WO2018193682A1 - 無線通信装置及び基板 - Google Patents

無線通信装置及び基板 Download PDF

Info

Publication number
WO2018193682A1
WO2018193682A1 PCT/JP2018/002527 JP2018002527W WO2018193682A1 WO 2018193682 A1 WO2018193682 A1 WO 2018193682A1 JP 2018002527 W JP2018002527 W JP 2018002527W WO 2018193682 A1 WO2018193682 A1 WO 2018193682A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wireless communication
communication circuit
baseband
baseband signal
Prior art date
Application number
PCT/JP2018/002527
Other languages
English (en)
French (fr)
Inventor
幸平 松丸
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP18787871.5A priority Critical patent/EP3637623B1/en
Priority to JP2019513230A priority patent/JPWO2018193682A1/ja
Priority to US16/605,344 priority patent/US11095019B2/en
Publication of WO2018193682A1 publication Critical patent/WO2018193682A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/30Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/147Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/134Rear-feeds; Splash plate feeds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10189Non-printed connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2009Reinforced areas, e.g. for a specific part of a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Definitions

  • the present invention relates to a wireless communication device.
  • the present invention also relates to a substrate that constitutes the wireless communication device, on which a wireless communication circuit that converts a high-frequency signal in the millimeter wave band and a baseband signal is mounted.
  • An optical fiber is widely used as a transmission medium for constructing a high-speed communication network capable of transmitting a large amount of data at high speed.
  • a technique for constructing a high-speed communication network using a transmission medium other than an optical fiber according to the diversity of regions where the high-speed communication network is to be constructed.
  • wireless communication apparatuses using transmission media other than optical fibers in this way wireless communication apparatuses using so-called millimeter-wave radio waves as transmission media have recently attracted attention.
  • Wireless communication devices using millimeter waves are used as town base stations called small cells, access points, and the like.
  • FIG. 31 of Patent Document 1 describes a wireless communication device (millimeter-wave communication system) using millimeter waves.
  • This wireless communication apparatus includes an antenna, a first printed circuit board (PCB, “Printed” Circuit “Board”), a second printed circuit board, and at least one cable.
  • PCB printed circuit board
  • Board Printed Circuit
  • the antenna includes a reflector and a feed.
  • the first printed circuit board includes a wireless receiving unit and is connected to one end of the power feeding unit.
  • the wireless reception unit receives a millimeter wave band radio wave received by the antenna, and generates a baseband signal from the radio wave.
  • the cable has flexibility and connects the first printed circuit board and the second printed circuit board.
  • the baseband signal generated by the wireless reception unit is transmitted from the first printed circuit board to the second printed circuit board through the cable together with the control signal. Note that the first printed circuit board and the second printed circuit board are simply referred to as a printed circuit board unless otherwise distinguished.
  • the power consumption increases when compared with a wireless communication device using a radio wave (for example, a microwave) having a frequency lower than that of millimeter waves.
  • a radio wave for example, a microwave
  • the calorific value increases.
  • the wireless receiver since the wireless receiver generates a baseband signal from millimeter waves, the amount of heat generated is particularly large among wireless communication devices. Therefore, the first printed circuit board including the wireless communication device, particularly the wireless receiver, has a high risk of failure due to high heat.
  • a wireless communication device using millimeter waves is used as a base station or an access point, it is assumed that the wireless communication device is installed in a severe environment such as temperature change and humidity change. Such a harsh environment further increases the risk of failure in the wireless communication device.
  • inspection and repair are collectively referred to as maintenance work.
  • Cables used in wireless communication devices using millimeter waves are fixed to a printed circuit board using coaxial connectors such as N-type connectors and SMA-type connectors.
  • the coaxial connector includes a male connector and a female connector.
  • the male connector and the female connector are attached / detached by rotating one of the connectors in the clockwise direction or the counterclockwise direction with the central axis of the coaxial connector as the rotation axis. Therefore, since an external force in the rotational direction is applied to the connector on the printed circuit board side, stress along the rotational direction is applied to the joint portion between the printed circuit board and the connector on the printed circuit board side.
  • the printed circuit board and the connector on the printed circuit board side are joined using solder. Therefore, when stress along the rotational direction is applied multiple times to the joint, the solder is cracked, or the joint interface between the solder and the printed circuit board or the joint between the solder and the connector on the printed circuit board side Deviation occurs. As a result, poor contact may occur between the cable and the printed circuit board.
  • a wireless communication device has been made in view of the above-described problems, and the purpose of the wireless communication device is a contact failure that may occur when maintenance work is repeatedly performed in a wireless communication device using millimeter waves. It is to suppress.
  • a wireless communication device is equipped with a wireless communication circuit that converts a millimeter-wave band high-frequency signal and a baseband signal whose frequency is lower than the high-frequency signal.
  • a wireless communication device comprising: a first substrate based on a dielectric material; and a second substrate on which a baseband circuit for processing the baseband signal is mounted, wherein the first substrate Has at least a midway section thereof flexible, and is provided in the vicinity of one end of the first substrate, and the baseband signal is supplied from the second substrate, and the base A transmission line that transmits a band signal from the terminal to the wireless communication circuit, and the second substrate is electrically connected to the baseband circuit and supplies the baseband signal to the terminal.
  • Including connectors characterized in that.
  • a substrate includes a baseband signal in which at least a midway section thereof is flexible and a millimeter-wave high-frequency signal and a frequency are lower than the high-frequency signal.
  • the wireless communication apparatus is a wireless communication apparatus using millimeter waves, and can suppress contact failure that may occur when maintenance work is repeatedly performed.
  • the substrate according to one embodiment of the present invention has the same effect as the wireless communication device according to one embodiment of the present invention.
  • (A) is sectional drawing of the radio
  • (b) is an expanded sectional view of the radio
  • (A) is the disassembled perspective view of the card edge connector of the 1st board
  • FIG. 1A is a cross-sectional view of the wireless communication apparatus 1 according to the present embodiment.
  • FIG. 1B is an enlarged cross-sectional view in the vicinity of the RFIC 12 included in the wireless communication apparatus 1.
  • FIG. 2A is an exploded perspective view of the card edge connector 23 of the board 11 and the board 21 provided in the wireless communication device 1.
  • FIG. 2B is a cross-sectional view of the card edge connector 23 of the board 11 and the board 21.
  • the cross-sectional view of FIG. 2B is a cross-sectional view taken along the line AA ′ shown in FIG.
  • FIG. 3 is an exploded perspective view of the substrate 11, the heat diffusing plate 41, the heat diffusing plate 42, and the waveguide 32 included in the wireless communication device 1.
  • the wireless communication device 1 includes substrates 11 and 21, an antenna 31, heat diffusion plates 41 and 42, a casing 51, and a waveguide 61.
  • the substrate 11 corresponds to the “first substrate” recited in the claims.
  • the substrate 21 corresponds to the “second substrate” recited in the claims.
  • the heat diffusion plate 41 corresponds to the “first metal member” recited in the claims.
  • the heat diffusion plate 42 corresponds to the “second metal member” recited in the claims.
  • the antenna 31 has a waveguide 32 and a reflector 33.
  • the substrate 11 has a probe 16 and an RF (Radio Frequency) IC (Integrated Circuit) 12 on a surface opposite to the antenna 31 (hereinafter referred to as a “first main surface of the substrate 11”). It is formed (implemented).
  • the RFIC 12 corresponds to the “wireless communication circuit” recited in the claims.
  • the signal line group 13 and the ground layer 15 corresponding to the “transmission line” recited in the claims are formed on the substrate 11.
  • the signal line group 13 includes a plurality of signal lines 13a to 13h.
  • a card edge connector terminal group 14 corresponding to the “terminal” recited in the claims is formed in the vicinity of the edge 11 a closest to the substrate 21 in the substrate 11.
  • the card edge connector terminal group 14 includes a plurality of terminals 14a to 14h.
  • a baseband IC 22 and a card edge connector 23 corresponding to the “baseband circuit” recited in the claims are formed (mounted) on the surface of the substrate 21.
  • a plurality of transmission lines (not shown) that function as signal paths are formed on the substrate 21.
  • the waveguide 32 is a tubular member whose both ends are open, and its tube wall is made of a conductor such as metal.
  • the cavity formed inside the waveguide 32 may be filled with air or may be filled with a dielectric other than air. However, in the present embodiment, a configuration filled with air is used. Adopted.
  • the cavity functions as a waveguide for guiding electromagnetic waves.
  • One end 32 a of the waveguide 32 is close to the surface of the substrate 11 on the antenna 31 side (hereinafter referred to as “second main surface of the substrate 11”), and electromagnetically with the tip 16 a of the probe 16. Are combined.
  • the reflector 33 includes a main reflector 33a and a sub reflector 33b.
  • the sub reflector 33b is made of a reflector.
  • the arbitrary shape is mentioned as a shape of the said reflecting plate, In this embodiment, the external shape of a cone is employ
  • the main reflector 33a and the sub reflector 33b are configured to collect electromagnetic waves at a predetermined focal point (for example, the apex of the cone).
  • the apex of the cone is fixed to the other end portion 32 b of the waveguide 32, and the end portion 32 b is electromagnetically coupled to the reflector 33.
  • the substrate 11 is a so-called FPC (also referred to as a flexible printed circuit), in which a strip-shaped dielectric material is used as a base material, and at least a midway section thereof is flexible.
  • the halfway section is a part or all of the section located between the area where the RFIC 12 is disposed and the area where the card edge connector terminal group 14 is formed in the belt-like substrate 11 (this embodiment) Indicates all).
  • the midway section refers to a part or all of the section in which the signal line group 13 is provided.
  • the dielectric material can be appropriately determined in consideration of the relative dielectric constant and the like. Examples of the dielectric material include LCP (Liquid Crystal Polymer) and polyimide resin.
  • substrate 11 may be comprised only by one dielectric material, and may be comprised by combining several dielectric material.
  • RFIC 12 converts a baseband signal into a high-frequency signal, or converts a high-frequency signal into a baseband signal. Specifically, when the wireless communication device 1 functions as a wireless transmitter, the RFIC 12 converts a baseband signal into a high-frequency signal, and when the wireless communication device 1 functions as a wireless receiver, the RFIC 12 Convert to baseband signal.
  • the wireless communication device 1 may be a wireless transmitter, a wireless receiver, or a wireless transceiver. When the wireless communication device 1 functions as a wireless transceiver, the RFIC 12 may adopt, for example, a time division multiplexing method.
  • the high-frequency signal band is a millimeter wave band
  • the baseband signal band is a band having a frequency lower than that of the millimeter wave band, for example, a microwave band.
  • the probe 16 is a strip conductor connected to a port that couples a high frequency signal among the ports of the RFIC 12.
  • the probe 16 is disposed such that the tip 16a thereof is electromagnetically coupled to the end 32a which is one end of the waveguide 32.
  • the portion where the tip 16a and the end 32a are coupled serves as a conversion unit that converts the mode of the high-frequency signal transmitted by the probe 16 and the mode of the high-frequency signal transmitted by the waveguide 32. Function. Therefore, the probe 16 functions as a feed line that feeds a high-frequency signal to the antenna 31 on the substrate 11.
