WO2018193858A1 - Optical communication device - Google Patents

Optical communication device Download PDF

Info

Publication number
WO2018193858A1
WO2018193858A1 PCT/JP2018/014534 JP2018014534W WO2018193858A1 WO 2018193858 A1 WO2018193858 A1 WO 2018193858A1 JP 2018014534 W JP2018014534 W JP 2018014534W WO 2018193858 A1 WO2018193858 A1 WO 2018193858A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
light
light emitting
lens
light receiving
Prior art date
Application number
PCT/JP2018/014534
Other languages
French (fr)
Japanese (ja)
Inventor
和裕 山地
充昭 太田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018193858A1 publication Critical patent/WO2018193858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver

Definitions

  • the present invention relates to an optical communication apparatus used for multi-channel optical communication.
  • FIG. 6 is a schematic cross-sectional view of a single-channel optical communication device 300 described in Patent Document 1.
  • the optical communication device 300 includes a first optical communication module 310 and a second optical communication module 320.
  • the first optical communication module 310 includes a first substrate 301, a light emitting element 302, a first sealing member 303, and a first lens 304.
  • the second optical communication module 320 includes a second substrate 305, a light receiving element 306, a second sealing member 307, and a second lens 308.
  • the first lens 304 and the second lens 308 are arranged at positions that share the respective central axes.
  • the light emitting element 302 is disposed at a position where the optical axis of the light 300L emitted from the light emitting element 302 coincides with the central axis 300X.
  • FIG. 7 shows a cross section of a multi-channel optical communication device 400 virtually configured by combining four optical communication devices 300A to 300D each having the same configuration as the single-channel optical communication device 300 described above. The figure is shown. However, the area occupied by the optical communication device 400 on the circuit board is large enough not to be significantly different from the area when four optical communication devices 300 are arranged.
  • An object of the present invention is to provide an optical communication apparatus that can be miniaturized while allowing multi-channel optical communication.
  • the correspondence between the plurality of light emitting elements, the plurality of light receiving elements, and the lens is improved.
  • the optical communication apparatus includes a first module and a second module.
  • the first module includes at least two n light emitting elements and a first lens.
  • the second module includes at least a second n light receiving elements and a second lens sharing a central axis with the first lens.
  • the light emitting element of the first module and the light receiving element of the second module are arranged at the following positions. That is, in a virtual plane orthogonal to the central axis, the kth (k is an integer of 1 to n) light emitting elements of the first module and the kth light receiving element of the second module. When the light receiving element is projected, the light receiving element is sandwiched between the kth light emitting element and the kth light receiving element on the line connecting the kth light emitting element and the kth light receiving element on the virtual plane.
  • the central axis is in position.
  • the first lens and the second lens have the following shapes. That is, the kth light emitted from the kth light emitting element is refracted by the first lens so as to intersect the central axis, and further refracted by the second lens to be the kth light receiving element. Is incident on.
  • light emitted from the plurality of light emitting elements is refracted by one first lens. Further, they are refracted by one second lens and incident on a plurality of light receiving elements. Therefore, it is possible to reduce the size while allowing multi-channel optical communication.
  • the optical communication device preferably has the following features (first preferred embodiment). That is, the light emitting element of the first module is formed as an integral light emitting element.
  • the light receiving element of the second module is formed as an integral light receiving element.
  • the manufacturing process of the optical communication device is simplified.
  • the positional relationship between the light emitting elements of the first module and the positional relationship between the light receiving elements of the second module are fixed, variation in the position of each element in the manufacturing process is reduced.
  • the optical communication device and the first preferable mode according to the present invention have the following features (second preferable mode). That is, the first module further includes a first substrate and a first sealing member. The second module further includes a second substrate and a second sealing member.
  • the light emitting element of the first module is sealed with the first substrate and the first sealing member.
  • the light receiving element of the second module is sealed by the second substrate and the second sealing member.
  • the light emitting element of the first module and the light receiving element of the second module are protected from the influence of the surrounding environment. Therefore, the reliability of the optical communication device is higher.
  • the second preferred embodiment of the optical communication apparatus preferably comprises the following features (third preferred embodiment). That is, the light emitting element of the first module is sealed in a hollow casing constituted by the first substrate and the first sealing member. Further, the light receiving element of the second module is sealed in a hollow casing constituted by the second substrate and the second sealing member.
  • the second and third preferred embodiments of the optical communication apparatus according to the present invention preferably have the following features (fourth preferred embodiment). That is, the first sealing member and the first lens are formed as an integral member. The second sealing member and the second lens are formed as an integral member.
  • Another aspect of the optical communication apparatus includes a first module and a second module.
  • the first module includes at least one l light emitting element, at least one m light receiving element, and a first lens.
  • the second module includes at least one m light emitting elements, at least one l light receiving element, and a second lens sharing a central axis with the first lens.
  • the light emitting element of the first module and the light receiving element of the second module are arranged at the following positions. That is, in a virtual plane orthogonal to the central axis, the p-th light-emitting element (p is an integer between 1 and 1) of the first module and the p-th light-receiving element of the second module.
  • p is an integer between 1 and 1
  • the light receiving element is projected, it is sandwiched between the pth light emitting element and the pth light receiving element on the line connecting the pth light emitting element and the pth light receiving element on the virtual plane.
  • the central axis is in position.
  • the light emitting element of the second module and the light receiving element of the first module are arranged at the following positions. That is, the qth of the light emitting elements of the second module (q is an integer from 1 to m) and the qth of the light receiving elements of the second module on a virtual plane orthogonal to the central axis. When the light receiving element is projected, the light receiving element is sandwiched between the qth light emitting element and the qth light receiving element on the line connecting the qth light emitting element and the qth light receiving element on the virtual plane.
  • the central axis is in position.
  • the first lens and the second lens have the following shapes. That is, the p-th light emitted from the p-th light-emitting element among the light-emitting elements of the first module is refracted by the first lens so as to intersect the central axis, and further the second lens. And is incident on the pth light receiving element of the light emitting elements of the second module. In addition, the qth light emitted from the qth light emitting element among the light emitting elements of the second module is refracted by the second lens so as to intersect the central axis, and further the first lens. And is incident on the qth light receiving element of the light receiving elements of the first module.
  • the pth light after being emitted from the pth light emitting element and the qth light before being incident on the qth light receiving element are refracted by one first lens. Further, the qth light after being emitted from the qth light emitting element and the pth light before being incident on the pth light receiving element are each refracted by one second lens. Therefore, it is possible to reduce the size while allowing multi-channel optical communication.
  • the light emitted from the plurality of light emitting elements is refracted by one first lens. Further, they are refracted by one second lens and incident on a plurality of light receiving elements. Therefore, it is possible to reduce the size while allowing multi-channel optical communication.
  • FIG. 1 is a plan view of the first module 10
  • (B) is a perspective plan view of the second module 20
  • (C) is a first module included in the first module 10.
  • 3 is a plan view showing the positional relationship between one light emitting element 2a and the first light receiving element 6a included in the second module 20 in an extracted manner.
  • FIG. 100 A of optical communication apparatuses which are the 1st modification of 1st Embodiment of the optical communication apparatus concerning this invention.
  • It is sectional drawing of the optical communication apparatus 100B which is the 2nd modification of 1st Embodiment of the optical communication apparatus concerning this invention.
  • FIG. 2 is a cross-sectional view of a multi-channel optical communication device 400 configured by arranging single-channel optical communication devices 300A to 300D for explaining the problem to be solved by the present invention.
  • Embodiments of the present invention will be shown below, and the features of the present invention will be described in more detail.
  • the present invention is applied to a short-range data communication apparatus mounted on a mobile device such as a mobile phone, but is not limited thereto.
  • FIG. 1 is a cross-sectional view of the optical communication device 100 taken along the line A1-A1 shown in FIG. 2A and perpendicular to the drawing.
  • 2A and 2B are plan views of the first module 10 and the second module 20 that the optical communication apparatus 100 includes.
  • FIG. 2A is a plan view of the first module 10 viewed from above in the central axis direction shared by the first lens 4 and the second lens 8 described later.
  • FIG. 2B is a perspective plan view of the second module 20 viewed from above in the central axis direction.
  • the optical communication device 100 includes a first module 10 and a second module 20.
  • the first module 10 includes a first substrate 1, a first light emitting element 2a, a second light emitting element 2b, a third light emitting element 2c, a fourth light emitting element 2d, and a first seal.
  • a stop member 3 and a first lens 4 are provided.
  • the second module 20 includes a second substrate 5, a first light receiving element 6a, a second light receiving element 6b, a third light receiving element 6c, a fourth light receiving element 6d, and a second seal.
  • a stop member 7 and a second lens 8 sharing the central axis X with each other are provided.
  • the present invention will be described by exemplifying a case where the optical communication device includes four light emitting elements and four light receiving elements.
  • the number of light emitting elements and light receiving elements is not limited to this, and the optical communication device may include at least two light emitting elements and the same number of light receiving elements.
  • the description of the present invention may be made by extracting specific light emitting elements and light receiving elements for the sake of simplicity. However, the description also applies to light emitting elements and light receiving elements other than those extracted.
  • each light emitting element is connected to one main surface of the first substrate 1, and is provided on the first substrate 1 and one main surface of the first substrate 1. It is sealed with the first sealing member 3. By sealing in this way, each light emitting element is protected from the influence of the surrounding environment, and the reliability of the optical communication apparatus 100 can be improved.
  • each light emitting element for example, a semiconductor laser element such as VCSEL (Vertical Cavity Surface Emitting Laser: vertical cavity surface emitting laser) is used.
  • VCSEL Vertical Cavity Surface Emitting Laser: vertical cavity surface emitting laser
  • the 1st light emitting element 2a From the 1st light emitting element 2a, the 1st light La which is a near-infrared laser beam, for example is radiate
  • the second light emitting element 2b, the third light emitting element 2c, and the fourth light emitting element 2d which are similarly near-infrared laser beams.
  • the type of light emitting element and the type of emitted laser light are not limited to the above.
  • the material and structure of the first substrate 1 are not particularly limited.
  • a transparent light transmissive resin such as an epoxy resin is used.
  • the shape of the first sealing member 3 is a rectangular parallelepiped in the optical communication device 100, but is not limited thereto.
  • the first lens 4 is provided on the surface of the first sealing member 3 facing the surface in contact with the one main surface of the first substrate 1.
  • the first sealing member 3 and the first lens 4 are formed as an integral member from the above resin material. In this case, the manufacturing process of the optical communication device 100 is simplified.
  • the first lens 4 may be formed separately from, for example, glass having a large refractive index, and then joined to the first sealing member 3.
  • each light receiving element is connected to one main surface of the second substrate 5, and is provided on the second substrate 5 and one main surface of the second substrate 5. It is sealed with the second sealing member 7. By sealing in this way, each light receiving element is protected from the influence of the surrounding environment as well as each light emitting element described above, and the reliability of the optical communication apparatus 100 can be improved.
  • each light receiving element for example, a semiconductor element such as a PD (Photodetector) is used.
  • the first light La described above is incident on the first light receiving element 6a.
  • the second light receiving element 6b, the third light receiving element 6c, and the fourth light receiving element 6d are also provided with the second light Lb, the third light Lb, and the third light receiving element 6d.
  • Light Lc and fourth light Ld are respectively incident.
  • the type of light receiving element and the type of incident laser light are not limited to the above.
  • the material and structure of the second substrate 5 are not particularly limited.
  • a transparent light transmissive resin such as an epoxy resin is used for the second sealing member 7.
  • the shape of the second sealing member 7 is a rectangular parallelepiped in the optical communication device 100, but is not limited thereto. The materials and shapes of the first sealing member 3 and the second sealing member 7 may be different.
  • the second lens 8 is provided on the surface of the second sealing member 7 facing the surface in contact with the one main surface of the second substrate 5.
  • the second sealing member 7 and the second lens 8 are formed as an integral member from the above resin material. Has been. In this case, the manufacturing process of the optical communication device 100 is simplified.
  • the second lens 8 may be formed separately as described above and then joined to the second sealing member 7.
  • the first module 10 and the second module 20 are arranged so that the first lens 4 and the second lens 8 face each other.
  • FIG. 2C is a plan view showing an excerpt of the positional relationship between the first light-emitting element 2 a included in the first module 10 and the first light-receiving element 6 a included in the second module 20. is there.
  • first light emitting element 2a and the first light receiving element 6a are projected onto a virtual plane P orthogonal to the central axis X.
  • the virtual plane P on the line connecting the first light emitting element 2a and the first light receiving element 6a (on the line A1-A1 in FIG. 2C), and on the first light emitting element 2a and the first light emitting element 2a.
  • the center axis X is located between the light receiving elements 6a.
  • the second light emitting element 2b and the second light receiving element 6b between the third light emitting element 2c and the third light receiving element 6c, and between the fourth light emitting element 2d and the fourth light receiving element 6d.
  • the interval between the light emitting elements and the interval between the light receiving elements may be 50 ⁇ m or more. In this case, it is possible to suppress contact between the elements due to variations in the mounting position due to tolerances of the elements. Further, the distance between the elements may be different between the first module 10 and the second module 20.
  • the first lens 4 and the second lens 8 have the following shapes.
  • the shapes of the first lens 4 and the second lens 8 will be described based on the refraction of the first light La. That is, the first light La emitted from the first light emitting element 2a is refracted by the first lens 4 so as to intersect the central axis X, and further refracted by the second lens 8 to be first. Is incident on the light receiving element 6a.
  • the second light Lb, the third light Lc, and the fourth light Ld are also refracted by the first lens 4 and the second lens 8 and follow the same optical path.
  • each lens varies depending on the distance between the first module 10 and the second module 20, the distance between the light emitting elements, the distance between the light receiving elements, the refractive index of each lens, and the like.
  • the important point in the present invention is that the optical communication device is configured such that light emitted from a plurality of light emitting elements is refracted by one first lens, which is refracted by one second lens, respectively. It is comprised so that it may inject into an element. As a result, it is possible to reduce the size while enabling multi-channel optical communication.
  • FIG. 3 is a cross-sectional view corresponding to FIG. 1 of the optical communication device 100A.
  • the optical communication device 100A is different from the above-described optical communication device 100 in the form of each light emitting element and each light receiving element. Since other components are the same as those of the optical communication device 100, further description thereof is omitted here.
  • the first light emitting element 2a, the second light emitting element 2b, the third light emitting element 2c, and the fourth light emitting element 2d are formed as an integral light emitting element 2. Further, the first light receiving element 6a, the second light receiving element 6b, the third light receiving element 6c, and the fourth light receiving element 6d are formed as an integrated light receiving element 6. FIG. 3 shows only the first light emitting element 2a and the second light emitting element 2b, and the first light receiving element 6a and the second light receiving element 6b.
  • the manufacturing process of the optical communication device 100A is simplified.
  • the positional relationship between the light emitting elements and the positional relationship between the light receiving elements are fixed, variation in the position of each element in the manufacturing process is reduced.
  • FIG. 4 is a cross-sectional view corresponding to FIG. 1 of the optical communication device 100B.
  • the optical communication device 100B is different from the optical communication device 100 described above in the form of the first sealing member and the second sealing member. Since other components are the same as those of the optical communication device 100, further description thereof is omitted here.
  • the first light-emitting element 2a, the second light-emitting element 2b, the third light-emitting element 2c, and the fourth light-emitting element 2d are a first substrate 1 and a container having a rectangular parallelepiped shape. It is sealed in a hollow casing constituted by one sealing member 3A.
  • the first light receiving element 6a, the second light receiving element 6b, the third light receiving element 6c, and the fourth light receiving element 6d are the second substrate 5 and the second sealing having a rectangular parallelepiped shape. It is sealed in a hollow casing constituted by the member 7A.
  • FIG. 4 shows only the first light emitting element 2a and the second light emitting element 2b, and the first light receiving element 6a and the second light receiving element 6b.
  • optical communication device 100B In the optical communication device 100B, attenuation of intensity when each light emitted from each light emitting element passes through the first sealing member and the second sealing member is reduced. Therefore, more reliable optical communication is performed.
  • FIG. 5 is a cross-sectional view of the optical communication apparatus 200 corresponding to FIG.
  • the optical communication device 200 is different from the optical communication device 100 in the configuration of the first module and the second module. Since the components themselves are the same as those of the optical communication apparatus 100, further description thereof is omitted here.
  • the optical communication apparatus 200 includes a first module 10 and a second module 20.
  • the first module 10 includes a first substrate 1, a first light emitting element 2a, a third light emitting element 2c (not shown), a second light receiving element 6b, and a fourth light receiving element 6d (not provided). And a first sealing member 3 and a first lens 4.
  • the second module 20 includes a second substrate 5, a second light emitting element 2b, a fourth light emitting element 2d (not shown), a first light receiving element 6a, and a third light receiving element 6c (not illustrated). And a second sealing member 7 and a second lens 8 sharing the central axis X with the first lens 4.
  • each light emitting element and each light receiving element are connected to one main surface of the first substrate 1, and the first substrate 1 and one main surface of the first substrate 1 are connected to each other. It is sealed with the first sealing member 3 provided.
  • each light emitting element and each light receiving element are connected to one main surface of the second substrate 5, and the second substrate 5 and one main surface of the second substrate 5 are connected to each other. It is sealed with the second sealing member 7 provided.
  • the first lens 4 is formed integrally with the first sealing member 3 as described above, and the second lens 8 is formed integrally with the second sealing member 7.
  • the light emitting elements and the light receiving elements of the first module 10 and the light emitting elements and the light receiving elements of the second module 20 have the following positional relationship.
  • the positional relationship between the third light emitting element 2c and the third light receiving element 6c is the same as the positional relationship between the first light emitting element 2a and the first light receiving element 6a.
  • the positional relationship between the fourth light emitting element 2d and the fourth light receiving element 6d is the same as the positional relationship between the second light emitting element 2b and the second light receiving element 6b.
  • the first lens 4 and the second lens 8 have the following shapes.
  • the shapes of the first lens 4 and the second lens 8 will be described based on the refraction of the first light La and the second light Lb.
  • the first light La emitted from the first light emitting element 2 a of the first module 10 is refracted by the first lens 4 so as to intersect the central axis X, and further, by the second lens 8.
  • the light is refracted and is incident on the first light receiving element 6 a of the second module 20.
  • the second light Lb emitted from the second light emitting element 2 b of the second module 20 is refracted by the second lens 8 so as to intersect the central axis X, and further, by the first lens 4.
  • the light is refracted and is incident on the second light receiving element 6 b of the first module 10.
  • the third light emitted from the third light emitting element 2 c of the first module 10 and incident on the third light receiving element 6 c of the second module 20 is also caused by the first lens 4 and the second lens 8. It is similarly refracted.
  • the fourth light emitted from the fourth light emitting element 2d of the second module 20 and incident on the fourth light receiving element 6d of the first module 10 is also the second lens 8 and the first lens. 4 is similarly refracted.
  • optical communication device 200 similarly to the optical communication device 100, light emitted from a plurality of light emitting elements is refracted by one first lens, and each of them is refracted by one second lens. It is comprised so that it may inject into a light receiving element. As a result, it is possible to reduce the size while enabling multi-channel optical communication.
  • 100, 100A, 100B, 200 optical communication device 10 first optical communication module, 20 second optical communication module, 1st substrate, 2 multi-channel light emitting element, 2a first light emitting element, 2b second Light emitting element, 2c, third light emitting element, 2d, fourth light emitting element, 3, 3A, first sealing member, first lens, second substrate, 6 multi-channel light receiving element, 6a, first light receiving Element, 6b second light receiving element, 6c third light receiving element, 6d fourth light receiving element, 7, 7A second sealing member, 8 second lens, X central axis.

