WO2018192525A1 - 汽轮发电机组 - Google Patents
汽轮发电机组 Download PDFInfo
- Publication number
- WO2018192525A1 WO2018192525A1 PCT/CN2018/083561 CN2018083561W WO2018192525A1 WO 2018192525 A1 WO2018192525 A1 WO 2018192525A1 CN 2018083561 W CN2018083561 W CN 2018083561W WO 2018192525 A1 WO2018192525 A1 WO 2018192525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure cylinder
- generator
- steam
- steam turbine
- cylinder
- Prior art date
Links
- 238000010248 power generation Methods 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 19
- 238000003303 reheating Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000004904 shortening Methods 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K11/00—Plants characterised by the engines being structurally combined with boilers or condensers
- F01K11/02—Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/76—Application in combination with an electrical generator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Definitions
- the present disclosure relates to the field of power generation technology, for example, to a steam turbine generator set.
- thermal power units experienced a process from subcritical to supercritical to ultra-supercritical.
- the typical super-supercritical unit main steam pressure, main steam temperature and reheat steam temperature have been upgraded to 25 MPa / 600 ° C / 600 ° C grade.
- the main steam pressure, main steam temperature and reheat steam temperature of thermal power units in the next 10 years are expected to further increase to the level of 35MPa/700°C/725°C.
- the use of secondary reheating technology to improve unit efficiency is a technology that has been researched and applied since the 1950s. However, in the past few decades, this technology has not been widely applied due to factors such as low fuel costs.
- FIG. 1 is a schematic view showing a conventional arrangement of a 1000 MW class tower boiler 1 and a secondary reheat steam turbine unit 2.
- the high pressure cylinder 21, the first intermediate pressure cylinder 221, the second intermediate pressure cylinder 222, and the low pressure cylinder 23 of the steam turbine unit 2 are uniaxially arranged in the turbine room.
- the main steam line 31 from the outlet of the superheater 11 of the boiler 1 to the high pressure cylinder 21 is about 160 meters long;
- the single root is about 190 meters long;
- the high temperature secondary reheat steam line 33 from the outlet of the secondary reheater 13 to the second intermediate pressure cylinder 222 is about 190 meters long.
- a high temperature secondary reheat steam line 33 having a length of about 190 meters is added to the system.
- This pipe like the main steam pipe 31 and the high temperature primary reheat steam pipe 32, requires the use of an expensive 600 ° C grade of high temperature resistant alloy steel.
- the main steam pipe 31, the high temperature primary reheat steam pipe 32, and the high temperature secondary reheat steam pipe 33 will all use alloy steel capable of withstanding higher temperatures. This will also lead to further increases in the investment in thermal power plant steam pipelines.
- the present disclosure provides a steam turbine generator set, which can prevent the steam turbine equipment from withstanding torsional thrust and shorten the high temperature and high pressure steam pipeline.
- the present disclosure provides a turbo generator set, the steam turbine generator set comprising:
- a boiler comprising a boiler body and at least a primary superheater and at least a primary reheater disposed within the boiler body; each of the superheater and the reheater having a steam inlet header and an outlet, respectively a header, where the steam inlet and the outlet header are corresponding to the header connection zone, and the boiler may be a tower boiler or Type boiler
- the steam turbine unit includes at least one high pressure cylinder and at least one intermediate pressure cylinder, and the steam turbine components are of two types: a condensing steam turbine unit and a back pressure steam turbine unit.
- the condensing steam turbine unit comprises at least one high pressure cylinder, at least one intermediate pressure cylinder and at least one low pressure cylinder
- the back pressure steam turbine unit comprises at least one high pressure cylinder and at least one intermediate pressure cylinder, a condensing steam turbine unit and a back pressure steam turbine unit It can be arranged coaxially or as a split shaft;
- a generator set comprising at least one generator coupled to the steam turbine unit; if the steam turbine unit is a split shaft arrangement, the generator set includes at least one first generator coupled to the high pressure cylinder and At least one second generator coupled to the low pressure cylinder;
- the steam piping system a pipeline for transferring a working medium between the boiler and the high-pressure cylinder, that is, a main steam pipeline; a pipeline for transporting a working medium between the boiler and the intermediate cylinder, that is, a high-temperature reheat steam pipeline; a pipeline for transferring a working medium between the high-pressure cylinder and the boiler, that is, a low-temperature reheat steam pipeline; a pipeline for transporting a working medium between the intermediate-pressure cylinder and the boiler, that is, a secondary low-temperature reheat steam pipeline; a common low temperature steam pipe between the intermediate pressure cylinder and the low pressure cylinder;
- the steam turbine unit and the generator set are disposed outside the boiler body adjacent to the header connection zone, and the steam turbine unit and the generator set are arranged in a high vertical manner, the turbine group and the axis of the generator set Vertically facing the boiler body (the axis of the steam turbine is perpendicular to the axis of the left and right walls of the boiler).
- the steam turbine generator set is coaxially arranged, and the high pressure cylinder, the intermediate pressure cylinder and the generator are arranged in the same shafting.
- the steam turbine generator set is a split shaft arrangement, the generator set includes a first generator and a second generator, and the high pressure cylinder and the first generator form a first shaft system; The intermediate cylinder and the second generator form a second shafting. The first shaft system and the second shaft system are arranged up and down.
- the steam turbine generator set is a split shaft arrangement
- the power generator set includes a first power generator and a second power generator
- the steam turbine unit includes a first intermediate pressure cylinder and a second intermediate pressure cylinder.
- the high pressure cylinder, the first intermediate cylinder and the first generator form a first shaft system
- the second intermediate cylinder, the low pressure cylinder and the second generator form a second shaft system.
- the first shaft system and the second shaft system are arranged up and down.
- the steam turbine unit further includes at least one low pressure cylinder.
- the steam turbine generator set is coaxially arranged, and the high pressure cylinder, the intermediate pressure cylinder and the low pressure cylinder are arranged in the same shafting system as the generator.
- the steam turbine generator set is a split shaft arrangement, the generator is divided into a first generator and a second generator, and the high pressure cylinder, the intermediate pressure cylinder and the first generator are combined a shaft system; the low pressure cylinder and the second generator form a second shaft system.
- the first shaft system and the second shaft system are arranged up and down.
- the steam turbine generator set is a split shaft arrangement, the generator is divided into a first generator and a second generator, and the high pressure cylinder and the first generator form a first shaft system;
- the intermediate pressure cylinder, the low pressure cylinder and the second generator form a second shaft system.
- the first shaft system and the second shaft system are arranged up and down.
- the steam turbine generator set is a split shaft arrangement
- the steam turbine set includes a first intermediate pressure cylinder and a second intermediate pressure cylinder
- the generator set includes a first generator and a second generator
- the high pressure cylinder, the first intermediate cylinder and the first generator form a first shaft system
- the second intermediate cylinder, the low pressure cylinder and the second generator form a second shaft system.
- the first shaft system and the second shaft system are arranged up and down.
- the steam turbine generator set is a split shaft arrangement
- the steam turbine set includes a first intermediate pressure cylinder and a second intermediate pressure cylinder
- the generator set includes a first generator and a second generator
- the high pressure cylinder, the first intermediate cylinder, the second intermediate cylinder and the first generator form a first shaft system
- the low pressure cylinder and the second generator form a second shaft system.
- the first shaft system and the second shaft system are arranged up and down.
- the steam turbine set provided by the present disclosure can reduce the length of the pipe for conveying high temperature and high pressure steam, and at the same time, can eliminate the asymmetric torsional thrust of the interface on both sides of the steam turbine.
