WO2018192482A1 - 一种终端驻留方法、基站、终端和计算机可读存储介质 - Google Patents

一种终端驻留方法、基站、终端和计算机可读存储介质 Download PDF

Info

Publication number
WO2018192482A1
WO2018192482A1 PCT/CN2018/083340 CN2018083340W WO2018192482A1 WO 2018192482 A1 WO2018192482 A1 WO 2018192482A1 CN 2018083340 W CN2018083340 W CN 2018083340W WO 2018192482 A1 WO2018192482 A1 WO 2018192482A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal quality
camping
quality threshold
cell
resident
Prior art date
Application number
PCT/CN2018/083340
Other languages
English (en)
French (fr)
Inventor
谢芳
胡南
徐晓东
陈卓
刘光毅
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710266101.7A external-priority patent/CN108738143B/zh
Priority claimed from CN201710265619.9A external-priority patent/CN108738140A/zh
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2018192482A1 publication Critical patent/WO2018192482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the embodiments of the present disclosure relate to the field of wireless communications technologies, and in particular, to a terminal camping method, a base station, a terminal, and a computer readable storage medium.
  • the idle (idle) terminal (UE) of the 5G (Fifth Generation Mobile Telecommunications Technology) system resides on the best cell.
  • 5G systems introduce multi-beam deployments to ensure coverage of common control channels and even data channels, as they may operate at high frequencies of 6-100 GHz.
  • the camping of the idle state terminal requires the cell in which the decision resides and which beam of the cell resides. How to choose beam camping for idle terminals, there is currently no definite solution.
  • the 5G high frequency band needs to use large-scale antennas to deal with the problem of large path loss and wear loss.
  • the analog digital hybrid beamforming architecture is the most likely to be used for 5G high-frequency large-scale antennas.
  • Architecture A cell is covered by multiple analog beams, and each analog beam can only change the beam direction in the time domain.
  • the new features introduced by analog digital hybrid beamforming have a greater impact on 5G system design, and cell resident is one of them.
  • the cell camping is based on the measurement results of RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality), that is, cell camping is considered in consideration of whether the cell signal is better. Therefore, cell camping in 5G needs to consider the new features introduced by "analog digital hybrid beamforming".
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • embodiments of the present disclosure provide a terminal camping method, a base station, a terminal, and a computer readable storage medium for solving the problem of how to select a beam camp for a terminal in an idle state.
  • a terminal camping method which is applied to a base station, and includes:
  • a camping condition of the transmit beam the camping condition being used for beam camping determination of the terminal.
  • the camping condition comprises a signal quality threshold and/or a dwell probability.
  • the step of camping conditions of the transmit beam includes:
  • the corresponding dwell condition is sent on the beam.
  • the camping condition includes scan time information of a beam, the camping condition being used for beam camping determination of the terminal.
  • the scan time information of the beam includes any one or a combination of any of the following: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • the camping condition further includes: a signal quality threshold of the beam and/or a threshold corresponding to the scan time information of the beam.
  • the step of camping conditions of the transmit beam includes:
  • a terminal resident method which is applied to a terminal, and includes:
  • Beam camping is selected based on the camping conditions of the beam.
  • the camping condition comprises a signal quality threshold and/or a dwell probability.
  • the step of receiving a camping condition of a beam transmitted by a base station includes:
  • the camping condition includes a signal quality threshold
  • the step of selecting beam camping according to the camping condition of the beam includes:
  • the beam camp is selected.
  • the method before the step of determining whether the signal quality of the measured beam meets the corresponding signal quality threshold, the method further includes:
  • the step of determining whether the signal quality of the measured beam meets the corresponding signal quality threshold includes:
  • the camping condition further includes a dwelling probability
  • the step of selecting beam dwelling comprises:
  • the signal quality is the best beam staying in the camped cell
  • the result of the determination is that the signal quality of the at least two beams in the camping cell meets the corresponding signal quality threshold, selecting a beam from the beam that meets the corresponding signal quality threshold; generating a random probability, and using the currently selected beam
  • the dwell probability is compared with the random probability, and according to the comparison result, it is judged whether the currently selected beam can be camped; if yes, camping on the currently selected beam; otherwise, the remaining signal quality threshold is satisfied Reselecting a beam in the beam, and returning to the step of generating a random probability, comparing the dwell probability of the currently selected beam with the random probability, and determining, according to the comparison result, whether the currently selected beam can reside; or
  • one of the at least two beams in the camping cell meets the corresponding signal quality threshold
  • one of the at least two beams is selected to be camped; a random probability is generated, and the random probability is generated.
  • Comparing with the dwelling probability of the resident beam based on the comparison result, determining whether the resident beam can continue to camp; if so, continuing to reside on the resident beam; otherwise, from the remaining signal quality thresholds that satisfy the corresponding A beam re-selection is selected in the beam, and the returning generates a random probability, compares the random probability with the dwelling probability of the resident beam, and according to the comparison result, determines whether the resident beam can continue to reside.
  • the camping condition further includes a dwelling probability, the determining whether the measured signal quality of the beam satisfies a corresponding signal quality threshold, and selecting a beam dwelling step according to the determining result.
  • Step when it is determined that the currently scanned beam can reside, camp on the currently scanned beam; when it is determined that the currently scanned beam is not campable, return to the when scanning to a beam, determine the current The step of whether the signal quality of the scanned beam satisfies the corresponding signal quality threshold.
  • the camping condition includes scan time information of the beam.
  • the step of selecting beam camping according to the camping condition of the beam includes:
  • Beam camping is selected from the beams in the currently camped cell based on the camping conditions of the beam.
  • the camping condition further includes a signal quality threshold of the beam; the step of selecting the beam camping comprises:
  • the beam with the longest scanning time is selected from the at least two beams according to the scan time information of the beam.
  • the camping condition further includes: a signal quality threshold of the beam and a threshold corresponding to the scan time information of the beam; and the step of selecting the beam camping includes:
  • a base station comprising:
  • a sending module configured to send a camping condition of the beam, where the camping condition is used for a beam camping judgment of the terminal.
  • the camping condition comprises a signal quality threshold and/or a dwell probability.
  • the sending module includes:
  • a first sending submodule configured to send, in a system message of a cell, a camping condition of all or part of a beam in the cell, where the system message is sent by broadcast or sent through dedicated signaling;
  • the second sending submodule is configured to send a corresponding camping condition on the beam.
  • the camping condition includes scan time information of a beam, the camping condition being used for beam camping determination of the terminal.
  • the scan time information of the beam includes any one or a combination of any of the following: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • the camping condition further includes: a signal quality threshold of the beam and/or a threshold corresponding to the scan time information of the beam.
  • the sending module includes:
  • a first sending submodule configured to send, in a system message of a cell, a camping condition of all or part of a beam in the cell;
  • the second transmitting submodule is configured to send its own camping condition on the beam.
  • a terminal including:
  • a receiving module configured to receive a camping condition of a beam sent by the base station
  • a selection module for selecting beam camping according to a camping condition of the beam.
  • the camping condition comprises a signal quality threshold and/or a dwell probability.
  • the receiving module includes:
  • a first receiving submodule configured to receive a camping condition of all or part of a beam in the cell sent by a base station through a system message of a cell, where the system message is sent by using a broadcast or by using dedicated signaling;
  • the second receiving submodule is configured to receive a camping condition that the base station sends through the beam.
  • the camping condition includes a signal quality threshold
  • the selecting module is further configured to determine whether a signal quality of the measured beam meets a corresponding signal quality threshold, and select a beam according to the determination result. Resident.
  • the terminal further includes:
  • a cell selection module configured to select a camped cell
  • the selection module is further configured to determine whether a signal quality of the measured beam in the camped cell meets a corresponding signal quality threshold.
  • the camping condition further includes a resident probability; wherein the selecting module comprises:
  • a first selection submodule configured to: when the result of the determination is that the signal quality of all the beams in the measured camping cell does not satisfy the corresponding signal quality threshold, the signal quality that resides in the camping cell is the best. On the beam
  • a second selection submodule configured to reside on a beam that meets a corresponding signal quality threshold when the result of the determination is that the signal quality of only one beam in the camping cell meets the corresponding signal quality threshold
  • the selection module further includes:
  • a fourth selection submodule configured to: when the result of the determination is that the signal quality of the at least two beams in the camping cell meets the corresponding signal quality threshold, select a beam from the beam that meets the corresponding signal quality threshold, and generate a random probability, comparing the dwell probability of the currently selected beam with the random probability, and determining, according to the comparison result, whether the currently selected beam can reside, and if so, camping on the currently selected beam, otherwise, from Reselecting a beam in the remaining beams satisfying the corresponding signal quality threshold, and returning to generate a random probability, comparing the dwell probability of the currently selected beam with the random probability, and determining the current selection according to the comparison result The step of whether the beam can reside until it is determined that the currently selected beam can reside;
  • a fifth selection submodule configured to: when the result of the determination is that the signal quality of the at least two beams in the camping cell meets the corresponding signal quality threshold, select one of the at least two beams to reside; a random probability, comparing the random probability with a dwelling probability of the resident beam, and determining, based on the comparison result, whether the resident beam can continue to reside; if so, continuing to reside on the resident beam; otherwise, remaining Selecting one beam resident in the beam satisfying the corresponding signal quality threshold, and returning to generate a random probability, comparing the random probability with the resident probability of the resident beam, and determining the resident beam according to the comparison result Whether the step of staying can continue until it is determined that the resident beam can continue to reside.
  • the camping condition further includes a resident probability
  • the selecting module includes:
  • a sixth selection sub-module configured to sequentially determine whether the signal quality of all the scanned beams meets a corresponding signal quality threshold, and obtain all the beams that meet the corresponding signal quality threshold; from all the beams that meet the corresponding signal quality thresholds Selecting a beam resident; generating a random probability, comparing the random probability with a dwelling probability of the resident beam, and determining whether the resident beam can continue to reside according to the comparison result; if yes, continuing to reside in the resident Leaving the beam; otherwise, selecting another beam-resident from the remaining beams that satisfy the corresponding signal quality threshold, and returning to generate a random probability, comparing the random probability with the resident probability of the resident beam And determining, according to the comparison result, whether the resident beam can continue to reside until it is determined that the resident beam can continue to camp; or
  • a seventh selection submodule configured to: when scanning a beam, determine whether the signal quality of the currently scanned beam meets a corresponding signal quality threshold; if yes, generate a random probability, and compare the random probability with the currently scanned The dwelling probability of the beam is compared, and according to the comparison result, it is judged whether the currently scanned beam can be camped; otherwise, the other beams are continuously scanned, and the signal quality of the currently scanned beam is judged when the beam is scanned.
  • the corresponding signal quality threshold is met; when it is determined that the currently scanned beam can reside, camping on the currently scanned beam; when it is determined that the currently scanned beam is not campable, returning to the When scanning a beam, it is determined whether the signal quality of the currently scanned beam satisfies the corresponding signal quality threshold.
  • the camping condition includes scan time information of the beam.
  • the selecting module is configured to select a camped cell, and select a beam camp from the beams in the currently camped cell according to the camping condition of the beam.
  • the camping condition further includes a signal quality threshold of the beam;
  • the selecting module includes:
  • a ninth camping unit configured to: when the signal quality of the at least two beams meets the corresponding signal quality threshold, select the beam with the longest scanning time from the at least two beams according to the scan time information of the beam stay.
  • the camping condition further includes: a signal quality threshold of the beam and a threshold corresponding to the scan time information of the beam; the selecting module includes:
  • a tenth camping unit configured to: when a signal quality of at least two beams meets a corresponding signal quality threshold, select, from the at least two beams, a beam whose scan time information satisfies the threshold; and scan time Among the beams whose information meets the threshold, a beam camp is selected.
  • a computer readable storage medium having stored thereon a computer program, which when executed by a processor, implements the terminal resident method as described in the first aspect above step.
  • a computer readable storage medium having stored thereon a computer program, which when executed by a processor, implements the terminal resident method as described in the second aspect above step.
  • a base station comprising: a processor and a memory, wherein the processor is configured to read a program in the memory, and execute the terminal resident method as described in the first aspect above A step of.
  • a terminal comprising: a processor and a memory, wherein the processor is configured to read a program in the memory, and execute the terminal resident method as described in the second aspect above A step of.
  • the idle state terminal can better select an appropriate beam camp according to the camping condition of the beam transmitted by the base station.
  • 1 is a schematic diagram showing a distribution of terminals on a beam in a cell
  • FIG. 2 is a schematic flow chart of a beam camping method according to Embodiment 5 of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for camping a terminal according to Embodiment 5 of the present disclosure
  • FIG. 4 is a schematic flow chart of a beam camping method according to Embodiment 6 of the present disclosure.
  • FIG. 5 is a schematic flowchart of a terminal camping method according to Embodiment 6 of the present disclosure.
  • FIG. 6 is a schematic flow chart of a beam camping method according to Embodiment 7 of the present disclosure.
  • FIG. 7 is a schematic flowchart of a terminal camping method according to Embodiment 7 of the present disclosure.
  • Embodiment 8 is a schematic flow chart of a beam camping method according to Embodiment 8 of the present disclosure.
  • FIG. 9 is a schematic flowchart of a terminal camping method according to Embodiment 8 of the present disclosure.
  • FIG. 10 is a schematic flow chart of a beam camping method according to Embodiment 9 of the present disclosure.
  • FIG. 11 is a schematic flowchart diagram of a terminal camping method according to Embodiment 9 of the present disclosure.
  • a corresponding method is performed on the base station side and the terminal side, respectively, in order to implement a suitable cell and/or beam camping for the terminal in the idle state, which will be described in detail below.
  • Embodiments of the present disclosure provide a method for transmitting beam information, which is applied to a base station, including: a camping condition for transmitting a cell and/or a beam, the camping condition being used for cell and/or beam camping determination of the terminal.
  • the base station may send a camping condition of the cell and/or the beam to the terminal, and the terminal in the idle state can select an appropriate cell and/or beam station according to the received camping condition. stay.
  • the camping condition includes a signal quality threshold of a cell and/or a beam.
  • the signal quality threshold includes any one of the following information or a combination of any one of the following: a reference signal received power (RSPR) threshold, and a reference signal receiving quality (RSRQ) threshold. And the Signal to Interference plus Noise Ratio (SINR) threshold.
  • RSPR reference signal received power
  • RSRQ reference signal receiving quality
  • SINR Signal to Interference plus Noise Ratio
  • the signal quality threshold is not limited to the foregoing information, and may also include an information threshold newly defined by the 5G system for characterizing the cell and/or beam signal quality, and the like.
  • the camping condition may include information such as an offset corresponding to a signal quality threshold in addition to the signal quality threshold.
  • the offset refers to the amount of adjustment made based on the signal quality threshold.
  • the base station may only send the signal quality threshold of the cell, and the signal quality threshold of the beam is not transmitted.
  • the terminal may select the cell camping through the signal quality threshold of the cell, and the beam selection may be randomly performed in the currently camped cell.
  • the beam is selected in the beam, or by measuring the signal quality of the beam, the best beam staying of the signal quality in the currently camped cell is selected.
  • the base station may also only transmit the signal quality threshold of the beam, and not transmit the signal quality threshold of the cell, and the terminal may select the beam camp by using the signal quality threshold of the beam, and for the cell, the resident cell may not be directly selected.
  • the resident beam is selected, or the camped cell is selected first according to some methods, and then the camped beam is selected.
  • the base station can simultaneously send the signal quality threshold of the cell and the signal quality threshold of the beam, and the terminal can select the cell to camp through the signal quality threshold of the cell, and can select the beam camping by using the signal quality threshold of the beam.
  • the content that is sent may further include an identifier of the beam, and the identifier may be an explicit beam ID or an implicit distinguishable beam other information.
  • the scanning time of each beam in the cell can be different. For example, there are many terminals in a certain area, and the beam scanning time in this direction can be extended to provide services to more users and improve system throughput. Please refer to FIG. 1.
  • the number of users is larger than that of other beam directions. Therefore, when performing beam scanning, the cell can allocate longer scanning time in the direction of beam4 and beam5 to serve more users and improve system performance.
  • the scan time of the beam makes sense for the terminal in the idle state to select the camped cell.
  • the camping condition of the cell and/or the beam sent by the base station includes scan time information of the beam.
  • the scan time information of the beam includes any one or a combination of any of the following: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • the scanning periods of the individual beams in the cell may be different, or partially the same, and partially different.
  • the shorter the scan period per unit time the longer the corresponding scan time.
  • the base station may only send the signal quality threshold of the cell and/or the beam, or only transmit the scan time information of the beam.
  • the signal quality threshold of the cell and/or the beam transmitted by the base station may only send the signal quality threshold of the cell and/or the beam, or only transmit the scan time information of the beam.
  • the camping condition of the cell and/or the beam transmitted by the base station may include a threshold corresponding to the scan time information of the beam, in addition to the scan time information of the beam.
  • the beam whose scan time information meets the threshold is a beam that can be selected to reside.
  • the threshold may be a time threshold. When the scanning time of the beam is higher or lower than the time threshold, the scanning time of the beam is longer and suitable for camping.
  • the camping condition of the base station transmitting the beam to the terminal includes the scan time information of the beam, and the terminal in the idle state may stay in the scan time as long as possible according to the received camping condition. On the beam.
  • the base station may send the camping condition of the cell and/or the beam by:
  • the camping condition of the beam transmitted by the base station in the embodiment of the present disclosure may include a camping probability.
  • the dwell probability of the beam may be determined by a situation of a load on the beam and/or a number of terminals that have camped on.
  • the dwell probability of the beam is associated with the load on the beam and/or the number of terminals on which it resides. Specifically, the more the load on the beam and/or the number of terminals on which it resides, the smaller the probability of the beam staying. Conversely, the less the load on the beam and/or the number of terminals on which it resides, the greater the probability of dwelling the beam.
  • the resident probability pi of the beam may range from 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1.
  • the i in pi can be used to distinguish different beams.
  • the camping condition of the base station transmitting the beam to the terminal includes a camping probability, and the terminal in the idle state may be uniformly distributed on each beam according to the received camping probability.
  • the base station may also allocate a corresponding size of PRACH (Physical Random Access Channel) for different beams. Access channel) resources for random access.
  • PRACH Physical Random Access Channel
  • the number of PRACH resources allocated for a beam is positively related to the load on the beam and/or the number of terminals on which it resides, ie the greater the load on the beam and/or the more terminals it resides on, the more The more PRACH resources are allocated, the fewer are allocated.
  • the scheme of the above-mentioned transmission beam's stagnation probability may be combined with the above-mentioned scheme for allocating PRACH resources for the beam to avoid random access congestion and load balancing between the beams.
  • the camping condition of the beam transmitted by the base station may include only a signal quality threshold, or only a dwell probability.
  • the camping condition may also include both a signal quality threshold and a dwell probability.
  • the content to be sent needs to include the identifier of the beam, and the identifier may be an explicit beam ID or an implicit distinguishable beam other information.
  • the base station may send a camping condition of the beam by:
  • the first manner is: sending a camping condition of all or part of the beams in the cell in a system message of the cell; the system message is sent by broadcast or by dedicated signaling;
  • the second way is to send the corresponding resident condition on the beam.
  • the base station may select one of the above two methods or simultaneously transmit the camping condition of the beam by the above two methods.
  • the embodiment of the present disclosure further provides a terminal camping method, which is applied to a base station, and includes: a camping condition of a transmit beam, where the camping condition is used for a beam camping judgment of the terminal.
  • the base station may send a camping condition of the beam to the terminal, and the terminal in the idle state can select an appropriate beam camp according to the received camping condition.
  • the camping condition includes a signal quality threshold.
  • the signal quality threshold includes any one of the following information or a combination of any one of the following: a reference signal received power (RSPR) threshold, and a reference signal receiving quality (RSRQ) threshold. And the Signal to Interference plus Noise Ratio (SINR) threshold.
  • RSPR reference signal received power
  • RSRQ reference signal receiving quality
  • SINR Signal to Interference plus Noise Ratio
  • the signal quality threshold is not limited to the foregoing information, and may also include a newly defined information threshold for characterizing the beam signal quality, and the like, which are newly defined by the 5G system.
  • the camping condition may include information such as an offset amount corresponding to a signal quality threshold in addition to the signal quality threshold.
  • the offset amount refers to an adjustment amount made based on a signal quality threshold.
  • the camping condition of the beam transmitted by the base station in the embodiment of the present disclosure may include a camping probability.
  • the dwell probability of the beam may be determined by a situation of a load on the beam and/or a number of terminals that have camped on.
  • the dwell probability of the beam is associated with the load on the beam and/or the number of terminals on which it resides. Specifically, the more the load on the beam and/or the number of terminals on which it resides, the smaller the probability of the beam staying. Conversely, the less the load on the beam and/or the number of terminals on which it resides, the greater the probability of dwelling the beam.
  • the resident probability pi of the beam may range from 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1.
  • the i in pi can be used to distinguish different beams.
  • the camping condition of the base station transmitting the beam to the terminal includes a camping probability, and the terminal in the idle state may be uniformly distributed on each beam according to the received camping probability.
  • the base station may also allocate a corresponding size of PRACH (Physical Random Access Channel) for different beams. Access channel) resources for random access.
  • PRACH Physical Random Access Channel
  • the number of PRACH resources allocated for a beam is positively related to the load on the beam and/or the number of terminals on which it resides, ie the greater the load on the beam and/or the more terminals it resides on, the more The more PRACH resources are allocated, the fewer are allocated.
  • the scheme of the above-mentioned transmission beam's stagnation probability may be combined with the above-mentioned scheme for allocating PRACH resources for the beam to avoid random access congestion and load balancing between the beams.
  • the camping condition of the beam transmitted by the base station may include only a signal quality threshold, or only a dwell probability.
  • the camping condition may also include both a signal quality threshold and a dwell probability.
  • the content to be sent needs to include the identifier of the beam, and the identifier may be an explicit beam ID or an implicit distinguishable beam other information.
  • the base station may send a camping condition of the beam by:
  • the first manner is: sending a camping condition of all or part of the beams in the cell in a system message of the cell; the system message is sent by broadcast or by dedicated signaling;
  • the second way is to send the corresponding resident condition on the beam.
  • the base station may select one of the above two methods or simultaneously transmit the camping condition of the beam by the above two methods.
  • a first embodiment of the present disclosure provides a method for transmitting beam information, which is applied to a base station, and includes: transmitting, in a system message of a cell, a signal quality threshold of all or part of a beam in the cell and/or the cell.
  • the system message is sent by broadcast or by dedicated signaling.
  • the signal quality threshold may include any one of the following information or a combination of any one of: a reference signal received power threshold, a reference signal received quality threshold, a signal to interference plus noise ratio threshold, and a newly defined 5G system for characterization Information threshold for cell and/or beam signal quality.
  • the first embodiment of the present disclosure further provides a terminal camping method, which is applied to a base station, and includes: sending, in a system message of a cell, a camping condition of all or part of a beam in the cell, where the camping condition includes a signal quality. Threshold.
  • the camping condition includes a signal quality threshold
  • the signal quality threshold may include any one or any combination of the following information: a reference signal receiving power threshold, a reference signal receiving quality threshold, and a signal to interference plus noise ratio.
  • Threshold and 5G system newly defined information thresholds for characterizing beam signal quality.
  • a second embodiment of the present disclosure provides a method for transmitting beam information, which is applied to a base station, and includes: transmitting, in a system message of a cell, a signal quality threshold and/or a beam of all or part of a beam in the cell and/or the cell. Scan time information.
  • the signal quality threshold may include any one of the following information or a combination of any one of: a reference signal received power threshold, a reference signal received quality threshold, a signal to interference plus noise ratio threshold, and a newly defined 5G system for characterization Information threshold for cell and/or beam signal quality.
  • the scan time information of the beam may include any one or a combination of any of the following: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • the second embodiment of the present disclosure further provides a terminal camping method, which is applied to a base station, and includes: sending, in a system message of a cell, a camping condition of all or part of a beam in the cell, where the camping condition includes a signal quality. Threshold and dwell probability.
  • the signal quality threshold is the same as that in the first embodiment.
  • the resident probability pi of the beam may range from 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1.
  • Embodiment 3 of the present disclosure provides a method for transmitting beam information, which is applied to a base station, including: transmitting its own signal quality threshold and/or scan time information on a beam.
  • the signal quality threshold of the beam may include any one of the following information or a combination of any of the following: a reference signal received power threshold, a reference signal received quality threshold, a signal and interference plus noise ratio threshold, and a newly defined 5G system.
  • An information threshold that characterizes cell and/or beam signal quality.
  • the scan time information of the beam may include any one or a combination of any of the following: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • Embodiment 3 of the present disclosure further provides a terminal camping method, which is applied to a base station, and includes: transmitting a corresponding signal quality threshold and a camping probability on a beam.
  • the signal quality threshold is the same as that in the first embodiment.
  • the resident probability pi of the beam may range from 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1.
  • a fourth embodiment of the present disclosure provides a method for transmitting beam information, which is applied to a base station, and includes: transmitting, in a system message of a cell, a signal quality threshold of all or part of a beam in the cell and/or the cell, in a beam Send its own scan time information.
  • the signal quality threshold may include any one of the following information or a combination of any one of: a reference signal received power threshold, a reference signal received quality threshold, a signal to interference plus noise ratio threshold, and a newly defined 5G system for characterization Information threshold for cell and/or beam signal quality.
  • the scan time information may include any one or a combination of any of the following: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • An embodiment of the present disclosure provides a beam camping method, which is applied to a terminal, and includes:
  • Step 1 receiving a camping condition of a cell and/or a beam sent by the base station;
  • the camping conditions of the cells and/or beams are the same as those of the cells and/or beams described in the above embodiments, and will not be described in detail herein.
  • Step 2 Select cell and/or beam camping according to camping conditions of the cell and/or beam.
  • the terminal in the idle state can select an appropriate cell and/or beam camp according to the camping condition of the received cell and/or beam transmitted by the base station.
  • the terminal may first select a camped cell and then select a resident beam.
  • the step of selecting a cell and/or beam camping according to the camping condition of the cell and/or beam includes:
  • Step 1 Select the camped cell
  • Step 2 Select a beam from the beams in the currently camped cell to camp.
  • a camped cell may be selected by a plurality of criteria, such as by selection criteria in the related art.
  • the camped cell may be selected according to the measured signal quality of the cell and the signal quality threshold of the received cell. For example, a cell whose signal quality meets the signal quality threshold is selected for camping.
  • the camped cell may be selected based on the measured signal quality of the beam in the cell. For example, an average of the signal qualities of the best quality N beams in the measured cell can be obtained, and the cell with the largest average value is selected.
  • the value range of N is: greater than or equal to 1, less than or equal to the number of all beams in the cell.
  • the selecting one beam from the beams in the current camping cell includes selecting a beam from the beams in the currently camped cell for camping based on the measured signal quality of the beam and the signal quality threshold of the beam. For example, in some embodiments, determining, according to the measured signal quality of the beam and the signal quality threshold of the beam, whether the signal quality of the measured beam is higher or lower than a corresponding signal quality threshold, when the beam If the signal quality is higher or lower than the corresponding signal quality threshold, the determination meets the corresponding signal quality threshold. Otherwise, the determination does not meet the corresponding signal quality threshold, so that the beam can be selected from the beam that meets the corresponding signal quality threshold. Resident.
  • the terminal may select a beam to camp from among the beams in the currently camped cell by:
  • the fourth embodiment of the present disclosure further provides a terminal residing method, which is applied to a base station, and includes: transmitting, in a system message of a cell, a signal quality threshold of all or part of a beam in the cell, and transmitting a corresponding signal on the beam. Resident probability.
  • the signal quality threshold is the same as that in the first embodiment.
  • the resident probability pi of the beam may range from 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1, or 0 ⁇ pi ⁇ 1.
  • an embodiment of the present disclosure further provides a terminal residing method, which is applied to a terminal, and includes:
  • Step 1 receiving a camping condition of a beam sent by the base station
  • the camping condition of the beam is the same as the camping condition of the beam transmitted by the base station described in the foregoing embodiment, and will not be described in detail herein.
  • Step 2 Select beam camping according to the camping condition of the beam.
  • the terminal in the idle state selects an appropriate beam camp according to the camping condition of the received beam of the base station.
  • the camping condition comprises a signal quality threshold and/or a dwell probability.
  • the step of receiving the camping condition of the beam sent by the base station includes:
  • the step of selecting beam camping according to the camping condition of the beam includes: determining whether a signal quality of the measured beam meets a corresponding signal quality threshold, and according to As a result of the judgment, the beam stay is selected.
  • the so-called signal quality threshold can be greater than or not less than the signal quality threshold.
  • the terminal may first select a camped cell and then select a beam camp.
  • the method further includes: selecting a camped cell.
  • the step of determining whether the signal quality of the measured beam satisfies the corresponding signal quality threshold comprises: determining whether the signal quality of the measured beam in the camping cell meets a corresponding signal quality threshold.
  • a camped cell may be selected by a plurality of criteria, such as by selection criteria in the related art.
  • the camped cell may be selected according to the measured signal quality of the beam in the cell. For example, an average of the signal qualities of the best quality N beams in the measured cell can be obtained, and the cell with the largest average value is selected.
  • the beam camping can be selected in the following manner:
  • the signal quality is the best beam staying in the camped cell
  • the signal quality of only one beam in the camping cell satisfies the corresponding signal quality threshold, it resides on the beam that satisfies the corresponding signal quality threshold.
  • the beam with the best signal quality from the at least two beams, or from the at least One of the two beams is randomly selected to reside.
  • FIG. 2 is a schematic flowchart of a beam camping method according to Embodiment 5 of the present disclosure.
  • the beam camping method is applied to a terminal, and the method includes:
  • Step S11 Receive a camping condition of a cell and/or a beam sent by the base station, where the camping condition includes a signal quality threshold of the beam;
  • Step S12 selecting a camped cell
  • Step S13 determining whether the signal quality of the measured beam in the camping cell meets the corresponding signal quality threshold, and when the judgment result is that the signal quality of all the beams in the measured camping cell does not meet the corresponding signal quality gate
  • step S14 when the result of the determination is that the signal quality of only one beam in the camping cell meets the corresponding signal quality threshold, step S15 is performed, where the result of the determination is that there are at least two beams in the camping cell.
  • step S16 is performed;
  • Step S14 camping on the beam with the best signal quality in the camped cell
  • Step S15 Residing on a beam that meets a signal quality threshold
  • Step S16 selecting a beam camp with the best signal quality from the at least two beams, or randomly selecting one beam camp from the at least two beams.
  • the camping conditions received by the terminal in this manner include the signal quality threshold of the cell and/or the beam, and the scan time information of the beam.
  • the terminal may select a beam to camp from the beams in the currently camped cell by:
  • the beam with the longest scan time is selected from the at least two beams according to the scan time information of the beam.
  • FIG. 3 is a schematic flowchart of a method for locating a terminal according to Embodiment 5 of the present disclosure.
  • the terminal resident method is applied to a terminal, and the method includes:
  • Step S11 receiving a camping condition of a beam sent by the base station; the camping condition includes a signal quality threshold;
  • the camping condition of the beam is the same as the camping condition of the beam transmitted by the base station described in the foregoing embodiment, and will not be described in detail herein.
  • Step S12 selecting a camped cell
  • Step S13 determining whether the signal quality of the measured beam in the camping cell meets the corresponding signal quality threshold, and when the judgment result is that the signal quality of all the beams in the measured camping cell does not satisfy the corresponding signal quality gate Step S14 is performed.
  • step S15 is performed, where the result of the determination is that there are at least two beams in the camping cell.
  • step S16 is performed;
  • Step S14 camping on the beam with the best signal quality in the camped cell
  • Step S15 Residing on a beam that meets a corresponding signal quality threshold
  • Step S16 selecting a beam camp with the best signal quality from the at least two beams, or randomly selecting one beam camp from the at least two beams.
  • the camping conditions of the beam transmitted by the base station received by the terminal in this manner include: a signal quality threshold and a dwell probability.
  • the signal quality is the best beam staying in the camped cell
  • the signal quality of only one beam in the camping cell satisfies the corresponding signal quality threshold, it resides on the beam that satisfies the corresponding signal quality threshold.
  • the currently selected The dwell probability of the beam is compared with the random probability, and according to the comparison result, it is judged whether the currently selected beam can reside, and if so, resides on the currently selected beam, otherwise, the remaining signal quality is satisfied from the remaining Reselecting a beam in the beam of the threshold, and returning to the step of generating a random probability, comparing the dwell probability of the currently selected beam with the random probability, and determining, according to the comparison result, whether the currently selected beam can reside Until it is determined that the currently selected beam can reside.
  • the step of comparing the dwell probability of the currently selected beam with the random probability includes:
  • the decision beam may reside, otherwise, the decision beam may not reside.
  • the value range of the random probability p is the same as the range of the resident probability of the received beam, and may be 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1.
  • all the selected ones in the cell that meet the corresponding signal quality threshold may have the best signal quality.
  • the beam resides, or a beam camp is randomly selected from all beams within the camping cell that satisfy the corresponding signal quality threshold.
