seen that the level is lowered in the present invention (9.1 vs. 2.6). In addition, 1223xd (CF 3 —CCl═CHC 1 ) and 233ab (CF 3 —CCl 2 —CHCl) are chlorinated by-products, which are large in the comparative example, but small in the present invention. It is at a low level (1.3 + 4.5 = 5.8 vs. 0.06 + 0.5 = 0.56). In the comparative example, 14.9% of unnecessary by-products can be formed, but in the present invention, it is 3.2% or less, and the difference is about 12%, which is a very significant difference. Therefore, the selectivity of the present invention is very high and can be re-purified and easy.

Claims (17)

下記(i)〜(iv):
(i)2−クロロ−3,3,3−トリフルオロプロペンを、2−クロロ−1,1,1、2−テトラフルオロプロパンを含む反応生成物を形成するのに十分な条件下で、液相でイオン性液体ベースの触媒の存在下で弗化水素と接触させ、
(ii)分離プロセスで上記反応生成物からHClおよびHFを分離して有機混合物を形成し、
(iii)この有機混合物を2−クロロ−1,1,1、2−テトラフルオロプロパンから成る第1流と、未反応の2−クロロ−3,3,3−トリフルオロプロペンから成る第2流とに分離し、
(iv)未反応の2−クロロ−3,3,3−トリフルオロプロペンを段階(i)へ再循環させる、
段階を有し、
段階(i)では不活性ガスを導入し、反応生成物はガスの状態で取り出し、段階(ii)では蒸留によってHClを分離し、
上記触媒はアンチモンをベースにした少なくとも一種のハロゲン化されたルイス酸と、一般式:Y + - の塩(A - はハロゲン化物のアニオンまたはヘキサフルオロアンチモン酸塩のアニオンを表し、Y + は第四アンモニウムカチオンを表す)との反応によって得る、
ことを特徴とする触媒フッ素化方法。
The following (i) to (iv):
(I) liquid 2-chloro-3,3,3-trifluoropropene under conditions sufficient to form a reaction product comprising 2-chloro-1,1,1,2-tetrafluoropropane. Contacting with hydrogen fluoride in the presence of an ionic liquid-based catalyst in the phase;
(Ii) separating HCl and HF from the reaction product in a separation process to form an organic mixture;
(Iii) This organic mixture is divided into a first stream consisting of 2-chloro-1,1,1,2-tetrafluoropropane and a second stream consisting of unreacted 2-chloro-3,3,3-trifluoropropene. And separated into
(Iv) recycling unreacted 2-chloro-3,3,3-trifluoropropene to step (i);
Has steps,
In step (i), an inert gas is introduced, the reaction product is removed in the gaseous state, and in step (ii) HCl is separated by distillation,
The catalyst and the Lewis acid halogenated at least one was based on antimony general formula: Y + A - salt (A - represents an anion of anion or hexafluoroantimonate halide, Y + is Obtained by reaction with quaternary ammonium cations)
A catalytic fluorination method characterized by the above.
触媒リッチな相にして実行する請求項に記載の方法。 The process according to claim 1 , wherein the process is carried out in a catalyst rich phase. 触媒/有機物のモル比を50モル%以上にして実行する請求項に記載の方法。 The process according to claim 2 , wherein the catalyst / organic molar ratio is 50 mol% or more. 反応中に、出発化合物の1モル当たりモル比で0.05〜20モル%の塩素を加える請求項1〜のいずれか一項に記載の方法。 The process according to any one of claims 1 to 3 , wherein 0.05 to 20 mol% of chlorine is added during the reaction in a molar ratio per mol of the starting compound. 反応中に、出発化合物の1モル当たりモル比で1〜17モル%の塩素を加える請求項に記載の方法。 Process according to claim 4 , wherein 1 to 17 mol% of chlorine is added during the reaction in a molar ratio per mol of starting compound. 上記不活性ガスが窒素またはヘリウムである請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5 , wherein the inert gas is nitrogen or helium. 出発化合物の流れと比較した上記不活性ガスの流れの比を0.5:1〜5:1にする請求項に記載の方法。 7. A process according to claim 6 , wherein the ratio of the inert gas stream compared to the starting compound stream is 0.5: 1 to 5: 1. 出発化合物の流れと比較した上記不活性ガスの流れの比を1:1〜3:1にする請求項に記載の方法。 8. A process according to claim 7 , wherein the ratio of the inert gas flow compared to the starting compound flow is 1: 1 to 3: 1. 反応温度を30℃〜200℃の間にする請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8 , wherein the reaction temperature is between 30C and 200C. 反応温度を50℃〜150℃の間にする請求項に記載の方法。 The process according to claim 9 , wherein the reaction temperature is between 50C and 150C. 反応の圧力を2バール以上にする請求項1〜10のいずれか一項に記載の方法。 The method according to any one of claims 1 to 10 , wherein the reaction pressure is 2 bar or more. 反応の圧力を5〜15バールの間にする請求項11に記載の方法。 12. Process according to claim 11 , wherein the pressure of the reaction is between 5 and 15 bar. HF:出発化合物のモル比を0.5:1〜50:1の間にする請求項1〜12のいずれか一項に記載の方法。   13. A process according to any one of the preceding claims wherein the HF: starting compound molar ratio is between 0.5: 1 and 50: 1. HF:出発化合物のモル比を5:1〜15:1の間にする請求項13に記載の方法。 14. The process of claim 13 , wherein the molar ratio of HF: starting compound is between 5: 1 and 15: 1. 連続法で行う請求項1〜14のいずれか一項に記載の方法。 The method according to any one of claims 1 to 14 for a continuous process. 請求項1〜15のいずれか一項に記載の方法を用いて作った2−クロロ−1,1,1、2−テトラフルオロプロパンをさらに脱塩化水素化して2,3,3,3−テトラフルオロプロペンにする請求項1〜15のいずれか一項に記載の方法。 The 2-chloro-1,1,1,2-tetrafluoropropane prepared using the method according to any one of claims 1 to 15 is further dehydrochlorinated to produce 2,3,3,3-tetra The method according to any one of claims 1 to 15 , wherein the method is fluoropropene. 上記脱塩化水素化を気相で実行する請求項16に記載の方法。 The process according to claim 16 , wherein the dehydrochlorination is carried out in the gas phase.
JP2016004953A 2016-01-14 2016-01-14 Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene Expired - Fee Related JP6360084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004953A JP6360084B2 (en) 2016-01-14 2016-01-14 Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004953A JP6360084B2 (en) 2016-01-14 2016-01-14 Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013535517A Division JP5884130B2 (en) 2010-10-25 2010-10-25 Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene

Publications (2)

Publication Number Publication Date
JP2016104789A JP2016104789A (en) 2016-06-09
JP6360084B2 true JP6360084B2 (en) 2018-07-18

Family

ID=56102688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004953A Expired - Fee Related JP6360084B2 (en) 2016-01-14 2016-01-14 Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene

Country Status (1)

Country Link
JP (1) JP6360084B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916755B1 (en) * 2007-05-31 2009-08-21 Arkema France PROCESS FOR THE PREPARATION OF (HYDRO) (CHLORO) (FLUORO) OLEFINS
US8916733B2 (en) * 2008-06-17 2014-12-23 Honeywell International Inc. Processes for hydrofluorination of 2-chloro-3,3,3-trifluoropropene to 2-chloro-1,1,1,2-tetrafluoropropane
WO2012056263A1 (en) * 2010-10-25 2012-05-03 Arkema France Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoropropane by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropane

Also Published As

Publication number Publication date
JP2016104789A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP5884130B2 (en) Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene
JP5899227B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
CN107848917B (en) Method for producing 1-chloro-2, 3, 3-trifluoropropene
JP5144592B2 (en) Azeotropic composition and method for producing hydrofluoroalkane
JP6014584B2 (en) Method for producing 2-chloro-3,3,3-trifluoropropene (HCFO1233xf) by liquid phase fluorination of pentachloropropane
JP5753087B2 (en) Process for producing trifluorinated and tetrafluorinated compounds
RU2585672C2 (en) Process of producing 2-chloro-3, 3, 3-trifluoropropene (hcfo 1233xf) by fluorination pentachloropropane in liquid phase
MX2014010346A (en) Process for producing 2,3,3,3-tetrafluoropropene.
EP2374782A1 (en) Processes for producing 2-chloro-1,1,1,2-tetrafluoropropane and 2,3,3,3-tetrafluoropropene
JP6583360B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
WO2011135395A1 (en) Process for the manufacture of 2-chloro-3, 3,3-trifluoropropene (hcfo1233xf) by liquid phase fluorination of pentachloropropane
JP6360084B2 (en) Process for producing 2-chloro-1,1,1,2-tetrafluoropropene by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene
JP5990990B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JP6043415B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
CN115803308A (en) Method for preparing 1-chloro-2,3,3-trifluoropropene

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6360084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees