WO2018192270A1 - 一种激光扫描装置、雷达装置及其扫描方法 - Google Patents

一种激光扫描装置、雷达装置及其扫描方法 Download PDF

Info

Publication number
WO2018192270A1
WO2018192270A1 PCT/CN2018/000144 CN2018000144W WO2018192270A1 WO 2018192270 A1 WO2018192270 A1 WO 2018192270A1 CN 2018000144 W CN2018000144 W CN 2018000144W WO 2018192270 A1 WO2018192270 A1 WO 2018192270A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
angle
laser
prism
transceiver
Prior art date
Application number
PCT/CN2018/000144
Other languages
English (en)
French (fr)
Inventor
张智武
Original Assignee
北科天绘(苏州)激光技术有限公司
北京北科天绘科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711043161.9A external-priority patent/CN109725299B/zh
Application filed by 北科天绘(苏州)激光技术有限公司, 北京北科天绘科技有限公司 filed Critical 北科天绘(苏州)激光技术有限公司
Priority to US16/606,580 priority Critical patent/US11555893B2/en
Priority to DE112018002081.9T priority patent/DE112018002081T5/de
Publication of WO2018192270A1 publication Critical patent/WO2018192270A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors

Definitions

  • the present invention relates to the field of three-dimensional laser scanning, and in particular to a laser scanning device, a radar device and a scanning method thereof.
  • FIG. 1 A schematic diagram of a scanning device in a laser radar of U.S. Patent Application No. 8767190 B2 is shown in FIG.
  • the mother board 20 is disposed on the frame 22.
  • the plurality of emission panels 30 are sequentially inserted into the motherboard 20, and the plurality of detection panels 32 are sequentially inserted into the motherboard 20.
  • a plurality of emission panels 30 are disposed in a vertical direction, and a plurality of detection panels 32 are disposed in a vertical direction.
  • Each of the emission panels 30 is provided with a transmitter, and each of the detection panels 32 is provided with a detector.
  • the frame 22 is rotated to acquire a 360 degree scanning field of view.
  • the number of internal components of the apparatus can be reduced, the parts can be arranged, the volume can be compressed, and the cost can be reduced.
  • FIG. 2 is a schematic structural view of a laser scanning device in the prior art.
  • the laser scanning device generates an outgoing light through a laser emitting unit to generate a scanning line.
  • the laser scanning device includes a scanning tower mirror 40 and a transmission mirror assembly 50.
  • the scanning tower mirror 40 rotates about the rotation axis X.
  • the transmission mirror group 50 is disposed in parallel with the top surface of the scanning tower mirror 40.
  • the scanning tower mirror 40 is a standard quadrangular pyramid mirror.
  • the emitted light L emitted from the laser emitting unit 60 passes through the transmission mirror 50, is reflected by the inclined surface of the scanning tower mirror 40, and is emitted from the laser scanning device.
  • the incident light L' generated by the diffuse reflection of the obstacle is a light column which is concentrated by the transmission mirror group 50 and then received by the laser receiving unit 70.
  • the position of the laser emitting unit 60 relative to the scanning tower mirror 40 is unchanged. As the scanning tower mirror 40 rotates, the outgoing light L reciprocally scans within a certain angle of view.
  • the scanning field of view is rather limited. Taking FIG. 2 as an example, the effective scanning field of view is less than 90 degrees. How to further expand the scanning field of view to adapt to a more diverse and practical demand scenario is a problem that needs to be solved now.
  • the technical problem solved by the present invention is to expand the number of scanning lines of the laser scanning device based on a limited laser emitting unit. Further, the horizontal scanning field of view of the laser scanning device is expanded. Further, the number of scan lines of the center scan field of view of the laser scanning device is increased.
  • the invention discloses a laser scanning device, comprising: a scanning prism, the scanning prism comprises a plurality of scanning mirrors, the plurality of scanning mirrors rotate around a scanning axis, and a normal of each of the scanning mirrors forms a space with the scanning axis Angle, all the angles of the space angle are not exactly the same;
  • the transceiver assembly includes a laser emitting unit and a laser receiving unit, and the laser emitting unit generates a scanning line by rotating the scanning mirror, and the same laser emitting unit passes the scanning prism The rotation produces multiple scan lines.
  • the apparatus includes at least two sets of transceiving components, the scanning fields of view of the transceiving components partially overlapping.
  • the device includes at least three sets of transceiver components disposed around the scanning prism, and the fields of view of all of the transceiver components are sequentially docked to form a continuous field of view.
  • At least a portion of the transceiver assembly is symmetrically disposed relative to the scan axis.
  • the angles of the spatial attitudes of the respective transceiver assemblies relative to the scan axis are different or the same.
  • the transceiving components are different in height or the same in the axial direction of the scanning axis.
  • the scanning prism includes three, four, five or six scanning mirrors.
  • the spatial angles are decremented by the same angular difference.
  • Each set of the transceiver assembly includes a plurality of laser emitting units and a plurality of laser receiving units, each of which emits a laser beam, and each of the laser beams has an angle between them.
  • the laser beams are arranged in a diverging state or in a converging state.
  • the same scanning mirror not only reflects the laser beam, but also receives the signal light returned by the laser beam after the target object is reflected, and reflects the signal light to a laser receiving unit corresponding to the laser emitting unit that emits the laser beam.
  • the invention discloses a laser radar device, comprising: the laser scanning device.
  • the invention also discloses a scanning method of a laser radar device, further comprising: providing a transceiver assembly, the transceiver assembly comprising a laser emitting unit and a laser receiving unit; rotating a scanning prism having a plurality of scanning mirrors around the scanning axis; The emitting unit projects a laser beam to the scanning mirror, and generates scanning lines by rotating the scanning mirror.
  • the normal lines of the scanning mirrors respectively form a spatial angle with the scanning axis, and all the angles of the spatial angles are not completely the same.
  • the same laser emitting unit generates a plurality of scanning lines.
  • the method includes the scanning mirror reflecting a signal light returned from the target corresponding to the scanning line to a laser receiving unit corresponding to the laser emitting unit that generates the scanning line.
  • the method includes the reflected light emitted by the laser beam projected by the laser emitting unit to the scanning prism conforming to the following formula:
  • V_Angle Lidar_Angle(Lidar_NUM)+Mirror_Angle
  • the center point of the section of the scanning axis in the scanning prism is taken as a coordinate origin, and a coordinate system is established.
  • the scanning axis is a z-axis, and an x-axis and a y-axis are established in a horizontal plane, and H_Angle is the outgoing light in a horizontal plane.
  • V_Angle is the angle between the outgoing light and the horizontal plane
  • N is the number of scanning mirrors that the scanning prism has
  • Lidar_NUM is the number of the laser emitting unit
  • Lidar_Angle (Lidar_NUM) is numbered Lidar_NUM
  • Mirror_Angle is the angle between the normal and the horizontal plane of the scanning mirror that produces the outgoing light
  • alpha is the scanning prism when the rotation angle is 0, and the x is clockwise
  • Range is the distance measurement value of the emitted light measured by the laser radar device
  • D2Rad is a constant
  • X, Y, and Z are respectively encountered by the emitted light.
  • the three-dimensional coordinates of the target, wherein when the scanning prism rotates clockwise, theta is the rotation angle of the scanning prism, and when the scanning prism
  • the method includes the scanning prism sequentially passing through a first angle, a second angle, a third angle, and a fourth angle during a rotation of 360/N degrees;
  • the method includes the step of acquiring the signal light of the first group of the transceiver component for the first scanning mirror, further comprising: driving the laser emitting unit of the first group of the transceiver components to project the laser beam; and stopping acquiring the first group of the transceiver
  • the step of the component for the signal light of the first scanning mirror further comprises: stopping the laser emitting unit that drives the first group of the transceiver components to project the laser beam.
  • Figure 1 is a schematic illustration of a scanning device in a laser radar of U.S. Patent Application Serial No. 8767190 B2.
  • FIG. 2 is a schematic view showing the structure of a laser scanning device in the prior art.
  • 3A and 3B are views showing the structure of the main body of the laser scanning device of the present invention.
  • FIG. 4 is a schematic view showing the structure of the main body of the scanning prism of the present invention.
  • 5A-5D are schematic cross-sectional views of a scanning mirror having respective spatial angles.
  • Figure 5E is a schematic view of the scan lines produced by the respective scanning mirrors of Figures 5A-5D.
  • Figure 5F is a schematic illustration of the optical path of the transceiver assembly relative to a scanning mirror.
  • Fig. 6A is a schematic view showing the arrangement of the laser beam in a divergent state.
  • Fig. 6B is a schematic view showing the arrangement of the laser beam in a converging state.
  • Figure 7A shows a general schematic of the rotating field of view of the scanning prism.
  • Figures 7B-7E show a step-by-step diagram of the rotating field of view of Figure 7A.
  • 8A and 8B are schematic views of scanning lines.
  • Figure 9 is a block diagram showing the structure of a laser scanning device having two transceiver assemblies.
  • Figure 10 is a block diagram showing the structure of a laser scanning device having three transceiver assemblies.
  • Figure 11 is a block diagram showing the structure of a laser scanning device having four transceiver assemblies.
  • Fig. 12A is a schematic view showing the structure of a laser scanning device having a triangular prism.
  • FIG. 12B and 12C are schematic views showing the scanning range based on Fig. 12A.
  • 3A and 3B are schematic diagrams showing the main structure of the laser scanning device of the present invention.
  • 4 is a schematic view showing the structure of the main body of the scanning prism of the present invention.
  • components of a known part, such as a scanning drive, are not shown in the drawings.
  • the laser scanning device is the main optical structure of the laser radar device and is the optical basis for laser scanning.
  • the laser radar device includes other processing modules, battery modules, and the like which are common knowledge.
  • the laser scanning device of the present invention includes a scanning prism 1 and a transceiver assembly 2.
  • the scanning prism 1 may include a plurality of scanning mirrors, all of which are rotated about a scanning axis O.
  • the scanning prism 1 may include three, four, five or six scanning mirrors, and the following description will be made by taking four scanning mirrors as an example.
  • Each set of the transceiver assembly includes a laser emitting unit and a laser receiving unit.
  • the laser beam generated by the laser emitting unit is irradiated on a scanning mirror surface, and is reflected by the scanning mirror surface and then emitted to the laser radar device.
  • the normal line of the scanning mirror surface remains unchanged from the horizontal plane.
  • the reflection direction of the laser beam is also constantly changed, and a scanning line should be generated.
  • the normal to each of the scanning mirrors forms a spatial angle with the scanning axis, respectively. If all the spatial angles are completely identical, the scan lines generated by the same laser emitting unit through different scanning specular reflections coincide with each other, that is, only one scan line is actually generated. However, in the present invention, all of the spatial angles are not completely the same, and for the same laser emitting unit, the angles between the normals of the different scanning mirrors and the horizontal plane are not completely the same, so that during the rotation of the scanning prism 1, the same The scanning lines generated by the laser emitting unit through different scanning specular reflections do not completely coincide with each other, and a plurality of scanning lines can be generated.
  • the scanning prism 1 has four scanning mirrors, each of which has a normal line P.
  • the scanning axis O and the normal P of each scanning mirror form a spatial angle, respectively, for a total of four spatial angles.
  • the four spatial angles ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 are not identical.
  • the four spatial angles may be different, that is, the same two values do not exist in ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4.
  • the mutual relationship of the four spatial angles is preferably sequentially decreased by the same angular difference, for example, the angular difference is 1°, and the four spatial angles may be 91°, 90°, 89°, and 88°, respectively.
  • the scan lines generated by the same laser emitting unit through different scanning specular reflections are evenly distributed.