  • all the beams in the camped cell that meet the corresponding signal quality threshold may be re-executed by the foregoing determining process until the foregoing determining process is performed. Determining that the currently selected beam can reside;
  • the best quality beam when selecting a beam from the beam that meets the corresponding signal quality threshold, the best quality beam may be selected from all the beams satisfying the corresponding signal quality threshold, or one beam may be randomly selected.
  • FIG. 4 is a schematic flowchart of a beam-resident method according to Embodiment 6 of the present disclosure.
  • the beam-resident method is applied to a terminal, and the method includes:
  • Step S21 receiving a camping condition of a cell and/or a beam sent by the base station, where the camping condition includes a signal quality threshold of the cell and/or all or part of the beam in the cell, and scan time information of the beam;
  • Step S22 selecting a camped cell
  • Step S23 determining whether the signal quality of the measured beam in the camping cell meets the corresponding signal quality threshold, and when the judgment result is that the signal quality of all the beams in the measured camping cell does not meet the corresponding signal quality gate Step S24 is performed.
  • step S25 is performed, where the result of the determination is that there are at least two beams in the camping cell.
  • step S26 is performed;
  • Step S24 Residing on the beam with the best signal quality in the camped cell
  • Step S25 Residing on a beam that meets a signal quality threshold
  • Step S26 Select, according to the scan time information of the beam, the beam camp with the longest scan time from the at least two beams.
  • the camping conditions received by the terminal in this manner include a signal quality threshold of the cell and/or the beam, a scan time information of the beam, and a threshold corresponding to the scan time information of the beam;
  • the terminal may select a beam to camp from the beams in the currently camped cell by:
  • FIG. 5 is a schematic flowchart of a method for locating a terminal according to Embodiment 6 of the present disclosure.
  • the terminal resident method is applied to a terminal, and the method includes:
  • Step S21 Receive a camping condition of a beam sent by the base station, where the camping condition includes a signal quality threshold and a dwell probability;
  • the camping condition of the beam is the same as the camping condition of the beam transmitted by the base station described in the foregoing embodiment, and will not be described in detail herein.
  • Step S22 selecting a camped cell
  • Step S23 determining whether the signal quality of the measured beam in the camping cell meets the corresponding signal quality threshold, and when the judgment result is that the signal quality of all the beams in the measured camping cell does not satisfy the corresponding signal quality gate Step S24 is performed.
  • step S25 is performed, where the result of the determination is that there are at least two beams in the camping cell.
  • step S26 is performed;
  • Step S24 Residing on the beam with the best signal quality in the camped cell
  • Step S25 Residing on a beam that meets a corresponding signal quality threshold
  • Step S26 selecting a beam from the beam that meets the corresponding signal quality threshold
  • Step S27 generating a random probability, determining whether the random probability is lower or lower than the dwell probability of the currently selected beam, and if so, executing step S29, otherwise, performing step S28;
  • Step S28 Reselect a beam from the remaining beams that meet the corresponding signal quality threshold, and return to step S27;
  • Step S29 It is determined that the currently selected beam can reside and reside on the currently selected beam.
  • the camping conditions of the beam transmitted by the base station received by the terminal in this manner include a signal quality threshold and a dwell probability.
  • the signal quality is the best beam staying in the camped cell
  • the signal quality of only one beam in the camping cell satisfies the corresponding signal quality threshold, it resides on the beam that satisfies the corresponding signal quality threshold.
  • one of the at least two beams in the camping cell meets the corresponding signal quality threshold
  • one of the at least two beams is selected to be camped; a random probability is generated, and the random probability is generated. Comparing with the dwelling probability of the resident beam, based on the comparison result, determining whether the resident beam can continue to camp; if so, continuing to reside on the resident beam; otherwise, from the remaining signal quality thresholds that satisfy the corresponding Selecting another beam resident in the beam, and returning to generate a random probability, comparing the random probability with the dwelling probability of the resident beam, and determining, according to the comparison result, whether the resident beam can continue to reside, Until it is determined that the resident beam can continue to reside.
  • one of the best quality beam camps may be selected from the beams satisfying the corresponding signal quality threshold, or may be satisfied.
  • a beam is randomly selected from the corresponding signal quality threshold beams.
  • the step of comparing the random probability with the dwelling probability of the resident beam includes:
  • the random probability p has a value range of 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1.
  • FIG. 6 is a schematic flowchart of a beam camping method according to Embodiment 7 of the present disclosure.
  • the beam camping method is applied to a terminal, and the method includes:
  • Step S31 Receive a camping condition of a cell and/or a beam sent by the base station, where the camping condition includes a signal quality threshold of the cell and/or all or part of the beam in the cell, a scan time information of the beam, and a scan of the beam.
  • the threshold corresponding to the time information
  • Step S32 selecting a camped cell
  • Step S33 determining whether the signal quality of the measured beam in the camping cell meets the corresponding signal quality threshold, and when the judgment result is that the signal quality of all the beams in the measured camping cell does not meet the corresponding signal quality gate Step S34 is performed.
  • step S35 is performed, where the result of the determination is that there are at least two beams in the camping cell.
  • step S36 is performed;
  • Step S34 Residing on the beam with the best signal quality in the camped cell
  • Step S35 Residing on a beam that meets a signal quality threshold
  • Step S36 Select, from the at least two beams, a beam whose scan time information satisfies the threshold; and select a beam camp from a beam whose scan time information satisfies the threshold.
  • the camped cell is selected first, and then the camped beam is selected in the re-resident cell.
  • the terminal may not select the camped cell but directly selects the cell. Beam resident, as explained in more detail below.
  • the step of selecting a cell and/or beam camping according to the camping condition of the cell and/or the beam comprises: selecting a beam to camp according to the camping condition of the beam.
  • the camping condition includes a signal quality threshold of the beam; and the step of selecting a beam to camp according to the camping condition of the beam comprises: according to the measured signal quality of the beam and the beam For camping conditions, select a beam to camp on.
  • the step of selecting a beam to camp on may include:
  • the camping condition further includes: scan time information of the beam; and the step of selecting a beam to camp on further includes:
  • the beam with the longest scanning time is selected from the at least two beams according to the scan time information of the beam.
  • FIG. 7 is a schematic flowchart diagram of a method for camping a terminal according to Embodiment 7 of the present disclosure.
  • the terminal resident method is applied to a terminal, and the method includes:
  • Step S31 Receive a camping condition of a beam sent by the base station, where the camping condition includes a signal quality threshold and a camping probability;
  • the camping condition of the beam is the same as the camping condition of the beam transmitted by the base station described in the foregoing embodiment, and will not be described in detail herein.
  • Step S32 selecting a camped cell
  • Step S33 determining whether the signal quality of the measured beam in the camping cell meets the corresponding signal quality threshold, and when the judgment result is that the signal quality of all the beams in the measured camping cell does not satisfy the corresponding signal quality gate Step S34 is performed.
  • step S35 is performed, where the result of the determination is that there are at least two beams in the camping cell.
  • step S36 is performed;
  • Step S34 Residing on the beam with the best signal quality in the camped cell
  • Step S35 Residing on a beam that meets a corresponding signal quality threshold
  • Step S36 Select one beam resident from the beam that meets the corresponding signal quality threshold
  • one of the best quality beam camps may be selected from the beams satisfying the corresponding signal quality threshold, or one beam camp may be randomly selected from the beams satisfying the corresponding signal quality threshold.
  • Step S37 generating a random probability, determining whether the random probability is lower or lower than the resident probability of the resident beam, and if so, executing step S38, otherwise, performing step S39;
  • Step S38 continue to reside on the camping beam
  • Step S39 Select another beam camp from the remaining beams satisfying the corresponding signal quality threshold, and return to step 37.
  • the terminal selects the camped cell first, and then selects the camped beam.
  • the terminal may not select the camped cell, but directly selects the beam camp, below. Will be explained in detail.
  • the camping conditions of the beam transmitted by the base station received by the terminal include a signal quality threshold and a dwell probability.
  • the step of selecting a beam resident includes:
  • a beam camp is selected from the remaining beams satisfying the corresponding signal quality threshold, and returning to generate a random probability, the random probability is compared with the resident probability of the resident beam, according to the comparison result And determining whether the resident beam can continue to reside until it is determined that the resident beam can continue to camp.
  • Selecting a beam-resident from all the beams that meet the corresponding signal quality thresholds may select the best-quality beam-resident from all the beams that meet the corresponding signal quality thresholds, or may satisfy all of them.
  • a beam camp is randomly selected.
  • the step of comparing the random probability with the dwelling probability of the resident beam includes:
  • the random probability p has a value range of 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1.
  • FIG. 8 is a schematic flowchart of a beam camping method according to Embodiment 8 of the present disclosure.
  • the beam camping method is applied to a terminal, and the method includes:
  • Step S41 Receive a camping condition of a beam sent by the base station, where the camping condition includes a signal quality threshold of the beam and scan time information of the beam.
  • Step S42 determining whether the signal quality of the measured beam meets the corresponding signal quality threshold. When the result of the determination is that the measured signal quality of all the beams does not meet the corresponding signal quality threshold, step S43 is performed. If the result of the determination is that the signal quality of only one beam meets the corresponding signal quality threshold, step S44 is performed, and when the result of the determination is that the signal quality of at least two beams meets the corresponding signal quality threshold, step S45 is performed;
  • Step S43 camping on the beam with the best signal quality
  • Step S44 Residing on the beam that meets the signal quality threshold.
  • Step S45 Select, according to the scan time information of the beam, a beam camp with the longest scan time from the at least two beams.
  • the camping condition may include: a scan time information of the beam, and a threshold corresponding to the scan time of the beam; and the step of selecting a beam to perform the camping includes:
  • the terminal scans all the beams that can be scanned, and first resides on a beam that meets the corresponding signal quality threshold, and then determines whether it needs to be reselected to other beams that meet the corresponding signal quality threshold.
  • FIG. 9 is a schematic flowchart of a terminal residing method according to Embodiment 8 of the present disclosure.
  • the terminal residing method is applied to a terminal, and the method includes:
  • Step S41 Receive a camping condition of all scanned beams, where the camping conditions include a signal quality threshold and a dwell probability;
  • the camping condition of the beam is the same as the camping condition of the beam transmitted by the base station described in the foregoing embodiment, and will not be described in detail herein.
  • Step S42 sequentially determining whether the signal quality of all the scanned beams meets the corresponding signal quality threshold, and obtaining all the beams that meet the corresponding signal quality thresholds;
  • Step S43 Select a beam camp from all the beams that meet the corresponding signal quality thresholds
  • the best quality beam camping may be selected from all the beams satisfying the corresponding signal quality threshold, or one beam camping may be randomly selected from all the beams satisfying the corresponding signal quality threshold.
  • Step S44 generating a random probability, determining whether the random probability is lower or lower than the resident probability of the resident beam, and if so, executing step S45, otherwise, performing step S46;
  • Step S45 continuing to reside on the camping beam
  • Step S46 Select another beam camp from the remaining beams satisfying the corresponding signal quality threshold, and return to step 44 until it is determined that the camped beam can continue to camp.
  • the terminal scans all the beams that can be scanned, and then performs the resident judgment. In some other embodiments of the present disclosure, the terminal may also perform the resident judgment once the one beam is scanned.
  • the camping conditions of the beam transmitted by the base station received by the terminal include a signal quality threshold and a dwell probability.
  • the step of selecting a beam resident includes:
  • the currently scanned beam When it is determined that the currently scanned beam is not campable, continue to scan other beams, and return to the step of determining whether the signal quality of the currently scanned beam meets the corresponding signal quality threshold when scanning to a beam, until it is determined.
  • the currently scanned beam can reside.
  • the step of comparing the random probability with the resident probability of the currently scanned beam includes:
  • the random probability p has a value range of 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1, or 0 ⁇ p ⁇ 1.
  • FIG. 10 is a schematic flowchart of a beam camping method according to Embodiment 9 of the present disclosure.
  • the beam camping method is applied to a terminal, and the method includes:
  • Step S51 Receive a camping condition of a beam sent by the base station, where the camping condition includes a signal quality threshold of the beam, a scan time information of the beam, and a threshold corresponding to the scan time information of the beam.
  • Step S52 determining whether the signal quality of the measured beam meets the corresponding signal quality threshold. When the result of the determination is that the measured signal quality of all the beams does not meet the corresponding signal quality threshold, step S53 is performed. If the result of the determination is that the signal quality of only one beam meets the corresponding signal quality threshold, step S54 is performed, and when the result of the determination is that the signal quality of at least two beams meets the corresponding signal quality threshold, step S55 is performed;
  • Step S53 camping on the beam with the best signal quality
  • Step S54 Residing on the beam that meets the signal quality threshold.
  • Step S55 Select, from the at least two beams, a beam whose scan time information satisfies the threshold; and select a beam camp from a beam whose scan time information satisfies the threshold.
  • an embodiment of the present disclosure further provides a base station, including:
  • a sending module configured to send a camping condition of the cell and/or the beam, where the camping condition is used for cell and/or beam camping determination of the terminal.
  • the camping condition comprises a signal quality threshold of a cell and/or a beam.
  • the signal quality threshold comprises any one or a combination of any of the following: a reference signal received power threshold, a reference signal received quality threshold, and a signal to interference plus noise ratio threshold.
  • the camping condition includes: scan time information of the beam.
  • the scan time information of the beam includes any one or a combination of any of the following: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • the camping condition includes: a signal quality threshold of the cell and/or the beam and scan time information of the beam.
  • the camping condition further includes: a threshold corresponding to scan time information of the beam.
  • the sending module may include one or two of the following two submodules:
  • a first sending submodule configured to send, in a system message of a cell, a camping condition of the cell and/or all or part of a beam in the cell;
  • the second transmitting submodule is configured to send its own camping condition on the beam.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a receiving module configured to receive a camping condition of a cell and/or a beam sent by the base station
  • a selection module for selecting a cell and/or beam camping based on camping conditions of the cell and/or beam.
  • the selection module first selects a camped cell and then selects a resident beam, including:
  • a first beam selection submodule configured to select a beam from the beams in the currently camped cell to camp.
  • the cell selection submodule is further configured to select a camped cell according to the measured signal quality of the beam in the cell.
  • the camping condition includes a signal quality threshold of the cell and/or the beam; the first beam selection submodule is further configured to: according to the measured signal quality of the beam and the camping condition of the beam, A beam is selected from among the beams in the currently camped cell for camping.
  • the first beam selection submodule comprises:
  • a first camping unit configured to camp on a beam with the best signal quality in the camping cell when the measured signal quality of all the beams in the camping cell does not meet the corresponding signal quality threshold
  • a second camping unit configured to reside on a beam that meets a signal quality threshold when a signal quality of only one beam in the camping cell meets a corresponding signal quality threshold
  • a third camping unit configured to select a beam with the best signal quality from the at least two beams when a signal quality of at least two beams in the camping cell meets a corresponding signal quality threshold; or One of the at least two beams is randomly selected to reside.
  • the camping condition further includes: scan time information of the beam; the first beam selection sub-module further includes:
  • a first camping unit configured to camp on a beam with the best signal quality in the camping cell when the measured signal quality of all the beams in the camping cell does not meet the corresponding signal quality threshold
  • a second camping unit configured to reside on a beam that meets a signal quality threshold when a signal quality of only one beam in the camping cell meets a corresponding signal quality threshold
  • a fourth camping unit when the signal quality of the at least two beams in the camping cell meets the corresponding signal quality threshold, the scan time is selected from the at least two beams according to the scan time information of the beam.
  • the beam resides.
  • the camping condition further includes: a threshold corresponding to scan time information of the beam; the first beam selection sub-module further includes:
  • a first camping unit configured to camp on a beam with the best signal quality in the camping cell when the measured signal quality of all the beams in the camping cell does not meet the corresponding signal quality threshold
  • a second camping unit configured to reside on a beam that meets a signal quality threshold when a signal quality of only one beam in the camping cell meets a corresponding signal quality threshold
  • a fifth camping unit configured to: when a signal quality of at least two beams in the camping cell meets a corresponding signal quality threshold, select, from the at least two beams, a beam whose scan time information meets the threshold; And selecting a beam camp from the beam whose scan time information satisfies the threshold.
  • the selection mode is to select the camped cell first, and then select the resident beam.
  • the selection module may also not select the camped cell, but directly select the resident cell. Beam, at this time, the selection module includes:
  • a second beam selection submodule configured to select a beam to camp according to the camping condition of the beam.
  • the camping condition includes a signal quality threshold of the beam; the second beam selection submodule is further configured to select a beam to be stationed according to the measured signal quality of the beam and the camping condition of the beam. stay.
