WO2018193534A1 - Air conditioning indoor unit - Google Patents

Air conditioning indoor unit Download PDF

Info

Publication number
WO2018193534A1
WO2018193534A1 PCT/JP2017/015671 JP2017015671W WO2018193534A1 WO 2018193534 A1 WO2018193534 A1 WO 2018193534A1 JP 2017015671 W JP2017015671 W JP 2017015671W WO 2018193534 A1 WO2018193534 A1 WO 2018193534A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
wind direction
detection area
flow rate
indoor unit
Prior art date
Application number
PCT/JP2017/015671
Other languages
French (fr)
Japanese (ja)
Inventor
紀行 清水
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/015671 priority Critical patent/WO2018193534A1/en
Priority to JP2019513126A priority patent/JP6727418B2/en
Publication of WO2018193534A1 publication Critical patent/WO2018193534A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/082Grilles, registers or guards
    • F24F13/085Grilles, registers or guards including an air filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning indoor unit that includes a control unit that controls the flow rate of air blown from a blower outlet.
  • Patent Document 1 discloses an air conditioner that is installed on a ceiling surface and sends out air from the ceiling toward an indoor space.
  • Patent Document 1 when the blowing direction of the air from the blowout port is downward than the predetermined blowing direction, the blowing velocity of the air blown from the blower is made low. Further, in Patent Document 1, when the blowing direction of air from the blowout port is higher than a predetermined blowing direction, the blowing velocity of air from the blowing unit is increased.
  • Patent Document 1 attempts to improve comfort by reducing temperature unevenness in the indoor space while suppressing a draft feeling that is an unpleasant feeling caused by direct blowing of wind on a person.
  • Patent Document 1 makes the air flow rate low when the air blowing direction from the air outlet is downward regardless of the presence or absence of a person. For this reason, the time required for eliminating the temperature unevenness in the indoor space becomes longer.
  • the present invention has been made to solve the above-described problems, and provides an air-conditioning indoor unit that improves comfort by quickly reducing temperature unevenness in an indoor space while suppressing a draft feeling to a person. Is.
  • An air conditioning indoor unit is provided in a housing in which a blowout port for blowing air is formed, a heat exchanger for exchanging heat between air and a refrigerant, and a housing.
  • a blower that blows air exchanged in the heat exchanger to the air outlet, a wind direction deflector that is provided at the air outlet and changes the blowing direction of the air blown from the air outlet, and a person detection that detects the position of the person
  • a control unit that controls the flow rate of the air blown from the air outlet, and the control unit detects the human flow more than the air flow rate in the non-detection area other than the area where the person is detected by the human detection unit. It has a flow rate control means for controlling the blower or the wind direction deflector so that the flow rate of air in the detection area where the person is detected by the unit becomes small.
  • the flow rate of air blown to the detection area where the person is detected is controlled to be smaller than the flow rate of air blown to the non-detection area other than the area where the person is detected. That is, since air is sent to the non-detection area at a high flow rate, temperature unevenness in the indoor space can be quickly reduced. Further, since air is sent to the detection area at a low flow rate, it is possible to suppress a draft feeling to a person. As described above, it is possible to quickly reduce the temperature unevenness in the indoor space and improve the comfort while suppressing the draft feeling to the person.
  • FIG. 3 is a perspective view showing an area S of a non-detection area N.
  • FIG. 3 is a perspective view showing an area S of a detection area M.
  • FIG. It is a flowchart which shows operation
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to Embodiment 1 of the present invention.
  • the air conditioner 1 will be described with reference to FIG.
  • the air conditioner 1 is a device that adjusts air in an indoor space, and includes an air-conditioning outdoor unit 2, an air-conditioning indoor unit 3, and a control unit 4.
  • the air conditioning outdoor unit 2 is provided with a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 8 a, and an expansion unit 9.
  • the air conditioning indoor unit 3 is provided with a heat exchanger 14 and a blower 13.
  • the control part 4 may be provided in the inside of the air conditioning outdoor unit 2, It is good also as a unit.
  • the refrigerant circuit 5 is configured by connecting the compressor 6, the flow switching device 7, the outdoor heat exchanger 8, the expansion unit 9, and the heat exchanger 14 by piping.
  • the compressor 6 sucks refrigerant in a low-temperature and low-pressure state, compresses the sucked refrigerant, and discharges it as a refrigerant in a high-temperature and high-pressure state.
  • the flow path switching device 7 switches the flow direction of the refrigerant in the refrigerant circuit 5, and is, for example, a four-way valve.
  • the outdoor heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant.
  • the outdoor heat exchanger 8 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
  • the outdoor blower 8a is a device that sends outdoor air to the outdoor heat exchanger 8.
  • the expansion part 9 is a pressure reducing valve or an expansion valve that expands by depressurizing the refrigerant.
  • the expansion part 9 is an electronic expansion valve whose opening degree is adjusted, for example.
  • the heat exchanger 14 exchanges heat between indoor air and a refrigerant, for example.
  • the heat exchanger 14 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation.
  • the blower 13 is a device that sends room air to the heat exchanger 14.
  • the condensed liquid refrigerant flows into the expansion section 9 and is expanded and depressurized in the expansion section 9 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the heat exchanger 14 acting as an evaporator, and in the heat exchanger 14, heat is exchanged with the indoor air sent by the blower 13, thereby evaporating gas. At this time, the room air is cooled, and the room is cooled. The evaporated low-temperature and low-pressure gaseous refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • the heating operation In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the heat exchanger 14 acting as a condenser, and is sent by the blower 13 in the heat exchanger 14. Heat exchanges with room air to condense. At this time, indoor air is warmed and heating is performed indoors.
  • the condensed liquid refrigerant flows into the expansion section 9 and is expanded and depressurized in the expansion section 9 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 8 acting as an evaporator, and in the outdoor heat exchanger 8, heat is exchanged with outdoor air sent by the outdoor blower 8a to evaporate gas. The evaporated low-temperature and low-pressure gaseous refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • FIG. 2 is a cross-sectional view showing the air conditioning indoor unit 3 according to Embodiment 1 of the present invention.
  • the air conditioning indoor unit 3 is a device that is also called, for example, a one-way cassette type, a ceiling type, a ceiling-embedded type, or a room air conditioner, and includes a housing 10, a grill 11, a filter 12, A blower 13, a heat exchanger 14, a wind direction deflecting plate 15, a person detection unit 16, and a control unit 4 are provided.
  • the housing 10 is a box having a hollow portion, and is formed with an inlet 10a for sucking air and an outlet 10b for blowing air.
  • the grill 11 is provided in the suction port 10a of the housing 10 and is formed in a lattice shape.
  • the filter 12 is provided downstream of the grill 11 at the suction port 10a, and removes dust that has passed through the grill 11.
  • the blower 13 is a device that is provided downstream of the filter 12 inside the housing 10 and sends air to the heat exchanger 14.
  • the blower 13 includes a fan motor 13a, and the fan motor 13a is a device that rotationally drives the blower 13.
  • the heat exchanger 14 is a device that is provided downstream of the blower 13 inside the housing 10 and performs heat exchange between air and refrigerant.
  • the heat exchanger 14 is, for example, a fin tube type heat exchanger.
  • the wind direction deflecting plate 15 is a member that is provided at the air outlet 10b and that swings or rotates to change the blowing direction of the air blown from the air outlet 10b.
  • the wind direction deflecting plate 15 has a function of changing the air blowing direction to at least two directions depending on the posture. In the first embodiment, the case where there is one wind direction deflecting plate 15 is illustrated.
  • a deflection driving unit 15a is connected to the wind direction deflecting plate 15, and the deflection driving unit 15a is a device that rotationally drives the wind direction deflecting plate 15 about the rotation axis.
  • the deflection drive unit 15a is constituted by a stepping motor, for example.
  • the position of the wind direction deflecting plate 15 is determined by the number of pulses for driving the deflection driving unit 15a. Note that the position detection of the wind direction deflecting plate 15 may be performed using a separate sensor such as a rotary encoder.
  • the human detection unit 16 is attached to a surface facing the living space, which is the lower surface of the housing 10, and has an infrared sensor.
  • the infrared sensor scans the indoor space, and detects the position of the person based on the obtained temperature information.
  • FIG. 3 is a functional block diagram showing the control unit 4 of the air conditioning indoor unit 3 according to Embodiment 1 of the present invention.
  • the control unit 4 is a device that controls the operation of devices inside the air conditioning indoor unit 3.
  • the control unit 4 controls, for example, the detection operation of the deflection driving unit 15 a connected to the wind direction deflecting plate 15, the fan motor 13 a connected to the blower 13, and the human detection unit 16.
  • the control unit includes stirring determination means 41, distance measurement means 42, flow velocity calculation means 43, area creation means 44, posture detection means 45, and flow velocity control means 46.
  • the agitation determination means 41 determines whether or not the air in the indoor space needs to be agitated based on a signal from a remote controller (not shown) or the room temperature. For example, when the difference between the target temperature set in the control unit 4 and the room temperature increases due to the start of operation or the inflow of outside air due to ventilation, etc., the agitation of the room air is performed in order to reduce the temperature unevenness of the room air. Is determined to be necessary.
  • FIG. 4 is a cross-sectional view showing the air conditioning indoor unit 3 according to Embodiment 1 of the present invention.
  • the distance measuring means 42 obtains the distance D from the air outlet 10b to the person.
  • requires the distance D from the blower outlet 10b to the person A is demonstrated.
  • the distance measuring unit 42 stores in advance a distance H of a perpendicular line that is vertically lowered from the person detection unit 16 to the floor surface.
  • the distance measuring unit 42 detects, for example, an angle formed between a perpendicular line dropped from the position of the person detection unit 16 and a line connecting the position of the person detection unit 16 and the person.
  • the distance measurement means 42 calculates
  • the distance H is set by being input to the control unit 4.
  • FIG. 5 is a cross-sectional view showing an air conditioning indoor unit 100 according to a modification of the first embodiment of the present invention.
  • the air conditioning indoor unit 100 according to the modification includes a light projecting / receiving device 117, and the light projecting / receiving device 117 is provided on the lower surface of the housing 10.
  • the projector / receiver 117 irradiates a person A or the like with a sound wave or an electromagnetic wave, and receives light reflected by the person A or the like.
  • the distance measuring means 42 obtains the distance D from the outlet 10b to the person A based on the time from irradiation to light reception.
  • FIG. 6 is a graph showing the relationship between the distance D from the air outlet 10b and the air flow velocity. Based on the distance D measured by the distance measuring means 42, the flow speed calculating means 43 calculates the flow speed of the air blown from the outlet 10b so that the flow speed when reaching the person becomes the target flow speed.
  • the horizontal axis indicates the distance [m] from the outlet 10b
  • the vertical axis indicates the air flow velocity [m / s].
  • the air flow rate decreases as the distance D from the air outlet 10b increases.
  • the target flow velocity is set as 0.2 [m / s], for example.
  • FIG. 7 is a cross-sectional view showing the air conditioning indoor unit 3 according to Embodiment 1 of the present invention.
  • the area creation unit 44 creates the non-detection area N and the detection area M based on the position of the person detected by the person detection unit 16.
  • the non-detection area N is an area other than an area where a person is detected
  • the detection area M is an area where a person is detected.
  • the attitude detection means 45 detects the attitude of the wind direction deflecting plate 15.
  • the posture detection means 45 detects whether the wind direction deflecting plate 15 is in a position where air is sent to the non-detection area N or whether the wind direction deflecting plate 15 is in a position where air is sent to the detection area M.
  • the flow rate control means 46 controls the blower 13 or the wind direction deflecting plate 15 so that the flow rate of air in the detection area M is smaller than the flow rate of air in the non-detection area N.
  • the flow rate control means 46 controls the rotational speed of the blower 13 and the rotational speed of the blower 13 when the wind direction deflector 15 is in a position where air is sent to the non-detection area N. Instead, control is performed so that the rotational speed of the blower 13 is reduced when the wind direction deflecting plate 15 is in a position where air is sent to the detection area M.
  • the flow rate control means 46 controls the rotation speed of the blower 13 so that air is sent to the non-detection area N at a high flow rate and air is sent to the detection area M at a low flow rate.
  • the flow rate of the air sent to the non-detection area N is, for example, a flow rate equal to or higher than the stirring flow rate capable of sufficiently stirring the indoor space.
  • the flow velocity of the air sent to the detection area M is a flow velocity below the target flow velocity (0.2 [m / s]), for example.
  • the flow velocity control means 46 also has a function of increasing the driving speed of the wind direction deflecting plate 15 as in the second embodiment to be described later, but in this first embodiment, the driving speed of the wind direction deflecting plate 15 is increased. Is controlled to be constant.
  • FIG. 8 is a flowchart showing the operation of the air conditioning indoor unit 3 according to Embodiment 1 of the present invention. Next, the operation of the air conditioning indoor unit 3 will be described. As shown in FIG. 8, it is determined by the agitation determination means 41 whether it is necessary to agitate the air in the indoor space (step ST1). When it is determined that air agitation is not required (No in step ST1), the process returns to step ST1. On the other hand, when it is determined that air agitation is necessary (Yes in step ST1), the blower 13 is driven, and the wind direction deflecting plate 15 swings (step ST2).
  • step ST3 it is determined by the attitude detection means 45 whether or not the wind direction deflecting plate 15 is at a position where air is sent to the detection area M (step ST3).
  • the rotational speed of the blower 13 is increased so that the air has a flow velocity equal to or higher than the stirring flow velocity (step ST6). .
  • step ST6 it returns to step ST1 and control is repeated.
  • step ST3 when the wind direction deflecting plate 15 is in a position where air is sent to the detection area M (Yes in step ST3), the rotational speed of the blower 13 is reduced so that the air has a flow velocity equal to or lower than the target flow velocity (step ST4). ). That is, the rotation speed of the blower 13 is controlled to a rotation speed corresponding to the distance from the outlet 10b to the person (step ST5). Then, it returns to step ST1 and control is repeated.
  • the flow velocity of the air blown into the detection area M where the person is detected is smaller than the flow velocity of the air blown into the non-detection area N other than the area where the person is detected.
  • the flow rate control means 46 controls the rotational speed of the blower 13 and is based on the rotational speed of the blower 13 when the wind direction deflector 15 is in a position where air is sent to the non-detection area. Also, control is performed so that the rotational speed of the blower 13 is reduced when the wind direction deflecting plate 15 is in a position where air is sent to the detection area. Thus, the flow rate of air can be controlled by the rotational speed of the blower 13.
  • the air conditioning indoor unit 3 further includes a distance measuring unit 42 for obtaining a distance from the air outlet 10b to the person, and the control unit 4 determines when the person reaches the person based on the distance measured by the distance measuring unit 42. It further has a flow velocity calculating means 43 for calculating the flow velocity of the air blown from the outlet 10b so that the flow velocity is equal to or lower than the target flow velocity (0.2 [m / s]).
  • the air cooled and heated can be sent to the detection area M while reliably suppressing the draft feeling to the person, and the comfort can be further improved.
  • the flow velocity control means 46 controls the blower 13 so that the flow velocity of the air becomes smaller as the angle from the perpendicular line lowered from the human detection unit 16 becomes smaller. May be configured. Specifically, the flow rate control means 46 determines the air flow rate when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 15 is in the non-detection area N. You may comprise so that it may become smaller than the flow velocity of air in the position where air is sent in directions other than a horizontal direction.
  • the flow rate control means 46 determines the rotation speed of the blower 13 when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 15 is horizontal in the non-detection area N. It controls so that the rotation speed of the air blower 13 when it exists in the position where air is sent in directions other than a direction becomes small.
  • the flow rate of air when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N is the same as that in the non-detection area N.
  • FIG. FIG. 9 is a cross-sectional view showing an air conditioning indoor unit 200 according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in that the driving speed for changing the direction of the wind direction deflecting plate 15 is controlled.
  • the flow rate of air is controlled without changing the rotational speed of the blower 13.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
  • the flow rate control means 46 controls the driving speed for changing the direction of the wind direction deflecting plate 15, and the air direction deflecting plate 15 is in a position where air is sent to the non-detection area N. Control is performed such that the driving speed of the wind direction deflecting plate 15 when the air direction deflecting plate 15 is at a position where air is sent to the detection area M is larger than the driving speed of the wind direction deflecting plate 15.
  • the driving speed of the wind direction deflecting plate 15 is changed by changing the rotational speed of the deflection driving unit 15a. That is, the flow rate control means 46 controls to send air to the non-detection area N at a high flow rate and to send air to the detection area M at a low flow rate.
  • the flow rate control means 46 also has a function of reducing the rotation speed of the blower 13 as in the first embodiment, but in the second embodiment, the rotation speed of the blower 13 is constant. I have control.
  • FIG. 10 is a perspective view showing the area S of the non-detection area N
  • FIG. 11 is a perspective view showing the area S of the detection area M.
  • the air flow rate is obtained from the amount of air. For example, the flow velocity of air when reaching a person is obtained by dividing the amount of air blown out from the air outlet 10b by the air passage area S at the air arrival point.
  • FIG. 10 when the driving speed of the wind direction deflecting plate 15 decreases, the air passage area S through which the air flows decreases. For this reason, the flow velocity of air becomes high.
  • FIG. 11 when the driving speed of the wind direction deflecting plate 15 increases, the air passage area S through which air flows increases. For this reason, the flow velocity of air becomes slow.
  • FIG. 12 is a flowchart showing the operation of the air conditioning indoor unit 200 according to Embodiment 2 of the present invention.
  • the operation of the air conditioning indoor unit 200 will be described.
  • the process returns to step ST11.
  • the blower 13 is driven and the wind direction deflecting plate 15 swings (step ST12).
  • step ST13 it is determined by the attitude detection means 45 whether or not the wind direction deflecting plate 15 is at a position where air is sent to the detection area M (step ST13).
  • the driving speed of the wind direction deflecting plate 15 is reduced so that the air has a flow velocity equal to or higher than the stirring flow rate (step). ST16). Then, it returns to step ST11 and control is repeated.
  • Step ST14 the driving speed of the wind direction deflecting plate 15 is increased so that the air has a flow velocity equal to or lower than the target flow velocity. That is, the driving speed of the wind direction deflecting plate 15 is controlled to a driving speed corresponding to the distance from the outlet 10b to the person (step ST15). Then, it returns to step ST11 and control is repeated.
  • the flow velocity control means 46 controls the driving speed for changing the direction of the wind direction deflecting plate 15, and the wind direction deflecting plate 15 is at a position where air is sent to the non-detection area N. Control is performed so that the driving speed of the wind direction deflecting plate 15 when the air direction deflecting plate 15 is at a position where air is sent to the detection area M is larger than the driving speed of the wind direction deflecting plate 15 in this case.
  • the air blown from the outlet 10b is increased when the rotational speed of the deflection driving unit 15a is increased and the driving speed of the wind direction deflecting plate 15 is increased.
  • it is dispersed over a wide area, and the flow velocity of air when it reaches a person becomes slow. For this reason, it is possible to suppress a draft feeling which is an uncomfortable feeling caused by direct blowing of wind on a person.
  • the air flow rate is controlled by the driving speed of the wind direction deflecting plate 15, it is possible to quickly reduce temperature unevenness in the indoor space and improve comfort while suppressing a draft feeling to a person.
  • the rotation speed of the air blower 13 is not changed, the air flow rate is not reduced. For this reason, stirring of room air can be further promoted.
  • the flow velocity control means 46 controls the wind direction deflecting plate 15 so that the flow velocity of the air becomes smaller as the angle from the perpendicular line lowered from the human detection unit 16 becomes smaller. It may be configured to. Specifically, the flow rate control means 46 determines the air flow rate when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 15 is in the non-detection area N. You may comprise so that it may become smaller than the flow velocity of air in the position where air is sent in directions other than a horizontal direction.
  • the flow rate control means 46 determines the driving speed of the wind direction deflecting plate 15 when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N. Control is performed so that the driving speed of the wind direction deflecting plate 15 when the air is in a position other than the horizontal direction is increased.
  • the flow rate of air when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N is the same as that of the non-detection area N.
  • the air flow rate may be changed by both the rotational speed of the blower 13 and the driving speed of the wind direction deflecting plate 15.
  • FIG. FIG. 13 is a bottom view showing an air conditioning indoor unit 300 according to Embodiment 3 of the present invention.
  • the third embodiment is different from the first embodiment in that four outlets 320 and four wind direction deflecting plates 325 are provided.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
  • the air conditioning indoor unit 3 is a device called a four-way cassette type, for example.
  • Four air outlets 320a, 320b, 320c, and 320d are formed in the housing 310, and four wind direction deflecting plates 325a, 325b, 325c, and 325d are provided in the air outlets 320a, 320b, 320c, and 320d, respectively.
  • the four outlets 320a, 320b, 320c, and 320d may be referred to as the outlet 320
  • the four wind direction deflecting plates 325a, 325b, 325c, and 325d may be referred to as the wind direction deflecting plate 325.
  • the number of the air outlets 320 and the wind direction deflecting plates 325 is not limited to four, and may be two, three, or five or more.
  • FIG. 14 is a cross-sectional view showing the air conditioning indoor unit 3 according to Embodiment 3 of the present invention.
  • the housing 310 is a box having a hollow portion, and is formed with a suction port 310a for sucking air and a blower port 320 for blowing air.
  • the grill 311 is a lattice-shaped member that is provided in the suction port 310a of the housing 310 and covers the suction port 310a.
  • the filter 312 is provided downstream of the grill 311 at the suction port 310a, and removes dust that has passed through the grill 311.
  • the blower 313 is a device that is provided downstream of the filter 312 in the housing 310 and sends air to the heat exchanger 314.
  • the blower 313 has a fan motor 313a, and the fan motor 313a is a device that rotationally drives the blower 313.
  • the heat exchanger 314 is a device that is provided downstream of the blower 313 inside the housing 310 and performs heat exchange between air and refrigerant.
  • the heat exchanger 314 is, for example, a fin tube type heat exchanger.
  • the wind direction deflecting plate 325 is a member that is provided at each of the air outlets 320 and changes the air blowing direction of the air blown from the air outlets 320 by swinging or rotating.
  • a deflection drive unit 315a is connected to the wind direction deflection plate 325, and the deflection drive unit 315a is a device that rotationally drives the wind direction deflection plate 325 about the rotation axis.
  • the deflection drive unit 15a is constituted by a stepping motor, for example.
  • the position of the wind direction deflecting plate 325 is determined by the number of pulses for driving the deflection driving unit 315a. Note that the position detection of the wind direction deflecting plate 325 may be performed using a separate sensor such as a rotary encoder.
  • the human detection unit 316 is attached to a surface facing the living space, which is the lower surface of the housing 310, and includes an infrared sensor.
  • the infrared sensor scans the indoor space, and detects the position of the person based on the obtained temperature information.
  • the control unit 4 is a device that controls the operation of the devices inside the air conditioning indoor unit 3.
  • the control unit 4 controls the detection operation of the deflection driving unit 315 a connected to the wind direction deflecting plate 325, the fan motor 313 a connected to the blower 313, and the human detection unit 316.
  • the flow velocity control means 46 independently controls the flow velocity of the air blown out from the four outlets 320.
  • the flow velocity of the air blown into the detection area M where the person is detected is smaller than the flow velocity of the air blown into the non-detection area N other than the area where the person is detected.
  • a plurality of air outlets 320 are formed in the casing 310, a plurality of wind direction deflecting plates 325 are provided in the respective air outlets 320, and the flow rate control means 46 includes a plurality of air outlets 320.
  • the flow rate of the air blown out from the outlet 320 is independently controlled.
  • the control unit 4 performs control so that the air flow velocity when reaching the person is equal to or less than the target flow velocity (0.2 [m / s]). Thereby, the air cooled and heated can be sent to the detection area M while reliably suppressing the draft feeling to the person, and the comfort can be further improved.
  • the flow velocity control means 46 controls the blower 13 so that the flow velocity of the air becomes smaller as the angle from the perpendicular line lowered vertically from the human detection unit 16 becomes smaller. It may be configured. Specifically, the flow rate control means 46 determines the air flow rate when the wind direction deflecting plate 325 is in a position where the air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 325 is in the non-detection area N. You may comprise so that it may become smaller than the flow velocity of air in the position where air is sent in directions other than a horizontal direction.
  • the flow rate control means 46 determines the rotation speed of the blower 313 when the wind direction deflecting plate 325 is in a position where air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 325 is horizontal in the non-detection area N. It controls so that the rotation speed of the air blower 313 when it exists in the position where air is sent in directions other than a direction becomes small.
  • the airflow direction deflector 325 When the airflow direction deflector 325 is in a position where air is sent in the horizontal direction, if the flow velocity of air is high, air hitting the wall flows to the ceiling side, and smudging occurs where dirt in the air adheres to the ceiling surface. There is a fear.
  • the flow rate of air when the wind direction deflecting plate 325 is at a position where air is sent in the horizontal direction in the non-detection area N is the same as that of the non-detection area N.
  • the temperature unevenness in the indoor space can be quickly reduced while the draft feeling to the person is suppressed, thereby improving the comfort. Can be improved.
  • the rotation speed of the blower 313 since the rotation speed of the blower 313 is not changed, the amount of blown air is not reduced. For this reason, stirring of room air can be further promoted.
  • FIG. 15 is a cross-sectional view showing an air conditioning indoor unit 400 according to a first modification of the third embodiment of the present invention.
  • the flow rate control means 46 is configured so that the number of people in the detection area M is higher than the flow rate of air blown into the area E where the number of people is small. Control is performed so that the flow velocity of the air blown into the large area F becomes small.
  • the flow rate control means 46 determines the wind direction when air is sent to the area F where the number of people is larger than the driving speed of the wind direction deflecting plate 325 when air is sent to the area E where the number of people is small. Control is performed so that the driving speed of the deflection plate 325 increases. As a result, the greater the number of people, the slower the air flow rate, so that the draft feeling can be suppressed for all people in the indoor space.
  • the area F with a large number of people can be dealt with by increasing the driving speed of the wind direction deflecting plate 325. Therefore, it takes time to reduce the rotational speed of the blower 313. Can be shortened. For this reason, the fall of the ventilation volume can be suppressed.
  • FIG. 16 is sectional drawing which shows the air-conditioning indoor unit 500 which concerns on the 2nd modification of Embodiment 3 of this invention.
  • the control unit 4 sends air to the non-detection area N through the driving range K of the wind direction deflector 325 corresponding to the area of the detection area M where the number of people is large.
  • the driving range J of the wind direction deflecting plate 325 corresponding to an area where the number of people is small in the detection area M is controlled to a position where air is sent to the non-detection area N and the detection area M.

