WO2018192960A1 - Ladeeinrichtung für elektrofahrzeuge - Google Patents

Ladeeinrichtung für elektrofahrzeuge Download PDF

Info

Publication number
WO2018192960A1
WO2018192960A1 PCT/EP2018/059876 EP2018059876W WO2018192960A1 WO 2018192960 A1 WO2018192960 A1 WO 2018192960A1 EP 2018059876 W EP2018059876 W EP 2018059876W WO 2018192960 A1 WO2018192960 A1 WO 2018192960A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
connection
power
connection matrix
matrix
Prior art date
Application number
PCT/EP2018/059876
Other languages
English (en)
French (fr)
Inventor
Oscar Apeldoorn
Osman SENTURK
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to EP18717081.6A priority Critical patent/EP3612408A1/de
Priority to CN201880041101.XA priority patent/CN110799378B/zh
Publication of WO2018192960A1 publication Critical patent/WO2018192960A1/de
Priority to US16/659,114 priority patent/US20200052507A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to a charging device for electric vehicles comprising a plurality of charging ports, each charging port being adapted for power exchange with at least one electric vehicle, a plurality of power converters, each of which converts a power from a power source into a suitable format for charging the electric vehicle is arranged, and a switchable connection matrix, which is adapted for connecting at least one power converter with at least one charging connection.
  • Charging devices for electric vehicles are known from the prior art and are also referred to as charging stations, charging stations or charging points.
  • a charging device often has a plurality of charging ports, which are in the simplest case designed as a socket and in which a charging cable for "refueling" of an electric vehicle can be plugged in or have such a charging cable for connection to the electric vehicle
  • the charging cable is permanently connected to the electric vehicle, provided with a plug connector on both sides or permanently connected to the charging connection
  • Plug connectors for connecting the charging cable are often designed in accordance with the IEC 62196 standard in Europe, for example as a so-called combo 2 plug or DC charging connector Up to 240 kW at 200-600 V DC and up to 400 A DC
  • there are other standards for connectors such as the common in Japan standard CHAdeMO or the standard used in North America SAE J1772th In the charging terminals high-voltage contactors are provided, beis For example, according to the standard ISO 6469-3, to switch on and off the direct current
  • the charging connections are often arranged spatially remote from the power converters and a switchable connection matrix. While the power converters and the switchable connection matrix are arranged within a converter housing at the edge of a parking lot, the charging terminals are usually assigned to a respective parking bay of the parking lot directly installed on this. For larger installations, the distance between the charging terminals and the power converters and the switchable connection matrix can be several tens or hundreds of meters.
  • an advantage of the terminal matrix is to parallel a plurality of power converters for charging a single electric vehicle, thereby increasing the available charging power and correspondingly shortening the charging time
  • a disadvantage of the configuration described above is that the power also can then be available at the charging port when no electric vehicle is connected to the charging port. While this may not be a problem under normal operating conditions, however, situations may arise such as damage to the charging port or the high voltage contactor switch in the charging port due to willful destruction or an accident caused by the electric vehicle vehicle where the power available at the unused charging port is a hazard represents, for example, can cause a short circuit, arcing, sparking or even destruction of the charging port.
  • a charging device for electric vehicles comprising a plurality of charging ports, each charging port being adapted for power exchange with at least one electric vehicle, a plurality of power converters, each of which converters for converting power from a power source into one a suitable format for charging the electric vehicle is arranged with direct current, and a switchable connection matrix, which is arranged for connecting at least one power converter with at least one charging connection by means of at least one circuit breaker for providing a maximum rated current IN to the respective charging port, a plurality of high-voltage contactor switches, in addition to the Connection matrix between each converter and each charging port of at least one of the high-voltage contactor switches in the respective DC path is arranged and each high-voltage contactor switch for switching a maximum current I MAX> 3 * IN is arranged, and with a power converter housing within which all converters, the connection matrix and all high-voltage contactor switches are arranged.
  • the high-voltage contactor switch is not assigned to the charging port associated with this, for example, is provided within a housing of the charging port, but instead spatially away from the charging port within the converter housing, for example within a housing of Terminal matrix, is arranged. Only after switching on the high-voltage contactor switch is the respective charging connection supplied with electrical energy for charging the electric vehicle with direct current. If the high-voltage contactor switch arranged in the respective current path is switched off, the corresponding charging connection is not supplied with electrical energy or is not supplied with direct current. With others In words, the charging connection, including the electrical connection between the connection matrix and charging connection, in particular when no electric vehicle is to be refueled, can be switched off by switching off the high-voltage contactor switch.
  • the charging port can be made much more compact. Because compared to known from the prior art charging connections, where arranged therein high-voltage contactor devices for cooling and possibly air conditioning the same, such in the proposed charging connections is no longer necessary, as opposed to the high-voltage contactor switch within the converter housing, for example, within the connection matrix or between the power converter and the connection matrix is provided. Accordingly, the term is additionally to be understood that in addition to the high-voltage contactor switches often provided in the connection matrix for intended operation of the connection matrix, a plurality of further high-voltage contactor switches are provided in the respective current path. These other high voltage contactor switches were instead provided within the charging ports in the prior art.
  • the charging ports are provided with a cable whose one end is fixedly connected to the charging port and the other end is configured with a charging plug for connection to the electric vehicle.
  • the charging connections are designed according to the standard EN 621 96 and have, for example, a charging coupling according to the type 2 standard, also called Mennekes plug, in order to feed the electric vehicle with direct current.
  • an electric vehicle is basically any driven with an electric motor vehicle in question, for example, an electric bus, wherein in the electric vehicle, a battery is provided, which is charged by the electrical connection of the charging port.
  • the converters are preferably configured as rectifiers known from the prior art and allow, for example, a power conversion of 1 50, 300 or 450 kW.
  • Power converters are also referred to as power converters on the DC side, either via a direct cable connection or via the high-voltage contactor switch according to the second alternative of the charging device described above
  • the high-voltage contactor switches are preferably designed such that interruption of the current path or disconnection of a charging connection from the power converters is always ensured "safely" without interruption an arc or the like arises.
  • the high-voltage contactor switches are preferably designed in accordance with ISO 6469-3 and / or designed for load voltages of a maximum of 500 VDC for passenger cars and a maximum of 900 VDC for trucks. More preferably, each high-voltage contactor switch for switching a maximum current IMAX> 4, 5 or 6 * I N is set up.
  • one of the high-voltage contactor switches is arranged between the connection matrix and each charging connection, between each converter and the connection matrix and / or within the connection matrix between at least one converter and each charging connection.
  • the power converter housing is, for example made of plastic, metal, stone, concrete, a mixture of said materials and / or weatherproof, so that the power converter housing, for example, in a parking space for electric vehicles can be installed.
  • the power converter housing is preferably designed as a closed housing, in the interior of which the power converters, the connection matrix and the high-voltage contactor switches are arranged.
  • the housing may be provided with a closable door and / or opening.
  • the charging device has a connection matrix housing, wherein the connection matrix is arranged within the connection matrix housing and between each charging connection and at least one power converter of one of the high-voltage contactor switches.
  • the connection matrix housing can be designed analogously to the power converter housing as described above, for example, be designed by a closed housing made of a plastic or the like, in the interior of which the connection matrix and the high-voltage contactor switches are arranged.
  • all high-voltage contactor switches are arranged at a location remote from the charging connections and / or at least 5, 10 or 20 meters apart.
  • the separate location may be, for example, a separate room or a separate building.
  • the high-voltage contactor switches can be arranged within the connection matrix or between the connection matrix and the power converters in a separate room, for example at the edge of a parking space, while the charging connections are arranged directly at the individual parking bays of the parking lot. More preferably, the high-voltage contactor switches are arranged at least 50, 100 or 150 meters away from the charging terminals.
  • the charging connections are designed and / or configured without a high-voltage contactor switch so that a power exchange with the electric vehicle is possible without switching a high-voltage contactor switch arranged in the charging connection.
  • the charging device has a plurality of connecting cables with a length of at least 5, 10 or 20 meters, wherein between each charging port and the connection matrix a connection cable for exchanging power with the electric vehicle is provided.
  • the connection cable has a length of at least 50, 100 or 150 meters, wherein the length may also be greater.
  • the connection cable between the charging port and the connection matrix is permanently installed, for example, within the soil of a parking lot to which the charging device is installed.
  • connection matrix can be designed in many ways.
  • the connection matrix for connecting at least two power converters to a charging connection is arranged or for simultaneously connecting at least one power converter with at least one charging connection and at least one other power converter with another charging connection such that the one charging connection is not connected to the other charging connection and / or connecting the at least one power converter to the at least one charging connection through the connection matrix can be controlled by decision rules.
  • the connection matrix is further preferably configured such that the charging connections and power converters connected to the connection matrix can be connected in different ways.
  • power from at least one of the power converters can be distributed to different or several charging connections.
  • the electrical connection between at least one of the power converters as input and at least one of the charging connections as output from a mechanical switch, Solid State Switch, circuit breaker, security element, passive semiconductor or a combination thereof.
  • connection matrix preferably has a control unit in order to control an operation of the connection matrix.
  • the connection matrix can be controlled on the basis of an input from a system connected via the Internet, by the electric vehicle and / or by a computer-implemented method.
  • a bidirectional communication channel can be provided between the electric vehicle and the charging device, by means of which the charging device can read out the charging power supported by the electric vehicle and / or the electric vehicle can request a charging power from the charging device.
  • the request can be implemented by the connection matrix by connecting several power converters, for example by connecting different power converters in parallel, which correspondingly increases the power for charging the electric vehicle.
  • connection matrix has a plurality of semiconductor-based power switch for connecting the at least one power converter to the at least one charging connection.
  • the circuit breaker arranged within the connection matrix and / or between the connection matrix and the power converter is preferably also configured as a semiconductor-based power switch, for example as an IGBT, as a contactor and / or for switching direct currents up to 350 A or 500 A.
  • the charging port has, according to a preferred development, a human-machine interface, a tempering set up for cooling and / or heating the charging port, an input unit, Central Control, and / or an interface for monitoring the charging process, charge protocol interface, CPI , on.
  • the man-machine interface is designed, for example, as a single-use device.
  • the tempering can be configured in the manner of an air conditioner with a water and / or air cooling.
  • Within the converter housing described above and / or the terminal matrix housing may also be a tempering for cooling and / or heating of the corresponding Housing may be provided, which may be connected to the temperature control of the charging port.
  • the charging device has a monitoring device, wherein the charging connection is set up to detect a charging error during the exchange of power with the electric vehicle and to report the charging error to the monitoring device.
  • the charging error may represent, for example, a voltage and / or current drop, a short circuit or the like.
  • the monitoring device is preferably designed by a computer-based control and / or is in operative connection with the high-voltage contactor switch. Accordingly, the power exchange with the electric vehicle can be interrupted by turning off the high-voltage contactor switch or by disconnecting the relevant power converter from the power source.
  • the monitoring device is set up to detect a conversion error to the power converters and turn off the conversion error caused converter after detection of the conversion error.
  • the monitoring device is further configured, after detection of the conversion error to connect another power converter to the charging port, so that the electric vehicle can be further charged without interruption.
  • the switching off of the high-voltage contactor switch causing the conversion error can be effected by switching off the high-voltage contactor switch correspondingly connected to the power converter.
  • the interruption of the power exchange with the electric vehicle can also be done by removing a charging plug from the charging port, for example by ejecting the charging plug.
  • FIG. 1 shows a charging device for electric vehicles according to a first preferred embodiment of the invention in a schematic view
  • Fig. 2 shows the charging device for electric vehicles according to a further preferred embodiment of the invention in a schematic view
  • Fig. 3 shows the charging device for electric vehicles according to yet another preferred embodiment of the invention in a schematic view.
  • the charging device has a plurality of charging terminals 2, a plurality of power converters 3 and a switchable connection matrix 4.
  • the charging ports 2 are each adapted to exchange power with a respective electric vehicle 1, which is electrically connected to the charging port 2 by means of a connecting cable 5.
  • the charging ports 2 are each designed for DC charging according to the standard IEC 62196, wherein the charging cable 5 is connected at its one end to the respective charging port 2 and at its other end has a connector according to said standard.
  • a corresponding charging socket or coupling is provided on the electric vehicle 1, into which the plug-in connector of the charging cable bels 5 is inserted.
  • Each charging port 2 has various controls, such as a human-machine interface 6 with a display and input device, a tempering device 7, by means of which the charging port 2 can be cooled and heated, and an input unit 8, Central Control, and an interface for monitoring Charging 9, Charge Protocol Interface, CPI.
  • the charging ports 2 are each arranged at least 20 meters away from the connection matrix 4 and electrically connected to the connection matrix 4 by means of a connecting cable 10, which likewise has a length of at least 20 meters.
  • the connection cable 10 is designed to exchange electrical power.
  • a power converter housing 1 1 within which all power converters 3, the connection matrix 4 and all high-voltage contactor switch 12 are arranged at one edge of the parking lot ,
  • the power converter housing 1 1 is weatherproof made of a plastic with metal content and installed at least 20 meters away from the parking bays.
  • the power converters 3 are configured as rectifiers and are connected to the connection matrix 4 on the DC voltage side. On the alternating voltage side, the power converters 3 are connected together to a secondary side of a transformer 13. On the primary side, the transformer is connected to a power grid as a power source 14. Thus, each power converter 3 serves to convert the electric power supplied from the power source 14 into a suitable format for charging the electric vehicle 1 with DC power.
  • the connection matrix 4 has a plurality of semiconductor-based power switches 15 in order to connect at least one power converter 3 to at least one charging connection 2.
  • the connection matrix 4 is controllable on the basis of decision rules. In the configuration shown in FIG. 1, by closing the two semiconductor-based power switches 15, all three power converters 3 can be connected in parallel. If every electricity judge 3 can convert an electric power of 150 kW, in this case, a single electric vehicle 1 with 450 kW loadable. According to the concretely shown in Fig. 1 configuration with non-closed semiconductor-based power switch 15 on the one hand, the electric vehicle 1 shown above provided by the power converter 3 shown above electric power and on the other hand in parallel to the below shown electric vehicle 1 with provided by the power converter 3 shown below electrical Power to be charged.
  • the charging device described is characterized in that in the charging port 2 no high-voltage contactor 12, at least not for switching the electric power for charging the electric vehicle, is arranged.
  • the high-voltage contactor switches 12 are arranged inside the converter housing 1 1, as shown in FIGS. 1 and 2, or within a connection matrix housing 16, as shown in FIG. 3, between the power converters 3 and the charging terminals 2.
  • the connection matrix 4, the power converter housing 1 1 and the high-voltage contactor switch 12 are drawn as a closed parts; but the parts can also be combined completely or partially.
  • connection matrix 4 is arranged within the closed connection matrix housing 1 6, which is arranged together with the power converters 3 within the converter housing 1 1.
  • all high-voltage contactor switches 12 are arranged within the connection matrix housing 1 6, one high-voltage contactor switch 12 being provided between each charging connection 2 and the semiconductor-based power switches 15 of the connection matrix 3.
  • the high-voltage contactor switches 12 are thus arranged on the output side of the connection matrix 4 both inside the converter housing 1 1 and inside the connection matrix housing 1 6.
  • the high-voltage contactor switches 12 are connected between each power converter 3 and the connection matrix 4. orderly. However, the high-voltage contactor switches 12 are provided outside the connection matrix housing 1 6 within the converter housing 1 1.
  • FIG. 3 shows a combination of high-voltage contactor switch 12 with the semiconductor-based circuit breakers of the connection matrix 4, which, however, are all arranged within the connection matrix 4, within the connection matrix housing 16 and also within the converter housing 11 ,
  • the proposed charging device ensures that when the high-voltage contactor switch 12 is switched off, a short circuit occurring in the charging connection 2 or any other mechanical damage to the charging connection 2, for example due to an accident of the electric vehicle 1, does not lead to an electric arc, spark-through or other danger for life or the electric vehicle 1 leads. Accordingly, the probability of failure of the proposed charging device compared to known from the prior art solutions is much lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft eine Ladeeinrichtung für Elektrofahrzeuge (1), umfassend mehrere Ladeanschlüsse (2), wovon jeder Ladeanschluss (2) für einen Leistungsaustausch mit wenigstens einem Elektrofahrzeug (1) eingerichtet ist, mehrere Stromrichter (3), wovon jeder Stromrichter (3) zum Umsetzen einer Leistung von einer Leistungsquelle (14) in ein geeignetes Format zum Laden des Elektrofahrzeugs (1) mit Gleichstrom eingerichtet ist, und eine schaltbare Anschlussmatrix (4), welche zum Verbinden wenigstens eines Stromrichters (3) mit wenigstens einem Ladeanschluss (2) mittels wenigstens eines Leistungsschalters (15) zum Bereitstellen eines maximalen Nennstroms IN an dem jeweiligen Ladeanschluss (2) eingerichtet ist, mehrere Hochvoltschützschalter (12), wobei zusätzlich zu der Anschlussmatrix (4) zwischen jedem Stromrichter (3) und jedem Ladeanschluss (2) wenigstens einer der Hochvoltschützschalter (12) im jeweiligen Gleichstrompfad angeordnet ist und jeder Hochvoltschützschalter (12) zum Schalten eines maximalen Stroms IMAX > 3 * IN eingerichtet ist, und mit einem Stromrichtergehäuse (11) innerhalb dessen alle Stromrichter (3), die Anschlussmatrix (4) und alle Hochvoltschützschalter (12) angeordnet sind.

