WO2018192444A1 - 一种信息交互的方法、装置及存储介质 - Google Patents

一种信息交互的方法、装置及存储介质 Download PDF

Info

Publication number
WO2018192444A1
WO2018192444A1 PCT/CN2018/083207 CN2018083207W WO2018192444A1 WO 2018192444 A1 WO2018192444 A1 WO 2018192444A1 CN 2018083207 W CN2018083207 W CN 2018083207W WO 2018192444 A1 WO2018192444 A1 WO 2018192444A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
coordination
resource
coordination information
channel
Prior art date
Application number
PCT/CN2018/083207
Other languages
English (en)
French (fr)
Inventor
李新彩
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018192444A1 publication Critical patent/WO2018192444A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0059Out-of-cell user aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, an apparatus, and a storage medium for information interaction.
  • Service adaptation refers to allowing semi-static configuration or dynamic configuration of uplink and downlink links to meet service load requirements or match service load changes.
  • the symmetrical spectrum and the service adaptation on the asymmetric spectrum are uniformly defined as duplex flexibility.
  • each cell dynamically adapts the frame structure or uplink and downlink configuration according to the traffic load, it will bring DL-to-UL interference between adjacent cells (also called downlink-to-uplink interference, also known as Cross-link interference (eNB-to-eNB interference, inter-base station interference) or UL-to-DL interference (uplink to downlink interference, also known as UE-to-UE interference, inter-user interference) , referred to as CLI), has an impact on data transmission performance.
  • the interactive coordination of some information between sites is a very effective means of interference cancellation and interference management.
  • LTE Long Term Evolution
  • NR new RAT
  • the X2 interface (which is an interconnection interface between e-NodeBs, which supports direct transmission of data and signaling), but when some information is exchanged
  • the delay is too large, at least 20ms, which cannot meet the needs of a flexible system such as NR, and cannot achieve dynamic coordination.
  • Embodiments of the present invention provide a method, an apparatus, and a storage medium for information interaction, so as to implement dynamic coordination of resources between sites.
  • an embodiment of the present invention provides a method for information interaction, including:
  • Determining coordination information comprising: transmitting the coordination information.
  • an embodiment of the present invention provides an apparatus for information interaction, including:
  • a transmission module configured to transmit the coordination information.
  • an embodiment of the present invention provides an apparatus for information interaction, including a memory and a processor, where
  • the memory stores the following instructions: determining coordination information; transmitting the coordination information;
  • the processor is configured to execute an instruction stored by the memory.
  • an embodiment of the present invention provides a method for information interaction, including:
  • an embodiment of the present invention provides an apparatus for information interaction, including:
  • a receiving module configured to receive coordination information
  • the processing module is configured to perform interference cancellation processing according to the coordination information.
  • an embodiment of the present invention provides an apparatus for information interaction, including a memory and a processor, where
  • the memory stores the following instructions: receiving coordination information, and performing interference cancellation processing according to the coordination information;
  • the processor is configured to execute an instruction stored by the memory.
  • an embodiment of the present invention provides a method for information interaction, including:
  • the user equipment receives coordination information of the base station; the user equipment forwards the coordination information to other base stations by using uplink control information.
  • an apparatus for information interaction including:
  • the receiving module is configured to receive coordination information of the base station, and the transmission module is configured to forward the coordination information to other base stations by using uplink control information.
  • an embodiment of the present invention provides an apparatus for information interaction, including a memory and a processor, where
  • the memory stores the following instructions: receiving coordination information of the base station, and forwarding the coordination information to other base stations by using uplink control information;
  • the processor is configured to execute an instruction stored by the memory.
  • the embodiments of the present invention provide a method, a device, and a storage medium for information interaction, which can implement dynamic resource coordination.
  • FIG. 1 is a flowchart of a method for exchanging information between stations according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a downlink channel structure according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of air interface resources for transmitting coordination information CI coordinated between different sites according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an apparatus for information interaction according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of an apparatus for information interaction according to Embodiment 3 of the present invention.
  • FIG. 6 is a flowchart of a method for exchanging information between stations according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of switching between semi-static configuration and dynamic configuration operation according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a UE performing a first listening after being performed according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of resources for dynamic uplink coordination according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a channel structure of short-term PUCCH bearer coordination information according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a channel structure of long-term PUCCH bearer coordination information according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a location of a CI transmission in a time slot according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a slot position of a dedicated uplink physical channel CICH carrying a CI according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of an apparatus for information interaction according to an embodiment of the present invention.
  • FIG. 15 is a flowchart of a method for information interaction according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of an apparatus for information interaction according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of resources of an uplink PUCCH and resources of a PRACH coordinated by NR and LTE by backhaul according to an embodiment of the present invention
  • FIG. 18 is a schematic diagram of a slot structure according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a pattern of resources for air interface interaction of a semi-static coordination of an X2 port according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of scheduling using a granularity of a small slot according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of hardware components of an information interaction apparatus according to an embodiment of the present invention.
  • the data of the data transmission is coordinated between the base stations of the same cluster through air interface signaling, and the data transmission and interference management are performed according to the coordination information.
  • the details will be described in detail below with reference to specific embodiments.
  • a method for information exchange between sites is used on the base station side, as shown in FIG. 1 , including:
  • Step 11 Determine coordination information.
  • Step 12 Transmitting the coordination information.
  • step 12 the coordination information may be transmitted through air interface signaling.
  • the resource for the coordination information transmission may also be determined by the semi-static interaction of the X2 port or by the manner of operating the management maintenance configuration.
  • the time-frequency domain resource of the air interface signaling transmission is determined by the backhaul link coordination, or is configured by OAM (Operation Administration and Maintenance), where the interference includes interference across the link and different Interference when the system shares resources.
  • OAM Operaation Administration and Maintenance
  • the coordination information includes one or more of the following information:
  • Uplink configuration information Downlink configuration information, transmission direction information, transmission direction priority information, scheduling resource allocation information, interference level information, channel status indication information, resource information to be protected, dynamically configured reference signal pattern information, timing offset And coordinate the resource allocation information when the same system shares the same resource, the location information of the blank resource, or the location information of the reserved resource.
  • a base station (or a TRP (Transmission Reception Point)) 1 determines a set of information that requires coordinated interference of interaction, and the set of information includes at least one of the following information:
  • the uplink and downlink configuration information or the transmission direction information includes: the structure of the time slot is pure uplink, pure downlink, uplink dominant, and downlink dominant.
  • the resources of the control channel in the slot structure dominated by the uplink and downlink are semi-statically configured.
  • the pre-scheduled UE and the time-frequency resources and beam direction information of each UE For example, the pre-scheduled UE and the time-frequency resources and beam direction information of each UE.
  • the number of scheduling parameter information such as a scheduled beam index for data transmission, a PRB (Physical RB) index, a slot index or a location.
  • Interference level information Interference level information or CSI (Channel State Information) information.
  • the CSI information includes: interference between the TRP-to-TRP measured by the base station itself, CSI information fed back by the UE, and interference information between the UE and the UE.
  • N types of interference levels are predefined or semi-statically coordinated, k bits to indicate the corresponding interference level.
  • the CSI information fed back by the UE has a corresponding relationship with the measured link transmission of the interfering cell.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • DRS Discovery Reference Signal
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • a pattern of some predefined reference signals is exchanged through the X2 port, and then a specific reference signal pattern is dynamically indicated.
  • timing offset timing offset
  • a semi-statically reserved dynamic unused resource for LTE transmission may be notified to a neighboring base station for transmission of NR data.
  • a fixed mode or a semi-static coordination manner between stations determines LTE-PUCCH, NR-PUCCH, LTE-SRS (Sounding Reference Signal), NR-SRS, LTE-PRACH (Physical Random Access Channel) Into the channel), and the resources of the NR-PRACH.
  • LTE-PUCCH LTE-PUCCH
  • LTE-SRS Sounding Reference Signal
  • NR-SRS NR-SRS
  • LTE-PRACH Physical Random Access Channel
  • the DCI Downlink Control Information
  • the LTE-PUCCH resource is dynamically notified to the PUSCH (Physical Uplink Shared Channel) of the NR or
  • the dynamic DCI informs the location of the aperiodic NR-SRS resource.
  • the dynamic DCI notifies the location of the LTE-MBSFN (Multicast Broadcast Multicast Network Single Frequency Network) subframe for data transmission of the NR.
  • the dynamic DCI notifies the neighboring stations of the location of the LTE and NR aperiodic CSI-RS (Channel State Information-Reference Signal).
  • the blank resource includes a reserved resource location for transmitting a measurement reference signal.
  • the coordination information transmission can be fixed or semi-statically configured in addition to dynamic physical resource transmission through air interface:
  • the time domain period is fixed or predefined, for example: 1ms, or 0.5ms, or the stations are semi-statically coordinated through the X2 port, or configured by OAM.
  • the frequency domain resources of the information are coordinated by the X2 port between the sites, or configured by OAM.
  • the time-frequency resources sent by different base stations are different.
  • the information used for interference coordination is FDM (Frequency Division Multiplex), TDM (Time Division Multiplex), or CDM (Code Division Multiplexing). , code division multiplexing) to transmit, to ensure the reliability of the coordination information transmission, to avoid the interference.
  • step 12 the coordination information is transmitted, and the transmission method includes any one of the following methods:
  • Method 1 Use two-step interaction to transmit coordination information:
  • Step a Configuring a set of candidate coordination information by means of a semi-static interaction of the X2 port, or by configuring the OAM, and determining coordination information to be transmitted in the set,
  • Step b Instructing the coordination information by sending the downlink control information dynamically to determine which one of the specific information sets.
  • Method 2 directly adopt dynamic downlink control information to transmit coordination information between the stations carrying the described.
  • Method 3 The base station first sends the coordination information to be coordinated to the UE by using the downlink control information, and then the UE forwards the coordination information to the adjacent base station by using the uplink control information.
  • the base station 1 sends the foregoing information set in the form of the following line control information through at least one of the following physical channels:
  • Manner 1 Transmission through PDCCH or s-PDCCH (low latency physical downlink control channel).
  • RNTI Radio Network Temporal Index
  • CI-RNTI Coordination Information-Radio Network Temporary Identity
  • QPSK Quadrature Phase Shift Keying
  • the mapped resource location is to send the DCI information in a common retrieval space or in an agreed resource.
  • This PDCCH channel is located at the beginning of a slot or at the beginning of a mini-slot.
  • Mode 2 Transmission through PDSCH or s-PDSCH.
  • the coordination information and downlink data shown are multiplexed on the PDSCH by means of FDM/TDM.
  • Manner 3 Define a common channel, such as the Coordinated Control Channel (CICH) to carry this type of information.
  • CICH Coordinated Control Channel
  • the coordination information is transmitted by using a transmission method similar to a PCFICH (Physical Control Format Indicator Channel) channel.
  • the channel is in the first symbol or the first two symbols of the time slot, and the downlink channel structure is as shown in FIG. 2.
  • the coordination information bits are less than 8 bits
  • the coordination information is encoded into 32 bits by polar coding, then modulated into 16 symbols by QPSK, and then mapped to corresponding pre-defined resources, or by transmit diversity. The way to map to discrete resource units.
  • Method 4 Sending through some semi-slots of semi-static coordination.
  • the periods of these mini-slots are configured through OAM or coordinated through X2 port.
  • mini-slot is located in a PDSCH area.
  • the air interface resources for transmitting coordination information coordinated between different sites are different.
  • each TRP can hear the coordination information received by other surrounding TRPs for interference management.
  • FIG. 4 is a schematic diagram of an apparatus for information interaction according to an embodiment of the present invention. As shown in FIG. 4, the apparatus of this embodiment includes:
  • a determining module 401 configured to determine coordination information