  • the second beam selection submodule comprises:
  • a sixth resident unit configured to reside on a beam with the best signal quality when it is determined that the signal quality of all the beams does not meet the corresponding signal quality threshold
  • the seventh camping unit is configured to reside on a beam that meets a signal quality threshold when the signal quality of only one beam meets the corresponding signal quality threshold.
  • An eighth camping unit configured to select a beam with the best signal quality from the at least two beams when the signal quality of the at least two beams meets a corresponding signal quality threshold; or, from the at least two One beam is randomly selected among the beams.
  • the camping condition further includes: scan time information of the beam; the second beam selection submodule includes:
  • a sixth resident unit configured to reside on a beam with the best signal quality when it is determined that the signal quality of all the beams does not meet the corresponding signal quality threshold
  • the seventh camping unit is configured to reside on a beam that meets a signal quality threshold when the signal quality of only one beam meets the corresponding signal quality threshold.
  • a ninth camping unit configured to: when the signal quality of the at least two beams meets the corresponding signal quality threshold, select the beam with the longest scanning time from the at least two beams according to the scan time information of the beam stay.
  • the camping condition further includes: a threshold corresponding to scan time information of the beam; and the second beam selection submodule includes:
  • a sixth resident unit configured to reside on a beam with the best signal quality when it is determined that the signal quality of all the beams does not meet the corresponding signal quality threshold
  • the seventh camping unit is configured to reside on a beam that meets a signal quality threshold when the signal quality of only one beam meets the corresponding signal quality threshold.
  • a tenth camping unit configured to: when a signal quality of at least two beams meets a corresponding signal quality threshold, select, from the at least two beams, a beam whose scan time information satisfies the threshold; and scan time Among the beams whose information meets the threshold, a beam camp is selected.
  • the present disclosure provides a method for transmitting beam information, which is applied to a base station, and includes:
  • a camping condition of the transmit beam including scan time information of the beam, the camp condition being used for beam camping determination of the terminal.
  • the scan time information of the beam includes any one of the following information or a combination of any one of: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • the camping condition further includes: a signal quality threshold of the beam and/or a threshold corresponding to the scan time information of the beam.
  • the step of camping conditions of the transmit beam includes:
  • the present disclosure also provides a beam resident method, which is applied to a terminal, and includes:
  • Beam camping is selected based on the camping conditions of the beam.
  • the step of selecting beam camping according to the camping condition of the beam includes:
  • Beam camping is selected from the beams in the currently camped cell based on the camping conditions of the beam.
  • the camping condition further includes a signal quality threshold of the beam; and the step of selecting the beam camping includes:
  • the beam with the longest scanning time is selected from the at least two beams according to the scan time information of the beam.
  • the camping condition further includes: a signal quality threshold of the beam and a threshold corresponding to the scan time information of the beam; and the step of selecting the beam camping includes:
  • the disclosure also provides a base station, including:
  • a sending module configured to send a camping condition of the beam, where the camping condition of the beam includes scan time information of the beam, where the camping condition is used for beam camping judgment of the terminal.
  • the scan time information of the beam includes any one of the following information or a combination of any one of: a scan time of the beam, information for expressing the beam scan time, and a scan period of the beam.
  • the camping condition further includes: a signal quality threshold of the beam and/or a threshold corresponding to the scan time information of the beam.
  • the sending module includes:
  • a first sending submodule configured to send, in a system message of a cell, a camping condition of all or part of a beam in the cell;
  • the second transmitting submodule is configured to send its own camping condition on the beam.
  • the disclosure also provides a terminal, including:
  • a receiving module configured to receive a camping condition of a beam sent by the base station, where the camping condition of the beam includes scan time information of the beam;
  • a selection module for selecting beam camping according to a camping condition of the beam.
  • the selecting module is configured to select a camped cell, and select a beam camp from the beams in the currently camped cell according to the camping condition of the beam.
  • the camping condition further includes a signal quality threshold of the beam;
  • the selecting module includes:
  • a ninth camping unit configured to: when the signal quality of the at least two beams meets the corresponding signal quality threshold, select the beam with the longest scanning time from the at least two beams according to the scan time information of the beam stay.
  • the camping condition further includes: a signal quality threshold of the beam and a threshold corresponding to the scan time information of the beam; the selecting module includes:
  • a tenth camping unit configured to: when a signal quality of at least two beams meets a corresponding signal quality threshold, select, from the at least two beams, a beam whose scan time information satisfies the threshold; and scan time Among the beams whose information meets the threshold, a beam camp is selected.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of transmitting the beam information or the beam camping method described above.
  • the present disclosure also provides a base station comprising: a processor and a memory, wherein the processor is configured to read a program in the memory to perform the steps in the method of transmitting the beam information.
  • the present disclosure also provides a terminal, comprising: a processor and a memory, wherein the processor is configured to read a program in the memory to perform the steps in the beam camping method.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, wherein the program is executed by the processor to implement the beam information sending method or the beam resident method in any of the above embodiments. A step of.
  • the terminal scans to a beam that satisfies the corresponding signal quality threshold, and then determines whether it needs to reselect to other beams that meet the corresponding signal quality threshold.
  • FIG. 11 is a schematic flowchart diagram of a method for camping a terminal according to Embodiment 9 of the present disclosure.
  • the terminal residency method is applied to a terminal, and the method includes:
  • Step S51 When scanning a beam, receiving a camping condition of the scanned beam, where the camping condition includes a signal quality threshold and a dwell probability;
  • the camping condition of the beam is the same as the camping condition of the beam transmitted by the base station described in the foregoing embodiment, and will not be described in detail herein.
  • Step S52 determining whether the signal quality of the currently scanned beam meets the corresponding signal quality threshold, and if so, executing step S53, otherwise, performing step S55;
  • Step S53 generating a random probability, determining whether the random probability is lower or lower than the resident probability of the currently scanned beam, and if so, executing step S54, otherwise, performing step S55;
  • Step S54 Residing on the currently scanned beam
  • Step S55 continue scanning other beams, and return to step S51 until it is determined that the resident beam can continue to camp.
  • an embodiment of the present disclosure further provides a base station, including:
  • a sending module configured to send a camping condition of the beam, where the camping condition is used for a beam camping judgment of the terminal.
  • the camping condition comprises a signal quality threshold.
  • the signal quality threshold includes any one or a combination of any of the following information: a reference signal received power threshold, a reference signal received quality threshold, and a signal to interference plus noise ratio threshold.
  • the camping conditions do not include the dwelling probability.
  • the camping condition includes a signal quality threshold and a dwell probability.
  • the sending module includes one or two of the following two submodules:
  • a first sending submodule configured to send, in a system message of the cell, a camping condition of all or part of the beam in the cell; the system message is sent by using a broadcast or by using dedicated signaling.
  • the second sending submodule is configured to send a corresponding camping condition on the beam.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a receiving module configured to receive a camping condition of a beam sent by the base station
  • a selection module for selecting beam camping according to a camping condition of the beam.
  • the camping condition comprises a signal quality threshold and/or a dwell probability.
  • the receiving module includes:
  • a first receiving submodule configured to receive a camping condition of all or part of a beam in the cell sent by a base station through a system message of a cell, where the system message is sent by using a broadcast or by using dedicated signaling;
  • the second receiving submodule is configured to receive a camping condition that the base station sends through the beam.
  • the camping condition includes a signal quality threshold
  • the selecting module is further configured to determine whether a signal quality of the measured beam meets a corresponding signal quality threshold, and select a beam camp according to the determination result.
  • the terminal further includes:
  • a cell selection module configured to select a camped cell
  • the selection module is further configured to determine whether a signal quality of the measured beam in the camped cell meets a corresponding signal quality threshold.
  • the cell selection module is configured to select a camped cell according to the measured signal quality of the beam in the cell.
  • the selection module can select beam dwelling in a variety of ways.
  • the selection module includes:
  • a first selection submodule configured to: when the result of the determination is that the signal quality of all the beams in the measured camping cell does not satisfy the corresponding signal quality threshold, the signal quality that resides in the camping cell is the best. On the beam
  • a second selection submodule configured to reside on a beam that meets a corresponding signal quality threshold when the result of the determination is that the signal quality of only one beam in the camping cell meets the corresponding signal quality threshold.
  • a third selection submodule configured to: when the result of the determining is that the signal quality of the at least two beams in the camping cell meets a corresponding signal quality threshold, select a beam station with the best signal quality from the at least two beams Leave, or randomly select one beam from the at least two beams.
  • the camping condition includes a signal quality threshold and a dwelling probability;
  • the selecting module includes:
  • a first selection submodule configured to: when the result of the determination is that the signal quality of all the beams in the measured camping cell does not satisfy the corresponding signal quality threshold, the signal quality that resides in the camping cell is the best. On the beam
  • a second selection submodule configured to reside on a beam that meets a corresponding signal quality threshold when the result of the determination is that the signal quality of only one beam in the camping cell meets the corresponding signal quality threshold.
  • a fourth selection submodule configured to: when the result of the determination is that the signal quality of the at least two beams in the camping cell meets the corresponding signal quality threshold, select a beam from the beam that meets the corresponding signal quality threshold, and generate a random probability, comparing the dwell probability of the currently selected beam with the random probability, and determining, according to the comparison result, whether the currently selected beam can reside, and if so, camping on the currently selected beam, otherwise, from Reselecting a beam in the remaining beams satisfying the corresponding signal quality threshold, and returning to generate a random probability, comparing the dwell probability of the currently selected beam with the random probability, and determining the current selection according to the comparison result The step of whether the beam can reside.
  • the camping condition includes a signal quality threshold and a dwelling probability;
  • the selecting module includes:
  • a first selection submodule configured to: when the result of the determination is that the signal quality of all the beams in the measured camping cell does not satisfy the corresponding signal quality threshold, the signal quality that resides in the camping cell is the best. On the beam
  • a second selection submodule configured to reside on a beam that meets a corresponding signal quality threshold when the result of the determination is that the signal quality of only one beam in the camping cell meets the corresponding signal quality threshold.
  • a fifth selection submodule configured to: when the result of the determination is that the signal quality of the at least two beams in the camping cell meets the corresponding signal quality threshold, select one of the at least two beams to reside; a random probability, comparing the random probability with a dwelling probability of the resident beam, and determining, based on the comparison result, whether the resident beam can continue to reside; if so, continuing to reside on the resident beam; otherwise, remaining Selecting one beam resident in the beam satisfying the corresponding signal quality threshold, and returning to generate a random probability, comparing the random probability with the resident probability of the resident beam, and determining the resident beam according to the comparison result Whether you can continue to reside in the steps.
  • the camping condition includes a signal quality threshold and a dwelling probability;
  • the selecting module includes:
  • a sixth selection sub-module configured to sequentially determine whether the signal quality of all the scanned beams meets a corresponding signal quality threshold, and obtain all the beams that meet the corresponding signal quality threshold; from all the beams that meet the corresponding signal quality thresholds Selecting a beam resident; generating a random probability, comparing the random probability with a dwelling probability of the resident beam, and determining whether the resident beam can continue to reside according to the comparison result; if yes, continuing to reside in the resident Leaving the beam; otherwise, selecting another beam-resident from the remaining beams that satisfy the corresponding signal quality threshold, and returning to generate a random probability, comparing the random probability with the resident probability of the resident beam According to the comparison result, the step of judging whether the resident beam can continue to reside is determined until it is determined that the resident beam can continue to camp.
  • the camping condition includes a signal quality threshold and a dwelling probability;
  • the selecting module includes:
  • a seventh selection submodule configured to: when scanning a beam, determine whether the signal quality of the currently scanned beam meets a corresponding signal quality threshold; if yes, generate a random probability, and compare the random probability with the currently scanned The dwelling probability of the beam is compared, and according to the comparison result, it is judged whether the currently scanned beam can be camped; otherwise, the other beams are continuously scanned, and the signal quality of the currently scanned beam is judged when the beam is scanned.
  • the corresponding signal quality threshold is met; when it is determined that the currently scanned beam can reside, camping on the currently scanned beam; when it is determined that the currently scanned beam is not campable, returning to the When scanning a beam, it is determined whether the signal quality of the currently scanned beam satisfies the corresponding signal quality threshold.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, wherein the program is executed by the processor to implement the steps in the terminal resident method in any of the above embodiments.
  • computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • flash memory or other
  • the embodiment of the present disclosure further provides a base station, including: a processor and a memory, wherein the processor is configured to read a program in the memory, and perform the steps in the method for transmitting beam information in any of the embodiments on the base station side.
  • the embodiment of the present disclosure further provides a terminal, including: a processor and a memory, wherein the processor is configured to read a program in the memory, and perform the steps in the beam camping method in any of the embodiments on the terminal side.