  • Figure 5A is a schematic cross-sectional view of a scanning mirror having a spatial angle of 91, the end of the scanning mirror being inclined away from the scanning axis.
  • Figure 5B is a schematic cross-sectional view of a scanning mirror having a 90° spatial angle, the scanning mirror being parallel to the scanning axis.
  • Fig. 5C is a schematic cross-sectional view showing a scanning mirror having a spatial angle of 89, and the end face of the scanning mirror is inclined slightly closer to the scanning axis direction.
  • Fig. 5D is a schematic cross-sectional view showing a scanning mirror having a spatial angle of 88, and the scanning mirror surface is further inclined toward the scanning axis direction on the basis of Fig. 5C.
  • 5A-5D are schematic views showing the scanning mirrors having respective spatial angles rotated to face the transceiver assembly 2, respectively.
  • the position of the transceiver unit 2 relative to the scanning axis is fixed, and the laser beam is emitted at a fixed position and angle, and since the normal directions of the four scanning mirrors are different, the direction of light reflection is also different.
  • scan lines S1, S2, S3, and S4 having different spatial distributions may be generated correspondingly.
  • S1, S2, S3, and S4 are substantially extended in the horizontal direction.
  • the four scanning lines are arranged in the vertical direction.
  • S1 is a schematic scan line generated by the scanning mirror surface of the 88° spatial angle in FIG. 5D
  • S2 is a schematic scan line generated by the scanning mirror surface of the 89° spatial angle in FIG. 5C
  • S3 is a scanning mirror surface of the 90° spatial angle in FIG. 5B.
  • the resulting schematic scan line, S4 is the schematic scan line produced by the scanning mirror of the 91° spatial angle in Figure 5A.
  • the transceiver unit 2 has only one laser emitting unit, the emitted light of one beam can generate four scanning lines in accordance with the rotation of the multi-faceted mirror, expanding the number of lines of the scanning line of the laser radar device.
  • the scanning mirrors corresponding to ⁇ 1, ⁇ 2, and ⁇ 3 have the same scanning line points, that is, this The three scanning mirrors can only produce the same scanning line, and the scanning mirror corresponding to the ⁇ 4 produces another scanning line, and a total of two scanning lines are generated.
  • a scanning mirror with the same spatial angle produces the same scanning line.
  • ⁇ 1 ⁇ 2, ⁇ 1 ⁇ 3, ⁇ 1 ⁇ 4, ⁇ 3 ⁇ 4, three scanning lines are generated.
  • the same scanning mirror not only reflects the laser beam, but also receives the signal light returned by the laser beam after the target object in the environment, and reflects the signal light to the laser corresponding to the laser emitting unit that emits the laser beam.
  • the scanning mirror 101 of the scanning prism reflects the laser beam emitted from the laser emitting unit 201 in the transceiver unit 2 to the object A, and the signal light (dotted line in FIG. 5F) generated by the diffuse reflection of the object A remains. After being reflected by the scanning mirror 101, it is received by the laser receiving unit 202 used in conjunction with the laser emitting unit 2 to realize laser scanning.
  • the present invention adopts a parallel optical path design in which the outgoing light and the incident signal light share the same scanning surface, so that the optical path has fewer bending times, less error, more accurate light collection, high system efficiency, and, in addition, for the laser radar device.
  • the exit of the laser and the reception of the signal light can be regarded as simultaneous, and synchronous scanning is realized.
  • the transceiving unit 2 a plurality of laser emitting units and the same number of laser receiving units as the laser emitting unit may be provided.
  • the laser beams of each of the laser emitting units have different emission elevation angles from each other, and the emission elevation angle is an angle between the laser beam and the horizontal plane.
  • the transceiver assembly 2 further includes a lens group (not shown) for collimating the laser beam and the signal light.
  • the four laser emitting units are vertically arranged, and all of the laser beams of the four laser emitting units are located in the same exit plane M, and the emission angles of the respective laser beams in the same transceiver assembly are different. In the case where the four spatial angles are different, four laser emitting units can generate 16 scanning lines.
  • the four laser beams of Fig. 6A are arranged in a diverging state, and the four laser beams of Fig. 6B are arranged in a converging state.
  • the laser scanning device can also include two sets of transceiver assemblies 2, 3.
  • the laser beams generated by the respective laser emitting units of the two sets of transceiver assemblies are reflected by different scanning mirrors and then emitted to the laser scanning device.
  • the laser beam generated by the transceiver unit 2 and the laser beam generated by the transceiver unit 3 are respectively irradiated on the two scanning mirrors of the scanning prism 1, and then reflected, and emitted to the laser scanning device, and then emitted to the laser. Radar device.
  • FIG. 7A A schematic view of the rotating field of view of the scanning prism 1 is shown in Fig. 7A, which is a top view of Fig. 3B.
  • Figures 7B-7E show a step-by-step diagram of the rotating field of view of Figure 7A.
  • a coordinate system is established with the scan axis O at the center point of the segment inside the scanning prism 1 as the origin, wherein the scan axis O is the z-axis, and the x and y axes are established in the horizontal plane.
  • the same vertex of the scanning prism 1 is sequentially rotated through four positions A, B, C, and D during the clockwise rotation, that is, sequentially subjected to the situation shown in FIGS. 7B-7E.
  • A is an initial position where the vertical position is placed
  • B is a position rotated by less than 45 degrees with respect to A
  • C is a position rotated by more than 45 degrees with respect to A
  • D is a position rotated by 90 degrees with respect to A.
  • the transceiver assemblies 2, 3 are located on both sides of the scanning prism 1, the transceiver assembly 2 generates a laser beam L2, and the transceiver assembly 3 generates a laser beam L3. Both L2 and L3 are parallel to the y-axis.
  • L2 is perpendicularly scanned by the mirror surface when the scanning prism 1 is at the position A, and is reflected back by the original path.
  • the scanning range of the transmitting and receiving unit 2 is pushed in the -y-axis direction with respect to the position A.
  • L2 when the scanning prism 1 is at the position C, the relative position A of the scanning prism 1 has rotated more than 45 degrees, the reflected light is rotated more than 90 degrees, the scanning range is across the x-axis, and the field of view belonging to the -y axis is covered, and the transmission and reception are performed.
  • Component 2 is directed to one side field of view boundary of the scanning mirror.
  • the scanning prism 1 continues to rotate, to the position D, the scanning process for the adjacent scanning mirror is turned on, and the scanning process for the adjacent scanning mirror is the repetition of the scanning process for the position A-C.
  • L3 is perpendicular to the current scanning mirror when the scanning prism 1 is at the position A, and is reflected back by the original path.
  • L3 is incident on the adjacent scanning mirror, and reaches L3 for the adjacent scanning mirror.
  • One side field of view boundary which crosses the x-axis, covers the field of view belonging to the +y axis, and L3,
  • the scanning prism 1 is rotated to position C, the scanning range of the transceiving component 3 is relative to position B to -y
  • the axis direction is retracted, and as the scanning prism 1 continues to rotate, it comes to the position D.
  • the scanning process for the latter scanning mirror is turned on, and the scanning process for the latter scanning mirror is the repetition of the scanning process of the position AC.
  • L2 and L3 are respectively incident on the opposite scanning mirror surfaces, and at positions B and C, L2 and L3 are respectively incident on the adjacent two scanning mirror surfaces.
  • each group of transceiving components reciprocates in respective scanning fields of view. Scanning, while the scanning fields of view of different transceiver assemblies are not exactly the same in the horizontal direction, thereby expanding the horizontal field of view of the laser scanning device.
  • the dotted line portion in FIG. 7A respectively illustrates the scanning field of view of the two transceiver modules 2, 3 with a laser beam as an example.
  • two sets of the transceiver assembly are adjacent to the vicinity of the x-axis.
  • the scanning field of view has partial overlap, that is, the field of view of the two transceiver components is docked, and the horizontal field of view is expanded in the horizontal direction.
  • the invention utilizes a one-dimensional rotating scanning prism to match the change of the spatial angle of each scanning surface, thereby realizing two-dimensional scanning, and the scanning range covers both directions at the same time, and the scanning area is increased by a more elaborate scanning structure.
  • the goal is to make the scanning process simple and efficient.
  • a portion of the laser emitting unit of the transceiver assembly is located above the laser receiving unit, and another portion of the laser receiving unit of the transceiver assembly is located above the laser emitting unit. That is, the laser emitting unit of the transceiver unit 2 is located above the laser receiving unit, and the laser receiving unit of the transceiver unit 3 is located above the laser emitting unit. In order to make the signal received accurately, avoid errors.
  • the transceiver assembly 2 has four laser emitting units, and the four spatial angles of the scanning prisms are different, and the emission angles of the four laser emitting units are also different.
  • Schematic diagram of the scan line which has 4 ⁇ 4 scan lines at this time, that is, scan lines S1-S16.
  • the arrangement position of the scanning lines can be adjusted according to the emission elevation angle of the laser beam of each laser emitting unit, the specific value of the spatial angle of each scanning mirror, and the angle of the spatial orientation of the transmitting and receiving components with respect to the scanning axis. Partial scan lines are overlapped, for example by adjustment of the specific value of the elevation angle of the emission.
  • the heights of the two sets of transceiver modules 2, 3 along the scanning axis of the scanning prism may be set to be the same or different, and the number of the laser emitting units of the transceiver components 2, 3 may be the same, and may be vertically arranged,
  • the emission elevation angles of the laser emitting units corresponding to the positions in the group transceiver assembly may be the same or different to adjust the arrangement of the scanning lines.
  • the overall elevation angle of each transceiver assembly can be set to be the same or different to adjust the arrangement of the scan lines, which is the angle between the entirety of the transceiver assembly and the horizontal plane.
  • the spatial attitude angle may include, but is not limited to, an axial height along the scan axis of the transceiving assembly, a launch elevation angle, and a pointing direction.
  • Adjusting the emission elevation angle of each laser emitting unit, the spatial angle of each scanning mirror, and the specific value of the spatial attitude angle of the transmitting and receiving components according to actual needs, and obtaining other arrangement manners of the scanning lines are all within the scope of the disclosure of the present invention.
  • the reference to the foregoing technical solution can still be used to generate more than four scanning lines, and the number of scanning lines is larger than the number of laser emitting units.
  • the transceiver components 2, 3 each include four laser emitting units, and the eight laser emitting units have different emission elevation angles, that is, there is an angle between each laser beam.
  • the transceiver modules 2, 3 each generate 16 scanning lines, the scanning fields of view partially overlap, and the scanning line positions of the overlapping portions are shifted from each other, so that the number of scanning lines of the overlapping portion is doubled, and the obtained in the field of view of the overlapping portion is obtained. The data will be more abundant and sufficient.
  • Adjusting the elevation angle of each laser emitting unit of each of the transmitting and receiving components 2, 3 according to actual needs, the specific value of the spatial angle of each scanning mirror, the specific setting position of the transmitting and receiving components, and the projection direction of the laser beam can also obtain the scanning line. Other arrangements are within the scope of the present disclosure.
  • the transceiver assembly may also include other numbers of laser emitting units, and is also within the scope of the present disclosure.
  • the laser beam of the laser emitting unit of the transceiver modules 2, 3 can maintain the same horizontal angle ⁇ with the y-axis, that is, the transceiver assemblies 2, 3 are symmetrically disposed with respect to the scanning axis.
  • the laser beam of the laser emitting unit of the transceiver modules 2, 3 can also maintain a different horizontal angle with the y-axis, that is, the pointing direction of the transceiver module relative to the scanning axis can be different. By setting the specific value of the horizontal angle, the range and position of the overlapping field of view can be controlled.