  • the transmission module 402 is configured to transmit the coordination information.
  • the coordination information includes one or more of the following information:
  • Uplink configuration information Uplink configuration information, downlink configuration information, transmission direction information, transmission direction priority information, scheduling resource allocation information, interference level information, channel status indication information, resource information to be protected, dynamically configured reference signal pattern information, timing offset , coordinating resource allocation information when different systems share the same resources, location information of blank resources, or location information of reserved resources,
  • the scheduling resource allocation information includes: a pre-scheduled user equipment, and time-frequency resources and beam direction information of each user equipment;
  • the resource allocation information when the systems of the different systems are shared includes: a transmission resource of the aperiodic signal and/or a resource that is not used in the reserved resource.
  • the determining module 401 is further configured to determine the resource for the coordinated information transmission by means of a semi-static interaction of the X2 port, or by operating a management maintenance configuration.
  • the transmission module 402 directly carries the coordination information by sending control information.
  • the device in this embodiment, as shown in FIG. 5, further includes:
  • the configuration module 403 is configured to configure a set of candidate coordination information by means of semi-static interaction of the X2 port or by operating management and maintenance configuration.
  • the determining module 401 is configured to determine the coordination information from the set
  • the transmission module 402 is configured to dynamically indicate the coordination information by sending control information.
  • the control information is sent by using any one of the following: a physical downlink control channel, a low-latency physical downlink control channel, a physical downlink shared channel, a low-latency physical downlink shared channel, and a predefined common channel. Coordinated designated minislots, proprietary downstream physical channels,
  • the period of the specified minislot is configured by operation management maintenance or coordinated by the X2 port, and the designated minislot is located in the physical downlink shared channel area.
  • the control information is scrambled by a proprietary wireless network temporary identifier, and the control information is mapped to a first symbol of a time slot or a first symbol of a small time slot.
  • An embodiment of the present invention further provides an apparatus for information interaction, including a memory and a processor, where
  • the memory stores the following instructions: determining coordination information; transmitting the coordination information;
  • the processor is configured to execute instructions stored by the memory.
  • This embodiment introduces the surrounding nodes to receive the coordination information set and perform some subsequent operations.
  • a method for information interaction in this embodiment includes the following steps:
  • Step 21 Receive coordination information.
  • Step 22 Perform interference cancellation processing according to the coordination information.
  • Case 1 When the receiving end is the base station 2, the base station 2 performs the interference management operation of at least one of the following after receiving the type of information:
  • Operation 1 Eliminate or avoid interference according to the coordination information.
  • the base station 2 allocates or re-instructs the surrounding UE of the UE to the base station 1 to indicate a new PRB, or a new beam index, or performs link direction adjustment, thereby avoiding interference generated by the base station 1 to schedule the UE. For example, resending the group-common-PDCCH or the PDCCH indicates one slot offset information, and the UE originally scheduled in the time domain position is adjusted to another location.
  • Operation 2 Perform dynamic and semi-static TDD (Time Division Duplexing) operation mode switching.
  • TDD Time Division Duplexing
  • the rules of the handover are determined by the level of interference in the coordination information.
  • the interference level in the coordination information is high, it is necessary to switch from the dynamic TDD mode to the semi-static mode, that is, the period of the uplink and downlink direction configuration becomes long. If the interference level in the coordination information is low, the mode can be switched from the semi-static mode to the dynamic mode, that is, the period of the uplink and downlink direction configuration becomes small. Or perform dynamic TDD operation switching by using uplink and downlink configuration information.
  • Operation three signaling or configuration aware time slot.
  • the base station 1 configures the time slot n to be the downlink data transmission, and the base station 2 semi-statically configures the time slot n to be the uplink data transmission, and the base station 2 sends a group common downlink control information, indicating that the UE scheduled in the time slot n is Before the data transmission, it is perceived as LBT (Listen before Talk), as shown in Figure 8, or the structure information of the dynamic update slot n is adjusted to the downlink.
  • LBT Listen before Talk
  • Operation 4 Perform coordinated scheduling of LTE/NR.
  • the base station 1 transmits LTE traffic within a certain bandwidth, and the base station 2 transmits NR data within the same bandwidth.
  • the base station 1 and the base station 2 use the backhaul link to coordinate some fixed frequency domain resource locations on both sides of the system bandwidth for the PUCCH transmission of the LTE.
  • the base station 1 can send an OTA (Over).
  • the -the-Air (air interface) signaling notifies the base station 2 of the unused resource information, so that the base station 2 can use the resource to perform NR data transmission.
  • the base station 2 notifies the base station 1 of the resource location of the NR-SRS, and the base station 1 avoids these resources when performing PUSCH scheduling.
  • the LTE-CRS Common Reference Signal
  • the corresponding RE Resource Element
  • the resource location of the NR DMRS (Demodulation Reference Signal) that is dynamically notified is required.
  • Operation 5 Resource reservation or interference coordination for resources that need to be protected.
  • the neighboring base station needs to reserve a corresponding resource at the corresponding location and pass the group common PDCCH. Or the PDCCH informs the location that the location is blank, or that the downlink data is also transmitted at a low power level at the resource location.
  • PSS/SSS/DRS Physical Broadcast Channel
  • the base station reserves the resource location when transmitting downlink data at the moment.
  • the neighboring base station configures the subordinate UEs with the same number of symbols of the control channel or the same data transmission.
  • the resource location for the notified resource location for the reference signal, such as DMRS, CSI-RS, SRS (Sounding Reference Signal), PTRS (Phase Tracking Reference Signal), when the data is transmitted,
  • the resource location is muted to transmit to avoid interference with the reference signal.
  • the UE When the receiving end is the UE, the UE needs to forward the coordinated information to the other base station in the manner of the above-mentioned control information (referred to as UCI).
  • UCI control information
  • the UE comprises a UE at the cell edge.
  • the coordination information is transmitted and transmitted in one of the following ways:
  • Manner 1 Transmitted by PUCCH, the PUCCH includes a short-duration (short format) PUCCH and a long-duration (long format) PUCCH.
  • the coordination information is independently coded or HARQ (Hybrid Automatic Repeat Request)-ACK (command correct response), beam (beam) related information or CSI (Channel State Information) in the UCI information. Indication)
  • HARQ Hybrid Automatic Repeat Request
  • ACK command correct response
  • beam beam
  • CSI Channel State Information
  • the feedback information is jointly encoded.
  • the independent coding and other uplink control information are mapped to the PUCCH channel for transmission in a frequency division or time division manner.
  • the channel structure of the short-duration PUCCH bearer coordination information (CI) is as shown in FIG. 10, and the channel structure of the long-duration PUCCH bearer CI is as shown in FIG.
  • Manner 2 Transmitted through the PUSCH or s-PUSCH, the location of the CI transmission in the time slot is as shown in FIG.
  • Mode 3 Send through a proprietary uplink physical channel.
  • the resources of the dedicated channel are semi-statically configured through high-level RRC (Radio Resource Control) signaling, or the base stations are coordinated through the X2 port.
  • RRC Radio Resource Control
  • the slot position of the CICH carrying the dedicated uplink physical channel CICH may be located at the beginning of the uplink or between the uplink control channel and the uplink data channel as shown in FIG.
  • the information is first scrambled by the received cell ID, and then encoded, the coding mode is a polar code, and then modulated by QPSK, and the modulated symbol is mapped to the resource location of the time slot in the above figure by multiplying a spreading sequence.
  • the spreading sequence includes a ZC sequence and a PN (Pseudo-noise Sequence) or Walsh (Walsh) sequence.
  • the physical resource location of the uplink control information that carries the coordination information between the sites is a TRP or a resource coordinated by the X2 port between the base stations or configured by the OAM.
  • the base station of the neighboring cell needs to reserve corresponding resources when transmitting downlink data, and the reserved time domain granularity is mini-slot or slot, and the frequency domain is sub-band level.
  • the resource needs to be reserved.
  • the surrounding TRP or the base station After receiving the information, the surrounding TRP or the base station performs interference management according to the operation in the above case 1.
  • the dynamic interaction between the sites can effectively avoid cross-link interference problems and interference problems when LTE and NR different systems coexist, especially for the transmission of important control information, and can dynamically notify the temporarily unused resources. Use other sites or systems to improve resource utilization.
  • the signaling is carried by the air interface information, and the surrounding base station and the UE can both recognize and receive.
  • the shared spectrum band can also be heard between different operators, thus also solving the interference problem of the shared spectrum.
  • FIG. 14 is a schematic diagram of an apparatus for information interaction according to an embodiment of the present invention. As shown in FIG. 14, the apparatus of this embodiment includes:
  • the receiving module 141 is configured to receive coordination information.
  • the processing module 142 is configured to perform interference cancellation processing according to the coordination information.
  • the coordination information includes one or more of the following information:
  • Uplink configuration information Downlink configuration information, transmission direction information, transmission direction priority information, scheduling resource allocation information, interference level information, channel status indication information, resource information to be protected, dynamically configured reference signal pattern information, timing offset And coordinate the resource allocation information when the same system shares the same resource, the location information of the blank resource, or the location information of the reserved resource.
  • the processing module is configured to perform scheduling user and/or scheduling resource adjustment according to scheduling resource allocation information in the interference coordination information, or instruct the scheduling user to use a smaller modulation and coding mode or lower.
  • Power transmission data or switching between dynamic and semi-static duplex operation modes according to the interference coordination information; or coordinating with the interference direction when a transmission direction or a slot structure of a semi-statically configured time slot is configured in a time slot configuration
  • the downlink control information is sent to indicate that the user equipment scheduled to be in the designated time slot performs sensing before the data transmission, or dynamically updates the structural information of the designated time slot; or according to the interference coordination information.
  • the users to be protected are notified to the subordinate users to reserve resources.
  • the structure information of the dynamic update designated time slot and the information for notifying the subordinate user to perform resource reservation are carried by the common downlink control information.
  • the resource reservation for the protected resource refers to: notifying the resource location not to transmit data, or notifying the location of the periodic and aperiodic reference signals to perform silent processing when performing data transmission. .
  • An embodiment of the present invention further provides an apparatus for information interaction, including a memory and a processor, where
  • the memory stores the following instructions: receiving coordination information, and performing interference cancellation processing according to the coordination information;
  • the processor is configured to execute instructions stored by the memory.
  • FIG. 15 is a flowchart of a method for information interaction according to an embodiment of the present invention. As shown in FIG. 15, the method in this embodiment includes:
  • Step 31 The user equipment receives coordination information of the base station.
  • Step 32 The user equipment forwards the coordination information to other base stations by using uplink control information.
  • the user equipment may further include:
  • the coordination information and the channel state indication feedback information are jointly encoded.
  • the coordination information and the uplink control information are mapped to the physical uplink control channel by frequency division or time division.
  • the user equipment forwards the coordination information by using any of the following channels:
  • the physical resource location of the uplink control information is a resource that is semi-statically coordinated by the X2 port between the base stations or configured by the OAM.
  • the user equipment includes a user equipment at a cell edge.
  • Figure 16 is a schematic diagram of an apparatus for information interaction according to an embodiment of the present invention. As shown in Figure 16, the apparatus of this embodiment includes:
  • the receiving module 161 is configured to receive coordination information of the base station
  • the transmission module 162 is configured to forward the coordination information to other base stations by using uplink control information.
  • the device may further include:
  • the encoding module 163 is configured to independently encode the coordination information, or jointly encode the information related to the correct response of the hybrid automatic repeat request command in the coordination information and the uplink control information, or indicate the coordination information and the channel status. Joint coding of feedback information,
  • the coordination information and the uplink control information are mapped to the physical uplink control channel by frequency division or time division.
  • the transmission module is configured to forward the coordination information by using any one of the following: a physical uplink control channel; a physical uplink shared channel; a low latency physical uplink shared channel; and a proprietary uplink physical channel.
  • the physical resource location of the uplink control information is semi-statically coordinated between the base stations through the X2 port, or configured by operation and maintenance management.