Abstract

本公开实施例提供一种终端驻留方法、基站、终端和计算机可读存储介质。该终端驻留方法包括:终端接收基站发送的波束的驻留条件;根据所述波束的驻留条件,选择波束驻留。利用本公开实施例,能够为空闲态的终端选择合适的波束驻留。

Description

一种终端驻留方法、基站、终端和计算机可读存储介质
相关申请的交叉引用
本申请主张在2017年4月21日在中国提交的中国专利申请号No.201710265619.9以及在2017年4月21日在中国提交的中国专利申请号No.201710266101.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及无线通信技术领域,尤其涉及一种终端驻留方法、基站、终端和计算机可读存储介质。
背景技术
在3GPP R2#95的会议上,决定5G(第五代移动通信技术)系统的空闲态(idle)终端(UE)驻留在最好的小区上。另一方面,5G系统由于可能工作在6-100GHZ的高频段上,引入多波束(beam)部署来保证公共控制信道、甚至数据信道的覆盖。
因此,空闲态的终端的驻留需要决策驻留的小区以及驻留在小区的哪个波束上。如何为空闲态的终端选择波束驻留,目前还没有确定的方案。
5G高频段需要通过大规模天线来对抗路损和穿损大的问题,从成本、复杂度、性能等方面综合考虑,模拟数字混合波束赋形架构是5G高频大规模天线最有可能采用的架构。一个小区通过多个模拟波束进行覆盖,每个模拟波束只能在时域上改变波束方向。模拟数字混合波束赋形会所引入的新特性对5G系统设计产生较大的影响,小区驻留就是其中一个。
在LTE系统中,小区驻留基于RSRP(参考信号接收功率)和RSRQ(参考信号接收质量)的测量结果,即考虑小区信号是否更好来进行小区驻留。因此,5G中小区驻留需要考虑“模拟数字混合波束赋形”所引入的新特性。在5G中,由于一个小区通过多个模拟波束时分的扫描来进行覆盖,除了选择合适的小区外还要选择合适的波束(beam)进行驻留,在选择小区/波束时,仅通过信号强度高低来判断小区驻留不够,还需要考虑更多的因素。
发明内容
有鉴于此,本公开实施例提供一种终端驻留方法、基站、终端和计算机可读存储介质,用于解决如何为空闲态的终端选择波束驻留的问题。
根据本公开的第一个方面,提供了一种终端驻留方法,应用于基站,包括:
发送波束的驻留条件,所述驻留条件用于终端的波束驻留判断。
根据本公开的一个可行的实施例,所述驻留条件包括信号质量门限和/或驻留概率。
根据本公开的一个可行的实施例,所述发送波束的驻留条件的步骤包括:
在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
在波束上发送对应的驻留条件。
根据本公开的一个可行的实施例,所述驻留条件包括波束的扫描时间信息,所述驻留条件用于终端的波束驻留判断。
根据本公开的一个可行的实施例,所述波束的扫描时间信息包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
根据本公开的一个可行的实施例,所述驻留条件还包括:波束的信号质量门限和/或波束的扫描时间信息对应的门限。
根据本公开的一个可行的实施例,所述发送波束的驻留条件的步骤包括:
在小区的系统消息中发送所述小区内全部或部分波束的驻留条件;和/或
在波束上发送自身的驻留条件。
根据本公开的第二个方面,提供了一种终端驻留方法,应用于终端,包括:
接收基站发送的波束的驻留条件;
根据所述波束的驻留条件,选择波束驻留。
根据本公开的一个可行的实施例,所述驻留条件包括信号质量门限和/或驻留概率。
根据本公开的一个可行的实施例,所述接收基站发送的波束的驻留条件的步骤包括:
接收基站通过小区的系统消息发送的所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
接收基站通过波束发送的驻留条件。
根据本公开的一个可行的实施例,所述驻留条件包括信号质量门限,所述根据所述波束的驻留条件,选择波束驻留的步骤包括:
判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留。
根据本公开的一个可行的实施例,所述判断测量到的波束的信号质量是否满足对应的信号质量门限的步骤之前还包括:
选择驻留的小区;
所述判断测量到的波束的信号质量是否满足对应的信号质量门限的步骤包括:
判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限。
根据本公开的一个可行的实施例,所述驻留条件还包括驻留概率,所述根据判断结果,选择波束驻留的步骤包括:
当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上;
当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从满足对应的信号质量门限的波束中选择一波束;产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留;如果是,驻留在当前选择的波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一波束,并返回所述产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留的步骤;或者
当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信 号质量门限时,从所述至少两个波束中选择一个波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤。
根据本公开的一个可行的实施例,所述驻留条件还包括驻留概率,所述判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留的步骤包括:
依次判断所有扫描到的波束的信号质量是否满足对应的信号质量门限,得到所有满足对应的信号质量门限的波束;从所述所有满足对应的信号质量门限的波束中,选择一波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止;或者
当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限;如果是,产生一随机概率,将所述随机概率与当前扫描到的波束的驻留概率进行比较,根据比较结果,判断当前扫描到的波束是否可驻留;否则,继续扫描其他波束,并返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤;当判断出当前扫描到的波束可驻留时,驻留在当前扫描到的波束上;当判断出当前扫描到的波束不可驻留时,返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤。
根据本公开的一个可行的实施例,所述驻留条件包括波束的扫描时间信息。
根据本公开的一个可行的实施例,所述根据所述波束的驻留条件,选择波束驻留的步骤包括:
选择驻留的小区;
根据所述波束的驻留条件,从当前驻留小区中的波束中选择波束驻留。
根据本公开的一个可行的实施例,所述驻留条件还包括波束的信号质量门限;所述选择波束驻留的步骤包括:
当有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
根据本公开的一个可行的实施例,所述驻留条件还包括:波束的信号质量门限和波束的扫描时间信息对应的门限;所述选择波束驻留的步骤包括:
当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束,并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
根据本公开的第三个方面,提供了一种基站,包括:
发送模块,用于发送波束的驻留条件,所述驻留条件用于终端的波束驻留判断。
根据本公开的一个可行的实施例,所述驻留条件包括信号质量门限和/或驻留概率。
根据本公开的一个可行的实施例,所述发送模块包括:
第一发送子模块,用于在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
第二发送子模块,用于在波束上发送对应的驻留条件。
根据本公开的一个可行的实施例,所述驻留条件包括波束的扫描时间信息,所述驻留条件用于终端的波束驻留判断。
根据本公开的一个可行的实施例,所述波束的扫描时间信息包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
根据本公开的一个可行的实施例,所述驻留条件还包括:波束的信号质量门限和/或波束的扫描时间信息对应的门限。
根据本公开的一个可行的实施例,所述发送模块包括:
第一发送子模块,用于在小区的系统消息中发送所述小区内全部或部分波束的驻留条件;和/或
第二发送子模块,用于在波束上发送自身的驻留条件。
根据本公开的第四个方面,提供了一种终端,包括:
接收模块,用于接收基站发送的波束的驻留条件;
选择模块,用于根据所述波束的驻留条件,选择波束驻留。
根据本公开的一个可行的实施例,所述驻留条件包括信号质量门限和/或驻留概率。
根据本公开的一个可行的实施例,所述接收模块包括:
第一接收子模块,用于接收基站通过小区的系统消息中发送的所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
第二接收子模块,用于接收基站通过波束发送的驻留条件。
根据本公开的一个可行的实施例,所述驻留条件包括信号质量门限,所述选择模块进一步用于判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留。
根据本公开的一个可行的实施例,该终端还包括:
小区选择模块,用于选择驻留的小区;
其中,所述选择模块进一步用于判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限。
根据本公开的一个可行的实施例,所述驻留条件还包括驻留概率;其中,所述选择模块包括:
第一选择子模块,用于当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
第二选择子模块,用于当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上;
所述选择模块还包括:
第四选择子模块,用于当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从满足对应的信号质量门限的波束中选择一波束,并产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留,如果是,驻留在当前选择的波束上,否则,从剩下的满足对应的信号质量门限的波束中再选择一波束,并返回所述产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留的步骤,直至判断出当前选择的波束可驻留为止;
或者
第五选择子模块,用于当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从所述至少两个波束中选择一个波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止。
根据本公开的一个可行的实施例,所述驻留条件还包括驻留概率;所述选择模块包括:
第六选择子模块,用于依次判断所有扫描到的波束的信号质量是否满足对应的信号质量门限,得到所有满足对应的信号质量门限的波束;从所述所有满足对应的信号质量门限的波束中,选择一波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止;或者
第七选择子模块,用于当扫描到一波束时,判断当前扫描到的波束的信 号质量是否满足对应的信号质量门限;如果是,产生一随机概率,将所述随机概率与当前扫描到的波束的驻留概率进行比较,根据比较结果,判断当前扫描到的波束是否可驻留;否则,继续扫描其他波束,并返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤;当判断出当前扫描到的波束可驻留时,驻留在当前扫描到的波束上;当判断出当前扫描到的波束不可驻留时,返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤。
根据本公开的一个可行的实施例,所述驻留条件包括波束的扫描时间信息。
根据本公开的一个可行的实施例,所述选择模块,用于选择驻留的小区,根据所述波束的驻留条件,从当前驻留小区中的波束中选择波束驻留。
根据本公开的一个可行的实施例,所述驻留条件还包括波束的信号质量门限;所述选择模块包括:
第九驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
根据本公开的一个可行的实施例,所述驻留条件还包括:波束的信号质量门限和波束的扫描时间信息对应的门限;所述选择模块包括:
第十驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
根据本公开的第五个方面,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述第一个方面中所述的终端驻留方法中的步骤。
根据本公开的第六个方面,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述第二个方面中所述的终端驻留方法中的步骤。
根据本公开的第七个方面,提供了一种基站,包括:处理器和存储器,其中,处理器用于读取存储器中的程序,执行如上述第一个方面中所述的终 端驻留方法中的步骤。
根据本公开的第八个方面,提供了一种终端,包括:处理器和存储器,其中,处理器用于读取存储器中的程序,执行如上述第二个方面中所述的终端驻留方法中的步骤。
本公开的上述技术方案的有益效果如下:
空闲态的终端可以根据基站发送的波束的驻留条件,更佳地选择合适的波束驻留。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为小区内的波束上的终端的分布示意图;
图2为根据本公开实施例五的波束驻留方法的流程示意图;
图3为根据本公开实施例五的终端驻留方法的流程示意图;
图4为根据本公开实施例六的波束驻留方法的流程示意图;
图5为根据本公开实施例六的终端驻留方法的流程示意图;
图6为根据本公开实施例七的波束驻留方法的流程示意图;
图7为根据本公开实施例七的终端驻留方法的流程示意图;
图8为根据本公开实施例八的波束驻留方法的流程示意图;
图9为根据本公开实施例八的终端驻留方法的流程示意图;
图10为根据本公开实施例九的波束驻留方法的流程示意图;以及
图11为根据本公开实施例九的终端驻留方法的流程示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为实现为空闲态的终端选择合适的小区和/或波束驻留,本公开实施例中,分别在基站侧和终端侧执行相应的方法,下面详细进行说明。
(1)基站侧
本公开实施例提供一种波束信息的发送方法,应用于基站,包括:发送小区和/或波束的驻留条件,所述驻留条件用于终端的小区和/或波束驻留判断。
通过上述实施例提供的波束信息的发送方法,基站可以向终端发送小区和/或波束的驻留条件,空闲态的终端能够根据接收到的所述驻留条件选择合适的小区和/或波束驻留。
在本公开的一些实施例中,所述驻留条件包括小区和/或波束的信号质量门限。
可选地,所述信号质量门限包括以下信息中的任意一个或任意多个的组合:参考信号接收功率(RSPR,Reference Signal Receiving Power)门限、参考信号接收质量(RSRQ,Reference Signal Receiving Quality)门限和信号与干扰加噪声比(SINR,Signal to Interference plus Noise Ratio)门限。
当然,所述信号质量门限并不限于上述信息,还可以包括5G系统新定义的用于表征小区和/波束信号质量的信息门限等。
在本公开的一些实施例中,所述驻留条件除了所述信号质量门限之外,还可以包括信号质量门限对应的偏移量等信息。具体的,所谓偏移量是指在信号质量门限的基础上做出的调整量。
上述实施例中,基站可以只发送小区的信号质量门限,不发送波束的信号质量门限,终端可以通过小区的信号质量门限选择小区驻留,而对于波束的选择,可以随机在当前驻留的小区的波束中进行选择,或者,通过测量波束的信号质量,选择当前驻留的小区中的信号质量最好的波束驻留。
上述实施例中,基站也可以只发送波束的信号质量门限,不发送小区的信号质量门限,终端可以通过波束的信号质量门限选择波束驻留,而对于小 区,可以不选择驻留的小区,直接选择驻留的波束,或者,依据一些方式先选择驻留的小区,再选择驻留的波束。
上述实施例中,基站可以同时发送小区的信号质量门限和波束的信号质量门限,终端可以通过小区的信号质量门限选择小区驻留,可以通过波束的信号质量门限选择波束驻留。
本公开实施例中,基站在发送波束的驻留条件时,发送的内容中还可以包括波束的标识,标识可能是显式的波束的ID或者隐式的可区分波束的其他信息。
从负载均衡的角度考虑,小区内的每个波束的扫描时间可以不同。例如,某片区域的终端较多,该方向上的波束扫描时间可以延长,以提供服务给更多的用户,提升系统的吞吐量。请参考图1,图1中beam4和beam5方向上用户较其他beam方向上相比,用户数较多。因此小区在进行波束扫描的时候,可以在beam4和beam5方向上分配较长的扫描时间,以服务更多的用户,提升系统性能。
对于空闲态的终端,如果能优先选择到波束扫描时间最长的波束上,可以提升接入的成功率、接收paging(寻呼)的成功率等。因此波束的扫描时间对于空闲态的终端选择驻留小区很有意义。
可选地,在本公开的一些实施例中,基站发送的小区和/或波束的驻留条件包括波束的扫描时间信息。
所述波束的扫描时间信息包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
本公开实施例中,小区中的各个波束的扫描周期可以不同,或者,部分相同,部分不同。相应的,单位时间内的扫描周期越短,对应的扫描时间越长。
本公开实施例中,基站可以只发送小区和/或波束的信号质量门限,或者,只发送波束的扫描时间信息。可选地,基站同时发送的小区和/或波束的信号质量门限以及波束的扫描时间信息。
在本公开的另一可选实施例中,基站发送的小区和/或波束的驻留条件除了包括波束的扫描时间信息之外,还可以包括波束的扫描时间信息对应的门 限。可选地,扫描时间信息满足该门限的波束为可以选择驻留的波束。举例来说,该门限可以为一时间门限,当波束的扫描时间高于或不低于该时间门限时,说明该波束的扫描时间较长,适合驻留。
通过上述实施例提供的波束信息的发送方法,基站向终端发送波束的驻留条件包括波束的扫描时间信息,空闲态的终端可以根据接收到的所述驻留条件尽量驻留在扫描时间长的波束上。
本公开实施例中,基站可以通过以下方式发送小区和/或波束的驻留条件:
在小区的系统消息中发送所述小区和/或所述小区内全部或部分波束的驻留条件;所述系统消息通过广播发送或者通过专用信令发送;和/或
在波束上发送自身的驻留条件。
为解决上述问题,本公开实施例中的基站发送的波束的驻留条件可以包括驻留概率。
可选地,所述波束的驻留概率可以由波束上负载的情况和/或已驻留的终端的个数等情况决定。
可选地,波束的驻留概率与波束上的负载和/或其上驻留的终端的个数相关联。具体的,波束上的负载和/或其上驻留的终端的个数越多,则该波束的驻留概率越小。相反的,波束上的负载和/或其上驻留的终端的个数越少,则该波束的驻留概率越大。
波束的驻留概率pi的取值范围可以是0≤pi≤1,或者,0<pi≤1,或者0≤pi<1,或者0<pi<1。
当同时发送多个波束的驻留概率时,pi中的i可用于区分不同的波束。
通过上述实施例提供的终端驻留方法,基站向终端发送波束的驻留条件包括驻留概率,空闲态的终端可以根据接收到的所述驻留概率尽量均匀地分布在各波束上。
此外,为了进一步避免驻留在同一个波束上的大量的终端同时发起随机接入引起拥塞,本公开实施例中,基站还可以为不同的波束分配对应大小的PRACH(Physical Random Access Channel,物理随机接入信道)资源,以用于随机接入。例如,为波束分配的PRACH资源的多少与波束上的负载和/或其上驻留的终端的个数正相关,即波束上的负载越大和/或其上驻留的终端越 多,给其分配的PRACH资源就越多,反之则分配的越少。
上述发送波束的驻留概率的方案可以与上述为波束分配PRACH资源的方案联合工作,避免发生随机接入拥塞,实现波束之间的负载均衡。
本公开的实施例中,基站发送的波束的驻留条件可以只包括信号质量门限,或者,只包括驻留概率。可选地,驻留条件还可以同时包括信号质量门限和驻留概率。
基站在发送波束的驻留条件时,发送的内容中还需要包括波束的标识,标识可能是显式的波束的ID或者隐式的可区分波束的其他信息。
本公开实施例中,基站可以通过以下方式发送波束的驻留条件:
第一种方式是:在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件;所述系统消息通过广播发送或者通过专用信令发送;
第二种方式是:在波束上发送对应的驻留条件。
基站可以选择上述两种方式之一或者同时通过上述两种方式发送波束的驻留条件。
另外,本公开实施例还提供一种终端驻留方法,应用于基站,包括:发送波束的驻留条件,所述驻留条件用于终端的波束驻留判断。
通过上述实施例提供的终端驻留方法,基站可以向终端发送波束的驻留条件,空闲态的终端能够根据接收到的所述驻留条件选择合适的波束驻留。
在本公开的一些实施例中,所述驻留条件包括信号质量门限。
可选地,所述信号质量门限包括以下信息中的任意一个或任意多个的组合:参考信号接收功率(RSPR,Reference Signal Receiving Power)门限、参考信号接收质量(RSRQ,Reference Signal Receiving Quality)门限和信号与干扰加噪声比(SINR,Signal to Interference plus Noise Ratio)门限。
当然,所述信号质量门限并不限于上述信息,还可以包括5G系统新定义的用于表征波束信号质量的信息门限等。
在本公开的一些实施例中,所述驻留条件除了所述信号质量门限之外,还可以包括信号质量门限对应的偏置量等信息。具体的,所谓偏置量是指在信号质量门限的基础上做出的调整量。
当大量空闲态的终端同时驻留在一个波束上,且大量的空闲态终端同时 发起随机接入时,会引起随机接入拥塞,因而应该使终端尽量均匀地驻留在各波束上。
为解决上述问题,本公开实施例中的基站发送的波束的驻留条件可以包括驻留概率。