  • two sets of transceiver components are provided, and the invention can also set more groups of transceiver components to further expand the field of view in the horizontal direction.
  • the number of transceiver assemblies disposed on each side can be further expanded.
  • the transceiver assembly 3' is disposed directly above the transceiver assembly 3, the projection direction of the laser beam, the scanning process, and the scanning surface utilized.
  • the transceiver assembly 3 is identical to achieve the purpose of increasing the number of lines of the scan line.
  • the transceiver assembly 2' can be disposed directly above the transceiver assembly 2 for use with the transceiver assembly 3'.
  • a third group of transceiver assemblies 4 may be further provided which generate a laser beam L4.
  • the transceiver component 3 and the transceiver component 4 can be disposed at different heights with respect to the scanning axis.
  • the field of view of the third set of transceiver assemblies 4 is primarily located in the -x-y region, thereby expanding the field of view of the laser scanning device in the horizontal direction.
  • the specific value of the spatial angle of each scanning mirror and the specific value of the setting position of the transceiver component enable the scanning field of the transceiver components 3 and 4 to be docked or overlapped, thereby obtaining the field of view of the transceiver components 2, 3, and 4. Docking in turn to form a complete field of view, covering the horizontal field of view will be between 180 degrees and 270 degrees. This further expands the scanning capability and efficiency of the laser scanning device.
  • a fourth group of transceiver components 5 can be further disposed, and the field of view of the fourth group of transceiver modules 5 is mainly located in the -x+y region, thereby expanding The field of view of the laser scanning device in the horizontal direction.
  • the transceiver components 2, 5 can be made.
  • the scanning field of view realizes docking or coincidence, and then the four fields of the transceiver components 2, 3, 4, and 5 are sequentially connected to form a complete field of view, and the horizontal field of view will be between 270 degrees and 360 degrees. This further expands the scanning capability and efficiency of the laser scanning device.
  • the number and location of the transceiver components can be set in other manners according to actual needs, and are all within the scope of the present disclosure.
  • the scanning prism 1 of the present invention can also employ a multi-faceted scanning mirror described in CN201720413010.7.
  • the present invention also discloses a scanning method, including:
  • the transceiver assembly comprising a laser emitting unit and a laser receiving unit;
  • the scanning mirror reflects the signal light returned from the target corresponding to the scanning line to the laser receiving unit corresponding to the laser emitting unit that generates the scanning line.
  • At least two sets of transceiver components are disposed, and the scanning fields of view of the transceiver components partially overlap.
  • At least three sets of transceiver components are disposed, the transceiver components are disposed around the scanning prism, and the fields of view of all the transceiver components are sequentially connected to form a continuous field of view.
  • the reflected light of the laser beam projected by the laser emitting unit to the scanning prism conforms to the following formula:
  • V_Angle Lidar_Angle(Lidar_NUM)+Mirror_Angle (2)
  • H_Angle is the angle between the projection of the outgoing light in the horizontal plane and the x-axis
  • V_Angle is the angle between the outgoing light and the horizontal plane
  • N is the number of scanning mirrors of the scanning prism
  • Lidar_NUM is the laser emitting unit No.
  • Lidar_Angle (Lidar_NUM) is the angle between the laser beam of the laser emitting unit numbered Lidar_NUM and the horizontal plane, that is, the elevation angle of the emission
  • Mirror_Angle is the angle between the normal of the scanning mirror that produces the outgoing light and the horizontal plane, that is, the mirror tilt angle.
  • alpha is the angle between the x-axis and the projection of the outgoing light in the horizontal plane in a clockwise direction when the scanning prism is 0 degrees
  • Range is the distance measurement value of the emitted light measured by the laser radar device.
  • D2Rad is a constant
  • X, Y, and Z are respectively the three-dimensional coordinates of the object encountered by the outgoing light.
  • the above formula (1) (2) is used to calculate an angle parameter for obtaining the emitted light at any time while the scanning prism continues to rotate.
  • the above formulas (3)-(5) are used to calculate the position data of the target object to which the emitted light is projected at any time while the scanning prism is continuously rotated.
  • FIG. 9 shows the position where the rotation angle is 0.
  • L2 is irradiated on the first scanning mirror
  • L3 is irradiated in the third.
  • the scanning mirror is in the +x direction as the second scanning surface and in the -x direction as the fourth scanning surface.
  • the ⁇ angle of L2 is 30 degrees
  • the ⁇ angle of L3 is also 30 degrees.
  • the angles of the outgoing lights of L2 and L3 are 60 degrees with respect to the x-axis. That is, for L2, its alpha is 300 degrees, and for L3, its alpha is 60 degrees.
  • the V_Angle of the outgoing light of L2 is the sum of the emission elevation angle of the L2 laser emitting unit and the mirror tilt angle of the first scanning mirror.
  • the V_Angle of the outgoing light of L3 is the sum of the emission elevation angle of the laser emitting unit of L3 and the mirror tilt angle of the second scanning mirror.
  • the V_Angle of the outgoing light of L2 is the sum of the emission elevation angle of the laser emitting unit of L2 and the mirror tilt angle of the fourth scanning mirror.
  • the V_Angle of the outgoing light of L3 is the sum of the emission elevation angle of the laser emitting unit of L3 and the mirror tilt angle of the first scanning mirror.
  • theta 225 degrees
  • L2 faces the third scanning mirror
  • L3 faces the fourth scanning mirror.
  • the V_Angle of the outgoing light of L2 is the sum of the emission elevation angle of the laser emitting unit of L2 and the mirror tilt angle of the third scanning mirror.
  • the V_Angle of the outgoing light of L3 is the sum of the emission elevation angle of the laser emitting unit of L3 and the mirror tilt angle of the fourth scanning mirror.
  • theta 315 degrees
  • L2 faces the second scanning mirror
  • L3 faces the third scanning mirror.
  • the V_Angle of the outgoing light of L2 is the sum of the emission elevation angle of the laser emitting unit of L2 and the mirror tilt angle of the second scanning mirror.
  • the V_Angle of the outgoing light of L3 is the sum of the emission elevation angle of the laser emitting unit of L3 and the mirror tilt angle of the third scanning mirror.
  • the light is raised to a positive direction in the +z direction in the horizontal direction, and the light is pressed down in the -z direction in the horizontal direction.
  • the laser radar apparatus can be extended to the horizontal field of view, the partial field of view is superimposed to bring about double the scanning line, and accurate target position information is obtained based on the structure.
  • the scanning prism is replaced with other scanning mirrors, such as a triangular prism, a pentaprism, etc.
  • the principle is the same as that of the above-described quadrangular prism, and details are not described herein.
  • a portion with a higher data accuracy can be selected from the current field of view as the working scanning field of view of the laser radar device.
  • a method for selecting a portion with higher accuracy as a working scan field according to requirements includes:
  • Step 1 The scanning prism sequentially rotates the first angle, the second angle, the third angle, and the fourth angle during the rotation of 360/N degrees, and detects that the scanning mirror rotates to the first angle, and acquires the first group of the transceiver.
  • the component is directed to the signal light of the first scanning mirror;
  • the first angle is rotated to position A
  • the second angle is rotated to position B
  • the third angle is rotated to position C
  • the fourth angle is rotated to position D
  • N is the number of scanning mirrors
  • the device has a rotation detecting device to detect a rotation angle of the scanning prism
  • Step 2 When detecting that the scanning mirror is rotated to a second angle, acquiring signal light of the second group of the transceiver component for the second scanning mirror surface;
  • Step 3 When detecting that the scanning mirror rotates to a third angle, stop acquiring signal light of the first group of the transceiver component for the first scanning mirror surface;
  • Step 4 When detecting that the scanning mirror is rotated to the fourth angle, stopping acquiring the signal light of the second group of the transceiver component for the second scanning mirror.
  • the transceiver component 2 can acquire the scan data generated during the rotation from the position A to the position C.
  • the transceiver component 3 can acquire scan data generated during the rotation from the position B to the position D.
  • the transceiver assembly 2 can drive the laser emitting unit of the first group of transceiver assemblies to start emitting and emitting light when the scanning prism is rotated to the position A according to the control of the driving device, and stop driving the laser emission of the first group of transceiver components when rotating to the position C.
  • the unit emits the emitted light
  • the transceiver assembly 3 can drive the laser emitting unit of the second group of transceiver assemblies to start emitting and emitting light when the scanning prism is rotated to the position B according to the control of the driving device, and stops driving when rotating to the position D.
  • the laser emitting units of the two sets of transceiver assemblies emit light.
  • the above position ABCD that is, the first to fourth angles, can also select specific position information according to requirements, and take the portion with the highest precision as the working scanning field of view.
  • the center point of the prism is located at the coordinate origin of the three-dimensional coordinate system.
  • the x-axis is perpendicular to the triangle bottom of the cross-section of the prism, and the laser beam L2 is perpendicular to the y-axis.
  • L3 is incident in a direction connectable to the lower right vertex of the section and the center point.
  • the scanning field of view is as shown in Fig. 12B, calculated in a clockwise direction, and clipped from the x-axis by a range of 60 to 300 degrees.
  • the scanning field of view is as shown in Fig. 12C, and is calculated in the clockwise direction, sandwiching the range from 180 degrees to 420 degrees with the x-axis.
  • the maximum overlap range is in the range of 180-300 degrees with the x-axis.
  • the scanning prism When the scanning prism rotates to 0 degree, it starts to acquire the scanning data of L3. At this time, the outgoing light of L3 is 180 degrees with the x-axis; when the scanning prism rotates to 60 degrees, the scanning data of L2 is started, and the output of L2 is obtained. The light is clamped to the x-axis by 180 degrees; when the scanning prism is rotated to 60 degrees, the scanning data of L3 is stopped, and the outgoing light of L3 is clamped to the x-axis by 300 degrees; when the scanning prism is rotated to 120 degrees, the acquisition of L2 is stopped. The data is scanned, and the outgoing light of L2 is clamped to the x-axis by 300 degrees.
  • the above scheme is to accurately obtain the maximum overlapping range between L2 and L3.
  • the required range can be expanded or reduced as a working scan field of view.
  • the scanning prism When the scanning prism rotates to 5 degrees, it starts to acquire the scanning data of L3. At this time, the outgoing light of L3 is clamped to the x-axis by 190 degrees; when the scanning prism is rotated to 10 degrees, the scanning data of L2 is started, and the output of L2 is obtained. The light is collided with the x-axis by 80 degrees; when the scanning prism is rotated to 105 degrees, the scanning data of L3 is stopped, and the outgoing light of L3 is clamped with the x-axis by 390 degrees; when the scanning prism is rotated to 110 degrees, the acquisition of L2 is stopped. The data is scanned, and the outgoing light of L2 is clamped to the x-axis by 280 degrees. At this time, the range of 190 degrees from the x-axis to the range of 280 degrees from the x-axis is an overlapping field of view, and a total field of view of 310 degrees can be obtained.
  • a laser radar device with other numbers of scanning mirrors has the same scanning process.
  • the horizontal scanning field of view of the lidar device Extend the number of lines of the scanning line of the laser radar device. Further, the number of scanning lines of the central scanning field of view of the laser radar device is increased, and the scanning data of the central field of view is enriched.
  • the use of a small number of laser emitting units to generate scan lines exceeding the number of laser emitting unit configurations can reduce the number of internal components of the laser radar device, facilitate component layout, compress volume, and reduce cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光扫描装置、雷达装置及其扫描方法,该激光扫描装置包括:扫描棱镜(1),包括多个扫描镜面(101),多个扫描镜面(101)围绕扫描轴(O)旋转,每个扫描镜面(101)的法线(P)分别与扫描轴(O)形成一空间角,所有的空间角的角度不完全相同;收发组件(2),收发组件(2)包括激光发射单元(201)以及激光接收单元(202),激光发射单元(201)通过扫描镜面(101)的转动而产生扫描线,其中,同一激光发射单元(201)通过扫描棱镜(1)的旋转产生多条扫描线。上述装置和方法可扩展激光雷达装置的水平扫描视场,扩展激光雷达装置的扫描线的线数,提高激光雷达装置的中心扫描视场的扫描线数量,降低激光雷达装置的内部部件数量、便于部件排布、压缩体积、降低成本。