  • An embodiment of the present invention further provides an apparatus for information interaction, including a memory and a processor, where
  • the memory stores the following instructions: receiving coordination information of the base station, and forwarding the coordination information to other base stations by using uplink control information;
  • the processor is configured to execute instructions stored by the memory.
  • the TRP1 determines a pre-configured slot structure information according to the downlink load size and the BSR (Buffer Status Report) reported by all UEs.
  • Specific information indication methods include:
  • Each time slot defines 2 bits, indicating that the type of the time slot is pure downlink, pure uplink, downlink dominant, and uplink dominant. If the period of the OTA signaling is m time slots, the configuration information of the m time slots is indicated by m*2 bits.
  • Manner 2 Indicate only the positions of the pure uplink time slot and the uplink dominant time slot in the m time slots.
  • Mode 3 Only inform the location of the uplink time slot, given by offset + length.
  • 2 bits indicate the offset of the position of the first uplink time slot from the position of the time slot in which the current DCI is located, or the offset of the current position plus 4 time slot positions, and then 3 bits indicate continuous uplink time.
  • the number of gaps are 2 bits indicate the offset of the position of the first uplink time slot from the position of the time slot in which the current DCI is located, or the offset of the current position plus 4 time slot positions, and then 3 bits indicate continuous uplink time. The number of gaps.
  • the surrounding TRP After receiving the information, the surrounding TRP performs uplink and downlink scheduling based on this information. For example, if the OTP signaling sent by the TRP1 indicates that the time slot 1 is the uplink dominant time slot, the TRP around the TRP1 should also configure the time slot 1 as an uplink time slot or as an uplink dominant time slot, thereby avoiding cross-links. Interference ensures the performance of data transmission.
  • the above information may also be sent to the subordinate UE through the common-PDCCH or the group-common-PDCCH, and then the UE forwards the information to other base stations or TRPs through the uplink control information or the dedicated uplink channel resources, and the TRP is predefined or semi-static. After receiving this information, the coordinated resources manage and coordinate the potential cross-link interference.
  • configuration patterns of some reference signals can be dynamically exchanged, for example, the location of the front-loaded DMRS for uplink and downlink data demodulation and the location of the additional DMRS.
  • This embodiment describes a method for transmitting coordination information, and information for resource coordination for interaction between sites is transmitted by one of the following methods:
  • Method 1 Use two-step interaction to transmit coordination information.
  • Step A Semi-statically interacting with some candidate configuration information sets through the X2 port.
  • the information set of the neighboring TRPs through the backhaul interaction includes the following information:
  • the structure of some time slots is predefined as uplink U, downlink D, uplink dominates S1, and downlink dominates one of S2.
  • the structure of some candidate consecutive 10 slots determined by semi-static interaction is shown in Table 1 below.
  • Table 1 is the uplink and downlink slot structure table:
  • the structure of the time slot of the uplink dominant S1 and the downlink dominant S2 is semi-statically configured or indicated by dynamic DCI.
  • a semi-static interaction defines N interference levels, the first 15 dB, the second 10 dB, the third 5 dB, and the fourth 0 dB.
  • the two stations fix the structure of certain time slots by semi-static negotiation of the X2 port for transmitting the initial synchronization signal PSS/SSS/DRS, broadcast signal, system message, or the number of resources or symbols of the PUCCH/PDCCH control channel.
  • the reference signals include DMRS, CSI-RS, SRS, PTRS.
  • the data transmission for LTE does not affect the PUCCH, SRS, and PRACH channel transmission of the NR, and the stations should coordinate the resources of the NR uplink channel or signal transmission, and then LTE spares these resources during scheduling to avoid the impact on the NR UE.
  • two base stations or TRPs coordinate the resources of the uplink PUCCH and the resources of the PRACH coordinated by the NR and the LTE by backhauling as shown in FIG. 17.
  • Step B Dynamically indicating the information determined in the candidate information set by transmitting the downlink control information.
  • the dynamic information of the candidate information set may be indicated by the dynamic air interface signaling, which is referred to as OTA signaling.
  • 3 bits are used to indicate the determined time slot configuration information, and the specific structure of each uplink dominant and downlink dominant time slot is given by special dynamic signaling, such as S1 time slot according to (the number of symbols of the downlink control channel, uplink) The order of the number of symbols of the control channel and the number of symbols of the uplink data channel is given.
  • the definition of the 3 bits indicates the interference level information, and the manner of the bitmap indicates whether some protected resources of the semi-static or fixed reservation are occupied or whether data can be transmitted. For example, the bitmaps in the order of the reserved PRBs indicate which PRBs are actually occupied.
  • Method 2 directly adopt dynamic downlink control signaling to transmit the coordination information.
  • the TRP sends the coordination information to the surrounding TRPs directly through the air interface signaling, for example, the downlink control information.
  • the signaling overhead is slightly larger than the mode.
  • Method 3 The base station first sends the information to be coordinated to the UE by using the downlink control information, and then the UE forwards the information to the adjacent base station by means of the UE relay (relay).
  • the specific process is as described in the sixth embodiment below.
  • This embodiment describes a process after receiving the information when the receiving side is a TRP.
  • the surrounding TRP receives the interaction coordination information, according to the coordination information, the following processing is performed:
  • Eliminate interference such as advanced receivers.
  • the receiving end uses MMSE (Minimum Mean Squared Error) according to the interference information, and the E-LMMSE-IRC receiver cancels the interference.
  • MMSE Minimum Mean Squared Error
  • the neighboring UEs that the base station 1 schedules the UE are allocated different PRBs, or are scheduled at different times, or are scheduled in different beams.
  • the base station 1 schedules the uplink of the UE1 to be in the PRBs 1 to 6.
  • the base station 2 needs to schedule the downlink or uplink of the UE2 around the UE1 in the PRB 20 to the PRB 30.
  • UE2 is also scheduled in PRBs 1-6, but the direction or beam index of the beam of data transmission is different.
  • the base station 1 configures the time slot.
  • n is the downlink data transmission
  • the base station 2 semi-statically configures the time slot n to be the uplink data transmission
  • the base station 2 sends a group common downlink control information, indicating that the UE scheduled in the time slot n is aware before the data transmission, or dynamically updates.
  • the structure information of the slot n is adjusted to the downlink.
  • the base station 1 transmits LTE traffic within a certain bandwidth, and the base station 2 transmits NR data within the same bandwidth.
  • the base station 1 and the base station 2 coordinate some fixed frequency domain resource locations on both sides of the system bandwidth through the backhaul link for the PUCCH transmission of the LTE.
  • the base station 1 can send an OTA signaling.
  • the base station 2 is notified so that the base station 2 can use the resource to perform data transmission of the NR.
  • Some operations performed after receiving the information by the receiving end can reduce cross-link interference in flexible duplexing on the one hand, and can also dynamically share resources during coexistence of different systems of LTE and NR, and improve resource utilization.
  • This embodiment describes a method of relaying coordination information through a terminal relay.
  • the coordination information can be exchanged in the following manner.
  • the TRP1 (for example, the TRP) first sends the coordination information to the subordinate UE through the common downlink control channel, where the common downlink control channel includes a group-common PDCCH and a cell-specific common PDCCH.
  • the subordinate UEs at the cell edge carry the coordination information to the uplink control information and send the information to other TRPs.
  • the specific transmission modes include:
  • the PUCCH includes a short-duration PUCCH and a long-duration PUCCH.
  • the short-duration PUCCH time domain occupies one or two OFDM symbols of a slot, and the long-duration PUCCH time domain has at least 4 symbols and a maximum of 14 symbols.
  • the coordination information is independently coded or jointly encoded with HARQ-ACK, beam related information or CSI feedback information in the UCI information.
  • Manner 2 Transmitted through PUSCH or s-PUSCH.
  • Manner 3 Define a common channel and transmit the coordination information using a transmission method similar to the PCFICH channel.
  • the channel is in the first symbol of the time slot.
  • the slot structure can be as shown in Figure 18 in addition to the above:
  • the TRP1 sends downlink control information at one or two symbols at the beginning of the slot n.
  • the downlink control information carries information about interference coordination between the stations.
  • the coordination information is scrambled by a common RNTI, or each coordination information is passed. A dedicated RNTI scramble.
  • the UE After receiving the information, the UE reprocesses the information and sends the information to the neighboring base station TRP2. Then, the TRP2 sends the downlink control information at the beginning of the time slot n+1, and the time slot n+1 is also configured as the downlink, or sends the uplink power control adjustment information, and reduces the transmitted power of the uplink data transmission originally scheduled in the time slot n+1. .
  • the resource location of the downlink control information sent in the time slot n and the resource location of the uplink control information transmission are coordinated by the X2 port by TRP1 and TRP2.
  • the method can implement dynamic interaction of coordination information between adjacent base stations or TRPs, improve coordination dynamics, flexibility, and ensure reliability of data transmission.
  • This embodiment describes a method for determining the air interface resources used for coordination information transmission between stations.
  • the resources of the stations in one cluster to transmit the coordination information should be orthogonal.
  • the specific orthogonal methods include FDM, TDM, and CDM.
  • a pattern of resources for air interface interaction of four stations in a cluster through a fixed configuration or a semi-static coordination through a backhaul link X2 port is as shown in FIG.
  • each station sends its own coordination information according to the coordinated pattern at the corresponding resource location, and receives or blindly checks the information sent by other neighboring sites on the corresponding resources. That is, if a site needs to be coordinated to send information, the site sends the information that needs to be coordinated through the physical resource, and if it is not or the coordination information is not updated, it does not need to be sent.
  • This embodiment describes the interference coordination when different systems between sites, for example, NR and LTE share a spectrum.
  • the uplink data includes LTE-PRACH, LTE-SRS, LTE-PUCCH, LTE-PUSCH, NR-PRACH, NR-PUCCH, NR-SRS, and NR-PUSCH.
  • the resources of the initial access of the UE that is, the PRB resources of the PRACH channel, need to be coordinated between the sites, and then the site avoids the PRB resources when scheduling the uplink service data, thereby ensuring that the terminal can access the system.
  • both LTE-SRS and NR-SRS are located in the last symbol of the subframe, so collisions easily occur.
  • the resources of the periodic SRS need to be coordinated between the two sites, and the manner of multiplexing transmission includes FDM or TDM, and the coordination is semi-statically coordinated through the X2 port.
  • FDM includes frequency division by different comb teeth or different sub-bands
  • TDM includes coordination of different periods and offsets.
  • the OTA air interface signaling provided by the embodiment of the present invention may be used, for example, the resource location of the downlink control information exchange LTE and the NR non-periodic SRS is staggered by the FDM or TDM manner. Avoid collisions between the two resources.
  • the two sites also need to semi-statically coordinate the resource locations of the PUCCHs of different systems through the X2 port or through the OAM.
  • the resources need to be pre-provisioned for the coordinated resources. stay.
  • the surrounding stations can be notified by OTA signaling to perform scheduled transmission of PUSCH data.
  • the two stations can also coordinate the resources in the above manner, or can also coordinate the beam direction of the data transmission or the code resources of the orthogonal multiplexing.
  • Scenario 2 In the 2G frequency band, the LTE system and the NR system share a downlink system bandwidth of 20M, that is, two systems simultaneously transmit downlink data in the 20M.
  • the station may schedule the remaining subframe resources of the downlink control channel as the data transmission of the NR.
  • the downlink synchronization signal PSS/SSS, the downlink broadcast channel PBCH, the LTE-CRS, and the resource sharing multiplexing mode between the downlink control channels need to be considered.
  • the NR does not affect the transmission of the original downlink channel signal of the LTE when performing data transmission, and can be scheduled by using the granularity of the mini-slot, thereby avoiding the symbol and PRB where the LTE-PSS/SSS/PBCH is located, and avoiding synchronization with the LTE.
  • the interference of the broadcast channel as shown in FIG.
  • the NR-PDSCH should blank out the LTE-CRS and the CSI-RS corresponding RE when performing data transmission.
  • the stations notify the NR configured downlink DMRS resource location by OTA signaling in advance, and then LTE performs silence at the location to avoid NR channel estimation. And the impact of the measurement.
  • the structure of the information interaction apparatus provided by the embodiment of the present invention is as shown in FIG. 21.
  • the information interaction apparatus 700 includes at least one processor 7010, a memory 7020, and at least one network interface 7040.
  • the various components in the information interaction device 700 are coupled together by a bus system 7050.
  • the bus system 7050 is used to implement connection communication between these components.
  • the bus system 7050 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 7050 in FIG.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions, the method of implementing the information interaction when the computer executable instructions are executed.
  • the base station determines the coordination information, and transmits the determined coordination information to the user equipment, where the user equipment performs the interference cancellation processing according to the received coordination information; the user equipment may further forward the coordination information by using the uplink control information. Give other base stations. In this way, dynamic coordination of resources between sites is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开一种信息交互的方法,包括:基站确定协调信息;并传输所述协调信息至用户设备;用户设备根据接收的协调信息进行消除干扰处理。本发明还公开一种信息交互的装置及存储介质。通过本发明实施例,实现了站点之间资源的动态协调。

Description

一种信息交互的方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201710258408.2、申请日为2017年04月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种信息交互的方法、装置及存储介质。
背景技术
5G通讯中为了前向兼容支持业务自适应是一个必然趋势,业务自适应指的是允许上下行链路半静态配置或动态配置,从而满足业务负载需求或者匹配业务负载变化。目前标准中将对称频谱以及非对称频谱上的业务自适应统一定义为双工灵活性。
对于灵活双工,如果每个小区都是按照业务负载动态自适应改变帧结构或者上下行配置,则会带来相邻小区之间DL-to-UL interference(下行对上行的干扰,又称为eNB-to-eNB interference,基站间干扰)或者UL-to-DL interference(上行对下行的干扰,又称为UE-to-UE interference,用户设备间的干扰)的跨链路干扰(Cross Link Interference,简称CLI)问题,对数据传输性能产生影响。而站点之间进行一些信息的交互协调是一种非常有效的干扰消除和进行干扰管理的手段。
另外,当LTE(Long Term Evolution,长期演进系统)和NR(new RAT,新一代无线接入技术)系统共享相同的系统带宽的时候,如何实现有效异 系统共存也是一个待解决的问题。
基站之间原来虽然有交互的接口,如backhaul(回传)信令,X2接口(是e-NodeB之间的互连接口,支持数据和信令的直接传输),但交互一些信息的时候时延太大,至少为20ms,不能满足NR这种灵活系统的需求,无法实现动态协调。
发明内容
本发明实施例提供一种信息交互的方法、装置及存储介质,以实现站点之间资源的动态协调。
第一方面,本发明实施例提供一种信息交互的方法,包括:
确定协调信息;传输所述协调信息。
第二方面,本发明实施例提供一种信息交互的装置,其中,包括:
确定模块,用于确定协调信息;
传输模块,用于传输所述协调信息。
第三方面,本发明实施例提供一种信息交互的装置,包括存储器和处理器,其中,
所述存储器,存储有以下指令:确定协调信息;传输所述协调信息;
所述处理器,用于执行所述存储器存储的指令。
第四方面,本发明实施例提供一种信息交互的方法,包括:
接收协调信息;根据所述协调信息进行消除干扰处理。
第五方面,本发明实施例提供一种信息交互的装置,其中,包括:
接收模块,配置为接收协调信息;
处理模块,配置为根据所述协调信息进行消除干扰处理。
第六方面,本发明实施例提供一种信息交互的装置,包括存储器和处理器,其中,
所述存储器,存储有以下指令:接收协调信息,根据所述协调信息进 行消除干扰处理;
所述处理器,用于执行所述存储器存储的指令。
第七方面,本发明实施例提供一种信息交互的方法,包括:
用户设备接收基站的协调信息;所述用户设备通过上行控制信息将所述协调信息转发给其他基站。
第八方面,本发明实施例提供一种信息交互的装置,其中,包括:
接收模块,配置为接收基站的协调信息;传输模块,配置为通过上行控制信息将所述协调信息转发给其他基站。
第九方面,本发明实施例提供一种信息交互的装置,包括存储器和处理器,其中,
所述存储器,存储有以下指令:接收基站的协调信息,通过上行控制信息将所述协调信息转发给其他基站;
所述处理器,用于执行所述存储器存储的指令。
综上,本发明实施例提供一种信息交互的方法、装置及存储介质,可以实现动态资源协调。
附图说明
图1为本发明实施例一的一种站点之间交互信息的方法的流程图;
图2为本发明实施例的下行信道结构的示意图;
图3为本发明实施例的不同站点之间协调的用于传输协调信息CI的空口资源的示意图;
图4为本发明实施例二的一种信息交互的装置的示意图;
图5为本发明实施例三的一种信息交互的装置的示意图;
图6为本发明实施例四的一种站点之间交互信息的方法的流程图;
图7为本发明实施例的半静态配置和动态配置操作之间的切换的示意图;
图8为本发明实施例的UE进行先听后说的示意图;
图9为本发明实施例的动态上行协调的资源的示意图;
图10为本发明实施例的短期PUCCH承载协调信息的信道结构的示意图;
图11为本发明实施例的长期PUCCH承载协调信息的信道结构的示意图;
图12为本发明实施例的CI发送在时隙中的位置的示意图;
图13为本发明实施例的携带CI的专有上行物理信道CICH的时隙位置的示意图;
图14为本发明实施例的一种信息交互的装置的示意图;
图15为本发明实施例的一种信息交互的方法的流程图;
图16为本发明实施例的一种信息交互的装置的示意图;
图17为本发明实施例的通过回传协调NR和LTE共享的上行PUCCH的资源和PRACH的资源的示意图;
图18为本发明实施例的时隙结构的示意图;
图19为本发明实施例的X2口半静态协调的用于空口交互的资源的图样的示意图;
图20为本发明实施例的采用小时隙的粒度进行调度的示意图;
图21为本发明实施例信息交互装置的硬件组成结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
同一个簇的基站之间通过空口信令协调进行数据传输的资源,并根据协调信息进行数据的传输及干扰管理。以下以具体实施例进行详细的说明。
实施例一
一种站点之间信息交互的方法,用于基站侧,如图1所示,包括:
步骤11、确定协调信息;
步骤12、传输所述协调信息。
步骤12中,可以通过空口信令传输所述协调信息。
步骤12之前,还可以通过X2口半静态的交互的方式,或者通过操作管理维护配置的方式确定所述协调信息传输的资源。
其中,所述空口信令传输的时频域资源为通过backhaul链路协调确定的,或者通过OAM(Operation Administration and Maintenance,操作管理维护)配置的,所述的干扰包括跨链路的干扰以及不同系统共享资源时候的干扰。
其中,步骤11中,所述协调信息包括以下的一种或多种信息:
上行配置信息,下行配置信息,传输方向信息,传输方向优先级信息,调度资源分配信息,干扰等级信息,信道状态指示信息,待保护的资源信息,动态配置的参考信号图样信息,定时偏移量,协调不同制式的系统共享相同资源时的资源分配信息,空白资源的位置信息,或预留资源的位置信息。
例如,基站(或者TRP(Transmission Reception Point,发送接收节点))1确定一个需要交互的协调干扰的信息集合,所述信息集合包括以下信息至少之一:
信息一:上下行配置信息,传输方向信息,或者携带传输方向优先级信息。
所述上下行配置信息或传输方向信息包括:时隙的结构为纯上行,纯下行,上行主导,下行主导。
其中,上下行主导的时隙结构中控制信道的资源为半静态配置的。
或者仅通知上行时隙的位置,或者上行时隙的数目,或者通过偏移量加时隙数目的方式给出上行时隙的位置。
信息二:调度资源分配信息。
例如,预调度的UE以及每个UE的时频资源及波束方向信息。调度参数信息数,如调度的用于数据传输的波束索引,PRB(Physical RB,物理资源块)索引,时隙(slot)索引或位置。
信息三:干扰等级信息或者CSI(Channel State Information,信道状态指示)信息。
所述CSI信息包括:基站自己测量得到的TRP-to-TRP之间的干扰,UE反馈的CSI信息,以及UE-to-UE之间的干扰信息。
例如,预定义或半静态协调N种干扰等级,k比特来指示对应的干扰等级。
在一实施方式中,所述UE反馈的CSI信息跟测量到的干扰小区的链路传输有对应关系。
信息四:哪些资源需要保护不受干扰。
例如,用于发送初始同步信号PSS(Primary Synchronization Signal,主同步信号)/SSS(Secondary Synchronization Signal,次同步信号)/DRS(Discovery Reference Signal,发现参考信号),广播信号,系统消息,或者PUCCH(Physical Uplink Control Channel,物理上行控制信道)/PDCCH(Physical Downlink Control Channel,物理下行控制信道)控制信道的资源或符号数目。
或指示某些时隙索引/某些符号固定为上行时隙,某些时隙索引/某些符号固定为下行时隙。
信息五:动态配置的参考信号图样信息。
通过X2口交互一些预定义的参考信号的图样,然后动态指示具体的参 考信号的图样。
信息六:定时偏移量(timing offset)。
两个基站之间可能会不同步,所以需要传输一个定时偏移量信息。
信息七:协调LTE/NR共享时候的资源分配。
当LTE和NR共享一个系统带宽的时候,为了提高资源利用率,可以将半静态预留的用于LTE传输的动态不用的资源通知给相邻基站用于NR数据的传输。
对于LTE和NR上行频谱共享:
首先,固定方式或者站点之间半静态协调方式确定LTE-PUCCH,NR-PUCCH,LTE-SRS(Sounding Reference Signal,探测参考信号),NR-SRS,LTE-PRACH(Physical Random Access Channel,物理随机接入信道),以及NR-PRACH的资源。
然后,动态DCI(Downlink Control Information,下行控制信息)通知预留半静态协调资源中哪些资源不用,例如,动态通知LTE-PUCCH资源用于NR的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)或PUCCH的传输,动态DCI通知非周期NR-SRS资源的位置。
对于LTE和NR下行频谱共享:
动态DCI通知LTE-MBSFN(Multimedia Broadcast multicast service Single Frequency Network,多播/组播单频网络)子帧的位置用于NR的数据传输。动态DCI通知相邻的站点LTE和NR非周期CSI-RS(Channel State Information-Reference Signal,信道状态指示参考信号)的位置。
信息八:空白资源的位置。
所述空白资源包括预留的用于传输测量参考信号的资源位置。
该协调信息发送除了动态通过空口物理资源传输,还可以为固定或半静态配置的:
例如,时域周期为固定的或预定义的,例如:1ms,或者0.5ms,或者站点之间通过X2口半静态协调的,或者是通过OAM配置的。
该信息的频域资源为站点之间通过X2口协调的,或者通过OAM配置的。
且不同基站发送的时频资源是不相同的,例如该用于干扰协调的信息通过FDM(Frequency Division Multiplex,频分复用),TDM(Time Division Multiplex,时分复用)或CDM(Code Division Multiplexing,码分复用)方式进行发送,从而确保该协调信息发送的可靠性,避免产生的干扰。
其中,步骤12中,传输所述协调信息,传输方法包括以下任一方法:
方法一:采用两步交互的方式来传输协调信息:
步骤a:通过X2口半静态的交互的方式,或者通过OAM配置的方式配置一些候选的协调信息的集合,在该集合中确定待传输的协调信息,
步骤b:通过发送下行控制信息动态来指示协调信息,确定具体信息集合中的哪一个信息。
方法二:直接采用动态下行控制信息来传输携带所述的站点之间协调信息。
方法三:基站先通过下行控制信息将需要协调的协调信息发送给UE,然后UE再将该协调信息通过上行控制信息转发给相邻的基站。
在一实施例中,基站1将上述信息集合以下行控制信息的形式通过以下至少之一的物理信道发送出去:
方式一:通过PDCCH或s-PDCCH(低时延的物理下行控制信道)传输。
定义一个专门的RNTI(Radio Network Temporal Index,无线网络临时标示),例如协调信息-无线网络临时标识(简称CI-RNTI),用该RNTI对相应的协调信息对应的DCI进行加扰,然后采用QPSK(Quadrature Phase  Shift Keying,正交相移键控)调制,按照PDCCH的资源映射方式发送出去。
映射的资源位置为在公共检索空间,或者在约定资源中发送所述DCI信息。
此PDCCH信道位于slot(时隙)的开始,或者位于mini-slot(小时隙)的开始。
方式二:通过PDSCH或s-PDSCH传输。
所示协调信息和下行数据通过FDM/TDM的方式复用在PDSCH上。
方式三:定义一个公共信道,如协调控制信道(简称CICH)来承载该类信息。并且采用类似PCFICH(Physical Control Format Indicator Channel,物理控制格式指示信道)信道的发送方式对协调信息进行发送。该信道在时隙的第一个符号或前两个符号,下行信道结构如图2所示。
协调信息处理发送过程如下:
当协调信息比特小于8比特的时候,将协调信息通过polar编码方式编码成32比特,然后通过QPSK调制成16个符号,然后把这些符号分组映射到对应的预定义的资源上,或者通过发射分集的方式映射到离散的资源单元上。
方式四:通过半静态协调的某些mini-slot发送,这些mini-slot的周期为通过OAM配置的或者是通过X2口协调的。
进一步的,所述mini-slot位于PDSCH区域。
例如,如图3所示,不同站点之间协调的用于传输协调信息的空口资源是不同的。这样每个TRP都能听到接收到其他周围TRP发送的协调信息,从而进行干扰管理。