  • the signal line group 13 is composed of a plurality (eight in this embodiment) of signal lines 13a to 13h connected to a port for coupling a baseband signal among the ports of the RFIC 12.
  • Each of the signal lines 13a to 13h is composed of a strip-shaped conductor provided in the inner layer of the substrate 11, and is electrically connected to the port of the RFIC 12 by each of the vias 19a to 19h.
  • the signal line 13d is electrically connected to the port of the RFIC 12 by the via 19d.
  • FIG. 2A illustration of vias connecting each signal line group 13 and each port of the RFIC 12 is omitted.
  • the ground layer 15 is a conductor film provided on the surface (second main surface of the substrate 11) opposite to the surface (the first main surface of the substrate 11) on which the RFIC 12 is mounted among the surfaces of the substrate 11. .
  • the ground layer 15 is a part of the second main surface of the substrate 11 and is formed in a region covering the region where the signal line group 13 is formed in the inner layer of the substrate 11. It is formed so as to reach the end side 11a.
  • the ground layer 15 is formed in the vicinity of the region where the probe 16 is formed on the second main surface of the substrate 11 so as not to prevent the coupling between the tip 16a of the probe 16 and the end 32a of the waveguide. Not formed.
  • ground layer 15 is electrically connected to a pin on the negative side of the y-axis of a card edge connector 23 (to be described later, pin 25d in FIG. 2B). Since the pin 25d is grounded, the ground layer 15 is grounded.
  • Each of the signal line groups 13 and the ground layer 15 form a microstrip line that is one mode of the transmission line.
  • Each of these transmission lines transmits a baseband signal and a control signal from the RFIC 12 to a baseband IC 22 described later or from the baseband IC 22 to the RFIC 12.
  • description will be made on the assumption that a transmission line constituted by the signal line 13d and the ground layer 15 transmits a baseband signal.
  • One or more signal lines in the signal line group 13 may be grounded.
  • a microstrip line is used as the transmission line, but a coplanar line may be used.
  • the substrate 11 includes only one wiring layer in which the signal line group 13 is formed as the inner layer.
  • the number of wiring layers included in the inner layer of the substrate 11 is not limited to one layer. That is, a plurality of wiring layers may be formed in the inner layer of the substrate 11.
  • the card edge connector terminal group 14 is composed of terminals 14a to 14h which are a plurality (eight in this embodiment) of terminals.
  • Each of the terminals 14a to 14h is a conductor pad made of a rectangular conductor film.
  • each of the terminals 14a to 14h is connected to each of the pins on the positive side in the y-axis direction of the card edge connector 23 (in FIG. 2B). Is electrically connected to the pin 24d).
  • Each of the terminals 14a to 14h is electrically connected to each of the signal lines 13a to 13h by each of the vias 20a to 20h.
  • the signal line 13d and the terminal 14d are connected by a via 20d.
  • FIG. 2A illustration of vias connecting each of the signal line groups 13 and each of the card edge connector terminal groups 14 is omitted.
  • Each of the card edge connector terminal groups 14 configured as described above has the baseband signal and the baseband signal from the baseband IC 22 mounted on the board 21 in a state where the end 11a of the board 11 is inserted into the slot of the card edge connector 23.
  • a control signal can be supplied, or a baseband signal and a control signal can be supplied to the baseband IC 22.
  • the RFIC 12 can exchange baseband signals and control signals with the baseband IC 22 by using the signal line group 13 and the card edge connector terminal group 14.
  • Heat diffusion plate 41, 42 Each of the heat diffusion plates 41 and 42 is a plate-shaped metal member. It is preferable that the metal which comprises each of the thermal-diffusion plates 41 and 42 has high heat conductivity.
  • the wireless communication apparatus 1 employs aluminum heat diffusion plates 41 and 42. However, the heat diffusion plates 41 and 42 may be made of copper, for example.
  • Each of the heat diffusion plates 41 and 42 sandwiches an area including the RFIC 12 and the probe 16 of the substrate 11 as shown in FIG.
  • the RFIC 12 is a circuit that processes a millimeter-wave band high-frequency signal, and the probe 16 transmits the high-frequency signal. Therefore, in the wireless communication apparatus 1, the RFIC 12 and the probe 16 are members that generate a large amount of heat. When these members are sandwiched between the heat diffusion plates 41 and 42, the heat diffusion plates 41 and 42 function as a kind of heat sink. Therefore, according to this configuration, the risk of failure due to high heat in the wireless communication device 1 can be suppressed.
  • a circular through hole 41a is formed at a position corresponding to the tip 16a of the probe 16 in the heat diffusion plate 41.
  • the diameter of the through hole 41 a is determined to be the same as the outer diameter of the waveguide 32 or slightly smaller than the outer diameter of the waveguide 32. Therefore, the end portion 32 a of the waveguide 32 is fixed to the thermal diffusion plate 41 by inserting (for example, press-fitting) the waveguide 32 into the through hole 41 a.
  • the relative positional relationship between the substrate 11 and the heat diffusing plate 41 is determined so that the extension line of the central axis of the waveguide 32 coincides with the tip 16 a of the probe 16. In other words, it can be said that the through hole 41 a is formed at a position corresponding to the tip 16 a of the probe 16.
  • the substrate 11 has two through holes 11b.
  • the heat diffusing plate 41 has four through holes 41b.
  • the heat diffusing plate 42 has four through holes 42b. No thread is formed on the inner walls of the through hole 11b and the through hole 41b. On the other hand, a thread is formed on the inner wall of the through hole 42b. Therefore, hereinafter, the through hole 42b is referred to as a screw hole 42b.
  • these members are stacked in the order of the heat diffusion plate 41, the substrate 11, and the heat diffusion plate 42, and the positions of the through holes 41 b, the through holes 11 b, and the screw holes 42 b are approximately matched, Tighten the screw 43.
  • the substrate 11 is sandwiched between the heat diffusion plates 41 and 42, and the relative position of the waveguide 32 with respect to the substrate 11 is also fixed.
  • the region R1 shown in FIG. 3 is obtained by projecting the outer shape of the waveguide 32.
  • the position of the through hole 11b in the substrate 11 is determined so that the tip 16a of the probe 16 substantially coincides with the center of the region R1.
  • the diameter of the through hole 11 b and the diameter of the through hole 41 b are set to be slightly larger than the diameter of the screw 43. Therefore, the positions of the substrate 11 and the heat diffusing plate 41 are finely adjusted so that the central axis of the waveguide 32 and the tip 16a of the probe 16 coincide with each other, and the screw 43 is tightened, whereby the tip 16a and the end 32a are The conversion loss in the part (conversion part) which couple
  • the heat diffusion plate 42 is formed with a concave portion 42a for accommodating a part of the RFIC 12 and the probe 16.
  • the recess 42a is filled with the heat conductive member 17 (see FIG. 1B).
  • the heat conductive member 17 is an adhesive or resin paste made of silicone resin, epoxy resin, or the like.
  • the thermally conductive member 17 is filled in a space existing between the surface of the RFIC 12 and the inner wall of the recess 42a, and enhances the thermal contact between the RFIC 12 and the heat diffusion plate 42. That is, the thermal conductive member 17 increases the thermal conductivity between the RFIC 12 and the thermal diffusion plate 42, and increases the heat dissipation efficiency by the thermal diffusion plate 42.
  • illustration of the heat conductive member 17 is abbreviate
  • the heat diffusing plate 42 is fixed to the housing 51. Therefore, the heat diffusion plates 41 and 42 are arranged so that the region where the RFIC 12 of the substrate 11 is mounted is along the xy plane, and the central axis of the waveguide 32 is along the z-axis direction. In addition, the waveguide 32 can be securely held.
  • the waveguide 32 and the substrate 11 can be held in the casing 51 so that the distal end 16a of the probe 16 and the one end 32a of the waveguide 32 are securely coupled. . Therefore, even when the wireless communication device 1 is operated over a long period of time in a harsh environment, it is possible to suppress an unstable gain change of the antenna.
  • the material constituting the housing 51 is not particularly limited. However, when focusing on strength, durability, and the like, the casing 51 is preferably made of metal.
  • the substrate 21 is made of a dielectric material and may or may not have flexibility.
  • the substrate 21 is made of glass epoxy resin and does not have flexibility.
  • substrate 21 is not limited to the product made from a glass epoxy resin, For example, the product made from a polyimide resin may be sufficient.
  • a baseband IC 22 for processing a baseband signal is mounted on the substrate 21.
  • the band of the baseband signal is lower than the band of the high frequency signal processed by the RFIC 12.
  • the dielectric material composing the substrate 21 can be appropriately determined according to the band of the baseband signal.
  • the baseband IC 22 encodes a data signal supplied from the outside of the wireless communication device 1 using the waveguide 61 into a baseband signal, and then the baseband signal Is supplied to the RFIC 12.
  • the baseband IC 22 decodes the baseband signal supplied from the RFIC 12 into a data signal, and then transmits the data signal to the outside of the wireless communication device 1 as a waveguide. 61 is supplied.
  • the wireless communication device 1 may be a wireless transmitter, a wireless receiver, or a wireless transceiver.
  • the baseband IC 22 may adopt, for example, a time division multiplexing method.
  • the baseband IC 22 supplies the RFIC 12 with a control signal for controlling the RFIC 12 in addition to the baseband signal.
  • the board 22 is mounted with a card edge connector 23 electrically connected to a port to which a baseband signal is coupled among the ports of the baseband IC 22.
  • the casing of the card edge connector 23 is made of resin and is formed in a rectangular parallelepiped shape.
  • the housing of the card edge connector 23 is preferably made of a hardened LPC.
  • the housing of the card edge connector 23 is formed with a slit dug in the negative z-axis direction as shown in FIG. This slit accommodates the vicinity of the edge 11 a of the substrate 11. Further, inside the casing of the card edge connector 23, pins 24a to 24h corresponding to the terminals 14a to 14h and pins 25a to 25h corresponding to the ground layers 15 are provided.
  • each of the pins 24a to 24h is electrically connected to each of the terminals 14a to 14h, and each of 25a to 25h is connected to the ground layer 15. Conduct.
  • the baseband IC 22 In addition to the baseband IC 22, electronic components such as a capacitor or a crystal oscillator necessary for the operation of the baseband IC 22 may be mounted on the substrate 21.
  • the substrate 11 that transmits and receives millimeter-wave band high-frequency signals has flexibility.
  • contact connection using the card edge connector terminal group 14 and the card edge connector 23 is employed for electrical connection between the substrate 11 and the substrate 21. Thereby, it is not necessary to form solder for connecting the substrate 11 and the substrate 21 on the substrate 11 side. Accordingly, it is possible to realize the wireless communication device 1 that prevents disconnection during connection between the substrate 11 and the substrate 21 and is easy to maintain.
  • the dimensions of the card edge connector terminal group 14 and the card edge connector 23 are both as large as several centimeters. For this reason, the operation
  • the diameter of the coaxial cable is about 10 mm. For this reason, the operation
  • the card edge connector terminal group 14 has terminals 14a to 14h formed by surface wiring, and is not formed in the form of a connector. For this reason, in the contact connection by the card edge connector terminal group 14 and the card edge connector 23, the possibility of disconnection or poor connection is low as compared to the connection by the coaxial cable. Further, in the contact connection, since the connection portion between the substrate 11 and the substrate 21 is concentrated at one place, the connection reliability is high and the number of man-hours required for the connection is small.
  • connection portion In the contact connection by the card edge connector terminal group 14 and the card edge connector 23, the area of the connection portion is larger than the connection by the coaxial cable. For this reason, the stress applied to the connection portion during the maintenance or adjustment work of the wireless communication device 1 is dispersed, thereby reducing the possibility that the solder (not shown) formed on the card edge connector 23 is damaged.
  • the substrate 11 can be bent in the middle section. For this reason, the card edge connector terminal group 14 can be directly inserted into the card edge connector 23. Further, according to this configuration, even if the region including the RFIC 12 and the probe 16 in the substrate 11 is held between the heat diffusion plates 41 and 42, the card edge connector terminal group 14 and the card edge connector 23. And desorption. Therefore, the substrate 11 can make maintenance of the wireless communication device 1 easier.