Description

一种激光扫描装置、雷达装置及其扫描方法 技术领域
本发明涉及三维激光扫描领域,特别是涉及一种激光扫描装置、雷达装置及其扫描方法。
背景技术
如图1所示为美国专利申请US8767190B2的激光雷达中的扫描装置示意图。
其中,母板20设置在框架22上。多个发射面板30依次插设在母板20上,多个检测面板32依次插设在母板20上。多个发射面板30沿垂直方向设置,多个检测面板32沿垂直方向设置。每个发射面板30上设置有一个发射器,每个检测面板32上设置有一个检测器。框架22进行旋转,从而获取360度的扫描视场。
根据以上结构,每设置一个发射面板30只能获取一条扫描线,也就是说,如欲获取64条扫描线,需要设置64个发射面板30和64个检测面板32,则设备内部需要设置的部件数量较大,不便于压缩体积,降低成本。
然而,随着对激光雷达的应用愈加广泛,应用场合愈加精细化,压缩体积、降低成本成为行业内的普遍技术追求。
进而,如能够利用少量的激光发射单元,而产生超过激光发射单元配置数量的扫描线,则可以降低设备内部部件数量、便于部件排布、压缩体积、降低成本。
除以上首要需解决的问题之外,还存在以下问题。
如图2所示为现有技术中激光扫描装置的结构示意图。激光扫描装置通过激光发射单元产生出射光,进而生成扫描线。激光扫描装置如图2所示,包括扫描塔镜40及透射镜组50。该扫描塔镜40绕旋转轴X进行旋转。该透射镜组50与该扫描塔镜40的顶面平行设置。该扫描塔镜40为标准的四棱塔镜。
激光发射单元60发出的出射光L穿透该透射镜组50后,经该扫描塔镜40的斜面反射,从而从该激光扫描装置中出射。经障碍物漫反射产生的入射光L’为一光柱,其经透射镜组50汇聚后,被激光接收单元70接收。
激光发射单元60相对扫描塔镜40的位置不变,随着扫描塔镜40的转动,出射光L在一定视场角内往复扫描。
可见,在现有技术的技术方案中,扫描视场相当有限,以图2为例,其有效扫描视场小于90度。而如何进一步扩大扫描视场以适配于更加丰富多样的实际需求场景,为目前所亟待解决的问题。
发明内容
本发明解决的技术问题在于,基于有限的激光发射单元,扩展激光扫描装 置的扫描线的数量。进一步的,扩展激光扫描装置的水平扫描视场。进一步的,提高激光扫描装置的中心扫描视场的扫描线数量。
本发明公开了一种激光扫描装置,包括:扫描棱镜,该扫描棱镜包括多个扫描镜面,该多个扫描镜面围绕扫描轴旋转,每个该扫描镜面的法线分别与该扫描轴形成一空间角,所有的该空间角的角度不完全相同;收发组件,该收发组件包括激光发射单元以及激光接收单元,该激光发射单元通过扫描镜面的转动而产生扫描线,同一激光发射单元通过该扫描棱镜的旋转产生多条扫描线。
该装置包括至少两组收发组件,所述收发组件的扫描视场部分重叠。该装置包括至少三组收发组件,所述收发组件环绕所述扫描棱镜设置,所有收发组件的视场依次对接,形成连续视场。
至少部分所述收发组件相对该扫描轴对称设置。各个所述收发组件相对该扫描轴的空间姿态夹角不同或相同。所述收发组件沿该扫描轴的轴向高度不同或相同。该扫描棱镜包括三个、四个、五个或六个扫描镜面。所述空间角之间以相同角度差递减。每组该收发组件包括多个激光发射单元以及多个激光接收单元,每个激光发射单元分别发出一激光束,各个激光束之间均存在夹角。所述激光束呈发散状态排列或者呈汇聚状态排列。
同一扫描镜面既实现对该激光束的反射,也接收该激光束照射在目标物后所返回的信号光,并将该信号光反射至与发出该激光束的激光发射单元对应的激光接收单元。
本发明公开了一种激光雷达装置,包括:所述的激光扫描装置。
本发明还公开了一种激光雷达装置的扫描方法,进一步包括:设置收发组件,该收发组件包括激光发射单元以及激光接收单元;使得具有多个扫描镜面的扫描棱镜围绕扫描轴旋转;使得该激光发射单元向该扫描镜面投射激光束,并通过扫描镜面的转动而产生扫描线,每个该扫描镜面的法线分别与该扫描轴形成空间角,所有的该空间角的角度不完全相同,以使得同一个激光发射单元产生多条扫描线。
所述的方法包括该扫描镜面将与该扫描线对应的从目标物返回的信号光,反射至与产生该扫描线的激光发射单元对应的激光接收单元。
所述的方法包括该激光发射单元向该扫描棱镜投射的激光束经反射后的出射光符合以下公式:
Figure PCTCN2018000144-appb-000001
V_Angle=Lidar_Angle(Lidar_NUM)+Mirror_Angle
X=Range*cos(V_Angle*D2Rad)*cos(H_Angle*D2Rad)
Y=Range*cos(V_Angle*D2Rad)*sin(-H_Angle*D2Rad)
Z=Range*sin(V_Angle*D2Rad)
其中,以该扫描轴在该扫描棱镜中的区段的中心点为坐标原点,建立坐标系,该扫描轴为z轴,在水平面内建立x轴、y轴,H_Angle为该出射光在水平面的投影与x轴之间的角度,V_Angle为该出射光与水平面之间的角度,N为该扫描棱镜所具有的扫描镜面的数量,Lidar_NUM为激光发射单元的编号,Lidar_Angle(Lidar_NUM)为编号为Lidar_NUM的激光发射单元的激光束与水平面之间的角度,Mirror_Angle为产生该出射光的扫描镜面的法线与水平面之间的角度,alpha为扫描棱镜在旋转角度为0时,沿顺时针方向该x轴与该出射光在水平面的投影之间的角度,Range为该激光雷达装置测量得到的该出射光的测距值,D2Rad为一常数,X、Y、Z分别为该出射光所遇到的目标物的三维坐标,其中,当该扫描棱镜沿顺时针旋转时,theta为该扫描棱镜的旋转角度,当该扫描棱镜沿逆时针旋转时,theta为360-该扫描棱镜的旋转角度。
所述的方法包括该扫描棱镜在旋转360/N度的过程中依次经过第一角度、第二角度、第三角度、第四角度;
检测该扫描棱镜旋转至第一角度时,获取第一组该收发组件针对第一扫描镜面的信号光;检测该扫描棱镜旋转至第二角度时,获取第二组该收发组件针对第二扫描镜面的信号光;检测该扫描棱镜旋转至第三角度时,停止获取第一组该收发组件针对第一扫描镜面的信号光;检测该扫描棱镜旋转至第四角度时,停止获取第二组该收发组件针对第二扫描镜面的信号光。
所述的方法包括该获取第一组该收发组件针对第一扫描镜面的信号光的步骤进一步包括:驱动第一组该收发组件的激光发射单元投射该激光束;该停止获取第一组该收发组件针对第一扫描镜面的信号光的步骤进一步包括:停止驱动第一组该收发组件的激光发射单元投射该激光束。
附图说明
图1所示为美国专利申请US8767190B2的激光雷达中的扫描装置示意图。
图2所示为现有技术中激光扫描装置的结构示意图。
图3A、3B所示为本发明的激光扫描装置的主体结构示意图。
图4所示为本发明的扫描棱镜的主体结构示意图。
图5A-5D所示为具备各个空间角的扫描镜面的剖面示意图。
图5E所示为图5A-5D中经各个扫描镜面所产生的扫描线示意图。
图5F所示为收发组件相对一个扫描镜面的光路示意图。
图6A所示为激光束呈现发散状态排列的示意图。
图6B所示为激光束呈现汇聚状态排列的示意图。
图7A所示为扫描棱镜的旋转视场总体示意图。
图7B-7E所示为图7A的旋转视场分步示意图。
图8A、8B所示为扫描线示意图。
图9所示为具有两个收发组件的激光扫描装置的结构示意图。
图10所示为具有三个收发组件的激光扫描装置的结构示意图。
图11所示为具有四个收发组件的激光扫描装置的结构示意图。
图12A所示为具有三棱镜的激光扫描装置的结构示意图。
图12B、12C所示为图12A基础上的扫描范围示意图。
具体实施方式
以下结合具体实施例描述本发明的技术方案的实现过程,不作为对本发明的限制。
如图3A、3B所示为本发明的激光扫描装置的主体结构示意图。图4所示为本发明的扫描棱镜的主体结构示意图。为了清晰展示本发明的技术改进之处,公知部分的结构,如扫描驱动等部件未显示在图中。
激光扫描装置是激光雷达装置的主要光学结构,是实现激光扫描的光学基础。激光雷达装置除包括该激光扫描装置外,还包括其他处理模块、电池模块等属于公知常识的部件。
如图3A所示,本发明的激光扫描装置包括扫描棱镜1以及收发组件2。
扫描棱镜1可包括多个扫描镜面,所有扫描镜面围绕一扫描轴O旋转。具体来说,扫描棱镜1可包括三、四、五或六扫描镜面,以下暂以四个扫描镜面为例进行描述。
每组该收发组件均包括激光发射单元以及激光接收单元。激光发射单元产生的激光束照射在一扫描镜面上,经该扫描镜面反射后出射于激光雷达装置,随着扫描棱镜1的旋转,该扫描镜面的法线保持与水平面之间的角度不变,而在水平方向内的位置不断变化,则该激光束的反射方向也随之不断变化,即可应生成一条扫描线。
另外,每个该扫描镜面的法线分别与该扫描轴形成空间角。如果所有的空间角完全一致,则同一激光发射单元经不同扫描镜面反射而生成的扫描线相互重合,即,仅实际生成一条扫描线。然而,在本发明中,所有的该空间角不完全相同,则针对同一激光发射单元,不同扫描镜面的法线与水平面之间的角度不完全相同,使得在扫描棱镜1的旋转过程中,同一激光发射单元经不同扫描 镜面反射而生成的扫描线不完全相互重合,即可产生多条扫描线。
具体来说,如图4可知,该扫描棱镜1具有四个扫描镜面,每个扫描镜面均具有法线P。扫描轴O与每个扫描镜面的法线P,分别形成一空间角,共四个空间角。该四个空间角∠1、∠2、∠3、∠4不完全相同。
也就是说,该四个空间角可以各不相同,即∠1、∠2、∠3、∠4中不存在相同的两个数值。具体来说,该四个空间角的相互关系优选为以同一角度差依次递减,例如该角度差为1°,四个空间夹角可依次为91°,90°,89°和88°,以帮助同一激光发射单元经不同扫描镜面反射而生成的扫描线均匀分布。
图5A所示为具有91°空间角的扫描镜面的剖面示意图,扫描镜面上端向远离扫描轴方向倾斜。
图5B所示为具有90°空间角的扫描镜面的剖面示意图,扫描镜面与扫描轴平行。
图5C所示为具有89°空间角的扫描镜面的剖面示意图,扫描镜面上端向略微靠近扫描轴方向倾斜。
图5D所示为具有88°空间角的扫描镜面的剖面示意图,扫描镜面上端在图5C基础上进一步向靠近扫描轴方向倾斜。