Description

Beschreibung
Ladeeinrichtung für Elektrofahrzeuge
Technisches Feld
[0001 ] Die Erfindung betrifft eine Ladeeinrichtung für Elektrofahrzeuge umfassend mehrere Ladeanschlüsse, wovon jeder Ladeanschluss für einen Leistungsaustausch mit wenigstens einem Elektrofahrzeug eingerichtet ist, mehrere Stromrichter, wovon jeder Stromrichter zum Umsetzen einer Leistung von einer Leistungsquelle in ein geeignetes Format zum Laden des Elektrofahr- zeugs eingerichtet ist, und eine schaltbare Anschlussmatrix, welche zum Verbinden wenigstens eines Stromrichters mit wenigstens einem Ladeanschluss eingerichtet ist.
Technologischer Hintergrund
[0002] Ladeeinrichtungen für Elektrofahrzeuge sind aus dem Stand der Technik bekannt und werden auch als Stromtankstellen, Ladesäulen oder Ladepunkte bezeichnet. Eine Ladeeinrichtung weist oftmals eine Mehrzahl Ladeanschlüsse auf, die im einfachsten Fall als Steckdose ausgestaltet sind und in die ein Ladekabel zum„Betanken" eines Elektrofahrzeugs einsteckbar ist oder ein derartiges Ladekabel zum Verbinden mit dem Elektrofahrzeug aufweisen. Gemäß der verbreiteten Norm IEC 6185-1 kann das Ladekabel fest mit dem Elektrofahrzeug verbunden sein, beidseitig mit einem Steckverbinder versehen sein oder fest mit dem Ladeanschluss verbunden sein. Steckverbinder zum Verbinden des Ladekabels sind in Europa oftmals nach der Norm IEC 62196 ausgestaltet, beispielsweise als sogenannter Combo 2-Stecker oder Kupplung zum Gleichstromladen mit bis zu 240 kW bei 200-600 V Gleichspannung und bis zu 400 A Gleichstrom. Darüber hinaus existieren weitere Standards für Steckverbinder, beispielsweise der in Japan verbreitete Standard CHAdeMO oder der in Nordamerika verbreitete Standard SAE J1772. In den Ladeanschlüssen sind Hochvoltschützschalter vorgesehen, beispielsweise gemäß dem Standard ISO 6469-3, um den Gleichstrom zum Betanken des Elektrofahrzeugs ein- und auszuschalten. [0003] Bei den genannten Ladeeinrichtungen sind die Ladeanschlüsse oftmals räumlich entfernt von den Stromrichtern und einer schaltbaren Anschlussmatrix angeordnet. Während die Stromrichter und die schaltbare Anschlussmatrix innerhalb eines Stromrichtergehäuses am Rand eines Parkplatzes angeordnet sind, werden die Ladeanschlüsse in der Regel einer jeweiligen Parkbucht des Parkplatzes zugeordnet unmittelbar an dieser installiert. Bei größeren Installationen kann der Abstand zwischen den Ladeanschlüssen und den Stromrichtern sowie der schaltbaren Anschlussmatrix einige zehn oder hundert Meter betragen.
[0004] Während ein Vorteil der Anschlussmatrix darin liegt, eine Mehrzahl Stromrichter zum Laden eines einzelnen Elektrofahrzeugs parallel zu schalten, um dadurch die verfügbare Ladeleistung zu erhöhen und entsprechend die Ladedauer zu verkürzen, liegt ein Nachteil der zuvor beschriebenen Konfiguration darin, dass die Leistung auch dann an dem Ladeanschluss zur Verfügung stehen kann, wenn gar kein Elektrofahrzeug mit dem Ladeanschluss verbunden ist. Während dies unter gewöhnlichen Betriebsumstän- den kein Problem darstellt, können jedoch Situationen auftreten, beispielsweise durch Beschädigung des Ladeanschlusses oder des Hochvoltschützschalters in dem Ladeanschluss durch mutwillige Zerstörung oder durch einen durch das Elektrofahrzeugfahrzeug verursachten Unfall, bei denen die an dem unbenutzten Ladeanschluss anstehende Leistung eine Gefahr darstellt, beispielsweise einen Kurzschluss, Lichtbogenbildung, Funkendurchschlag oder sogar Zerstörung des Ladeanschlusses bewirken kann.
Zusammenfassung der Erfindung
[0005] Ausgehend von dieser Situation ist es eine Aufgabe der Erfindung, eine Ladeeinrichtung für Elektrofahrzeuge anzugeben, die durch eine verbesserte Betriebssicherheit gekennzeichnet ist.
[0006] Die Aufgabe wird durch die Merkmale des unabhängigen Anspruchs gelöst.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
[0007] Demnach wird die Aufgabe durch eine Ladeeinrichtung für Elektrofahrzeuge gelöst, umfassend mehrere Ladeanschlüsse, wovon jeder Ladean- schluss für einen Leistungsaustausch mit wenigstens einem Elektrofahr- zeug eingerichtet ist, mehrere Stromrichter, wovon jeder Stromrichter zum Umsetzen einer Leistung von einer Leistungsquelle in ein geeignetes Format zum Laden des Elektrofahrzeugs mit Gleichstrom eingerichtet ist, und eine schaltbare Anschlussmatrix, welche zum Verbinden wenigstens eines Stromrichters mit wenigstens einem Ladeanschluss mittels wenigstens eines Leistungsschalters zum Bereitstellen eines maximalen Nennstroms I N an dem jeweiligen Ladeanschluss eingerichtet ist, mehrere Hochvoltschützschalter, wobei zusätzlich zu der Anschlussmatrix zwischen jedem Stromrichter und jedem Ladeanschluss wenigstens einer der Hochvoltschützschalter im jeweiligen Gleichstrompfad angeordnet ist und jeder Hochvoltschützschalter zum Schalten eines maximalen Stroms I MAX > 3 * I N eingerichtet ist, und mit einem Stromrichtergehäuse innerhalb dessen alle Stromrichter, die Anschlussmatrix und alle Hochvoltschützschalter angeordnet sind.
[0008] Ein wesentlicher Punkt der Erfindung liegt demnach darin, dass der Hochvoltschützschalter nicht an dem Ladeanschluss diesem zugeordnet angeordnet ist, so beispielsweise innerhalb eines Gehäuses des Ladeanschlusses vorgesehen ist, sondern stattdessen räumlich entfernt von dem Ladeanschluss innerhalb des Stromrichtergehäuses, beispielsweise innerhalb eines Gehäuses der Anschlussmatrix, angeordnet ist. Erst nach einem Einschalten des Hochvoltschützschalters wird der jeweilige Ladeanschluss mit elektrischer Energie zum Laden des Elektrofahrzeugs mit Gleichstrom versorgt. Ist der im jeweiligen Strompfad angeordnete Hochvoltschützschalter ausgeschaltet, wird der entsprechende Ladeanschluss nicht mit elektrischer Energie versorgt bzw. ist nicht mit Gleichstrom beaufschlagt. Mit anderen Worten lässt sich der Ladeanschluss einschließlich der elektrischen Verbindung zwischen Anschlussmatrix und Ladeanschluss, insbesondere wenn kein Elektrofahrzeug zu betanken ist, durch Ausschalten des Hochvoltschützschalters stromlos schalten.
[0009] Gegenüber aus dem Stand der Technik bekannten Ladeeinrichtungen, bei denen der Hochvoltschützschalter innerhalb des Ladeanschlusses angeordnet ist und derart der Ladeanschluss auch bei nicht verbundenem Elektrofahrzeug mit elektrischer Energie versorgt ist, wird durch die vorgeschlagene Ladeeinrichtung sichergestellt, dass bei ausgeschaltetem Hochvoltschützschalter ein in dem Ladeanschluss auftretender Kurzschluss oder eine sonstige mechanische Beschädigung des Ladeanschlusses, beispielsweise durch einen Unfall des Elektrofahrzeugs, nicht zu einem Lichtbogen, Funkendurchschlag oder sonstiger Gefahr für Leben oder das Elektrofahrzeug führt. Entsprechend ist die Ausfallwahrscheinlichkeit der vorgeschlagenen Ladeeinrichtung gegenüber aus dem Stand der Technik bekannten Lösungen wesentlich geringer.
[0010] Da der Hochvoltschützschalter zum Schalten des Gleichstroms nicht in dem Ladeanschluss angeordnet ist, kann der Ladeanschluss wesentlich kompakter ausgestaltet sein. Denn gegenüber aus dem Stand der Technik bekannten Ladeanschlüssen, bei denen darin angeordnete Hochvoltschützschalter Einrichtungen zur Kühlung und gegebenenfalls Klimatisierung derselben benötigen, ist derartiges bei den vorgeschlagenen Ladeanschlüssen nicht mehr notwendig, da demgegenüber der Hochvoltschützschalter innerhalb des Stromrichtergehäuses beispielsweise innerhalb der Anschlussmatrix oder zwischen dem Stromrichter und der Anschlussmatrix vorgesehen ist. Entsprechend ist der Begriff zusätzlich so zu verstehen, dass neben den in der Anschlussmatrix oftmals vorgesehenen Hochvoltschützschaltern für einen vorgesehenen Betrieb der Anschlussmatrix mehrere weitere Hochvoltschützschalter im jeweiligen Strompfad vorgesehen sind. Diese weiteren Hochvoltschützschalter waren im Stand der Technik stattdessen innerhalb der Ladeanschlüsse vorgesehen.
[001 1 ] Zur Ausgestaltung der Ladeanschlüsse existieren grundsätzlich verschiedene Möglichkeiten. Bevorzugt sind die Ladeanschlüsse mit einem Kabel versehen, dessen einen Ende mit dem Ladeanschluss fest verbunden ist und dessen anderes Ende mit einem Ladestecker zum Verbinden mit dem Elektrofahrzeug ausgestaltet ist. Bevorzugt sind die Ladeanschlüsse nach der Norm EN 621 96 ausgestaltet und weisen beispielsweise eine Ladekupplung gemäß dem Typ 2-Standard, auch Mennekes Stecker genannt, auf, um das Elektrofahrzeug mit Gleichstrom zu speisen. Als Elektrofahrzeug kommt grundsätzlich jedes mit einem Elektromotor angetriebene Fahrzeug in Frage, beispielsweise auch ein Elektrobus, wobei in dem Elektrofahrzeug eine Batterie vorgesehen ist, die durch von dem Ladeanschluss bezogene elektrische Leistung geladen wird.
[001 2] Die Stromrichter sind bevorzugt als aus dem Stand der Technik bekannte Gleichrichter ausgestaltet und erlauben beispielsweise einen Leistungsumsatz von jeweils 1 50, 300 oder 450 kW. Stromrichter, englisch„power Converter", werden auch als Leistungsumsetzer bezeichnet. Gleichstromseitig sind die Stromrichter mit der Anschlussmatrix verbunden, entweder über eine direkte Kabelverbindung oder über den Hochvoltschützschalter gemäß der zweiten Alternative der zuvor beschriebenen Ladeeinrichtung. In diesem Fall ist bevorzugt zwischen jedem Stromrichter und der Anschlussmatrix jeweils ein Hochvoltschützschalter vorgesehen. Wechselstromseitig ist der Stromrichter bevorzugt über einen Transformator mit einem Wechselspannungsstromnetz verbunden. Die Hochvoltschützschalter sind bevorzugt ausgestaltet, dass eine Unterbrechung des Strompfads bzw. Trennung eines Ladeanschlusses von den Stromrichtern immer„sicher" gewährleistet ist, ohne dass beim Unterbrechen ein Lichtbogen oder dergleichen entsteht. Die Hochvoltschützschalter sind bevorzugt gemäß ISO 6469-3 ausgestaltet und/oder für Lastspannungen von maximal 500 VDC für Pkw und maximal 900 VDC für Lkw ausgestaltet. Weiter bevorzugt ist jeder Hochvoltschützschalter zum Schalten eines maximalen Stroms IMAX > 4, 5 oder 6 * I N eingerichtet.
[001 3] Nach einer bevorzugten Weiterbildung ist zwischen der der Anschlussmatrix und jedem Ladeanschluss, zwischen jedem Stromrichter und der Anschlussmatrix und/oder innerhalb der Anschlussmatrix zwischen wenigstens einem Stromrichter und jedem Ladeanschluss einer der Hochvoltschützschalter angeordnet. Das Stromrichtergehäuse ist beispielsweise aus Kunststoff, Metall, Stein, Beton, einem Gemisch der genannten Materialien und/oder witterungsfest gestaltet, so dass das Stromrichtergehäuse beispielsweise an einem Parkplatz für Elektrofahrzeuge installierbar ist. Das Stromrichtergehäuse ist bevorzugt als abgeschlossenes Gehäuse ausgeführt, in dessen Innerem die Stromrichter, die Anschlussmatrix und die Hochvoltschützschalter angeordnet sind. Das Gehäuse kann mit einer verschließbaren Tür und/oder Öffnung versehen sein.
[0014] Nach einer alternativen bevorzugten Weiterbildung weist die Ladeeinrichtung ein Anschlussmatrixgehäuse auf, wobei innerhalb des Anschlussmatrixgehäuses die Anschlussmatrix und zwischen jedem Ladeanschluss und wenigstens einem Stromrichter einer der Hochvoltschützschalter angeordnet ist. Das Anschlussmatrixgehäuse kann analog wie zuvor beschrieben das Stromrichtergehäuse ausgestaltet sein, beispielsweise durch ein abgeschlossenes Gehäuse aus einem Kunststoff oder dergleichen gestaltet sein, in dessen Innerem die Anschlussmatrix und die Hochvoltschützschalter angeordnet sind.
[0015] Nach einer weiter bevorzugten alternativen Ausgestaltung weist die Ladeeinrichtung ein Anschlussmatrixgehäuse auf, wobei das Anschlussmatrixgehäuse innerhalb des Stromrichtergehäuses angeordnet ist und innerhalb des Anschlussmatrixgehäuses die Anschlussmatrix und zwischen jedem Ladeanschluss und der Anschlussmatrix angeordnet ist. Nach dieser Ausgestaltung ist die Anschlussmatrix innerhalb des Anschlussmatrixgehäuses angeordnet, welches wiederum innerhalb des Stromrichtergehäuses vorgesehen ist. Das Anschlussmatrixgehäuse ist bevorzugt wie zuvor ausgestaltet, beispielsweise nach Art eines Transformatorengehäuse oder eines Teils davon.
[001 6] Nach einer bevorzugten Weiterbildung der Erfindung sind alle Hochvoltschützschalter an einem von den Ladeanschlüssen entfernten Ort und/oder wenigstens 5, 10 oder 20 Meter entfernt voneinander angeordnet. Der getrennte Ort kann beispielsweise ein getrennter Raum oder ein getrenntes Gebäude darstellen. Ebenso können die Hochvoltschützschalter wie zuvor beschrieben innerhalb der Anschlussmatrix oder zwischen der Anschlussmatrix und den Stromrichtern in einem separaten Raum angeordnet sein, beispielsweise am Rand eines Parkplatzes, während die Ladeanschlüsse unmittelbar an den einzelnen Parkbuchten des Parkplatzes angeordnet sind. Weiter bevorzugt sind die Hochvoltschützschalter wenigstens 50, 100 oder 150 Meter entfernt von den Ladeanschlüssen angeordnet. Noch weiter bevorzugt sind die Ladeanschlüsse ohne Hochvoltschützschalter ausgestaltet und/oder ausgestaltet, dass ein Leistungsaustausch mit dem Elekt- rofahrzeug ohne Schalten eines in dem Ladeanschluss angeordneten Hochvoltschützschalters möglich ist.
[0017] Nach einer weiteren bevorzugten Ausgestaltung weist die Ladeeinrichtung eine Mehrzahl Verbindungskabel mit einer Länge von wenigstens 5, 10 oder 20 Meter auf, wobei zwischen jedem Ladeanschluss und der Anschlussmatrix ein Verbindungskabel zum Leistungsaustausch mit dem Elektrofahr- zeug vorgesehen ist. Bevorzugt weist das Verbindungskabel eine Länge von wenigstens 50, 100 oder 150 Meter auf, wobei die Länge ebenso größer sein kann. Bevorzugt ist das Verbindungskabel zwischen dem Ladeanschluss und der Anschlussmatrix fest installiert, beispielsweise innerhalb des Erdreiches eines Parkplatzes, an dem die Ladeeinrichtung installiert ist.
[0018] Grundsätzlich kann die Anschlussmatrix in vielfältiger Weise ausgestaltet sein. Nach einer bevorzugten Weiterbildung ist die Anschlussmatrix zum Verbinden wenigstens zweier Stromrichter mit einem Ladeanschluss eingerichtet oder zum gleichzeitigen Verbinden wenigstens eines Stromrichters mit wenigstens einem Ladeanschluss und wenigstens eines anderen Stromrichters mit einem anderen Ladeanschluss derart eingerichtet, dass der eine Ladeanschluss nicht mit dem anderen Ladeanschluss verbunden ist und/oder das Verbinden des wenigstens einen Stromrichters mit dem wenigstens einen Ladeanschluss durch die Anschlussmatrix anhand von Entscheidungsregeln steuerbar ist. Die Anschlussmatrix ist weiter bevorzugt ausgestaltet, dass die mit der Anschlussmatrix verbundenen Ladeanschlüsse und Stromrichter in unterschiedlichen Weisen verbindbar sind. Mittels der Anschlussmatrix kann Strom von wenigstens einer der Stromrichter auf unterschiedliche oder mehrere Ladeanschlüsse verteilt werden. Innerhalb der Anschlussmatrix kann die elektrische Verbindung zwischen wenigstens einem der Stromrichter als Eingang und wenigstens einem der Ladeanschlüsse als Ausgang aus einem mechanischen Schalter, Solid State Switch, Leistungsschalter, Sicherheitselement, passiver Halbleiter oder eine Kombination davon bestehen.
[0019] Bevorzugt weist die Anschlussmatrix eine Steuereinheit auf, um einen Betrieb der Anschlussmatrix zu steuern. Weiter bevorzugt ist die Anschlussmatrix anhand eines Eingangs von einem über das Internet angeschlossenen System, durch das Elektrofahrzeug und/oder durch ein Computer-im- plementiertes Verfahren steuerbar. Unter bevorzugter Verwendung des Ladestandards EN 62196 Typ 2 kann zwischen dem Elektrofahrzeug und der Ladeeinrichtung ein bidirektionaler Kommunikationskanal vorgesehen sein, mittels derer einerseits die Ladeeinrichtung die von dem Elektrofahrzeug unterstützte Ladeleistung auslesen kann und/oder andererseits das Elektrofahrzeug eine Ladeleistung von der Ladeeinrichtung anfordern kann. Die Anforderung kann von der Anschlussmatrix durch Verbinden mehrerer Stromrichter umgesetzt werden, beispielsweise durch Parallelschalten verschiedener Stromrichter, wodurch sich die Leistung zum Laden des Elekt- rofahrzeugs entsprechend erhöht.
[0020] Nach einer weiteren bevorzugten Ausgestaltung weist die Anschlussmatrix eine Mehrzahl Halbleiter-basierter Leistungsschalter zum Verbinden des wenigstens einen Stromrichters mit dem wenigstens einen Ladeanschluss auf. Der innerhalb der Anschlussmatrix und/oder zwischen der Anschlussmatrix und dem Stromrichter angeordnete Leistungsschalter ist bevorzugt ebenso als Halbleiter-basierter Leistungsschalter, beispielsweise als IGBT, als Schütz und/oder zum Schalten von Gleichströmen bis zu 350 A oder 500 A ausgestaltet.
[0021 ] Der Ladeanschluss weist nach einer bevorzugten Weiterbildung ein Mensch-Maschine-Interface, eine Temperiereinrichtung eingerichtet zum Kühlen und/oder Beheizen des Ladeanschlusses, eine Eingabeeinheit, Central Control, und/oder ein Interface zur Überwachung des Ladevorgangs, Charge Protocol Interface, CPI, auf. Das Mensch-Maschine-Interface ist beispielsweise als EinVAusgabeeinrichtung gestaltet. Die Temperiereinrichtung kann nach Art einer Klimaanlage mit einer Wasser- und/oder Luftkühlung ausgestaltet sein. Innerhalb des zuvor beschriebenen Stromrichtergehäuses und/oder des Anschlussmatrixgehäuses kann ebenso eine Temperiereinrichtung zum Kühlen und/oder Beheizen des entsprechenden Gehäuses vorgesehen sein, welche mit der Temperiereinrichtung des Ladeanschlusses verbunden sein kann.
[0022] Nach einer bevorzugten Weiterbildung weist die Ladeeinrichtung eine Überwachungseinrichtung auf, wobei der Ladeanschluss eingerichtet ist, beim Leistungsaustausch mit dem Elektrofahrzeug einen Ladefehler zu detektie- ren und den Ladefehler an die Überwachungseinrichtung zu melden. In diesem Zusammenhang ist nach einer bevorzugten Weiterbildung vorgesehen, dass wenigstens einer der Stromrichter, die Anschlussmatrix und/oder die Überwachungseinrichtung eingerichtet ist, nach Detektion des Ladefehlers den Leistungsaustausch mit dem Elektrofahrzeug zu unterbrechen. Der Ladefehler kann beispielsweise einen Spannungs- und/oder Stromabfall, einen Kurzschluss oder dergleichen darstellen. Die Überwachungseinrichtung ist vorzugsweise durch eine Computer-basierte Steuerung ausgestaltet und/oder steht in Wirkzusammenhang mit dem Hochvoltschützschalter. Entsprechend kann der Leistungsaustausch mit dem Elektrofahrzeug durch Ausschalten des Hochvoltschützschalters oder durch Trennen des betreffenden Stromrichters von der Leistungsquelle unterbrochen werden.
[0023] Nach einer weiteren bevorzugten Ausgestaltung ist in diesem Zusammenhang vorgesehen, dass die Überwachungseinrichtung eingerichtet ist, einen Umsetzungsfehler an den Stromrichtern zu detektieren und nach Detektion des Umsetzungsfehlers den Umsetzungsfehler hervorgerufenen Stromrichter abzuschalten. Bevorzugt ist die Überwachungseinrichtung ferner ausgestaltet, nach Detektion des Umsetzungsfehlers einen anderen Stromrichter mit dem Ladeanschluss zu verbinden, so dass das Elektrofahrzeug unterbrechungsfrei weiter geladen werden kann. Das Abschalten des den Umsetzungsfehler hervorrufenden Hochvoltschützschalters kann durch Ausschalten des entsprechend mit dem Stromrichter verbundenen Hochvoltschützschalters erfolgen. Das Unterbrechen des Leistungsaustausches mit dem Elektrofahrzeug kann ferner durch Entfernen eines Ladesteckers aus dem Ladeanschluss, beispielsweise durch Auswerfen des Ladesteckers, erfolgen.
Kurze Beschreibung der Zeichnungen [0024] Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden Zeichnungen anhand bevorzugter Ausführungsbeispiele näher erläutert.
[0025] Es zeigen:
[0026] Fig. 1 eine Ladeeinrichtung für Elektrofahrzeuge gemäß einem ersten bevorzugten Ausführungsbeispiel der Erfindung in einer schematischen Ansicht,
[0027] Fig. 2 die Ladeeinrichtung für Elektrofahrzeuge gemäß einem weiteren bevorzugten Ausführungsbeispiel der Erfindung in einer schematischen Ansicht, und
[0028] Fig. 3 die Ladeeinrichtung für Elektrofahrzeuge gemäß einem noch weiteren bevorzugten Ausführungsbeispiel der Erfindung in einer schematischen Ansicht.
Beschreibung der Ausführungsbeispiele
[0029] Fig. 1 bis 3 zeigen jeweils eine Ladeeinrichtung für Elektrofahrzeuge 1 gemäß bevorzugter Ausführungsbeispiele der Erfindung in einer schematischen Ansicht. Die Ladeeinrichtung weist mehrere Ladeanschlüsse 2, mehrere Stromrichter 3 und eine schaltbare Anschlussmatrix 4 auf. Die Ladeanschlüsse 2 sind jeweils zum Leistungsaustausch mit einem jeweiligen Elekt- rofahrzeug 1 eingerichtet, welches mittels eines Verbindungskabels 5 mit dem Ladeanschluss 2 elektrisch verbunden ist.
[0030] Die Ladeanschlüsse 2 sind jeweils zum Gleichstromladen nach der Norm IEC 62196 ausgestaltet, wobei das Ladekabel 5 an seinem einen Ende mit dem jeweiligen Ladeanschluss 2 verbunden ist und an seinem anderen Ende einen Steckverbinder gemäß der genannten Norm aufweist. Korrespondierend dazu ist an dem Elektrofahrzeug 1 eine entsprechende Ladebuchse bzw. -kupplung vorgesehen, in die der Steckverbinder des Ladeka- bels 5 einsteckbar ist. Jeder Ladeanschluss 2 weist verschiedene Bedienelemente auf, beispielsweise ein Mensch-Maschine-Interface 6 mit einer Anzeige- und Eingabeeinrichtung, eine Temperiereinrichtung 7, mittels derer der Ladeanschluss 2 kühlbar und beheizbar ist, sowie eine Eingabeeinheit 8, Central Control, und ein Interface zur Überwachung des Ladevorgangs 9, Charge Protocol Interface, CPI.
[0031 ] Die Ladeanschlüsse 2 sind jeweils wenigstens 20 Meter räumlich entfernt von der Anschlussmatrix 4 angeordnet und mittels eines Verbindungskabels 10, welches entsprechend eine Länge von ebenso mindestens 20 Meter aufweist, mit der Anschlussmatrix 4 elektrisch verbunden. Ebenso wie das Ladekabel 5 ist das Verbindungskabel 10 zum Austauschen von elektrischer Leistung ausgestaltet.
[0032] Während die Ladeanschlüsse 2 an einer Parkbucht eines Parkplatzes in unmittelbarer Nähe des jeweiligen Elektrofahrzeugs 1 angeordnet sind, ist ein Stromrichtergehäuse 1 1 , innerhalb dessen alle Stromrichter 3, die Anschlussmatrix 4 sowie alle Hochvoltschützschalter 12 angeordnet sind, an einem Rand des Parkplatzes angeordnet. Das Stromrichtergehäuse 1 1 ist witterungsfest aus einem Kunststoff mit Metallanteil ausgestaltet und wenigstens 20 Meter entfernt von den Parkbuchten installiert.
[0033] Die Stromrichter 3 sind als Gleichrichter ausgestaltet und gleichspannungs- seitig mit der Anschlussmatrix 4 verbunden. Wechselspannungsseitig sind die Stromrichter 3 zusammengeschaltet mit einer Sekundärseite eines Transformators 13 verbunden. Primärseitig ist der Transformator an einem Stromnetz als Leistungsquelle 14 angeschaltet. Derart dient jeder Stromrichter 3 zum Umsetzen der von der Leistungsquelle 14 bereitgestellten elektrischen Leistung in ein geeignetes Format zum Laden des Elektrofahrzeugs 1 mit Gleichstrom.
[0034] Die Anschlussmatrix 4 weist eine Mehrzahl Halbleiter-basierter Leistungsschalter 15 auf, um wenigstens einen Stromrichter 3 mit wenigstens einem Ladeanschluss 2 zu verbinden. Die Anschlussmatrix 4 ist dazu anhand von Entscheidungsregeln steuerbar. Bei der in Fig. 1 gezeigten Konfiguration können durch Schließen der beiden Halbleiter-basierten Leistungsschalter 15 alle drei Stromrichter 3 parallelgeschaltet werden. Sofern jeder Strom- richter 3 eine elektrische Leistung von 150 kW umsetzen kann, wäre in diesem Fall ein einzelnes Elektrofahrzeug 1 mit 450 kW ladbar. Nach der in Fig. 1 konkret gezeigten Konfiguration mit nicht geschlossenen Halbleiterbasierten Leistungsschalter 15 können einerseits das oben gezeigte Elektrofahrzeug 1 mit von dem oben gezeigten Stromrichter 3 bereitgestellter elektrischer Leistung und andererseits parallel dazu das unten gezeigten Elektrofahrzeug 1 mit von dem unten gezeigten Stromrichter 3 bereitgestellter elektrischer Leistung geladen werden.
[0035] Gegenüber aus dem Stand der Technik bekannten Ladeeinrichtungen, bei denen die Hochvoltschützschalter 12 zum Schalten der zum Laden des Elektrofahrzeugs 1 benötigten elektrischen Leistung innerhalb des Ladeanschlusses 2 angeordnet sind, zeichnet sich die beschriebene Ladeeinrichtung dadurch aus, dass in dem Ladeanschluss 2 kein Hochvoltschützschalter 12, jedenfalls nicht zum Schalten der elektrischen Leistung zum Laden des Elektrofahrzeugs, angeordnet ist. Die Hochvoltschützschalter 12 sind innerhalb des Stromrichtergehäuses 1 1 , wie in Fig. 1 und 2 gezeigt, oder innerhalb eines Anschlussmatrixgehäuses 16, wie in Fig. 3 gezeigt, zwischen den Stromrichtern 3 und den Ladeanschlüssen 2 angeordnet. In den Figuren sind die Anschlussmatrix 4, das Stromrichtergehäuse 1 1 und die Hochvoltschützschalter 12 als abgeschlossene Teile gezeichnet; die Teile können aber auch vollständig oder teilweise kombiniert werden.
[0036] Die Anschlussmatrix 4 ist innerhalb des abgeschlossenen Anschlussmatrixgehäuses 1 6 angeordnet, welches zusammen mit den Stromrichtern 3 innerhalb des Stromrichtergehäuses 1 1 angeordnet ist. Wie bereits gesagt, sind bei der in Fig. 1 gezeigten Ausgestaltung alle Hochvoltschützschalter 12 innerhalb des Anschlussmatrixgehäuses 1 6 angeordnet, wobei jeweils ein Hochvoltschützschalter 12 zwischen jedem Ladeanschluss 2 und den Halbleiter-basierten Leistungsschaltern 15 der Anschlussmatrix 3 vorgesehen ist. Die Hochvoltschützschalter 12 sind also sowohl innerhalb des Stromrichtergehäuses 1 1 sowie innerhalb des Anschlussmatrixgehäuses 1 6 ausgangsseitig an der Anschlussmatrix 4 angeordnet.
[0037] Bei der in Fig. 2 gezeigten Ausgestaltung sind die Hochvoltschützschalter 12 dagegen zwischen jedem Stromrichter 3 und der Anschlussmatrix 4 an- geordnet. Dabei sind die Hochvoltschützschalter 12 außerhalb des Anschlussmatrixgehäuses 1 6 jedoch innerhalb des Stromrichtergehäuses 1 1 vorgesehen.
[0038] Die in Fig. 3 gezeigte Ausgestaltung zeigt eine Kombination von Hochvoltschützschalter 12 mit den Halbleiter-basierten Leistungsschaltern der Anschlussmatrix 4, die jedoch allesamt innerhalb der Anschlussmatrix 4, innerhalb des Anschlussmatrixgehäuses 1 6 und ebenso innerhalb des Strom- richtergehäusess 1 1 angeordnet sind.
[0039] Durch die vorgeschlagene Ladeeinrichtung wird sichergestellt, dass bei ausgeschaltetem Hochvoltschützschalter 12 ein in dem Ladeanschluss 2 auftretender Kurzschluss oder eine sonstige mechanische Beschädigung des Ladeanschlusses 2, beispielsweise durch einen Unfall des Elektrofahr- zeugs 1 , nicht zu einem Lichtbogen, Funkendurchschlag oder sonstiger Gefahr für Leben oder das Elektrofahrzeug 1 führt. Entsprechend ist die Ausfallwahrscheinlichkeit der vorgeschlagenen Ladeeinrichtung gegenüber aus dem Stand der Technik bekannten Lösungen wesentlich geringer.
Bezugszeichenliste
[0040] 1 Elektrofahrzeug
2 Ladeanschluss
3 Stromrichter
4 Anschlussmatrix
5 Ladekabel
6 Mensch-Maschine-Interface
7 Temperiereinrichtung
8 Eingabeeinheit, Central Control
9 Interface zur Überwachung des Ladevorgangs, Charge Protocol Interface
10 Verbindungskabel
1 1 Stromrichtergehäuse
12 Hochvoltschützschalter
13 Transformator
14 Leistungsquelle
15 Leistungsschalter
1 6 Anschlussmatrixgehäuse