实施例二
图4为本发明实施例的一种信息交互的装置的示意图,如图4所示, 本实施例的装置包括:
确定模块401,配置为确定协调信息;
传输模块402,配置为传输所述协调信息。
其中,所述协调信息包括以下的一种或多种信息:
上行配置信息,下行配置信息,传输方向信息,传输方向优先级信息,调度资源分配信息,干扰等级信息,信道状态指示信息,待保护的资源信息,动态配置的参考信号图样信息,定时偏移量,协调不同制式的系统共享相同资源时的资源分配信息,空白资源的位置信息,或预留资源的位置信息,
所述调度资源分配信息包括:预调度的用户设备,以及每个用户设备的时频资源及波束方向信息;
所述不同制式的系统共享时的资源分配信息包括:非周期信号的传输资源和/或预留资源中没有使用的资源。
在一实施例中,所述确定模块401,还配置为通过X2口半静态的交互的方式,或者通过操作管理维护配置的方式确定所述协调信息传输的资源。
在一实施例中,所述传输模块402,是直接通过发送控制信息来携带所述协调信息的。
实施例三
本实施例中的装置,如图5所示,还包括:
配置模块403,配置为通过X2口半静态交互的方式,或者通过操作管理维护配置的方式配置候选的协调信息的集合,
所述确定模块401,配置为从所述集合中确定的所述协调信息;
所述传输模块402,配置为通过发送控制信息动态指示所述协调信息的。
其中,所述控制信息通过以下任一信道发送:物理下行控制信道、低 时延的物理下行控制信道、物理下行共享信道、低时延的物理下行共享信道、预定义的公共信道,通过半静态协调的指定的小时隙、专有的下行物理信道,
所述指定的小时隙的周期通过操作管理维护配置的或者是通过X2口协调的,所述指定的小时隙位于物理下行共享信道区域。
其中,所述控制信息通过专有的无线网络临时标识加扰,所述控制信息映射到时隙的第一个符号或者小时隙的第一个符号。
本发明实施例还提供一种信息交互的装置,包括存储器和处理器,其中,
所述存储器,存储有以下指令:确定协调信息;传输所述协调信息;
所述处理器,配置为执行所述存储器存储的指令。
实施例四
本实施例介绍周围的节点对协调信息集合进行接收,并进行后续的一些操作。
如图6所示,本实施例的一种信息交互的方法包括以下步骤:
步骤21、接收协调信息;
步骤22、根据所述协调信息进行消除干扰处理。
对于协调信息集合的接收端,包括基站下属的UE以及相邻的彼此能够听到的基站:
情形一:当接收端为基站2的时候,基站2在接收到该类信息后进行如下至少之一的干扰管理的操作:
操作一:根据所述协调信息对干扰进行消除或避免。
进行调度资源调整,避免跨链路干扰。
例如,基站2给基站1调度UE的周围UE分配或重新二次指示新的PRB,或者新的波束索引,或者,进行链路方向调整,从而避免对基站1 调度UE产生的干扰。例如,重新发送group-common-PDCCH或者PDCCH指示一个时隙偏移量信息,将原来调度在该时域位置的UE调整到其他位置。
或者指示本基站或UE以更小的MCS(Modulation and Coding Scheme,调制编码方式)或功率发送传输的数据。
操作二:进行动态和半静态TDD(Time Division Duplexing,时分双工)操作模式的切换。
在一实施方式中,切换的规则通过协调信息中的干扰等级确定。
例如,如果协调信息中干扰等级高,则需要从动态TDD模式切换为半静态模式,即上下行链路方向配置的周期变长。如果协调信息中干扰等级低,则可以从半静态模式切换为动态模式,即上下行链路方向配置的周期变小。或者通过上下行配置信息来进行动态TDD操作切换。
半静态配置和动态配置操作之间的切换如地图7所示。
操作三:信令通知或配置感知时隙。
当基站2下的小区1半静态配置时隙的传输方向或者时隙结构在某个时隙配置的传输方向,和基站1通知的与小区1相邻的小区2的传输方向不同的时候,例如,基站1配置时隙n为下行数据传输,基站2半静态配置时隙n为上行数据传输,则基站2发送一个组公共(group common)的下行控制信息,指示调度在时隙n的UE在数据传输之前进行感知做LBT(Listen before Talk,先听后说),如图8所示,或动态更新时隙n的结构信息将上行调整为下行。
操作四:进行LTE/NR的协调调度。
假设基站1在某个带宽内发送LTE业务,基站2在相同的带宽内发送NR数据。
基站1和基站2通过backhaul链路协调系统带宽两边的某些固定的频 域资源位置用于LTE的PUCCH的发送,当基站1下属的小区不用该资源的时候,基站1可以发送一个OTA(Over-the-Air,空口)信令将不用的资源信息通知基站2,这样基站2就可以用该资源进行NR的数据传输。或者基站2将NR-SRS的资源位置通知给基站1,基站1在进行PUSCH调度的时候要避开这些资源。对于LTE-CRS(Common Reference Signal,公共参考信号)的位置,NR数据发送的时候需要空白出相应的RE(Resource Element,资源元素)。
LTE进行数据发送的时候需要空白出动态通知的NR DMRS(Demodulation Reference Signal,解调参考信号)的资源位置。
或者限制NR相应的LTE子帧采用mini-slot的粒度进行调度传输。
例如动态上行协调的资源,如图9所示。
操作五:对需要保护的资源进行资源预留或干扰协调。
例如,对于用于发送初始同步信号PSS/SSS/DRS,广播信号,系统消息或PBCH(物理广播信道)的资源位置,相邻的基站需要在相应的位置预留相应的资源及通过group common PDCCH或者PDCCH通知该位置为空白,或者也在该资源位置低功率发送下行数据。
对于指示的长格式的PUCCH的资源位置,基站在该时刻发送下行数据的时候预留该资源位置。
对于短格式的PUCCH以及PDCCH,相邻的基站给下属的UE配置相同数目的控制信道的符号数目,或者同向的数据传输。
另外,对于通知的用于参考信号的资源位置,例如DMRS,CSI-RS,SRS(Sounding Reference Signal,探测参考信号),PTRS(Phase Tracking Reference Signal,相位跟踪参考信号),数据传输的时候采用该资源位置静默(muting)的方式进行发送,避免对该参考信号的干扰。
情形二:
当接收端为UE的时候,UE需要对该协调信息以上行控制信息(简称,UCI)的方式进行转发,转发给其他的基站。
在一实施方式中,该UE包括小区边缘的UE。
在一实施方式中,该协调信息通过以下方式之一进行发送传输:
方式一:通过PUCCH发送,所述PUCCH包括short-duration(短格式)的PUCCH以及long-duration(长格式)的PUCCH。
所述协调信息为独立编码或者和UCI信息中的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)-ACK(命令正确应答),beam(波束)相关的信息或者CSI(Channel State Information,信道状态指示)反馈信息联合编码。
独立编码时和其他上行控制信息通过频分或者时分的方式映射到PUCCH信道上传输。
Short-duration PUCCH承载协调信息(简称CI)的信道结构,如图10所示,long-duration PUCCH承载CI的信道结构如图11所示。
方式二:通过PUSCH或者s-PUSCH发送,CI发送在时隙中的位置如图12所示。
方式三:通过专有上行物理信道发送。
专有信道的资源为通过高层RRC(Radio Resource Control,无线资源控制协议)信令半静态配置的,或者基站之间通过X2口协调的。
携带CI的专有上行物理信道CICH的时隙位置可以如图13所示,位于上行的开始,或者上行控制信道和上行数据信道的中间。
CI通过该信道进行发送时候的数据处理过程为:
所述信息先通过接收的小区ID加扰,然后进行编码,编码方式为polar码,然后利用QPSK进行调制,调制后的符号通过乘以一个扩频序列映射到上图中的时隙的资源位置,所述扩频序列包括ZC序列以及PN (Pseudo-noise Sequence,伪噪声序列)或walsh(沃尔什)序列。
进一步的,所述携带站点之间协调信息的上行控制信息的物理资源位置为TRP或基站之间通过X2口协调的,或者通过OAM配置的资源。
相邻小区的基站在发送下行数据的时候都需要预留相应的资源,预留的时域粒度为mini-slot或者slot,频域为子带级的。同时调度UE进行上行数据传输的时候也需要预留该资源。
周围的相近的TRP或基站接收到该信息后按照上述情形一中的操作进行干扰管理。
通过站点之间空口动态交互的方式可以有效避免跨链路干扰问题以及LTE和NR不同系统共存时候的干扰问题,特别是对于重要的控制类信息的发送,同时能动态通知将临时不用的资源给其他站点或系统使用,提高资源的利用率。该信令通过空口信息承载,且周围的基站和UE都能识别和接收。共享频谱频段不同运营商之间也能听到,因此同时也解决了共享频谱的干扰问题。
实施例五
图14为本发明实施例的一种信息交互的装置的示意图,如图14所示,本实施例的装置包括:
接收模块141,配置为接收协调信息;
处理模块142,配置为根据所述协调信息进行消除干扰处理。
其中,所述协调信息包括以下的一种或多种信息:
上行配置信息,下行配置信息,传输方向信息,传输方向优先级信息,调度资源分配信息,干扰等级信息,信道状态指示信息,待保护的资源信息,动态配置的参考信号图样信息,定时偏移量,协调不同制式的系统共享相同资源时的资源分配信息,空白资源的位置信息,或预留资源的位置信息。
在一实施例中,所述处理模块,配置为根据所述干扰协调信息中的调度资源分配信息进行调度用户和/或调度资源的调整,或者指示调度用户以更小的调制编码方式或者更低的功率发送数据;或者根据所述干扰协调信息进行动态和半静态双工操作模式的切换;或者当半静态配置时隙的传输方向或者时隙结构在一时隙配置的传输方向与所述干扰协调信息中的传输方向不同时,发送下行控制信息指示调度在指定时隙的用户设备在数据传输之前进行感知做先听后说,或者动态更新指定时隙的结构信息;或者根据所述干扰协调信息进行不同制式的系统的协调调度;或者根据所述待保护的资源信息,对待保护的资源通知下属的用户进行资源预留。
在一实施例中,所述动态更新指定时隙的结构信息及通知下属的用户进行资源预留的信息通过公共下行控制信息承载,
所述对保护的资源进行资源预留是指:通知该资源位置不传输数据,或者通知周期及非周期参考信号的位置在进行数据传输的时候要进行静默处理。。
本发明实施例还提供一种信息交互的装置,包括存储器和处理器,其中,
所述存储器,存储有以下指令:接收协调信息,根据所述协调信息进行消除干扰处理;
所述处理器,配置为执行所述存储器存储的指令。
实施例六
图15为本发明实施例的一种信息交互的方法的流程图,如图15所示,本实施例的方法包括:
步骤31、用户设备接收基站的协调信息;
步骤32、所述用户设备通过上行控制信息将所述协调信息转发给其他基站。
在一实施例中,所述用户设备接收协调信息之后,还可以包括:
对所述协调信息独立编码,或者
对所述协调信息和上行控制信息中的混合自动重传请求命令正确应答相关的信息联合编码,或者
对所述协调信息和信道状态指示反馈信息联合编码。
其中,对所述协调信息独立编码时,所述协调信息和上行控制信息通过频分或者时分的方式映射到物理上行控制信道。
在一实施例中,所述用户设备是通过以下任一信道转发所述协调信息的:
物理上行控制信道;
物理上行共享信道;
低时延的物理上行共享信道;
专有上行物理信道。
在一实施例中,所述上行控制信息的物理资源位置为基站之间通过X2口半静态协调的,或者通过OAM配置的资源。
其中,所述用户设备包括小区边缘的用户设备。
实施例七
图16为本发明实施例的一种信息交互的装置的示意图,如图16所示,本实施例的装置包括:
接收模块161,配置为接收基站的协调信息;
传输模块162,配置为通过上行控制信息将所述协调信息转发给其他基站。
在一实施例中,所述装置还可以包括:
编码模块163,配置为对所述协调信息独立编码,或者对所述协调信息和上行控制信息中的混合自动重传请求命令正确应答相关的信息联合编 码,或者对所述协调信息和信道状态指示反馈信息联合编码,
对所述协调信息独立编码时,所述协调信息和上行控制信息通过频分或者时分的方式映射到物理上行控制信道。
在一实施例中,所述传输模块,配置为通过以下任一信道转发所述协调信息的:物理上行控制信道;物理上行共享信道;低时延的物理上行共享信道;专有上行物理信道。
在一实施例中,所述上行控制信息的物理资源位置为基站之间通过X2口半静态协调的,或者通过操作维护管理配置的。
本发明实施例还提供一种信息交互的装置,包括存储器和处理器,其中,
所述存储器,存储有以下指令:接收基站的协调信息,通过上行控制信息将所述协调信息转发给其他基站;
所述处理器,配置为执行所述存储器存储的指令。
下面通过具体的应用实施例对一些过程的细节进行详细的说明。
实施例八
本实施例对N个基站或TRP之间通过空口下行控制信息(DCI)动态交互上下行时隙配置或时隙结构的方式进行说明。
首先,TRP1根据自己下行负载大小及所有UE上报的BSR(Buffer Status Report,缓存状态报告)确定一个预配置的时隙结构信息。具体信息指示方式包括:
方式一:每个时隙定义2比特,指示该时隙的类型为纯下行,纯上行,下行主导,上行主导四种之一。如果OTA信令的周期为m个时隙,则通过m*2比特来指示这m个时隙的配置信息。
方式二:仅指示这m个时隙中纯上行时隙和上行主导时隙的位置。
方式三:仅通知上行时隙的位置,通过偏移量+长度的方式给出。
例如,2比特指示第一个上行时隙的位置与当前DCI所在时隙的位置的偏移量,或者是当前位置加4个时隙位置的偏移量,然后再3比特指示连续的上行时隙的数目。
周围的TRP收到该信息后根据此信息进行上下行调度。例如,TRP1发送的OTA信令中指示时隙1为上行主导的时隙,则TRP1周围的TRP也应该将时隙1配置为上行时隙,或者配置为上行主导时隙,从而避免跨链路干扰,确保了数据传输的性能。
上述信息也可以通过common-PDCCH或者group-common-PDCCH发送给下属的UE,然后UE将该信息通过上行控制信息或者专门的上行信道资源转发给其他的基站或TRP,TRP在预定义或半静态协调的资源上接收到该信息后对潜在存在的跨链路的干扰进行管理协调。
除了上下行链路方式配置,还可以动态交互一些参考信号的配置图样,例如,上下行数据解调的前置(front-loaded)DMRS的位置以及额外的DMRS的位置。非周期CSI-RS的图样,以及非周期SRS的图样。接收端基站或TRP接收到该类信息后在数据传输的时候需要对这些资源位置muting(静默)。
实施例九
本实施例对协调信息的传输方法进行说明,对于站点之间交互的用于资源协调的信息通过以下方法之一进行传输:
方法一:采用两步交互的方式来传输协调信息。
步骤A:通过X2口半静态的交互一些候选的配置信息集合,相邻TRP之间通过回传交互的信息集合包括以下信息:
信息一:预定义的上下行配置的候选的集合。
例如预定义一些时隙的结构为上行U,下行D,上行主导S1,下行主导S2之一。半静态交互确定的一些候选的连续的10个时隙结构如下表1 所示,表1为上行下行时隙结构表:
表1
Figure PCTCN2018083207-appb-000001
其中,上行主导S1和下行主导S2的时隙的结构为半静态配置的,或者通过动态DCI指示。
信息二:干扰等级或者CSI信息或者UE反馈的CSI信息。
例如,半静态交互定义N种干扰等级,第一种15dB,第二种10dB,第三种5dB,第四种0dB。
信息三:哪些资源需要保护不受干扰。
例如,两个站点通过X2口半静态的协商固定某些时隙的结构用于发送初始同步信号PSS/SSS/DRS,广播信号,系统消息,或者PUCCH/PDCCH控制信道的资源或符号数目。
或指示某些时隙索引/某些符号固定为上行时隙,某些时隙索引/某些符号固定为下行时隙。
信息四:半静态配置的参考信号图样信息。
通过X2口半静态的交互一些预定义的参考信号的图样。所述参考信号包括DMRS,CSI-RS,SRS,PTRS。
信息五:协调LTE/NR共享频谱时候的资源分配。
当LTE和NR在相同的系统带宽内进行数据传输的时候,为了LTE的 数据传输不影响NR的PUCCH,SRS,PRACH信道的发送,站点之间应该协调NR上行这些信道或信号传输的资源,然后LTE在调度时候空余出这些资源避免对NR UE的影响。
例如,两个基站或TRP通过回传协调NR和LTE共享的上行PUCCH的资源和PRACH的资源如图17所示。
信息六:空白资源的位置。
信息七:定时偏移量。
步骤B:通过发送下行控制信息动态来指示候选信息集合中确定的信息。
站点之间交互好半静态的一些候选的信息集合之后,后续可以通过动态空口信令,简称OTA信令交互指示候选信息集合中的哪一个配置信息。
例如,3比特来指示确定的时隙配置信息,并且每个上行主导及下行主导的时隙的具体结构通过专门的动态信令给出,如S1时隙按照(下行控制信道的符号数目,上行控制信道的符号数目,上行数据信道的符号数目)的顺序给出。
定义3比特指示干扰等级信息,位图(bitmap)的方式指示半静态或固定预留的一些保护的资源是否占用或者是否可以进行数据的传输。例如,按照预留的PRB的顺序来位图指示实际占用了哪些PRB。
方法二:直接采用动态下行控制信令来传输所述的协调信息。
TRP直接通过空口信令,例如下行控制信息发送给周围的TRP所述的一些协调信息,该方式信令开销较方式一略大。
方法三:基站先通过下行控制信息将需要协调的信息发送给UE,然后UE再将该信息通过UE relay(中继)的方式对协调信息转发给相邻的基站。具体过程如下面的实施例六中的描述。
通过上面几种站点之间交互一些协调信息的方法,一方面解决了同频 数据传输的交叉链路的干扰问题,确保了数据传输的性能。另一方面在LTE和NR共享频谱时候提高了资源的利用率。
实施例十
本实施例对接收侧为TRP的时候接收到该信息后的处理进行说明。
当周围的TRP接收到该交互协调信息后,根据此协调信息进行如下的一些处理:
对干扰进行消除,例如高级接收机。
在一实施方式中,接收端根据干扰信息利用MMSE(Minimum Mean Squared Error,最小均方误差估计),E-LMMSE-IRC接收机对干扰进行消除。
进行调度调整,避免干扰。
在一实施方式中,对于基站1调度UE的周围UE分配不同的PRB,或者不同的时刻进行调度,或者调度在不同的波束。
例如,在某个时隙,基站1调度UE1的上行在PRB1~6,则基站2收到该信息后需要将UE1周围的UE2的下行或上行调度在PRB20~PRB30。或者将UE2也调度在PRB1~6,但是数据传输的波束的方向或者波束索引是不相同的。
进行动态和半静态TDD模式的切换。
或者通知配置感知时隙。
在一实施方式中,当基站2下的小区半静态配置时隙的传输方向或者结构,且在某个时隙配置的传输方向和基站1通知的传输方向不同的时候,例如基站1配置时隙n为下行数据传输,基站2半静态配置时隙n为上行数据传输,则基站2发送一个group common的下行控制信息,指示调度在时隙n的UE在数据传输之前进行感知,或动态更新时隙n的结构信息将上行调整为下行。
进行LTE/NR的协调调度。
假设基站1在某个带宽内发送LTE业务,基站2在相同的带宽内发送NR数据。
基站1和基站2通过backhaul链路协调系统带宽两边的某些固定的频域资源位置用于LTE的PUCCH的发送,当基站1下属的小区不用该资源的时候,基站1可以发送一个OTA信令通知基站2,这样基站2就可以用该资源进行NR的数据传输。
通过接收端接收到这些信息后进行的一些操作可以一方面降低灵活双工中的跨链路干扰,另一方面也能解决LTE和NR不同系统共存时候的资源动态共享,提高了资源利用率。
实施例十一
本实施例对通过终端中继转发协调信息的方法进行说明。
当站点(包括基站及TRP)之间直接动态交互协调信息出现困难的时候,可以通过如下的方式实现协调信息的交互。
首先,TRP1(以TRP为例)先将协调信息通过公共下行控制信道发送给下属的UE,其中所述的公共下行控制信道包括group-common PDCCH以及cell-specific的common PDCCH。
然后处于小区边缘的下属UE将该协调信息再携带到上行控制信息里面发送给其他的TRP,具体发送方式包括:
方式一:通过PUCCH发送,所述PUCCH包括short-duration的PUCCH以及long-duration的PUCCH。其中short-duration的PUCCH时域上占一个slot的一个或两个OFDM符号,long-duration的PUCCH时域上至少4个符号,最多14个符号。
所述协调信息为独立编码或者和UCI信息中的HARQ-ACK,beam相关的信息或者CSI反馈信息联合编码。
方式二:通过PUSCH或者s-PUSCH发送。
方式三:定义一个公共信道,采用类似PCFICH信道的发送方式对协调信息进行发送。该信道在时隙的第一个符号。
时隙结构除了上面那些还可以如下图18所示:
TRP1在时隙n的起始一个或两个符号发送下行控制信息,此下行控制信息携带站点之间进行干扰协调的相关信息,这些协调信息通过一个公共的RNTI加扰,或者每个协调信息通过一个专门的RNTI加扰。UE在接收到该信息后将该信息进行重新处理后发送给相邻的基站TRP2。然后TRP2在时隙n+1的开始发送下行控制信息将时隙n+1也配置为下行,或者发送上行功控调整信息,将原来调度在时隙n+1的上行数据传输降低发送的功率。
其中,时隙n中的下行控制信息发送的资源位置以及上行控制信息发送的资源位置为TRP1和TRP2通过X2口进行协调的。
通过该方法可以实现相邻的基站或TRP之间协调信息的动态交互,提高了协调的动态性,灵活性,确保了数据传输的可靠性。
实施例十二
本实施例对站点之间确定协调信息传输所用的空口资源的方法进行说明。
为了站点之间能够彼此听到能够准确接收到协调信息,避免协调信息发送过程中空口资源发生碰撞影响协调的效果,一个簇内的站点发送协调信息的资源应该是正交的。具体正交的方式包括FDM,TDM,CDM。
例如,一个簇内的4个站点通过固定配置或者通过backhaul链路X2口半静态协调的用于空口交互的资源的图样如图19所示。
然后,各个站点根据协调的图样在相应的资源位置发送自己的协调信息,并在相应的资源上接收或盲检其他相邻站点发送的信息。即如果某个站点有需要协调的信息需要发送,该站点就通过该物理资源发送所需要协 调的信息,如果没有或者协调信息没有更新则就不需要发送。
实施例十三
本实施例对站点之间不同系统,例如,NR和LTE共享一个频谱时候的干扰协调进行说明。
场景一:在2G频段,LTE系统和NR系统共享某20M的上行系统带宽,即在该20M内两个系统同时发送上行数据。所述的上行数据包括LTE-PRACH,LTE-SRS,LTE-PUCCH,LTE-PUSCH,NR-PRACH,NR-PUCCH,NR-SRS,NR-PUSCH。
首先,站点之间需要协调UE初始接入的资源,即PRACH信道的PRB资源,然后站点在调度上行业务数据的时候要避开该PRB资源,从而确保了终端能够接入系统。
然后对于用于信道测量或跨链路干扰测量的SRS,LTE-SRS和NR-SRS都位于子帧的最后一个符号,因此很容易发生碰撞。对于周期的SRS,两个站点之间需要协调所述周期SRS的资源,复用发送的方式包括FDM或者TDM的方式,协调通过X2口半静态协调。其中,FDM包括通过不同的梳齿或者不同的子带频分,TDM包括协调不同的周期及偏移量。
对于非周期SRS,两个站点之间可以通过本发明实施例所提供的OTA空口信令,例如,下行控制信息交互LTE及NR的非周期SRS的资源位置通过上述FDM或者TDM的方式错开,从而避免两者的资源发生碰撞。
对于PUCCH资源,两个站点也需要半静态的通过X2口协调或者通过OAM配置不同系统的PUCCH的资源位置,同时站点在进行LTE和NR PUSCH数据调度的时候,需要对协调的资源进行资源的预留。同时,如果某些预留的资源某个周期内没用,则可以通过OTA信令通知周围的站点进行PUSCH数据的调度传输。
对于PUSCH的调度,两个站点也可以通过上述的方式对资源协调,或 者还可以协调数据发送的波束方向或者正交复用的码资源。
场景二:在2G频段,LTE系统和NR系统共享某20M的下行系统带宽,即在该20M内两个系统同时发送下行数据。
对于LTE的MBSFN(Multimedia Broadcast multicast service Single Frequency Network,多播/组播单频网络)子帧,站点可以将下行控制信道剩余的子帧资源调度为NR的数据传输。对于非MBSFN子帧,需要考虑下行同步信号PSS/SSS,下行广播信道PBCH,LTE-CRS,下行控制信道之间的资源共享复用方式。
首先,NR在进行数据传输的时候不影响原来LTE对应下行信道信号的发送,可以采用mini-slot的粒度进行调度,从而避开LTE-PSS/SSS/PBCH所在的符号及PRB,避免对LTE同步及广播信道的干扰,如图20所示。同时NR-PDSCH在进行数据传输的时候要空白出LTE-CRS,CSI-RS对应的RE。
同时,当下行子帧调度某些资源进行LTE-PDSCH数据传输的时候,站点之间提前通过OTA信令通知NR配置的下行DMRS的资源位置,然后LTE在该位置进行静默,避免对NR信道估计及测量的影响。
本发明实施例提供的信息交互装置的结构示意图,如图21所示,信息交互装置700包括:至少一个处理器7010、存储器7020和至少一个网络接口7040。信息交互装置700中的各个组件通过总线系统7050耦合在一起。可理解,总线系统7050用于实现这些组件之间的连接通信。总线系统7050除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图21中将各种总线都标为总线系统7050。
本发明实施例还提供了一种计算机可读存储介质,其存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述信息交互的方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程 序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
以上仅为本发明的优选实施例,当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
本发明实施例中,基站确定协调信息,并将所确定的协调信息传输至用户设备,用户设备根据接收到的协调信息进行消除干扰处理;用户设备还可以通过上行控制信息将所述协调信息转发给其他基站。如此,实现了站点之间资源的动态协调。

Claims (40)

  1. 一种信息交互的方法,包括:
    确定协调信息;
    传输所述协调信息。
  2. 如权利要求1所述的方法,其中,所述协调信息包括以下的一种或多种信息:
    上行配置信息,下行配置信息,传输方向信息,传输方向优先级信息,调度资源分配信息,干扰等级信息,信道状态指示信息,待保护的资源信息,动态配置的参考信号图样信息,定时偏移量,协调不同制式的系统共享相同资源时的资源分配信息,空白资源的位置信息,或预留资源的位置信息。
  3. 如权利要求2所述的方法,其中,所述调度资源分配信息包括:预调度的用户设备,以及每个用户设备的时频资源及波束方向信息。
  4. 如权利要求2所述的方法,其中,所述不同制式的系统共享相同资源时的资源分配信息包括:非周期信号的传输资源和/或预留资源中没有使用的资源。
  5. 如权利要求1所述的方法,其中,所述传输所述协调信息之前,还包括:
    通过X2口半静态的交互的方式,或者通过操作管理维护配置的方式确定所述协调信息传输的资源。
  6. 如权利要求1所述的方法,其中,所述传输所述协调信息包括:
    直接通过发送控制信息来携带所述协调信息。
  7. 如权利要求1所述的方法,其中,所述确定协调信息之前还包括:
    通过X2口半静态交互的方式,或者通过操作管理维护配置的方式配置候选的协调信息的集合;
    所述确定的协调信息是从所述集合中确定的;
    所述传输所述协调信息,包括:通过发送控制信息动态指示所述协调信息。
  8. 如权利要求6或7所述的方法,其中,所述控制信息通过以下任一信道发送:
    物理下行控制信道、低时延的物理下行控制信道、物理下行共享信道、低时延的物理下行共享信道、预定义的公共信道,通过半静态协调的指定的小时隙、专有的下行物理信道。
  9. 如权利要求8所述的方法,其中,所述指定的小时隙的周期通过操作管理维护配置的或者是通过X2口协调的。
  10. 如权利要求9所述的方法,其中,所述指定的小时隙位于物理下行共享信道区域。
  11. 如权利要求6或7所述的方法,其中,所述控制信息通过专有的无线网络临时标识加扰。
  12. 如权利要求6或7所述的方法,其中,所述控制信息映射到时隙的第一个符号或者小时隙的第一个符号。
  13. 一种信息交互的装置,包括:
    确定模块,配置为确定协调信息;
    传输模块,配置为传输所述协调信息。
  14. 如权利要求13所述的装置,其中,所述协调信息包括以下的一种或多种信息:
    上行配置信息,下行配置信息,传输方向信息,传输方向优先级信息,调度资源分配信息,干扰等级信息,信道状态指示信息,待保护的资源信息,动态配置的参考信号图样信息,定时偏移量,协调不同制式的系统共享相同资源时的资源分配信息,空白资源的位置信息,或预留 资源的位置信息,
    所述调度资源分配信息包括:预调度的用户设备,以及每个用户设备的时频资源及波束方向信息;
    所述不同制式的系统共享相同资源时的资源分配信息包括:非周期信号的传输资源和/或预留资源中没有使用的资源。
  15. 如权利要求13所述的装置,其中,所述确定模块,还配置为通过X2口半静态的交互的方式,或者通过操作管理维护配置的方式确定所述协调信息传输的资源。
  16. 如权利要求13所述的装置,其中,所述传输模块,配置为直接通过发送控制信息来携带所述协调信息的。
  17. 如权利要求13所述的装置,其中,所述装置还包括:
    配置模块,配置为通过X2口半静态交互的方式,或者通过操作管理维护配置的方式配置候选的协调信息的集合,
    所述确定模块,配置为从所述集合中确定的所述协调信息;
    所述传输模块,配置为通过发送控制信息动态指示所述协调信息的。
  18. 如权利要求16或17所述的装置,其中,
    所述控制信息通过以下任一信道发送:物理下行控制信道、低时延的物理下行控制信道、物理下行共享信道、低时延的物理下行共享信道、预定义的公共信道,通过半静态协调的指定的小时隙、专有的下行物理信道,
    所述指定的小时隙的周期通过操作管理维护配置的或者是通过X2口协调的,所述指定的小时隙位于物理下行共享信道区域。
  19. 如权利要求16或17所述的装置,其中,
    所述控制信息通过专有的无线网络临时标识加扰,所述控制信息映射到时隙的第一个符号或者小时隙的第一个符号。
  20. 一种信息交互的装置,包括存储器和处理器,
    所述存储器,存储有以下指令:确定协调信息;传输所述协调信息;
    所述处理器,配置为执行所述存储器存储的指令。
  21. 一种信息交互的方法,包括:
    接收协调信息;
    根据所述协调信息进行消除干扰处理。
  22. 如权利要求21所述的方法,其中,所述协调信息包括以下的一种或多种信息:
    上行配置信息,下行配置信息,传输方向信息,传输方向优先级信息,调度资源分配信息,干扰等级信息,信道状态指示信息,待保护的资源信息,动态配置的参考信号图样信息,定时偏移量,协调不同制式的系统共享相同资源时的资源分配信息,空白资源的位置信息,或预留资源的位置信息。
  23. 如权利要求22所述的方法,其中,所述根据所述协调信息进行消除干扰处理,包括:
    根据所述协调信息中的调度资源分配信息进行调度用户和/或调度资源的调整,或者指示调度用户以更小的调制编码方式或者更低的功率发送数据;或者
    根据所述协调信息进行动态和半静态双工操作模式的切换;或者
    当半静态配置时隙的传输方向或者时隙结构在一时隙配置的传输方向与所述协调信息中的传输方向不同时,发送下行控制信息指示调度在指定时隙的用户设备在数据传输之前进行感知做先听后说,或者动态更新指定时隙的结构信息;或者
    根据所述协调信息进行不同制式的系统的协调调度或数据传输;或者
    根据所述待保护的资源信息,对待保护的资源通知下属的用户进行资源预留。
  24. 如权利要求23所述的方法,其中,所述动态更新指定时隙的结构信息及通知下属用户进行资源预留的信息通过公共下行控制信息承载;
    所述对保护的资源进行资源预留包括:通知该资源位置不传输数据,或者通知周期及非周期参考信号的位置在进行数据传输的时候要进行静默处理。
  25. 一种信息交互的装置,包括:
    接收模块,配置为接收协调信息;
    处理模块,配置为根据所述协调信息进行消除干扰处理。
  26. 如权利要求25所述的装置,其中,所述协调信息包括以下的一种或多种信息:
    上行配置信息,下行配置信息,传输方向信息,传输方向优先级信息,调度资源分配信息,干扰等级信息,信道状态指示信息,待保护的资源信息,动态配置的参考信号图样信息,定时偏移量,协调不同制式的系统共享相同资源时的资源分配信息,空白资源的位置信息,或预留资源的位置信息。
  27. 如权利要求26所述的装置,其中,
    所述处理模块,还配置为根据所述协调信息中的调度资源分配信息进行调度用户和/或调度资源的调整,或者指示调度用户以更小的调制编码方式或者更低的功率发送数据;或者根据所述协调信息进行动态和半静态双工操作模式的切换;或者当半静态配置时隙的传输方向或者时隙结构在一时隙配置的传输方向与所述协调信息中的传输方向不同时,发送下行控制信息指示调度在指定时隙的用户设备在数据传输之前进行感 知做先听后说,或者动态更新指定时隙的结构信息;或者根据所述协调信息进行不同制式的系统的协调调度或数据传输;或者根据所述待保护的资源信息,对待保护的资源通知下属的用户进行资源预留。
  28. 如权利要求27所述的装置,其中,
    所述动态更新指定时隙的结构信息及通知下属用户进行资源预留的信息通过公共下行控制信息承载,
    所述处理模块,还配置为通知该资源位置不传输数据,或者通知周期及非周期参考信号的位置在进行数据传输的时候要进行静默处理。
  29. 一种信息交互的装置,包括存储器和处理器,
    所述存储器,存储有以下指令:接收协调信息,根据所述协调信息进行消除干扰处理;
    所述处理器,配置为执行所述存储器存储的指令。
  30. 一种信息交互的方法,包括:
    用户设备接收基站的协调信息;
    所述用户设备通过上行控制信息将所述协调信息转发给其他基站。
  31. 如权利要求30所述的方法,其中,所述用户设备接收协调信息之后,还包括:
    对所述协调信息独立编码,或者
    对所述协调信息和上行控制信息中的混合自动重传请求命令正确应答相关的信息联合编码,或者
    对所述协调信息和信道状态指示反馈信息联合编码。
  32. 如权利要求31所述的方法,其中,
    对所述协调信息独立编码时,所述协调信息和上行控制信息通过频分或者时分的方式映射到物理上行控制信道。
  33. 如权利要求31所述的方法,其中,所述用户设备是通过以下任 一信道转发所述协调信息的:
    物理上行控制信道;
    物理上行共享信道;
    低时延的物理上行共享信道;
    低时延的物理上行控制信道;
    专有上行物理信道。
  34. 如权利要求30所述的方法,其中,所述上行控制信息的物理资源为基站之间通过X2口半静态协调的,或者通过操作维护管理OAM配置的资源。
  35. 如权利要求30-34任一项所述的方法,其中,
    所述用户设备包括小区边缘的用户设备。
  36. 一种信息交互的装置,包括:
    接收模块,配置为接收基站的协调信息;
    传输模块,配置为通过上行控制信息将所述协调信息转发给其他基站。
  37. 如权利要求36所述的装置,其中,所述装置还包括:
    编码模块,配置为对所述协调信息独立编码,或者对所述协调信息和上行控制信息中的混合自动重传请求命令正确应答相关的信息联合编码,或者对所述协调信息和信道状态指示反馈信息联合编码,
    对所述协调信息独立编码时,所述协调信息和上行控制信息通过频分或者时分的方式映射到物理上行控制信道。
  38. 如权利要求37所述的装置,其中,
    所述传输模块,配置为通过以下任一信道转发所述协调信息的:物理上行控制信道;物理上行共享信道;低时延的物理上行共享信道;低时延的物理上行控制信道;专有上行物理信道。
  39. 如权利要求36所述的装置,其中,
    所述上行控制信息的物理资源为基站之间通过X2口半静态协调的,或者通过操作维护管理配置的。
  40. 一种信息交互的装置,包括存储器和处理器,
    所述存储器,存储有以下指令:接收基站的协调信息,通过上行控制信息将所述协调信息转发给其他基站;
    所述处理器,配置为执行所述存储器存储的指令。
PCT/CN2018/083207 2017-04-19 2018-04-16 一种信息交互的方法、装置及存储介质 WO2018192444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710258408.2 2017-04-19
CN201710258408.2A CN108737010B (zh) 2017-04-19 2017-04-19 一种信息交互的方法及装置

