WO2018192191A1 - 链式储能设备和储能电站 - Google Patents

链式储能设备和储能电站 Download PDF

Info

Publication number
WO2018192191A1
WO2018192191A1 PCT/CN2017/104975 CN2017104975W WO2018192191A1 WO 2018192191 A1 WO2018192191 A1 WO 2018192191A1 CN 2017104975 W CN2017104975 W CN 2017104975W WO 2018192191 A1 WO2018192191 A1 WO 2018192191A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
energy storage
storage device
grid
Prior art date
Application number
PCT/CN2017/104975
Other languages
English (en)
French (fr)
Inventor
邹积勇
沈斐
Original Assignee
上海蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蔚来汽车有限公司 filed Critical 上海蔚来汽车有限公司
Publication of WO2018192191A1 publication Critical patent/WO2018192191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks

Definitions

  • the present invention relates to the field of electrical energy technologies, and in particular, to a chain energy storage device and an energy storage power station.
  • the present invention provides a chain energy storage device and an energy storage power station.
  • a chain energy storage device applied to a power grid comprises a three-phase line, the three-phase line is connected in parallel to the power grid through a reactor, or is connected in series to the power grid through an isolation transformer; wherein each phase line comprises a plurality of series connections
  • the link and power quality optimization module; the power quality optimization module is used to balance the reactive power and harmonics generated by the load and the grid voltage fluctuations.
  • the link comprises an energy storage unit, a DC/DC unit and an H-bridge converter; wherein the DC/DC unit is configured to control the voltage output from the energy storage unit to a constant value and input the constant value into the H-bridge converter Device.
  • the energy storage unit is connected in series on the AC output side, and the series reactor is connected to the power grid after matching the grid voltage, and includes:
  • the DC/AC inverter module is connected to a DC/DC bidirectional inverter.
  • the power quality optimization module comprises:
  • a voltage sensor for detecting a phase and a voltage peak of a grid voltage, and performing voltage support and voltage suppression according to grid voltage fluctuations;
  • a current sensor is used to calculate reactive power and anti-harmonics based on the phase and peak value of the voltage, and to balance the reactive power and harmonics generated by the load.
  • the device further includes a first detecting module, wherein the first detecting module is configured to detect whether there is reactive power on the load side by the current sensor, and cancel reverse reactive power to cancel when the reactive power is detected.
  • the first detecting module is configured to detect whether there is reactive power on the load side by the current sensor, and cancel reverse reactive power to cancel when the reactive power is detected.
  • the device further includes a second detecting module; wherein the second detecting module is configured to detect whether there is a harmonic content on the load side by the current sensor, and issue a reverse harmonic to cancel when the harmonic content is detected.
  • the second detecting module is configured to detect whether there is a harmonic content on the load side by the current sensor, and issue a reverse harmonic to cancel when the harmonic content is detected.
  • the device further includes a third detecting module; the power grid includes a switch, and the switch is respectively connected to the three-phase line; wherein the third detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than the rated voltage and the first voltage respectively The limit value is higher than the second voltage limit, and if so, the compensation reactive power value is calculated according to the grid impedance for voltage support.
  • the third detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than the rated voltage and the first voltage respectively The limit value is higher than the second voltage limit, and if so, the compensation reactive power value is calculated according to the grid impedance for voltage support.
  • the device further includes a fourth detecting module;
  • the power grid includes a switch, and the switch is respectively connected to the three-phase line; wherein the fourth detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is higher than the rated voltage and the third voltage respectively The limit is lower than the fourth voltage limit, and if so, the voltage is suppressed by calculating the compensated inductive reactive value according to the grid impedance.
  • the device further includes an evaluation module, configured to collect a voltage signal of the power grid, evaluate low frequency fluctuations of the power grid, and suppress the use of the line impedance and the reactive power of the device to generate reverse damping fluctuations.
  • an evaluation module configured to collect a voltage signal of the power grid, evaluate low frequency fluctuations of the power grid, and suppress the use of the line impedance and the reactive power of the device to generate reverse damping fluctuations.
  • the device further includes a fifth detecting module;
  • the power grid includes a switch, and the switch is respectively connected to the three-phase line; wherein the fifth detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than the fifth voltage limit, if Then, the switch is turned off, the phase and frequency of the voltage on the grid side are synchronously tracked, and the rated voltage is issued to supply power to the load.