图5A-5D显示的是具备各个空间角的扫描镜面分别旋转至面向收发组件2时的示意图。收发组件2相对扫描轴的位置固定,其激光束以固定位置和角度出射,而由于四个扫描镜面的法线方向不同,故而光线反射的方向也不同。当各个扫描镜面2绕所述扫描轴1旋转时,可相应产生不同空间分布的扫描线S1、S2、S3、S4,如图5E所示,S1、S2、S3、S4基本保持在水平方向延伸,四条扫描线沿竖直方向排列。
S1为图5D中88°空间角的扫描镜面所产生的示意扫描线,S2为图5C中89°空间角的扫描镜面所产生的示意扫描线,S3为图5B中90°空间角的扫描镜面所产生的示意扫描线,S4为图5A中91°空间角的扫描镜面所产生的示意扫描线。
故而,即使当收发组件2仅有一个激光发射单元时,所发出的一束出射光也可随多面扫面镜的旋转而产生4条扫描线,扩展激光雷达装置的扫描线的线数。
在另一实施例中,扫描棱镜1的四个空间角部分相同,例如,∠1=∠2=∠3,∠1≠∠4;或者∠1=∠2,∠3=∠4,∠1≠∠3;或者,∠1=∠2,∠1≠∠3,∠1≠∠4,∠3≠∠4。
在∠1=∠2=∠3,∠1≠∠4的情况下,∠1、∠2、∠3所对应的扫描镜面,其产生的扫描线的落点是一致的,也就是说,这三个扫描镜面只能产生同一条 扫描线,∠4所对应的扫描镜面产生另一条扫描线,一共产生两条扫描线。
同理,空间角相同的扫描镜面产生同一条扫描线。在∠1=∠2,∠3=∠4,∠1≠∠3的情况下,产生两条扫描线。在∠1=∠2,∠1≠∠3,∠1≠∠4,∠3≠∠4的情况下,产生三条扫描线。
另外,同一扫描镜面既实现对激光束的反射,也接收该激光束照射在环境中目标物后所返回的信号光,并将该信号光反射至与发出该激光束的激光发射单元对应的激光接收单元,从而实现激光扫描的完整过程。参考图5F所示,扫描棱镜的扫描镜面101将收发组件2中的激光发射单元201发射的激光束反射至目标物A处,由目标物A漫反射产生的信号光(图5F中虚线)仍经该扫描镜面101反射后,由与该激光发射单元2配套使用的激光接收单元202接收,实现激光扫描。由此可见,本发明采用了出射光和入射的信号光共用同一扫描面的平行光路设计,使得光路弯折次数少,误差小,对光线采集更加精确,系统效率高,另外,对于激光雷达装置来说,激光的出射以及对信号光的接收可视为同时进行,实现了同步扫描。
在该收发组件2中,可以设置有多个激光发射单元,以及与激光发射单元相同数量的激光接收单元。每个该激光发射单元的激光束相互之间的发射仰角各不相同,该发射仰角为激光束与水平面之间的角度。该收发组件2中还包括透镜组(图中未示),以对激光束以及信号光进行光线的准直。
以4个激光发射单元为例,还可以是8个等其他数量,不以此为限。如图6A、6B所示,该4个激光发射单元竖直排列,该4个激光发射单元的所有激光束位于同一出射平面M中,同一收发组件中各个激光束的发射仰角不同。在四个空间角各不相同的情况下,4个激光发射单元可产生16条扫描线。图6A的四个激光束呈现发散状态排列,图6B的四个激光束呈现汇聚状态排列。
在另一实施例中,激光扫描装置还可包括两组收发组件2、3。
其中,该两组收发组件各自的激光发射单元所产生的激光束经不同的该扫描镜面反射后出射于该激光扫描装置。如图3B所示,收发组件2产生的激光束与收发组件3产生的激光束分别照射在扫描棱镜1的两个扫描镜面上,进而发生反射,并出射于该激光扫描装置,进而出射于激光雷达装置。
如图7A所示为扫描棱镜1的旋转视场总体示意图,为图3B的俯视图。图7B-7E所示为图7A的旋转视场分步示意图。
以扫描轴O在扫描棱镜1内部的区段中心点为原点建立坐标系,其中以扫描轴O为z轴,并在水平面内建立x、y轴。扫描棱镜1的同一个顶点在顺时针旋转过程中依次转过A、B、C、D四个位置,即依次经历图7B-7E所示情形。
如图7B所示,A为正直放置的初始位置,B为相对A旋转小于45度的位置,C为相对A旋转大于45度小于90度的位置,D为相对A旋转90度的位置。
收发组件2、3位于扫描棱镜1的两侧,收发组件2产生激光束L2,收发组件3产生激光束L3。L2、L3均平行于y轴。
L2在扫描棱镜1位于位置A时垂直扫描镜面入射,并原路反射回来,随着扫描棱镜1的旋转,在位于位置B时,收发组件2的扫描范围相对位置A时向-y轴方向推进,L2在扫描棱镜1位于位置C时,扫描棱镜1相对位置A已旋转超过45度,则反射光旋转超过90度,扫描范围跨越x轴,覆盖到属于-y轴的视场,且达到收发组件2针对该扫描镜面的一侧视场边界。随着扫描棱镜1的继续旋转,来到位置D,开启对邻近扫描镜面的扫描过程,对邻近扫描镜面的扫描过程即是对位置A-C的扫描过程的重复。
L3在扫描棱镜1位于位置A时垂直当前扫描镜面入射,并原路反射回来,随着扫描棱镜1的旋转,在到达位置B时,L3入射至邻近扫描镜面,且到达L3针对该邻近扫描镜面的一侧视场边界,该视场边界跨越了x轴,覆盖到属于+y轴的视场,L3在扫描棱镜1旋转到位置C时,收发组件3的扫描范围相对位置B时向-y轴方向回撤,随着扫描棱镜1的继续旋转,来到位置D,此时开启对后一个扫描镜面的扫描过程,对后一扫描镜面的扫描过程即是对位置A-C的扫描过程的重复。
在位置A、D时,L2、L3分别入射至相对的两个扫描镜面,在位置B、C时,L2、L3分别入射至相邻的两个扫描镜面。
通过上述扫描情况描述可知,由于在激光扫描装置中同时设置有两组收发组件,且使得每组收发组件通过不同的扫描镜面实现反射,则每一组收发组件在各自的扫描视场中循环往复扫描,而不同的收发组件的扫描视场在水平方向上不完全相同,从而扩展了激光扫描装置的水平视场。具体来说,图7A中虚线部分分别示意了两个收发组件2、3以分别具有一个激光束为例的扫描视场范围,从图7A中可知,两组该收发组件在邻近x轴附近的扫描视场存在部分重叠,也就是两个收发组件的视场实现了对接,在水平方向上对水平视场进行了扩展。
本发明利用一维旋转的扫描棱镜,配合各扫描面的空间角的变化,从而实现了二维扫描,扫描范围同时覆盖了两个方向,以较为精巧的扫描结构,实现了增大扫描范围的目标,使得扫描过程简洁高效。
另外,在一实施例中,一部分所述收发组件的激光发射单元位于激光接收单元的上方,另一部分所述收发组件的激光接收单元位于激光发射单元的上方。即,收发组件2的激光发射单元位于激光接收单元的上方,收发组件3的激光接收单元位于激光发射单元的上方。以使得信号接收的准确,避免误差。
更进一步的,如图8A所示为收发组件2在具有4个激光发射单元,且扫描棱镜的四个空间角各不相同,且该4个激光发射单元的发射仰角也各不相同 的情况下的扫描线示意图,此时具有4×4条扫描线,即扫描线S1-S16。
在实际操作中,扫描线的排布位置可根据每个激光发射单元的激光束的发射仰角、每个扫描镜面的空间角的具体数值、收发组件相对该扫描轴的空间姿态夹角来调整。例如通过对该发射仰角的具体数值的调整,使得部分扫描线重叠。两组收发组件2、3沿该扫描棱镜的扫描轴的轴向高度可以设置为相同,也可以设置为不同,收发组件2、3各自的激光发射单元的数量相同,可均竖直排列,两组收发组件中位置对应的激光发射单元的发射仰角可以相同或者各不相同,以调节扫描线的排布方式。每个收发组件其整体的仰角,可以设置为相同,或者不同,以调节扫描线的排布方式,该仰角为该收发组件的整体与该水平面之间的角度。该空间姿态夹角可以包括但不限于收发组件的沿扫描轴的轴向高度、发射仰角、指向方向。
根据实际需求调整每个激光发射单元的发射仰角、每个扫描镜面的空间夹角、收发组件的空间姿态夹角的具体数值,获得扫描线的其他排布方式,均在本发明的公开范围内。
在四个空间角部分相同,但不完全相同的情况下,可同理参考前述技术方案,依然可以产生超过4条的扫描线,扫描线的数量大于激光发射单元的数量。
以上展示的是收发组件2一侧所产生的扫描线的情况,收发组件3一侧也采用同样原理。配合图7A所述方案,假定收发组件2、3均包括四个激光发射单元,且该八个激光发射单元的发射仰角均不相同,即,各个激光束之间均存在夹角,此时,收发组件2、3各自产生16条扫描线,扫描视场部分重叠,且重叠部分的扫描线位置相互错开,使得重叠部分的扫描线数量加倍,则在这一重叠部分的视场区域中获得的数据将更加丰富充分。
根据实际需求调整收发组件2、3各自的每个激光发射单元的发射仰角、每个扫描镜面的空间角的具体数值、收发组件的具体设置位置及其激光束的投射方向还可获得扫描线的其他排布方式,均在本发明的公开范围内。
收发组件还可包括其他数量的激光发射单元,也在本发明的公开范围内。
另外,在一优化的方案中,收发组件2、3的激光发射单元的激光束可与y轴保持相同的水平夹角α,即收发组件2、3相对该扫描轴对称设置。
参见图9,其中虚线与y轴保持平行。另外,收发组件2、3的激光发射单元的激光束也可与y轴保持不相同的水平夹角,也就是收发组件相对该扫描轴的指向方向可不同。通过设置该水平夹角的具体数值,可以控制重叠视场的范围和位置。
上述技术方案,均为设置两组收发组件,本发明还可设置更多组收发组件,以进一步扩展水平方向的视场。
首先,如图3B所示,可进一步扩展每侧设置的收发组件的数量,例如, 在收发组件3的正上方设置收发组件3’,激光束的投射方向、扫描过程、所利用的扫描面与收发组件3完全相同,以达到增加扫描线的线数的目的。同理,可在收发组件2的正上方设置收发组件2’,以配合收发组件3’使用。
在另一实施例中,如图10所示,在图9所示方案基础上,可进一步设置第三组收发组件4,其产生激光束L4。为了避免收发组件3自身对L4的视场造成遮挡,收发组件3与收发组件4可以相对扫描轴设置在不同高度上。
与前述实施例相同,第三组收发组件4的视场主要位于-x-y区域内,从而扩展了激光扫描装置在水平方向内的视场。
通过对激光束L4与x轴平行线之间的水平夹角β的具体数值选择,或者,对图10中α和β的数值的整合选择,以及根据光学原理以及实际需要设置激光束的发射仰角、每个扫描镜面的空间角的具体数值、收发组件的设置位置的具体数值,可以使得收发组件3、4的扫描视场实现对接或者重合,从而获得收发组件2、3、4三者视场依次实现对接,组成一个完整的视场,覆盖水平视场将位于180度至270度之间。从而进一步扩展了激光扫描装置的扫描能力与效率。
同理,如图11所示,在图10所示方案基础上,可进一步设置第四组收发组件5,该第四组收发组件5的视场主要位于-x+y区域内,从而扩展了激光扫描装置在水平方向内的视场。