可选地,所述波束的驻留概率可以由波束上负载的情况和/或已驻留的终端的个数等情况决定。
可选地,波束的驻留概率与波束上的负载和/或其上驻留的终端的个数相关联。具体的,波束上的负载和/或其上驻留的终端的个数越多,则该波束的驻留概率越小。相反的,波束上的负载和/或其上驻留的终端的个数越少,则该波束的驻留概率越大。
波束的驻留概率pi的取值范围可以是0≤pi≤1,或者,0<pi≤1,或者0≤pi<1,或者0<pi<1。
当同时发送多个波束的驻留概率时,pi中的i可用于区分不同的波束。
通过上述实施例提供的终端驻留方法,基站向终端发送波束的驻留条件包括驻留概率,空闲态的终端可以根据接收到的所述驻留概率尽量均匀地分布在各波束上。
此外,为了进一步避免驻留在同一个波束上的大量的终端同时发起随机接入引起拥塞,本公开实施例中,基站还可以为不同的波束分配对应大小的PRACH(Physical Random Access Channel,物理随机接入信道)资源,以用于随机接入。例如,为波束分配的PRACH资源的多少与波束上的负载和/或其上驻留的终端的个数正相关,即波束上的负载越大和/或其上驻留的终端越多,给其分配的PRACH资源就越多,反之则分配的越少。
上述发送波束的驻留概率的方案可以与上述为波束分配PRACH资源的方案联合工作,避免发生随机接入拥塞,实现波束之间的负载均衡。
本公开的实施例中,基站发送的波束的驻留条件可以只包括信号质量门限,或者,只包括驻留概率。可选地,驻留条件还可以同时包括信号质量门限和驻留概率。
基站在发送波束的驻留条件时,发送的内容中还需要包括波束的标识,标识可能是显式的波束的ID或者隐式的可区分波束的其他信息。
本公开实施例中,基站可以通过以下方式发送波束的驻留条件:
第一种方式是:在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件;所述系统消息通过广播发送或者通过专用信令发送;
第二种方式是:在波束上发送对应的驻留条件。
基站可以选择上述两种方式之一或者同时通过上述两种方式发送波束的驻留条件。
下面结合具体实施例,对基站侧执行的波束信息的发送方法举例进行说明。
实施例一
本公开的实施例一提供一种波束信息的发送方法,应用于基站,包括:在小区的系统消息中发送所述小区和/或所述小区内全部或部分波束的信号质量门限。所述系统消息通过广播发送或者通过专用信令发送。
其中,所述信号质量门限可以包括以下信息中的任意一个或任意多个的组合:参考信号接收功率门限、参考信号接收质量门限、信号与干扰加噪声比门限和5G系统新定义的用于表征小区和/或波束信号质量的信息门限。
本公开的实施例一还提供一种终端驻留方法,应用于基站,包括:在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件,所述驻留条件包括信号质量门限。
其中,所述驻留条件包括信号质量门限,所述信号质量门限可以包括以下信息中的任意一个或任意多个的组合:参考信号接收功率门限、参考信号接收质量门限、信号与干扰加噪声比门限和5G系统新定义的用于表征波束信号质量的信息门限。
实施例二
本公开的实施例二提供一种波束信息的发送方法,应用于基站,包括:在小区的系统消息中发送所述小区和/或所述小区内全部或部分波束的信号质量门限和/或波束的扫描时间信息。
其中,所述信号质量门限可以包括以下信息中的任意一个或任意多个的组合:参考信号接收功率门限、参考信号接收质量门限、信号与干扰加噪声比门限和5G系统新定义的用于表征小区和/或波束信号质量的信息门限。
所述波束的扫描时间信息可以包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
本公开的实施例二还提供一种终端驻留方法,应用于基站,包括:在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件,所述驻留条件包括信号质量门限和驻留概率。
其中,所述信号质量门限同实施例一。波束的驻留概率pi的取值范围可以是0≤pi≤1,或者,0<pi≤1,或者0≤pi<1,或者0<pi<1。
实施例三
本公开的实施例三提供一种波束信息的发送方法,应用于基站,包括:在波束上发送自身的信号质量门限和/或扫描时间信息。
其中,所述波束的信号质量门限可以包括以下信息中的任意一个或任意多个的组合:参考信号接收功率门限、参考信号接收质量门限、信号与干扰加噪声比门限和5G系统新定义的用于表征小区和/或波束信号质量的信息门限。
所述波束的扫描时间信息可以包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
另外,本公开的实施例三还提供一种终端驻留方法,应用于基站,包括:在波束上发送对应的信号质量门限和驻留概率。
其中,所述信号质量门限同实施例一。波束的驻留概率pi的取值范围可以是0≤pi≤1,或者,0<pi≤1,或者0≤pi<1,或者0<pi<1。
实施例四
本公开的实施例四提供一种波束信息的发送方法,应用于基站,包括:在小区的系统消息中发送所述小区和/或所述小区内的全部或部分波束的信号质量门限,在波束上发送自身的扫描时间信息。
其中,所述信号质量门限可以包括以下信息中的任意一个或任意多个的组合:参考信号接收功率门限、参考信号接收质量门限、信号与干扰加噪声比门限和5G系统新定义的用于表征小区和/或波束信号质量的信息门限。
所述扫描时间信息可以包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
(2)终端侧
本公开实施例提供一种波束驻留方法,应用于终端,包括:
步骤一:接收基站发送的小区和/或波束的驻留条件;
所述小区和/或波束的驻留条件同上述实施例中描述的小区和/或波束的驻留条件,在此不再详细说明。
步骤二:根据所述小区和/或波束的驻留条件,选择小区和/或波束驻留。
通过上述实施例提供的波束驻留方法,空闲态的终端能够根据接收到的基站发送的小区和/或波束的驻留条件,选择合适的小区和/或波束驻留。
下面对如何选择小区和/或波束驻留进行详细说明。
在本公开的一些实施例中,终端可以先选择驻留的小区,再选择驻留的波束。
即,所述根据所述小区和/或波束的驻留条件,选择小区和/或波束驻留的步骤包括:
步骤一:选择驻留的小区;
步骤二:从当前驻留小区中的波束中选择一波束进行驻留。
本公开实施例中,可以通过多种准则选择驻留的小区,例如通过相关技术中的选择准则。
或者,可以根据测量到的小区的信号质量以及接收到的小区的信号质量门限,选择驻留的小区。例如,选择信号质量满足信号质量门限的小区,进行驻留。
又或者,可以根据测量到的小区中的波束的信号质量,选择驻留的小区。举例来说,可以获取测量到的小区中的质量最好的N个波束的信号质量的平均值,选择平均值最大的小区驻留。N的取值范围是:大于等于1,小于等于小区中的全部波束的个数。
对于波束的选择,本公开实施例中,当基站发送的小区和/或波束的驻留条件包括小区和/或波束的信号质量门限时,所述从当前驻留小区中的波束中选择一波束进行驻留的步骤包括:根据测量到的波束的信号质量以及所述波束的信号质量门限,从当前驻留小区中的波束中选择一波束进行驻留。举例来说,在一些实施例中,根据测量到的波束的信号质量以及所述波束的信号 质量门限,判断测量到的波束的信号质量是否高于或不低于对应的信号质量门限,当波束的信号质量高于或不低于对应的信号质量门限时,判定符合对应的信号质量门限,否则,判定不符合对应的信号质量门限,从而可以从符合对应的信号质量门限的波束中选择波束进行驻留。
在一些具体实施例中,终端可以通过以下方式从当前驻留小区中的波束中选择一波束进行驻留:
第一种方式:
判断驻留小区内测量到的波束的信号质量是否符合对应的信号质量门限;
当测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
当驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上;
当驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中选择信号质量最好的波束驻留;或者,从所述至少两个波束中随机选择一个波束驻留。
另外,本公开的实施例四还提供一种终端驻留方法,应用于基站,包括:在小区的系统消息中发送所述小区内的全部或部分波束的信号质量门限,在波束上发送对应的驻留概率。
其中,所述信号质量门限同实施例一。波束的驻留概率pi的取值范围可以是0≤pi≤1,或者,0<pi≤1,或者0≤pi<1,或者0<pi<1。
另外,本公开实施例还提供一种终端驻留方法,应用于终端,包括:
步骤一:接收基站发送的波束的驻留条件;
所述波束的驻留条件同上述实施例中描述的基站发送的波束的驻留条件,在此不再详细说明。
步骤二:根据所述波束的驻留条件,选择波束驻留。
通过上述实施例提供的终端驻留方法,空闲态的终端根据接收到的基站发送的波束的驻留条件,选择合适的波束驻留。
可选地,所述驻留条件包括信号质量门限和/或驻留概率。
可选地,所述接收基站发送的波束的驻留条件的步骤包括:
接收基站通过小区的系统消息发送的所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
接收基站通过波束发送的驻留条件。
下面对如何选择波束驻留进行详细说明。
在本公开的一些实施例中,可选地,所述根据所述波束的驻留条件,选择波束驻留的步骤包括:判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留。
所谓满足信号质量门限可以是大于或不小于信号质量门限。
在进行波束选择时,可以先选择驻留的小区,然后再选择驻留的波束,也可以直接选择驻留的波束,下面将举例进行说明。
在本公开的一些实施例中,终端可以先选择驻留的小区,再选择波束驻留。
即所述判断测量到的波束的信号质量是否满足对应的信号质量门限的步骤之前还包括:选择驻留的小区。
所述判断测量到的波束的信号质量是否满足对应的信号质量门限的步骤包括:判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限。
本公开实施例中,可以通过多种准则选择驻留的小区,例如通过相关技术中的选择准则。在本公开的一可选实施例中,可以根据测量到的小区中的波束的信号质量,选择驻留的小区。例如,可以获取测量到的小区中的质量最好的N个波束的信号质量的平均值,选择平均值最大的小区驻留。
当选择完小区时,可以通过以下方式选择波束驻留:
第一种方式:
当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上。
当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从所述至少两个波束中选择信号质量最好的波束驻留,或者, 从所述至少两个波束中随机选择一个波束驻留。
下面结合具体实施例,对上述第一种方式进行说明。
实施例五
请参考图2,图2为本公开实施例五的波束驻留方法的流程示意图,该波束驻留方法应用于终端,该方法包括:
步骤S11:接收基站发送的小区和/或波束的驻留条件,所述驻留条件包括波束的信号质量门限;
步骤S12:选择驻留的小区;
步骤S13:判断驻留小区内测量到的波束的信号质量是否符合对应的信号质量门限,当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,执行步骤S14,当所述判断结果为驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,执行步骤S15,当所述判断结果为驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时,执行步骤S16;
步骤S14:驻留在驻留小区内的信号质量最好的波束上;
步骤S15:驻留在符合信号质量门限的波束上;
步骤S16:从所述至少两个波束中选择信号质量最好的波束驻留,或者,从所述至少两个波束中随机选择一个波束驻留。
第二种方式:
该种方式下终端接收到的驻留条件包括小区和/或波束的信号质量门限,以及波束的扫描时间信息。
本公开实施例中,终端可以通过以下方式从当前驻留小区中的波束中选择一波束进行驻留:
判断驻留小区内测量到的波束的信号质量是否符合对应的信号质量门限;
当测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
当驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上;
当驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时, 根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
另外,请参考图3,图3为本公开实施例五的终端驻留方法的流程示意图,该终端驻留方法应用于终端,该方法包括:
步骤S11:接收基站发送的波束的驻留条件;所述驻留条件包括信号质量门限;
所述波束的驻留条件同上述实施例中描述的基站发送的波束的驻留条件,在此不再详细说明。
步骤S12:选择驻留的小区;
步骤S13:判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限,当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,执行步骤S14,当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,执行步骤S15,当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,执行步骤S16;
步骤S14:驻留在驻留小区内的信号质量最好的波束上;
步骤S15:驻留在满足对应的信号质量门限的波束上;
步骤S16:从所述至少两个波束中选择信号质量最好的波束驻留,或者,从所述至少两个波束中随机选择一个波束驻留。
第二种方式:
该种方式下终端接收到的基站发送的波束的驻留条件包括:信号质量门限和驻留概率。
当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上。
当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从满足对应的信号质量门限的波束中选择一波束,并产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比 较结果,判断当前选择的波束是否可驻留,如果是,驻留在当前选择的波束上,否则,从剩下的满足对应的信号质量门限的波束中再选择一波束,并返回所述产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留的步骤,直至判断出当前选择的波束可驻留为止。
具体的,当前选择的波束的驻留概率与所述随机概率进行比较的步骤包括:
判断所述随机概率是否低于或不高于当前选择的波束的驻留概率,如果是,判定波束可驻留,否则,判定波束不可驻留;或者
判断所述随机概率是否高于或不低于当前选择的波束的驻留概率,如果是,判定波束可驻留,否则,判定波束不可驻留。
其中,随机概率p的取值范围与接收到的波束的驻留概率的取值范围相同,可以是0≤p≤1,或者,0<p≤1,或者0≤p<1,或者0<p<1。
本公开实施例中,当判断出驻留小区内的所有满足对应的信号质量门限的波束均不可驻留时,可以驻留小区内的所有满足对应的信号质量门限的波束中选择信号质量最好的波束驻留,或者,从驻留小区内的所有满足对应的信号质量门限的波束中随机选择一个波束驻留。
或者,当判断出驻留小区内的所有满足对应的信号质量门限的波束均不可驻留时,可以将驻留小区内的所有满足对应的信号质量门限的波束再重新执行一次上述判断过程,直至判断出当前选择的波束可驻留为止;
或者,再换一个小区驻留。
本公开实施例中,从满足对应的信号质量门限的波束中选择一波束时,可以是从满足对应的信号质量门限的所有波束中选择质量最好的波束,也可以是随机选择一波束。
下面结合具体实施例,对上述第二种方式进行说明。
实施例六
请参考图4,图4为本公开实施例六的波束驻留方法的流程示意图,该波束驻留方法应用于终端,该方法包括:
步骤S21:接收基站发送的小区和/或波束的驻留条件,所述驻留条件包 括小区和/或所述小区内全部或部分波束的信号质量门限,以及波束的扫描时间信息;
步骤S22:选择驻留的小区;
步骤S23:判断驻留小区内测量到的波束的信号质量是否符合对应的信号质量门限,当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,执行步骤S24,当所述判断结果为驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,执行步骤S25,当所述判断结果为驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时,执行步骤S26;
步骤S24:驻留在驻留小区内的信号质量最好的波束上;
步骤S25:驻留在符合信号质量门限的波束上;
步骤S26:根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
第三种方式:
该种方式下终端接收到的驻留条件包括小区和/或波束的信号质量门限,波束的扫描时间信息,以及波束的扫描时间信息对应的门限;
本公开实施例中,终端可以通过以下方式从当前驻留小区中的波束中选择一波束进行驻留:
判断驻留小区内测量到的波束的信号质量是否符合对应的信号质量门限;
当测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
当驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上;
当驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
另外,请参考图5,图5为本公开实施例六的终端驻留方法的流程示意图,该终端驻留方法应用于终端,该方法包括:
步骤S21:接收基站发送的波束的驻留条件,所述驻留条件包括信号质 量门限和驻留概率;
所述波束的驻留条件同上述实施例中描述的基站发送的波束的驻留条件,在此不再详细说明。
步骤S22:选择驻留的小区;
步骤S23:判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限,当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,执行步骤S24,当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,执行步骤S25,当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,执行步骤S26;
步骤S24:驻留在驻留小区内的信号质量最好的波束上;
步骤S25:驻留在满足对应的信号质量门限的波束上;
步骤S26:从满足对应的信号质量门限的波束中选择一波束;
步骤S27:产生一随机概率,判断所述随机概率是否低于或不高于当前选择的波束的驻留概率,如果是,执行步骤S29,否则,执行步骤S28;
步骤S28:从剩下的满足对应的信号质量门限的波束中再选择一波束,并返回步骤S27;
步骤S29:判定当前选择的波束可驻留,并驻留在当前选择的波束上。
第三种方式:
该种方式下终端接收到的基站发送的波束的驻留条件包括信号质量门限和驻留概率。
当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上。
当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从所述至少两个波束中选择一个波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满 足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止。
上述步骤中,当需要从满足对应的信号质量门限的波束中选择一个波束驻留时,可以是从满足对应的信号质量门限的波束中选择一个质量最好的波束驻留,也可以是从满足对应的信号质量门限的波束中随机选择一个波束驻留。
具体的,将所述随机概率与驻留波束的驻留概率进行比较的步骤包括:
判断所述随机概率是否低于或不高于驻留波束的驻留概率,如果是,判定驻留波束可继续驻留,否则,判定驻留波束不可继续驻留;或者
判断所述随机概率是否高于或不低于驻留波束的驻留概率,如果是,判定驻留波束可继续驻留,否则,判定驻留波束不可继续驻留。
其中,随机概率p的取值范围是0≤p≤1,或者,0<p≤1,或者0≤p<1,或者0<p<1。
实施例七
请参考图6,图6为本公开实施例七的波束驻留方法的流程示意图,该波束驻留方法应用于终端,该方法包括:
步骤S31:接收基站发送的小区和/或波束的驻留条件,所述驻留条件包括小区和/或所述小区内全部或部分波束的信号质量门限,波束的扫描时间信息,以及波束的扫描时间信息对应的门限;
步骤S32:选择驻留的小区;
步骤S33:判断驻留小区内测量到的波束的信号质量是否符合对应的信号质量门限,当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,执行步骤S34,当所述判断结果为驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,执行步骤S35,当所述判断结果为驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时,执行步骤S36;
步骤S34:驻留在驻留小区内的信号质量最好的波束上;
步骤S35:驻留在符合信号质量门限的波束上;
步骤S36:从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
上述实施例中,是先选择驻留的小区,然后,再驻留的小区中选择驻留的波束,在本公开的其他一些实施例中,终端可以不选择驻留的小区,而是直接选择波束驻留,下面将详细说明。
本公开实施例中,所述根据所述小区和/或波束的驻留条件,选择小区和/或波束驻留的步骤包括:根据所述波束的驻留条件,选择一波束进行驻留。
可选地,所述驻留条件包括波束的信号质量门限;所述根据所述波束的驻留条件,选择一波束进行驻留的步骤包括:根据测量到的波束的信号质量以及所述波束的驻留条件,选择一波束进行驻留。
在一些具体实施例中,所述选择一波束进行驻留的步骤可以包括:
判断测量到的波束的信号质量是否符合对应的信号质量门限;
当测量到所有波束的信号质量均不符合对应的信号质量门限时,驻留在信号质量最好的波束上;
当只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上。