  • the device further includes a sixth detecting module;
  • the power grid includes a switch, and the switch is respectively connected to the three-phase line; wherein the sixth detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than a fifth voltage limit, if Then, the switch is turned off, the phase and frequency of the voltage on the grid side are synchronously tracked, and the rated voltage is issued to supply power to the load.
  • the device further includes a seventh detecting module; the seventh detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than a fifth voltage limit, and if so, open the switch to synchronously track the phase of the voltage on the grid side and Frequency, and issued a rated voltage to supply power to the load.
  • the seventh detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than a fifth voltage limit, and if so, open the switch to synchronously track the phase of the voltage on the grid side and Frequency, and issued a rated voltage to supply power to the load.
  • the device further includes a switching module, configured to switch between a standby mode, a power optimization mode, and an energy supply mode; wherein, in the standby mode, the power grid supplies power to the load; and the power optimization mode works for the power quality optimization module.
  • a switching module configured to switch between a standby mode, a power optimization mode, and an energy supply mode; wherein, in the standby mode, the power grid supplies power to the load; and the power optimization mode works for the power quality optimization module.
  • Mode in the energy supply mode, the chain energy storage device supplies power to the load.
  • the switching module is further configured to enable the chain energy storage device to be in the power optimization mode and the energy supply mode at the same time, and also to switch the chain energy storage device from the power optimization mode to the standby mode.
  • the device further includes a switching module, configured to switch between a standby mode, a power optimization mode, and an energy supply mode, and is further configured to: respectively: the first detection module sends reverse reactive power, and the second detection The module emits reverse harmonics, the third detection module performs voltage support, the fourth detection module performs voltage suppression, the evaluation module emits reverse damping fluctuations, and the fifth detection module issues a rated voltage and supplies power to the load; wherein, in the standby mode, The power grid supplies power to the load; the power optimization mode is a mode in which the power quality optimization module operates; in the energy supply mode, the chain energy storage device supplies power to the load.
  • the device further includes a switching module, configured to switch between a standby mode, a power optimization mode, and an energy supply mode, and configured to cause the sixth detection module to issue a rated voltage and supply power to the load; wherein, in standby In the mode, the power grid supplies power to the load; the power optimization mode is a mode in which the power quality optimization module operates; in the energy supply mode, the chain energy storage device supplies power to the load.
  • a switching module configured to switch between a standby mode, a power optimization mode, and an energy supply mode, and configured to cause the sixth detection module to issue a rated voltage and supply power to the load; wherein, in standby In the mode, the power grid supplies power to the load; the power optimization mode is a mode in which the power quality optimization module operates; in the energy supply mode, the chain energy storage device supplies power to the load.
  • the device further includes a switching module, configured to switch between a standby mode, a power optimization mode, and an energy supply mode, and configured to cause the seventh detection module to issue a rated voltage and supply power to the load; wherein, in standby In the mode, the power grid supplies power to the load; the power optimization mode is a mode in which the power quality optimization module operates; in the energy supply mode, the chain energy storage device supplies power to the load.
  • a switching module configured to switch between a standby mode, a power optimization mode, and an energy supply mode, and configured to cause the seventh detection module to issue a rated voltage and supply power to the load; wherein, in standby In the mode, the power grid supplies power to the load; the power optimization mode is a mode in which the power quality optimization module operates; in the energy supply mode, the chain energy storage device supplies power to the load.
  • the three-phase line is in the form of a star or a triangle connection.
  • the voltage on the load side is maintained at the rated voltage of the power grid according to the deviation of the current voltage on the grid side from the rated voltage of the power grid.
  • An energy storage power station includes the above chain energy storage device.
  • the invention provides a chain energy storage device and an energy storage power station, which are applied to a power grid.
  • the chain energy storage device comprises a three-phase line, and the three-phase line is connected in parallel to the power grid via a reactor or connected to the power grid through an isolation transformer.
  • each phase line comprises a plurality of series connected links and a power quality optimization module; wherein the links comprise an energy storage unit, a DC/DC unit and an H-bridge converter; wherein the DC/DC unit is used for energy storage
  • the voltage output of the unit is controlled at a constant value, and a constant value is input to the H-bridge converter; the power quality optimization module is used to balance the reactive power and harmonics generated by the load and the grid voltage fluctuation.
  • the invention integrates the energy storage unit with the DC/DC unit and the H-bridge converter, and considers the power application and the energy storage, thereby solving the following technical problems: (1) caused by three-phase load imbalance Phase current and voltage imbalance; (2) reactive power caused by load; (3) harmonic caused by nonlinear load; (4) voltage fluctuation and flicker caused by impact load and large impedance of line; 5) Damping oscillation between the existing transmission lines; when applying power from energy to energy storage, the relevant control and protection parameters can be recalibrated directly for the energy storage unit, and the energy storage equipment and the electric energy treatment equipment can be combined. One, which saves installation space and costs.
  • FIG. 1 is a schematic structural view of a chain energy storage device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a chain energy storage device in a star topology and a three-phase line connected in parallel to a power grid through a reactor according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a chain energy storage device in a star topology and a three-phase line connected in series through an isolation transformer according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a chain energy storage device having a triangular topology and a three-phase line connected in parallel to a power grid through a reactor according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the structure of a chain energy storage device in a triangular topology and a three-phase line connected in series through an isolation transformer according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a link according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an energy storage unit according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a link topology according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an energy storage power plant according to an embodiment of the present invention.
  • an embodiment of the present invention provides a chain energy storage device that is applied to a power grid.
  • the chain energy storage device 100 comprises a three-phase line, the three-phase line is connected in parallel to the grid via a reactor, or is connected in series to the grid via an isolating transformer; wherein each phase line comprises a plurality of series connected links (101, 102, 103, 104, 105, 106) and electrical energy
  • the quality optimization module 107; the power quality optimization module is used to balance the reactive power and harmonics generated by the load and the grid voltage fluctuations.
  • connection form of the three-phase line may be a star connection form or a triangle type connection form.
  • FIG. 2 exemplarily shows a structural diagram in which a chain energy storage device is a star topology and a three-phase line is connected in parallel on a power grid through a reactor;
  • FIG. 3 exemplarily shows that the chain energy storage device is a star topology The structure of the structure and the three-phase line is connected in series on the power grid through the isolation transformer;
  • FIG. 2 exemplarily shows a structural diagram in which a chain energy storage device is a star topology and a three-phase line is connected in parallel on a power grid through a reactor;
  • FIG. 3 exemplarily shows that the chain energy storage device is a star topology The structure of the structure and the three-phase line is connected in series on the power grid through the isolation transformer;
  • FIG. 1 exemplarily shows a structural diagram in which a chain energy storage device is a star topology and a three-phase line is connected in parallel on a power grid through
  • 4 exemplarily shows a structural diagram of the chain energy storage device being a triangular topology and the three-phase line being connected in parallel on the power grid through the reactor; 5 exemplarily shows a structural illustration of a chain energy storage device being a triangular topology and a three-phase line connected in series via an isolating transformer.
  • each phase line can have N links, where N takes a positive integer.
  • N takes a positive integer.
  • the embodiment of the present invention integrates the energy storage unit with the DC/DC unit and the H-bridge converter by adopting the above technical solution, and considers the power application and the energy storage; the following technical problems are solved: (1) the three-phase load Three-phase current and voltage imbalance caused by unbalance; (2) reactive power caused by load; (3) harmonic caused by nonlinear load; (4) voltage fluctuation caused by impact load and large impedance of line (5) Inter-area damped oscillations in the transmission line; when applying power from energy to energy storage, the relevant control and protection parameters can be recalibrated directly for the energy storage unit, and the energy storage equipment can be The power management equipment is combined into one, saving installation space and cost.
  • the link 60 includes an energy storage unit 61, a DC/DC unit 62, and an H-bridge converter 63; wherein the DC/DC unit 62 It is used to control the voltage output from the energy storage unit 61 at a constant value, and input a constant value to the H-bridge converter 63.
  • the DC/DC unit 62 It is used to control the voltage output from the energy storage unit 61 at a constant value, and input a constant value to the H-bridge converter 63.
  • the DC/DC unit those skilled in the art can refer to the following embodiments: "Design of DC-DC auxiliary power supply with high voltage and wide range input low voltage output", Hu Liang Deng, et al., Journal of Electrical Engineering, Volume 30, Issue 3, 2015.
  • the energy storage unit 70 includes a battery 71, a DC/DC bidirectional inverter 72, and a DC/AC inverter module 73.
  • the DC/DC bidirectional inverter 72 is directly connected to the battery 71.
  • the DC/AC inverter module 73 is connected to the DC/DC bidirectional inverter 72.
  • the energy storage unit is connected in series on the AC output side, and the series reactor is connected to the grid after matching the grid voltage.
  • the energy storage unit may be an energy storage battery pack.
  • the battery supplies a DC voltage to the DC/DC unit, and the DC/DC unit converts the DC voltage and then inputs it to the H-bridge converter.
  • the power quality optimization module includes a voltage sensor and a current sensor.
  • the voltage sensor is used to detect the phase and voltage peaks of the grid voltage, and to perform voltage support and voltage suppression according to grid voltage fluctuations.
  • the current sensor is used to calculate reactive power and anti-harmonics based on the phase and peak value of the voltage, and to balance the reactive power and harmonics generated by the load.
  • the chain energy storage device further includes a first detection module.
  • the first detecting module is configured to detect whether there is reactive power on the load side by using the current sensor, and cancel the reactive power when the reactive power is detected.
  • the chain energy storage device when the reactive energy on the load side is detected, the chain energy storage device emits reverse reactive power to cancel the reactive power.
  • the embodiment can be implemented as an electric energy optimization working mode of the chain energy storage device.
  • the chain energy storage device further includes a second detection module.
  • the second detecting module is configured to detect whether there is a harmonic content on the load side by the current sensor, and issue a reverse harmonic to cancel when the harmonic content is detected.
  • the chain energy storage device counteracts the harmonic content on the load side by generating reverse harmonics.
  • the current of the compensation object can be detected by the current sensor to obtain a compensation current, so that the compensation current cancels the harmonic current on the load side.
  • those skilled in the art can refer to "Study on Nonlinear Control Strategy of Active Power Filters", Yang Guyue, Master Thesis, 2011.
  • the embodiment can be implemented as an electric energy optimization working mode of the chain energy storage device.
  • the chain energy storage device further includes a third detection module; the power grid includes switches, and the switches are respectively connected to the three-phase lines.
  • the third detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than the rated voltage and the first voltage limit respectively and higher than the second voltage limit, and if yes, calculate the compensation reactive power value according to the grid impedance. support.
  • the rated voltage is determined by the principle and conditions of the grid design.
  • the first voltage limit and the second voltage limit can be set according to grid characteristics.
  • the reactive power is compensated and voltage support is performed.
  • Those skilled in the art can calculate the reactive power value from the grid impedance calculation according to the standard method of voltage compensation in the power quality for voltage support, and can also be implemented by referring to the following literature: "Load power impedance of the 10kV feeder reactive power compensation point selection" Moment Method, Yan Wei, Journal of Power Systems and Automation, Vol. 17, No.
  • the embodiment can be implemented as an electric energy optimization working mode of the chain energy storage device.
  • the chain energy storage device further includes a fourth detection module; the power grid includes switches, and the switches are respectively connected to the three-phase lines.
  • the fourth detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is higher than the rated voltage and the third voltage limit respectively and lower than the fourth voltage limit, and if yes, calculating the compensated inductive reactive value according to the grid impedance calculation. Voltage suppression. Those skilled in the art can utilize the standard of voltage compensation in power quality. The quasi-method is compensated by the grid impedance calculation to compensate the inductive reactive power value.
  • the third voltage limit and the fourth voltage limit may be set according to grid characteristics.
  • the inductive reactive power compensation is performed to perform voltage suppression.
  • the embodiment can be implemented as an electric energy optimization working mode of the chain energy storage device.
  • the chain energy storage device further includes an evaluation module for collecting voltage signals of the power grid, evaluating low frequency fluctuations of the power grid, and using the line impedance and the reactive power of the device to generate reverse damping fluctuations. Inhibition.
  • the chain energy storage device analyzes the collected grid voltage signal, evaluates the low frequency fluctuation of the grid, and uses the line impedance and the reactive power of the chain energy storage device to generate reverse damping fluctuations and fluctuate. inhibition.
  • those skilled in the art can refer to the standard damping control algorithm used in the power system for the oscillation of the regional grid oscillation frequency between 0.1 and 5 Hz to generate reverse damping fluctuations and perform fluctuation suppression.
  • the embodiment can be implemented as an electric energy optimization working mode of the chain energy storage device.
  • the chain energy storage device further includes a fifth detecting module;
  • the power grid includes a switch, and the switch is respectively connected to the three-phase line; wherein the fifth detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is Below the fifth voltage limit, if it is, the switch is turned off, the phase and frequency of the grid side voltage are synchronously tracked, and the rated voltage is issued to supply power to the load.
  • the fifth detection module detects that the measured voltage of the switch is lower than the fifth voltage limit by the voltage sensor, the switch is turned off, the phase and frequency of the voltage on the grid side are synchronously tracked, and the rated voltage is generated to supply the load.
  • this embodiment can Implemented as an energy supply mode of operation.
  • the fifth voltage limit can be set according to the characteristics of the power grid.
  • the chain energy storage device further includes a sixth detection module; the power grid includes switches, and the switches are respectively connected to the three-phase lines.
  • the sixth detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than the fifth voltage limit, and if so, open the switch, synchronously track the phase and frequency of the voltage on the grid side, and issue a rated voltage to supply the load. .
  • the sixth detection module detects that the measured voltage of the switch is lower than the fifth voltage limit by the voltage sensor, the switch is turned off, the phase and frequency of the voltage on the grid side are synchronously tracked, and the rated voltage is generated to supply power to the load.
  • the fifth voltage limit can be set according to the grid characteristics.
  • This embodiment can be implemented simultaneously with a chain energy storage device embodiment including a first detection module, a chain energy storage device embodiment including a second detection module, and a chain energy storage device embodiment including an evaluation module. This can be expressed in the actual application as the coexistence of the energy supply working mode and the electric energy optimized working mode.
  • the chain energy storage device further includes a seventh detecting module; the seventh detecting module is configured to detect, by the voltage sensor, whether the measured voltage of the switch is lower than a fifth voltage limit, and if so, open the switch Synchronously track the phase and frequency of the grid side voltage and issue a rated voltage to supply the load.
  • This embodiment can be implemented simultaneously with a chain energy storage device embodiment including a third detection module and a chain energy storage device embodiment including a fourth detection module. This can be expressed in the actual application as the coexistence of the energy supply working mode and the electric energy optimized working mode.
  • the chain energy storage device further includes a switching module.
  • the switching module is configured to switch between a standby mode, a power optimization mode, and an energy supply mode; wherein, in the standby mode, the power grid supplies power to the load; the power optimization mode is a mode in which the power quality optimization module operates; and the energy supply mode Medium chain energy storage equipment supplies power to the load.
  • a star structure or a triangular structure may be adopted, and a series topology or a parallel topology may also be adopted.
  • the switching from the power optimization working mode to the standby working mode is realized by adopting the switching module.
  • the switching module in the embodiment of the chain energy storage device of the present invention is further used for the chain energy storage device to be in the electric energy optimization mode and the energy supply mode at the same time, and is also used for the chain energy storage device. Switch from power optimization mode to standby mode.
  • the chain energy storage device embodiment including the first detection module, the chain energy storage device embodiment including the second detection module, and the chain energy storage device embodiment including the third detection module
  • the chain energy storage device further includes a switching module, and the switching module is used in standby mode and power optimization.
  • the mode is switched between the mode and the energy supply mode, and is further configured to: respectively: the first detection module sends reverse reactive power, the second detection module sends reverse harmonics, the third detection module performs voltage support, and the fourth detection module performs Voltage suppression, the evaluation module emits reverse damping fluctuations, and the fifth detection module issues a rated voltage and supplies power to the load; wherein, in the standby mode, the power grid supplies power to the load; the power optimization mode is a mode in which the power quality optimization module operates; In the mode, the chain energy storage device supplies power to the load.
  • the chain energy storage device is switched between the standby mode, the power optimization mode, and the energy supply mode.
  • the chain energy storage device can use the first detection module to detect whether there is reactive power on the load side through the current sensor, and generate reverse reactive power to cancel the reactive power on the load side, and can use the second detection module to pass the current sensor.
  • the third detection module can be used to detect whether the grid voltage value is lower than the rated voltage and the first voltage limit and greater than the second voltage by the voltage sensor
  • the limit value if yes, calculates the compensation reactive power value according to the grid impedance for voltage support, and can use the four detection module to detect whether the grid voltage value is higher than the rated voltage and higher than the third voltage limit and lower than the fourth voltage by the voltage sensor
  • the limit value if yes, compensates the inductive reactive power value according to the grid impedance for voltage suppression.