Abstract

This air conditioning indoor unit is provided with: an enclosure having formed therein an expulsion port which expels air; a heat exchanger provided inside the enclosure to exchange heat between the air and a refrigerant; a blower provided inside the enclosure to blow the air that has been subjected to heat exchange in the heat exchanger toward the expulsion port; a wind direction deflecting plate provided in the expulsion port to change the direction in which the air to be expelled from the expulsion port is expelled; a person detecting unit which detects the position of a person; and a control unit which controls the flow velocity of the air expelled from the expulsion port. The control unit includes a flow velocity control means for controlling the blower or the wind direction deflecting plate such that the air flow velocity in a detected area in which a person has been detected by the person detecting unit is less than the air flow velocity in a non-detected area outside the area in which a person has been detected by the person detecting unit.

Description

空調室内機Air conditioning indoor unit
 本発明は、吹出口から吹き出される空気の流速を制御する制御部を備える空調室内機に関する。 The present invention relates to an air conditioning indoor unit that includes a control unit that controls the flow rate of air blown from a blower outlet.
 従来、吹出口から吹き出される空気の流速を制御する制御部を備える空調室内機が知られている。特許文献1には、天井面に設置され、天井から室内空間に向けて空気を送り出す空気調和装置が開示されている。特許文献1は、吹出口からの空気の吹き出し方向が所定の吹き出し方向よりも下向きの場合、送風手段からの空気の吹き出し流速を低速にする。また、特許文献1は、吹出口からの空気の吹き出し方向が所定の吹き出し方向よりも上向きの場合、送風手段からの空気の吹き出し流速を高速にする。これにより、特許文献1は、風が人に直接吹き付けられることにより生じる不快感であるドラフト感を抑制しつつ室内空間の温度ムラを低減して快適性を向上させようとするものである。 Conventionally, an air-conditioning indoor unit provided with a control unit that controls the flow rate of air blown out from an air outlet is known. Patent Document 1 discloses an air conditioner that is installed on a ceiling surface and sends out air from the ceiling toward an indoor space. In Patent Document 1, when the blowing direction of the air from the blowout port is downward than the predetermined blowing direction, the blowing velocity of the air blown from the blower is made low. Further, in Patent Document 1, when the blowing direction of air from the blowout port is higher than a predetermined blowing direction, the blowing velocity of air from the blowing unit is increased. Thus, Patent Document 1 attempts to improve comfort by reducing temperature unevenness in the indoor space while suppressing a draft feeling that is an unpleasant feeling caused by direct blowing of wind on a person.
特開平8-94157号公報JP-A-8-94157
 しかしながら、特許文献1に開示された空気調和装置は、人の有無にかかわらず、吹出口からの空気の吹き出し方向が下向きのときには空気の流速を低速にしている。このため、室内空間の温度ムラの解消に要する時間が長くなる。 However, the air conditioner disclosed in Patent Document 1 makes the air flow rate low when the air blowing direction from the air outlet is downward regardless of the presence or absence of a person. For this reason, the time required for eliminating the temperature unevenness in the indoor space becomes longer.
 本発明は、上記のような課題を解決するためになされたもので、人へのドラフト感を抑制しつつ室内空間の温度ムラを迅速に低減して快適性を向上させる空調室内機を提供するものである。 The present invention has been made to solve the above-described problems, and provides an air-conditioning indoor unit that improves comfort by quickly reducing temperature unevenness in an indoor space while suppressing a draft feeling to a person. Is.
 本発明に係る空調室内機は、空気を吹き出す吹出口が形成された筐体と、筐体の内部に設けられ、空気と冷媒とを熱交換する熱交換器と、筐体の内部に設けられ、熱交換器において熱交換された空気を吹出口に送風する送風機と、吹出口に設けられ、吹出口から吹き出される空気の吹き出し方向を変える風向偏向板と、人の位置を検出する人検出部と、吹出口から吹き出される空気の流速を制御する制御部と、を備え、制御部は、人検出部によって人が検出されたエリア以外の非検出エリアの空気の流速よりも、人検出部によって人が検出された検出エリアの空気の流速が小さくなるように、送風機又は風向偏向板を制御する流速制御手段を有する。 An air conditioning indoor unit according to the present invention is provided in a housing in which a blowout port for blowing air is formed, a heat exchanger for exchanging heat between air and a refrigerant, and a housing. A blower that blows air exchanged in the heat exchanger to the air outlet, a wind direction deflector that is provided at the air outlet and changes the blowing direction of the air blown from the air outlet, and a person detection that detects the position of the person And a control unit that controls the flow rate of the air blown from the air outlet, and the control unit detects the human flow more than the air flow rate in the non-detection area other than the area where the person is detected by the human detection unit. It has a flow rate control means for controlling the blower or the wind direction deflector so that the flow rate of air in the detection area where the person is detected by the unit becomes small.
 本発明によれば、人が検出されたエリア以外の非検出エリアに吹き出される空気の流速よりも、人が検出された検出エリアに吹き出される空気の流速が小さくなるように制御される。即ち、非検出エリアには速い流速で空気を送るため、室内空間の温度ムラを迅速に低減することができる。また、検出エリアには遅い流速で空気を送るため、人へのドラフト感を抑制することができる。このように、人へのドラフト感を抑制しつつ、室内空間の温度ムラを迅速に低減して快適性を向上させることができる。 According to the present invention, the flow rate of air blown to the detection area where the person is detected is controlled to be smaller than the flow rate of air blown to the non-detection area other than the area where the person is detected. That is, since air is sent to the non-detection area at a high flow rate, temperature unevenness in the indoor space can be quickly reduced. Further, since air is sent to the detection area at a low flow rate, it is possible to suppress a draft feeling to a person. As described above, it is possible to quickly reduce the temperature unevenness in the indoor space and improve the comfort while suppressing the draft feeling to the person.
本発明の実施の形態1に係る空気調和装置1を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調室内機3を示す断面図である。It is sectional drawing which shows the air-conditioning indoor unit 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調室内機3の制御部4を示す機能ブロック図である。It is a functional block diagram which shows the control part 4 of the air-conditioning indoor unit 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調室内機3を示す断面図である。It is sectional drawing which shows the air-conditioning indoor unit 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1の変形例に係る空調室内機100を示す断面図である。It is sectional drawing which shows the air-conditioning indoor unit 100 which concerns on the modification of Embodiment 1 of this invention. 吹出口10bからの距離と空気の流速との関係を示すグラフである。It is a graph which shows the relationship between the distance from the blower outlet 10b, and the flow velocity of air. 本発明の実施の形態1に係る空調室内機3を示す断面図である。It is sectional drawing which shows the air-conditioning indoor unit 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調室内機3の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air-conditioning indoor unit 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空調室内機200を示す断面図である。It is sectional drawing which shows the air-conditioning indoor unit 200 which concerns on Embodiment 2 of this invention. 非検出エリアNの面積Sを示す斜視図である。3 is a perspective view showing an area S of a non-detection area N. FIG. 検出エリアMの面積Sを示す斜視図である。3 is a perspective view showing an area S of a detection area M. FIG. 本発明の実施の形態2に係る空調室内機200の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning indoor unit 200 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空調室内機300を示す底面図である。It is a bottom view which shows the air-conditioning indoor unit 300 which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る空調室内機300を示す断面図である。It is sectional drawing which shows the air conditioning indoor unit 300 which concerns on Embodiment 3 of this invention. 本発明の実施の形態3の第1変形例に係る空調室内機400を示す断面図である。It is sectional drawing which shows the air-conditioning indoor unit 400 which concerns on the 1st modification of Embodiment 3 of this invention. 本発明の実施の形態3の第2変形例に係る空調室内機500を示す断面図である。It is sectional drawing which shows the air-conditioning indoor unit 500 which concerns on the 2nd modification of Embodiment 3 of this invention.
実施の形態1.
 以下、本発明に係る空調室内機の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空気調和装置1を示す回路図である。この図1に基づいて、空気調和装置1について説明する。図1に示すように、空気調和装置1は、室内空間の空気を調整する装置であり、空調室外機2と、空調室内機3と、制御部4とを備えている。空調室外機2には、圧縮機6、流路切替装置7、室外熱交換器8、室外送風機8a及び膨張部9が設けられている。空調室内機3には、熱交換器14及び送風機13が設けられている。本実施の形態1では、制御部4が空調室内機3の内部に設けられている場合について例示しているが、制御部4は、空調室外機2の内部に設けられてもよいし、別ユニットとしてもよい。
Embodiment 1 FIG.
Hereinafter, embodiments of an air conditioning indoor unit according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an air conditioner 1 according to Embodiment 1 of the present invention. The air conditioner 1 will be described with reference to FIG. As shown in FIG. 1, the air conditioner 1 is a device that adjusts air in an indoor space, and includes an air-conditioning outdoor unit 2, an air-conditioning indoor unit 3, and a control unit 4. The air conditioning outdoor unit 2 is provided with a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 8 a, and an expansion unit 9. The air conditioning indoor unit 3 is provided with a heat exchanger 14 and a blower 13. In this Embodiment 1, although the case where the control part 4 is provided in the inside of the air conditioning indoor unit 3 is illustrated, the control part 4 may be provided in the inside of the air conditioning outdoor unit 2, It is good also as a unit.
 (冷媒回路5)
 圧縮機6、流路切替装置7、室外熱交換器8、膨張部9及び熱交換器14が配管により接続されて冷媒回路5が構成されている。圧縮機6は、低温低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態の冷媒にして吐出するものである。流路切替装置7は、冷媒回路5において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。室外熱交換器8は、例えば室外空気と冷媒との間で熱交換するものである。室外熱交換器8は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。
(Refrigerant circuit 5)
The refrigerant circuit 5 is configured by connecting the compressor 6, the flow switching device 7, the outdoor heat exchanger 8, the expansion unit 9, and the heat exchanger 14 by piping. The compressor 6 sucks refrigerant in a low-temperature and low-pressure state, compresses the sucked refrigerant, and discharges it as a refrigerant in a high-temperature and high-pressure state. The flow path switching device 7 switches the flow direction of the refrigerant in the refrigerant circuit 5, and is, for example, a four-way valve. The outdoor heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant. The outdoor heat exchanger 8 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
 室外送風機8aは、室外熱交換器8に室外空気を送る機器である。膨張部9は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部9は、例えば開度が調整される電子式膨張弁である。熱交換器14は、例えば室内空気と冷媒との間で熱交換するものである。熱交換器14は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。送風機13は、熱交換器14に室内空気を送る機器である。 The outdoor blower 8a is a device that sends outdoor air to the outdoor heat exchanger 8. The expansion part 9 is a pressure reducing valve or an expansion valve that expands by depressurizing the refrigerant. The expansion part 9 is an electronic expansion valve whose opening degree is adjusted, for example. The heat exchanger 14 exchanges heat between indoor air and a refrigerant, for example. The heat exchanger 14 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation. The blower 13 is a device that sends room air to the heat exchanger 14.
 (運転モード、冷房運転)
 次に、空気調和装置1の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温高圧のガス状態で吐出する。圧縮機6から吐出された高温高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機8aによって送られる室外空気と熱交換されて凝縮液化する。凝縮された液状態の冷媒は、膨張部9に流入し、膨張部9において膨張及び減圧されて低温低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する熱交換器14に流入し、熱交換器14において、送風機13によって送られる室内空気と熱交換されて蒸発ガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, cooling operation)