Abstract

This optical communication device (100) is provided with a first module (10) and a second module (20). The first module (10) is provided with n-number of light-emitting elements (2) and a first lens (4), while the second module (20) is provided with n-number of light-receiving elements (6) and a second lens (8) having a central axis (X) that is mutually shared with the first lens (4). The light-emitting elements (2) of the first module (10) and the light-receiving elements (6) of the second module (20) are disposed such that when the k-th light-emitting element (2) among the light-emitting elements (2) of the first module (10) and the k-th light-receiving element (6) among the light-receiving elements (6) of the second module (20) are projected on an imaginary plane orthogonal to the central axis (X), the central axis is positioned on a line that connects between the k-th light-emitting element (2) and the k-th light-receiving element (6) on the imaginary plane and at the same time, at a position interposed between the k-th light-emitting element (2) and the k-th light-receiving element (6).

Description

光通信装置Optical communication device
 この発明は、多チャンネルの光通信に用いられる光通信装置に関するものである。 The present invention relates to an optical communication apparatus used for multi-channel optical communication.
 光通信装置の一例として、国際公開第2017/038534号(特許文献1)に記載の光通信装置が挙げられる。図6には、特許文献1に記載されている、単チャンネルの光通信装置300の模式的な断面図が示されている。 As an example of the optical communication device, there is an optical communication device described in International Publication No. 2017/038534 (Patent Document 1). FIG. 6 is a schematic cross-sectional view of a single-channel optical communication device 300 described in Patent Document 1.
 図6において、光通信装置300は、第1の光通信モジュール310と第2の光通信モジュール320とを備えている。第1の光通信モジュール310は、第1の基板301と発光素子302と第1の封止部材303と第1のレンズ304とを含んでいる。第2の光通信モジュール320は、第2の基板305と受光素子306と第2の封止部材307と第2のレンズ308とを含んでいる。 In FIG. 6, the optical communication device 300 includes a first optical communication module 310 and a second optical communication module 320. The first optical communication module 310 includes a first substrate 301, a light emitting element 302, a first sealing member 303, and a first lens 304. The second optical communication module 320 includes a second substrate 305, a light receiving element 306, a second sealing member 307, and a second lens 308.
 第1のレンズ304と第2のレンズ308とは、各々の中心軸を共有するような位置に配置されている。発光素子302は、発光素子302から出射される光300Lの光軸とこの中心軸300Xとが一致するような位置に配置されている。 The first lens 304 and the second lens 308 are arranged at positions that share the respective central axes. The light emitting element 302 is disposed at a position where the optical axis of the light 300L emitted from the light emitting element 302 coincides with the central axis 300X.
国際公開第2017/038534号International Publication No. 2017/038534
 近年、通信速度の高速化に伴って、光通信装置に要求される通信容量が増大している。そのため、大きな通信容量の光通信装置は、多チャンネルで構成されることがある。図7には、上記の単チャンネルの光通信装置300と各々同じ構成を備えた4つの光通信装置300Aないし300Dが組み合わされることにより、仮想的に構成された多チャンネルの光通信装置400の断面図が示されている。しかしながら、このような光通信装置400の回路基板上で占める面積は、光通信装置300が4つ並べられた場合の面積と大差ないくらい大きくなってしまう。 In recent years, with the increase in communication speed, the communication capacity required for optical communication apparatuses has increased. Therefore, an optical communication apparatus having a large communication capacity may be configured with multiple channels. FIG. 7 shows a cross section of a multi-channel optical communication device 400 virtually configured by combining four optical communication devices 300A to 300D each having the same configuration as the single-channel optical communication device 300 described above. The figure is shown. However, the area occupied by the optical communication device 400 on the circuit board is large enough not to be significantly different from the area when four optical communication devices 300 are arranged.
 すなわち、複数の単チャンネルの光通信装置の単純な組み合わせにより構成される多チャンネルの光通信装置は、小型化が困難である虞があった。この発明の目的は、多チャンネルの光通信が可能でありながら、小型化され得る光通信装置を提供することである。 That is, a multi-channel optical communication device configured by a simple combination of a plurality of single-channel optical communication devices may be difficult to reduce in size. An object of the present invention is to provide an optical communication apparatus that can be miniaturized while allowing multi-channel optical communication.
 この発明に係る光通信装置では、複数の発光素子と複数の受光素子とレンズとの対応関係についての改良が図られる。 In the optical communication apparatus according to the present invention, the correspondence between the plurality of light emitting elements, the plurality of light receiving elements, and the lens is improved.
 この発明に係る光通信装置は、第1のモジュールと第2のモジュールとを備えている。第1のモジュールは、少なくとも2つのn個の発光素子と、第1のレンズとを備えている。第2のモジュールは、少なくとも第2つのn個の受光素子と、第1のレンズと互いに中心軸を共有する第2のレンズとを備えている。 The optical communication apparatus according to the present invention includes a first module and a second module. The first module includes at least two n light emitting elements and a first lens. The second module includes at least a second n light receiving elements and a second lens sharing a central axis with the first lens.
 第1のモジュールの発光素子と第2のモジュールの受光素子とは、以下のような位置に配置されている。すなわち、中心軸に直交する仮想平面に第1のモジュールの発光素子のうちの第k(kは1以上n以下の整数)の発光素子と、第2のモジュールの受光素子のうちの第kの受光素子とが投影されたとき、上記の仮想平面上における、第kの発光素子と第kの受光素子とを結ぶ線上で、かつ第kの発光素子と第kの受光素子とに挟まれた位置に上記の中心軸がある。 The light emitting element of the first module and the light receiving element of the second module are arranged at the following positions. That is, in a virtual plane orthogonal to the central axis, the kth (k is an integer of 1 to n) light emitting elements of the first module and the kth light receiving element of the second module. When the light receiving element is projected, the light receiving element is sandwiched between the kth light emitting element and the kth light receiving element on the line connecting the kth light emitting element and the kth light receiving element on the virtual plane. The central axis is in position.
 第1のレンズと第2のレンズとは、以下のような形状を有している。すなわち、第kの発光素子から出射された第kの光が、第1のレンズにより上記の中心軸と交差するように屈折させられ、さらに第2のレンズにより屈折させられて第kの受光素子に入射される。 The first lens and the second lens have the following shapes. That is, the kth light emitted from the kth light emitting element is refracted by the first lens so as to intersect the central axis, and further refracted by the second lens to be the kth light receiving element. Is incident on.
 上記の光通信装置では、複数の発光素子から出射される光が1つの第1のレンズにより各々屈折される。さらに、それらが1つの第2のレンズにより各々屈折されて複数の受光素子に入射される。そのため、多チャンネルの光通信が可能でありながら、小型化が図られる。 In the above optical communication device, light emitted from the plurality of light emitting elements is refracted by one first lens. Further, they are refracted by one second lens and incident on a plurality of light receiving elements. Therefore, it is possible to reduce the size while allowing multi-channel optical communication.
 この発明に係る光通信装置は、以下の特徴を備えることが好ましい(第1の好ましい形態)。すなわち、第1のモジュールの発光素子は、一体の発光素子として形成されている。また、第2のモジュールの受光素子は、一体の受光素子として形成されている。 The optical communication device according to the present invention preferably has the following features (first preferred embodiment). That is, the light emitting element of the first module is formed as an integral light emitting element. The light receiving element of the second module is formed as an integral light receiving element.
 上記の光通信装置では、光通信装置の製造工程が簡略化される。また、第1のモジュールの発光素子の間の位置関係、および第2のモジュールの受光素子の間の位置関係が固定されているため、製造工程におけるそれぞれの素子の位置のばらつきが低減される。 In the above optical communication device, the manufacturing process of the optical communication device is simplified. In addition, since the positional relationship between the light emitting elements of the first module and the positional relationship between the light receiving elements of the second module are fixed, variation in the position of each element in the manufacturing process is reduced.
 この発明に係る光通信装置および第1の好ましい形態は、以下の特徴を備えることが好ましい(第2の好ましい形態)。すなわち、第1のモジュールは、第1の基板と第1の封止部材とをさらに備えている。また、第2のモジュールは、第2の基板と第2の封止部材とをさらに備えている。 It is preferable that the optical communication device and the first preferable mode according to the present invention have the following features (second preferable mode). That is, the first module further includes a first substrate and a first sealing member. The second module further includes a second substrate and a second sealing member.
 そして、第1のモジュールの発光素子は、第1の基板と第1の封止部材とにより封止されている。また、第2のモジュールの受光素子は、第2の基板と第2の封止部材とにより封止されている。 The light emitting element of the first module is sealed with the first substrate and the first sealing member. The light receiving element of the second module is sealed by the second substrate and the second sealing member.
 上記の光通信装置では、第1のモジュールの発光素子および第2のモジュールの受光素子が周囲環境の影響から保護されている。そのため、光通信装置の信頼性がより高くなっている。 In the above optical communication device, the light emitting element of the first module and the light receiving element of the second module are protected from the influence of the surrounding environment. Therefore, the reliability of the optical communication device is higher.
 この発明に係る光通信装置の第2の好ましい形態は、以下の特徴を備えることが好ましい(第3の好ましい形態)。すなわち、第1のモジュールの発光素子は、第1の基板と第1の封止部材とにより構成された中空の筺体内に封止されている。また、第2のモジュールの受光素子は、第2の基板と第2の封止部材とにより構成された中空の筺体内に封止されている。 The second preferred embodiment of the optical communication apparatus according to the present invention preferably comprises the following features (third preferred embodiment). That is, the light emitting element of the first module is sealed in a hollow casing constituted by the first substrate and the first sealing member. Further, the light receiving element of the second module is sealed in a hollow casing constituted by the second substrate and the second sealing member.
 上記の光通信装置では、第1のモジュールの発光素子から出射される光が第1の封止部材および第2の封止部材を通過する際の、強度の減衰が低減される。そのため、より確実な光通信が実施される。 In the above optical communication apparatus, attenuation of intensity when light emitted from the light emitting element of the first module passes through the first sealing member and the second sealing member is reduced. Therefore, more reliable optical communication is performed.
 この発明に係る光通信装置の第2の好ましい形態および第3の好ましい形態は、以下の特徴を備えることが好ましい(第4の好ましい形態)。すなわち、第1の封止部材と第1のレンズとは、一体の部材として形成されている。また、第2の封止部材と第2のレンズとは、一体の部材として形成されている。 The second and third preferred embodiments of the optical communication apparatus according to the present invention preferably have the following features (fourth preferred embodiment). That is, the first sealing member and the first lens are formed as an integral member. The second sealing member and the second lens are formed as an integral member.
 上記の光通信装置では、光通信装置の製造工程が簡略化される。
 この発明に係る光通信装置の別の態様は、第1のモジュールと第2のモジュールとを備えている。第1のモジュールは、少なくとも1つのl個の発光素子と、少なくとも1つのm個の受光素子と、第1のレンズとを備えている。第2のモジュールは、少なくとも1つのm個の発光素子と、少なくとも1つのl個の受光素子と、第1のレンズと互いに中心軸を共有する第2のレンズとを備えている。
In the above optical communication device, the manufacturing process of the optical communication device is simplified.
Another aspect of the optical communication apparatus according to the present invention includes a first module and a second module. The first module includes at least one l light emitting element, at least one m light receiving element, and a first lens. The second module includes at least one m light emitting elements, at least one l light receiving element, and a second lens sharing a central axis with the first lens.
 第1のモジュールの発光素子と第2のモジュールの受光素子とは、以下のような位置に配置されている。すなわち、中心軸に直交する仮想平面に第1のモジュールの発光素子のうちの第p(pは1以上l以下の整数)の発光素子と、第2のモジュールの受光素子のうちの第pの受光素子とが投影されたとき、上記の仮想平面上における、第pの発光素子と第pの受光素子とを結ぶ線上で、かつ第pの発光素子と第pの受光素子とに挟まれた位置に上記の中心軸がある。 The light emitting element of the first module and the light receiving element of the second module are arranged at the following positions. That is, in a virtual plane orthogonal to the central axis, the p-th light-emitting element (p is an integer between 1 and 1) of the first module and the p-th light-receiving element of the second module. When the light receiving element is projected, it is sandwiched between the pth light emitting element and the pth light receiving element on the line connecting the pth light emitting element and the pth light receiving element on the virtual plane. The central axis is in position.
 第2のモジュールの発光素子と第1のモジュールの受光素子とは、以下のような位置に配置されている。すなわち、中心軸に直交する仮想平面に第2のモジュールの発光素子のうちの第q(qは1以上m以下の整数)の発光素子と、第2のモジュールの受光素子のうちの第qの受光素子とが投影されたとき、上記の仮想平面上における、第qの発光素子と第qの受光素子とを結ぶ線上で、かつ第qの発光素子と第qの受光素子とに挟まれた位置に上記の中心軸がある。 The light emitting element of the second module and the light receiving element of the first module are arranged at the following positions. That is, the qth of the light emitting elements of the second module (q is an integer from 1 to m) and the qth of the light receiving elements of the second module on a virtual plane orthogonal to the central axis. When the light receiving element is projected, the light receiving element is sandwiched between the qth light emitting element and the qth light receiving element on the line connecting the qth light emitting element and the qth light receiving element on the virtual plane. The central axis is in position.
 第1のレンズと第2のレンズとは、以下のような形状を有している。すなわち、第1のモジュールの発光素子のうちの第pの発光素子から出射された第pの光が、第1のレンズにより上記の中心軸と交差するように屈折させられ、さらに第2のレンズにより屈折させられて第2のモジュールの発光素子のうちの第pの受光素子に入射される。かつ、第2のモジュールの発光素子のうちの第qの発光素子から出射された第qの光が、第2のレンズにより上記の中心軸と交差するように屈折させられ、さらに第1のレンズにより屈折させられて第1のモジュールの受光素子のうちの第qの受光素子に入射される。 The first lens and the second lens have the following shapes. That is, the p-th light emitted from the p-th light-emitting element among the light-emitting elements of the first module is refracted by the first lens so as to intersect the central axis, and further the second lens. And is incident on the pth light receiving element of the light emitting elements of the second module. In addition, the qth light emitted from the qth light emitting element among the light emitting elements of the second module is refracted by the second lens so as to intersect the central axis, and further the first lens. And is incident on the qth light receiving element of the light receiving elements of the first module.
 上記の光通信装置では、第pの発光素子から出射された後の第pの光および第qの受光素子へ入射する前の第qの光が1つの第1のレンズにより各々屈折される。さらに第qの発光素子から出射された後の第qの光および第pの受光素子へ入射する前の第pの光が1つの第2のレンズにより各々屈折される。そのため、多チャンネルの光通信が可能でありながら、小型化が図られる。 In the above optical communication device, the pth light after being emitted from the pth light emitting element and the qth light before being incident on the qth light receiving element are refracted by one first lens. Further, the qth light after being emitted from the qth light emitting element and the pth light before being incident on the pth light receiving element are each refracted by one second lens. Therefore, it is possible to reduce the size while allowing multi-channel optical communication.
 この発明に係る光通信装置では、複数の発光素子から出射される光が1つの第1のレンズにより各々屈折される。さらに、それらが1つの第2のレンズにより各々屈折されて複数の受光素子に入射される。そのため、多チャンネルの光通信が可能でありながら、小型化が図られる。 In the optical communication device according to the present invention, the light emitted from the plurality of light emitting elements is refracted by one first lens. Further, they are refracted by one second lens and incident on a plurality of light receiving elements. Therefore, it is possible to reduce the size while allowing multi-channel optical communication.
この発明に係る光通信装置の第1の実施形態である光通信装置100の断面図である。It is sectional drawing of the optical communication apparatus 100 which is 1st Embodiment of the optical communication apparatus concerning this invention. 光通信装置100における、(A)は第1のモジュール10の平面図であり、(B)は第2のモジュール20の透視平面図であり、(C)は第1のモジュール10に含まれる第1の発光素子2aと第2のモジュール20に含まれる第1の受光素子6aとの位置関係が抜粋されて示された平面図である。In the optical communication device 100, (A) is a plan view of the first module 10, (B) is a perspective plan view of the second module 20, and (C) is a first module included in the first module 10. 3 is a plan view showing the positional relationship between one light emitting element 2a and the first light receiving element 6a included in the second module 20 in an extracted manner. FIG. この発明に係る光通信装置の第1の実施形態の第1の変形例である光通信装置100Aの断面図である。It is sectional drawing of 100 A of optical communication apparatuses which are the 1st modification of 1st Embodiment of the optical communication apparatus concerning this invention. この発明に係る光通信装置の第1の実施形態の第2の変形例である光通信装置100Bの断面図である。It is sectional drawing of the optical communication apparatus 100B which is the 2nd modification of 1st Embodiment of the optical communication apparatus concerning this invention. この発明に係る光通信装置の第2の実施形態である光通信装置200の断面図である。It is sectional drawing of the optical communication apparatus 200 which is 2nd Embodiment of the optical communication apparatus concerning this invention. 背景技術の光通信装置300の断面図である。It is sectional drawing of the optical communication apparatus 300 of background art. この発明が解決しようとする課題を説明するための、単チャンネルの光通信装置300Aないし300Dが並べられて構成された多チャンネルの光通信装置400の断面図である。FIG. 2 is a cross-sectional view of a multi-channel optical communication device 400 configured by arranging single-channel optical communication devices 300A to 300D for explaining the problem to be solved by the present invention.
 以下にこの発明の実施形態を示して、この発明の特徴とするところをさらに詳しく説明する。この発明は、例えば携帯電話機などのモバイル機器に搭載される近距離でのデータ通信装置に適用されるが、それに限られない。 Embodiments of the present invention will be shown below, and the features of the present invention will be described in more detail. The present invention is applied to a short-range data communication apparatus mounted on a mobile device such as a mobile phone, but is not limited thereto.
 -光通信装置の第1の実施形態-
 この発明に係る光通信装置の第1の実施形態である光通信装置100の構造について、図1および図2を用いて説明する。
-First Embodiment of Optical Communication Device-
The structure of the optical communication apparatus 100 which is the first embodiment of the optical communication apparatus according to the present invention will be described with reference to FIGS.
 なお、各図面は模式図であり、実際の製品の寸法は必ずしも反映されていない。また、製造工程上で発生する各構成要素の形状のばらつきなども、各図面に必ずしも反映されていない。すなわち、以後、この明細書中で説明のために用いられる図面は、たとえ実際の製品と異なる部分があったとしても、本質的な面で実際の製品を表すものと言うことができる。 Note that each drawing is a schematic diagram, and the actual product dimensions are not necessarily reflected. Further, variations in the shape of each component generated in the manufacturing process are not necessarily reflected in each drawing. That is, hereinafter, the drawings used for explanation in this specification can be said to represent an actual product in an essential aspect even if there are different parts from the actual product.
 図1は、図2(A)に図示されているA1-A1線を含み、図面に直交する切断面における、光通信装置100の矢視断面図である。図2(A)および図2(B)は、光通信装置100が備えている第1のモジュール10および第2のモジュール20の平面図である。図2(A)は、後述する第1のレンズ4および第2のレンズ8が共有する中心軸方向において、上方から見た第1のモジュール10の平面図である。図2(B)は、上記の中心軸方向において、上方から見た第2のモジュール20の透視平面図である。 FIG. 1 is a cross-sectional view of the optical communication device 100 taken along the line A1-A1 shown in FIG. 2A and perpendicular to the drawing. 2A and 2B are plan views of the first module 10 and the second module 20 that the optical communication apparatus 100 includes. FIG. 2A is a plan view of the first module 10 viewed from above in the central axis direction shared by the first lens 4 and the second lens 8 described later. FIG. 2B is a perspective plan view of the second module 20 viewed from above in the central axis direction.
 この発明に係る光通信装置100は、第1のモジュール10と第2のモジュール20とを備えている。第1のモジュール10は、第1の基板1と、第1の発光素子2aと、第2の発光素子2bと、第3の発光素子2cと、第4の発光素子2dと、第1の封止部材3と、第1のレンズ4とを備えている。第2のモジュール20は、第2の基板5と、第1の受光素子6aと、第2の受光素子6bと、第3の受光素子6cと、第4の受光素子6dと、第2の封止部材7と、第1のレンズ4と互いに中心軸Xを共有する第2のレンズ8とを備えている。 The optical communication device 100 according to the present invention includes a first module 10 and a second module 20. The first module 10 includes a first substrate 1, a first light emitting element 2a, a second light emitting element 2b, a third light emitting element 2c, a fourth light emitting element 2d, and a first seal. A stop member 3 and a first lens 4 are provided. The second module 20 includes a second substrate 5, a first light receiving element 6a, a second light receiving element 6b, a third light receiving element 6c, a fourth light receiving element 6d, and a second seal. A stop member 7 and a second lens 8 sharing the central axis X with each other are provided.
 以下、この発明は、光通信装置が4つの発光素子と4つの受光素子とを備えている場合を例示することにより説明される。ただし、発光素子および受光素子の個数は、これに限られず、光通信装置が少なくとも2つの発光素子と、それと同数の受光素子とを備えていればよい。また、この発明の説明は、簡略化のため、特定の発光素子と受光素子とが抜粋されて行なわれることがある。ただし、抜粋されたもの以外の発光素子と受光素子においても、その説明が適用される。 Hereinafter, the present invention will be described by exemplifying a case where the optical communication device includes four light emitting elements and four light receiving elements. However, the number of light emitting elements and light receiving elements is not limited to this, and the optical communication device may include at least two light emitting elements and the same number of light receiving elements. Further, the description of the present invention may be made by extracting specific light emitting elements and light receiving elements for the sake of simplicity. However, the description also applies to light emitting elements and light receiving elements other than those extracted.
 第1のモジュール10において、各発光素子は、第1の基板1の一方主面上に接続されており、第1の基板1と、第1の基板1の一方主面上に設けられている第1の封止部材3とにより封止されている。このように封止されることにより、各発光素子が周囲環境の影響から保護され、光通信装置100の信頼性を向上させることができる。 In the first module 10, each light emitting element is connected to one main surface of the first substrate 1, and is provided on the first substrate 1 and one main surface of the first substrate 1. It is sealed with the first sealing member 3. By sealing in this way, each light emitting element is protected from the influence of the surrounding environment, and the reliability of the optical communication apparatus 100 can be improved.
 各発光素子には、例えばVCSEL(Vertical Cavity Surface Emitting Laser:垂直共振器型面発光レーザ)などの半導体レーザ素子が用いられる。第1の発光素子2aからは、例えば近赤外線レーザ光である第1の光Laが出射される。また、第2の発光素子2b、第3の発光素子2cおよび第4の発光素子2dからも、同様に近赤外線レーザ光である第2の光Lb、第3の光Lcおよび第4の光Ldが各々出射される。ただし、発光素子の種類および出射されるレーザ光の種類は、上記に限られない。 For each light emitting element, for example, a semiconductor laser element such as VCSEL (Vertical Cavity Surface Emitting Laser: vertical cavity surface emitting laser) is used. From the 1st light emitting element 2a, the 1st light La which is a near-infrared laser beam, for example is radiate | emitted. Similarly, from the second light emitting element 2b, the third light emitting element 2c, and the fourth light emitting element 2d, the second light Lb, the third light Lc, and the fourth light Ld, which are similarly near-infrared laser beams. Are emitted. However, the type of light emitting element and the type of emitted laser light are not limited to the above.