  • the probe 16 can be formed on the substrate 11 by a well-known manufacturing process in FPC. Thereby, the loss of electromagnetic waves in the probe 16 can be reduced.
  • the heat diffusion plate 42A is different from the heat diffusion plate 42 in the size of the recess 42Aa (the size of the opening) that accommodates the RFIC 12 and the probe 16.
  • the recess 42a of the heat diffusing plate 42 is formed so as to accommodate the RFIC 12 and a part of the probe 16, whereas the recess 42Aa of the heat diffusing plate 42A accommodates the RFIC 12 and the entire probe 16. Is formed.
  • the size of the recess 42Aa may be a size that accommodates the RFIC 12 and the entire probe 16.
  • the heat conductive member 17A is filled in the recess 42Aa so as not to cover the tip 16a of the probe 16 with a large part of the surface of the RFIC 12 and the probe 16.
  • the thermally conductive member 17A it is preferable to fill the thermally conductive member 17A as in this modification.
  • the heat diffusion plate 42A has a recess 42Ab different from the recess 42Aa.
  • a recess 42Ab can be provided at any location on the surface constituting the thermal diffusion plate 42. For example, when an electronic component other than the RFIC 12 is mounted on the first main surface of the substrate 11, these The electronic parts can be accommodated.
  • FIG. 5A is a perspective view of the substrate 111 according to this embodiment
  • FIG. 5B is a cross-sectional view of the substrate 111.
  • the cross-sectional view of FIG. 5B is a cross-sectional view taken along the line BB ′ shown in FIG.
  • the substrate 111 according to the present embodiment is obtained by deforming the substrate 11 included in the wireless communication device 1 according to the first embodiment. Therefore, the member number of each member constituting the substrate 111 is obtained by adding “1” to the third digit of the member number of each member constituting the substrate 11.
  • the RFIC 112, the signal line group 113, the card edge connector terminal group 114, and the ground layer 115 included in the substrate 111 are respectively the RFIC 12, the signal line group 13, the card edge connector terminal group 14, and the ground layer 115 included in the substrate 11.
  • the vias 119d and 120d shown in FIG. 5B correspond to the vias 19d and 20d shown in FIG. Therefore, description of each of these members is omitted here.
  • the substrate 111 further includes a slot array antenna 131, a feed line 116, a heat conductive member 117, and a heat sink 118.
  • a feed line connected to a port for coupling a high-frequency signal among the ports of the RFIC 112 is extended in a direction away from the RFIC 112 (z-axis positive direction), then branched into four, and further extended in the z-axis positive direction.
  • a slot array antenna 131 is coupled to the tip of the feeder line 116 branched into four.
  • the slot array antenna 131 is an aspect of the antenna described in the claims. As shown in FIG. 5A, the slot array antenna 131 is configured by arranging 16 radiating elements in a 4 ⁇ 4 matrix.
  • the slot array antenna 131 may be formed on the surface of the substrate 111 as described above.
  • the wireless communication device 1 including the substrate 11 and the antenna 31 can be suitably used. Since the antenna 31 includes the reflector 33, it can radiate radio waves having high directivity. Therefore, the wireless communication device 1 including the antenna 31 is suitable for long-distance communication.
  • the wireless communication device 1 including the substrate 111 including the slot array antenna 131 can be suitably used.
  • the slot array antenna 131 Since the slot array antenna 131 has good compatibility with the beam forming technology, it is suitable for applications in which a large number of communication devices (mobile terminals) are used as communication partners. Note that the slot array antenna 131 is integrated on the substrate 111. Therefore, the wireless communication device 1 including the slot array antenna 131 can be easily downsized. In terms of size, the wireless communication device 1 including the slot array antenna 131 is suitable as a wireless communication device of a micro cell or a pico cell.
  • the heat sink 118 is a metal heat sink disposed so as to be in thermal contact with the surface opposite to the substrate 111 of the RFIC 112 (the y-axis positive direction side). .
  • the heat sink 118 is bonded to the surface of the RFIC 112 via a heat conductive member 117.
  • the heat sink 118 can dissipate the heat generated by the RFIC 112 into the atmosphere. Therefore, the risk of failure due to high heat in the substrate 111 can be suppressed.
  • the heat sink 118 when the RFIC 12 is viewed in plan, the heat sink 118 is extended in a direction (z-axis negative direction) from the RFIC 112 toward the card edge connector terminal group 114. Therefore, the heat sink 118 covers at least a part of the transmission line formed by each of the signal line groups 113 and the ground layer 115.
  • the heat sink 118 configured as described above can increase the surface area of the heat sink 118 without covering the slot array antenna 131 formed on the surface of the substrate 111, that is, without reducing the gain of the slot array antenna 131. it can. Therefore, the heat generated by the RFIC 112 can be dissipated more efficiently into the atmosphere, and the risk of failure due to high heat can be further suppressed.
  • the heat sink 118 is made of metal, it can shield radio waves. By covering at least a part of the transmission line with the heat sink 118, it is possible to suppress external noise from being superimposed on the baseband signal transmitted through the transmission line.
  • a heat conductive member that thermally contacts the heat sink 118 and the transmission line. 117 is filled.
  • the heat sink 118 configured as described above can dissipate heat generated by the transmission line in the atmosphere in addition to heat generated by the RFIC 112. Therefore, the risk of failure due to high heat in the substrate 111 can be further suppressed.
  • a wireless communication device (1) is equipped with a wireless communication circuit (RFIC12, 112) that converts a millimeter-wave band high-frequency signal and a baseband signal whose frequency is lower than the high-frequency signal.
  • RFIC12, 112 a wireless communication circuit that converts a millimeter-wave band high-frequency signal and a baseband signal whose frequency is lower than the high-frequency signal.
  • a first substrate (11, 111) based on a dielectric material; and a second substrate (21) on which a baseband circuit (baseband IC 22) for processing the baseband signal is mounted.
  • the first substrate (11, 111) has flexibility at least in the middle thereof, and one end of the first substrate (11, 111) (11a, 111a) provided near the terminals (14a to 14h, 114a to 114h) for supplying the baseband signal from the second substrate (21) and the baseband signal to the terminal (14a).
  • the second substrate (21) includes: A card edge connector (23) that is electrically connected to the baseband circuit (baseband IC22) and supplies the baseband signal to the terminals (14a to 14h, 114a to 114h) is provided.
  • the wireless communication apparatus connects the first board and the second board by inserting the vicinity of one end of the first board provided with a terminal into a card edge connector included in the second board. Then, transmission of the baseband signal between these two substrates is realized.
  • the external force applied to each of the first substrate and the second substrate in order to insert the vicinity of the edge of the first substrate into the card edge connector is only the external force in the direction along one linear axis. That is, no external force along the rotation direction is applied to the joint between the card edge connector and the second substrate. Therefore, according to said structure, the poor contact between the 1st board
  • the wireless communication apparatus further includes an antenna (31) including a waveguide (32) and a reflector (33), and the first substrate (11) receives the high-frequency signal.
  • the waveguide (32) further includes a probe (16) that feeds power to the antenna (31), and one end (32a) of the waveguide (32) is electromagnetically coupled to the tip (16a) of the probe (16).
  • the other end (32b) is preferably electromagnetically coupled to the reflector (33).
  • the wireless communication device may include an antenna including a waveguide and a reflector.
  • the wireless communication device (1) includes the first substrate (11), the second substrate (21), and the one end portion of the waveguide (32) ( 32a) and a first metal member (41) sandwiching a region including the wireless communication circuit (12) and the probe (16) in the first substrate (11) and the housing (51). ) And a second metal member (42), and a position corresponding to the tip (16a) of the probe (16) in the first metal member (41) is the tip (16a) and A through hole (41a) for electromagnetically coupling the one end (32a) of the waveguide (32) is formed, and the first metal member (41) and the second metal member are formed. At least one of (42) is fixed to the casing (51). Holding said first substrate (11) by, it is preferable.
  • the wireless communication circuit is a circuit that processes high-frequency signals in the millimeter wave band
  • the probe is a member that transmits the high-frequency signals. Therefore, in this wireless communication apparatus, the wireless communication circuit and the probe are members that generate a large amount of heat. By sandwiching these members between the first metal member and the second metal member, the first metal member and the second metal member can function as a kind of heat sink. Therefore, according to said structure, the risk of the failure resulting from the high heat
  • the waveguide and the first substrate can be held in the casing so that the tip of the probe and one end of the waveguide are securely coupled. Therefore, even when the wireless communication apparatus is operated for a long period in a harsh environment, it is possible to suppress the antenna gain from being unstablely changed.
  • the wireless communication circuit (RFIC12) is mounted among the first metal member (41) and the second metal member (42, 42A).
  • (42a, 42Aa) is a thermally conductive member (17) that thermally contacts the wireless communication circuit (RFIC12) and the metal member (42a, 42Aa) on which the wireless communication circuit (RFIC12) is mounted. , 17A).
  • the substrate (11, 111) converts a millimeter-wave band high-frequency signal and a baseband signal whose frequency is lower than that of the high-frequency signal, at least in the middle of which is flexible.
  • a substrate (11, 111) based on a dielectric material on which a wireless communication circuit (RFIC 12, 112) is mounted, provided near one end (11a, 111a) of the substrate (11, 111).
  • the baseband signals supplied from the outside (14a-14h, 114a-114h) and the baseband signals from the terminals (14a-14h, 114a-114h) to the wireless communication circuit (12, 112).
  • Including transmission lines (signal line groups 13 and 113 and ground layers 15 and 115).
  • the substrate according to one embodiment of the present invention has the same effect as the wireless communication device according to one embodiment of the present invention.
  • the substrate (111) includes the antenna (131) formed on the surface of the substrate (111), the wireless communication circuit (RFIC112), and the antenna (131). It is preferable to further include a power supply line (116) for transmitting a high-frequency signal.
  • the substrate may include an antenna formed on the surface and a feeder line.
  • the substrate (111) preferably further includes a metal heat sink (118) in thermal contact with the wireless communication circuit (RFIC 112).
  • RFIC 112 wireless communication circuit
  • the heat generated by the wireless communication circuit using the heat sink can be dissipated into the atmosphere. Therefore, the risk of failure due to high heat in the substrate can be suppressed.
  • the heat sink (118) is connected to the terminals (114a to 114h) from the wireless communication circuit (RFIC112). ), And is preferably configured to cover at least a part of the transmission lines (the signal line group 113 and the ground layer 115).
  • the surface area of the heat sink can be increased without covering the antenna formed on the surface of the substrate, that is, without reducing the gain of the antenna. Therefore, the heat generated by the wireless communication circuit can be more efficiently dissipated into the atmosphere, and the risk of failure due to high heat can be further suppressed.
  • the heat sink since the heat sink is made of metal, it can shield radio waves. By covering at least a part of the transmission line with the heat sink, it is possible to suppress external noise from being superimposed on the baseband signal transmitted through the transmission line.
  • the heat sink (118) and the transmission line are interposed between the heat sink (118) and the transmission line (113, 115). It is preferable that a heat conductive member (117) that makes thermal contact with the ground layer 115) is interposed.
  • the heat sink can dissipate the heat generated by the transmission line in the atmosphere in addition to the heat generated by the wireless communication circuit. Therefore, the risk of failure due to high heat in the substrate can be further suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

ミリ波を利用した無線通信装置において、メンテナンス作業を繰り返し実施する場合に生じ得る接触不良を抑制すること。無線通信装置(1)は、高周波信号を処理する無線通信回路(RFIC12)を含む第1の基板(11)と、前記ベースバンド信号を処理するベースバンド回路(ベースバンドIC22)を含む第2の基板(21)と、を備えている。当該第1の基板(11)の1つの端辺(11a)近傍には、前記ベースバンド信号を前記第2の基板(21)から供給される端子(14d)が設けられており、前記第2の基板(21)は、前記端子(14d)に前記ベースバンド信号を供給するカードエッジコネクタ(23)を含む。

Description

無線通信装置及び基板
 本発明は、無線通信装置に関する。また、本発明は、前記無線通信装置を構成する基板であって、ミリ波帯の高周波信号とベースバンド信号とを変換する無線通信回路が実装された基板に関する。
 大容量のデータを高速に伝送可能な高速通信網を構築するための伝送媒体としては、光ファイバが広く利用されている。しかしながら、高速通信網を構築しようとする地域の多様性に応じて、光ファイバ以外の伝送媒体を利用して高速通信網を構築する技術が求められている。このように光ファイバ以外の伝送媒体を利用した無線通信装置としては、近年、いわゆるミリ波帯の電波を伝送媒体として利用した無線通信装置が注目を集めている。ミリ波を利用した無線通信装置は、スモールセルと呼ばれる町中の基地局や、アクセスポイントなどとして利用される。
 特許文献1の図31には、ミリ波を利用した無線通信装置(millimeter-wave communication system)が記載されている。この無線通信装置は、アンテナと、第1のプリント回路基板(PCB, Printed Circuit Board)と、第2のプリント回路基板と、少なくとも1つのケーブルとを備えている。
 アンテナは、リフレクタと給電部(feed)とを含んでいる。第1のプリント回路基板は、無線受信部を含み、且つ、給電部の一方の端部に接続されている。無線受信部は、アンテナが受信したミリ波帯の電波を受け取り、その電波からベースバンド信号を生成する。ケーブルは、柔軟性を有し、第1のプリント回路基板と第2のプリント回路基板とを接続している。無線受信部が生成したベースバンド信号は、制御信号とともに、ケーブルによって第1のプリント回路基板から第2のプリント回路基板へ伝送される。なお、第1のプリント回路基板と第2のプリント回路基板とを特に区別しない場合には、単にプリント回路基板と称する。
米国特許出願公開第2012/0050125号明細書(2012年3月1日公開)
 特許文献1の図31に記載された無線通信装置においては、ミリ波より周波数が低い電波(例えばマイクロ波)を利用した無線通信装置と比較した場合に、消費電力が高くなり、無線通信装置の発熱量が多くなる。特に、無線受信部は、ミリ波からベースバンド信号を生成するため、無線通信装置のなかでも特に発熱量が多くなる。したがって、無線通信装置、特に無線受信部を含む第1のプリント回路基板は、高熱に起因した故障のリスクが高い。
 また、ミリ波を利用した無線通信装置を基地局やアクセスポイントなどとして利用する場合、該無線通信装置は、温度変化や湿度変化などが過酷な環境に設置されることも想定される。このような過酷な環境は、無線通信装置における故障のリスクを更に高める。
 以上の理由から、ミリ波を利用した無線通信装置を運用する場合には、故障を未然に防ぐための点検、及び、故障が発生した場合の修理の実施が求められる。以下において、点検及び修理のことをまとめてメンテナンス作業と呼ぶ。
 特許文献1の図31に記載された無線通信装置において上述の定期点検あるいは修理を実施する場合、これらのメンテナンス作業に伴って、第1のプリント回路基板と第2のプリント回路基板とを接続するケーブルを着脱する必要が生じる。
 ミリ波を利用した無線通信装置において利用されるケーブルは、N型コネクタやSMA型コネクタなどの同軸コネクタを用いてプリント回路基板に固定される。同軸コネクタは、雄コネクタと雌コネクタとからなる。雄コネクタと雌コネクタとの着脱は、同軸コネクタの中心軸を回転軸として、時計回り方向あるいは反時計回り方向に、何れか一方のコネクタを回転させることによって行われる。したがって、プリント回路基板側のコネクタには回転方向の外力が加わるため、プリント回路基板とプリント回路基板側のコネクタとの接合部には、回転方向に沿った応力が加わる。
 プリント回路基板とプリント回路基板側のコネクタとは、半田を用いて接合されている。そのため、その接合部に複数回の回転方向に沿った応力が加わった場合、半田に亀裂が生じる、又は、半田とプリント回路基板との接合界面あるいは半田とプリント回路基板側のコネクタとの接合界面に乖離が生じる。その結果、ケーブルとプリント回路基板とにおいて接触不良が生じることがある。
 本発明の一態様に係る無線通信装置は、上記の課題に鑑みなされたものであり、その目的は、ミリ波を利用した無線通信装置において、メンテナンス作業を繰り返し実施する場合に生じ得る接触不良を抑制することである。
 上記の課題を解決するために、本発明の一態様に係る無線通信装置は、ミリ波帯の高周波信号と周波数が前記高周波信号よりも低いベースバンド信号とを変換する無線通信回路が実装された、誘電体材料を基材とする第1の基板と、前記ベースバンド信号を処理するベースバンド回路が実装された第2の基板と、を備えた無線通信装置であって、前記第1の基板は、少なくともその中途区間が柔軟性を有し、且つ、当該第1の基板の1つの端辺近傍に設けられた、前記ベースバンド信号を前記第2の基板から供給される端子と、前記ベースバンド信号を前記端子から前記無線通信回路へ伝送する伝送線路と、を含み、前記第2の基板は、前記ベースバンド回路に電気的に接続され、前記端子に前記ベースバンド信号を供給するカードエッジコネクタを含む、ことを特徴とする。
 上記の課題を解決するために、本発明の一態様に係る基板は、少なくともその中途区間が柔軟性を有し、且つ、ミリ波帯の高周波信号と周波数が前記高周波信号よりも低いベースバンド信号とを変換する無線通信回路が実装された誘電体材料を基材とする基板であって、当該基板の1つの端辺近傍に設けられた、前記ベースバンド信号を外部から供給される端子と、前記ベースバンド信号を前記端子から前記無線通信回路へ伝送する伝送線路と、を含む、ことを特徴とする。
 本発明の一態様に係る無線通信装置は、ミリ波を利用した無線通信装置であって、メンテナンス作業を繰り返し実施する場合に生じ得る接触不良を抑制することができる。また、本発明の一態様に係る基板は、本発明の一態様に係る無線通信装置と同様の効果を奏する。
(a)は、本発明の第1の実施形態に係る無線通信装置の断面図であり、(b)は、(a)に示した無線通信装置が備えている無線通信回路近傍の拡大断面図である。 (a)は、図1の(a)に示した無線通信装置が備えている、第1の基板及び第2の基板のカードエッジコネクタの分解斜視図であり、(b)は、第1の基板及び第2の基板のカードエッジコネクタの断面図である。 図1の(a)に示した無線通信装置が備えている、第1の基板、第1の金属部材、第2の金属部材、及び導波管の分解斜視図である。 図1に示した無線通信装置の変形例が備えている無線通信回路近傍の拡大断面図である。 (a)は、本発明の第2の実施形態に係る基板の斜視図であり、(b)は、(a)に示した基板の断面図である。
 〔第1の実施形態〕
 本発明の第1の実施形態に係る無線通信装置について、図1~図3を参照して説明する。図1の(a)は、本実施形態に係る無線通信装置1の断面図である。図1の(b)は、無線通信装置1が備えているRFIC12近傍の拡大断面図である。図2の(a)は、無線通信装置1が備えている、基板11及び基板21のカードエッジコネクタ23の分解斜視図である。図2の(b)は、基板11及び基板21のカードエッジコネクタ23の断面図である。図2の(b)の断面図は、図2の(a)に示したA-A’線に沿った断面における断面図である。図3は、無線通信装置1が備えている、基板11、熱拡散板41、熱拡散板42、及び導波管32の分解斜視図である。
 無線通信装置1は、基板11,21、アンテナ31、熱拡散板41,42、筐体51、並びに導波管61を備えている。基板11は、請求の範囲に記載の「第1の基板」と対応する。基板21は、請求の範囲に記載の「第2の基板」と対応する。熱拡散板41は、請求の範囲に記載の「第1の金属部材」と対応する。熱拡散板42は、請求の範囲に記載の「第2の金属部材」と対応する。
 (アンテナ31)
 アンテナ31は、導波管32、及びリフレクタ33を有している。基板11は、アンテナ31と反対側の面(以下、「基板11の第1主面」と称する)に、プローブ16、及びRF(Radio Frequency:無線周波数)IC(Integrated Circuit:集積回路)12が形成(実装)されている。RFIC12は、請求の範囲に記載の「無線通信回路」と対応する。また、基板11には、請求の範囲に記載の「伝送線路」と対応する、信号線群13及びグランド層15が形成されている。信号線群13は、複数の信号線13a~13hを含んでいる。また、基板11における基板21と最も近接する端辺11a近傍には、請求の範囲に記載の「端子」と対応する、カードエッジコネクタ端子群14が形成されている。カードエッジコネクタ端子群14は、複数の端子14a~14hを含んでいる。基板21は、その表面に、請求の範囲に記載の「ベースバンド回路」と対応するベースバンドIC22、及びカードエッジコネクタ23が形成(実装)されている。また、基板21には、信号の経路として機能する複数の伝送線路(図示しない)が形成されている。
 導波管32は、両端が開放した管状部材であり、その管壁は、金属などの導体からなる。導波管32の内側に形成された空洞は、空気で満たされていてもよいし、空気以外の誘電体で満たされていてもよいが、本実施形態においては、空気で満たされた構成を採用している。当該空洞は、電磁波を導波する導波路として機能する。導波管32の一方の端部32aは、基板11のアンテナ31側の面(以下、「基板11の第2主面」と称する)と近接しており、プローブ16の先端16aと電磁気的に結合されている。
 リフレクタ33は、メインリフレクタ33a、及びサブリフレクタ33bからなる。サブリフレクタ33bは、反射板からなる。当該反射板の形状として、任意の形状が挙げられるが、本実施形態においては、錐体の外形を採用している。そして、リフレクタ33において、メインリフレクタ33a及びサブリフレクタ33bは例えば、所定の焦点(例えば、当該錐体の頂点)に電磁波を集めるように構成されている。なお、導波管32の他方の端部32bには、当該錐体の頂点が固定されており、端部32bは、リフレクタ33と電磁気的に結合されている。
 (基板11)
 基板11は、帯状の誘電体材料を基材とし、少なくともその中途区間が柔軟性を有する、いわゆるFPC(Flexible printed circuits:フレキシブル基板とも言う)である。中途区間とは、帯状の基板11において、RFIC12が配置されている領域と、カードエッジコネクタ端子群14が形成されている領域との間に位置する区間のうちの一部又は全部(本実施形態においては全部)を指す。換言すれば、中途区間とは、信号線群13が設けられている区間のうち一部又は全部を指す。誘電体材料は、その比誘電率などを考慮して適宜定めることができる。誘電体材料の一例としては、LCP(Liquid Crystal Polymer:液晶ポリマー)やポリイミド樹脂が挙げられる。なお、基板11は、1つの誘電体材料のみにより構成されていてもよいし、複数の誘電体材料を組み合わせることにより構成されていてもよい。
 RFIC12は、ベースバンド信号を高周波信号に変換する、あるいは、高周波信号をベースバンド信号に変換する。具体的には、無線通信装置1が無線送信機として機能する場合、RFIC12は、ベースバンド信号を高周波信号に変換し、無線通信装置1が無線受信機として機能する場合、RFIC12は、高周波信号をベースバンド信号に変換する。なお、無線通信装置1は、無線送信機であってもよいし、無線受信機であってもよいし、無線送受信機であってもよい。無線通信装置1を無線送受信機として機能させる場合には、RFIC12は、例えば、時間分割多重方式を採用すればよい。
 なお、無線通信装置1において、高周波信号の帯域はミリ波帯であり、ベースバンド信号の帯域は、ミリ波帯よりも周波数が低い帯域であり、例えばマイクロ波帯である。
 プローブ16は、RFIC12のポートのうち高周波信号を結合するポートに接続された帯状導体である。プローブ16は、その先端16aが導波管32の一方の端部である端部32aと電磁気的に結合するように配置されている。この構成によれば、先端16aと端部32aとが結合した部分は、プローブ16により伝送される高周波信号のモードと、導波管32により伝送される高周波信号のモードとを変換する変換部として機能する。したがって、プローブ16は、基板11において、アンテナ31に対して高周波信号を給電する給電線路として機能する。
 信号線群13は、RFIC12のポートのうちベースバンド信号を結合するポートに接続された複数(本実施形態では8本)の信号線13a~13hにより構成されている。信号線13a~13hの各々は、基板11の内層に設けられた帯状導体により構成され、ビア19a~19hの各々によってRFIC12のポートと電気的に接続されている。たとえば、図2の(b)に示すように、信号線13dは、ビア19dによってRFIC12のポートと電気的に接続されている。なお、図2の(a)においては、信号線群13の各々とRFIC12のポートの各々とを接続するビアの図示は、省略している。
 グランド層15は、基板11の表面のうちRFIC12が実装されている表面(基板11の第1主面)とは逆側の表面(基板11の第2主面)に設けられた導体膜である。グランド層15は、基板11の第2主面の一部の領域であって、基板11の内層において信号線群13が形成されている領域を覆う領域に形成されており、且つ、基板11の端辺11aに至るように形成されている。なお、プローブ16の先端16aと導波管の端部32aとの結合を妨げないように、基板11の第2主面のうちプローブ16が形成されている領域の近傍には、グランド層15は、形成されていない。
 このように構成されたグランド層15は、後述するカードエッジコネクタ23のy軸負方向側のピン(図2の(b)においてはピン25d)と導通する。ピン25dが接地されていることによって、グランド層15は、接地される。
 信号線群13の各々とグランド層15とは、伝送線路の一態様であるマイクロストリップ線路を形成する。これらの伝送線路の各々は、RFIC12から後述するベースバンドIC22へ、あるいは、ベースバンドIC22からRFIC12へ、ベースバンド信号及び制御信号を伝送する。本実施形態においては、信号線13dとグランド層15とにより構成された伝送線路がベースバンド信号を伝送するものとして説明する。また、信号線群13のうち1本又は複数本の信号線は、接地されていてもよい。なお、本実施形態では、上記伝送線路としてマイクロストリップ線路を採用しているが、コプレーナ線路を採用してもよい。
 なお、本実施形態において、基板11は、その内層として信号線群13が形成された1層の配線層のみを備えている。しかし、基板11の内層が含む配線層の数は、1層に限定されるものではない。すなわち、基板11の内層には、複数の配線層が形成されていてもよい。
 カードエッジコネクタ端子群14は、複数(本実施形態では8個)の端子である端子14a~14hにより構成されている。端子14a~14hの各々は、長方形の導体膜からなる導体パッドである。基板11の端辺11aがカードエッジコネクタ23のスロットに挿入されることによって、端子14a~14hの各々は、カードエッジコネクタ23のy軸正方向側のピンの各々(図2の(b)においてはピン24d)と導通する。端子14a~14hの各々と、信号線13a~13hの各々とは、ビア20a~20hの各々によって電気的に接続されている。たとえば、図2の(b)において、信号線13dと端子14dとは、ビア20dによって接続されている。なお、図2の(a)においては、信号線群13の各々とカードエッジコネクタ端子群14の各々とを接続するビアの図示は、省略している。
 このように構成されたカードエッジコネクタ端子群14の各々は、基板11の端辺11aがカードエッジコネクタ23のスロットに挿入された状態において、基板21に実装されたベースバンドIC22からベースバンド信号及び制御信号を供給されたり、あるいは、ベースバンドIC22へベースバンド信号及び制御信号を供給したりすることができる。
 したがって、RFIC12は、信号線群13及びカードエッジコネクタ端子群14を用いて、ベースバンドIC22とベースバンド信号及び制御信号をやりとりすることができる。
 (熱拡散板41,42)
 熱拡散板41,42の各々は、板状の金属部材である。熱拡散板41,42の各々を構成する金属は、高い熱伝導性を有することが好ましい。無線通信装置1においては、アルミニウム製の熱拡散板41,42を採用している。しかし、熱拡散板41,42は、例えば、銅製であってもよい。
 熱拡散板41,42の各々は、図1の(b)に示すように、基板11のRFIC12とプローブ16とを含む領域を挟持する。RFIC12は、ミリ波帯の高周波信号を処理する回路であり、プローブ16は、その高周波信号を伝送する。したがって、無線通信装置1において、RFIC12及びプローブ16は、特に発熱量が多い部材である。これらの部材を熱拡散板41,42が挟持することによって、熱拡散板41,42は、一種のヒートシンクとして機能する。したがって、この構成によれば、無線通信装置1における高熱に起因した故障のリスクを抑制することができる。
 また、熱拡散板41のうちプローブ16の先端16aに対応する位置には、円形の貫通孔41aが形成されている。貫通孔41aの直径は、導波管32の外径と同じとなるように、又は、導波管32の外径よりわずかに小さくなるように定められている。したがって、貫通孔41aに導波管32を挿入する(例えば圧入する)ことによって、導波管32の端部32aは、熱拡散板41に固定される。
 基板11と熱拡散板41との相対的な位置関係は、導波管32の中心軸の延長線がプローブ16の先端16aと一致するように定められている。換言すれば、プローブ16の先端16aに対応する位置に貫通孔41aが形成されているとも言える。
 ここで、図3を参照して、熱拡散板41,42を用いて基板11を固定する方法について説明する。
 基板11には、2つの貫通孔11bが形成されている。熱拡散板41には、4つの貫通孔41bが形成されている。熱拡散板42には、4つの貫通孔42bが形成されている。貫通孔11b及び貫通孔41bの内壁には、ねじ山が形成されていない。一方、貫通孔42bの内壁には、ねじ山が形成されている。そこで、以下では、貫通孔42bのことをネジ孔42bと称する。
 図3に示すように熱拡散板41、基板11、熱拡散板42の順番でこれらの各部材を重ね、貫通孔41b、貫通孔11b、及びネジ孔42bの位置をおよそ一致させたうえで、ネジ43を締め込む。その結果、基板11は、熱拡散板41,42によって挟持され、基板11に対する導波管32の相対的な位置も固定される。
 なお、図3に示した領域R1は、導波管32の外形を投影することによって得られる。基板11において貫通孔11bの位置は、プローブ16の先端16aが領域R1の中心とおよそ一致するように定められている。
 そのうえで、貫通孔11bの直径及び貫通孔41bの直径は、ネジ43の直径よりわずかに大きく定められている。したがって、導波管32の中心軸とプローブ16の先端16aとが一致するように基板11及び熱拡散板41の位置を微調整し、ネジ43を締め込むことによって、先端16aと端部32aとが結合した部分(変換部)における変換損失を抑制することができる。
 また、熱拡散板42には、RFIC12及びプローブ16の一部を収容する凹部42aが形成されている。凹部42aには、熱伝導性部材17が充填されている(図1の(b)参照)。熱伝導性部材17は、シリコーン樹脂やエポキシ樹脂などにより構成された接着剤又は樹脂ペーストである。熱伝導性部材17は、RFIC12の表面と凹部42aの内壁との間に存在する空間に充填されており、RFIC12と熱拡散板42との熱的な接触を高める。すなわち、熱伝導性部材17は、RFIC12と熱拡散板42との間における熱伝導性を高め、熱拡散板42による放熱効率を高める。なお、図3においては、熱伝導性部材17の図示を省略している。
 (筐体51)
 そのうえで、熱拡散板42は、筐体51に対して固定されている。したがって、熱拡散板41,42は、基板11のRFIC12が実装されている領域をxy平面に沿わせるように、且つ、導波管32の中心軸がz軸方向に沿わせるように、基板11及び導波管32を確実に保持することができる。
 これらの構成によれば、プローブ16の先端16aと導波管32の一方の端部32aとが確実に結合するように、導波管32及び基板11を筐体51内において保持することができる。したがって、過酷な環境下において長期間に亘って無線通信装置1を運用する場合であっても、アンテナの利得が不安定に変化することを抑制できる。
 筐体51を構成する材料は特に限定されるものではない。しかし、強度や耐久性などに着目した場合、筐体51は、金属製であることが好ましい。
 (基板21)