Next, the operation mode of the air conditioner 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the outdoor heat exchanger 8 acting as a condenser. In the outdoor heat exchanger 8, the outdoor blower 8a Heat exchanges with the outdoor air sent by the liquefaction and condensates. The condensed liquid refrigerant flows into the expansion section 9 and is expanded and depressurized in the expansion section 9 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the heat exchanger 14 acting as an evaporator, and in the heat exchanger 14, heat is exchanged with the indoor air sent by the blower 13, thereby evaporating gas. At this time, the room air is cooled, and the room is cooled. The evaporated low-temperature and low-pressure gaseous refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (運転モード、暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温高圧のガス状態で吐出する。圧縮機6から吐出された高温高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する熱交換器14に流入し、熱交換器14において、送風機13によって送られる室内空気と熱交換されて凝縮液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、膨張部9に流入し、膨張部9において膨張及び減圧されて低温低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機8aによって送られる室外空気と熱交換されて蒸発ガス化する。蒸発した低温低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the heat exchanger 14 acting as a condenser, and is sent by the blower 13 in the heat exchanger 14. Heat exchanges with room air to condense. At this time, indoor air is warmed and heating is performed indoors. The condensed liquid refrigerant flows into the expansion section 9 and is expanded and depressurized in the expansion section 9 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 8 acting as an evaporator, and in the outdoor heat exchanger 8, heat is exchanged with outdoor air sent by the outdoor blower 8a to evaporate gas. The evaporated low-temperature and low-pressure gaseous refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (空調室内機)
 図2は、本発明の実施の形態1に係る空調室内機3を示す断面図である。次に、空調室内機3について詳細に説明する。図2に示すように、空調室内機3は、例えば1方向カセット形、天吊形、天井埋め込み型又はルームエアコンとも呼称される機器であり、筐体10と、グリル11と、フィルタ12と、送風機13と、熱交換器14と、風向偏向板15と、人検出部16と、制御部4とを備えている。
(Air conditioning indoor unit)
FIG. 2 is a cross-sectional view showing the air conditioning indoor unit 3 according to Embodiment 1 of the present invention. Next, the air conditioning indoor unit 3 will be described in detail. As shown in FIG. 2, the air conditioning indoor unit 3 is a device that is also called, for example, a one-way cassette type, a ceiling type, a ceiling-embedded type, or a room air conditioner, and includes a housing 10, a grill 11, a filter 12, A blower 13, a heat exchanger 14, a wind direction deflecting plate 15, a person detection unit 16, and a control unit 4 are provided.
 筐体10は、中空部を有する箱体であり、空気を吸い込む吸込口10aと、空気を吹き出す吹出口10bとが形成されている。本実施の形態1では、吹出口10bが1つの場合について例示している。グリル11は、筐体10の吸込口10aに設けられ、格子状に形成されている。フィルタ12は、吸込口10aにおいてグリル11の下流に設けられ、グリル11を通過した空気を除塵する。送風機13は、筐体10の内部においてフィルタ12の下流に設けられ、熱交換器14に空気を送る機器である。送風機13は、ファンモータ13aを有し、ファンモータ13aは、送風機13を回転駆動させる機器である。熱交換器14は、筐体10の内部において送風機13の下流に設けられ、空気と冷媒とを熱交換する機器である。熱交換器14は、例えばフィンチューブ型の熱交換器である。 The housing 10 is a box having a hollow portion, and is formed with an inlet 10a for sucking air and an outlet 10b for blowing air. In this Embodiment 1, the case where there is one blower outlet 10b is illustrated. The grill 11 is provided in the suction port 10a of the housing 10 and is formed in a lattice shape. The filter 12 is provided downstream of the grill 11 at the suction port 10a, and removes dust that has passed through the grill 11. The blower 13 is a device that is provided downstream of the filter 12 inside the housing 10 and sends air to the heat exchanger 14. The blower 13 includes a fan motor 13a, and the fan motor 13a is a device that rotationally drives the blower 13. The heat exchanger 14 is a device that is provided downstream of the blower 13 inside the housing 10 and performs heat exchange between air and refrigerant. The heat exchanger 14 is, for example, a fin tube type heat exchanger.
 風向偏向板15は、吹出口10bに設けられ、揺動又は回転して、吹出口10bから吹き出される空気の吹き出し方向を変える部材である。風向偏向板15は、姿勢によって空気の吹出方向を少なくとも2方向に変更する機能を有する。本実施の形態1では、風向偏向板15が1つの場合について例示している。風向偏向板15には、偏向駆動部15aが接続されており、偏向駆動部15aは、回転軸を中心として風向偏向板15を回転駆動させる機器である。偏向駆動部15aは、例えばステッピングモータから構成される。風向偏向板15の位置は、偏向駆動部15aを駆動するためのパルス数によって決定される。なお、風向偏向板15の位置検知は、別途ロータリーエンコーダ等のセンサを用いて行われてもよい。 The wind direction deflecting plate 15 is a member that is provided at the air outlet 10b and that swings or rotates to change the blowing direction of the air blown from the air outlet 10b. The wind direction deflecting plate 15 has a function of changing the air blowing direction to at least two directions depending on the posture. In the first embodiment, the case where there is one wind direction deflecting plate 15 is illustrated. A deflection driving unit 15a is connected to the wind direction deflecting plate 15, and the deflection driving unit 15a is a device that rotationally drives the wind direction deflecting plate 15 about the rotation axis. The deflection drive unit 15a is constituted by a stepping motor, for example. The position of the wind direction deflecting plate 15 is determined by the number of pulses for driving the deflection driving unit 15a. Note that the position detection of the wind direction deflecting plate 15 may be performed using a separate sensor such as a rotary encoder.
 人検出部16は、筐体10の下面である居住空間に向かった面に取り付けられており、赤外線センサを有する。人検出部16は、赤外線センサが室内空間を走査し、得られた温度情報に基づいて、人の位置を検出する。 The human detection unit 16 is attached to a surface facing the living space, which is the lower surface of the housing 10, and has an infrared sensor. In the human detection unit 16, the infrared sensor scans the indoor space, and detects the position of the person based on the obtained temperature information.
 (制御部4)
 図3は、本発明の実施の形態1に係る空調室内機3の制御部4を示す機能ブロック図である。制御部4は、空調室内機3の内部の機器等の動作を制御する機器である。制御部4は、例えば風向偏向板15に接続された偏向駆動部15a、送風機13に接続されたファンモータ13a及び人検出部16の検出動作の制御を行う。図3に示すように、制御部は、撹拌判定手段41と、距離測定手段42と、流速演算手段43と、エリア作成手段44と、姿勢検出手段45と、流速制御手段46とを有する。
(Control unit 4)
FIG. 3 is a functional block diagram showing the control unit 4 of the air conditioning indoor unit 3 according to Embodiment 1 of the present invention. The control unit 4 is a device that controls the operation of devices inside the air conditioning indoor unit 3. The control unit 4 controls, for example, the detection operation of the deflection driving unit 15 a connected to the wind direction deflecting plate 15, the fan motor 13 a connected to the blower 13, and the human detection unit 16. As shown in FIG. 3, the control unit includes stirring determination means 41, distance measurement means 42, flow velocity calculation means 43, area creation means 44, posture detection means 45, and flow velocity control means 46.
 (撹拌判定手段41)
 撹拌判定手段41は、リモートコントローラ(図示せず)からの信号又は室内温度等に基づいて、室内空間の空気の撹拌が必要であるかを判定する。例えば、運転開始時又は換気による外気の流入等によって、制御部4に設定された目標温度と室内温度との差が大きくなると、室内空気の温度ムラを低減することを目的として、室内空気の撹拌が必要であると判断する。
(Agitation determination means 41)
The agitation determination means 41 determines whether or not the air in the indoor space needs to be agitated based on a signal from a remote controller (not shown) or the room temperature. For example, when the difference between the target temperature set in the control unit 4 and the room temperature increases due to the start of operation or the inflow of outside air due to ventilation, etc., the agitation of the room air is performed in order to reduce the temperature unevenness of the room air. Is determined to be necessary.
 (距離測定手段42)
 図4は、本発明の実施の形態1に係る空調室内機3を示す断面図である。距離測定手段42は、吹出口10bから人までの距離Dを求める。ここで、吹出口10bから人Aまでの距離Dを求める例について説明する。図4に示すように、距離測定手段42は、人検出部16から床面まで垂直に下ろされた垂線の距離Hを、予め記憶している。距離測定手段42は、例えば人検出部16の位置から垂直に下ろされた垂線と、人検出部16の位置と人とを結ぶ線とのなす角度を検出する。距離測定手段42は、下記式(1)を用いて、吹出口10bから人Aまでの距離Dを求める。
(Distance measuring means 42)
FIG. 4 is a cross-sectional view showing the air conditioning indoor unit 3 according to Embodiment 1 of the present invention. The distance measuring means 42 obtains the distance D from the air outlet 10b to the person. Here, the example which calculates | requires the distance D from the blower outlet 10b to the person A is demonstrated. As shown in FIG. 4, the distance measuring unit 42 stores in advance a distance H of a perpendicular line that is vertically lowered from the person detection unit 16 to the floor surface. The distance measuring unit 42 detects, for example, an angle formed between a perpendicular line dropped from the position of the person detection unit 16 and a line connecting the position of the person detection unit 16 and the person. The distance measurement means 42 calculates | requires the distance D from the blower outlet 10b to the person A using following formula (1).
 D=H/cosθ・・・・・(1) D = H / cosθ (1)
 なお、本実施の形態1では、空調室内機3が据え付けされる際、制御部4に入力されることによって距離Hが設定される。 In the first embodiment, when the air conditioning indoor unit 3 is installed, the distance H is set by being input to the control unit 4.
 図5は、本発明の実施の形態1の変形例に係る空調室内機100を示す断面図である。本実施の形態1では、制御部4の距離測定手段42が距離Dを測定する場合について例示しているが、ハードウエアを用いて距離Dが測定されてもよい。図5に示すように、変形例に係る空調室内機100は、投受光器117を有しており、投受光器117は、筐体10の下面に設けられている。投受光器117は、音波又は電磁波を人A等に照射して、人A等で反射した光を受光する。距離測定手段42は、照射してから受光するまでの時間に基づいて、吹出口10bから人Aまでの距離Dを求める。 FIG. 5 is a cross-sectional view showing an air conditioning indoor unit 100 according to a modification of the first embodiment of the present invention. In the first embodiment, the case where the distance measuring unit 42 of the control unit 4 measures the distance D is illustrated, but the distance D may be measured using hardware. As shown in FIG. 5, the air conditioning indoor unit 100 according to the modification includes a light projecting / receiving device 117, and the light projecting / receiving device 117 is provided on the lower surface of the housing 10. The projector / receiver 117 irradiates a person A or the like with a sound wave or an electromagnetic wave, and receives light reflected by the person A or the like. The distance measuring means 42 obtains the distance D from the outlet 10b to the person A based on the time from irradiation to light reception.
 (流速演算手段43)
 図6は、吹出口10bからの距離Dと空気の流速との関係を示すグラフである。流速演算手段43は、距離測定手段42によって測定された距離Dに基づいて、人に到達するときの流速が目標流速になるように吹出口10bから吹き出される空気の流速を演算する。図6において、横軸は、吹出口10bからの距離[m]を示し、縦軸は、空気の流速[m/s]を示す。図6では、吹出口10bから吹き出される空気の量が少ない場合を実線で示し、吹出口10bから吹き出される空気の量が多い場合を破線で示す。図6に示すように、吹出口10bからの距離Dが遠いほど、空気の流速は下がる。なお、目標流速は、例えば0.2[m/s]として設定される。
(Velocity calculation means 43)
FIG. 6 is a graph showing the relationship between the distance D from the air outlet 10b and the air flow velocity. Based on the distance D measured by the distance measuring means 42, the flow speed calculating means 43 calculates the flow speed of the air blown from the outlet 10b so that the flow speed when reaching the person becomes the target flow speed. In FIG. 6, the horizontal axis indicates the distance [m] from the outlet 10b, and the vertical axis indicates the air flow velocity [m / s]. In FIG. 6, the case where the amount of air blown from the blower outlet 10b is small is indicated by a solid line, and the case where the amount of air blown from the blower outlet 10b is large is indicated by a broken line. As shown in FIG. 6, the air flow rate decreases as the distance D from the air outlet 10b increases. The target flow velocity is set as 0.2 [m / s], for example.
 (エリア作成手段44)
 図7は、本発明の実施の形態1に係る空調室内機3を示す断面図である。図7に示すように、エリア作成手段44は、人検出部16によって検出された人の位置に基づいて、非検出エリアN及び検出エリアMを作成する。ここで、非検出エリアNとは、人が検出されたエリア以外のエリアであり、検出エリアMとは、人が検出されたエリアである。
(Area creation means 44)
FIG. 7 is a cross-sectional view showing the air conditioning indoor unit 3 according to Embodiment 1 of the present invention. As shown in FIG. 7, the area creation unit 44 creates the non-detection area N and the detection area M based on the position of the person detected by the person detection unit 16. Here, the non-detection area N is an area other than an area where a person is detected, and the detection area M is an area where a person is detected.
 (姿勢検出手段45)
 姿勢検出手段45は、風向偏向板15の姿勢を検出する。姿勢検出手段45は、風向偏向板15が非検出エリアNに空気が送られる位置にあるか、風向偏向板15が検出エリアMに空気が送られる位置にあるかを検出する。
(Attitude detection means 45)
The attitude detection means 45 detects the attitude of the wind direction deflecting plate 15. The posture detection means 45 detects whether the wind direction deflecting plate 15 is in a position where air is sent to the non-detection area N or whether the wind direction deflecting plate 15 is in a position where air is sent to the detection area M.
 (流速制御手段46)
 流速制御手段46は、非検出エリアNの空気の流速よりも、検出エリアMの空気の流速が小さくなるように、送風機13又は風向偏向板15を制御する。本実施の形態1では、流速制御手段46は、送風機13の回転数を制御するものであって、風向偏向板15が非検出エリアNに空気が送られる位置にある場合の送風機13の回転数よりも、風向偏向板15が検出エリアMに空気が送られる位置にある場合の送風機13の回転数が小さくなるように制御する。即ち、流速制御手段46は、非検出エリアNには速い流速で空気を送り、且つ、検出エリアMには遅い流速で空気を送るように送風機13の回転数を制御する。ここで、非検出エリアNに送られる空気の流速は、例えば室内空間を充分に撹拌することができる撹拌流速以上の流速である。また、検出エリアMに送られる空気の流速は、例えば目標流速(0.2[m/s])以下の流速である。なお、流速制御手段46は、後述する実施の形態2のように、風向偏向板15の駆動速度を大きくする機能も有しているが、本実施の形態1では、風向偏向板15の駆動速度が一定になるように制御している。
(Velocity control means 46)