 第1の基板1の材質および構造は、特に限定されない。第1の封止部材3には、例えばエポキシ樹脂などの透明な光透過性樹脂が用いられる。第1の封止部材3の形状は、光通信装置100においては直方体状となっているが、これに限られない。 The material and structure of the first substrate 1 are not particularly limited. For the first sealing member 3, for example, a transparent light transmissive resin such as an epoxy resin is used. The shape of the first sealing member 3 is a rectangular parallelepiped in the optical communication device 100, but is not limited thereto.
 第1のレンズ4は、第1の封止部材3の、第1の基板1の一方主面と接している面と対向する面上に設けられている。光通信装置100では、第1の封止部材3と第1のレンズ4とは、上記の樹脂材料により、一体の部材として形成されている。この場合、光通信装置100の製造工程が簡略化される。一方、第1のレンズ4が、例えば大きな屈折率を有するガラスなどにより別途形成された後、第1の封止部材3と接合されるようにしてもよい。 The first lens 4 is provided on the surface of the first sealing member 3 facing the surface in contact with the one main surface of the first substrate 1. In the optical communication device 100, the first sealing member 3 and the first lens 4 are formed as an integral member from the above resin material. In this case, the manufacturing process of the optical communication device 100 is simplified. On the other hand, the first lens 4 may be formed separately from, for example, glass having a large refractive index, and then joined to the first sealing member 3.
 第2のモジュール20において、各受光素子は、第2の基板5の一方主面上に接続されており、第2の基板5と、第2の基板5の一方主面上に設けられている第2の封止部材7とにより封止されている。このように封止されることにより、前述の各発光素子と同じく、各受光素子も周囲環境の影響から保護され、光通信装置100の信頼性を向上させることができる。 In the second module 20, each light receiving element is connected to one main surface of the second substrate 5, and is provided on the second substrate 5 and one main surface of the second substrate 5. It is sealed with the second sealing member 7. By sealing in this way, each light receiving element is protected from the influence of the surrounding environment as well as each light emitting element described above, and the reliability of the optical communication apparatus 100 can be improved.
 各受光素子には、例えばPD(Photodetector:光検出器)などの半導体素子が用いられる。第1の受光素子6aには、前述の第1の光Laが入射される。また、第2の受光素子6b、第3の受光素子6cおよび第4の受光素子6dにも、同様に対応する発光素子から出射された近赤外線レーザ光である第2の光Lb、第3の光Lcおよび第4の光Ldが各々入射される。ただし、受光素子の種類および入射されるレーザ光の種類は、上記に限られない。 For each light receiving element, for example, a semiconductor element such as a PD (Photodetector) is used. The first light La described above is incident on the first light receiving element 6a. Similarly, the second light receiving element 6b, the third light receiving element 6c, and the fourth light receiving element 6d are also provided with the second light Lb, the third light Lb, and the third light receiving element 6d. Light Lc and fourth light Ld are respectively incident. However, the type of light receiving element and the type of incident laser light are not limited to the above.
 第2の基板5の材質および構造は、特に限定されない。第2の封止部材7には、第1の封止部材3と同様に、エポキシ樹脂などの透明な光透過性樹脂が用いられる。第2の封止部材7の形状は、光通信装置100においては直方体状となっているが、これに限られない。また、第1の封止部材3と第2の封止部材7との材質および形状は異なっていてもよい。 The material and structure of the second substrate 5 are not particularly limited. As the first sealing member 3, a transparent light transmissive resin such as an epoxy resin is used for the second sealing member 7. The shape of the second sealing member 7 is a rectangular parallelepiped in the optical communication device 100, but is not limited thereto. The materials and shapes of the first sealing member 3 and the second sealing member 7 may be different.
 第2のレンズ8は、第2の封止部材7の、第2の基板5の一方主面と接している面と対向する面上に設けられている。光通信装置100では、第1の封止部材3および第1のレンズ4と同様に、第2の封止部材7と第2のレンズ8とは、上記の樹脂材料により、一体の部材として形成されている。この場合、光通信装置100の製造工程が簡略化される。一方、第2のレンズ8が、前述したように別途形成された後、第2の封止部材7と接合されるようにしてもよい。 The second lens 8 is provided on the surface of the second sealing member 7 facing the surface in contact with the one main surface of the second substrate 5. In the optical communication device 100, as with the first sealing member 3 and the first lens 4, the second sealing member 7 and the second lens 8 are formed as an integral member from the above resin material. Has been. In this case, the manufacturing process of the optical communication device 100 is simplified. On the other hand, the second lens 8 may be formed separately as described above and then joined to the second sealing member 7.
 第1のモジュール10と第2のモジュール20とは、第1のレンズ4と第2のレンズ8とが対向するように配置されている。 The first module 10 and the second module 20 are arranged so that the first lens 4 and the second lens 8 face each other.
 また、各発光素子と各受光素子とは、以下のような位置に配置されている。図2(C)は、第1のモジュール10に含まれる第1の発光素子2aと第2のモジュール20に含まれる第1の受光素子6aとの位置関係が抜粋されて示された平面図である。 Further, each light emitting element and each light receiving element are arranged at the following positions. FIG. 2C is a plan view showing an excerpt of the positional relationship between the first light-emitting element 2 a included in the first module 10 and the first light-receiving element 6 a included in the second module 20. is there.
 すなわち、中心軸Xに直交する仮想平面Pに第1の発光素子2aと第1の受光素子6aとが投影された場合を考える。その際、仮想平面P上における、第1の発光素子2aと第1の受光素子6aとを結ぶ線上(図2(C)ではA1-A1線上)で、かつ第1の発光素子2aと第1の受光素子6aとに挟まれた位置に中心軸Xがある。また、第2の発光素子2bと第2の受光素子6bとの間、第3の発光素子2cと第3の受光素子6cとの間、および第4の発光素子2dと第4の受光素子6dとの間にも、同様の関係がある。なお、各発光素子の間隔および各受光素子の間隔を50μm以上としてもよい。この場合、各素子の公差による搭載位置のバラツキによって各素子が接触することを抑制することができる。また、第1のモジュール10と第2のモジュール20とで素子同士の距離が異なっていてもよい。 That is, consider the case where the first light emitting element 2a and the first light receiving element 6a are projected onto a virtual plane P orthogonal to the central axis X. At that time, on the virtual plane P, on the line connecting the first light emitting element 2a and the first light receiving element 6a (on the line A1-A1 in FIG. 2C), and on the first light emitting element 2a and the first light emitting element 2a. The center axis X is located between the light receiving elements 6a. Further, between the second light emitting element 2b and the second light receiving element 6b, between the third light emitting element 2c and the third light receiving element 6c, and between the fourth light emitting element 2d and the fourth light receiving element 6d. There is a similar relationship with. The interval between the light emitting elements and the interval between the light receiving elements may be 50 μm or more. In this case, it is possible to suppress contact between the elements due to variations in the mounting position due to tolerances of the elements. Further, the distance between the elements may be different between the first module 10 and the second module 20.
 第1のレンズ4と第2のレンズ8とは、以下のような形状を有している。ここでは、第1の光Laの屈折に基づいて、第1のレンズ4および第2のレンズ8の形状が説明される。すなわち、第1の発光素子2aから出射された第1の光Laは、第1のレンズ4により中心軸Xと交差するように屈折させられ、さらに第2のレンズ8により屈折させられて第1の受光素子6aに入射される。第2の光Lb、第3の光Lcおよび第4の光Ldも、第1のレンズ4および第2のレンズ8により屈折されて、同様の光路をたどる。 The first lens 4 and the second lens 8 have the following shapes. Here, the shapes of the first lens 4 and the second lens 8 will be described based on the refraction of the first light La. That is, the first light La emitted from the first light emitting element 2a is refracted by the first lens 4 so as to intersect the central axis X, and further refracted by the second lens 8 to be first. Is incident on the light receiving element 6a. The second light Lb, the third light Lc, and the fourth light Ld are also refracted by the first lens 4 and the second lens 8 and follow the same optical path.
 各レンズの具体的な形状は、第1のモジュール10と第2のモジュール20との間隔、各発光素子の間隔、各受光素子の間隔、および各レンズの屈折率などにより変わる。この発明において重要な点は、光通信装置が、複数の発光素子から出射される光が1つの第1のレンズにより各々屈折され、それらが1つの第2のレンズにより各々屈折されて複数の受光素子に入射されるように構成されることである。その結果、多チャンネルの光通信が可能でありながら、小型化が図られる。 The specific shape of each lens varies depending on the distance between the first module 10 and the second module 20, the distance between the light emitting elements, the distance between the light receiving elements, the refractive index of each lens, and the like. The important point in the present invention is that the optical communication device is configured such that light emitted from a plurality of light emitting elements is refracted by one first lens, which is refracted by one second lens, respectively. It is comprised so that it may inject into an element. As a result, it is possible to reduce the size while enabling multi-channel optical communication.
 -光通信装置の第1の実施形態の第1の変形例-
 この発明に係る光通信装置の第1の実施形態の第1の変形例である光通信装置100Aの構造について、図3を用いて説明する。図3は、光通信装置100Aの、図1に相当する断面図である。
-First Modification of First Embodiment of Optical Communication Device-
The structure of an optical communication device 100A, which is a first modification of the first embodiment of the optical communication device according to the present invention, will be described with reference to FIG. FIG. 3 is a cross-sectional view corresponding to FIG. 1 of the optical communication device 100A.
 光通信装置100Aは、各発光素子および各受光素子の形態が前述の光通信装置100と異なっている。それ以外の構成要素については、光通信装置100と同様であるため、ここではそれらについてのさらなる説明を省略する。 The optical communication device 100A is different from the above-described optical communication device 100 in the form of each light emitting element and each light receiving element. Since other components are the same as those of the optical communication device 100, further description thereof is omitted here.
 光通信装置100Aでは、第1の発光素子2aと第2の発光素子2bと第3の発光素子2cと第4の発光素子2dとは、一体の発光素子2として形成されている。また、第1の受光素子6aと第2の受光素子6bと第3の受光素子6cと第4の受光素子6dとは、一体の受光素子6として形成されている。なお、図3には、第1の発光素子2aおよび第2の発光素子2b、ならびに第1の受光素子6aと第2の受光素子6bのみが図示されている。 In the optical communication device 100A, the first light emitting element 2a, the second light emitting element 2b, the third light emitting element 2c, and the fourth light emitting element 2d are formed as an integral light emitting element 2. Further, the first light receiving element 6a, the second light receiving element 6b, the third light receiving element 6c, and the fourth light receiving element 6d are formed as an integrated light receiving element 6. FIG. 3 shows only the first light emitting element 2a and the second light emitting element 2b, and the first light receiving element 6a and the second light receiving element 6b.
 光通信装置100Aでは、光通信装置100Aの製造工程が簡略化される。また、各発光素子の間の位置関係および各受光素子の間の位置関係が固定されているため、製造工程におけるそれぞれの素子の位置のばらつきが低減される。 In the optical communication device 100A, the manufacturing process of the optical communication device 100A is simplified. In addition, since the positional relationship between the light emitting elements and the positional relationship between the light receiving elements are fixed, variation in the position of each element in the manufacturing process is reduced.
 -光通信装置の第1の実施形態の第2の変形例-
 この発明に係る光通信装置の第1の実施形態の第2の変形例である光通信装置100Bの構造について、図4を用いて説明する。図4は、光通信装置100Bの、図1に相当する断面図である。
-Second Modification of First Embodiment of Optical Communication Device-
The structure of an optical communication apparatus 100B, which is a second modification of the first embodiment of the optical communication apparatus according to the present invention, will be described with reference to FIG. FIG. 4 is a cross-sectional view corresponding to FIG. 1 of the optical communication device 100B.