 基板21は、誘電体製によって構成されており、柔軟性を有していてもよいし、有さなくてもよい。本実施形態において、基板21は、ガラスエポキシ樹脂製であり、柔軟性を有さない。基板21を構成する誘電体は、ガラスエポキシ樹脂製に限定されず、例えばポリイミド樹脂製であってもよい。
 基板21には、ベースバンド信号を処理するベースバンドIC22が実装されている。ベースバンド信号の帯域は、RFIC12が処理する高周波信号の帯域より低い。基板21を構成する誘電体の材料は、ベースバンド信号の帯域に応じて適宜定めることができる。
 無線通信装置1が無線送信機である場合、ベースバンドIC22は、無線通信装置1の外部から導波管61を用いて供給されるデータ信号をベースバンド信号に符号化したのち、そのベースバンド信号をRFIC12に対して供給する。また、無線通信装置1が無線受信機である場合、ベースバンドIC22は、RFIC12から供給されたベースバンド信号をデータ信号に復号したのち、そのデータ信号を無線通信装置1の外部へ、導波管61を用いて供給する。なお、上述したように、無線通信装置1は、無線送信機であってもよいし、無線受信機であってもよいし、無線送受信機であってもよい。無線通信装置1を無線送受信機として機能させる場合には、ベースバンドIC22は、例えば、時間分割多重方式を採用すればよい。なお、ベースバンドIC22は、ベースバンド信号に加えてRFIC12を制御するための制御信号を、RFIC12に対して供給する。
 基板22には、ベースバンドIC22のポートのうちベースバンド信号が結合されているポートと電気的に接続されたカードエッジコネクタ23が実装されている。カードエッジコネクタ23の筐体は、樹脂製であり、直方体状に成形されている。カードエッジコネクタ23の筐体は、硬化されたLPCによって構成されていることが好ましい。これにより、基板11の熱膨張係数と、カードエッジコネクタ23の熱膨張係数とをほぼ同じにすることができる。従って、無線通信装置1の外部の温度変化に対する、カードエッジコネクタ端子群14の耐性及びカードエッジコネクタ23の耐性を、容易に高めることができる。
 カードエッジコネクタ23の筐体には、図2の(b)に示すように、z軸負方向に向かって掘り込まれたスリットが形成されている。このスリットは、基板11の端辺11a近傍を収容する。また、カードエッジコネクタ23の筐体の内部には、端子14a~14hの各々に対応するピン24a~24hと、グランド層15の各々に対応するピン25a~25hとが設けられている。
 基板11の端辺11aをカードエッジコネクタ23のスロットに挿入した状態において、ピン24a~24hの各々は、それぞれ、端子14a~14hの各々と導通し、25a~25hの各々は、グランド層15と導通する。
 なお、基板21には、ベースバンドIC22以外にも、ベースバンドIC22の動作に必要な、コンデンサ又は水晶発振器などの電子部品が実装されていてもよい。
 (付記事項)
 無線通信装置1においては、ミリ波帯の高周波信号を送受信する基板11に屈曲性を持たせている。そして、無線通信装置1においては、基板11と基板21との電気的接続に、カードエッジコネクタ端子群14及びカードエッジコネクタ23による接点接続が採用されている。これにより、基板11側において、基板11と基板21との接続用の半田を形成する必要がない。従って、基板11と基板21との接続中の断線を防ぎ、メンテナンスが容易な無線通信装置1を実現することができる。
 カードエッジコネクタ端子群14の寸法及びカードエッジコネクタ23の寸法はいずれも、数cm程度と大きい。このため、基板11と基板21との電気的接続を当該接点接続によって行う作業は容易である。一方、上述したベースバンド信号の周波数が数MHz以上数GHz以下であり、当該ベースバンド信号を同軸ケーブルによって伝送する場合、当該同軸ケーブルの径は10mm程度となる。このため、基板11と基板21との電気的接続を当該同軸ケーブルによって行う作業は容易でない。
 カードエッジコネクタ端子群14は、表面配線によって形成された端子14a~14hを有しており、コネクタの形態で形成されていない。このため、カードエッジコネクタ端子群14及びカードエッジコネクタ23による接点接続においては、同軸ケーブルによる接続と比べて、断線又は接続不良が生じる虞が低い。また、当該接点接続においては、基板11と基板21との接続部分が1箇所に集約されるため、接続の信頼性が高く、接続に要する工数も少ない。
 カードエッジコネクタ端子群14及びカードエッジコネクタ23による接点接続においては、同軸ケーブルによる接続と比べて、接続部分の面積が大きい。このため、無線通信装置1のメンテナンス又は調整作業中に当該接続部分に対して加わる応力は分散され、これにより、カードエッジコネクタ23に形成される半田(図示しない)が破損する虞が低い。
 基板11の中途区間が柔軟性を有することにより、基板11は、この中途区間において折り曲げることが可能である。このため、カードエッジコネクタ端子群14を、直接、カードエッジコネクタ23に対して挿入することが可能である。また、この構成によれば、基板11のうちRFIC12とプローブ16とを含む領域が熱拡散板41,42により挟持されたままの状態であっても、カードエッジコネクタ端子群14とカードエッジコネクタ23との脱着を行うことができる。したがって、基板11は、無線通信装置1のメンテナンスをより容易にすることができる。
 基板11の基材の材質として、低誘電率かつ低誘電正接であるLCPを適用することにより、FPCにおける周知の製造プロセスにより、基板11に対してプローブ16を形成することが可能である。そしてこれにより、プローブ16における電磁波の損失を小さくすることができる。
 〔変形例〕
 無線通信装置1の変形例について、図4を参照して説明する。本変形例の無線通信装置1は、図1の(b)に示した熱拡散板42を、図4に示した熱拡散板42Aに置換することによって得られる。本変形例の無線通信装置1が備えている部材のうち熱拡散板42A以外の各部材は、図1に示した無線通信装置1が備えている各部材と同一である。
 熱拡散板42Aは、熱拡散板42と比較して、RFIC12及びプローブ16を収容する凹部42Aaの大きさ(開口の大きさ)が異なる。熱拡散板42の凹部42aがRFIC12とプローブ16の一部とを収容するように形成されているのに対して、熱拡散板42Aの凹部42Aaは、RFIC12とプローブ16の全部とを収容するように形成されている。
 このように、凹部42Aaのサイズは、RFIC12とプローブ16の全部とを収容するサイズであってもよい。
 また、本変形例において、熱伝導性部材17Aは、RFIC12の表面及びプローブ16の一部を多い、プローブ16の先端16aを覆わないように、凹部42Aaに充填されている。熱伝導性部材が先端16aの近傍に存在することによる高周波信号の損失を嫌う場合には、本変形例のように、熱伝導性部材17Aを充填することが好ましい。
 また、熱拡散板42Aには、凹部42Aaとは別の凹部42Abが形成されている。このような凹部42Abは、熱拡散板42を構成する表面のうち任意の場所に設けることができ、例えば、基板11の第1主面にRFIC12以外の電子部品が実装されている場合に、それらの電子部品を収容することができる。
 〔第2の実施形態〕
 本発明の第2の実施形態に係る基板について、図5を参照して説明する。図5の(a)は、本実施形態に係る基板111の斜視図であり、図5の(b)は、基板111の断面図である。図5の(b)の断面図は、図5の(a)に示したB-B’線に沿った断面における断面図である。
 本実施形態に係る基板111は、第1の実施形態に係る無線通信装置1が備えている基板11を変形することによって得られる。したがって、基板111を構成する各部材の部材番号は、基板11を構成する各部材の部材番号の3桁目に「1」を追記することによって得られる。例えば、基板111が備えているRFIC112、信号線群113、カードエッジコネクタ端子群114、グランド層115の各々は、基板11が備えているRFIC12、信号線群13、カードエッジコネクタ端子群14、グランド層15に対応する。また、図5の(b)に示したビア119d,120dは、図2の(b)に示したビア19d,20dに対応する。したがって、ここでは、これらの各部材の説明を省略する。
 図5に示すように、基板11と比較して、基板111は、スロットアレイアンテナ131と、給電線116と、熱伝導性部材117と、ヒートシンク118とを更に備えている。
 RFIC112のポートのうち高周波信号を結合するポートに接続された給電線は、RFIC112から遠ざかる方向(z軸正方向)に延伸されたのち4つに分岐され、さらにz軸正方向へ延伸される。
 4つに分岐された給電線116の先端には、スロットアレイアンテナ131が結合されている。スロットアレイアンテナ131は、請求の範囲に記載のアンテナの一態様である。図5の(a)に示すように、スロットアレイアンテナ131は、16個の放射素子を4×4のマトリクス状に配置することによって構成されている。
 本発明の一態様においては、このように基板111の表面上にスロットアレイアンテナ131を形成してもよい。例えば、マクロセルの無線通信装置として無線通信装置1を採用する場合には、基板11及びアンテナ31を備えた無線通信装置1を好適に利用できる。アンテナ31は、リフレクタ33を備えているので、指向性が強い電波を放射することができる。したがって、アンテナ31を備えた無線通信装置1は、長距離通信の用途に好適である。一方、マイクロセルあるいはピコセルの無線通信装置として無線通信装置1を採用する場合には、スロットアレイアンテナ131を含む基板111を備えた無線通信装置1を好適に利用できる。スロットアレイアンテナ131は、ビームフォーミング技術との相性がよいため、多数の通信機器(携帯端末)を通信相手とする用途に好適である。なお、スロットアレイアンテナ131は、基板111上に集積されている。したがって、スロットアレイアンテナ131を備えた無線通信装置1は、小型化が容易である。サイズの点においても、スロットアレイアンテナ131を備えた無線通信装置1は、マイクロセルあるいはピコセルの無線通信装置として好適である。
 図5の(b)に示すように、ヒートシンク118は、RFIC112の基板111と逆側(y軸正方向側)の表面に対して熱的に接触するように配置された金属製のヒートシンクである。ヒートシンク118は、RFIC112の表面に対して、熱伝導性部材117を介して接着されている。
 ヒートシンク118は、RFIC112により生成された熱を大気中に散逸させることができる。したがって、基板111における高熱に起因した故障のリスクを抑制することができる。