- FIG. 1 is a schematic view showing a conventional arrangement of a tower boiler and a secondary reheat steam turbine in the related art
- 2a is a schematic diagram of a two-axis steam turbine generator set according to an embodiment
- Figure 2b is a schematic view of the direction A in Figure 2a;
- Figure 2c is a schematic view of the direction B in Figure 2a;
- FIG. 3a is a schematic diagram of a turbine generator set arrangement according to an embodiment
- Figure 3b is a schematic view of the direction A in Figure 3a;
- FIG. 4a is a schematic diagram of a turbine generator set arrangement according to another embodiment
- Figure 4b is a schematic view of the direction A in Figure 4a;
- Figure 4c is a schematic view of the direction B in Figure 4a;
- FIG. 5a is a schematic diagram of a turbine generator set arrangement according to still another embodiment
- Figure 5b is a schematic view of the direction A in Figure 5a;
- Figure 5c is a schematic view of the direction B in Figure 5a;
- 6a is a schematic diagram of a turbine generator set arrangement according to still another embodiment
- Figure 6b is a schematic view of the direction A in Figure 6a;
- FIG. 7a is a schematic diagram of a turbine generator set arrangement according to still another embodiment
- Figure 7b is a schematic view of the direction A in Figure 7a;
- FIG. 8a is a schematic diagram of a turbine generator set arrangement according to still another embodiment
- Figure 8b is a schematic view of the direction A in Figure 8a;
- Figure 8c is a schematic view of the direction B in Figure 8a;
- 9a is a schematic diagram of a turbine generator set arrangement according to still another embodiment.
- Figure 9b is a schematic view of the direction A in Figure 9a;
- Figure 9c is a schematic view of the direction B in Figure 9a;
- FIG. 10a is a schematic diagram of a turbine generator set arrangement according to still another embodiment
- Figure 10b is a schematic view of the direction A in Figure 10a;
- Figure 11a is a schematic diagram of a turbine generator set arrangement according to still another embodiment
- Figure 11b is a schematic view of the direction A in Figure 11a;
- Figure 12a is a schematic diagram of a turbine generator set arrangement according to still another embodiment
- Figure 12b is a schematic view of the direction A in Figure 12a.
- a novel steam turbine generator set arrangement method is provided.
- the method places the twin-shaft turbine generator in the vicinity of the superheater outlet header of the boiler such that the connecting conduits of the boiler and the turbine are sufficiently short. as shown in picture 2.
- the steam turbine shaft includes a high pressure cylinder 21, a first intermediate cylinder 221 and a generator 41, and the other shaft includes a second intermediate cylinder 222, a low pressure cylinder 23 and a generator 42.
- the high temperature steam connecting pipe between the boiler and the steam turbine includes a main steam pipe 31, a primary heat reheat steam pipe 32, and a secondary heat reheat steam pipe 33.
- twin-shaft turbogenerator system shown in Fig. 2, although the twin-shaft turbine generator is disposed in the vicinity of the superheater outlet header of the boiler, the steam turbine and the boiler house are arranged in parallel in the system. This will cause the left and right inlet ducts of the turbine high pressure cylinder 21, the first intermediate cylinder 221 and the second intermediate cylinder 222 to be asymmetric with respect to the turbine axis, resulting in a torsional thrust that may be unacceptable to the turbine equipment.
- the main steam pipe 31 the primary heat reheat steam pipe 32, and the secondary heat reheat steam pipe 33
- the pipe is wound to meet the allowable stress of the pipe and the thrust of the interface with the steam turbine. .
- this causes the main steam line 31, the primary heat reheat steam line 32 and the secondary heat reheat steam line 33 to become longer, thereby also minimizing the effect of the arrangement.
- FIG. 3a and FIG. 3b a schematic diagram of a layout scheme of a coaxially arranged secondary reheat ultra-supercritical condensing steam turbine unit in which the boiler is a tower furnace is provided.
- the unit is a five-cylinder four-row steam, one of which is a high-pressure cylinder 21, one of the first intermediate-pressure cylinder 221, one of the second intermediate-pressure cylinder 222 and two of the low-pressure cylinder 23.
- the design parameter of the unit can be 28 MPa/600 ° C/600. °C/600 °C.
- the boiler 1 is a tower furnace, comprising a boiler body and a superheater 11 and two reheaters 12 and 13 disposed in the boiler body; each of the superheater and the reheater has a steam inlet and an outlet respectively and according to the relevant
- a common manner in the art forms a steam inlet and outlet header, and the corresponding steam inlet and outlet headers on the boiler body are header connection zones 14.
- the steam turbine unit 2 includes a high pressure cylinder 21, a first intermediate pressure cylinder 221, a second intermediate pressure cylinder 222, and two low pressure cylinders 23.
- the generator set includes a generator 4.
- the steam pipe system 3 includes: a superheater 11 outlet and a high pressure cylinder 21 that communicates with the boiler 1, a main steam pipe 31 for conveying high temperature and high pressure steam, and a primary reheater 12 outlet to the first intermediate pressure cylinder 221
- the main steam pipe 31, the high temperature primary reheat pipe 32, and the high temperature secondary reheat pipe 33 use a high temperature resistant alloy steel of a grade of 600 °C.
- the turbine shafting is disposed on the outside of the boiler body against the header connection zone 14.
- the axis of the steam turbine unit in this embodiment is perpendicular to the boiler body of the boiler 1.
- the high temperature and high pressure steam from the outlet of the superheater 11 of the boiler 1 enters the high pressure cylinder 21 through the main steam line 31, and the exhaust gas of the high pressure cylinder 21 is returned to the primary reheater 12 of the boiler by the low temperature primary reheat steam line. .
- the heated high temperature primary reheat steam is supplied to the first intermediate pressure cylinder 221 through the high temperature primary reheat steam line 32.
- the low-temperature secondary reheat steam after work is returned to the boiler 1 via the low-temperature secondary reheat steam line.
- the high-temperature secondary reheat steam heated by the secondary reheater 13 enters the second intermediate cylinder 222 through the high-temperature secondary reheat steam line 33.
- the steam after the work is then passed through the medium and low pressure communication pipe to enter the low pressure cylinder 23 to continue power generation.
- the high temperature steam piping system the main steam pipe 31, the high temperature primary reheat steam pipe 32, and the high temperature secondary reheat steam pipe 33 are greatly shortened.
- the high temperature and high pressure steam from the superheater in the boiler enters the high pressure cylinder through the high temperature and high pressure steam pipeline, and after the high temperature and high pressure steam is worked, the high pressure cylinder exhaust gas enters the reheater and is heated Generating a high-temperature reheat steam; the high-temperature reheat steam is discharged after entering the intermediate pressure cylinder; and the steam turbine generator set is disposed at an outer side of the boiler body adjacent to the header connection region And the axis of the steam turbine set is perpendicular to the boiler body, the length of the high temperature and high pressure steam in the steam pipe system is greatly shortened, and the asymmetrical thrust of the interface on both sides of the steam turbine can be eliminated.
- the genset of the present embodiment can reduce the amount of steam storage of the secondary reheating system in the conventional arrangement, which makes the genset of the present embodiment
- the regulation performance is comparable to a conventional primary reheat generator set.
- it can eliminate the asymmetrical thrust of the interface on both sides of the steam turbine and improve the operational safety of the steam turbine.
- FIGS. 4a, 4b, and 4c are schematic views of the arrangement of the steam turbine generator set provided by the embodiment.
- This embodiment differs from Embodiment 1 in that the turbine generator set is arranged in a split shaft.
- the steam turbine unit 2 is divided into an upper shaft system including a high pressure cylinder 21 and a first intermediate pressure cylinder 221, and a lower shaft system including a second intermediate pressure cylinder 222 and two low pressure cylinders 23. Both the upper shaft and the lower shaft are disposed outside the boiler 1 adjacent to the header connection region 14. The spacing between the upper and lower shaft systems satisfies the requirements for the lower shaft arrangement.
- the technical effect obtained by such a layout design is that the lengths of the main steam pipe 31, the primary heat reheat steam pipe 32 and the secondary heat reheat steam pipe 33 in the steam pipe are greatly shortened, and the investment in the high temperature and high pressure steam pipe system is greatly reduced.
- the steam turbine unit 2 adopts a split shaft arrangement, thereby shortening the length of the steam turbine shaft system, and is advantageous for reducing the steam leakage loss of the steam turbine shaft seal.