 光通信装置100Bは、第1の封止部材および第2の封止部材の形態が前述の光通信装置100と異なっている。それ以外の構成要素については、光通信装置100と同様であるため、ここではそれらについてのさらなる説明を省略する。 The optical communication device 100B is different from the optical communication device 100 described above in the form of the first sealing member and the second sealing member. Since other components are the same as those of the optical communication device 100, further description thereof is omitted here.
 光通信装置100Bでは、第1の発光素子2aと第2の発光素子2bと第3の発光素子2cと第4の発光素子2dとは、第1の基板1と外形が直方体の器状の第1の封止部材3Aとにより構成された中空の筺体内に封止されている。また、第1の受光素子6aと第2の受光素子6bと第3の受光素子6cと第4の受光素子6dとは、第2の基板5と外形が直方体の器状の第2の封止部材7Aとにより構成された中空の筺体内に封止されている。なお、図4には、第1の発光素子2aおよび第2の発光素子2b、ならびに第1の受光素子6aと第2の受光素子6bのみが図示されている。 In the optical communication device 100B, the first light-emitting element 2a, the second light-emitting element 2b, the third light-emitting element 2c, and the fourth light-emitting element 2d are a first substrate 1 and a container having a rectangular parallelepiped shape. It is sealed in a hollow casing constituted by one sealing member 3A. In addition, the first light receiving element 6a, the second light receiving element 6b, the third light receiving element 6c, and the fourth light receiving element 6d are the second substrate 5 and the second sealing having a rectangular parallelepiped shape. It is sealed in a hollow casing constituted by the member 7A. FIG. 4 shows only the first light emitting element 2a and the second light emitting element 2b, and the first light receiving element 6a and the second light receiving element 6b.
 光通信装置100Bでは、各発光素子から出射される各光が、各々第1の封止部材および第2の封止部材を通過する際の強度の減衰が低減される。そのため、より確実な光通信が実施される。 In the optical communication device 100B, attenuation of intensity when each light emitted from each light emitting element passes through the first sealing member and the second sealing member is reduced. Therefore, more reliable optical communication is performed.
 -光通信装置の第2の実施形態-
 この発明に係る光通信装置の第2の実施形態である光通信装置200の構造について、図5を用いて説明する。図5は、光通信装置200の、図1に相当する断面図である。
-Second Embodiment of Optical Communication Device-
The structure of an optical communication apparatus 200 that is the second embodiment of the optical communication apparatus according to the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view of the optical communication apparatus 200 corresponding to FIG.
 光通信装置200は、第1のモジュールおよび第2のモジュールの構成が、前述の光通信装置100と異なっている。構成要素自体については、光通信装置100と同様であるため、ここではそれらについてのさらなる説明を省略する。 The optical communication device 200 is different from the optical communication device 100 in the configuration of the first module and the second module. Since the components themselves are the same as those of the optical communication apparatus 100, further description thereof is omitted here.
 この発明に係る光通信装置200は、第1のモジュール10と第2のモジュール20とを備えている。第1のモジュール10は、第1の基板1と、第1の発光素子2aと、第3の発光素子2c(不図示)と、第2の受光素子6bと、第4の受光素子6d(不図示)と、第1の封止部材3と、第1のレンズ4とを備えている。第2のモジュール20は、第2の基板5と、第2の発光素子2bと、第4の発光素子2d(不図示)と、第1の受光素子6aと、第3の受光素子6c(不図示)と、第2の封止部材7と、第1のレンズ4と互いに中心軸Xを共有する第2のレンズ8とを備えている。 The optical communication apparatus 200 according to the present invention includes a first module 10 and a second module 20. The first module 10 includes a first substrate 1, a first light emitting element 2a, a third light emitting element 2c (not shown), a second light receiving element 6b, and a fourth light receiving element 6d (not provided). And a first sealing member 3 and a first lens 4. The second module 20 includes a second substrate 5, a second light emitting element 2b, a fourth light emitting element 2d (not shown), a first light receiving element 6a, and a third light receiving element 6c (not illustrated). And a second sealing member 7 and a second lens 8 sharing the central axis X with the first lens 4.
 第1のモジュール10において、各発光素子および各受光素子は、第1の基板1の一方主面上に接続されており、第1の基板1と、第1の基板1の一方主面上に設けられている第1の封止部材3とにより封止されている。第2のモジュール20において、各発光素子および各受光素子は、第2の基板5の一方主面上に接続されており、第2の基板5と、第2の基板5の一方主面上に設けられている第2の封止部材7とにより封止されている。また、第1のレンズ4は、前述のように第1の封止部材3と一体に形成されており、第2のレンズ8は、第2の封止部材7と一体に形成されている。 In the first module 10, each light emitting element and each light receiving element are connected to one main surface of the first substrate 1, and the first substrate 1 and one main surface of the first substrate 1 are connected to each other. It is sealed with the first sealing member 3 provided. In the second module 20, each light emitting element and each light receiving element are connected to one main surface of the second substrate 5, and the second substrate 5 and one main surface of the second substrate 5 are connected to each other. It is sealed with the second sealing member 7 provided. The first lens 4 is formed integrally with the first sealing member 3 as described above, and the second lens 8 is formed integrally with the second sealing member 7.
 第1のモジュール10の各発光素子および各受光素子、ならびに第2のモジュール20の各発光素子および各受光素子とは、以下のような位置関係を有している。ここでは、第1の発光素子2aと第2のモジュール20の第1の受光素子6aとの位置関係、および第2のモジュール20の第2の発光素子2bと第1のモジュール10の第2の受光素子6bとの位置関係に基づいて、各発光素子および各受光素子の位置関係が説明される。 The light emitting elements and the light receiving elements of the first module 10 and the light emitting elements and the light receiving elements of the second module 20 have the following positional relationship. Here, the positional relationship between the first light emitting element 2 a and the first light receiving element 6 a of the second module 20, and the second light emitting element 2 b of the second module 20 and the second of the first module 10. Based on the positional relationship with the light receiving element 6b, the positional relationship between each light emitting element and each light receiving element will be described.
 すなわち、中心軸Xに直交する仮想平面Pに第1のモジュール10の第1の発光素子2aと第2のモジュール20の第1の受光素子6aとが投影された場合を考える。その際、仮想平面P上における、第1の発光素子2aと第1の受光素子6aとを結ぶ線上(不図示)で、かつ第1の発光素子2aと第1の受光素子6aとに挟まれた位置に中心軸Xがある。 That is, let us consider a case where the first light emitting element 2a of the first module 10 and the first light receiving element 6a of the second module 20 are projected onto a virtual plane P orthogonal to the central axis X. At that time, on the virtual plane P, on the line connecting the first light emitting element 2a and the first light receiving element 6a (not shown), and sandwiched between the first light emitting element 2a and the first light receiving element 6a. There is a central axis X at the position.
 また、仮想平面Pに第2のモジュール20の第2の発光素子2bと第1のモジュール10の第2の受光素子6bとが投影された場合を考える。その際、仮想平面P上における、第2の発光素子2bと第2の受光素子6bとを結ぶ線上(不図示)で、かつ第2の発光素子2bと第2の受光素子6bとに挟まれた位置に中心軸Xがある。 Further, consider a case where the second light emitting element 2b of the second module 20 and the second light receiving element 6b of the first module 10 are projected onto the virtual plane P. At that time, on the virtual plane P, on a line (not shown) connecting the second light emitting element 2b and the second light receiving element 6b, and sandwiched between the second light emitting element 2b and the second light receiving element 6b. There is a central axis X at the position.
 第3の発光素子2cと第3の受光素子6cとの間の位置関係は、第1の発光素子2aと第1の受光素子6aとの間の位置関係と同様である。そして、第4の発光素子2dと第4の受光素子6dとの間の位置関係は、第2の発光素子2bと第2の受光素子6bとの間の位置関係と同様である。 The positional relationship between the third light emitting element 2c and the third light receiving element 6c is the same as the positional relationship between the first light emitting element 2a and the first light receiving element 6a. The positional relationship between the fourth light emitting element 2d and the fourth light receiving element 6d is the same as the positional relationship between the second light emitting element 2b and the second light receiving element 6b.
 第1のレンズ4と第2のレンズ8とは、以下のような形状を有している。ここでは、第1の光Laおよび第2の光Lbの屈折に基づいて、第1のレンズ4および第2のレンズ8の形状が説明される。 The first lens 4 and the second lens 8 have the following shapes. Here, the shapes of the first lens 4 and the second lens 8 will be described based on the refraction of the first light La and the second light Lb.
 すなわち、第1のモジュール10の第1の発光素子2aから出射された第1の光Laは、第1のレンズ4により中心軸Xと交差するように屈折させられ、さらに第2のレンズ8により屈折させられて第2のモジュール20の第1の受光素子6aに入射される。かつ、第2のモジュール20の第2の発光素子2bから出射された第2の光Lbは、第2のレンズ8により中心軸Xと交差するように屈折させられ、さらに第1のレンズ4により屈折させられて第1のモジュール10の第2の受光素子6bに入射される。 That is, the first light La emitted from the first light emitting element 2 a of the first module 10 is refracted by the first lens 4 so as to intersect the central axis X, and further, by the second lens 8. The light is refracted and is incident on the first light receiving element 6 a of the second module 20. In addition, the second light Lb emitted from the second light emitting element 2 b of the second module 20 is refracted by the second lens 8 so as to intersect the central axis X, and further, by the first lens 4. The light is refracted and is incident on the second light receiving element 6 b of the first module 10.
 第1のモジュール10の第3の発光素子2cから出射され、第2のモジュール20の第3の受光素子6cに入射される第3の光も、第1のレンズ4および第2のレンズ8により同様に屈折される。また、第2のモジュール20の第4の発光素子2dから出射され、第1のモジュール10の第4の受光素子6dに入射される第4の光も、第2のレンズ8および第1のレンズ4により同様に屈折される。 The third light emitted from the third light emitting element 2 c of the first module 10 and incident on the third light receiving element 6 c of the second module 20 is also caused by the first lens 4 and the second lens 8. It is similarly refracted. The fourth light emitted from the fourth light emitting element 2d of the second module 20 and incident on the fourth light receiving element 6d of the first module 10 is also the second lens 8 and the first lens. 4 is similarly refracted.
 光通信装置200は、光通信装置100と同様に、複数の発光素子から出射される光が1つの第1のレンズにより各々屈折され、それらが1つの第2のレンズにより各々屈折されて複数の受光素子に入射されるように構成されている。その結果、多チャンネルの光通信が可能でありながら、小型化が図られる。 In the optical communication device 200, similarly to the optical communication device 100, light emitted from a plurality of light emitting elements is refracted by one first lens, and each of them is refracted by one second lens. It is comprised so that it may inject into a light receiving element. As a result, it is possible to reduce the size while enabling multi-channel optical communication.
 なお、この明細書に記載の実施形態は、例示的なものであって、この発明は上記の実施形態に限定されるものではなく、この発明の範囲内において、種々の応用、変形を加えることができる。 The embodiments described in this specification are illustrative, and the present invention is not limited to the above-described embodiments, and various applications and modifications are added within the scope of the present invention. Can do.
100、100A、100B、200 光通信装置、10 第1の光通信モジュール、20 第2の光通信モジュール、1 第1の基板、2 多チャンネル発光素子、2a 第1の発光素子、2b 第2の発光素子、2c 第3の発光素子、2d 第4の発光素子、3、3A 第1の封止部材、4 第1のレンズ、5 第2の基板、6 多チャンネル受光素子、6a 第1の受光素子、6b 第2の受光素子、6c 第3の受光素子、6d 第4の受光素子、7、7A 第2の封止部材、8 第2のレンズ、X 中心軸。 100, 100A, 100B, 200 optical communication device, 10 first optical communication module, 20 second optical communication module, 1st substrate, 2 multi-channel light emitting element, 2a first light emitting element, 2b second Light emitting element, 2c, third light emitting element, 2d, fourth light emitting element, 3, 3A, first sealing member, first lens, second substrate, 6 multi-channel light receiving element, 6a, first light receiving Element, 6b second light receiving element, 6c third light receiving element, 6d fourth light receiving element, 7, 7A second sealing member, 8 second lens, X central axis.