The flow rate control means 46 controls the blower 13 or the wind direction deflecting plate 15 so that the flow rate of air in the detection area M is smaller than the flow rate of air in the non-detection area N. In the first embodiment, the flow rate control means 46 controls the rotational speed of the blower 13 and the rotational speed of the blower 13 when the wind direction deflector 15 is in a position where air is sent to the non-detection area N. Instead, control is performed so that the rotational speed of the blower 13 is reduced when the wind direction deflecting plate 15 is in a position where air is sent to the detection area M. That is, the flow rate control means 46 controls the rotation speed of the blower 13 so that air is sent to the non-detection area N at a high flow rate and air is sent to the detection area M at a low flow rate. Here, the flow rate of the air sent to the non-detection area N is, for example, a flow rate equal to or higher than the stirring flow rate capable of sufficiently stirring the indoor space. Moreover, the flow velocity of the air sent to the detection area M is a flow velocity below the target flow velocity (0.2 [m / s]), for example. The flow velocity control means 46 also has a function of increasing the driving speed of the wind direction deflecting plate 15 as in the second embodiment to be described later, but in this first embodiment, the driving speed of the wind direction deflecting plate 15 is increased. Is controlled to be constant.
 (動作)
 図8は、本発明の実施の形態1に係る空調室内機3の動作を示すフローチャートである。次に、空調室内機3の動作について説明する。図8に示すように、撹拌判定手段41によって、室内空間の空気の撹拌が必要であるかが判定される(ステップST1)。空気の撹拌が不要と判定された場合(ステップST1のNo)、ステップST1に戻る。一方、空気の撹拌が必要と判定された場合(ステップST1のYes)、送風機13が駆動し、風向偏向板15が揺動する(ステップST2)。
(Operation)
FIG. 8 is a flowchart showing the operation of the air conditioning indoor unit 3 according to Embodiment 1 of the present invention. Next, the operation of the air conditioning indoor unit 3 will be described. As shown in FIG. 8, it is determined by the agitation determination means 41 whether it is necessary to agitate the air in the indoor space (step ST1). When it is determined that air agitation is not required (No in step ST1), the process returns to step ST1. On the other hand, when it is determined that air agitation is necessary (Yes in step ST1), the blower 13 is driven, and the wind direction deflecting plate 15 swings (step ST2).
 そして、姿勢検出手段45によって、風向偏向板15が検出エリアMに空気が送られる位置にあるかが判定される(ステップST3)。風向偏向板15が非検出エリアNに空気が送られる位置にある場合(ステップST3のNo)、撹拌流速以上の流速の空気となるように送風機13の回転数が高速化される(ステップST6)。その後、ステップST1に戻って制御が繰り返される。一方、風向偏向板15が検出エリアMに空気が送られる位置にある場合(ステップST3のYes)、目標流速以下の流速の空気となるように送風機13の回転数が低速化される(ステップST4)。即ち、送風機13の回転数は、吹出口10bから人までの距離に応じた回転数に制御される(ステップST5)。その後、ステップST1に戻って制御が繰り返される。 Then, it is determined by the attitude detection means 45 whether or not the wind direction deflecting plate 15 is at a position where air is sent to the detection area M (step ST3). When the wind direction deflecting plate 15 is in a position where air is sent to the non-detection area N (No in step ST3), the rotational speed of the blower 13 is increased so that the air has a flow velocity equal to or higher than the stirring flow velocity (step ST6). . Then, it returns to step ST1 and control is repeated. On the other hand, when the wind direction deflecting plate 15 is in a position where air is sent to the detection area M (Yes in step ST3), the rotational speed of the blower 13 is reduced so that the air has a flow velocity equal to or lower than the target flow velocity (step ST4). ). That is, the rotation speed of the blower 13 is controlled to a rotation speed corresponding to the distance from the outlet 10b to the person (step ST5). Then, it returns to step ST1 and control is repeated.
 本実施の形態1によれば、人が検出されたエリア以外の非検出エリアNに吹き出される空気の流速よりも、人が検出された検出エリアMに吹き出される空気の流速が小さくなるように制御される。即ち、非検出エリアNには速い流速で空気を送るため、熱交換器14によって冷暖房された空気が、空調室内機3から遠い場所にまで搬送される。このため、空気の撹拌が促進される。従って、室内空間の温度ムラを迅速に解消することができる。また、検出エリアMには遅い流速で空気を送るため、風が人に直接吹き付けられることにより生じる不快感であるドラフト感を抑制することができる。以上より、空調室内機3は、人へのドラフト感を抑制しつつ室内空間の温度ムラを迅速に低減して快適性を向上させることができる。 According to the first embodiment, the flow velocity of the air blown into the detection area M where the person is detected is smaller than the flow velocity of the air blown into the non-detection area N other than the area where the person is detected. To be controlled. That is, since air is sent to the non-detection area N at a high flow rate, the air that has been cooled and heated by the heat exchanger 14 is transported to a place far from the air conditioning indoor unit 3. For this reason, stirring of air is promoted. Therefore, temperature unevenness in the indoor space can be quickly eliminated. Further, since air is sent to the detection area M at a slow flow rate, it is possible to suppress a draft feeling that is an uncomfortable feeling caused by the direct blowing of wind on a person. As described above, the air-conditioning indoor unit 3 can quickly reduce the temperature unevenness in the indoor space and improve the comfort while suppressing the draft feeling to the person.
 本実施の形態1では、流速制御手段46は、送風機13の回転数を制御するものであって、風向偏向板15が非検出エリアに空気が送られる位置にある場合の送風機13の回転数よりも、風向偏向板15が検出エリアに空気が送られる位置にある場合の送風機13の回転数が小さくなるように制御する。このように、空気の流速を、送風機13の回転数によって制御することができる。 In the first embodiment, the flow rate control means 46 controls the rotational speed of the blower 13 and is based on the rotational speed of the blower 13 when the wind direction deflector 15 is in a position where air is sent to the non-detection area. Also, control is performed so that the rotational speed of the blower 13 is reduced when the wind direction deflecting plate 15 is in a position where air is sent to the detection area. Thus, the flow rate of air can be controlled by the rotational speed of the blower 13.
 更に、空調室内機3は、吹出口10bから人までの距離を求める距離測定手段42を更に備え、制御部4は、距離測定手段42によって測定された距離に基づいて、人に到達するときの流速が目標流速(0.2[m/s])以下になるように吹出口10bから吹き出される空気の流速を演算する流速演算手段43を更に有する。これにより、人へのドラフト感を確実に抑制しつつ、冷暖房された空気を検出エリアMに送ることができ、快適性をより向上させることができる。 Furthermore, the air conditioning indoor unit 3 further includes a distance measuring unit 42 for obtaining a distance from the air outlet 10b to the person, and the control unit 4 determines when the person reaches the person based on the distance measured by the distance measuring unit 42. It further has a flow velocity calculating means 43 for calculating the flow velocity of the air blown from the outlet 10b so that the flow velocity is equal to or lower than the target flow velocity (0.2 [m / s]). Thereby, the air cooled and heated can be sent to the detection area M while reliably suppressing the draft feeling to the person, and the comfort can be further improved.
 なお、流速制御手段46は、非検出エリアNに送風される場合、人検出部16から垂直に下ろされた垂線からの角度が小さいほど空気の流速が小さくなるように、送風機13を制御するように構成されてもよい。具体的には、流速制御手段46は、風向偏向板15が非検出エリアNのうち水平方向に空気が送られる位置にある場合の空気の流速を、風向偏向板15が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の空気の流速よりも小さくなるように構成されてもよい。即ち、流速制御手段46は、風向偏向板15が非検出エリアNのうち水平方向に空気が送られる位置にある場合の送風機13の回転数を、風向偏向板15が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の送風機13の回転数が小さくなるように制御する。 When the air flow is blown to the non-detection area N, the flow velocity control means 46 controls the blower 13 so that the flow velocity of the air becomes smaller as the angle from the perpendicular line lowered from the human detection unit 16 becomes smaller. May be configured. Specifically, the flow rate control means 46 determines the air flow rate when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 15 is in the non-detection area N. You may comprise so that it may become smaller than the flow velocity of air in the position where air is sent in directions other than a horizontal direction. That is, the flow rate control means 46 determines the rotation speed of the blower 13 when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 15 is horizontal in the non-detection area N. It controls so that the rotation speed of the air blower 13 when it exists in the position where air is sent in directions other than a direction becomes small.
 風向偏向板15が水平方向に空気が送られる位置にある場合に、空気の流速が速いと、壁に当たった空気が天井側に流れ、空気中の汚れが天井面に付着するスマッジングが発生するおそれがある。本実施の形態1は、風向偏向板15が非検出エリアNのうち水平方向に空気が送られる位置にある場合の空気の流速を、風向偏向板15が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の空気の流速よりも小さくなるように制御することによって、壁に当たった空気が天井側に流れ難くなる。このため、空気中の汚れが天井面に付着するスマッジングの発生を抑制することができる。 When the air deflecting plate 15 is in a position where air is sent in the horizontal direction, if the flow velocity of air is high, the air hitting the wall flows to the ceiling side, and smudging occurs where dirt in the air adheres to the ceiling surface. There is a fear. In the first embodiment, the flow rate of air when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N is the same as that in the non-detection area N. By controlling so as to be smaller than the flow velocity of air in a position where air is sent in the direction, it is difficult for air hitting the wall to flow to the ceiling side. For this reason, generation | occurrence | production of the smudge which the dirt in the air adheres to a ceiling surface can be suppressed.
実施の形態2.
 図9は、本発明の実施の形態2に係る空調室内機200を示す断面図である。本実施の形態2は、風向偏向板15の方向を変える駆動速度を制御する点で、実施の形態1と相違する。本実施の形態2では、送風機13の回転数を変えずに、空気の流速を制御している。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
FIG. 9 is a cross-sectional view showing an air conditioning indoor unit 200 according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in that the driving speed for changing the direction of the wind direction deflecting plate 15 is controlled. In the second embodiment, the flow rate of air is controlled without changing the rotational speed of the blower 13. In the second embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
 図9に示すように、流速制御手段46は、風向偏向板15の方向を変える駆動速度を制御するものであって、風向偏向板15が非検出エリアNに空気が送られる位置にある場合の風向偏向板15の駆動速度よりも、風向偏向板15が検出エリアMに空気が送られる位置にある場合の風向偏向板15の駆動速度が大きくなるように制御する。風向偏向板15の駆動速度は、偏向駆動部15aの回転数を変えることによって変化する。即ち、流速制御手段46は、非検出エリアNには速い流速で空気を送るように制御し、且つ、検出エリアMには遅い流速で空気を送るように制御する。ここで、偏向駆動部15aの回転数を低速化して風向偏向板15の駆動速度が下がると、吹出口10bから吹き出される空気の量が増加するため、空気の流速が速くなる。一方、偏向駆動部15aの回転数を高速化して風向偏向板15の駆動速度が上がると、吹出口10bから吹き出される空気が広範囲に分散されるため、空気の流速が遅くなる。なお、流速制御手段46は、実施の形態1のように、送風機13の回転数を小さくする機能も有しているが、本実施の形態2では、送風機13の回転数が一定になるように制御している。 As shown in FIG. 9, the flow rate control means 46 controls the driving speed for changing the direction of the wind direction deflecting plate 15, and the air direction deflecting plate 15 is in a position where air is sent to the non-detection area N. Control is performed such that the driving speed of the wind direction deflecting plate 15 when the air direction deflecting plate 15 is at a position where air is sent to the detection area M is larger than the driving speed of the wind direction deflecting plate 15. The driving speed of the wind direction deflecting plate 15 is changed by changing the rotational speed of the deflection driving unit 15a. That is, the flow rate control means 46 controls to send air to the non-detection area N at a high flow rate and to send air to the detection area M at a low flow rate. Here, when the rotational speed of the deflection driving unit 15a is reduced to decrease the driving speed of the wind direction deflecting plate 15, the amount of air blown out from the outlet 10b increases, so that the air flow rate increases. On the other hand, when the rotational speed of the deflection driving unit 15a is increased and the driving speed of the wind direction deflecting plate 15 is increased, the air blown from the outlet 10b is dispersed over a wide range, so that the air flow rate is reduced. The flow rate control means 46 also has a function of reducing the rotation speed of the blower 13 as in the first embodiment, but in the second embodiment, the rotation speed of the blower 13 is constant. I have control.
 図10は、非検出エリアNの面積Sを示す斜視図であり、図11は、検出エリアMの面積Sを示す斜視図である。空気の流速は、空気の量から求められる。例えば、人に到達するときの空気の流速は、吹出口10bから吹き出される空気の量を、空気の到達点の風路面積Sで除算することによって求められる。図10に示すように、風向偏向板15の駆動速度が下がると、空気が流れる風路面積Sが減る。このため、空気の流速が速くなる。一方、図11に示すように、風向偏向板15の駆動速度が上がると、空気が流れる風路面積Sが増える。このため、空気の流速が遅くなる。 FIG. 10 is a perspective view showing the area S of the non-detection area N, and FIG. 11 is a perspective view showing the area S of the detection area M. The air flow rate is obtained from the amount of air. For example, the flow velocity of air when reaching a person is obtained by dividing the amount of air blown out from the air outlet 10b by the air passage area S at the air arrival point. As shown in FIG. 10, when the driving speed of the wind direction deflecting plate 15 decreases, the air passage area S through which the air flows decreases. For this reason, the flow velocity of air becomes high. On the other hand, as shown in FIG. 11, when the driving speed of the wind direction deflecting plate 15 increases, the air passage area S through which air flows increases. For this reason, the flow velocity of air becomes slow.