当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中选择信号质量最好的波束驻留;或者,从所述至少两个波束中随机选择一个波束驻留。
在本公开的另一些实施例中,所述驻留条件还包括:波束的扫描时间信息;所述选择一波束进行驻留的步骤还包括:
判断测量到的波束的信号质量是否符合对应的信号质量门限;
当测量到所有波束的信号质量均不符合对应的信号质量门限时,驻留在信号质量最好的波束上;
当只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上。
当有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
另外,请参考图7,图7为本公开实施例七的终端驻留方法的流程示意 图,该终端驻留方法应用于终端,该方法包括:
步骤S31:接收基站发送的波束的驻留条件,所述驻留条件包括信号质量门限和驻留概率;
所述波束的驻留条件同上述实施例中描述的基站发送的波束的驻留条件,在此不再详细说明。
步骤S32:选择驻留的小区;
步骤S33:判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限,当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,执行步骤S34,当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,执行步骤S35,当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,执行步骤S36;
步骤S34:驻留在驻留小区内的信号质量最好的波束上;
步骤S35:驻留在满足对应的信号质量门限的波束上;
步骤S36:从所述满足对应的信号质量门限的波束中选择一个波束驻留;
具体的,可以是从满足对应的信号质量门限的波束中选择一个质量最好的波束驻留,也可以是从满足对应的信号质量门限的波束中随机选择一个波束驻留。
步骤S37:产生一随机概率,判断所述随机概率是否低于或不高于驻留波束的驻留概率,如果是,执行步骤S38,否则,执行步骤S39;
步骤S38:继续驻留在驻留波束上;
步骤S39;从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回步骤37。
上述实施例中,终端是先选择驻留的小区,然后再选择驻留的波束,在本公开的其他一些实施例中,终端可以不选择驻留的小区,而是直接选择波束驻留,下面将详细说明。
在这些实施例中,终端接收到的基站发送的波束的驻留条件包括信号质量门限和驻留概率。
所述判断测量到的波束的信号质量是否满足对应的信号质量门限,并根 据判断结果,选择波束驻留的步骤包括:
依次判断所有扫描到的波束的信号质量是否满足对应的信号质量门限,得到所有满足对应的信号质量门限的波束;
从所述所有满足对应的信号质量门限的波束中,选择一波束驻留;
产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;
如果是,继续驻留在驻留波束上;
否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止。
从所述所有满足对应的信号质量门限的波束中,选择一波束驻留的步骤中,可以从所有满足对应的信号质量门限的波束中,选择质量最好的波束驻留,也可以从所有满足对应的信号质量门限的波束中,随机选择一波束驻留。
具体的,将所述随机概率与驻留波束的驻留概率进行比较的步骤包括:
判断所述随机概率是否低于或不高于驻留波束的驻留概率,如果是,判定驻留波束可继续驻留,否则,判定驻留波束不可继续驻留;或者
判断所述随机概率是否高于或不低于驻留波束的驻留概率,如果是,判定驻留波束可继续驻留,否则,判定驻留波束不可继续驻留。
其中,随机概率p的取值范围是0≤p≤1,或者,0<p≤1,或者0≤p<1,或者0<p<1。
下面举例对上述驻留方法进行说明。
实施例八
请参考图8,图8为本公开实施例八的波束驻留方法的流程示意图,该波束驻留方法应用于终端,该方法包括:
步骤S41:接收基站发送的波束的驻留条件,所述驻留条件包括波束的信号质量门限以及波束的扫描时间信息;
步骤S42:判断测量到的波束的信号质量是否符合对应的信号质量门限,当所述判断结果为测量到的所有波束的信号质量均不符合对应的信号质量门 限时,执行步骤S43,当所述判断结果为只有一个波束的信号质量符合对应的信号质量门限时,执行步骤S44,当所述判断结果为有至少两个波束的信号质量符合对应的信号质量门限时,执行步骤S45;
步骤S43:驻留在信号质量最好的波束上;
步骤S44:驻留在符合信号质量门限的波束上。
步骤S45:根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
在本公开的另一些实施例中,所述驻留条件除了包括:波束的扫描时间信息之外,还可以包括波束的扫描时间对应的门限;所述选择一波束进行驻留的步骤包括:
判断测量到的波束的信号质量是否符合对应的信号质量门限;
当测量到所有波束的信号质量均不符合对应的信号质量门限时,驻留在信号质量最好的波束上;
当只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上。
当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
本实施例中,终端扫描所有可以扫描到的波束,并先驻留在一满足对应的信号质量门限的波束上,再判断是否需要重选到其它满足对应的信号质量门限的波束上。
另外,请参考图9,图9为本公开实施例八的终端驻留方法的流程示意图,该终端驻留方法应用于终端,该方法包括:
步骤S41:接收所有扫描到的波束的驻留条件,所述驻留条件包括信号质量门限和驻留概率;
所述波束的驻留条件同上述实施例中描述的基站发送的波束的驻留条件,在此不再详细说明。
步骤S42:依次判断所有扫描到的波束的信号质量是否满足对应的信号质量门限,得到所有满足对应的信号质量门限的波束;
步骤S43:从所述所有满足对应的信号质量门限的波束中,选择一波束驻留;
具体的,可以从所有满足对应的信号质量门限的波束中,选择质量最好的波束驻留,也可以从所有满足对应的信号质量门限的波束中,随机选择一波束驻留。
步骤S44:产生一随机概率,判断所述随机概率是否低于或不高于驻留波束的驻留概率,如果是,执行步骤S45,否则,执行步骤S46;
步骤S45:继续驻留在驻留波束上;
步骤S46;从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回执行步骤44,直至判断出驻留波束可继续驻留为止。
上述实施例中,终端是扫描所有可以扫描到的波束,而后进行驻留判断,在本公开的其他一些实施例中,终端也可以一旦扫描到一个波束,就进行驻留判断。
在这些实施例中,终端接收到的基站发送的波束的驻留条件包括信号质量门限和驻留概率。
所述判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留的步骤包括:
当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限;
如果是,产生一随机概率,将所述随机概率与当前扫描到的波束的驻留概率进行比较,根据比较结果,判断当前扫描到的波束是否可驻留;否则,继续扫描其他波束,并返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤;
当判断出当前扫描到的波束可驻留,驻留在当前扫描到的波束上;
当判断出当前扫描到的波束不可驻留,继续扫描其他波束,并返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤,直至判断出当前扫描到的波束可驻留为止。
本公开实施例中,将随机概率与当前扫描到的波束的驻留概率进行比较的步骤包括:
判断所述随机概率是否低于或不高于当前扫描到的波束的驻留概率,如果是,判定当前扫描到的波束可驻留,否则,判定当前扫描到的波束不可驻留;或者
判断所述随机概率是否高于或不低于当前扫描到的波束的驻留概率,如果是,判定当前扫描到的波束可驻留,否则,判定当前扫描到的波束不可驻留。
本公开实施例中,随机概率p的取值范围是0≤p≤1,或者,0<p≤1,或者0≤p<1,或者0<p<1。
下面举例对上述驻留方法进行说明。
实施例九
请参考图10,图10为本公开实施例九的波束驻留方法的流程示意图,该波束驻留方法应用于终端,该方法包括:
步骤S51:接收基站发送的波束的驻留条件,所述驻留条件包括波束的信号质量门限、波束的扫描时间信息以及波束的扫描时间信息对应的门限;
步骤S52:判断测量到的波束的信号质量是否符合对应的信号质量门限,当所述判断结果为测量到的所有波束的信号质量均不符合对应的信号质量门限时,执行步骤S53,当所述判断结果为只有一个波束的信号质量符合对应的信号质量门限时,执行步骤S54,当所述判断结果为有至少两个波束的信号质量符合对应的信号质量门限时,执行步骤S55;
步骤S53:驻留在信号质量最好的波束上;
步骤S54:驻留在符合信号质量门限的波束上。
步骤S55:从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
基于同一发明构思,本公开实施例还提供一种基站,包括:
发送模块,用于发送小区和/或波束的驻留条件,所述驻留条件用于终端的小区和/或波束驻留判断。
在一些实施例中,所述驻留条件包括小区和/或波束的信号质量门限。
可选地,所述信号质量门限包括以下信息中的任意一个或任意多个的组合:参考信号接收功率门限、参考信号接收质量门限和信号与干扰加噪声比 门限。
在另一些实施例中,所述驻留条件包括:波束的扫描时间信息。
所述波束的扫描时间信息包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
在另一些实施例中,所述驻留条件同时包括:小区和/或波束的信号质量门限和波束的扫描时间信息。
在另一些实施例中,所述驻留条件还包括:波束的扫描时间信息对应的门限。
所述发送模块可以包括以下两个子模块中的其中一个或两个:
第一发送子模块,用于在小区的系统消息中发送所述小区和/或所述小区内全部或部分波束的驻留条件;和/或
第二发送子模块,用于在波束上发送自身的驻留条件。
基于同一发明构思,本公开实施例还提供一种终端,包括:
接收模块,用于接收基站发送的小区和/或波束的驻留条件;
选择模块,用于根据所述小区和/或波束的驻留条件,选择小区和/或波束驻留。
在一些实施例中,所述选择模块先选择驻留的小区,然后选择驻留的波束,包括:
小区选择子模块,用于选择驻留的小区;
第一波束选择子模块,用于从当前驻留小区中的波束中选择一波束进行驻留。
可选地,所述小区选择子模块,进一步用于根据测量到的小区中的波束的信号质量,选择驻留的小区。
可选地,所述驻留条件包括小区和/或波束的信号质量门限;所述第一波束选择子模块,进一步用于根据测量到的波束的信号质量以及所述波束的驻留条件,从当前驻留小区中的波束中选择一波束进行驻留。
在一些实施例中,所述第一波束选择子模块包括:
第一驻留单元,用于当测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
第二驻留单元,用于当驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上;
第三驻留单元,用于当驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中选择信号质量最好的波束驻留;或者,从所述至少两个波束中随机选择一个波束驻留。
在一些实施例中,所述驻留条件还包括:波束的扫描时间信息;所述第一波束选择子模块还包括:
第一驻留单元,用于当测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
第二驻留单元,用于当驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上;
第四驻留单元,用于驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
在一些实施例中,所述驻留条件还包括:波束的扫描时间信息对应的门限;所述第一波束选择子模块还包括:
第一驻留单元,用于当测量到的驻留小区内的所有波束的信号质量均不符合对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
第二驻留单元,用于当驻留小区内只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上;
第五驻留单元,用于当驻留小区内有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
上述实施例中,选择模式是先选择驻留的小区,然后选择驻留的波束,在在另外一些实施例中,所述选择模块也可以不选择驻留的小区,而是直接选择驻留的波束,此时,所述选择模块包括:
第二波束选择子模块,用于根据所述波束的驻留条件,选择一波束进行驻留。
可选地,所述驻留条件包括波束的信号质量门限;所述第二波束选择子 模块,进一步用于根据测量到的波束的信号质量以及所述波束的驻留条件,选择一波束进行驻留。
在一些实施例中,所述第二波束选择子模块包括:
第六驻留单元,用于当测量到所有波束的信号质量均不符合对应的信号质量门限时,驻留在信号质量最好的波束上;
第七驻留单元,用于当只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上。
第八驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中选择信号质量最好的波束驻留;或者,从所述至少两个波束中随机选择一个波束驻留。
在另一些实施例中,所述驻留条件还包括:波束的扫描时间信息;所述第二波束选择子模块包括:
第六驻留单元,用于当测量到所有波束的信号质量均不符合对应的信号质量门限时,驻留在信号质量最好的波束上;
第七驻留单元,用于当只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上。
第九驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
在另一些实施例中,所述驻留条件还包括:波束的扫描时间信息对应的门限;所述第二波束选择子模块包括:
第六驻留单元,用于当测量到所有波束的信号质量均不符合对应的信号质量门限时,驻留在信号质量最好的波束上;
第七驻留单元,用于当只有一个波束的信号质量符合对应的信号质量门限时,驻留在符合信号质量门限的波束上。
第十驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
基于同一发明构思,本公开提供一种波束信息的发送方法,应用于基站, 包括:
发送波束的驻留条件,所述波束的驻留条件包括波束的扫描时间信息,所述驻留条件用于终端的波束驻留判断。
可选地,所述波束的扫描时间信息包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
可选地,所述驻留条件还包括:波束的信号质量门限和/或波束的扫描时间信息对应的门限。
可选地,所述发送波束的驻留条件的步骤包括:
在小区的系统消息中发送所述小区内全部或部分波束的驻留条件;和/或
在波束上发送自身的驻留条件。
本公开还提供一种波束驻留方法,应用于终端,包括:
接收基站发送的波束的驻留条件,所述波束的驻留条件包括波束的扫描时间信息;
根据所述波束的驻留条件,选择波束驻留。
可选地,所述根据所述波束的驻留条件,选择波束驻留的步骤包括:
选择驻留的小区;
根据所述波束的驻留条件,从当前驻留小区中的波束中选择波束驻留。
可选地,所述驻留条件还包括波束的信号质量门限;所述选择波束驻留的步骤包括:
当有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
可选地,所述驻留条件还包括:波束的信号质量门限和波束的扫描时间信息对应的门限;所述选择波束驻留的步骤包括:
当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束,并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
本公开还提供一种基站,包括:
发送模块,用于发送波束的驻留条件,所述波束的驻留条件包括波束的 扫描时间信息,所述驻留条件用于终端的波束驻留判断。
可选地,所述波束的扫描时间信息包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
可选地,所述驻留条件还包括:波束的信号质量门限和/或波束的扫描时间信息对应的门限。
可选地,所述发送模块包括:
第一发送子模块,用于在小区的系统消息中发送所述小区内全部或部分波束的驻留条件;和/或
第二发送子模块,用于在波束上发送自身的驻留条件。
本公开还提供一种终端,包括:
接收模块,用于接收基站发送的波束的驻留条件,所述波束的驻留条件包括波束的扫描时间信息;
选择模块,用于根据所述波束的驻留条件,选择波束驻留。
可选地,所述选择模块,用于选择驻留的小区,根据所述波束的驻留条件,从当前驻留小区中的波束中选择波束驻留。
可选地,所述驻留条件还包括波束的信号质量门限;所述选择模块包括:
第九驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
可选地,所述驻留条件还包括:波束的信号质量门限和波束的扫描时间信息对应的门限;所述选择模块包括:
第十驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述波束信息的发送方法或上述波束驻留方法中的步骤。
本公开还提供一种基站,包括:处理器和存储器,其中,处理器用于读 取存储器中的程序,执行上述波束信息的发送方法中的步骤。
本公开还提供一种终端,包括:处理器和存储器,其中,处理器用于读取存储器中的程序,执行上述波束驻留方法中的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如上述任一实施例中的波束信息的发送方法或波束驻留方法中的步骤。
本实施例中,终端扫描到一满足对应的信号质量门限的波束就先驻留,再判断是否需要重选到其它满足对应的信号质量门限的波束上。
另外,请参考图11,图11为本公开实施例九的终端驻留方法的流程示意图,该终端驻留方法应用于终端,该方法包括:
步骤S51:当扫描到一波束时,接收扫描到的波束的驻留条件,所述驻留条件包括信号质量门限和驻留概率;
所述波束的驻留条件同上述实施例中描述的基站发送的波束的驻留条件,在此不再详细说明。
步骤S52:判断当前扫描到的波束的信号质量是否满足对应的信号质量门限,如果是,执行步骤S53,否则,执行步骤S55;
步骤S53:产生一随机概率,判断所述随机概率是否低于或不高于当前扫描到的波束的驻留概率,如果是,执行步骤S54,否则,执行步骤S55;
步骤S54:驻留在当前扫描到的波束上;
步骤S55:继续扫描其他波束,并返回步骤S51,直至判断出驻留波束可继续驻留为止。
基于同一发明构思,本公开实施例还提供一种基站,包括:
发送模块,用于发送波束的驻留条件,所述驻留条件用于终端的波束驻留判断。
可选地,所述驻留条件包括信号质量门限。
可选地,所述信号质量门限包括以下信息中的任意一个或任意多个的组合:参考信号接收功率门限、参考信号接收质量门限和信号与干扰加噪声比门限。
为了使得终端尽量均匀地分布在各个波束上,可选地,所述驻留条件还 不包括驻留概率。
进一步可选地,所述驻留条件包括信号质量门限和驻留概率。
所述发送模块包括以下两个子模块中的其中一个或两个:
第一发送子模块,用于在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件;所述系统消息通过广播发送或者通过专用信令发送。
第二发送子模块,用于在波束上发送对应的驻留条件。
基于同一发明构思,本公开实施例还提供一种终端,包括:
接收模块,用于接收基站发送的波束的驻留条件;
选择模块,用于根据所述波束的驻留条件,选择波束驻留。
可选地,所述驻留条件包括信号质量门限和/或驻留概率。
可选地,所述接收模块包括:
第一接收子模块,用于接收基站通过小区的系统消息中发送的所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
第二接收子模块,用于接收基站通过波束发送的驻留条件。
可选地,所述驻留条件包括信号质量门限,所述选择模块进一步用于判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留。
在一些实施例中,所述终端还包括:
小区选择模块,用于选择驻留的小区;
其中,所述选择模块进一步用于判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限。
可选地,所述小区选择模块用于根据测量到的小区中的波束的信号质量,选择驻留的小区。
所述选择模块可以通过多种方式选择波束驻留。
一种方式下,所述选择模块包括:
第一选择子模块,用于当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
第二选择子模块,用于当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上。
第三选择子模块,用于当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从所述至少两个波束中选择信号质量最好的波束驻留,或者,从所述至少两个波束中随机选择一个波束驻留。
另一种方式下,所述驻留条件包括信号质量门限和驻留概率;所述选择模块包括:
第一选择子模块,用于当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
第二选择子模块,用于当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上。
第四选择子模块,用于当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从满足对应的信号质量门限的波束中选择一波束,并产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留,如果是,驻留在当前选择的波束上,否则,从剩下的满足对应的信号质量门限的波束中再选择一波束,并返回所述产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留的步骤。