Claims (6)

  1.  第1のモジュールと第2のモジュールとを備えた光通信装置であって、
     前記第1のモジュールは、少なくとも2つのn個の発光素子と、第1のレンズとを備え、前記第2のモジュールは、少なくとも2つのn個の受光素子と、前記第1のレンズと互いに中心軸を共有する第2のレンズとを備えており、
     前記第1のモジュールの発光素子と前記第2のモジュールの受光素子とは、前記中心軸に直交する仮想平面に、前記第1のモジュールの発光素子のうちの第k(kは1以上n以下の整数)の発光素子と、前記第2のモジュールの受光素子のうちの第kの受光素子とが投影されたとき、前記仮想平面上における、前記第kの発光素子と前記第kの受光素子とを結ぶ線上で、かつ前記第kの発光素子と前記第kの受光素子とに挟まれた位置に前記中心軸があるような位置に配置されており、
     前記第1のレンズと前記第2のレンズとは、前記第kの発光素子から出射された第kの光が、前記第1のレンズにより前記中心軸と交差するように屈折させられ、さらに前記第2のレンズにより屈折させられて前記第kの受光素子に入射される形状を有している、光通信装置。
    An optical communication device comprising a first module and a second module,
    The first module includes at least two n light emitting elements and a first lens, and the second module is centered on at least two n light receiving elements and the first lens. A second lens sharing the axis,
    The light emitting element of the first module and the light receiving element of the second module are arranged in a virtual plane orthogonal to the central axis, and the kth (k is 1 or more and n or less) of the light emitting elements of the first module. Of the second module and the kth light receiving element of the light receiving elements of the second module are projected, the kth light emitting element and the kth light receiving element on the virtual plane. And a position where the central axis is at a position sandwiched between the kth light emitting element and the kth light receiving element,
    The first lens and the second lens are refracted so that the kth light emitted from the kth light emitting element intersects the central axis by the first lens, and An optical communication device having a shape that is refracted by a second lens and incident on the kth light receiving element.
  2.  前記第1のモジュールの発光素子は、一体の発光素子として形成され、前記第2のモジュールの受光素子は、一体の受光素子として形成されている、請求項1に記載の光通信装置。 The optical communication device according to claim 1, wherein the light emitting element of the first module is formed as an integrated light emitting element, and the light receiving element of the second module is formed as an integrated light receiving element.
  3.  前記第1のモジュールは、第1の基板と第1の封止部材とをさらに備え、前記第2のモジュールは、第2の基板と第2の封止部材とをさらに備えており、
     前記第1のモジュールの発光素子は、前記第1の基板と前記第1の封止部材とにより封止され、前記第2のモジュールの受光素子は、前記第2の基板と前記第2の封止部材とにより封止されている、請求項1または2に記載の光通信装置。
    The first module further includes a first substrate and a first sealing member, and the second module further includes a second substrate and a second sealing member,
    The light emitting element of the first module is sealed by the first substrate and the first sealing member, and the light receiving element of the second module is sealed by the second substrate and the second seal. The optical communication device according to claim 1, wherein the optical communication device is sealed with a stop member.
  4.  前記第1のモジュールの発光素子は、前記第1の基板と前記第1の封止部材とにより構成された中空の筺体内に封止され、前記第2のモジュールの受光素子は、前記第2の基板と前記第2の封止部材とにより構成された中空の筺体内に封止されている、請求項3に記載の光通信装置。 The light emitting element of the first module is sealed in a hollow casing constituted by the first substrate and the first sealing member, and the light receiving element of the second module is the second light emitting element. The optical communication device according to claim 3, wherein the optical communication device is sealed in a hollow casing constituted by the substrate and the second sealing member.
  5.  前記第1の封止部材と前記第1のレンズとは、一体の部材として形成されており、前記第2の封止部材と前記第2のレンズとは、一体の部材として形成されている、請求項3または4に記載の光通信装置。 The first sealing member and the first lens are formed as an integral member, and the second sealing member and the second lens are formed as an integral member. The optical communication apparatus according to claim 3 or 4.
  6.  第1のモジュールと第2のモジュールとを備えた光通信装置であって、
     前記第1のモジュールは、少なくとも1つのl個の発光素子と、少なくとも1つのm個の受光素子と、第1のレンズとを備え、前記第2のモジュールは、少なくとも1つのm個の発光素子と、少なくとも1つのl個の受光素子と前記第1のレンズと互いに中心軸を共有する第2のレンズとを備えており、
     前記第1のモジュールの発光素子と前記第2のモジュールの受光素子とは、前記中心軸に直交する仮想平面に、前記第1のモジュールの発光素子のうちの第p(pは1以上l以下の整数)の発光素子と、前記第2のモジュールの受光素子のうちの第pの受光素子とが投影されたとき、前記仮想平面上における、前記第pの発光素子と前記第pの受光素子とを結ぶ線上で、かつ前記第pの発光素子と前記第pの受光素子とに挟まれた位置に前記中心軸があるような位置に配置されており、
     前記第2のモジュールの発光素子と前記第1のモジュールの受光素子とは、前記中心軸に直交する仮想平面に、前記第2のモジュールの発光素子のうちの第q(qは1以上m以下の整数)の発光素子と、前記第2のモジュールの受光素子のうちの第qの受光素子とが投影されたとき、前記仮想平面上における、前記第qの発光素子と前記第qの受光素子とを結ぶ線上で、かつ前記第qの発光素子と前記第qの受光素子とに挟まれた位置に前記中心軸があるような位置に配置されており、
     前記第1のレンズと前記第2のレンズとは、前記第1のモジュールの発光素子のうちの前記第pの発光素子から出射された第pの光が、前記第1のレンズにより前記中心軸と交差するように屈折させられ、さらに前記第2のレンズにより屈折させられて前記第2のモジュールの発光素子のうちの前記第pの受光素子に入射され、かつ前記第2のモジュールの発光素子のうちの前記第qの発光素子から出射された第qの光が、前記第2のレンズにより前記中心軸と交差するように屈折させられ、さらに前記第1のレンズにより屈折させられて前記第1のモジュールの受光素子のうちの前記第qの受光素子に入射される形状を有している、光通信装置。
    An optical communication device comprising a first module and a second module,
    The first module includes at least one l light emitting element, at least one m light receiving element, and a first lens, and the second module includes at least one m light emitting element. And at least one light receiving element and a second lens sharing a central axis with the first lens,
    The light emitting element of the first module and the light receiving element of the second module are arranged on a virtual plane orthogonal to the central axis, and the pth (p is 1 or more and 1 or less) of the light emitting elements of the first module. Of the second module and the p-th light-receiving element of the light-receiving elements of the second module are projected, the p-th light-emitting element and the p-th light-receiving element on the virtual plane And a position where the central axis is at a position sandwiched between the p-th light emitting element and the p-th light receiving element,
    The light emitting element of the second module and the light receiving element of the first module are arranged in a virtual plane orthogonal to the central axis, and the qth of the light emitting elements of the second module (q is 1 to m). Of the second module) and the qth light receiving element on the virtual plane when the qth light receiving element among the light receiving elements of the second module is projected. And a position where the central axis is at a position sandwiched between the qth light emitting element and the qth light receiving element,
    The first lens and the second lens are configured such that p-th light emitted from the p-th light-emitting element among the light-emitting elements of the first module is transmitted to the central axis by the first lens. Refracted so as to intersect with the second lens, further refracted by the second lens, and incident on the pth light receiving element of the light emitting elements of the second module, and the light emitting element of the second module Q-th light emitted from the q-th light emitting element is refracted by the second lens so as to intersect the central axis, and further refracted by the first lens to be refracted. An optical communication device having a shape that is incident on the q-th light receiving element among the light receiving elements of one module.
PCT/JP2018/014534 2017-04-21 2018-04-05 Optical communication device WO2018193858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084868 2017-04-21
JP2017084868 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018193858A1 true WO2018193858A1 (en) 2018-10-25