 図12は、本発明の実施の形態2に係る空調室内機200の動作を示すフローチャートである。次に、空調室内機200の動作について説明する。図12に示すように、撹拌判定手段41によって、室内空間の空気の撹拌が必要であるかが判定される(ステップST11)。空気の撹拌が不要と判定された場合(ステップST11のNo)、ステップST11に戻る。一方、空気の撹拌が必要と判定された場合(ステップST11のYes)、送風機13が駆動し、風向偏向板15が揺動する(ステップST12)。 FIG. 12 is a flowchart showing the operation of the air conditioning indoor unit 200 according to Embodiment 2 of the present invention. Next, the operation of the air conditioning indoor unit 200 will be described. As shown in FIG. 12, it is determined by the agitation determination means 41 whether it is necessary to agitate the air in the indoor space (step ST11). When it is determined that air agitation is unnecessary (No in step ST11), the process returns to step ST11. On the other hand, when it is determined that air agitation is necessary (Yes in step ST11), the blower 13 is driven and the wind direction deflecting plate 15 swings (step ST12).
 そして、姿勢検出手段45によって、風向偏向板15が検出エリアMに空気が送られる位置にあるかが判定される(ステップST13)。風向偏向板15が非検出エリアNに空気が送られる位置にある場合(ステップST13のNo)、撹拌流速以上の流速の空気となるように風向偏向板15の駆動速度が低速化される(ステップST16)。その後、ステップST11に戻って制御が繰り返される。一方、風向偏向板15が検出エリアMに空気が送られる位置にある場合(ステップST13のYes)、目標流速以下の流速の空気となるように風向偏向板15の駆動速度が高速化される(ステップST14)。即ち、風向偏向板15の駆動速度は、吹出口10bから人までの距離に応じた駆動速度に制御される(ステップST15)。その後、ステップST11に戻って制御が繰り返される。 Then, it is determined by the attitude detection means 45 whether or not the wind direction deflecting plate 15 is at a position where air is sent to the detection area M (step ST13). When the wind direction deflecting plate 15 is in a position where air is sent to the non-detection area N (No in step ST13), the driving speed of the wind direction deflecting plate 15 is reduced so that the air has a flow velocity equal to or higher than the stirring flow rate (step). ST16). Then, it returns to step ST11 and control is repeated. On the other hand, when the wind direction deflecting plate 15 is in a position where air is sent to the detection area M (Yes in step ST13), the driving speed of the wind direction deflecting plate 15 is increased so that the air has a flow velocity equal to or lower than the target flow velocity ( Step ST14). That is, the driving speed of the wind direction deflecting plate 15 is controlled to a driving speed corresponding to the distance from the outlet 10b to the person (step ST15). Then, it returns to step ST11 and control is repeated.
 本実施の形態2によれば、流速制御手段46は、風向偏向板15の方向を変える駆動速度を制御するものであって、風向偏向板15が非検出エリアNに空気が送られる位置にある場合の風向偏向板15の駆動速度よりも、風向偏向板15が検出エリアMに空気が送られる位置にある場合の風向偏向板15の駆動速度が大きくなるように制御する。風向偏向板15が非検出エリアNに空気が送られる位置にある場合、偏向駆動部15aの回転数を低速化して風向偏向板15の駆動速度が下がると、吹出口10bから吹き出された空気が、空調室内機200から遠い場所にまで搬送される。このため、空気の撹拌が促進され、室内空間の温度ムラを迅速に解消することができる。 According to the second embodiment, the flow velocity control means 46 controls the driving speed for changing the direction of the wind direction deflecting plate 15, and the wind direction deflecting plate 15 is at a position where air is sent to the non-detection area N. Control is performed so that the driving speed of the wind direction deflecting plate 15 when the air direction deflecting plate 15 is at a position where air is sent to the detection area M is larger than the driving speed of the wind direction deflecting plate 15 in this case. When the wind direction deflecting plate 15 is in a position where air is sent to the non-detection area N, when the rotational speed of the deflection driving unit 15a is reduced and the driving speed of the wind direction deflecting plate 15 is lowered, the air blown out from the outlet 10b is Then, it is transported to a place far from the air conditioner indoor unit 200. For this reason, stirring of air is accelerated | stimulated and the temperature nonuniformity of indoor space can be eliminated rapidly.
 また、風向偏向板15が検出エリアMに空気が送られる位置にある場合、偏向駆動部15aの回転数を高速化して風向偏向板15の駆動速度が上がると、吹出口10bから吹き出された空気が、広範囲に分散され、人に到達した際の空気の流速が遅くなる。このため、風が人に直接吹き付けられることにより生じる不快感であるドラフト感を抑制することができる。このように、空気の流速を風向偏向板15の駆動速度によって制御しても、人へのドラフト感を抑制しつつ室内空間の温度ムラを迅速に低減して快適性を向上させることができる。また、送風機13の回転数を変えないため、送風量を低下させない。このため、室内空気の撹拌を更に促進することができる。 Further, when the wind direction deflecting plate 15 is in a position where air is sent to the detection area M, the air blown from the outlet 10b is increased when the rotational speed of the deflection driving unit 15a is increased and the driving speed of the wind direction deflecting plate 15 is increased. However, it is dispersed over a wide area, and the flow velocity of air when it reaches a person becomes slow. For this reason, it is possible to suppress a draft feeling which is an uncomfortable feeling caused by direct blowing of wind on a person. As described above, even if the air flow rate is controlled by the driving speed of the wind direction deflecting plate 15, it is possible to quickly reduce temperature unevenness in the indoor space and improve comfort while suppressing a draft feeling to a person. Moreover, since the rotation speed of the air blower 13 is not changed, the air flow rate is not reduced. For this reason, stirring of room air can be further promoted.
 なお、流速制御手段46は、非検出エリアNに送風される場合、人検出部16から垂直に下ろされた垂線からの角度が小さいほど空気の流速が小さくなるように、風向偏向板15を制御するように構成されてもよい。具体的には、流速制御手段46は、風向偏向板15が非検出エリアNのうち水平方向に空気が送られる位置にある場合の空気の流速を、風向偏向板15が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の空気の流速よりも小さくなるように構成されてもよい。即ち、流速制御手段46は、風向偏向板15が非検出エリアNのうち水平方向に空気が送られる位置にある場合の風向偏向板15の駆動速度を、風向偏向板15が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の風向偏向板15の駆動速度が大きくなるように制御する。 When the air flow is blown to the non-detection area N, the flow velocity control means 46 controls the wind direction deflecting plate 15 so that the flow velocity of the air becomes smaller as the angle from the perpendicular line lowered from the human detection unit 16 becomes smaller. It may be configured to. Specifically, the flow rate control means 46 determines the air flow rate when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 15 is in the non-detection area N. You may comprise so that it may become smaller than the flow velocity of air in the position where air is sent in directions other than a horizontal direction. That is, the flow rate control means 46 determines the driving speed of the wind direction deflecting plate 15 when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N. Control is performed so that the driving speed of the wind direction deflecting plate 15 when the air is in a position other than the horizontal direction is increased.
 風向偏向板15が水平方向に空気が送られる位置にある場合に、空気の流速が速いと、壁に当たった空気が天井側に流れ、空気中の汚れが天井面に付着するスマッジングが発生するおそれがある。本実施の形態2は、風向偏向板15が非検出エリアNのうち水平方向に空気が送られる位置にある場合の空気の流速を、風向偏向板15が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の空気の流速よりも小さくなるように制御することによって、壁に当たった空気が天井側に流れ難くなる。このため、空気中のちり等の汚れが天井面に付着するスマッジングの発生を抑制することができる。 When the air deflecting plate 15 is in a position where air is sent in the horizontal direction, if the flow velocity of air is high, the air hitting the wall flows to the ceiling side, and smudging occurs where dirt in the air adheres to the ceiling surface. There is a fear. In the second embodiment, the flow rate of air when the wind direction deflecting plate 15 is in a position where air is sent in the horizontal direction in the non-detection area N is the same as that of the non-detection area N. By controlling so as to be smaller than the flow velocity of air in a position where air is sent in the direction, it is difficult for air hitting the wall to flow to the ceiling side. For this reason, it is possible to suppress the occurrence of smudging in which dirt such as dust in the air adheres to the ceiling surface.
 なお、空気の流速は、送風機13の回転数及び風向偏向板15の駆動速度の両方で変えてもよい。 The air flow rate may be changed by both the rotational speed of the blower 13 and the driving speed of the wind direction deflecting plate 15.
実施の形態3.
 図13は、本発明の実施の形態3に係る空調室内機300を示す底面図である。本実施の形態3は、吹出口320及び風向偏向板325がそれぞれ4つ設けられている点で、実施の形態1と相違する。本実施の形態3では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 3 FIG.
FIG. 13 is a bottom view showing an air conditioning indoor unit 300 according to Embodiment 3 of the present invention. The third embodiment is different from the first embodiment in that four outlets 320 and four wind direction deflecting plates 325 are provided. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
 図13に示すように、空調室内機3は、例えば4方向カセット形等とも呼称される機器である。筐体310には、4つの吹出口320a,320b,320c,320dが形成され、4つの風向偏向板325a,325b,325c,325dが、それぞれの吹出口320a,320b,320c,320dに設けられている。以下の説明では、4つの吹出口320a,320b,320c,320dを、吹出口320と呼称し、4つの風向偏向板325a,325b,325c,325dを風向偏向板325と呼称する場合がある。なお、吹出口320及び風向偏向板325の数は、4つに限らず、2つでも3つでも5つ以上でもよい。 As shown in FIG. 13, the air conditioning indoor unit 3 is a device called a four-way cassette type, for example. Four air outlets 320a, 320b, 320c, and 320d are formed in the housing 310, and four wind direction deflecting plates 325a, 325b, 325c, and 325d are provided in the air outlets 320a, 320b, 320c, and 320d, respectively. Yes. In the following description, the four outlets 320a, 320b, 320c, and 320d may be referred to as the outlet 320, and the four wind direction deflecting plates 325a, 325b, 325c, and 325d may be referred to as the wind direction deflecting plate 325. Note that the number of the air outlets 320 and the wind direction deflecting plates 325 is not limited to four, and may be two, three, or five or more.
 図14は、本発明の実施の形態3に係る空調室内機3を示す断面図である。図14に示すように、筐体310は、中空部を有する箱体であり、空気を吸い込む吸込口310aと、空気を吹き出す吹出口320とが形成されている。グリル311は、筐体310の吸込口310aに設けられ、吸込口310aを覆う格子状の部材である。フィルタ312は、吸込口310aにおいてグリル311の下流に設けられ、グリル311を通過した空気を除塵する。送風機313は、筐体310の内部においてフィルタ312の下流に設けられ、熱交換器314に空気を送る機器である。送風機313は、ファンモータ313aを有し、ファンモータ313aは、送風機313を回転駆動させる機器である。熱交換器314は、筐体310の内部において送風機313の下流に設けられ、空気と冷媒とを熱交換する機器である。熱交換器314は、例えばフィンチューブ型の熱交換器である。 FIG. 14 is a cross-sectional view showing the air conditioning indoor unit 3 according to Embodiment 3 of the present invention. As shown in FIG. 14, the housing 310 is a box having a hollow portion, and is formed with a suction port 310a for sucking air and a blower port 320 for blowing air. The grill 311 is a lattice-shaped member that is provided in the suction port 310a of the housing 310 and covers the suction port 310a. The filter 312 is provided downstream of the grill 311 at the suction port 310a, and removes dust that has passed through the grill 311. The blower 313 is a device that is provided downstream of the filter 312 in the housing 310 and sends air to the heat exchanger 314. The blower 313 has a fan motor 313a, and the fan motor 313a is a device that rotationally drives the blower 313. The heat exchanger 314 is a device that is provided downstream of the blower 313 inside the housing 310 and performs heat exchange between air and refrigerant. The heat exchanger 314 is, for example, a fin tube type heat exchanger.
 風向偏向板325は、それぞれの吹出口320に設けられ、揺動又は回転して、吹出口320から吹き出される空気の吹き出し方向を変える部材である。風向偏向板325には、偏向駆動部315aが接続されており、偏向駆動部315aは、回転軸を中心として風向偏向板325を回転駆動させる機器である。偏向駆動部15aは、例えばステッピングモータから構成される。風向偏向板325の位置は、偏向駆動部315aを駆動するためのパルス数によって決定される。なお、風向偏向板325の位置検知は、別途ロータリーエンコーダ等のセンサを用いて行われてもよい。 The wind direction deflecting plate 325 is a member that is provided at each of the air outlets 320 and changes the air blowing direction of the air blown from the air outlets 320 by swinging or rotating. A deflection drive unit 315a is connected to the wind direction deflection plate 325, and the deflection drive unit 315a is a device that rotationally drives the wind direction deflection plate 325 about the rotation axis. The deflection drive unit 15a is constituted by a stepping motor, for example. The position of the wind direction deflecting plate 325 is determined by the number of pulses for driving the deflection driving unit 315a. Note that the position detection of the wind direction deflecting plate 325 may be performed using a separate sensor such as a rotary encoder.