- FIG. 5a, FIG. 5b, and FIG. 5c are schematic diagrams showing the arrangement of the steam turbine generator set provided by the embodiment.
- This embodiment differs from Embodiment 1 in that the turbine generator set is arranged in a split shaft.
- the steam turbine unit 2 is divided into a lower shaft system including a high pressure cylinder 21 and a first intermediate pressure cylinder 221, and an upper shaft system including a second intermediate pressure cylinder 222 and two low pressure cylinders 23. Both the upper shaft and the lower shaft are disposed outside the boiler 1 adjacent to the header connection region 14. The spacing between the upper and lower shaft systems satisfies the requirements for the lower shaft arrangement.
- the technical effect obtained by such a layout design is that the lengths of the main steam pipe 31, the primary heat reheat steam pipe 32 and the secondary heat reheat steam pipe 33 in the steam pipe are greatly shortened, and the investment in the high temperature and high pressure steam pipe system is greatly reduced. .
- the second medium will be included.
- the pressure cylinder and the low pressure cylinder are used as the upper shaft system, and the high pressure cylinder and the first intermediate pressure cylinder are included as the lower shaft system, and the main steam pipeline, the primary reheat steam pipeline and the secondary reheat steam pipeline are arranged in a short manner, but In order to make the exhaust pipe of the low-pressure cylinder can pass through the condenser below, the high-level machine building will be relatively long, and the low-pressure cylinder exhaust pipe will be relatively long.
- FIG. 6a and FIG. 6b are schematic diagrams showing the arrangement of the steam turbine generator set provided by the embodiment.
- the difference between this embodiment and Embodiment 1 is that the present embodiment provides a primary reheat supercritical steam turbine generator set.
- the structure of this embodiment differs from the structure of Embodiment 1 in that the turbo generator set 2 includes a high pressure cylinder 21, an intermediate pressure cylinder 22, two low pressure cylinders 23, and a generator 4.
- the technical effect obtained by such a layout design is that the lengths of the main steam pipe 31 and the reheat steam pipe 32 in the steam pipe system 3 are greatly shortened, and the investment in the high temperature and high pressure steam pipe system is drastically reduced.
- FIG. 7a and FIG. 7b are schematic diagrams showing the arrangement of the steam turbine generator set provided by the embodiment.
- the difference between this embodiment and the embodiment 1 is that the turbo generator set provided in the embodiment is applied to Type furnace.
- the turbo generator set 2 in this embodiment is identical to the first embodiment.
- the technical effect obtained by such a layout design is that the lengths of the main steam pipe 31, the primary heat reheat steam pipe 32 and the secondary heat reheat steam pipe 33 in the steam pipe system are greatly shortened, and the investment in the high temperature and high pressure steam pipe system is greatly reduced. .
- FIG. 8a and FIG. 8b are schematic diagrams showing the arrangement of the steam turbine generator set provided by the embodiment.
- the difference between this embodiment and the embodiment 1 is that the turbo generator set provided in the embodiment is applied to The furnace, and the turbine generator set adopts a split shaft arrangement.
- the steam turbine unit 2 is divided into an upper shaft system including a high pressure cylinder 21, a first intermediate pressure cylinder 221 and a second intermediate pressure cylinder 222, and a lower shaft system including two low pressure cylinders 23.
- the upper shaft is arranged on the top platform of the boiler, adjacent to the junction connection zone 14, and the lower shaft is arranged on the side of the boiler house adjacent to the junction connection zone 14.
- the technical effect obtained by such a layout design is that the lengths of the main steam pipe 31, the primary heat reheat steam pipe 32 and the secondary heat reheat steam pipe 33 in the steam pipe system are greatly shortened, and the investment in the high temperature and high pressure steam pipe system is greatly reduced.
- the steam turbine unit 2 adopts a split shaft arrangement, thereby shortening the length of the steam turbine shaft system, and is advantageous for reducing the steam leakage loss of the steam turbine shaft seal.
- FIG. 9a and FIG. 9b are schematic diagrams showing the arrangement of the steam turbine generator set provided by the embodiment.
- the difference between this embodiment and the embodiment 1 is that the turbo generator set provided in the embodiment is applied to Type furnace, and the turbine generator set adopts a split shaft arrangement.
- the steam turbine unit 2 is divided into an upper shaft system including a high pressure cylinder 21 and a first intermediate pressure cylinder 221, and a lower shaft system including a second intermediate pressure cylinder 222 and two low pressure cylinders 23.
- the upper shaft is arranged on the top platform of the boiler, adjacent to the junction connection zone 14, and the lower shaft is arranged on the side of the boiler house adjacent to the junction connection zone 14.
- the technical effect obtained by such a layout design is that the lengths of the main steam pipe 31, the primary heat reheat steam pipe 32 and the secondary heat reheat steam pipe 33 in the steam pipe system are greatly shortened, and the investment in the high temperature and high pressure steam pipe system is greatly reduced.
- the steam turbine unit 2 adopts a split shaft arrangement, thereby shortening the length of the steam turbine shaft system, and is advantageous for reducing the steam leakage loss of the steam turbine shaft seal.
- FIG. 10a and FIG. 10b are schematic diagrams showing the arrangement of the steam turbine generator set provided by the embodiment.
- the difference between this embodiment and the embodiment 1 is that the turbo generator set provided in the embodiment is applied to Type furnace.
- the steam turbine unit 2 includes a high pressure cylinder 21, a first intermediate pressure cylinder 221, a second intermediate pressure cylinder 222, and two low pressure cylinders 23.
- the steam turbine unit is coaxially arranged, but the high pressure cylinder 21, the first intermediate pressure cylinder 221 and the second intermediate pressure cylinder 222 are located at the top of the boiler adjacent to the header connection zone 14.
- the low pressure cylinder 23 is located at a turbine room platform of the same height as the roof of the boiler.
- the technical effect obtained by such a layout design is that the lengths of the main steam pipe 31, the primary heat reheat steam pipe 32 and the secondary heat reheat steam pipe 33 in the steam pipe system are greatly shortened, and the investment in the high temperature and high pressure steam pipe system is greatly reduced. . At the same time, the length of the turbine room is greatly shortened, thus saving plant investment.
- FIG. 11a and FIG. 11b are schematic diagrams showing the arrangement of the steam turbine generator set provided by the embodiment.
- the turbo generator set provided in this embodiment is applied to a back pressure type steam turbine generator set.
- the turbo generator shaft system includes a high pressure cylinder 21, an intermediate pressure cylinder 22, and a generator 4. The exhaust gas from the outlet of the intermediate pressure cylinder 22 is sent directly to the user.
- the embodiment has the following advantages and effects: the high vertical arrangement of the steam turbine generator set greatly reduces the length and system resistance of the high temperature and high pressure pipeline and reduces the reheating system under the premise of satisfying the allowable stress of the pipeline and the thrust requirement of the turbine.
- the steam storage capacity and the regulation inertia of the unit greatly reduce the investment in the high temperature and high pressure steam pipeline system.
- the turbo generator shaft system includes a high pressure cylinder 21, an intermediate pressure cylinder 22, and a generator 4.
- the exhaust gas from the outlet of the intermediate pressure cylinder 22 is sent directly to the user.
- the embodiment has the following advantages and effects: the high vertical arrangement of the steam turbine generator set greatly reduces the length and system resistance of the high temperature and high pressure pipeline and reduces the reheating system under the premise of satisfying the allowable stress of the pipeline and the thrust requirement of the turbine.
- the steam storage capacity and the regulation inertia of the unit greatly reduce the investment in the high temperature and high pressure steam pipeline system.
- the boiler includes at least one stage of the superheater, only one stage of the reheater; the steam turbine set includes one of the high pressure cylinders, one of the intermediate pressure cylinders, one of the low pressure cylinders, and one of the generators
- the high pressure cylinder, the intermediate pressure cylinder, the low pressure cylinder and the generator are arranged in the same shaft system, that is, coaxially arranged.