通过对激光束L5与x轴平行线之间的水平夹角β的具体数值选择,或者,对图11中α和β的数值的整合选择,以及其他参数的选择,可以使得收发组件2、5的扫描视场实现对接或者重合,进而获得收发组件2、3、4、5四者视场依次实现对接,组成一个完整的视场,覆盖水平视场将位于270度至360度之间。从而进一步扩展了激光扫描装置的扫描能力与效率。
收发组件的个数以及位置,可根据实际需求进行其他方式的设置,均在本发明的公开范围内。
本发明的扫描棱镜1还可采用CN201720413010.7中所记载的多面扫描镜。
另外,基于前述公开的结构,本发明还公开了一种扫描方法,包括:
设置收发组件,该收发组件包括激光发射单元以及激光接收单元;
使得具有多个扫描镜面的扫描棱镜围绕扫描轴旋转;
使得该激光发射单元向该扫描镜面投射激光束,并通过扫描镜面的转动而产生扫描线,每个该扫描镜面的法线分别与该扫描轴形成空间角,所有的该空间角的角度不完全相同,以使得同一个激光发射单元产生多个扫描线。
更进一步的,该扫描镜面将与该扫描线对应的从目标物返回的信号光,反射至与产生该扫描线的激光发射单元对应的激光接收单元。
其中,设置至少两组收发组件,所述收发组件的扫描视场部分重叠。
或者,设置至少三组收发组件,所述收发组件环绕所述扫描棱镜设置,所有收发组件的视场依次对接,形成连续视场。
该激光发射单元向该扫描棱镜投射的激光束经反射后的出射光符合以下公式:
Figure PCTCN2018000144-appb-000002
V_Angle=Lidar_Angle(Lidar_NUM)+Mirror_Angle                   (2)
X=Range*cos(V_Angle*D2Rad)*cos(H_Angle*D2Rad)                (3)
Y=Range*cos(V_Angle*D2Rad)*sin(-H_Angle*D2Rad)               (4)
Z=Range*sin(V_Angle*D2Rad)                                   (5)
D2Rad=3.1415/180.0
其中,H_Angle为该出射光在水平面的投影与x轴之间的角度,V_Angle为该出射光与水平面之间的角度,N为该扫描棱镜所具有的扫描镜面的数量,Lidar_NUM为激光发射单元的编号,Lidar_Angle(Lidar_NUM)为编号为Lidar_NUM的激光发射单元的激光束与水平面之间的角度,即发射仰角,Mirror_Angle为产生该出射光的扫描镜面的法线与水平面之间的角度,即镜面倾角,alpha为扫描棱镜在旋转角度为0度时,沿顺时针方向该x轴与该出射光在水平面的投影之间的角度,Range为该激光雷达装置测量得到的该出射光的测距值,D2Rad为一常数,X、Y、Z分别为该出射光所遇到的目标物的三维坐标。其中,当该扫描棱镜沿顺时针旋转时,theta为该扫描棱镜的旋转角度,当该扫描棱镜沿逆时针旋转时,theta为360-该扫描棱镜的旋转角度,该扫描棱镜的旋转角度可通过读取扫描棱镜码盘转动的数据获取,该旋转角度位于0-360之间。每个扫描镜面的镜面倾角为已知,同时,每个发射仰角为已知。
以上公式(1)(2)用于在扫描棱镜持续旋转时随时计算获取该出射光的角度参数。以上公式(3)-(5)用于在扫描棱镜持续旋转时随时计算获取出射光所投射到的目标物的位置数据。
以图9为例,扫描棱镜顺时针旋转,扫描棱镜具有四个镜面,N=4,图9所示为旋转角度为0的位置,此时L2照射在第一扫描镜面,L3照射在第三扫描镜面,图中处于+x方向为第二扫描面,处于-x方向为第四扫描面。以图中 L2的α角为30度,L3的α角也为30度为例,则L2、L3的出射光分别相对x轴夹角为60度。即,对于L2,其alpha为300度,对于L3,其alpha为60度。
当扫描棱镜旋转45度时,theta=45度,则L2面向第一扫描镜面,L3面向第二扫描镜面,L2的出射光的H_Angle为2×45+300=390度,L3的出射光的H_Angle为2×45+60=150度。
L2的出射光的V_Angle为L2的激光发射单元的发射仰角与第一扫描镜面的镜面倾角之和。L3的出射光的V_Angle为L3的激光发射单元的发射仰角与第二扫描镜面的镜面倾角之和。
当扫描棱镜旋转135度时,theta=135度,L2面向第四扫描镜面,L3面向第一扫描镜面,而实际对光线进行反射的扫描镜面已经进行了变换,针对当前实际对光线进行反射的扫描镜面,L2的出射光的H_Angle为2×(135-90)+300=390度,L3的出射光的H_Angle为2×(135-90)+60=150度。
L2的出射光的V_Angle为L2的激光发射单元的发射仰角与第四扫描镜面的镜面倾角之和。L3的出射光的V_Angle为L3的激光发射单元的发射仰角与第一扫描镜面的镜面倾角之和。
当扫描棱镜旋转225度时,theta=225度,L2面向第三扫描镜面,L3面向第四扫描镜面,同理,L2的出射光的H_Angle为2×(225-180)+300=390度,L3的出射光的H_Angle为2×(225-180)+60=150度。
L2的出射光的V_Angle为L2的激光发射单元的发射仰角与第三扫描镜面的镜面倾角之和。L3的出射光的V_Angle为L3的激光发射单元的发射仰角与第四扫描镜面的镜面倾角之和。
当扫描棱镜旋转315度时,theta=315度,L2面向第二扫描镜面,L3面向第三扫描镜面,同理,L2的出射光的H_Angle为2×(315-270)+300=390度,L3的出射光的H_Angle为2×(315-270)+60=150度。
L2的出射光的V_Angle为L2的激光发射单元的发射仰角与第二扫描镜面的镜面倾角之和。L3的出射光的V_Angle为L3的激光发射单元的发射仰角与第三扫描镜面的镜面倾角之和。
对于该镜面倾角以及该发射仰角,将光线沿水平面向+z方向抬升为正,光线沿水平面向-z方向下压为负。
通过上述结构,激光雷达装置可以获得扩展到水平视场,得到部分视场重 合以带来的扫描线加倍,以及基于该结构得到准确的目标位置信息。
对于图10、11中的收发组件4、5,其同样符合上述公式(1)-(5)。
另外,当扫描棱镜替换为其他扫描镜面数量时,例如三棱镜、五棱镜等,原理与上述四棱镜相同,在此不赘述。
在实际的激光雷达装置的运行过程中,可以从当前视场范围中选取其中数据精确度更高的部分,作为激光雷达装置的工作扫描视场。
结合图7A相关描述可知,根据需求选取精确度更高的部分作为工作扫描视场的方法包括:
步骤1,扫描棱镜在旋转360/N度的过程中依次经过旋转第一角度、第二角度、第三角度、第四角度,检测该扫描镜面旋转至第一角度时,获取第一组该收发组件针对第一扫描镜面的信号光;
配合图7A,第一角度为旋转至位置A,第二角度为旋转至位置B,第三角度为旋转至位置C,第四角度为旋转至位置D,N为扫描镜面的数量;该激光雷达装置具有旋转检测装置以检测扫描棱镜的旋转角度;
步骤2,检测该扫描镜面旋转至第二角度时,获取第二组该收发组件针对第二扫描镜面的信号光;
步骤3,检测该扫描镜面旋转至第三角度时,停止获取第一组该收发组件针对第一扫描镜面的信号光;
步骤4,检测该扫描镜面旋转至第四角度时,停止获取第二组该收发组件针对第二扫描镜面的信号光。
也就是说,收发组件2可获取从位置A旋转至位置C过程中所产生的扫描数据。收发组件3可获取从位置B旋转至位置D过程中所产生的扫描数据。
收发组件2可根据驱动装置的控制,在扫描棱镜旋转至位置A时驱动第一组收发组件的激光发射单元开始发射出射光,并在旋转至位置C时停止驱动第一组收发组件的激光发射单元发射出射光,同时,收发组件3可根据驱动装置的控制,在扫描棱镜旋转至位置B时驱动第二组收发组件的激光发射单元开始发射出射光,并在旋转至位置D时停止驱动第二组收发组件的激光发射单元发射出射光。
上述位置ABCD,也就是第一至第四角度,也可根据需求选择具体的位置信息,以截取精度最高的部分作为工作扫描视场。
以三棱镜为例,如图12A所示,三棱镜的中心点位于三维坐标系的坐标原点,在旋转角度为0时,x轴垂直于该三棱镜的截面的三角形底边,激光束L2以垂直y轴的方向入射,L3以可连接该截面右下顶点以及中心点的方向入射。
对于激光束L2,其扫描视场范围如图12B所示,以顺时针方向计算,与x轴夹60度-300度的范围。对于激光束L3,其扫描视场范围如图12C所示,以顺时针方向计算,与x轴夹180度-420度的范围。
可见,其中存在重叠视场,最大重叠范围在与x轴夹180-300度的范围。
扫描棱镜在旋转360/3=120度的过程中依次经过旋转至第一角度0度、第二角度60度、第三角度60度、第四角度120度。
扫描棱镜在旋转至0度时,开始获取L3的扫描数据,此时L3的出射光与x轴夹180度;扫描棱镜在旋转至60度时,开始获取L2的扫描数据,此时L2的出射光与x轴夹180度;扫描棱镜在旋转至60度时,停止获取L3的扫描数据,此时L3的出射光与x轴夹300度;扫描棱镜在旋转至120度时,停止获取L2的扫描数据,此时L2的出射光与x轴夹300度。
上述方案为精确的获取L2、L3之间的最大重叠范围。除此之外也可扩大或缩小所需范围,作为工作扫描视场。
例如,扫描棱镜在旋转360/3=120度的过程中依次经过旋转至第一角度5度、第二角度10度、第三角度105度、第四角度110度。
扫描棱镜在旋转至5度时,开始获取L3的扫描数据,此时L3的出射光与x轴夹190度;扫描棱镜在旋转至10度时,开始获取L2的扫描数据,此时L2的出射光与x轴夹80度;扫描棱镜在旋转至105度时,停止获取L3的扫描数据,此时L3的出射光与x轴夹390度;扫描棱镜在旋转至110度时,停止获取L2的扫描数据,此时L2的出射光与x轴夹280度。此时,与x轴夹190度到与x轴夹280度的范围为重叠视场,并可以获得总共310度的水平视场。
具有其他数量的扫描镜面的激光雷达装置,其扫描过程同理。
工业应用性
扩展激光雷达装置的水平扫描视场。扩展激光雷达装置的扫描线的线数。进一步的,提高激光雷达装置的中心扫描视场的扫描线数量,丰富中心视场的扫描数据。利用少量的激光发射单元产生超过激光发射单元配置数量的扫描线,可降低激光雷达装置内部部件数量、便于部件排布、压缩体积、降低成本。

Claims (17)

  1. 一种激光扫描装置,其特征在于,包括:
    扫描棱镜,该扫描棱镜包括多个扫描镜面,该多个扫描镜面围绕扫描轴旋转,每个该扫描镜面的法线分别与该扫描轴形成一空间角,所有的该空间角的角度不完全相同;
    收发组件,该收发组件包括激光发射单元以及激光接收单元,该激光发射单元通过扫描镜面的转动而产生扫描线,
    其中,同一激光发射单元通过该扫描棱镜的旋转产生多条扫描线。
  2. 如权利要求1所述的激光扫描装置,其特征在于,该装置包括至少两组收发组件,所述收发组件的扫描视场部分重叠;或者
    该装置包括至少三组收发组件,所述收发组件环绕所述扫描棱镜设置,所有收发组件的视场依次对接,形成连续视场。
  3. 如权利要求2所述的激光扫描装置,其特征在于,至少部分所述收发组件相对该扫描轴对称设置。
  4. 如权利要求2所述的激光扫描装置,其特征在于,各个所述收发组件相对该扫描轴的空间姿态夹角不同或相同。
  5. 如权利要求2所述的激光扫描装置,其特征在于,所述收发组件沿该扫描轴的轴向高度不同或相同。
  6. 如权利要求1所述的激光扫描装置,其特征在于,该扫描棱镜包括三个、四个、五个或六个扫描镜面。
  7. 如权利要求6所述的激光扫描装置,其特征在于,所述空间角之间以相同角度差递减。
  8. 如权利要求2所述的激光扫描装置,其特征在于,每组该收发组件包括多个激光发射单元以及多个激光接收单元,每个激光发射单元分别发出一激光束,各个激光束之间均存在夹角。
  9. 如权利要求8所述的激光扫描装置,其特征在于,所述激光束呈发散状态排列或者呈汇聚状态排列。
  10. 如权利要求8所述的激光扫描装置,其特征在于,同一扫描镜面既实现对该激光束的反射,也接收该激光束照射在目标物后所返回的信号光,并将 该信号光反射至与发出该激光束的激光发射单元对应的激光接收单元。
  11. 一种激光雷达装置,其特征在于,包括:
    如权利要求1-10中任一所述的激光扫描装置。
  12. 一种应用于权利要求11所述激光雷达装置的扫描方法,其特征在于,进一步包括:
    设置收发组件,该收发组件包括激光发射单元以及激光接收单元;
    使得具有多个扫描镜面的扫描棱镜围绕扫描轴旋转;
    使得该激光发射单元向该扫描镜面投射激光束,并通过扫描镜面的转动而产生扫描线,每个该扫描镜面的法线分别与该扫描轴形成空间角,所有的该空间角的角度不完全相同,以使得同一个激光发射单元产生多条扫描线。
  13. 如权利要求12所述的方法,其特征在于,设置至少两组收发组件,所述收发组件的扫描视场部分重叠;或者
    设置至少三组收发组件,所述收发组件环绕所述扫描棱镜设置,所有收发组件的视场依次对接,形成连续视场。
  14. 如权利要求12所述的方法,其特征在于,该扫描镜面将与该扫描线对应的从目标物返回的信号光,反射至与产生该扫描线的激光发射单元对应的激光接收单元。
  15. 如权利要求12所述的方法,其特征在于,该激光发射单元向该扫描棱镜投射的激光束经反射后的出射光符合以下公式:
    Figure PCTCN2018000144-appb-100001
    V_Angle=Lidar_Angle(Lidar_NUM)+Mirror_Angle
    X=Range*cos(V_Angle*D2Rad)*cos(H_Angle*D2Rad)
    Y=Range*cos(V_Angle*D2Rad)*sin(-H_Angle*D2Rad)
    Z=Range*sin(V_Angle*D2Rad)
    其中,以该扫描轴在该扫描棱镜中的区段的中心点为坐标原点,建立坐标系,该扫描轴为z轴,在水平面内建立x轴、y轴,H_Angle为该出射光在水平面的投影与x轴之间的角度,V_Angle为该出射光与水平面之间的角度,N为该扫描棱镜所具有的扫描镜面的数量,Lidar_NUM为激光发射单元的编号, Lidar_Angle(Lidar_NUM)为编号为Lidar_NUM的激光发射单元的激光束与水平面之间的角度,Mirror_Angle为产生该出射光的扫描镜面的法线与水平面之间的角度,alpha为扫描棱镜在旋转角度为0时,沿顺时针方向该x轴与该出射光在水平面的投影之间的角度,Range为该激光雷达装置测量得到的该出射光的测距值,D2Rad为一常数,X、Y、Z分别为该出射光所遇到的目标物的三维坐标,其中,当该扫描棱镜沿顺时针旋转时,theta为该扫描棱镜的旋转角度,当该扫描棱镜沿逆时针旋转时,theta为360-该扫描棱镜的旋转角度。
  16. 如权利要求13所述的方法,其特征在于,进一步包括:
    该扫描棱镜在旋转360/N度的过程中依次经过第一角度、第二角度、第三角度、第四角度;
    检测该扫描棱镜旋转至第一角度时,获取第一组该收发组件针对第一扫描镜面的信号光;
    检测该扫描棱镜旋转至第二角度时,获取第二组该收发组件针对第二扫描镜面的信号光;
    检测该扫描棱镜旋转至第三角度时,停止获取第一组该收发组件针对第一扫描镜面的信号光;
    检测该扫描棱镜旋转至第四角度时,停止获取第二组该收发组件针对第二扫描镜面的信号光。
  17. 如权利要求16所述的方法,其特征在于,该获取第一组该收发组件针对第一扫描镜面的信号光的步骤进一步包括:
    驱动第一组该收发组件的激光发射单元投射该激光束;
    该停止获取第一组该收发组件针对第一扫描镜面的信号光的步骤进一步包括:
    停止驱动第一组该收发组件的激光发射单元投射该激光束。
PCT/CN2018/000144 2017-04-19 2018-04-18 一种激光扫描装置、雷达装置及其扫描方法 WO2018192270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/606,580 US11555893B2 (en) 2017-04-19 2018-04-18 Laser scanning device, radar device and scanning method thereof
DE112018002081.9T DE112018002081T5 (de) 2017-04-19 2018-04-18 Laserabtastvorrichtung, Laserradarsatz und Abtastverfahren des Laserradarsatzes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720413010.7 2017-04-19
CN201720413010 2017-04-19
CN201711043161.9 2017-10-31
CN201711043161.9A CN109725299B (zh) 2017-10-31 2017-10-31 一种激光扫描装置、雷达装置及其扫描方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/606,580 Continuation US11555893B2 (en) 2017-04-19 2018-04-18 Laser scanning device, radar device and scanning method thereof