 人検出部316は、筐体310の下面である居住空間に向かった面に取り付けられており、赤外線センサを有する。人検出部316は、赤外線センサが室内空間を走査し、得られた温度情報に基づいて、人の位置を検出する。 The human detection unit 316 is attached to a surface facing the living space, which is the lower surface of the housing 310, and includes an infrared sensor. In the human detection unit 316, the infrared sensor scans the indoor space, and detects the position of the person based on the obtained temperature information.
 制御部4は、空調室内機3の内部の機器等の動作を制御する機器である。制御部4は、例えば風向偏向板325に接続された偏向駆動部315a、送風機313に接続されたファンモータ313a及び人検出部316の検出動作の制御を行う。なお、本実施の形態3では、流速制御手段46は、4つの吹出口320から吹き出される空気の流速を、それぞれ独立して制御する。 The control unit 4 is a device that controls the operation of the devices inside the air conditioning indoor unit 3. For example, the control unit 4 controls the detection operation of the deflection driving unit 315 a connected to the wind direction deflecting plate 325, the fan motor 313 a connected to the blower 313, and the human detection unit 316. In the third embodiment, the flow velocity control means 46 independently controls the flow velocity of the air blown out from the four outlets 320.
 本実施の形態3によれば、人が検出されたエリア以外の非検出エリアNに吹き出される空気の流速よりも、人が検出された検出エリアMに吹き出される空気の流速が小さくなるように制御される。即ち、非検出エリアNには速い流速で空気を送るため、熱交換器14によって冷暖房された空気が、空調室内機3から遠い場所にまで搬送される。このため、空気の撹拌が促進される。従って、室内空間の温度ムラを迅速に解消することができる。また、検出エリアMには遅い流速で空気を送るため、風が人に直接吹き付けられることにより生じる不快感であるドラフト感を抑制することができる。以上より、空調室内機3は、人へのドラフト感を抑制しつつ室内空間の温度ムラを迅速に低減して快適性を向上させることができる。 According to the third embodiment, the flow velocity of the air blown into the detection area M where the person is detected is smaller than the flow velocity of the air blown into the non-detection area N other than the area where the person is detected. To be controlled. That is, since air is sent to the non-detection area N at a high flow rate, the air that has been cooled and heated by the heat exchanger 14 is transported to a place far from the air conditioning indoor unit 3. For this reason, stirring of air is promoted. Therefore, temperature unevenness in the indoor space can be quickly eliminated. Further, since air is sent to the detection area M at a slow flow rate, it is possible to suppress a draft feeling that is an uncomfortable feeling caused by the direct blowing of wind on a person. As described above, the air-conditioning indoor unit 3 can quickly reduce the temperature unevenness in the indoor space and improve the comfort while suppressing the draft feeling to the person.
 本実施の形態3は、筐体310には、複数の吹出口320が形成され、複数の風向偏向板325は、それぞれの吹出口320に設けられており、流速制御手段46は、複数の吹出口320から吹き出される空気の流速を、それぞれ独立して制御するものである。このように、複数の吹出口320及び風向偏向板325が設けられていても、実施の形態1と同様に、人へのドラフト感を抑制しつつ室内空間の温度ムラを迅速に低減して快適性を向上させることができる。更に、制御部4は、人に到達するときの空気の流速が目標流速(0.2[m/s])以下となるように制御している。これにより、人へのドラフト感を確実に抑制しつつ、冷暖房された空気を検出エリアMに送ることができ、快適性をより向上させることができる。 In the third embodiment, a plurality of air outlets 320 are formed in the casing 310, a plurality of wind direction deflecting plates 325 are provided in the respective air outlets 320, and the flow rate control means 46 includes a plurality of air outlets 320. The flow rate of the air blown out from the outlet 320 is independently controlled. As described above, even when the plurality of air outlets 320 and the wind direction deflecting plate 325 are provided, the temperature unevenness in the indoor space can be quickly reduced and comfortable as in the first embodiment, while suppressing the draft feeling to the person. Can be improved. Furthermore, the control unit 4 performs control so that the air flow velocity when reaching the person is equal to or less than the target flow velocity (0.2 [m / s]). Thereby, the air cooled and heated can be sent to the detection area M while reliably suppressing the draft feeling to the person, and the comfort can be further improved.
 なお流速制御手段46は、非検出エリアNに送風される場合、人検出部16から垂直に下ろされた垂線からの角度が小さいほど空気の流速が小さくなるように、送風機13を制御するように構成されてもよい。具体的には、流速制御手段46は、風向偏向板325が非検出エリアNのうち水平方向に空気が送られる位置にある場合の空気の流速を、風向偏向板325が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の空気の流速よりも小さくなるように構成されてもよい。即ち、流速制御手段46は、風向偏向板325が非検出エリアNのうち水平方向に空気が送られる位置にある場合の送風機313の回転数を、風向偏向板325が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の送風機313の回転数が小さくなるように制御する。 When the air flow is blown to the non-detection area N, the flow velocity control means 46 controls the blower 13 so that the flow velocity of the air becomes smaller as the angle from the perpendicular line lowered vertically from the human detection unit 16 becomes smaller. It may be configured. Specifically, the flow rate control means 46 determines the air flow rate when the wind direction deflecting plate 325 is in a position where the air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 325 is in the non-detection area N. You may comprise so that it may become smaller than the flow velocity of air in the position where air is sent in directions other than a horizontal direction. That is, the flow rate control means 46 determines the rotation speed of the blower 313 when the wind direction deflecting plate 325 is in a position where air is sent in the horizontal direction in the non-detection area N, and the wind direction deflecting plate 325 is horizontal in the non-detection area N. It controls so that the rotation speed of the air blower 313 when it exists in the position where air is sent in directions other than a direction becomes small.
 風向偏向板325が水平方向に空気が送られる位置にある場合に、空気の流速が速いと、壁に当たった空気が天井側に流れ、空気中の汚れが天井面に付着するスマッジングが発生するおそれがある。本実施の形態1は、風向偏向板325が非検出エリアNのうち水平方向に空気が送られる位置にある場合の空気の流速を、風向偏向板325が非検出エリアNのうち水平方向以外の方向に空気が送られる位置にある場合の空気の流速よりも小さくなるように制御することによって、壁に当たった空気が天井側に流れ難くなる。このため、空気中の汚れが天井面に付着するスマッジングの発生を抑制することができる。 When the airflow direction deflector 325 is in a position where air is sent in the horizontal direction, if the flow velocity of air is high, air hitting the wall flows to the ceiling side, and smudging occurs where dirt in the air adheres to the ceiling surface. There is a fear. In the first embodiment, the flow rate of air when the wind direction deflecting plate 325 is at a position where air is sent in the horizontal direction in the non-detection area N is the same as that of the non-detection area N. By controlling so as to be smaller than the flow velocity of air in a position where air is sent in the direction, it is difficult for air hitting the wall to flow to the ceiling side. For this reason, generation | occurrence | production of the smudge which the dirt in the air adheres to a ceiling surface can be suppressed.
 また、実施の形態2のように、空気の流速を風向偏向板325の駆動速度によって制御しても、人へのドラフト感を抑制しつつ室内空間の温度ムラを迅速に低減して快適性を向上させることができる。この場合、送風機313の回転数を変えないため、送風量を低下させない。このため、室内空気の撹拌を更に促進することができる。 Further, as in the second embodiment, even if the air flow rate is controlled by the driving speed of the wind direction deflecting plate 325, the temperature unevenness in the indoor space can be quickly reduced while the draft feeling to the person is suppressed, thereby improving the comfort. Can be improved. In this case, since the rotation speed of the blower 313 is not changed, the amount of blown air is not reduced. For this reason, stirring of room air can be further promoted.
 (第1変形例)
 図15は、本発明の実施の形態3の第1変形例に係る空調室内機400を示す断面図である。図15に示すように、第1変形例では、流速制御手段46は、検出エリアMのうち人の数が少ないエリアEに吹き出される空気の流速よりも、検出エリアMのうち人の数が多いエリアFに吹き出される空気の流速が小さくなるように制御する。具体的には、流速制御手段46は、人の数が少ないエリアEに空気が送られる場合の風向偏向板325の駆動速度よりも、人の数が多いエリアFに空気が送られる場合の風向偏向板325の駆動速度が大きくなるように制御する。これにより、人の数が多いほど、空気の流速が遅くなるため、室内空間にいる全ての人において、ドラフト感を抑制することができる。
(First modification)
FIG. 15 is a cross-sectional view showing an air conditioning indoor unit 400 according to a first modification of the third embodiment of the present invention. As shown in FIG. 15, in the first modified example, the flow rate control means 46 is configured so that the number of people in the detection area M is higher than the flow rate of air blown into the area E where the number of people is small. Control is performed so that the flow velocity of the air blown into the large area F becomes small. Specifically, the flow rate control means 46 determines the wind direction when air is sent to the area F where the number of people is larger than the driving speed of the wind direction deflecting plate 325 when air is sent to the area E where the number of people is small. Control is performed so that the driving speed of the deflection plate 325 increases. As a result, the greater the number of people, the slower the air flow rate, so that the draft feeling can be suppressed for all people in the indoor space.
 また、空気の流速を遅くする上で、人の数が多いエリアFには、風向偏向板325の駆動速度を大きくすることで対応しているため、送風機313の回転数を低速化する時間を短くすることができる。このため、送風量の低下を抑制することができる。 Further, in order to reduce the air flow rate, the area F with a large number of people can be dealt with by increasing the driving speed of the wind direction deflecting plate 325. Therefore, it takes time to reduce the rotational speed of the blower 313. Can be shortened. For this reason, the fall of the ventilation volume can be suppressed.
 (第2変形例)
 図16は、本発明の実施の形態3の第2変形例に係る空調室内機500を示す断面図である。図16に示すように、第2変形例では、制御部4は、検出エリアMのうち人の数が多いエリアに対応する風向偏向板325の駆動範囲Kを、非検出エリアNに空気が送られる位置に制限し、検出エリアMのうち人の数が少ないエリアに対応する風向偏向板325の駆動範囲Jを、非検出エリアN及び検出エリアMに空気が送られる位置に制御する。これにより、人の数が多いエリアにおいては、風が人に直接吹き付けられることがほぼない。また、人の数が少ないエリアに吹き出される空気の流速は、非検出エリアNに吹き出される空気の流速より遅い。このため、室内空間にいる全ての人において、ドラフト感を抑制することができる。
(Second modification)
FIG. 16: is sectional drawing which shows the air-conditioning indoor unit 500 which concerns on the 2nd modification of Embodiment 3 of this invention. As shown in FIG. 16, in the second modification, the control unit 4 sends air to the non-detection area N through the driving range K of the wind direction deflector 325 corresponding to the area of the detection area M where the number of people is large. The driving range J of the wind direction deflecting plate 325 corresponding to an area where the number of people is small in the detection area M is controlled to a position where air is sent to the non-detection area N and the detection area M. Thereby, in an area with a large number of people, the wind is hardly blown directly on the people. Further, the flow velocity of the air blown to the area with a small number of people is slower than the flow velocity of the air blown to the non-detection area N. For this reason, a draft feeling can be suppressed in all persons in the indoor space.
 また、人の数が多いエリアには、空気を送らないため、送風機313の回転数を低速化する必要がない。このため、送風機313の回転数を低速化する時間を短くすることができる。従って、送風量の低下を抑制することができる。 Also, since air is not sent to an area with a large number of people, it is not necessary to reduce the rotational speed of the blower 313. For this reason, the time for reducing the rotational speed of the blower 313 can be shortened. Accordingly, it is possible to suppress a decrease in the blowing rate.
 1 空気調和装置、2 空調室外機、3 空調室内機、4 制御部、5 冷媒回路、6 圧縮機、7 流路切替装置、8 室外熱交換器、8a 室外送風機、9 膨張部、10 筐体、10a 吸込口、10b 吹出口、11 グリル、12 フィルタ、13 送風機、13a ファンモータ、14 熱交換器、15 風向偏向板、15a 偏向駆動部、16 人検出部、41 撹拌判定手段、42 距離測定手段、43 流速演算手段、44 エリア作成手段、45 姿勢検出手段、46 流速制御手段、100 空調室内機、117 投受光器、200 空調室内機、300 空調室内機、310 筐体、310a 吸込口、311 グリル、312 フィルタ、313 送風機、313a ファンモータ、314 熱交換器、315a 偏向駆動部、316 人検出部、320,320a,320b,320c,320d 吹出口、325,325a,325b,325c,325d 風向偏向板、400 空調室内機、500 空調室内機、A 人、D 距離、E エリア、F エリア、H 距離、J 駆動範囲、K 駆動範囲、M 検出エリア、N 非検出エリア、S 面積。 1 air conditioner, 2 air conditioner outdoor unit, 3 air conditioner indoor unit, 4 control unit, 5 refrigerant circuit, 6 compressor, 7 flow switching device, 8 outdoor heat exchanger, 8a outdoor blower, 9 expansion unit, 10 housing 10a inlet, 10b outlet, 11 grille, 12 filter, 13 blower, 13a fan motor, 14 heat exchanger, 15 wind direction deflector, 15a deflection drive unit, 16 person detection unit, 41 stirring determination means, 42 distance measurement Means, 43 flow velocity calculation means, 44 area creation means, 45 attitude detection means, 46 flow velocity control means, 100 air conditioner indoor unit, 117 light emitter / receiver, 200 air conditioner indoor unit, 300 air conditioner indoor unit, 310 housing, 310a inlet, 311 grill, 312 filter, 313 blower, 313a fan motor, 314 heat exchanger, 315 Deflection drive unit, 316 human detection unit, 320, 320a, 320b, 320c, 320d outlet, 325, 325a, 325b, 325c, 325d wind direction deflecting plate, 400 air conditioning indoor unit, 500 air conditioning indoor unit, A person, D distance, E area, F area, H distance, J drive range, K drive range, M detection area, N non-detection area, S area.

Claims (12)

  1.  空気を吹き出す吹出口が形成された筐体と、
     前記筐体の内部に設けられ、空気と冷媒とを熱交換する熱交換器と、
     前記筐体の内部に設けられ、前記熱交換器において熱交換された空気を前記吹出口に送風する送風機と、
     前記吹出口に設けられ、前記吹出口から吹き出される空気の吹き出し方向を変える風向偏向板と、
     人の位置を検出する人検出部と、
     前記吹出口から吹き出される空気の流速を制御する制御部と、を備え、
     前記制御部は、
     前記人検出部によって人が検出されたエリア以外の非検出エリアの空気の流速よりも、前記人検出部によって人が検出された検出エリアの空気の流速が小さくなるように、前記送風機又は前記風向偏向板を制御する流速制御手段を有する
     空調室内機。
    A housing in which an air outlet for blowing out air is formed;
    A heat exchanger provided inside the housing for exchanging heat between the air and the refrigerant;
    A blower that is provided inside the housing and blows air that has undergone heat exchange in the heat exchanger to the outlet;
    A wind direction deflector that is provided at the air outlet and changes a blowing direction of air blown out from the air outlet;
    A human detector for detecting the position of the person;
    A control unit for controlling the flow rate of air blown from the blowout port,
    The controller is
    The blower or the wind direction so that the air flow rate in the detection area where the person is detected by the person detection unit is smaller than the air flow rate in the non-detection area other than the area where the person is detected by the human detection unit. An air conditioning indoor unit having flow velocity control means for controlling the deflection plate.
  2.  前記流速制御手段は、
     前記送風機の回転数を制御するものであって、
     前記風向偏向板が前記非検出エリアに空気が送られる位置にある場合の前記送風機の回転数よりも、前記風向偏向板が前記検出エリアに空気が送られる位置にある場合の前記送風機の回転数が小さくなるように制御する
     請求項1記載の空調室内機。
    The flow rate control means includes
    Controlling the rotational speed of the blower,
    The rotation speed of the blower when the wind direction deflection plate is at a position where air is sent to the detection area, rather than the rotation speed of the blower when the wind direction deflection plate is at a position where air is sent to the non-detection area The air conditioning indoor unit according to claim 1, wherein the air conditioning indoor unit is controlled so as to be small.
  3.  前記流速制御手段は、
     前記風向偏向板の方向を変える駆動速度を制御するものであって、
     前記風向偏向板が前記非検出エリアに空気が送られる位置にある場合の前記風向偏向板の駆動速度よりも、前記風向偏向板が前記検出エリアに空気が送られる位置にある場合の前記風向偏向板の駆動速度が大きくなるように制御する
     請求項1又は2に記載の空調室内機。
    The flow rate control means includes
    Controlling the driving speed for changing the direction of the wind direction deflecting plate,
    The wind direction deflection when the wind direction deflection plate is at a position where air is sent to the detection area, compared to the driving speed of the wind direction deflection plate when the wind direction deflection plate is located at a position where air is sent to the non-detection area. The air conditioning indoor unit according to claim 1, wherein the control is performed so that the driving speed of the plate is increased.
  4.  前記吹出口から人までの距離を求める距離測定手段を更に備える
     請求項1~3のいずれか1項に記載の空調室内機。
    The air conditioning indoor unit according to any one of claims 1 to 3, further comprising distance measuring means for obtaining a distance from the air outlet to a person.
  5.  前記制御部は、
     前記距離測定手段によって測定された距離に基づいて、人に到達するときの流速が目標流速以下になるように前記吹出口から吹き出される空気の流速を演算する流速演算手段を更に有する
     請求項4に記載の空調室内機。
    The controller is
    5. The apparatus according to claim 4, further comprising: a flow rate calculating unit that calculates a flow rate of air blown from the air outlet so that a flow rate when reaching a person is equal to or less than a target flow rate based on the distance measured by the distance measuring unit. The air conditioning indoor unit described in 1.
  6.  前記流速演算手段は、
     前記検出エリアの流速を、
     前記吹出口から吹き出される空気の量を、前記検出エリアの面積で除算することによって求める
     請求項5に記載の空調室内機。
    The flow velocity calculation means is
    The flow rate in the detection area is
    The air-conditioning indoor unit according to claim 5, wherein the air-conditioning indoor unit is obtained by dividing an amount of air blown from the blow-out port by an area of the detection area.
  7.  前記制御部は、
     前記人検出部によって検出された人の位置に基づいて、前記非検出エリア及び前記検出エリアを作成するエリア作成手段を更に有する
     請求項1~6のいずれか1項に記載の空調室内機。
    The controller is
    The air conditioning indoor unit according to any one of claims 1 to 6, further comprising area creating means for creating the non-detection area and the detection area based on the position of the person detected by the person detection unit.
  8.  前記流速制御手段は、
     前記非検出エリアに送風される場合、前記人検出部から垂直に下ろされた垂線からの角度が小さいほど空気の流速が小さくなるように、前記送風機又は前記風向偏向板を制御する
     請求項1~7のいずれか1項に記載の空調室内機。
    The flow rate control means includes
    When the air is blown to the non-detection area, the blower or the wind direction deflecting plate is controlled so that the flow velocity of the air becomes smaller as the angle from the perpendicular line dropped from the human detection unit becomes smaller. The air conditioning indoor unit according to any one of 7 above.
  9.  前記筐体には、複数の前記吹出口が形成され、
     複数の前記風向偏向板は、それぞれの前記吹出口に設けられており、
     前記流速制御手段は、
     複数の前記吹出口から吹き出される空気の流速を、それぞれ独立して制御するものである
     請求項1~8のいずれか1項に記載の空調室内機。
    The casing is formed with a plurality of the outlets,
    The plurality of wind direction deflecting plates are provided at each of the air outlets,
    The flow rate control means includes
    The air-conditioning indoor unit according to any one of claims 1 to 8, wherein flow rates of air blown out from the plurality of air outlets are independently controlled.
  10.  前記流速制御手段は、
     複数の前記風向偏向板の駆動範囲又は駆動速度を、それぞれ独立して制御するものである
     請求項9に記載の空調室内機。
    The flow rate control means includes
    The air conditioning indoor unit according to claim 9, wherein the driving range or driving speed of the plurality of wind direction deflecting plates is independently controlled.
  11.  前記流速制御手段は、
     前記検出エリアのうち人の数が少ないエリアに吹き出される空気の流速よりも、前記検出エリアのうち人の数が多いエリアに吹き出される空気の流速が小さくなるように、前記送風機又は前記風向偏向板を制御する
     請求項9又は10に記載の空調室内機。
    The flow rate control means includes
    The air blower or the wind direction is set so that the flow velocity of air blown to an area with a large number of people in the detection area is smaller than the flow velocity of air blown to an area with a small number of people in the detection area. The air conditioning indoor unit according to claim 9 or 10, wherein the deflecting plate is controlled.
  12.  前記制御部は、
     前記検出エリアのうち人の数が多いエリアに対応する前記風向偏向板の駆動範囲を、前記非検出エリアに空気が送られる位置に制限し、前記検出エリアのうち人の数が少ないエリアに対応する前記風向偏向板の駆動範囲を、前記非検出エリア及び前記検出エリアに空気が送られる位置に制御する
     請求項9~11のいずれか1項に記載の空調室内機。
    The controller is
    The driving range of the wind direction deflector corresponding to the area where the number of people is large in the detection area is limited to the position where air is sent to the non-detection area, and the area corresponding to the small number of people in the detection area is supported. The air conditioning indoor unit according to any one of claims 9 to 11, wherein a driving range of the wind direction deflecting plate is controlled to a position where air is sent to the non-detection area and the detection area.
PCT/JP2017/015671 2017-04-19 2017-04-19 Air conditioning indoor unit WO2018193534A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/015671 WO2018193534A1 (en) 2017-04-19 2017-04-19 Air conditioning indoor unit
JP2019513126A JP6727418B2 (en) 2017-04-19 2017-04-19 Air conditioning indoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015671 WO2018193534A1 (en) 2017-04-19 2017-04-19 Air conditioning indoor unit