- the high temperature and high pressure steam from the superheater in the boiler first enters the high pressure cylinder through the main steam pipeline, and after the high temperature and high pressure steam is worked, the steam discharged from the high pressure cylinder enters the steam through the low temperature reheat steam pipeline. After the heating, the reheated steam generated by the heating enters the intermediate pressure cylinder through the high temperature reheat steam pipe to perform work, and the steam discharged from the intermediate pressure cylinder enters the low pressure cylinder through the ordinary steam pipe to continue work.
- the steam turbine generator set is disposed on the outside of the boiler body adjacent to the header connection area, and the steam turbine group axis is perpendicular to the boiler body, the main steam pipeline
- the length of the high-temperature reheat steam pipe can be greatly shortened, and the asymmetrical thrust of the interface on both sides of the steam turbine can be eliminated.
- the condensing steam turbine unit may also adopt a split shaft arrangement, wherein the steam turbine unit includes an upper shaft system and a lower shaft system; the upper shaft system and the lower shaft system are disposed outside the boiler body adjacent to the header connection; the upper shaft The spacing between the system and the lower shaft system satisfies at least the requirements of the lower shafting arrangement; the high pressure cylinder may constitute an upper shaft system with the first generator, and the low pressure cylinder and the second generator form a lower shaft system The high pressure cylinder may also form a lower shaft system with the first generator, and the low pressure cylinder and the second generator form an upper shaft system; the medium pressure cylinder may be combined with a high pressure cylinder or a low pressure cylinder Arranged in the upper or lower shaft system.
- the back pressure type steam turbine unit may adopt a coaxial arrangement, and the steam turbine unit includes at least a high pressure cylinder, a medium pressure cylinder and a generator in a shaft system.
- the back pressure type steam turbine set may further adopt a split shaft arrangement; the high pressure cylinder may form an upper shaft system with the first generator, and the intermediate pressure cylinder may form a lower shaft system with the second generator; or the high pressure cylinder may further
- the first intermediate cylinder and the first generator in the intermediate cylinder may be configured as an upper shaft system, and the second intermediate cylinder and the second generator in the intermediate pressure cylinder constitute a lower shaft system.
- the steam turbine shaft system is disposed outside the boiler body against the header connection region, and the turbine group axis is perpendicular to the boiler body such that the main steam conduit
- the length of the high-temperature reheat steam pipe can be shortened, thereby reducing the investment of the steam pipe, improving the economy of the thermal power unit, and eliminating the asymmetrical thrust of the steam turbine on both sides of the steam turbine, thereby improving the operational safety of the steam turbine.
- the turbo generator set provided by the present disclosure reduces the pressure and heat loss of the high pressure steam in the reheat steam pipe by shortening the length of the reheat steam pipe, thereby improving the efficiency of the steam turbine generator set and reducing reheating.
- the amount of steam stored in the system has greatly improved the inertia of the unit.
- the turbo generator set provided by the present disclosure avoids the thrust of the pipeline system to the torsion of the steam turbine equipment interface by vertically arranging the high position of the steam turbine generator set, and can significantly reduce the steam under the premise of satisfying the allowable stress of the steam pipeline and the thrust requirement of the steam turbine.
- the length of the piping system and the pressure drop and heat loss of the piping system reduce the steam storage capacity of the reheating system and the unit regulating inertia.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
一种汽轮发电机组,包括锅炉(1),汽轮机组(2),发电机组,锅炉本体中的过热器(11)、再热器(12,13)以及锅炉本体上对应过热器(11)、再热器(12,13)的蒸汽进口联箱和出口联箱处的联箱连接区(14);连通锅炉(1)与高压缸(21)和中压缸(22),用于输送高温高压蒸汽的管道(31,32);汽轮机组(2)设置在所述锅炉本体外侧临近所述联箱连接区(14)处,并且汽轮发电机组(2)轴线垂直正对所述锅炉本体,即高位垂直布置。
Description
本公开涉及发电技术领域,例如涉及一种汽轮发电机组。
汽轮发电机组作为火力发电厂的核心设备,对火力发电厂的整体效率和经济性具有重要影响。近年来,伴随着燃料价格的不断攀升以及节能环保要求的不断提高,如何提高汽轮发电机组的效率已经成为世界多国共同关注的问题。在这样的背景下,不断提升汽轮发电机组的蒸汽参数,以及增加机组再热次数,从而提高机组循环效率,成为了汽轮发电机组的主要发展方向。
在蒸汽参数提升方面,火电机组经历了从亚临界到超临界再到超超临界的发展过程。典型超超临界机组主蒸汽压力、主蒸汽温度以及再热蒸汽温度已经提升至25MPa/600℃/600℃等级。随着材料科学和火电技术的不断发展,未来10年火电机组的主蒸汽压力、主蒸汽温度和再热蒸汽温度有望进一步提升至35MPa/700℃/725℃等级的水平。在增加再热次数方面,采用二次再热技术以提高机组效率是一项从上世纪50年代就开始研究应用的技术。然而,在过去的几十年里,受燃料成本低廉等因素的影响,这项技术一直没有得到大规模应用。但近来年,随着国际上对燃煤火电机组节能减排要求的日益严格,国内外发电企业和发电装备制造企业都不约而同地开始重新重视二次再热技术,并将其作为火电机组未来发展的一条重要技术路线。蒸汽参数的提升和再热次数的增加,都将导致一个共同的问题,蒸汽管道投资的大幅上升。
如图1所示为采用1000MW级塔式锅炉1与二次再热汽轮机组2的常规布置示意图。汽轮机组2的高压缸21、第一中压缸221、第二中压缸222和低压缸23单轴布置在汽轮机房内。一般地,从锅炉1的过热器11出口到高压缸21之间主蒸汽管道31单根约160米长;从一次再热器12出口至第一中压缸221的高温一次再热蒸汽管道32单根约190米长;从二次再热器13出口至第二中压缸222的高温二次再热蒸汽管道33单根约190米长。由于采用二次再热技术,使得系统中增加长约为190米的高温二次再热蒸汽管道33。该管道与主蒸汽管道31以及高温一次再热蒸汽管道32一样,均需要使用价格昂贵的600℃等级的耐高温合金钢。同时,随着未来火电机组蒸汽参数的不断提升,主蒸汽管道31、高温一次再热蒸汽管道32以及高温二次再热蒸汽管道33都将使用能够承受更高温度的合金钢。这还会导致火电机组蒸汽管道投资的进一步攀升。
发明内容
本公开提供一种汽轮发电机组,可以实现避免汽轮机设备承受扭转推力,缩短高温高压蒸汽管道。
本公开提供了一种汽轮发电机组,所述汽轮发电机组包括:
锅炉,所述锅炉包括锅炉本体及设置在所述锅炉本体内的至少一级过热器和至少一级再热器;每个所述过热器和所述再热器分别具有蒸汽进口联箱和出口联箱,所述锅炉本体上对应所述蒸汽进口和出口联箱处为联箱连接区,锅炉可以为塔式锅炉或
型锅炉;
汽轮机组,所述汽轮机组包括至少一高压缸和至少一中压缸,汽轮机组分为凝汽式汽轮机组和背压式汽轮机组两种类型。凝汽式汽轮机组包括至少一高压缸、至少一中压缸和至少一低压缸,背压式汽轮机组包括至少一高压缸和至 少一中压缸,凝汽式汽轮机组和背压式汽轮机组可以为同轴布置,也可以为分轴布置;
发电机组,所述发电机组包括至少一与所述汽轮机组连接的发电机;若所述汽轮机组为分轴布置,则所述发电机组包括至少一与所述高压缸连接的第一发电机及至少一与所述低压缸连接的第二发电机;
蒸汽管道系统,所述汽轮机组的蒸汽进口和出口与所述过热器、所述再热器的所述蒸汽进口联箱和出口联箱之间通过所述蒸汽管道系统连接;所述蒸汽管道系统至少包括所述锅炉与所述高压缸之间传输工质的管道,即主蒸汽管道;所述锅炉和所述中压缸之间传输工质的管道,即高温再热蒸汽管道;还可以包括所述高压缸与所述锅炉之间传输工质的管道,即一次低温再热蒸汽管道;中压缸与所述锅炉之间传输工质的管道,即二次低温再热蒸汽管道;以及所述中压缸和所述低压缸之间的普通低温蒸汽管道;
所述汽轮机组和所述发电机组设置在所述锅炉本体外侧临近所述联箱连接区处,并且汽轮机组和所述发电机组采用高位垂直方式布置,所述汽轮机组和所述发电机组的轴线垂直正对所述锅炉本体(汽轮机组轴线与锅炉左右墙方向轴线垂直正对)。
在一实施例中,所述汽轮发电机组为同轴布置,所述高压缸、所述中压缸与所述发电机布置在同一轴系中。
在一实施例中,所述汽轮发电机组为分轴布置,所述发电机组包括第一发电机和第二发电机,所述高压缸与所述第一发电机组成第一轴系;所述中压缸与所述第二发电机组成第二轴系。所述第一轴系与所述第二轴系呈上下布置。
在一实施例中,所述汽轮发电机组为分轴布置,所述发电机组包括第一发电机和第二发电机,所述汽轮机组包括第一中压缸和第二中压缸,所述高压缸、 所述第一中压缸与所述第一发电机组成第一轴系,所述第二中压缸、所述低压缸与所述第二发电机组成第二轴系。所述第一轴系与所述第二轴系呈上下布置。
在一实施例中,所述汽轮机组还包括至少一低压缸。
在一实施例中,所述汽轮发电机组为同轴布置,所述高压缸、所述中压缸和所述低压缸与所述发电机布置在同一轴系中。
在一实施例中,所述汽轮发电机组为分轴布置,所述发电机分为第一发电机和第二发电机,所述高压缸、中压缸与所述第一发电机组成第一轴系;所述低压缸与所述第二发电机组成第二轴系。所述第一轴系与所述第二轴系呈上下布置。
在一实施例中,所述汽轮发电机组为分轴布置,所述发电机分为第一发电机和第二发电机,所述高压缸与所述第一发电机组成第一轴系;所述中压缸、所述低压缸与所述第二发电机组成第二轴系。所述第一轴系与所述第二轴系呈上下布置。
在一实施例中,所述汽轮发电机组为分轴布置,所述汽轮机组包括第一中压缸和第二中压缸,所述发电机组包括第一发电机和第二发电机,所述高压缸、所述第一中压缸与所述第一发电机组成第一轴系,所述第二中压缸、所述低压缸与所述第二发电机组成第二轴系。所述第一轴系与所述第二轴系呈上下布置。
在一实施例中,所述汽轮发电机组为分轴布置,所述汽轮机组包括第一中压缸和第二中压缸,所述发电机组包括第一发电机和第二发电机,所述高压缸、所述第一中压缸、所述第二中压缸与所述第一发电机组成第一轴系,所述低压缸与所述第二发电机组成第二轴系。所述第一轴系与所述第二轴系呈上下布置。
本公开提供的汽轮机组能够缩减用于输送高温高压蒸汽的管道的长度,同时能够消除汽轮机两侧接口不对称的扭转推力。
图1是相关技术中的塔式锅炉与二次再热汽轮机组常规布置示意图;
图2a是一实施例提供的一种双轴汽轮发电机组的示意图;
图2b是图2a中A向示意图;
图2c是图2a中B向示意图;
图3a是一实施例提供的汽轮发电机组布置方案示意图;
图3b是图3a中A向示意图;
图4a是另一实施例提供的汽轮发电机组布置方案示意图;
图4b是图4a中A向示意图;
图4c是图4a中B向示意图;
图5a是又一实施例提供的汽轮发电机组布置方案示意图;
图5b是图5a中A向示意图;
图5c是图5a中B向示意图;
图6a是又一实施例提供的汽轮发电机组布置方案示意图;
图6b是图6a中A向示意图;
图7a是又一实施例提供的汽轮发电机组布置方案示意图;
图7b是图7a中A向示意图;
图8a是又一实施例提供的汽轮发电机组布置方案示意图;
图8b是图8a中A向示意图;
图8c是图8a中B向示意图;
图9a是又一实施例提供的汽轮发电机组布置方案示意图;
图9b是图9a中A向示意图;
图9c是图9a中B向示意图;
图10a是又一实施例提供的汽轮发电机组布置方案示意图;
图10b是图10a中A向示意图;
图11a是又一实施例提供的汽轮发电机组布置方案示意图;
图11b是图11a中A向示意图;
图12a是又一实施例提供的汽轮发电机组布置方案示意图;
图12b是图12a中A向示意图。
图中标记:1-锅炉;11-过热器;12-一次再热器;13-二次再热器;14-联箱连接区;2-汽轮机组;21-高压缸;22-中压缸;221-第一中压缸;222-第二中压缸;23-低压缸;3-蒸汽管道系统;31-主蒸汽管道;32-一次热再热蒸汽管道;33-二次热再热蒸汽管道;4-发电机;41-第一发电机;42-第二发电机。
一实施例中提供了一种新型的汽轮发电机组布置方法。与常规的汽轮发电机组布置比较而言,该方法将双轴汽轮发电机布置在锅炉的过热器出口联箱的附近,使得锅炉和汽轮机的连接管道足够短。如图2所示。其中,汽轮机一轴包括高压缸21、第一中压缸221和发电机41,另一轴包括第二中压缸222、低压缸23和发电机42。锅炉和汽轮机之间的高温蒸汽连接管道有:主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽管道33。
在如图2所示的双轴汽轮发电机系统中,虽然将双轴汽轮发电机布置在锅炉的过热器出口联箱的附近,但是,该系统中汽轮机与锅炉房为平行布置。这将导致汽轮机高压缸21、第一中压缸221和第二中压缸222的左、右两侧进汽 管道相对汽轮机轴线不对称,会产生一个汽轮机设备可能无法接受的扭转推力。在这种情况下,进行主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽管道33设计时,将管道绕圈,才能满足管道许用应力及其与汽轮机接口推力的要求。但这会导致主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽管道33变长,从而也使得该布置方案的效果大打折扣。
随着火电机组蒸汽参数的不断提升以及再热次数的不断增加,连接锅炉和汽轮机之间的高温蒸汽管道投资将大幅上升。因此,如何有效地缩短主蒸汽和再热蒸汽管道长度,降低火电机组管道的投资成本成为影响火电机组未来发展趋势的一个关键问题。
实施例1
如图3a及图3b所示,为本实施例提供的一种锅炉为塔式炉的同轴布置二次再热超超临界凝汽式汽轮机组的布置方案示意图。该机组为五缸四排汽,其中高压缸21一个,第一中压缸221一个,第二中压缸222一个以及低压缸23两个,该机组的设计参数可以为28MPa/600℃/600℃/600℃。
本实施例的超临界汽轮发电机组包括:
锅炉1,锅炉1为塔式炉,包括锅炉本体及设置在锅炉本体内的过热器11和两个再热器12和13;每个过热器及再热器分别具有蒸汽进口和出口并根据相关技术中的常用方式形成蒸汽进口和出口联箱,锅炉本体上对应的蒸汽进口和出口联箱处为联箱连接区14。
汽轮机组2,汽轮机组2包括高压缸21、第一中压缸221、第二中压缸222、两个低压缸23。发电机组包括发电机4。
蒸汽管道系统3,蒸汽管道系统3包括:连通锅炉1的过热器11出口与高压缸21,用于输送高温高压蒸汽的主蒸汽管道31;连通一次再热器12出口至 第一中压缸221的高温一次再热蒸汽管道32;连通二次再热器13出口至第二中压缸222的高温二次再热蒸汽管道33。还包括连通第二中压缸222至两个低压缸23的普通蒸汽管道。其中,主蒸汽管道31、高温一次再热管道32和高温二次再热管道33使用600℃等级的耐高温合金钢。
如图3a所示,汽轮机组轴系设置在所述锅炉本体外侧贴靠联箱连接区14。
如图3b所示,本实施例中的汽轮机组的轴线垂直正对锅炉1的锅炉本体。
按此布置方案,来自锅炉1的过热器11出口的高温高压蒸汽经主蒸汽管道31进入高压缸21,而后高压缸21的排汽通过低温一次再热蒸汽管道返回锅炉的一次再热器12加热。经过加热的高温一次再热蒸汽通过高温一次再热蒸汽管道32送入第一中压缸221。做功后的低温二次再热蒸汽经低温二次再热蒸汽管道返回锅炉1。经过二次再热器13加热后的高温二次再热蒸汽通过高温二次再热蒸汽管道33进入第二中压缸222。做功后的蒸汽再通过中低压联通管进入低压缸23继续做功发电。
由于汽轮机组贴近联箱连接区14设置,并且汽轮机组的轴线垂直正对锅炉1的锅炉本体,在满足管道的许用应力及其与汽轮机接口推力要求的前提下,相关技术中三个回路的高温蒸汽管道系统:主蒸汽管31、高温一次再热蒸汽管32和高温二次再热蒸汽管33被较大程度地缩短。
所述锅炉中来自所述过热器的高温高压蒸汽经所述高温高压蒸汽管道进入所述高压缸中,所述高温高压蒸汽做功后,所述高压缸排汽进入所述再热器中加热后生成高温再热蒸汽;所述高温再热蒸汽进入所述中压缸做功后排出;所述汽轮发电机组由于将所述汽轮机组设置在所述锅炉本体外侧临近所述联箱连接区处,并且所述汽轮机组轴线垂直正对所述锅炉本体,所述蒸汽管道系统中的所述高温高压蒸汽长度得以被极大地缩短,同时能够消除汽轮机两侧接口不 对称的扭转推力。
就蒸汽管道系统而言,采用高位垂直布置的发电机组的高温高压蒸汽管道的投资成本将大大降低。而且就再热系统所存储的蒸汽量来说,如图3a所示,本实施例的发电机组可以减少常规布置中二次再热系统的蒸汽存储量,这使得本实施例提供的发电机组的调节性能与常规的一次再热发电机组相当。此外,还能够消除汽轮机两侧接口不对称的扭转推力,提高了汽轮机的运行安全性。
实施例2
如图4a、图4b、图4c所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与实施例1的不同之处在于,汽轮发电机组采用分轴布置。汽轮机组2分为包括高压缸21与第一中压缸221的上轴系及包括第二中压缸222及两个低压缸23的下轴系。上轴系和下轴系均设置在锅炉1外侧临近联箱连接区14。上轴系和下轴系之间的间距满足下轴系布置要求。这样的布局设计获得的技术效果是,蒸汽管道中的主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽管道33的管道长度均大大缩短,高温高压蒸汽管道系统投资大幅下降。本实施例中汽轮机组2采用分轴布置,从而缩短了汽轮机轴系长度,有利于减小汽轮机轴封漏汽损失。
实施例3
如图5a、图5b、图5c所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与实施例1的不同之处在于,汽轮发电机组采用分轴布置。汽轮机组2分为包括高压缸21与第一中压缸221的下轴系及包括第二中压缸222及两个低压缸23的上轴系。上轴系和下轴系均设置在锅炉1外侧临近联箱连接区14。上轴系和下轴系之间的间距满足下轴系布置要求。这样的布局设计获得的技术效果是,蒸汽管道中的主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽 管道33的管道长度均大大缩短,高温高压蒸汽管道系统投资大幅下降。本实施例相对实施例2来说,由于锅炉过热器出口联箱和一次再热蒸汽出口联箱大多布置在下方,而二次再热蒸汽出口联箱布置在上方,因此,将包含第二中压缸和低压缸作为上轴系,而包含高压缸和第一中压缸作为下轴系,在布置上可使得主蒸汽管道、一次再蒸汽管道和二次再热蒸汽管道均较短,但是,为了使得低压缸的排汽管道可以直通下方的凝汽器,因此高位机厂房会相对较长,低压缸排汽管也相对较长。
实施例4
如图6a、图6b所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与实施例1的不同之处在于,本实施例提供的是一次再热超临界汽轮发电机组。本实施例的结构与实施例1的结构区别在于:汽轮发电机组2包含一高压缸21、一中压缸22、两个低压缸23和一发电机4。这样布局设计获得的技术效果是,蒸汽管道系统3中主蒸汽管道31和再热蒸汽管道32的管道长度均大大缩短,高温高压蒸汽管道系统投资大幅下降。
实施例5
如图7a、图7b所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与实施例1的不同之处在于,本实施例提供的汽轮发电机组应用于
型炉。本实施例中汽轮发电机组2与实施例1一致。这样的布局设计获得的技术效果是,蒸汽管道系统中主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽管道33的管道长度均大大缩短,高温高压蒸汽管道系统投资大幅下降。
实施例6
如图8a、图8b所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与实施例1的不同之处在于,本实施例提供的汽轮发电机组应用于
型炉, 并且汽轮发电机组采用分轴布置。汽轮机组2分为包括高压缸21与第一中压缸221和第二中压缸222的上轴系及包括两个低压缸23的下轴系。上轴系布置在锅炉顶部平台,临近联箱连接区14,下轴系布置在锅炉房侧面,临近联箱连接区14。这样的布局设计获得的技术效果是,蒸汽管道系统中主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽管道33的管道长度均大大缩短,高温高压蒸汽管道系统投资大幅下降。本实施例中汽轮机组2采用分轴布置,从而缩短了汽轮机轴系长度,有利于减小汽轮机轴封漏汽损失。
实施例7
如图9a、图9b所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与实施例1的不同之处在于,本实施例提供的汽轮发电机组应用于
型炉,并且汽轮发电机组采用分轴布置。汽轮机组2分为包括高压缸21与第一中压缸221的上轴系及包括第二中压缸222及两个低压缸23的下轴系。上轴系布置在锅炉顶部平台,临近联箱连接区14,下轴系布置在锅炉房侧面,临近联箱连接区14。这样的布局设计获得的技术效果是,蒸汽管道系统中主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽管道33的管道长度均大大缩短,高温高压蒸汽管道系统投资大幅下降。本实施例中汽轮机组2采用分轴布置,从而缩短了汽轮机轴系长度,有利于减小汽轮机轴封漏汽损失。
实施例8
如图10a、图10b所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与实施例1的不同之处在于,本实施例提供的汽轮发电机组应用于
型炉。汽轮机组2包括高压缸21、第一中压缸221、第二中压缸222及两个低压缸23。汽轮机组为同轴布置,但高压缸21、第一中压缸221和第二中压缸222位于锅炉顶部,临近联箱连接区14。低压缸23位于与锅炉房顶同高度的汽机房 平台。这样的布局设计获得的技术效果是,蒸汽管道系统中主蒸汽管道31、一次热再热蒸汽管道32和二次热再热蒸汽管道33的管道长度均大大缩短,高温高压蒸汽管道系统投资大幅下降。同时,汽机房长度大大缩短,从而节省了厂房投资。
实施例9
如图11a、图11b所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与实施例1的不同之处在于,本实施例提供的汽轮发电机组应用于背压式汽轮发电机组。在本实施例中,汽轮发电机组轴系包括高压缸21、中压缸22和发电机4。中压缸22出口的排汽直接送往用户。
本实施例具有以下优点和效果:汽轮发电机组高位垂直布置,在满足管道许用应力以及汽轮机推力要求的前提下,大大减小了高温高压管道的长度和系统阻力,降低了再热系统的储汽量和机组的调节惯性,大大降低了高温高压蒸汽管道系统投资。
实施例10
如图12a、图12b所示是本实施例提供的汽轮发电机组布置方案示意图。本实施例与的结构与实施例9的不同之处在于,本实施例的锅炉型式为
型炉,在本实施例中,汽轮发电机组轴系包括高压缸21、中压缸22和发电机4。中压缸22出口的排汽直接送往用户。
本实施例具有以下优点和效果:汽轮发电机组高位垂直布置,在满足管道许用应力以及汽轮机推力要求的前提下,大大减小了高温高压管道的长度和系统阻力,降低了再热系统的储汽量和机组的调节惯性,大大降低了高温高压蒸汽管道系统投资。
以凝汽式汽轮发电机组为例:
所述锅炉包括至少一级所述过热器,只有一级所述再热器;所述汽轮机组包括一个所述高压缸、一个所述中压缸、一个所述低压缸和一个所述发电机;所述高压缸、所述中压缸、所述低压缸和所述发电机布置在同一轴系,即同轴布置。
所述锅炉中来自所述过热器的高温高压蒸汽首先经主蒸汽管道进入所述高压缸中,所述高温高压蒸汽做功后,所述高压缸排出的蒸汽通过低温再热蒸汽管道进入所述再热器中后加热;经过加热后生成的再热蒸汽通过所述高温再热蒸汽管道进入所述中压缸做功,所述中压缸排出的蒸汽通过所述普通蒸汽管道进入低压缸中继续做功后排出;所述汽轮发电机组由于将所述汽轮机组设置在所述锅炉本体外侧临近所述联箱连接区处,并且所述汽轮机组轴线垂直正对所述锅炉本体,所述主蒸汽管道和所述高温再热蒸汽管道的长度得以被极大的缩短,同时能够消除汽轮机两侧接口不对称的扭转推力。
凝汽式汽轮机组还可以采用分轴布置,则汽轮机组包含一上轴系和一下轴系;上轴系和下轴系均设置在所述锅炉本体外侧临近所述联箱连接处;上轴系和下轴系之间的间距至少满足下轴系布置要求;所述高压缸可以与所述第一发电机组成上轴系,则所述低压缸与所述第二发电机组成下轴系;所述高压缸还可以与所述第一发电机组成下轴系,则所述低压缸与所述第二发电机组成上轴系;所述中压缸可以任意与高压缸或低压缸组合布置在上轴系或下轴系。
以背压式汽轮发电机组为例:
背压式汽轮机组可以采用同轴布置,则汽轮机组在一轴系中至少包括含高压缸、中压缸和发电机。
背压式汽轮机组还可以采用分轴布置;所述高压缸可以与所述第一发电机组成上轴系,中压缸可以与第二发电机组成下轴系;或者,所述高压缸还可以 与所述中压缸中的第一中压缸、第一发电机组成上轴系,中压缸中的第二中压缸与第二发电机组成下轴系。
本公开的上述实施中,所述汽轮机组轴系设置在所述锅炉本体外侧贴靠所述联箱连接区处,并且所述汽轮机组轴线垂直正对所述锅炉本体,使得所述主蒸汽管道和所述高温再热蒸汽管道的长度得以被缩短,从而降低蒸汽管道投资,提高火电机组经济性,同时能够消除汽轮机两侧接口不对称的扭转推力,提高了汽轮机的运行安全性。
本公开提供的汽轮发电机组由于缩短了再热蒸汽管道的长度,因而也降低了再热蒸汽管道中高压蒸汽的压力和散热损失,从而提高了汽轮发电机组的效率,同时减少了再热系统中存储的蒸汽量,使机组的调节惯性得到了极大改善。
本公开提供的汽轮发电机组通过将汽轮机发电机组高位垂直布置,避免了管道系统对汽轮机设备接口产生扭转的推力,可在满足蒸汽管道许用应力及汽轮机推力要求的前提下,显著减小蒸汽管道系统的长度和管道系统的压降和散热损失,降低再热系统的储汽量和机组调节惯性。
Claims (10)
- 一种汽轮发电机组,包括:锅炉,所述锅炉包括锅炉本体及设置在所述锅炉本体内的至少一级过热器和至少一级再热器;每个所述过热器和所述再热器分别具有蒸汽进口联箱和出口联箱,所述锅炉本体上对应所述蒸汽进口联箱和出口联箱处为联箱连接区;汽轮机组,所述汽轮机组包括至少一高压缸和至少一中压缸;发电机组,所述发电机组包括至少一与所述汽轮机组连接的发电机;蒸汽管道系统,所述蒸汽管道系统至少包括连通所述锅炉与所述高压缸和连通所述锅炉与所述中压缸并用于输送高温高压蒸汽的管道;所述汽轮机组和所述发电机组设置在所述锅炉本体外侧临近所述联箱连接区处,并且所述汽轮机组和所述发电机组采用高位垂直方式布置,所述汽轮机组和所述发电机组的轴线垂直正对所述锅炉本体的轴线。
- 如权利要求1所述的汽轮发电机组,其中,所述汽轮发电机组为同轴布置,所述高压缸、所述中压缸与所述发电机布置在同一轴系中。
- 如权利要求1所述的汽轮发电机组,其中:所述汽轮发电机组为分轴布置,所述发电机组包括第一发电机和第二发电机,所述高压缸与所述第一发电机组成第一轴系;所述中压缸与所述第二发电机组成第二轴系,所述第一轴系与所述第二轴系呈上下布置。
- 如权利要求1所述的汽轮发电机组,其中,所述汽轮发电机组为分轴布置,所述发电机组包括第一发电机和第二发电机,所述汽轮机组包括第一中压缸和第二中压缸,所述高压缸、所述第一中压缸与所述第一发电机组成第一轴系,所述第二中压缸与所述第二发电机组成第二轴系,所述第一轴系与所述第二轴系呈上下布置。
- 如权利要求1所述的汽轮发电机组,其中,所述汽轮机组还包括至少一 低压缸。
- 如权利要求5所述的汽轮发电机组,其中,所述汽轮发电机组为同轴布置,所述高压缸、所述中压缸、所述低压缸与所述发电机布置在同一轴系中。
- 如权利要求5所述的汽轮发电机组,其中,所述汽轮发电机组为分轴布置,所述发电机组包括第一发电机和第二发电机,所述高压缸、中压缸与所述第一发电机组成第一轴系;所述低压缸与所述第二发电机组成第二轴系,所述第一轴系与所述第二轴系呈上下布置。
- 如权利要求5所述的汽轮发电机组,其中,所述汽轮发电机组为分轴布置,所述发电机组包括第一发电机和第二发电机,所述高压缸与所述第一发电机组成第一轴系;所述中压缸、所述低压缸与所述第二发电机组成第二轴系,所述第一轴系与所述第二轴系呈上下布置。
- 如权利要求5所述的汽轮发电机组,其中,所述汽轮发电机组为分轴布置,所述汽轮机组包括第一中压缸和第二中压缸,所述发电机组包括第一发电机和第二发电机,所述高压缸、所述第一中压缸与所述第一发电机组成第一轴系,所述第二中压缸、所述低压缸与所述第二发电机组成第二轴系,所述第一轴系与所述第二轴系呈上下布置。
- 如权利要求5所述的汽轮发电机组,其中,所述汽轮发电机组为分轴布置,所述汽轮机组包括第一中压缸和第二中压缸,所述发电机组包括第一发电机和第二发电机,所述高压缸、所述第一中压缸、所述第二中压缸与所述第一发电机组成第一轴系,所述低压缸与所述第二发电机组成第二轴系,所述第一轴系与所述第二轴系呈上下布置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/607,014 US10927697B2 (en) | 2017-04-22 | 2018-04-18 | Turbogenerator set |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710268314.3A CN106948880A (zh) | 2017-04-22 | 2017-04-22 | 一种高位垂直布置的汽轮发电机组 |
CN201710268314.3 | 2017-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018192525A1 true WO2018192525A1 (zh) | 2018-10-25 |
Family
ID=59475935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/083561 WO2018192525A1 (zh) | 2017-04-22 | 2018-04-18 | 汽轮发电机组 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10927697B2 (zh) |
CN (1) | CN106948880A (zh) |
WO (1) | WO2018192525A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112343672A (zh) * | 2020-11-25 | 2021-02-09 | 哈尔滨汽轮机厂有限责任公司 | 高温超高压一次再热的50mw级凝汽式煤气发电汽轮机 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106948880A (zh) | 2017-04-22 | 2017-07-14 | 冯煜珵 | 一种高位垂直布置的汽轮发电机组 |
CN108087047A (zh) * | 2017-12-28 | 2018-05-29 | 江苏金通灵流体机械科技股份有限公司 | 汽轮机发电机组及其发电方法 |
CN114543065B (zh) * | 2022-03-18 | 2023-01-10 | 清华大学 | 火电厂机组 |
CN114934818B (zh) * | 2022-05-25 | 2023-09-01 | 西安热工研究院有限公司 | 一种高位机组、高位机组运行方法及高低位汽轮机系统 |
CN115306499A (zh) * | 2022-08-23 | 2022-11-08 | 国能神福(石狮)发电有限公司 | 汽轮发电机系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101042058A (zh) * | 2007-04-27 | 2007-09-26 | 冯伟忠 | 一种新型汽轮发电机组 |
JP2010043562A (ja) * | 2008-08-11 | 2010-02-25 | Hitachi Ltd | 火力発電プラント |
CN102230398A (zh) * | 2011-06-10 | 2011-11-02 | 中国电力工程顾问集团华东电力设计院 | 单轴汽轮发电机组 |