Family

ID=63856717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014534 WO2018193858A1 (en) 2017-04-21 2018-04-05 Optical communication device

Country Status (1)

Country Link
WO (1) WO2018193858A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290097A (en) * 2008-05-30 2009-12-10 Sumitomo Electric Ind Ltd Multi-wavelength light-receiver and light transmitter-receiver
JP2011520381A (en) * 2008-05-07 2011-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Array, system and method for bi-directional data transmission
JP2014137402A (en) * 2013-01-15 2014-07-28 Japan Oclaro Inc Optical module and optical transceiver
JP2014187506A (en) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd Optical receiver and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520381A (en) * 2008-05-07 2011-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Array, system and method for bi-directional data transmission
JP2009290097A (en) * 2008-05-30 2009-12-10 Sumitomo Electric Ind Ltd Multi-wavelength light-receiver and light transmitter-receiver
JP2014137402A (en) * 2013-01-15 2014-07-28 Japan Oclaro Inc Optical module and optical transceiver
JP2014187506A (en) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd Optical receiver and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR102116151B1 (en) Coupling device having a structured refelctive surface for coupling input/output of an optical fiber
TWI601992B (en) Optical receptacle and optical module
US20160349470A1 (en) Hybrid integrated optical sub-assembly
TWI611230B (en) Optical receptacle and optical module
US9423293B2 (en) Optical receptacle and optical module
US9581772B2 (en) Optical electrical module used for optical communication
JP5758658B2 (en) Lens array and optical module having the same
WO2013118390A1 (en) Lens array and light module comprising same
WO2013062004A1 (en) Lens array and manufacturing method thereof
US9910233B2 (en) Optical module
JP6810596B2 (en) How to Form Wavelength Division Multiplexing Devices, Wavelength Division Multiplexing Systems, and Wavelength Division Multiplexing Devices
EP3425436A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
US9912437B2 (en) Optical transmitters
WO2019013313A1 (en) Optical receptacle and optical module
WO2017068843A1 (en) Optical path conversion element, optical interface apparatus, and optical transmission system
US20120213527A1 (en) Optoelectronic device for bidirectionally transporting information through optical fibers and method of manufacturing such a device
JP2016139034A (en) Optical receptacle and optical module
TW201435418A (en) Optical connector
JP2017049613A (en) Lens array and optical module provided with the same
US9385829B2 (en) Optical transceiver having optics with rotated optical path
JP2017102208A (en) Optical device and optical coupling module
KR102353432B1 (en) Assembly for transmitting and receiving light
JP2016139031A (en) Optical receptacle and optical module
WO2018193858A1 (en) Optical communication device
US9971094B1 (en) Optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP