WO2018193435A1 - Method and device for cleaning of ionizing electrodes - Google Patents

Method and device for cleaning of ionizing electrodes Download PDF

Info

Publication number
WO2018193435A1
WO2018193435A1 PCT/IL2017/050459 IL2017050459W WO2018193435A1 WO 2018193435 A1 WO2018193435 A1 WO 2018193435A1 IL 2017050459 W IL2017050459 W IL 2017050459W WO 2018193435 A1 WO2018193435 A1 WO 2018193435A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
spring
coils
ionizing
coil spring
Prior art date
Application number
PCT/IL2017/050459
Other languages
French (fr)
Inventor
Yefim Riskin
Original Assignee
Ionics - Ionic Systems Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ionics - Ionic Systems Ltd. filed Critical Ionics - Ionic Systems Ltd.
Priority to EP17906654.3A priority Critical patent/EP3612311A4/en
Priority to PCT/IL2017/050459 priority patent/WO2018193435A1/en
Priority to CN201780091748.9A priority patent/CN110740816B/en
Publication of WO2018193435A1 publication Critical patent/WO2018193435A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/743Cleaning the electrodes by using friction, e.g. by brushes or sliding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/743Cleaning the electrodes by using friction, e.g. by brushes or sliding elements
    • B03C3/746Electricity supply or control systems therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/06Ionising electrode being a needle

Definitions

  • the present invention relates to the methods and the devices for cleaning of ion ionizing electrodes and it is applicable to home appliances and also in industry.
  • the cleaning device disclosed in WO/2012/176099 is formed either as a layer of porous fiber material or a layer of fine-dispersed balls arranged between two grids with cells whose size is bigger than the diameter of the ionizing electrode. At the same time the entire device is designed as a nonstandard solenoid where the permanent magnet and the cleaning device mount are shifted with respect to the fixed coil.
  • Another disadvantage is the complicated procedure of selection of the thickness of the porous fiber material or of the diameter of the fine-dispersed balls and also the grids for different diameters of ionizing electrode.
  • US Patent No. 8,106,367 discloses an ionizer wherein a fixed array of planar electrodes is wiped between adjacent coils of a spring fixed to a manual slider which functions as a cleaning element.
  • the spring axis is parallel to a line normal to the plane of the electrodes, which are cleaned as the spring is moved manually toward the electrodes while maintaining a constant distance between the spring axis and the line normal to the plane of the electrodes.
  • Such a device cannot be used with a standard ionizing electrode whose tip diameter is much smaller than the diameter of the shank of the electrode.
  • US Patent No. 8,957,571 discloses an ionizing electrode with a cleaning mechanism wherein the cleaning mechanism is formed as a fixed tube with the ionizing electrode connected to the solenoid core travelling inside it.
  • a drawback of the device is the impossibility to use it for ionizing electrodes with needle-type ionizing edges or for ionizing electrodes made of materials such as tungsten or brittle materials such as silicon.
  • US 2015/0336109 discloses methods and apparatus for cleaning contaminant byproducts off of ionizing wire electrodes in ionizing blowers.
  • the apparatus includes a housing with a gas-flow channel, an stationary ionizing wire, and a rotatable frame with supports for resiliently supporting the stationary ionizing wire within the channel.
  • the ionizing wire produces charge carriers and has a surface that develops a layer of contaminant byproducts when an ionizing signal is applied thereto.
  • the frame is rotatably mounted such that the supports clean the layer of contaminant byproducts off of the surface of the ionizing wire when the frame is rotated, by physical and/or by electrical means.
  • US 2015/0236484 discloses an ionizer, including an ionizing electrode for ionizing air and having a longitudinal first direction; and a cleaning member including a plurality of spaced apart bundles of bristles for cleaning the ionizing electrode when the cleaning member comes into contact with the ionizing electrode, each bundle of bristles in the plurality of spaced apart bundles of bristles being offset relative to the other bundles of bristles in the plurality of spaced apart bundles of bristles along the first direction and along a second direction perpendicular to the first direction.
  • An object of the present invention is to reduce or eliminate the drawbacks of the known devices and to provide a simpler device that is effective over the complete active length of the electrode.
  • the essence of the proposed invention is to use a spring most of whose coils having at least two degrees of freedom as a cleaning device adaptable to the changing flexion of the ionizing edge of a needle-shaped electrode placed between the spring coils.
  • the ionizing edge of the electrode When in the initial position the ionizing edge of the electrode protrudes from the upper spring board. Cleaning of the ionizing edge of the electrode is performed during reciprocating motion of the electrode in a direction non-parallel to the longitudinal axis of the spring. As a result the ionizing edge of the electrode gets inside the spring or beyond its lower border and then returns to its initial position.
  • the diameter of the needle point is several times smaller than the diameter of the body of the electrode. Therefore in a proposed method and device according to the invention, for better adaptation of the spring, the default distance between the adjacent coils prior to penetration by the electrode tip is set smaller than the needle point diameter and the number of coils is determined from the equation below:
  • dmax- is the maximal electrode diameter
  • the distance between the adjacent coils can be controlled by adjusting the degree of spring compression.
  • the spring has an additional function to provide galvanic coupling between the electrodes and the high voltage terminal.
  • the ionizing electrode is formed as a thin-walled tube which enables part of the waste to be discharged through the cavity in the inner electrode during cleaning.
  • compressed air is forced into the inner cavity of the electrode during cleaning, thereby significantly improving the process of the electrode cleaning and also more effectively removing waste from the cleaning element.
  • a device comprises the following parts: a body with a coil spring mounted inside it with ionizing electrode mounted between the coils of the spring, an actuator with power supply terminals and a plunger, with its edge being connected with the non-ionizing edge of the electrode, as well as electrically interconnected contact element and a high voltage supply terminal of the device.
  • the plunger has an air channel which is connected to the inner cavity of the electrode.
  • Fig. 1 is a schematic diagram of a first embodiment of the device set to the "Ionizing" mode
  • Fig. 2 is a schematic diagram of the device shown in Fig. 1 set to the "cleaning" mode
  • Figs. 3a and 3b are enlarged details showing operation of the device
  • Fig. 3c is a schematic cross-section through a spring of the device showing movement of the electrode in "cleaning" mode
  • Fig. 4 shows pictorially a cross-section of the tip of the ionizing electrode
  • Fig. 5 is a schematic diagram of a second embodiment of the device set to the
  • Fig. 6 is a schematic diagram of the device shown in Fig. 5 set to the "cleaning" mode.
  • Fig. 1 is a schematic diagram of the electrodes cleaning device according to a first embodiment of the invention set to the "Ionizing" mode.
  • the device comprises the following elements: a body 1 , a coil spring 2 formed of an electrically conducting material, an ionizing electrode 3 adapted for axial movement in a cavity of the body, a plunger 4 made of an insulating material which constitutes a part of an actuator 5, power supply terminals 6 of the actuator 5, a contact element 7 formed of an electrically conducting material, and a high voltage supply terminal 8.
  • the contact element 7 both supports one end of the coil spring 2 and allows high voltage to be fed thereto via the supply terminal 8.
  • the actuator 5 is adapted to push the plunger 4 so as to force the ionizing electrode 3 out of the body cavity thereby laterally displacing the spring coils.
  • the plunger 4 retracts the ionizing electrode 3 into the body cavity.
  • the coil spring 2 is fastened between the body 1 and the contact element 7 thus providing to the spring at least two degrees of freedom of motion along most of its length. Specifically, although restrained at its two ends, the spring axis is free to move in any direction normal to the axis and the coils are able to be displaced axially toward and away from each other.
  • the tip of the ionizing electrode 3 protrudes completely through the spring 2 and allows it to ionize the air.
  • Fig. 2 is a schematic diagram of the device set to "cleaning" mode showing that most of the shank of the electrode 3 is withdrawn from the boundary of the coil spring 2, with only the tip of the electrode 3 abutting a lower side surface of one of the coils.
  • the plunger 4 retracts the ionizing electrode 3 and then pushes it out again so as to subject the electrode to reciprocating movement, whereby its tips engages the coil at its upper end and at its lower end during each pass. So, the electrode 3 is swiped twice by the coil spring 2 for each reciprocating pull-push movement.
  • Figs. 3a and 3b are plan views seen in the direction of arrow "A" in Figs. 1 and 2, illustrating the interaction of the electrode 3 with the spring 2 in "PUSH” and “PULL” modes, respectively.
  • Fig. 3c is a schematic cross-section through the spring 2 showing movement of the electrode 3 in "cleaning" mode.
  • the electrode 3 moves along an imaginary line 10 that extends from an outer periphery 1 1 of the spring, constituting an extremity thereof toward an inner periphery 12 thereof.
  • a tip 13 of the electrode penetrates the coil spring at at least one extremity thereof so as to at least partially intersect adjacent coils at the at least one extremity as shown in broken line by the tip 13', which thereby collect dust and other waste deposits from the electrode.
  • the electrode 3 passes through the complete cross-section and emerges from an opposite extremity as shown in broken line by the tip 13".
  • Fig. 4 shows pictorially a cross-section of the tip of the ionizing electrode 3.
  • the device operates as follows. In “PUSH” or “Ionizing” mode, the ionizing electrode 3 is pushed out through adjacent coils of the spring so as to project out of the body 1 of the device. High voltage fed to the terminal 8 is applied to the ionizing electrode 3 via the contact element 7 and the coil spring 2 both of which are electrically conductive. When this occurs, air in the vicinity of the tip of the ionizing electrode is ionized. During ionization of the air, adjacent coil springs are laterally displaced by the shank of the electrode and the resulting spring force ensures that good electrical contact is maintained between the spring and the electrode, whereby high voltage is continually applied to the electrode.
  • the actuator 5 retracts the plunger 4 and the electrode 3 attached thereto, thereby swiping the outer surface of the electrode 3 between adjacent coils of the spring 2 under the compressive force of these coils.
  • the adjacent coils of the spring thereby apply mechanical contact to the outer surface of the electrode 3 such that any debris or waste formed on its outer surface is removed by the spring 2.
  • the spring 2 therefore serves a dual function in that it both applies high voltage to the ionizing electrode 3 and also wipes away surface debris that accumulates on its outer surface.
  • the ionizing electrode 3 may be formed of a solid material with a tip having a smaller diameter than its shank since also in this case the movement of the electrode will wipe surface debris off the electrode.
  • the electrode 3 there are advantages in forming the electrode 3 as a thin-walled tube.
  • dust and other debris removed from the surface of the electrode may then be discharged through the hollow bore rather than accumulate on the surface of the spring coils.
  • the device is more easily adapted for use in both domestic and industrial applications, since the thin-walled tube can be used as an electrode support made either of such non-rigid materials as tungsten or such brittle materials as silicon.
  • Tungsten has a very high melting point but is relatively soft and therefore not so easily capable of laterally displacing the spring coils. However, this disability is compensated for by its being supported inside a thin-walled rigid tube.
  • electrodes formed of brittle materials such as silicon can be supported inside a thin-walled rigid tube.
  • the contact element 7 has an external thread for threadably engaging an internal screw thread in the housing. This allows the contact element 7 to be screwed into and out of the housing thereby adjusting the compression of the spring 2. Consequently, unlike known devices in which the entire cleaning element must be replaced whenever the diameter of the ionizing elements is changed, in the device according to the invention this is not required since the contact element 7 permits the distance between the spring coils to be easily adjusted by changing the degree of compression of the spring 2.
  • Figs. 5 and 6 showing a second embodiment of the device set respectively to the "Ionizing” mode and the "cleaning" mode.
  • the description of features of the second embodiment that are identical to those of the first embodiment will not be repeated.
  • the main distinction between the first and second embodiments is the manner in which the hollow cavity inside the electrode 3 is cleared of waste.
  • the device includes a channel 9 for feeding compressed air to the plunger 4 at least during the cleaning mode and optionally also during the ionizing mode. The compressed air is thereby supplied via the channel 9 to the hollow cavity of the electrode 3, thereby removing cleaning waste from the inner cavity of the electrode 3 and the surfaces of the spring 2.
  • the electrode is disposed in a direction that is normal to the longitudinal axis of the spring thereby entering the spring at one extremity and exiting from an opposite extremity through the same coils.
  • the electrode may be oriented at any angle to the longitudinal axis of the spring that allows the tip of the electrode to engage between two adjacent coils and displace them apart in order to penetrate the coils. In such case, different pairs of adjacent coils will be displaced by the electrode on entry and exit, but both pairs of adjacent coils on entry and exit will nevertheless wipe against the electrode and remove dust and other accumulated debris.
  • Thin-wall tube shaped ionizing electrode 3 facilitates:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Electrostatic Separation (AREA)
  • Cleaning In General (AREA)

Abstract

A device for cleaning ionizing electrodes includes a coil spring fixedly mounted at opposite ends, and an ionizing electrode operable by an actuator plunger for reciprocating movement relative to an axis of the coil spring along a line that extends from an outer periphery of the spring toward an inner periphery thereof, whereby during each reciprocating movement a tip of the electrode penetrates a complete cross-section of the coil spring so as to intersect the adjacent coils at opposing extremities thereof each of which is thereby able to collect dust and other waste deposits from the electrode.

Description

Method and device for cleaning of ionizing electrodes
FIELD OF THE INVENTION
The present invention relates to the methods and the devices for cleaning of ion ionizing electrodes and it is applicable to home appliances and also in industry.
BACKGROUND OF THE INVENTION
Technical solutions are known for cleaning electrodes from dust where the cleaning device travels during cleaning relative to a fixed ionizing electrode or a group of electrodes
(e.g. see WO 2012/176099 and US Patent No. 8,106,367).
The cleaning device disclosed in WO/2012/176099 is formed either as a layer of porous fiber material or a layer of fine-dispersed balls arranged between two grids with cells whose size is bigger than the diameter of the ionizing electrode. At the same time the entire device is designed as a nonstandard solenoid where the permanent magnet and the cleaning device mount are shifted with respect to the fixed coil.
One disadvantage of such a device is the impossibility to use conventional solenoids which increases the complexity of the device.
Another disadvantage is the complicated procedure of selection of the thickness of the porous fiber material or of the diameter of the fine-dispersed balls and also the grids for different diameters of ionizing electrode.
US Patent No. 8,106,367 discloses an ionizer wherein a fixed array of planar electrodes is wiped between adjacent coils of a spring fixed to a manual slider which functions as a cleaning element. The spring axis is parallel to a line normal to the plane of the electrodes, which are cleaned as the spring is moved manually toward the electrodes while maintaining a constant distance between the spring axis and the line normal to the plane of the electrodes. Such a device cannot be used with a standard ionizing electrode whose tip diameter is much smaller than the diameter of the shank of the electrode. US Patent No. 8,957,571 discloses an ionizing electrode with a cleaning mechanism wherein the cleaning mechanism is formed as a fixed tube with the ionizing electrode connected to the solenoid core travelling inside it.
A drawback of the device is the impossibility to use it for ionizing electrodes with needle-type ionizing edges or for ionizing electrodes made of materials such as tungsten or brittle materials such as silicon.
US 2015/0336109 discloses methods and apparatus for cleaning contaminant byproducts off of ionizing wire electrodes in ionizing blowers. The apparatus includes a housing with a gas-flow channel, an stationary ionizing wire, and a rotatable frame with supports for resiliently supporting the stationary ionizing wire within the channel. The ionizing wire produces charge carriers and has a surface that develops a layer of contaminant byproducts when an ionizing signal is applied thereto. The frame is rotatably mounted such that the supports clean the layer of contaminant byproducts off of the surface of the ionizing wire when the frame is rotated, by physical and/or by electrical means.
US 2015/0236484 discloses an ionizer, including an ionizing electrode for ionizing air and having a longitudinal first direction; and a cleaning member including a plurality of spaced apart bundles of bristles for cleaning the ionizing electrode when the cleaning member comes into contact with the ionizing electrode, each bundle of bristles in the plurality of spaced apart bundles of bristles being offset relative to the other bundles of bristles in the plurality of spaced apart bundles of bristles along the first direction and along a second direction perpendicular to the first direction.
A problematic issue common to all the known devices is the removal of debris from the local cleaning spot.
SUMMARY OF THE INVENTION
An object of the present invention is to reduce or eliminate the drawbacks of the known devices and to provide a simpler device that is effective over the complete active length of the electrode.
This object is realized in accordance with the invention by a method and device for cleaning an ionizing electrode having the features of the respective independent claims.
The essence of the proposed invention is to use a spring most of whose coils having at least two degrees of freedom as a cleaning device adaptable to the changing flexion of the ionizing edge of a needle-shaped electrode placed between the spring coils.
When in the initial position the ionizing edge of the electrode protrudes from the upper spring board. Cleaning of the ionizing edge of the electrode is performed during reciprocating motion of the electrode in a direction non-parallel to the longitudinal axis of the spring. As a result the ionizing edge of the electrode gets inside the spring or beyond its lower border and then returns to its initial position.
In needle-type electrodes, the diameter of the needle point is several times smaller than the diameter of the body of the electrode. Therefore in a proposed method and device according to the invention, for better adaptation of the spring, the default distance between the adjacent coils prior to penetration by the electrode tip is set smaller than the needle point diameter and the number of coils is determined from the equation below:
where:
Q - is the number of coils,
dmax- is the maximal electrode diameter,
€ - is the distance between the adjacent coils.
To explain this formula conceptually, it will be appreciated that as the electrode penetrates adjacent coils of the spring, the coils are displaced and are pushed against the remaining coils of the spring which are thereby compressed. There must therefore be a sufficient number of coils in the spring such that their cumulative displacement equals or exceeds the diameter of the electrode.
In order to enable the use of the same spring for electrodes of different diameters, the distance between the adjacent coils can be controlled by adjusting the degree of spring compression.
In the proposed method and device the spring has an additional function to provide galvanic coupling between the electrodes and the high voltage terminal.
The ionizing electrode is formed as a thin-walled tube which enables part of the waste to be discharged through the cavity in the inner electrode during cleaning.
In some embodiments compressed air is forced into the inner cavity of the electrode during cleaning, thereby significantly improving the process of the electrode cleaning and also more effectively removing waste from the cleaning element.
A device according to the invention comprises the following parts: a body with a coil spring mounted inside it with ionizing electrode mounted between the coils of the spring, an actuator with power supply terminals and a plunger, with its edge being connected with the non-ionizing edge of the electrode, as well as electrically interconnected contact element and a high voltage supply terminal of the device. In some embodiments the plunger has an air channel which is connected to the inner cavity of the electrode.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Fig. 1 is a schematic diagram of a first embodiment of the device set to the "Ionizing" mode;
Fig. 2 is a schematic diagram of the device shown in Fig. 1 set to the "cleaning" mode;
Figs. 3a and 3b are enlarged details showing operation of the device;
Fig. 3c is a schematic cross-section through a spring of the device showing movement of the electrode in "cleaning" mode;
Fig. 4 shows pictorially a cross-section of the tip of the ionizing electrode;
Fig. 5 is a schematic diagram of a second embodiment of the device set to the
"Ionizing" mode;
Fig. 6 is a schematic diagram of the device shown in Fig. 5 set to the "cleaning" mode.
DETAILED DESCRIPTION OF THE INVENTION
In the following description of some embodiments, identical components that appear in more than one figure or that share similar functionality will be referenced by identical reference symbols.
Fig. 1 is a schematic diagram of the electrodes cleaning device according to a first embodiment of the invention set to the "Ionizing" mode. The device comprises the following elements: a body 1 , a coil spring 2 formed of an electrically conducting material, an ionizing electrode 3 adapted for axial movement in a cavity of the body, a plunger 4 made of an insulating material which constitutes a part of an actuator 5, power supply terminals 6 of the actuator 5, a contact element 7 formed of an electrically conducting material, and a high voltage supply terminal 8. The contact element 7 both supports one end of the coil spring 2 and allows high voltage to be fed thereto via the supply terminal 8. In a "PUSH" or "Ionizing" mode of operation, the actuator 5 is adapted to push the plunger 4 so as to force the ionizing electrode 3 out of the body cavity thereby laterally displacing the spring coils. Alternatively, when operated in a "PULL" or "Cleaning" mode, the plunger 4 retracts the ionizing electrode 3 into the body cavity. The coil spring 2 is fastened between the body 1 and the contact element 7 thus providing to the spring at least two degrees of freedom of motion along most of its length. Specifically, although restrained at its two ends, the spring axis is free to move in any direction normal to the axis and the coils are able to be displaced axially toward and away from each other. When the actuator in set to the "PUSH" mode, the tip of the ionizing electrode 3 protrudes completely through the spring 2 and allows it to ionize the air.
Fig. 2 is a schematic diagram of the device set to "cleaning" mode showing that most of the shank of the electrode 3 is withdrawn from the boundary of the coil spring 2, with only the tip of the electrode 3 abutting a lower side surface of one of the coils. In practice, in "PULL" or "Cleaning" mode, the plunger 4 retracts the ionizing electrode 3 and then pushes it out again so as to subject the electrode to reciprocating movement, whereby its tips engages the coil at its upper end and at its lower end during each pass. So, the electrode 3 is swiped twice by the coil spring 2 for each reciprocating pull-push movement.
Figs. 3a and 3b are plan views seen in the direction of arrow "A" in Figs. 1 and 2, illustrating the interaction of the electrode 3 with the spring 2 in "PUSH" and "PULL" modes, respectively.
Fig. 3c is a schematic cross-section through the spring 2 showing movement of the electrode 3 in "cleaning" mode. The electrode 3 moves along an imaginary line 10 that extends from an outer periphery 1 1 of the spring, constituting an extremity thereof toward an inner periphery 12 thereof. During each reciprocating movement, a tip 13 of the electrode penetrates the coil spring at at least one extremity thereof so as to at least partially intersect adjacent coils at the at least one extremity as shown in broken line by the tip 13', which thereby collect dust and other waste deposits from the electrode. Optionally, the electrode 3 passes through the complete cross-section and emerges from an opposite extremity as shown in broken line by the tip 13".
Fig. 4 shows pictorially a cross-section of the tip of the ionizing electrode 3.
The device operates as follows. In "PUSH" or "Ionizing" mode, the ionizing electrode 3 is pushed out through adjacent coils of the spring so as to project out of the body 1 of the device. High voltage fed to the terminal 8 is applied to the ionizing electrode 3 via the contact element 7 and the coil spring 2 both of which are electrically conductive. When this occurs, air in the vicinity of the tip of the ionizing electrode is ionized. During ionization of the air, adjacent coil springs are laterally displaced by the shank of the electrode and the resulting spring force ensures that good electrical contact is maintained between the spring and the electrode, whereby high voltage is continually applied to the electrode. In "PULL" or "Cleaning" mode the actuator 5 retracts the plunger 4 and the electrode 3 attached thereto, thereby swiping the outer surface of the electrode 3 between adjacent coils of the spring 2 under the compressive force of these coils. During the retraction of the electrode, the adjacent coils of the spring thereby apply mechanical contact to the outer surface of the electrode 3 such that any debris or waste formed on its outer surface is removed by the spring 2. The spring 2 therefore serves a dual function in that it both applies high voltage to the ionizing electrode 3 and also wipes away surface debris that accumulates on its outer surface.
It should also be noted that during each reciprocating movement of the electrode, the tip of the electrode penetrates a complete cross-section of the coil spring 2 so as to intersect the adjacent coils at opposing extremities thereof each of which is thereby able to collect dust and other waste deposits from the electrode. This is distinct from above-mentioned US Patent No. 8,106,367 where, during manual swiping of the coil spring, the tip of the planar electrodes intersects adjacent coils of the spring on only one extremity thereof.
The ionizing electrode 3 may be formed of a solid material with a tip having a smaller diameter than its shank since also in this case the movement of the electrode will wipe surface debris off the electrode. However, there are advantages in forming the electrode 3 as a thin-walled tube. First, dust and other debris removed from the surface of the electrode may then be discharged through the hollow bore rather than accumulate on the surface of the spring coils. Secondly, the device is more easily adapted for use in both domestic and industrial applications, since the thin-walled tube can be used as an electrode support made either of such non-rigid materials as tungsten or such brittle materials as silicon. Tungsten has a very high melting point but is relatively soft and therefore not so easily capable of laterally displacing the spring coils. However, this disability is compensated for by its being supported inside a thin-walled rigid tube. Likewise, electrodes formed of brittle materials such as silicon can be supported inside a thin-walled rigid tube.
Preferably, the contact element 7 has an external thread for threadably engaging an internal screw thread in the housing. This allows the contact element 7 to be screwed into and out of the housing thereby adjusting the compression of the spring 2. Consequently, unlike known devices in which the entire cleaning element must be replaced whenever the diameter of the ionizing elements is changed, in the device according to the invention this is not required since the contact element 7 permits the distance between the spring coils to be easily adjusted by changing the degree of compression of the spring 2.
Reference is now made to Figs. 5 and 6 showing a second embodiment of the device set respectively to the "Ionizing" mode and the "cleaning" mode. The description of features of the second embodiment that are identical to those of the first embodiment will not be repeated. The main distinction between the first and second embodiments is the manner in which the hollow cavity inside the electrode 3 is cleared of waste. Thus, while this is done passively in the first embodiment as described above with reference to Figs. 1 and 2, in the second embodiment shown in Figs. 5 and 6 it is done actively. To this end, the device includes a channel 9 for feeding compressed air to the plunger 4 at least during the cleaning mode and optionally also during the ionizing mode. The compressed air is thereby supplied via the channel 9 to the hollow cavity of the electrode 3, thereby removing cleaning waste from the inner cavity of the electrode 3 and the surfaces of the spring 2.
In both embodiments as described and illustrated in the figures, the electrode is disposed in a direction that is normal to the longitudinal axis of the spring thereby entering the spring at one extremity and exiting from an opposite extremity through the same coils. But this is not a requirement and the electrode may be oriented at any angle to the longitudinal axis of the spring that allows the tip of the electrode to engage between two adjacent coils and displace them apart in order to penetrate the coils. In such case, different pairs of adjacent coils will be displaced by the electrode on entry and exit, but both pairs of adjacent coils on entry and exit will nevertheless wipe against the electrode and remove dust and other accumulated debris.
It should also be noted that during cleaning mode, the distance between the spring axis and the electrode tip constantly changes as the electrode penetrates the cross-section of the coil, thereby intersecting the coils at opposite extremities. This, too, is distinct from above-mentioned US Patent No. 8,106,367 where as noted above separation between the normal axis of the electrodes and the spring axis remains constant.
The simplicity of the proposed device is achieved on account of the three elements mounted inside the body 1 each performing two functions as follows:
1 . The spring 2:
a. Cleans the electrode;
b. Provides a galvanic coupling between the electrode and the high voltage supply terminal.
2. The contact element 7:
a. Provides an electric contact between the high voltage supply terminal and the spring; and
b. Adjusts the distance between the spring coils.
3. Thin-wall tube shaped ionizing electrode 3 facilitates:
a. Air ionization; and b. Waste removal via the tube cavity.
It should be noted that features that are described with reference to one or more embodiments are described by way of example rather than by way of limitation to those embodiments. Thus, unless stated otherwise or unless particular combinations are clearly inadmissible, optional features that are described with reference to only some embodiments are assumed to be likewise applicable to all other embodiments also.

Claims

CLAIMS:
1. A method for cleaning an ionizing electrode, the method comprising:
reciprocally swiping the electrode between adjacent coils of a fixed coil spring so as to effect at least one reciprocating movement of the electrode relative to an axis of the coil spring along a line that extends from an outer periphery of the spring toward an inner periphery thereof, during each of which reciprocating movements a tip of the electrode penetrates the coil spring at at least one extremity thereof so as to at least partially intersect adjacent coils at the at least one extremity and thereby collect dust and other waste deposits from the electrode.
2. The method according to claim 1 , wherein the spring is fixed at opposite ends so that its axis has at least two degrees of freedom.
3. The method according to claim 1 or 2, wherein the adjacent spring coils are displaced by a default distance that is smaller than a diameter of the tip of the electrode, and the number of coils is determined by:
d-rnax where:
Q - is a number of coils,
dmax- is a maximal electrode diameter, and
€ - is the distance between the adjacent coils.
4. The method according to any one of the preceding claims, wherein the spring serves as a galvanic coupling between a high voltage supply terminal and the electrode.
5. The method according to any one of the preceding claims, including configuring the spring for adjustable spring compression in order to change a default distance between the adjacent coils to accommodate electrodes of different diameters.
6. The method according to any one of the preceding claims, including discharging waste through an internal cavity of the electrode.
7. The method according to claim 6, further including feeding compressed air into the internal electrode cavity.
8. The method according to any one of the preceding claims, wherein during each reciprocating movement the tip of the electrode penetrates a complete cross-section of the coil spring so as to intersect adjacent coils at opposing extremities thereof each of which is thereby able to collect dust and other waste deposits from the electrode.
9. A device for cleaning ionizing electrodes, the device comprising:
a coil spring fixedly mounted at opposite ends,
an ionizing electrode mounted for reciprocating movement relative to an axis of the coil spring, and
an actuator plunger configured for engaging the ionizing electrode and operable for inducing the reciprocating movement thereof along a line that extends from an outer periphery of the spring toward an inner periphery thereof, whereby during each reciprocating movement a tip of the electrode penetrates the coil spring at at least one extremity thereof so as to at least partially intersect adjacent coils at the at least one extremity and thereby collect dust and other waste deposits from the electrode.
10. The device according to claim 9, wherein the spring is fixed at opposite ends so that its axis has at least two degrees of freedom.
11. The device according to claim 9 or 10, wherein the adjacent spring coils are displaced by a default distance that is smaller than a diameter of the tip of the electrode, and the number of coils is determined by:
~ΊΓ~
where:
Q - is a number of coils,
dmax- is a maximal electrode diameter, and
€ - is the distance between the adjacent coils.
12. The device according to any one of claims 9 to 1 1 , wherein the spring serves as a galvanic coupling between a high voltage supply terminal of an ionizer and the electrode.
13. The device according to any one of claims 9 to 12, further including an adjustable contact element for adjusting spring compression in order to change a default distance between the adjacent coils to accommodate electrodes of different diameters.
14. The device according to any one of claims 9 to 13, wherein the ionizing electrode is formed as a thin-walled tube having an internal cavity.
15. The device according to claim 14, wherein the actuator plunger has an air channel configured for fluid communication with the internal cavity when the electrode is attached to the actuator plunger, for feeding compressed air via said channel to the internal cavity of the electrode.
16. The device according to any one of claims 9 to 13, wherein the ionizing electrode is supported in an end of a thin-walled tube having an internal cavity.
17. The device according to any one of claims 9 to 16, wherein the plunger is configured such that during each reciprocating movement the tip of the electrode penetrates a complete cross-section of the coil spring so as to intersect adjacent coils at opposing extremities thereof each of which is thereby able to collect dust and other waste deposits from the electrode.
PCT/IL2017/050459 2017-04-19 2017-04-19 Method and device for cleaning of ionizing electrodes WO2018193435A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17906654.3A EP3612311A4 (en) 2017-04-19 2017-04-19 Method and device for cleaning of ionizing electrodes
PCT/IL2017/050459 WO2018193435A1 (en) 2017-04-19 2017-04-19 Method and device for cleaning of ionizing electrodes
CN201780091748.9A CN110740816B (en) 2017-04-19 2017-04-19 Method and apparatus for cleaning ionizing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IL2017/050459 WO2018193435A1 (en) 2017-04-19 2017-04-19 Method and device for cleaning of ionizing electrodes

Publications (1)

Publication Number Publication Date
WO2018193435A1 true WO2018193435A1 (en) 2018-10-25

Family

ID=63856235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2017/050459 WO2018193435A1 (en) 2017-04-19 2017-04-19 Method and device for cleaning of ionizing electrodes

Country Status (3)