 また、RFIC12を平面視した場合に、ヒートシンク118は、RFIC112からカードエッジコネクタ端子群114へ向かう方向(z軸負方向)へ延伸されている。したがって、ヒートシンク118は、信号線群113の各々とグランド層115とが構成する伝送線路の少なくとも一部を覆う。
 このように構成されたヒートシンク118は、基板111の表面に形成されたスロットアレイアンテナ131を覆い隠すことなく、すなわち、スロットアレイアンテナ131の利得を低下させることなくヒートシンク118の表面積を拡大することができる。したがって、RFIC112により生成された熱をより効率良く大気中に散逸させることができ、高熱に起因した故障のリスクを更に抑制することができる。
 また、ヒートシンク118は金属製であるため、電波を遮蔽することができる。ヒートシンク118が伝送線路の少なくとも一部を覆うことによって、伝送線路を伝送するベースバンド信号に外部ノイズが重畳することを抑制することができる。
 また、ヒートシンク118と上述した伝送線路との間(換言すればヒートシンク118と基板111の第1主面との間)には、ヒートシンク118と前記伝送線路とを熱的に接触させる熱伝導性部材117が充填されている。
 このように構成されたヒートシンク118は、RFIC112により生成された熱に加えて、伝送線路により生成された熱も大気中に散逸させることができる。したがって、基板111における高熱に起因した故障のリスクを更に抑制することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 〔まとめ〕
 本発明の一態様に係る無線通信装置(1)は、ミリ波帯の高周波信号と周波数が前記高周波信号よりも低いベースバンド信号とを変換する無線通信回路(RFIC12,112)が実装された、誘電体材料を基材とする第1の基板(11,111)と、前記ベースバンド信号を処理するベースバンド回路(ベースバンドIC22)が実装された第2の基板(21)と、を備えた無線通信装置(1)であって、前記第1の基板(11,111)は、少なくともその中途区間が柔軟性を有し、且つ、当該第1の基板(11,111)の1つの端辺(11a,111a)近傍に設けられた、前記ベースバンド信号を前記第2の基板(21)から供給される端子(14a~14h,114a~114h)と、前記ベースバンド信号を前記端子(14a~14h,114a~114h)から前記無線通信回路(RFIC12,112)へ伝送する伝送線路(信号線群13,113及びグランド層15,115)と、を含み、前記第2の基板(21)は、前記ベースバンド回路(ベースバンドIC22)に電気的に接続され、前記端子(14a~14h,114a~114h)に前記ベースバンド信号を供給するカードエッジコネクタ(23)を含む、ことを特徴とする。
 本無線通信装置は、端子が設けられた第1の基板の1つの端辺近傍を第2の基板に含まれるカードエッジコネクタに挿入することによって、第1の基板と第2の基板とを接続し、これら2つの基板間におけるベースバンド信号の伝送を実現する。
 第1の基板の端辺近傍をカードエッジコネクタに挿入するために第1の基板及び第2の基板の各々に加える外力は、1つの直線軸に沿った方向の外力のみである。すなわち、カードエッジコネクタと第2の基板との接合部には、回転方向に沿った外力は加わらない。したがって、上記の構成によれば、メンテナンス作業を繰り返し実施する場合に生じ得る、第1の基板と第2の基板との接触不良を抑制することができる。
 また、本発明の一態様に係る無線通信装置は、導波管(32)とリフレクタ(33)とを含むアンテナ(31)を更に備え、前記第1の基板(11)は、前記高周波信号を前記アンテナ(31)に給電するプローブ(16)を更に含み、前記導波管(32)は、その一方の端部(32a)が前記プローブ(16)の先端(16a)に電磁気的に結合し、且つ、その他方の端部(32b)がリフレクタ(33)に電磁気的に結合する、ことが好ましい。
 このように、本無線通信装置は、導波管とリフレクタとを含むアンテナを備えていてもよい。
 また、本発明の一態様に係る無線通信装置(1)は、前記第1の基板(11)、前記第2の基板(21)、及び前記導波管(32)の前記一方の端部(32a)を収容する筐体(51)と、前記第1の基板(11)のうち、前記無線通信回路(12)と前記プローブ(16)とを含む領域を挟持する第1の金属部材(41)及び第2の金属部材(42)と、を更に備え、前記第1の金属部材(41)のうち前記プローブ(16)の先端(16a)に対応する位置には、当該先端(16a)と前記導波管(32)の前記一方の端部(32a)とを電磁気的に結合させる貫通孔(41a)が形成されており、前記第1の金属部材(41)及び前記第2の金属部材(42)のうち少なくとも何れか一方は、前記筐体(51)に対して固定されることによって前記第1の基板(11)を保持する、ことが好ましい。
 無線通信回路は、ミリ波帯の高周波信号を処理する回路であり、プローブは、その高周波信号を伝送する部材である。したがって、本無線通信装置において、無線通信回路及びプローブは、特に発熱量が多い部材である。これらの部材を第1の金属部材及び第2の金属部材で挟持することによって、第1の金属部材及び第2の金属部材を一種のヒートシンクとして機能させることができる。したがって、上記の構成によれば、無線通信装置における高熱に起因した故障のリスクを抑制することができる。
 また、上記の構成によれば、プローブの先端と導波管の一方の端部とが確実に結合するように、導波管及び第1の基板を筐体内において保持することができる。したがって、過酷な環境下において長期間に亘って無線通信装置を運用する場合であっても、アンテナの利得が不安定に変化することを抑制できる。
 また、本発明の一態様に係る無線通信装置(1)は、前記第1の金属部材(41)及び前記第2の金属部材(42,42A)のうち、前記無線通信回路(RFIC12)が実装されている側の金属部材(42,42A)には、前記無線通信回路(RFIC12)及び前記プローブ(16)の一部又は全部を収容する凹部(42a,42Aa)が形成されており、当該凹部(42a,42Aa)には、前記無線通信回路(RFIC12)と前記無線通信回路(RFIC12)が実装されている側の金属部材(42a,42Aa)とを熱的に接触させる熱伝導性部材(17,17A)が充填されている、ことが好ましい。
 無線通信回路が実装されている側の金属部材と無線通信回路との熱的な接触、及び、この金属部材とプローブとの熱的な接触を向上させることができる。したがって、無線通信装置における高熱に起因した故障のリスクを更に抑制することができる。
 本発明の一態様に係る基板(11,111)は、少なくともその中途区間が柔軟性を有し、且つ、ミリ波帯の高周波信号と周波数が前記高周波信号よりも低いベースバンド信号とを変換する無線通信回路(RFIC12,112)が実装された誘電体材料を基材とする基板(11,111)であって、当該基板(11,111)の1つの端辺(11a,111a)近傍に設けられた、前記ベースバンド信号を外部から供給される端子(14a~14h,114a~114h)と、前記ベースバンド信号を前記端子(14a~14h,114a~114h)から前記無線通信回路(12,112)へ伝送する伝送線路(信号線群13,113及びグランド層15,115)と、を含む、ことを特徴とする。
 本発明の一態様に係る基板は、本発明の一態様に係る無線通信装置と同様の効果を奏する。
 また、本発明の一態様に係る基板(111)は、当該基板(111)の表面に形成されたアンテナ(131)と、前記無線通信回路(RFIC112)と前記アンテナ(131)との間で前記高周波信号を伝送する給電線(116)と、を更に備えている、ことが好ましい。
 このように、本基板は、その表面に形成されたアンテナと、給電線とを備えていてもよい。
 また、本発明の一態様に係る基板(111)は、前記無線通信回路(RFIC112)に対して熱的に接触した金属製のヒートシンク(118)を更に備えている、ことが好ましい。
 上記の構成によれば、ヒートシンクを用いて無線通信回路により生成された熱を大気中に散逸させることができる。したがって、当該基板における高熱に起因した故障のリスクを抑制することができる。
 また、本発明の一態様に係る基板(111)において、前記無線通信回路(RFIC112)を平面視した場合に、前記ヒートシンク(118)は、前記無線通信回路(RFIC112)から前記端子(114a~114h)へ向かう方向へ延伸されており、前記伝送線路(信号線群113及びグランド層115)の少なくとも一部を覆う、ように構成されていることが好ましい。
 上記の構成によれば、基板の表面に形成されたアンテナを覆い隠すことなく、すなわち、アンテナの利得を低下させることなくヒートシンクの表面積を拡大することができる。したがって、無線通信回路により生成された熱をより効率良く大気中に散逸させることができ、高熱に起因した故障のリスクを更に抑制することができる。
 また、ヒートシンクは金属製であるため、電波を遮蔽することができる。ヒートシンクが伝送線路の少なくとも一部を覆うことによって、伝送線路を伝送するベースバンド信号に外部ノイズが重畳することを抑制することができる。
 また、本発明の一態様に係る基板(111)において、前記ヒートシンク(118)と前記伝送線路(113,115)との間には、前記ヒートシンク(118)と前記伝送線路(信号線群113及びグランド層115)とを熱的に接触させる熱伝導性部材(117)が介在する、ことが好ましい。
 上記の構成によれば、ヒートシンクは、無線通信回路により生成された熱に加えて、伝送線路により生成された熱も大気中に散逸させることができる。したがって、当該基板における高熱に起因した故障のリスクを更に抑制することができる。
 1 無線通信装置
 11,111 基板(第1の基板)
 11a,111a 端辺
 12,112 RFIC(無線通信回路)
 13,113 信号線群
 13a~13h,113a~113h 信号線(グランド層15とともに伝送線路を構成)
 14,114 カードエッジコネクタ端子群
 14a~14h,114a~114h 端子
 15,115 グランド層(13a~13hとともに伝送線路を構成)
 16 プローブ
 16a 先端
 17,117 熱伝導性部材
 19,20,119,120 ビア群
 19a~19h,20a~20h,119a~119h,120a~120h ビア
 21 基板(第2の基板)
 22 ベースバンドIC(ベースバンド回路)
 23 カードエッジコネクタ
 31 アンテナ
 32 導波管
 32a 端部(一方の端部)
 32b 端部(他方の端部)
 33 リフレクタ
 33a メインリフレクタ
 33b サブリフレクタ
 41 熱拡散板
 42 熱拡散板
 51 筐体
 116 給電線
 118 ヒートシンク
 131 スロットアレイアンテナ