Publications (1)

Publication Number Publication Date
WO2018193534A1 true WO2018193534A1 (en) 2018-10-25

Family

ID=63855670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015671 WO2018193534A1 (en) 2017-04-19 2017-04-19 Air conditioning indoor unit

Country Status (2)

Country Link
JP (1) JP6727418B2 (en)
WO (1) WO2018193534A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115817117A (en) * 2023-02-10 2023-03-21 宁波舜宇精工股份有限公司 Automobile electric air outlet control method and system, storage medium and intelligent terminal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279737A (en) * 1990-03-12 1991-12-10 Mitsubishi Electric Corp Air conditioner
JPH0875217A (en) * 1994-09-09 1996-03-19 Matsushita Seiko Co Ltd Factory air-conditioning system
JPH0894157A (en) * 1994-09-29 1996-04-12 Daikin Ind Ltd Air volume regulating device of air conditioner
JP2006220405A (en) * 2005-01-12 2006-08-24 Mitsubishi Electric Corp Air conditioner
JP2015068603A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Air conditioner
WO2016117088A1 (en) * 2015-01-22 2016-07-28 三菱電機株式会社 Indoor unit for air conditioner, air conditioner, and airflow control method
WO2016189867A1 (en) * 2015-05-27 2016-12-01 パナソニックIpマネジメント株式会社 Air blower

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279737A (en) * 1990-03-12 1991-12-10 Mitsubishi Electric Corp Air conditioner
JPH0875217A (en) * 1994-09-09 1996-03-19 Matsushita Seiko Co Ltd Factory air-conditioning system
JPH0894157A (en) * 1994-09-29 1996-04-12 Daikin Ind Ltd Air volume regulating device of air conditioner
JP2006220405A (en) * 2005-01-12 2006-08-24 Mitsubishi Electric Corp Air conditioner
JP2015068603A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Air conditioner
WO2016117088A1 (en) * 2015-01-22 2016-07-28 三菱電機株式会社 Indoor unit for air conditioner, air conditioner, and airflow control method
WO2016189867A1 (en) * 2015-05-27 2016-12-01 パナソニックIpマネジメント株式会社 Air blower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115817117A (en) * 2023-02-10 2023-03-21 宁波舜宇精工股份有限公司 Automobile electric air outlet control method and system, storage medium and intelligent terminal

Also Published As

Publication number Publication date
JP6727418B2 (en) 2020-07-22
JPWO2018193534A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6734624B2 (en) Indoor unit of air conditioner
EP2498019B1 (en) Indoor unit for air conditioner
JP5281373B2 (en) Air conditioner and control method thereof
AU2011211125B2 (en) Ceiling-mounted indoor unit for air conditioning apparatus
JP6157339B2 (en) Indoor unit and air conditioner
JP6213539B2 (en) Indoor unit of air conditioner
JP4478082B2 (en) Control method of air conditioner
US20120214398A1 (en) Indoor unit of air conditioning apparatus
KR20190042201A (en) Air conditioner
WO2016051789A1 (en) Indoor unit for air conditioning device
JP2011185591A (en) Indoor unit of air conditioning device
WO2018193534A1 (en) Air conditioning indoor unit
CN211041167U (en) Indoor unit of air conditioner
JP2019138504A (en) Air conditioner
JP5316473B2 (en) Air conditioner
JP2016183806A (en) Air conditioner
JP6038264B1 (en) Air conditioning system
JP2019190766A (en) Air conditioner
JP6562139B2 (en) Refrigeration equipment
JP7118264B2 (en) Exhaust grill, indoor unit and air conditioner
JP7209844B2 (en) Exhaust grill, indoor unit and air conditioner
JP3864814B2 (en) Air conditioner
JP7112035B2 (en) air conditioner
WO2022230055A1 (en) Blower device and blower system
KR100789710B1 (en) Air conditioner for ceiling

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019513126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906542

Country of ref document: EP

Kind code of ref document: A1