Country Link
EP (1) EP3612311A4 (en)
CN (1) CN110740816B (en)
WO (1) WO2018193435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829030A (en) * 2020-06-23 2020-10-27 浙江沃普思智能科技有限公司 Integrated kitchen with static elimination function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414603A (en) * 1980-03-27 1983-11-08 Senichi Masuda Particle charging apparatus
JPH05217659A (en) * 1992-01-31 1993-08-27 Takasago Thermal Eng Co Ltd Electrode for corona discharge
WO2009134663A1 (en) 2008-05-01 2009-11-05 Airinspace B.V. Plasma-based air purification device including carbon pre-filter and/or self-cleaning electrodes
US20120000486A1 (en) * 2010-06-30 2012-01-05 Tessera, Inc. Emitter wire cleaning device with wear-tolerant profile
US8957571B2 (en) 2013-07-10 2015-02-17 Filt Air Ltd. Ionizing electrode with integral cleaning mechanism
US20150236484A1 (en) 2012-09-21 2015-08-20 3M Innovative Properties Company Ionizer with a needle cleaning device
US20150336109A1 (en) 2014-05-20 2015-11-26 Illinois Tool Works Inc. Wire electrode cleaning in ionizing blowers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB408814A (en) * 1933-04-28 1934-04-19 Paul Herbelot Improvements in and relating to electrostatic precipitation devices
JP5098883B2 (en) * 2008-08-07 2012-12-12 Smc株式会社 Ionizer with discharge electrode cleaning mechanism
US8106367B2 (en) * 2009-12-30 2012-01-31 Filt Air Ltd. Method and ionizer for bipolar ion generation
EP2724431B1 (en) * 2011-06-22 2017-02-15 Koninklijke Philips N.V. A cleaning device for cleaning the air-ionizing part of an electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414603A (en) * 1980-03-27 1983-11-08 Senichi Masuda Particle charging apparatus
JPH05217659A (en) * 1992-01-31 1993-08-27 Takasago Thermal Eng Co Ltd Electrode for corona discharge
WO2009134663A1 (en) 2008-05-01 2009-11-05 Airinspace B.V. Plasma-based air purification device including carbon pre-filter and/or self-cleaning electrodes
US20120000486A1 (en) * 2010-06-30 2012-01-05 Tessera, Inc. Emitter wire cleaning device with wear-tolerant profile
US20150236484A1 (en) 2012-09-21 2015-08-20 3M Innovative Properties Company Ionizer with a needle cleaning device
US8957571B2 (en) 2013-07-10 2015-02-17 Filt Air Ltd. Ionizing electrode with integral cleaning mechanism
US20150336109A1 (en) 2014-05-20 2015-11-26 Illinois Tool Works Inc. Wire electrode cleaning in ionizing blowers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3612311A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829030A (en) * 2020-06-23 2020-10-27 浙江沃普思智能科技有限公司 Integrated kitchen with static elimination function
CN111829030B (en) * 2020-06-23 2022-09-06 浙江沃普思智能科技有限公司 Integrated kitchen with static elimination function

Also Published As

Publication number Publication date
CN110740816A (en) 2020-01-31
EP3612311A4 (en) 2020-11-18
CN110740816B (en) 2021-11-23
EP3612311A1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US9630185B1 (en) Method and device for cleaning of ionizing electrodes
US8724286B2 (en) Ionizer having cleaning system
KR101968794B1 (en) Multi-sectional linear ionizing bar and ionization cell
US20080150564A1 (en) Contact device to contact an electrical test specimen to be tested and a corresponding contact process
EP2724431B1 (en) A cleaning device for cleaning the air-ionizing part of an electrode
EP3387719B1 (en) Self-cleaning linear ionizing bar and methods therefor
US9948071B2 (en) Ionizer with a needle cleaning device
CN107149987B (en) A kind of electrostatic precipitation component of band cleaning anode and cathode
US20120260937A1 (en) Method and device for cleaning a surface
EP3612311A1 (en) Method and device for cleaning of ionizing electrodes
TWI358330B (en) Self-cleaning lower contact
JP5430771B2 (en) Wire electric discharge machining apparatus, wire electric discharge machining method, thin plate manufacturing method, and semiconductor wafer manufacturing method
KR100355596B1 (en) Knitting needle driving mechanism of knitting machine
EP3043431B1 (en) Ionizing electrode with integral cleaning mechanism
US5394293A (en) Electronic static neutralizer device
DE1945448A1 (en) Piezoelectrically driven bending body, especially for clocks and relays
JP2009129549A (en) Apparatus for generating ion
KR20230090156A (en) A nozzle block having means for cleaning a nozzle and electrospinning device having the same
JP7175219B2 (en) wire electric discharge machine
CN110665643B (en) Cable fiber separation device and method
KR101610718B1 (en) Apparatus for cleaning nozzle
JP4891829B2 (en) Discharge member cleaning device and static eliminator for static eliminator
GB2462817A (en) Improved Connector for an Electrical Discharge Machine
JP5792561B2 (en) Mass spectrometer with automatic cleaning function
CN109378137B (en) Device capable of uniformly distributing copper wires in cable shielding layer by utilizing magnetic attraction to attach cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017906654

Country of ref document: EP

Effective date: 20191119