Publications (1)

Publication Number Publication Date
WO2018192444A1 true WO2018192444A1 (zh) 2018-10-25

Family

ID=63857102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083207 WO2018192444A1 (zh) 2017-04-19 2018-04-16 一种信息交互的方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN108737010B (zh)
WO (1) WO2018192444A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200489A (zh) * 2018-11-16 2020-05-26 北京三星通信技术研究有限公司 用于确定定时关系的方法、设备和存储介质
WO2021151116A1 (en) * 2020-01-24 2021-07-29 Cisco Technology, Inc. Resource unit sharing
CN114270757A (zh) * 2019-08-16 2022-04-01 华为技术有限公司 指示控制信息的方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130708B (zh) * 2018-11-07 2021-03-23 维沃移动通信有限公司 一种反馈信息传输方法和终端设备
CN113170476B (zh) * 2018-12-26 2022-12-02 华为技术有限公司 一种通信方法及装置
CN111278125B (zh) * 2019-03-29 2023-04-18 维沃移动通信有限公司 传输方法、终端设备及网络侧设备
CN112584429B (zh) * 2019-09-29 2022-05-27 大唐移动通信设备有限公司 基站、基站之间的通信方法、装置及存储介质
CN112788606A (zh) * 2019-11-06 2021-05-11 上海华为技术有限公司 信息处理方法及相关设备
CN113518321B (zh) * 2020-04-09 2022-10-25 北京紫光展锐通信技术有限公司 用于辅链路的资源选择方法及装置、存储介质、终端
CN117768963A (zh) * 2022-09-26 2024-03-26 华为技术有限公司 一种通信方法及通信装置
WO2024065393A1 (en) * 2022-09-29 2024-04-04 Shenzhen Tcl New Technology Co., Ltd. Wireless communication devices and wireless communication methods for coordinated scheduling of dynamic/flexible tdd and/or sbfd operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237928A (zh) * 2010-05-07 2011-11-09 华为技术有限公司 一种信号的传输方法、装置和系统
CN103209492A (zh) * 2011-09-15 2013-07-17 华为技术有限公司 一种无线资源管理方法和通信设备
CN103297981A (zh) * 2012-03-05 2013-09-11 华为技术有限公司 基站间干扰协调的方法和装置
US20150078191A1 (en) * 2013-09-19 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) System And Method For Providing Interference Characteristics For Interference Mitigation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232462B2 (en) * 2009-10-15 2016-01-05 Qualcomm Incorporated Methods and apparatus for cross-cell coordination and signaling
WO2012019366A1 (zh) * 2010-08-13 2012-02-16 富士通株式会社 基于正交频分复用方案的基站及其中的干扰协调方法
CN102223726A (zh) * 2011-06-10 2011-10-19 中兴通讯股份有限公司 一种srs的发送方法和系统
CN102833793B (zh) * 2011-06-17 2016-06-08 华为技术有限公司 干扰协调方法和基站
CN102932932B (zh) * 2011-08-12 2017-10-27 中兴通讯股份有限公司 Srs与pusch的协调传输方法及系统
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
CN105874836B (zh) * 2014-11-17 2019-12-06 华为技术有限公司 一种控制信息处理的方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237928A (zh) * 2010-05-07 2011-11-09 华为技术有限公司 一种信号的传输方法、装置和系统
CN103209492A (zh) * 2011-09-15 2013-07-17 华为技术有限公司 一种无线资源管理方法和通信设备
CN103297981A (zh) * 2012-03-05 2013-09-11 华为技术有限公司 基站间干扰协调的方法和装置
US20150078191A1 (en) * 2013-09-19 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) System And Method For Providing Interference Characteristics For Interference Mitigation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Discussion on eNB-to-eNB interference signalling for TDD elMTA", 3GPP TSG RAN WG1 MEETING #73, RL-132404, 24 May 2013 (2013-05-24), XP050698168 *
NOKIA: "Dynamic TDD Interference Mitigation Concepts in NR", 3GPP TSG-RAN WG1#NR, R1-1701146, 20 January 2017 (2017-01-20), XP051208660 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200489A (zh) * 2018-11-16 2020-05-26 北京三星通信技术研究有限公司 用于确定定时关系的方法、设备和存储介质
CN111200489B (zh) * 2018-11-16 2024-05-10 北京三星通信技术研究有限公司 用于确定定时关系的方法、设备和存储介质
CN114270757A (zh) * 2019-08-16 2022-04-01 华为技术有限公司 指示控制信息的方法和装置
CN114270757B (zh) * 2019-08-16 2024-03-01 华为技术有限公司 指示控制信息的方法和装置
WO2021151116A1 (en) * 2020-01-24 2021-07-29 Cisco Technology, Inc. Resource unit sharing
US11375411B2 (en) 2020-01-24 2022-06-28 Cisco Technology, Inc. Resource unit sharing

Also Published As

Publication number Publication date
CN108737010B (zh) 2024-04-30
CN108737010A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2018192444A1 (zh) 一种信息交互的方法、装置及存储介质
KR102258539B1 (ko) 물리 다운링크 공유 채널에서의 다운링크 제어 정보 피기백
US11764938B2 (en) User equipment, base stations and wireless communications system for ultra-reliable communications
US10701714B2 (en) Method for performing device-to-device communication in wireless communication system, and apparatus for same
US20180376496A1 (en) Method and apparatus for transmitting downlink control information
US9794803B2 (en) System and methods of dynamic TDD configurations
CN115023961A (zh) 在4g无线网络和5g无线网络之间的动态频谱共享
EP3952553A1 (en) Communication method and apparatus
US20210258100A1 (en) Punctured information for flexible/full duplex communication
KR20180108038A (ko) 무선 통신 시스템에서 타이밍 조정 방법 및 장치
US20190014576A1 (en) Flexible Frame Structure for OFDM Systems
EP3444987A1 (en) Punctured/on-demand control information for flexible/full duplex communication
WO2012165067A1 (ja) 無線リソース割当方法及び無線リソース割当装置、並びに通信システム
JP2021532694A (ja) 通信システム
JP7023867B2 (ja) 仮想クラスタグループベースのアップリンク制御チャネル
CN107079428A (zh) 无线通信的方法、网络设备、用户设备和系统
US20180206251A1 (en) Base station and wireless device used in wireless communication system
JP2019527512A (ja) 通信を実行するための方法および装置
KR20210046869A (ko) 데이터 전송 방법 및 장치
US11190627B2 (en) Telegram splitting for slotted ALOHA
KR20160010848A (ko) 데이터 재전송 처리 방법 및 그 장치
WO2023148773A1 (en) Implementation of sub-band full duplexing in a cellular network
KR20180134733A (ko) 5세대 통신 시스템과 4세대 통신 시스템의 공존을 위한 방법 및 장치
KR20200018011A (ko) 비면허 대역의 차세대 무선망을 위한 단말의 상향 링크 전송 자원 할당 방법 및 장치
KR20180073536A (ko) 데이터 채널 스케줄링 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788034

Country of ref document: EP

Kind code of ref document: A1