Claims

Patentansprüche
1 . Ladeeinrichtung für Elektrofahrzeuge (1 ), umfassend
mehrere Ladeanschlüsse (2), wovon jeder Ladeanschluss (2) für einen Leistungsaustausch mit wenigstens einem Elektrofahrzeug (1 ) eingerichtet ist,
mehrere Stromrichter (3), wovon jeder Stromrichter (3) zum Umsetzen einer Leistung von einer Leistungsquelle (14) in ein geeignetes Format zum Laden des Elektrofahrzeugs (1 ) mit Gleichstrom eingerichtet ist, und
eine schaltbare Anschlussmatrix (4), welche zum Verbinden wenigstens eines Stromrichters (3) mit wenigstens einem Ladeanschluss (2) mittels wenigstens eines Leistungsschalters (1 5) zum Bereitstellen eines maximalen Nennstroms I N an dem jeweiligen Ladeanschluss (2) eingerichtet ist,
mehrere Hochvoltschützschalter (1 2), wobei zusätzlich zu der Anschlussmatrix (4) zwischen jedem Stromrichter (3) und jedem Ladeanschluss (2) wenigstens einer der Hochvoltschützschalter (1 2) im jeweiligen Gleichstrompfad angeordnet ist und jeder Hochvoltschützschalter (1 2) zum Schalten eines maximalen Stroms IMAX > 3 * I N eingerichtet ist, und
mit einem räumlich entfernt von den Ladeanschlüssen (2) angeordneten Stromrichtergehäuse (1 1 ) innerhalb dessen alle Stromrichter (3), die Anschlussmatrix (4) und alle Hochvoltschützschalter (12) angeordnet sind.
2. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach dem vorhergehenden Anspruch, wobei zwischen der der Anschlussmatrix (4) und jedem Ladeanschluss (2), zwischen jedem Stromrichter (3) und der Anschlussmatrix (4) und/oder innerhalb der Anschlussmatrix (4) zwischen wenigstens einem Stromrichter (3) und jedem Ladeanschluss (2) einer der Hochvoltschützschalter (1 2) angeordnet ist,
3. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der vorhergehenden Ansprüche, mit einem Anschlussmatrixgehäuse (1 6), wobei innerhalb des Anschlussmatrixgehäuses (1 6) die Anschlussmatrix (4) und zwischen jedem Ladeanschluss (2) und wenigstens einem Stromrichter (3) einer der Hochvoltschützschalter (1 2) angeordnet ist.
4. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der ersten beiden Ansprüche, mit einem Anschlussmatrixgehäuse (1 6), wobei das Anschlussmatrixgehäuses (1 6) innerhalb des Stromrichtergehäuses (1 1 ) und innerhalb des Anschlussmatrixgehäuses (16) die Anschlussmatrix (4) und zwischen jedem Ladeanschluss (2) und der Anschlussmatrix (4) jeweils einer der Hochvoltschützschalter (12) angeordnet ist.
5. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der vorhergehenden Ansprüche, wobei alle Hochvoltschützschalter (12) von den Ladeanschlüssen (2) wenigstens 5, 10 oder 20 Meter entfernt angeordnet sind.
6. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der vorhergehenden Ansprüche, mit einer Mehrzahl Verbindungskabel (10) mit einer Länge von wenigstens 5, 10 oder 20 Meter, wobei zwischen jedem Ladeanschluss (2) und der Anschlussmatrix (4) ein Verbindungskabel (10) vorgesehen ist.
7. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der vorhergehenden Ansprüche, wobei die Anschlussmatrix (4) zum Verbinden wenigstens zweier Stromrichter (3) mit einem Ladeanschluss (2) eingerichtet ist oder zum gleichzeitigen Verbinden wenigstens eines Stromrichters (3) mit wenigstens einem Ladeanschluss (2) und wenigstens eines anderen Stromrichters (3) mit einem anderen Ladeanschluss (2) derart eingerichtet ist, dass der eine Ladenanschluss nicht mit dem anderen Ladeanschluss (2) verbunden ist und/oder wobei das Verbinden des wenigstens einen Stromrichters (3) mit dem wenigstens einem Ladeanschluss (2) durch die Anschlussmatrix (4) anhand von Entscheidungsregeln steuerbar ist.
8. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der vorhergehenden Ansprüche, wobei die Anschlussmatrix (4) eine Mehrzahl halbleiterbasierter Leistungsschalter (15) zum Verbinden des wenigstens einen Stromrichters (3) mit dem wenigstens einem Ladeanschluss (2) aufweist.
9. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der vorhergehenden Ansprüche, wobei der Ladeanschluss (2) eine Mensch-Maschine-Interface (6), eine Temperiereinrichtung (7) eingerichtet zum Kühlen und/oder Beheizen des Ladeanschlusses (2), eine Eingabeeinheit (8), Central Control, und/oder ein Interface zur Überwachung des Ladevorgangs (9), Charge Protocol Interface, CPI, auf.
10. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der vorhergehenden Ansprüche, mit einer Überwachungseinrichtung, wobei der Ladeanschluss (2) eingerichtet ist, beim Leistungsaustausch mit dem Elektrofahrzeug (1 ) einen Ladefehler zu detektieren und den Ladefehler an die Überwachungseinrichtung zu melden.
1 1 . Ladeeinrichtung für Elektrofahrzeuge (1 ) nach dem vorhergehenden Anspruch, wobei wenigstens einer der Stromrichter (3), die Anschlussmatrix (4) und/oder die Überwachungseinrichtung eingerichtet ist, nach Detektion des Ladefehlers den Leistungsaustausch mit dem Elektrofahrzeug (1 ) zu unterbrechen.
12. Ladeeinrichtung für Elektrofahrzeuge (1 ) nach einem der beiden vorhergehenden Ansprüche, wobei die Überwachungseinrichtung eingerichtet ist, einen Umsetzungsfehler an den Stromrichtern (3) zu detektieren und nach Detektion des Umsetzungsfehlers den Umsetzungsfehler hervorrufenden Stromrichter (3) abzuschalten.
PCT/EP2018/059876 2017-04-20 2018-04-18 Ladeeinrichtung für elektrofahrzeuge WO2018192960A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18717081.6A EP3612408A1 (de) 2017-04-20 2018-04-18 Ladeeinrichtung für elektrofahrzeuge
CN201880041101.XA CN110799378B (zh) 2017-04-20 2018-04-18 用于电动交通工具的充电装置
US16/659,114 US20200052507A1 (en) 2017-04-20 2019-10-21 Charging device for electric vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17167217 2017-04-20
EP17167217.3 2017-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/659,114 Continuation US20200052507A1 (en) 2017-04-20 2019-10-21 Charging device for electric vehicles

Publications (1)

Publication Number Publication Date
WO2018192960A1 true WO2018192960A1 (de) 2018-10-25

Family

ID=58632190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/059876 WO2018192960A1 (de) 2017-04-20 2018-04-18 Ladeeinrichtung für elektrofahrzeuge

Country Status (4)

Country Link
US (1) US20200052507A1 (de)
EP (1) EP3612408A1 (de)
CN (1) CN110799378B (de)
WO (1) WO2018192960A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230202B2 (en) * 2019-12-16 2022-01-25 Abb Schweiz Ag Multiple vehicle charging system
DE102020213802A1 (de) 2020-11-03 2022-05-05 Siemens Aktiengesellschaft Selektive Schnellabschaltung einer Ladevorrichtung
EP4015285A1 (de) * 2020-12-21 2022-06-22 Innogy eMobility Solutions GmbH Anordnung zur integration in eine ladevorrichtung für wenigstens ein elektrofahrzeug

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403415B2 (ja) 2020-08-25 2023-12-22 ニチコン株式会社 充電装置を構成する出力切替部の設計方法および制御方法
EP4259478A1 (de) * 2020-12-08 2023-10-18 Atom Power, Inc. Ladesystem und -verfahren für elektrofahrzeug
DE102020134458A1 (de) * 2020-12-21 2022-06-23 innogy eMobility Solutions GmbH Anordnung zur Integration in eine Ladevorrichtung für wenigstens ein Elektrofahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583418A (en) * 1991-05-31 1996-12-10 Honda Giken Kogyo Kabushiki Kaisha Battery charging station for electric vehicles and electric vehicle usable therewith
DE69602739T2 (de) * 1995-04-10 1999-10-21 Norvik Traction Inc Traktionsbatterieladesystem mit induktiver ankopplung
US20040189251A1 (en) * 2003-03-28 2004-09-30 Kutkut Nasser H. Modular and reconfigurable rapid battery charger
EP2572431A2 (de) * 2010-05-19 2013-03-27 Abb B.V. Aufladesystem für elektrofahrzeuge
US20130314037A1 (en) * 2012-05-25 2013-11-28 Nissan North America, Inc. Serial multi-vehicle quick charge station
WO2014184729A2 (en) * 2013-05-17 2014-11-20 Institute For Energy Application Technologies Co.,Ltd. Rapid charging power supply system
DE102014216878A1 (de) * 2014-08-25 2016-02-25 Robert Bosch Gmbh Ladevorrichtung für Elektrofahrzeuge sowie Verfahren und Vorrichtung zum Betreiben einer solchen Ladevorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050158A (ja) * 2010-08-24 2012-03-08 Suzuki Motor Corp 電動車両
JP6748954B2 (ja) * 2013-04-24 2020-09-02 パナソニックIpマネジメント株式会社 電力変換システム、コネクタ
US9713961B2 (en) * 2015-03-17 2017-07-25 GM Global Technology Operations LLC Method and system for control of contactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583418A (en) * 1991-05-31 1996-12-10 Honda Giken Kogyo Kabushiki Kaisha Battery charging station for electric vehicles and electric vehicle usable therewith
DE69602739T2 (de) * 1995-04-10 1999-10-21 Norvik Traction Inc Traktionsbatterieladesystem mit induktiver ankopplung
US20040189251A1 (en) * 2003-03-28 2004-09-30 Kutkut Nasser H. Modular and reconfigurable rapid battery charger
EP2572431A2 (de) * 2010-05-19 2013-03-27 Abb B.V. Aufladesystem für elektrofahrzeuge
US20130314037A1 (en) * 2012-05-25 2013-11-28 Nissan North America, Inc. Serial multi-vehicle quick charge station
WO2014184729A2 (en) * 2013-05-17 2014-11-20 Institute For Energy Application Technologies Co.,Ltd. Rapid charging power supply system
DE102014216878A1 (de) * 2014-08-25 2016-02-25 Robert Bosch Gmbh Ladevorrichtung für Elektrofahrzeuge sowie Verfahren und Vorrichtung zum Betreiben einer solchen Ladevorrichtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230202B2 (en) * 2019-12-16 2022-01-25 Abb Schweiz Ag Multiple vehicle charging system
DE102020213802A1 (de) 2020-11-03 2022-05-05 Siemens Aktiengesellschaft Selektive Schnellabschaltung einer Ladevorrichtung
EP4015285A1 (de) * 2020-12-21 2022-06-22 Innogy eMobility Solutions GmbH Anordnung zur integration in eine ladevorrichtung für wenigstens ein elektrofahrzeug

Also Published As

Publication number Publication date
CN110799378A (zh) 2020-02-14
EP3612408A1 (de) 2020-02-26
CN110799378B (zh) 2023-04-14
US20200052507A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2018192960A1 (de) Ladeeinrichtung für elektrofahrzeuge
EP2670622B1 (de) Verfahren zum schutz eines ladekabels und ladeeinrichtung
DE102013202591A1 (de) Ladeeinrichtung für ein Elektrofahrzeug
DE102016008263A1 (de) Batterieanordnung für ein Kraftfahrzeug
DE102014002819A1 (de) Elektrische Energiespeichervorrichtung für Kraftfahrzeuge
WO2012110535A2 (de) Modul zur leistungsverteilung in einem elektrisch betriebenen fahrzeug
EP3572272A1 (de) Ladeanlage, ladeverfahren und ladesystem
DE102015225856A1 (de) Ladevorrichtung und Ladeverfahren für eine Hochvoltbatterie eines Kraftfahrzeugs
DE102010042992A1 (de) Stromversorgungseinrichtung, Verfahren zum Trennen einer Batterie von einer Anschlusseinrichtung und Kraftfahrzeug
DE102021001678A1 (de) Elektrisches Bordnetz für ein Kraftfahrzeug und Diagnoseverfahren für einen in diesem Bordnetz angeordneten Batterie-Schutzschalter
DE102018004625A1 (de) Ladeverfahren und Ladevorrichtung zum Laden eines ersten und eines zweiten elektrisch betriebenen Fahrzeugs
DE102016203923B4 (de) Batteriesystem mit räumlich getrennten Teilbatterien
DE102010030732A1 (de) Vorrichtung zur Steuerung des elektrischen Ladevorgangs eines Energiespeichers eines Fahrzeugs
EP2500208B2 (de) Schutzschaltungsanordnung
DE102019207385B3 (de) Schaltungsanordnung zur Stromversorgung von straßengebundenen Fahrzeugen und Fahrzeug
DE102013002080A1 (de) Elektrische Konvertierungseinrichtung für ein Elektro- oder Hybridfahrzeug
DE10152701A1 (de) Elektrischer Akkumulator
DE102019209654A1 (de) Fahrzeugbordnetz
EP3782210B1 (de) Elektrisches energiesystem mit brennstoffzellen
WO2013104408A1 (de) Ladeeinrichtung
DE102016218242A1 (de) DC-Überspannungsschutz für ein Energiesystem
DE102020113562A1 (de) Schienenfahrzeug mit einem automatischen Erdungsschalter und Verfahren zum Erden von elektrischen Leitern in einem Bereich eines Schienenfahrzeugs
EP3417468B1 (de) Schaltanlagenanordnung, umrichteranordnung mit schaltanlagenanordnung und verfahren zum schutz der umrichteranordnung
DE102015218486A1 (de) Ladevorrichtung für ein Elektrofahrzeug
DE102022129660A1 (de) Adapter und Adapterbaugruppe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18717081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018717081

Country of ref document: EP

Effective date: 20191120