Claims (9)

  1.  ミリ波帯の高周波信号と周波数が前記高周波信号よりも低いベースバンド信号とを変換する無線通信回路が実装された、誘電体材料を基材とする第1の基板と、前記ベースバンド信号を処理するベースバンド回路が実装された第2の基板と、を備えた無線通信装置であって、
     前記第1の基板は、少なくともその中途区間が柔軟性を有し、且つ、当該第1の基板の1つの端辺近傍に設けられた、前記ベースバンド信号を前記第2の基板から供給される端子と、前記ベースバンド信号を前記端子から前記無線通信回路へ伝送する伝送線路と、を含み、
     前記第2の基板は、前記ベースバンド回路に電気的に接続され、前記端子に前記ベースバンド信号を供給するカードエッジコネクタを含む、
    ことを特徴とする無線通信装置。
  2.  導波管とリフレクタとを含むアンテナを更に備え、
     前記第1の基板は、前記高周波信号を前記アンテナに給電するプローブを更に含み、
     前記導波管は、その一方の端部が前記プローブの先端に電磁気的に結合し、且つ、その他方の端部がリフレクタに電磁気的に結合する、
    ことを特徴とする請求項1に記載の無線通信装置。
  3.  前記第1の基板、前記第2の基板、及び前記導波管の前記一方の端部を収容する筐体と、
     前記第1の基板のうち、前記無線通信回路と前記プローブとを含む領域を挟持する第1の金属部材及び第2の金属部材と、を更に備え、
     前記第1の金属部材のうち前記プローブの先端に対応する位置には、当該先端と前記導波管の前記一方の端部とを電磁気的に結合させる貫通孔が形成されており、
     前記第1の金属部材及び前記第2の金属部材のうち少なくとも何れか一方は、前記筐体に対して固定されることによって前記第1の基板を保持する、
    ことを特徴とする請求項2に記載の無線通信装置。
  4.  前記第1の金属部材及び前記第2の金属部材のうち、前記無線通信回路が実装されている側の金属部材には、前記無線通信回路及び前記プローブの一部又は全部を収容する凹部が形成されており、
     当該凹部には、前記無線通信回路と前記無線通信回路が実装されている側の金属部材とを熱的に接触させる熱伝導性部材が充填されている、
    ことを特徴とする請求項3に記載の無線通信装置。
  5.  少なくともその中途区間が柔軟性を有し、且つ、ミリ波帯の高周波信号と周波数が前記高周波信号よりも低いベースバンド信号とを変換する無線通信回路が実装された、誘電体材料を基材とする基板であって、
     当該基板の1つの端辺近傍に設けられた、前記ベースバンド信号を外部から供給される端子と、前記ベースバンド信号を前記端子から前記無線通信回路へ伝送する伝送線路と、を含む、
    ことを特徴とする基板。
  6.  当該基板の表面に形成されたアンテナと、
     前記無線通信回路と前記アンテナとの間で前記高周波信号を伝送する給電線と、を更に備えている、
    ことを特徴とする請求項5に記載の基板。
  7.  前記無線通信回路に対して熱的に接触した金属製のヒートシンクを更に備えている、
    ことを特徴とする請求項5又は6に記載の基板。
  8.  前記無線通信回路を平面視した場合に、前記ヒートシンクは、前記無線通信回路から前記端子へ向かう方向へ延伸されており、前記伝送線路の少なくとも一部を覆う、
    ことを特徴とする請求項7に記載の基板。
  9.  前記ヒートシンクと前記伝送線路との間には、前記ヒートシンクと前記伝送線路とを熱的に接触させる熱伝導性部材が介在する、
    ことを特徴とする請求項8に記載の基板。
PCT/JP2018/002527 2017-04-20 2018-01-26 無線通信装置及び基板 WO2018193682A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18787871.5A EP3637623B1 (en) 2017-04-20 2018-01-26 Funkkommunikationsvorrichtung
JP2019513230A JPWO2018193682A1 (ja) 2017-04-20 2018-01-26 無線通信装置及び基板
US16/605,344 US11095019B2 (en) 2017-04-20 2018-01-26 Radio communication device and board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017083719 2017-04-20
JP2017-083719 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018193682A1 true WO2018193682A1 (ja) 2018-10-25

Family

ID=63856232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002527 WO2018193682A1 (ja) 2017-04-20 2018-01-26 無線通信装置及び基板

Country Status (4)

Country Link
US (1) US11095019B2 (ja)
EP (1) EP3637623B1 (ja)
JP (1) JPWO2018193682A1 (ja)
WO (1) WO2018193682A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064536A1 (ja) * 2004-12-13 2006-06-22 Mitsubishi Denki Kabushiki Kaisha アンテナ装置
JP2007006471A (ja) * 2005-06-21 2007-01-11 Marvell World Trade Ltd 無線ローカルエリアネットワーク通信モジュールおよび集積チップパッケージ
JP2011199613A (ja) * 2010-03-19 2011-10-06 Silicon Library Inc 無線伝送システム並びにそれに用いられる無線送信機、無線受信機、無線送信方法、無線受信方法、及び無線通信方法
US20120050125A1 (en) 2010-08-31 2012-03-01 Siklu Communication ltd. Systems for interfacing waveguide antenna feeds with printed circuit boards
JP2012080353A (ja) * 2010-10-01 2012-04-19 Canon Inc 受信装置
JP2015177423A (ja) * 2014-03-17 2015-10-05 富士通株式会社 高周波モジュール及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526659B2 (ja) 2008-09-25 2014-06-18 ソニー株式会社 ミリ波誘電体内伝送装置
US8912858B2 (en) * 2009-09-08 2014-12-16 Siklu Communication ltd. Interfacing between an integrated circuit and a waveguide through a cavity located in a soft laminate
US8674892B2 (en) * 2010-06-20 2014-03-18 Siklu Communication ltd. Accurate millimeter-wave antennas and related structures
US8941013B2 (en) * 2012-05-30 2015-01-27 Shawn X. ARNOLD Multilayer laminated structure for plug and connector with spring finger interconnecting feature
WO2013190442A1 (en) 2012-06-20 2013-12-27 Siklu Communication ltd. Compact millimeter-wave radio systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064536A1 (ja) * 2004-12-13 2006-06-22 Mitsubishi Denki Kabushiki Kaisha アンテナ装置
JP2007006471A (ja) * 2005-06-21 2007-01-11 Marvell World Trade Ltd 無線ローカルエリアネットワーク通信モジュールおよび集積チップパッケージ
JP2011199613A (ja) * 2010-03-19 2011-10-06 Silicon Library Inc 無線伝送システム並びにそれに用いられる無線送信機、無線受信機、無線送信方法、無線受信方法、及び無線通信方法
US20120050125A1 (en) 2010-08-31 2012-03-01 Siklu Communication ltd. Systems for interfacing waveguide antenna feeds with printed circuit boards
JP2012080353A (ja) * 2010-10-01 2012-04-19 Canon Inc 受信装置
JP2015177423A (ja) * 2014-03-17 2015-10-05 富士通株式会社 高周波モジュール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637623A4

Also Published As

Publication number Publication date
EP3637623B1 (en) 2022-03-16
EP3637623A1 (en) 2020-04-15
JPWO2018193682A1 (ja) 2020-01-16
US20210126350A1 (en) 2021-04-29
EP3637623A4 (en) 2021-01-06
US11095019B2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
KR101605218B1 (ko) 밀리미터파 유전체 내 전송 장치 및 그 제조 방법, 및 무선 전송 장치 및 무선 전송 방법
KR102466972B1 (ko) 스위칭 가능한 송수신 페이즈드 어레이 안테나
CN105337023B (zh) 天线装置
TWI417001B (zh) 電路裝置
US7187342B2 (en) Antenna apparatus and method
CN110034380B (zh) 电子设备
US9515385B2 (en) Coplanar waveguide implementing launcher and waveguide channel section in IC package substrate
US20150270617A1 (en) Waveguide adapter plate to facilitate accurate alignment of sectioned waveguide channel in microwave antenna assembly
CN111213282B (zh) 微电子封装衬底与电介质波导连接件之间的中介层
US20080316139A1 (en) Phased array antenna architecture
US20130076570A1 (en) Rf module
WO2017099145A1 (ja) マイクロ波モジュール及び高周波モジュール
US9419341B2 (en) RF system-in-package with quasi-coaxial coplanar waveguide transition
US11936096B2 (en) Wiring substrate, antenna module, and communication device
JP2011091598A (ja) 半導体装置、半導体装置の製造方法、無線伝送システム
US11740419B2 (en) Optical subassembly
JP7375936B2 (ja) アンテナモジュール、接続部材、およびそれを搭載した通信装置
US20200321677A1 (en) Substrate Design for Efficient Coupling Between a Package and a Dielectric Waveguide
JP2012156943A (ja) ダイポールアンテナおよびアレーアンテナ
WO2018193682A1 (ja) 無線通信装置及び基板
TWI802151B (zh) 橋接電路板、毫米波天線裝置及電子裝置
WO2023095643A1 (ja) アンテナモジュール、およびそれを搭載した通信装置
US20230178480A1 (en) Wireless interconnect for high-rate data transfer
WO2024065281A1 (zh) 一种缝隙天线及电子设备
CN117810717A (zh) 一种低剖面天线功率模块互连结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018787871

Country of ref document: EP

Effective date: 20191120