Publications (1)

Publication Number Publication Date
WO2018192270A1 true WO2018192270A1 (zh) 2018-10-25

Family

ID=63856328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000144 WO2018192270A1 (zh) 2017-04-19 2018-04-18 一种激光扫描装置、雷达装置及其扫描方法

Country Status (3)

Country Link
US (1) US11555893B2 (zh)
DE (2) DE202018006300U1 (zh)
WO (1) WO2018192270A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709529A (zh) * 2019-03-05 2019-05-03 深圳市镭神智能系统有限公司 一种旋转棱镜和多线激光雷达测距系统
CN112946666A (zh) * 2021-01-28 2021-06-11 深圳市镭神智能系统有限公司 一种激光雷达系统

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
JP7088937B2 (ja) 2016-12-30 2022-06-21 イノビュージョン インコーポレイテッド 多波長ライダー設計
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US11054508B2 (en) 2017-01-05 2021-07-06 Innovusion Ireland Limited High resolution LiDAR using high frequency pulse firing
CN110573900A (zh) 2017-01-05 2019-12-13 图达通爱尔兰有限公司 用于编码和译码LiDAR的方法和系统
WO2019079642A1 (en) 2017-10-19 2019-04-25 Innovusion Ireland Limited LIDAR WITH EXTENDED DYNAMIC RANGE
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US11977184B2 (en) 2018-01-09 2024-05-07 Seyond, Inc. LiDAR detection systems and methods that use multi-plane mirrors
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
US11391823B2 (en) 2018-02-21 2022-07-19 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
US11422234B2 (en) 2018-02-23 2022-08-23 Innovusion, Inc. Distributed lidar systems
WO2019165294A1 (en) 2018-02-23 2019-08-29 Innovusion Ireland Limited 2-dimensional steering system for lidar systems
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
WO2019245614A2 (en) 2018-03-09 2019-12-26 Innovusion Ireland Limited Lidar safety systems and methods
WO2019199796A1 (en) 2018-04-09 2019-10-17 Innovusion Ireland Limited Compensation circuitry for lidar receiver systems and method of use thereof
WO2019199775A1 (en) 2018-04-09 2019-10-17 Innovusion Ireland Limited Lidar systems and methods for exercising precise control of a fiber laser
US11675053B2 (en) 2018-06-15 2023-06-13 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
CN113167866B (zh) 2018-11-14 2024-08-13 图达通智能美国有限公司 使用多面镜的lidar系统和方法
CN113302515B (zh) 2019-01-10 2024-09-24 图达通智能美国有限公司 具有光束转向和广角信号检测的lidar系统和方法
US11486970B1 (en) 2019-02-11 2022-11-01 Innovusion, Inc. Multiple beam generation from a single source beam for use with a LiDAR system
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
CN112462512B (zh) * 2020-11-11 2022-11-22 山东科技大学 一种机载激光雷达扫描镜装置、系统及扫描方法
US12061289B2 (en) 2021-02-16 2024-08-13 Innovusion, Inc. Attaching a glass mirror to a rotating metal motor frame
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
EP4260086A1 (en) 2021-03-01 2023-10-18 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
WO2022225859A1 (en) * 2021-04-22 2022-10-27 Innovusion, Inc. A compact lidar design with high resolution and ultra-wide field of view
US11662439B2 (en) * 2021-04-22 2023-05-30 Innovusion, Inc. Compact LiDAR design with high resolution and ultra-wide field of view
US11624806B2 (en) 2021-05-12 2023-04-11 Innovusion, Inc. Systems and apparatuses for mitigating LiDAR noise, vibration, and harshness
US11662440B2 (en) 2021-05-21 2023-05-30 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
CN216356147U (zh) 2021-11-24 2022-04-19 图达通智能科技(苏州)有限公司 一种车载激光雷达电机、车载激光雷达及车辆
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793491A (en) * 1992-12-30 1998-08-11 Schwartz Electro-Optics, Inc. Intelligent vehicle highway system multi-lane sensor and method
US6317202B1 (en) * 1998-11-12 2001-11-13 Denso Corporation Automotive radar detecting lane mark and frontal obstacle
CN1590956A (zh) * 2003-08-27 2005-03-09 石川岛播磨重工业株式会社 激光距离测定装置
CN1677050A (zh) * 2004-03-31 2005-10-05 株式会社电装 车辆的目标探测器
CN102508258A (zh) * 2011-11-29 2012-06-20 中国电子科技集团公司第二十七研究所 一种测绘信息获取激光三维成像雷达
US9239959B1 (en) * 2013-04-08 2016-01-19 Lockheed Martin Corporation Multi-resolution, wide field-of-view, unmanned ground vehicle navigation sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851501A (zh) * 2005-04-22 2006-10-25 鸿富锦精密工业(深圳)有限公司 物镜及采用该物镜的光学读取头
CA2651290C (en) * 2008-06-12 2013-11-05 Ophir Corporation Optical air data systems and methods
EP3901653A3 (en) 2010-05-17 2022-03-02 Velodyne Lidar USA, Inc. High definition lidar system
US20130241761A1 (en) * 2012-03-16 2013-09-19 Nikon Corporation Beam steering for laser radar and other uses
CN207133508U (zh) 2017-04-19 2018-03-23 北京北科天绘科技有限公司 一种多角度连续扫描装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793491A (en) * 1992-12-30 1998-08-11 Schwartz Electro-Optics, Inc. Intelligent vehicle highway system multi-lane sensor and method
US6317202B1 (en) * 1998-11-12 2001-11-13 Denso Corporation Automotive radar detecting lane mark and frontal obstacle
CN1590956A (zh) * 2003-08-27 2005-03-09 石川岛播磨重工业株式会社 激光距离测定装置
CN1677050A (zh) * 2004-03-31 2005-10-05 株式会社电装 车辆的目标探测器
CN102508258A (zh) * 2011-11-29 2012-06-20 中国电子科技集团公司第二十七研究所 一种测绘信息获取激光三维成像雷达
US9239959B1 (en) * 2013-04-08 2016-01-19 Lockheed Martin Corporation Multi-resolution, wide field-of-view, unmanned ground vehicle navigation sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709529A (zh) * 2019-03-05 2019-05-03 深圳市镭神智能系统有限公司 一种旋转棱镜和多线激光雷达测距系统
CN112946666A (zh) * 2021-01-28 2021-06-11 深圳市镭神智能系统有限公司 一种激光雷达系统

Also Published As

Publication number Publication date
US11555893B2 (en) 2023-01-17
DE202018006300U1 (de) 2019-12-19
US20210088630A9 (en) 2021-03-25
DE112018002081T5 (de) 2020-07-02
US20200326413A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2018192270A1 (zh) 一种激光扫描装置、雷达装置及其扫描方法
CN109725299B (zh) 一种激光扫描装置、雷达装置及其扫描方法
JP5016245B2 (ja) 物体の六つの自由度を求めるための測定システム
CN207817196U (zh) 一种激光扫描装置以及激光雷达装置
JP4760391B2 (ja) 測距装置及び測距方法
US6798527B2 (en) Three-dimensional shape-measuring system
WO2018082200A1 (zh) 一种二维扫描装置及具有该二维扫描装置的激光雷达装置
CN109254286B (zh) 机载激光雷达光学扫描装置
US7027162B2 (en) System and method for three-dimensional measurement
CN104132639A (zh) 一种微型光学扫描测距装置及方法
JP2014066728A (ja) 六自由度計測装置及び方法
US20080309949A1 (en) Laser metrology system and method
US7708204B2 (en) Laser alignment apparatus
WO2012110635A1 (en) System for measuring the position and movement of an object
CN105190235A (zh) 以六自由度跟踪的结构光扫描仪的补偿
US20120133920A1 (en) High speed, high resolution, three dimensional printed circuit board inspection system
TWI741904B (zh) 測量系統及測量方法
CN110568612A (zh) 一种旋转反射头、激光扫描装置
CN204240979U (zh) 微型光学扫描测距装置、系统及光学测距系统
CN109870708B (zh) 一种具有激光雷达装置的智能车
CN110967681B (zh) 用于三维扫描的结构振镜及应用其的激光雷达
US9127930B2 (en) Distance measurement system and method
CN105092212B (zh) 阵列角反射器指向精度测量系统及方法
CN114858097B (zh) 激光雷达转镜夹角测量方法及测量装置
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787868

Country of ref document: EP

Kind code of ref document: A1