  • the evaluation module can be used to analyze the collected grid voltage signal, evaluate the low frequency fluctuation of the grid, and utilize the line impedance and chain energy storage equipment.
  • the reactive power is suppressed by the reverse damping fluctuation, which can be detected by the fifth detection module.
  • the grid side voltage is lower than the voltage threshold (in practical applications, the voltage threshold may be smaller than the first voltage limit), and if so, the grid side switch is disconnected, the voltage, phase and frequency of the grid side are synchronously tracked, and the rated voltage is issued. I think the power is supplied to the load.
  • the embodiment may further include a switching module, where the switching module is used in Switching between the standby mode, the power optimization mode, and the energy supply mode, and for causing the sixth detection module to issue a rated voltage and supply power to the load; wherein, in the standby mode, the power grid supplies power to the load; and the power optimization mode optimizes power quality The mode in which the module works; in the energy supply mode, the chain energy storage device supplies power to the load.
  • the conversion from the energy supply operation mode to the standby operation mode is realized by adopting the switching module.
  • Other related descriptions of this embodiment may refer to other embodiments, and details are not described herein again.
  • the embodiment may further include a switching module for using the standby mode, the power optimization mode, and the energy supply. Switching between modes, and for causing the seventh detecting module to issue a rated voltage and supplying power to the load; wherein, in the standby mode, the power grid supplies power to the load; the power optimization mode is a mode in which the power quality optimization module operates; in the energy supply mode Medium chain energy storage equipment supplies power to the load.
  • the conversion from the energy supply operation mode to the standby operation mode is realized by adopting the switching module.
  • Other related descriptions of this embodiment may refer to other embodiments, and details are not described herein again.
  • the voltage on the load side is maintained at the rated voltage of the power grid according to the deviation ⁇ V between the current voltage of the grid side and the rated voltage of the power grid.
  • the chain energy storage device detects the power grid through a voltage transformer.
  • the chain energy storage device emits a voltage of ⁇ V to ensure that the voltage on the load side is maintained at the rated voltage of the power grid, thereby realizing voltage suppression.
  • the chain energy storage device is a star topology and the three-phase line is connected to the power grid in parallel through the reactor as an example.
  • the preferred embodiment assumes that the number of links (A1, A2, ... An-1, An, B1, B2, ... Bn-1, Bn, C1, C2, ... Cn-1, Cn) is 3n, the number of energy storage units is 3n, and each link includes an energy storage unit, a DC/DC unit, and an H-bridge converter.
  • the H-bridge converter acts as an inverter unit.
  • the energy storage unit includes a battery, a DC/DC bidirectional inverter directly connected to the battery, and a DC/AC inverter module connected to the DC/DC bidirectional inverter. group. 3n energy storage units are connected in series on the AC output side, and after matching the grid voltage, the series reactor L is directly connected to the grid.
  • Fig. 8 exemplarily shows a schematic diagram of a link topology.
  • the working principle of the chain energy storage device is: the battery provides DC voltage DCB+/DCB- to the DC/DC module as input, and the DC/DC module converts the voltage into DC+/DC-input H-bridge converter Device.
  • the main purpose of the DC/DC link is to improve the utilization of the battery and to control the DC voltage of DC+/DC- to a constant value.
  • T1, T2, T3, and T4 are four IGBTs (Insulated Gate Transistors) that invert the DC current on the DC+/DC- side into pulsed AC output from AC1 and AC2.
  • the embodiment of the present invention integrates the energy storage unit with the DC/DC unit and the H-bridge converter by adopting the above technical solution, and considers the power application and the energy storage; the following technical problems are solved: (1) three-phase Three-phase current and voltage imbalance caused by load imbalance; (2) reactive power caused by load; (3) harmonic caused by nonlinear load; (4) voltage caused by impact load and large impedance of line Fluctuation, flicker; (5) Inter-area damped oscillations in the transmission line; when applying power from energy to energy storage, the relevant control and protection parameters can be recalibrated directly for the energy storage unit, and the energy storage equipment can be It is combined with the power management equipment to save installation space and cost; and it can also realize the standby working mode, the electric energy optimization working mode and the energy supply working mode, which is compared with the prior art (conventional energy transfer working mode, That is, the energy supply mode), the embodiment of the present invention can be operated separately in the energy supply (working) mode, or can be simultaneously operated in a combined mode of the electric energy optimization working
  • an embodiment of the present invention further provides an energy storage power station.