CN102251817A (zh) * | 2011-06-10 | 2011-11-23 | 中国电力工程顾问集团华东电力设计院 | 双轴汽轮发电机组 |
CN106948880A (zh) * | 2017-04-22 | 2017-07-14 | 冯煜珵 | 一种高位垂直布置的汽轮发电机组 |
CN207093150U (zh) * | 2017-04-22 | 2018-03-13 | 冯煜珵 | 一种高位垂直布置的汽轮发电机组 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2902831A (en) * | 1958-08-22 | 1959-09-08 | Gen Electric | Governing system for reheat steam turbine powerplant |
JPS5572608A (en) * | 1978-11-29 | 1980-05-31 | Hitachi Ltd | Driving process of cross-compound turbine bypath system and its installation |
DE102007030764B4 (de) * | 2006-07-17 | 2020-07-02 | General Electric Technology Gmbh | Dampfturbine mit Heizdampfentnahme |
JP2008248822A (ja) * | 2007-03-30 | 2008-10-16 | Toshiba Corp | 火力発電所 |
US20100038917A1 (en) * | 2008-08-15 | 2010-02-18 | General Electric Company | Steam turbine clutch and method for disengagement of steam turbine from generator |
KR101318487B1 (ko) * | 2009-02-25 | 2013-10-16 | 미츠비시 쥬고교 가부시키가이샤 | 증기 터빈 발전 설비의 냉각 방법 및 장치 |
CA2722195C (en) * | 2009-11-25 | 2013-03-19 | Hitachi, Ltd. | Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit |
JP5558310B2 (ja) * | 2010-10-22 | 2014-07-23 | 株式会社東芝 | 二酸化炭素回収方法及び二酸化炭素回収型汽力発電システム |
CN102654067A (zh) * | 2011-03-01 | 2012-09-05 | 中国电力企业联合会科技开发服务中心 | 一种锅炉与汽轮机等高布置方式 |
CN102128443B (zh) * | 2011-03-08 | 2012-12-12 | 中国华能集团清洁能源技术研究院有限公司 | 适用于超高汽温的煤粉锅炉 |
GB201106410D0 (en) * | 2011-04-15 | 2011-06-01 | Doosan Power Systems Ltd | Turbine system |
CN102767817B (zh) * | 2012-06-27 | 2015-04-15 | 华北电力大学 | 沉降式塔式电站锅炉系统 |
US10132494B2 (en) * | 2013-12-27 | 2018-11-20 | Mitsubishi Hitachi Power Systems, Ltd. | Heat transfer tube including a groove portion having a spiral shape extending continuously and a rib portion extending continuously and protruding inward by the groove portion |
-
2017
- 2017-04-22 CN CN201710268314.3A patent/CN106948880A/zh active Pending
-
2018
- 2018-04-18 US US16/607,014 patent/US10927697B2/en active Active
- 2018-04-18 WO PCT/CN2018/083561 patent/WO2018192525A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101042058A (zh) * | 2007-04-27 | 2007-09-26 | 冯伟忠 | 一种新型汽轮发电机组 |
JP2010043562A (ja) * | 2008-08-11 | 2010-02-25 | Hitachi Ltd | 火力発電プラント |
CN102230398A (zh) * | 2011-06-10 | 2011-11-02 | 中国电力工程顾问集团华东电力设计院 | 单轴汽轮发电机组 |
CN102251817A (zh) * | 2011-06-10 | 2011-11-23 | 中国电力工程顾问集团华东电力设计院 | 双轴汽轮发电机组 |
CN106948880A (zh) * | 2017-04-22 | 2017-07-14 | 冯煜珵 | 一种高位垂直布置的汽轮发电机组 |
CN207093150U (zh) * | 2017-04-22 | 2018-03-13 | 冯煜珵 | 一种高位垂直布置的汽轮发电机组 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112343672A (zh) * | 2020-11-25 | 2021-02-09 | 哈尔滨汽轮机厂有限责任公司 | 高温超高压一次再热的50mw级凝汽式煤气发电汽轮机 |
Also Published As
Publication number | Publication date |
---|---|
CN106948880A (zh) | 2017-07-14 |
US20200131925A1 (en) | 2020-04-30 |
US10927697B2 (en) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018192525A1 (zh) | 汽轮发电机组 | |
JP6556807B2 (ja) | 新型のタービン発電機ユニット | |
CN113175362B (zh) | 一种实现低压缸零出力的母管制连接系统及运行方法 | |
US20200131941A1 (en) | Pipeline connection system for steam turbine and boiler combination | |
CN110925730A (zh) | 一种基于燃煤发电机组停机不停炉的应急工业供热系统 | |
CN106194295A (zh) | 一种火电机组供热参数的匹配装置及方法 | |
US9677430B2 (en) | Combined cycle power plant | |
CN113175367B (zh) | 一种提升机组调峰能力和灵活性的母管制系统及运行方法 | |
CN205172657U (zh) | 由亚临界燃煤发电机组改造的二次再热超超临界机组 | |
JP2017502241A (ja) | 複合サイクル発電プラント | |
CN201037429Y (zh) | 一种新型汽轮发电机组 | |
US8794913B2 (en) | Steam turbine facility | |
CN210264838U (zh) | 一种喷水减温的热电联产机组热电解耦运行系统 | |
EP2180149B1 (en) | Steam turbine equipment | |
CN115324661B (zh) | 一种火电厂汽轮机分轴并高压缸切缸的系统和运行方法 | |
CN113175368B (zh) | 一种基于母管制改造的锅炉汽轮机互联系统以及运行方法 | |
CN105298564A (zh) | 用亚临界燃煤发电机组改造的二次再热超超临界机组 | |
CN115075904A (zh) | 一种钢铁企业余热余能发电系统 | |
CN113175366B (zh) | 一种实现机炉解耦的母管制热力系统以及运行方法 | |
CN207795327U (zh) | 一种用于跨代升级改造的机组热力系统 | |
CN207093150U (zh) | 一种高位垂直布置的汽轮发电机组 | |
CN217602734U (zh) | 一种钢铁企业余热余能发电系统 | |
CN113494322B (zh) | 一种通过母管实现机组间相互连接的系统以及运行方法 | |
CN115306499A (zh) | 汽轮发电机系统 | |
CN113175369A (zh) | 一种将单元制机组改造为母管制机组的系统以及运行方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18787684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18787684 Country of ref document: EP Kind code of ref document: A1 |