另一种方式下,所述驻留条件包括信号质量门限和驻留概率;所述选择模块包括:
第一选择子模块,用于当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
第二选择子模块,用于当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束 上。
第五选择子模块,用于当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从所述至少两个波束中选择一个波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤。
另一种方式下,所述驻留条件包括信号质量门限和驻留概率;所述选择模块包括:
第六选择子模块,用于依次判断所有扫描到的波束的信号质量是否满足对应的信号质量门限,得到所有满足对应的信号质量门限的波束;从所述所有满足对应的信号质量门限的波束中,选择一波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止。
另一种方式下,所述驻留条件包括信号质量门限和驻留概率;所述选择模块包括:
第七选择子模块,用于当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限;如果是,产生一随机概率,将所述随机概率与当前扫描到的波束的驻留概率进行比较,根据比较结果,判断当前扫描到的波束是否可驻留;否则,继续扫描其他波束,并返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤;当判断出当前扫描到的波束可驻留时,驻留在当前扫描到的波束上;当判断出当前扫描到的波束不可驻留时,返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序, 其中,该程序被处理器执行时实现如上述任一实施例中的终端驻留方法中的步骤。
这里,计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
本公开实施例还提供一种基站,包括:处理器和存储器,其中,处理器用于读取存储器中的程序,执行上述基站侧的任一实施例中的波束信息的发送方法中的步骤。
本公开实施例还提供一种终端,包括:处理器和存储器,其中,处理器用于读取存储器中的程序,执行上述终端侧的任一实施例中的波束驻留方法中的步骤。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (40)

  1. 一种终端驻留方法,应用于基站,包括:
    发送波束的驻留条件,所述驻留条件用于终端的波束驻留判断。
  2. 根据权利要求1所述的终端驻留方法,其中,所述驻留条件包括信号质量门限和/或驻留概率。
  3. 根据权利要求1或2所述的终端驻留方法,其中,所述发送波束的驻留条件的步骤包括:
    在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
    在波束上发送对应的驻留条件。
  4. 根据权利要求1所述的终端驻留方法,其中,所述驻留条件包括波束的扫描时间信息,所述驻留条件用于终端的波束驻留判断。
  5. 根据权利要求4所述的终端驻留方法,其中,所述波束的扫描时间信息包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
  6. 根据权利要求4所述的终端驻留方法,其中,所述驻留条件还包括:波束的信号质量门限和/或波束的扫描时间信息对应的门限。
  7. 根据权利要求4至6中任一项所述的终端驻留方法,其中,所述发送波束的驻留条件的步骤包括:
    在小区的系统消息中发送所述小区内全部或部分波束的驻留条件;和/或
    在波束上发送自身的驻留条件。
  8. 一种终端驻留方法,应用于终端,包括:
    接收基站发送的波束的驻留条件;
    根据所述波束的驻留条件,选择波束驻留。
  9. 根据权利要求8所述的终端驻留方法,其中,所述驻留条件包括信号质量门限和/或驻留概率。
  10. 根据权利要求8或9所述的终端驻留方法,其中,所述接收基站发送的波束的驻留条件的步骤包括:
    接收基站通过小区的系统消息发送的所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
    接收基站通过波束发送的驻留条件。
  11. 根据权利要求8至10中任一项所述的终端驻留方法,其中,所述驻留条件包括信号质量门限,所述根据所述波束的驻留条件,选择波束驻留的步骤包括:
    判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留。
  12. 根据权利要求11所述的终端驻留方法,其中,所述判断测量到的波束的信号质量是否满足对应的信号质量门限的步骤之前还包括:
    选择驻留的小区;
    所述判断测量到的波束的信号质量是否满足对应的信号质量门限的步骤包括:
    判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限。
  13. 根据权利要求12所述的终端驻留方法,其中,所述驻留条件还包括驻留概率,所述根据判断结果,选择波束驻留的步骤包括:
    当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
    当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上;
    当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从满足对应的信号质量门限的波束中选择一波束;产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留;如果是,驻留在当前选择的波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一波束,并返回所述产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留的步骤;或者
    当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从所述至少两个波束中选择一个波束驻留;产生一随机概率, 将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤。
  14. 根据权利要求8至10中任一项所述的终端驻留方法,其中,所述驻留条件还包括驻留概率,所述判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留的步骤包括:
    依次判断所有扫描到的波束的信号质量是否满足对应的信号质量门限,得到所有满足对应的信号质量门限的波束;从所述所有满足对应的信号质量门限的波束中,选择一波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止;或者
    当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限;如果是,产生一随机概率,将所述随机概率与当前扫描到的波束的驻留概率进行比较,根据比较结果,判断当前扫描到的波束是否可驻留;否则,继续扫描其他波束,并返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤;当判断出当前扫描到的波束可驻留时,驻留在当前扫描到的波束上;当判断出当前扫描到的波束不可驻留时,返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤。
  15. 根据权利要求8所述的终端驻留方法,其中,所述驻留条件包括波束的扫描时间信息。
  16. 根据权利要求15所述的终端驻留方法,其中,所述根据所述波束的驻留条件,选择波束驻留的步骤包括:
    选择驻留的小区;
    根据所述波束的驻留条件,从当前驻留小区中的波束中选择波束驻留。
  17. 根据权利要求15或16所述的终端驻留方法,其中,所述驻留条件还包括波束的信号质量门限;所述选择波束驻留的步骤包括:
    当有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
  18. 根据权利要求15或16所述的终端驻留方法,其中,所述驻留条件还包括:波束的信号质量门限和波束的扫描时间信息对应的门限;所述选择波束驻留的步骤包括:
    当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束,并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
  19. 一种基站,包括:
    发送模块,用于发送波束的驻留条件,所述驻留条件用于终端的波束驻留判断。
  20. 根据权利要求19所述的基站,其中,所述驻留条件包括信号质量门限和/或驻留概率。
  21. 根据权利要求19或20所述的基站,其中,所述发送模块包括:
    第一发送子模块,用于在小区的系统消息中发送所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
    第二发送子模块,用于在波束上发送对应的驻留条件。
  22. 根据权利要求19所述的基站,其中,所述驻留条件包括波束的扫描时间信息,所述驻留条件用于终端的波束驻留判断。
  23. 根据权利要求22所述的基站,其中,所述波束的扫描时间信息包括以下信息中的任意一个或任意多个的组合:波束的扫描时间、用于表述波束扫描时间的信息和波束的扫描周期。
  24. 根据权利要求22或23所述的基站,其中,所述驻留条件还包括:波束的信号质量门限和/或波束的扫描时间信息对应的门限。
  25. 根据权利要求22至24中任一项所述的基站,其中,所述发送模块 包括:
    第一发送子模块,用于在小区的系统消息中发送所述小区内全部或部分波束的驻留条件;和/或
    第二发送子模块,用于在波束上发送自身的驻留条件。
  26. 一种终端,包括:
    接收模块,用于接收基站发送的波束的驻留条件;
    选择模块,用于根据所述波束的驻留条件,选择波束驻留。
  27. 根据权利要求26所述的终端,其中,所述驻留条件包括信号质量门限和/或驻留概率。
  28. 根据权利要求26或27所述的终端,其中,所述接收模块包括:
    第一接收子模块,用于接收基站通过小区的系统消息中发送的所述小区内的全部或部分波束的驻留条件,所述系统消息通过广播发送或者通过专用信令发送;或者
    第二接收子模块,用于接收基站通过波束发送的驻留条件。
  29. 根据权利要求27所述的终端,其中,所述驻留条件包括信号质量门限,所述选择模块进一步用于判断测量到的波束的信号质量是否满足对应的信号质量门限,并根据判断结果,选择波束驻留。
  30. 根据权利要求29所述的终端,其中,还包括:
    小区选择模块,用于选择驻留的小区;
    其中,所述选择模块进一步用于判断驻留小区内测量到的波束的信号质量是否满足对应的信号质量门限。
  31. 根据权利要求30所述的终端,其中,所述驻留条件还包括驻留概率;其中,所述选择模块包括:
    第一选择子模块,用于当所述判断结果为测量到的驻留小区内的所有波束的信号质量均不满足对应的信号质量门限时,驻留在驻留小区内的信号质量最好的波束上;
    第二选择子模块,用于当所述判断结果为驻留小区内只有一个波束的信号质量满足对应的信号质量门限时,驻留在满足对应的信号质量门限的波束上;
    所述选择模块还包括:
    第四选择子模块,用于当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从满足对应的信号质量门限的波束中选择一波束,并产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留,如果是,驻留在当前选择的波束上,否则,从剩下的满足对应的信号质量门限的波束中再选择一波束,并返回所述产生一随机概率,将当前选择的波束的驻留概率与所述随机概率进行比较,根据比较结果,判断当前选择的波束是否可驻留的步骤,直至判断出当前选择的波束可驻留为止;
    或者
    第五选择子模块,用于当所述判断结果为驻留小区内有至少两个波束的信号质量满足对应的信号质量门限时,从所述至少两个波束中选择一个波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止。
  32. 根据权利要求30所述的终端,其中,所述驻留条件还包括驻留概率;所述选择模块包括:
    第六选择子模块,用于依次判断所有扫描到的波束的信号质量是否满足对应的信号质量门限,得到所有满足对应的信号质量门限的波束;从所述所有满足对应的信号质量门限的波束中,选择一波束驻留;产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留;如果是,继续驻留在驻留波束上;否则,从剩下的满足对应的信号质量门限的波束中再选择一个波束驻留,并返回所述产生一随机概率,将所述随机概率与驻留波束的驻留概率进行比较,根据比较结果,判断驻留波束是否可继续驻留的步骤,直至判断出驻留波束可继续驻留为止;或者
    第七选择子模块,用于当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限;如果是,产生一随机概率,将所述随机概率与当前扫描到的波束的驻留概率进行比较,根据比较结果,判断当前扫描到的波束是否可驻留;否则,继续扫描其他波束,并返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤;当判断出当前扫描到的波束可驻留时,驻留在当前扫描到的波束上;当判断出当前扫描到的波束不可驻留时,返回所述当扫描到一波束时,判断当前扫描到的波束的信号质量是否满足对应的信号质量门限的步骤。
  33. 根据权利要求26所述的终端,其中,所述驻留条件包括波束的扫描时间信息。
  34. 根据权利要求33所述的终端,其中,
    所述选择模块,用于选择驻留的小区,根据所述波束的驻留条件,从当前驻留小区中的波束中选择波束驻留。
  35. 根据权利要求33或34所述的终端,其中,所述驻留条件还包括波束的信号质量门限;所述选择模块包括:
    第九驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,根据所述波束的扫描时间信息,从所述至少两个波束中选择扫描时间最长的波束驻留。
  36. 根据权利要求33或34所述的终端,其中,所述驻留条件还包括:波束的信号质量门限和波束的扫描时间信息对应的门限;所述选择模块包括:
    第十驻留单元,用于当有至少两个波束的信号质量符合对应的信号质量门限时,从所述至少两个波束中,选择出扫描时间信息满足所述门限的波束;并从扫描时间信息满足所述门限的波束中,选择一波束驻留。
  37. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1~7中任一项所述的终端驻留方法中的步骤。
  38. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求8~18中任一项所述的终端驻留方法中的步骤。
  39. 一种基站,包括:处理器和存储器,其中,处理器用于读取存储器中的程序,执行如权利要求1~7中任一项所述的终端驻留方法中的步骤。
  40. 一种终端,包括:处理器和存储器,其中,处理器用于读取存储器中的程序,执行如权利要求8~18中任一项所述的终端驻留方法中的步骤。
PCT/CN2018/083340 2017-04-21 2018-04-17 一种终端驻留方法、基站、终端和计算机可读存储介质 WO2018192482A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710266101.7 2017-04-21
CN201710266101.7A CN108738143B (zh) 2017-04-21 2017-04-21 信息发送方法、波束驻留方法、基站、终端和存储介质
CN201710265619.9 2017-04-21
CN201710265619.9A CN108738140A (zh) 2017-04-21 2017-04-21 一种终端驻留方法、基站、终端和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2018192482A1 true WO2018192482A1 (zh) 2018-10-25

Family

ID=63855601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083340 WO2018192482A1 (zh) 2017-04-21 2018-04-17 一种终端驻留方法、基站、终端和计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2018192482A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671239A (zh) * 2004-03-19 2005-09-21 华为技术有限公司 一种建立业务连接的方法
CN101056455A (zh) * 2006-04-13 2007-10-17 中兴通讯股份有限公司 一种小区接入失败后重选小区的方法
WO2015186974A1 (ko) * 2014-06-03 2015-12-10 삼성전자 주식회사 이동 통신 시스템에서 피드백 송수신 방법 및 장치
CN105556869A (zh) * 2015-05-12 2016-05-04 瑞典爱立信有限公司 用于波束选择的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671239A (zh) * 2004-03-19 2005-09-21 华为技术有限公司 一种建立业务连接的方法
CN101056455A (zh) * 2006-04-13 2007-10-17 中兴通讯股份有限公司 一种小区接入失败后重选小区的方法
WO2015186974A1 (ko) * 2014-06-03 2015-12-10 삼성전자 주식회사 이동 통신 시스템에서 피드백 송수신 방법 및 장치
CN105556869A (zh) * 2015-05-12 2016-05-04 瑞典爱立信有限公司 用于波束选择的方法和设备

Similar Documents

Publication Publication Date Title
US20230247526A1 (en) Access control method, first network node, second network node, and storage medium
CN112153706B (zh) 一种ntn中小区选择的方法及装置
US9907003B2 (en) Method of handling cell reselection
US11304106B2 (en) Method and device for camping
US9986492B2 (en) Dynamic Wi-Fi roaming thresholds for dense access point environments
CN111372292B (zh) 通信方法和通信装置
CN101730164B (zh) 一种小区重选的方法及终端
US20180097547A1 (en) Indicating optional parameter groups
US11778668B2 (en) Communication method and device
US11937173B2 (en) Method and apparatus for selecting cell to be camped on
US10038995B2 (en) Multiple wi-fi channel maps for dense access point environments
US9949281B2 (en) Method and radio node for managing resources for D2D discovery in an ad-hoc radio communication network
US20180324656A1 (en) Cell reselection method and appratus
JP2016517231A (ja) 移動性最適化方法、ユーザ装置およびアクセスネットワーク装置
WO2019144399A1 (zh) 一种小区重选方法及装置、计算机存储介质
US11564135B2 (en) Method of sending cell information, cell camping method, network device and terminal
WO2017063125A1 (zh) 一种小区重选方法及用户终端
US20210160714A1 (en) Method for beam reference signal measurement configuration, terminal device, and computer-readable storage medium
KR20210102433A (ko) 셀 선택 또는 재선택 방법 및 장치, 단말
CN113055959B (zh) 小区驻留方法、装置、通信设备及存储介质
KR20110110259A (ko) 무선 네트워크에서 적응 스캐닝을 위한 방법 및 무선 네트워크
CN108738143B (zh) 信息发送方法、波束驻留方法、基站、终端和存储介质
WO2018192482A1 (zh) 一种终端驻留方法、基站、终端和计算机可读存储介质
CN117356142A (zh) 网络接入方法、参数配置方法、装置、设备及存储介质
WO2023092360A1 (zh) 通信系统中的终端以及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18788587

Country of ref document: EP

Kind code of ref document: A1