  • the embodiment of the energy storage power plant and the chain energy storage device embodiment described above belong to a general inventive concept.
  • the energy storage power station 90 includes the various chain energy storage device embodiments 91 described above.

Abstract

一种链式储能设备(100,91)以及储能电站(90)。其中,链式储能设备(100,91)包括三相线路,三相线路通过电抗器(L)并联在电网上。其中,每一相线路包括多个串联的链节(101-106,A1-An,B1-Bn,C1-Cn,60);每一链节(101-106,A1-An,B1-Bn,C1-Cn,60)包括储能单元(61)、DC/DC单元(62)和H桥变流器(63)。其中,储能单元(61)在交流输出侧串联,匹配电网电压后串联电抗器(L)接入电网,并且包括:电池(71)、DC/DC双向逆变器(72)和DC/AC逆变模组(73)。其中,DC/DC双向逆变器(72)与电池(71)直接连接。DC/AC逆变模组(73)与DC/DC双向逆变器(72)相连。DC/DC单元(62)用于将储能单元(61)输出的电压控制在恒定值,并将恒定值输入H桥变流器(63)。上述技术方案解决了三相电流和电压不平衡、由非线性负荷引起的谐波、电压波动和闪变以及区域间阻尼震荡的技术问题。

Description

链式储能设备和储能电站 技术领域
本发明涉及电能技术领域,尤其是涉及一种链式储能设备以及储能电站。
背景技术
目前,储能技术研究及产业发展十分迅速,国家储能电站项目建设加速。当前,储能设备多采用电池储能技术,并采用蓄电池的梯次利用技术,使得蓄电池的利用率更高,投资回报率更高。
同时,在配电网中,存在很多非线性负载、冲击性负荷,这些非线性、冲击性负荷在运行过程中产生大量的无功和谐波,甚至与电网产生谐振,进一步引起电压波动、大电网谐振等各种电能质量问题。供电公司为了管控,根据该类问题制定了相应的国家标准,传统的方法会在设备末端或配电侧增加专用的补偿电容器、有源补偿设备等。然而,传统的方法仍然存在以下问题:(1)由三相负载不平衡所引起三相电流和电压不平衡;(2)由负荷引起的无功功率;(3)由非线性负荷引起的谐波;(4)由冲击性负荷及线路大阻抗引起的电压波动、闪变;(5)输电线路中存在的区域间阻尼震荡。
发明内容
为了解决现有技术中的有关技术问题,本发明提供一种链式储能设备以及储能电站。
为了实现上述目的,一方面,提供以下技术方案:
一种链式储能设备,其应用于电网;该设备包括三相线路,三相线路通过电抗器并联在电网上,或者通过隔离变压器串联在电网上;其中,每一相线路包括多个串联的链节和电能质量优化模块;电能质量优化模块用于平衡负荷产生的无功功率和谐波以及电网电压波动。
优选地,链节包括储能单元、DC/DC单元和H桥变流器;其中,DC/DC单元用于将储能单元输出的电压控制在恒定值,并将恒定值输入H桥变流器。
优选地,储能单元在交流输出侧串联,匹配电网电压后串联电抗器接入电网,并且包括:
电池;
DC/DC双向逆变器,与电池直接连接;
DC/AC逆变模组,与DC/DC双向逆变器相连。
优选地,电能质量优化模块包括:
电压传感器,用于检测电网电压的相位和电压峰值,并根据电网电压波动进行电压支撑和电压抑制;
电流传感器,用于根据电压的相位和峰值,计算无功功率和反谐波,平衡负荷产生的无功功率和谐波。
优选地,上述设备还包括第一检测模块;其中,第一检测模块用于通过电流传感器检测负荷侧是否有无功功率,并在检测到有无功功率时发出反向无功功率进行抵消。
优选地,上述设备还包括第二检测模块;其中,第二检测模块用于通过电流传感器检测负荷侧是否有谐波含量,并在检测到谐波含量时发出反向谐波进行抵消。
优选地,上述设备还包括第三检测模块;电网包括开关,开关分别与三相线路相连;其中,第三检测模块用于通过电压传感器检测开关的测量电压是否分别低于额定电压和第一电压限值且高于第二电压限值,若是,则根据电网阻抗计算补偿无功值进行电压支撑。
优选地,上述设备还包括第四检测模块;电网包括开关,开关分别与三相线路相连;其中,第四检测模块用于通过电压传感器检测开关的测量电压是否分别高于额定电压和第三电压限值且低于第四电压限值,若是,则根据电网阻抗计算补偿感性无功值进行电压抑制。
优选地,上述设备还包括评估模块,评估模块用于采集电网的电压信号,评估电网的低频波动,并利用线路阻抗和设备的无功功率发出反向阻尼波动进行抑制。
优选地,上述设备还包括第五检测模块;电网包括开关,开关分别与三相线路相连;其中,第五检测模块用于通过电压传感器检测开关的测量电压是否低于第五电压限值,若是,则断开开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为负荷供电。
优选地,上述设备还包括第六检测模块;电网包括开关,开关分别与三相线路相连;其中,第六检测模块用于通过电压传感器检测开关的测量电压是否低于第五电压限值,若是,则断开开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为负荷供电。
优选地,上述设备还包括第七检测模块;第七检测模块用于通过电压传感器检测开关的测量电压是否低于第五电压限值,若是,则断开开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为负荷供电。
优选地,上述设备还包括切换模块,用于在待机模式、电能优化模式和能量供给模式之间进行切换;其中,在待机模式中,电网给负荷供电;电能优化模式为电能质量优化模块工作的模式;在能量供给模式中,链式储能设备为负荷供电。
优选地,切换模块还用于使链式储能设备同时处于电能优化模式和能量供给模式,并还用于使链式储能设备从电能优化模式切换至待机模式。
优选地,上述设备还包括切换模块,切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换,还用于分别使得:第一检测模块发出反向无功功率,第二检测模块发出反向谐波,第三检测模块进行电压支撑,第四检测模块进行电压抑制,评估模块发出反向阻尼波动,第五检测模块发出额定电压并为负荷供电;其中,在待机模式中,电网给负荷供电;电能优化模式为电能质量优化模块工作的模式;在能量供给模式中,链式储能设备为负荷供电。
优选地,上述设备还包括切换模块,切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换,以及用于使得第六检测模块发出额定电压并为负荷供电;其中,在待机模式中,电网给负荷供电;电能优化模式为电能质量优化模块工作的模式;在能量供给模式中,链式储能设备为负荷供电。
优选地,上述设备还包括切换模块,切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换,以及用于使得第七检测模块发出额定电压并为负荷供电;其中,在待机模式中,电网给负荷供电;电能优化模式为电能质量优化模块工作的模式;在能量供给模式中,链式储能设备为负荷供电。
优选地,三相线路为星型或三角型连接形式。
优选地,当三相线路通过隔离变压器串联在电网上时,根据电网侧当前电压与电网额定电压的偏差,将负荷侧的电压维持在电网额定电压。
为了实现上述目的,另一方面,还提供了以下技术方案:
一种储能电站,包括上述链式储能设备。
本发明提供一种链式储能设备以及储能电站,其应用于电网。其中,链式储能设备包括三相线路,三相线路通过电抗器并联在电网上或者通过隔离变压器串联在所述电网上。其中,每一相线路包括多个串联的链节和电能质量优化模块;其中,链节包括储能单元、DC/DC单元和H桥变流器;其中,DC/DC单元用于将储能单元输出的电压控制在恒定值,并将恒定值输入H桥变流器;电能质量优化模块用于平衡负荷产生的无功功率和谐波以及电网电压波动。本发明通过将储能单元与DC/DC单元和H桥变流器集成在一起,同时考虑了动力应用与储能,从而可以解决以下技术问题:(1)由三相负载不平衡所引起三相电流和电压不平衡;(2)由负荷引起的无功功率;(3)由非线性负荷引起的谐波;(4)由冲击性负荷及线路大阻抗引起的电压波动、闪变;(5)输电线路中存在的区域间阻尼震荡;当从动力应用到储能时,可以直接针对储能单元,重新标定相关控制与保护参数即可,并且通过将储能设备与电能治理设备合二为一,从而节省了安装空间和成本。
附图说明
图1为根据本发明实施例的链式储能设备的结构示意图;
图2为根据本发明实施例的链式储能设备为星型拓扑结构且三相线路通过电抗器并联在电网上的结构示意图;
图3为根据本发明实施例的链式储能设备为星型拓扑结构且三相线路通过隔离变压器串联在电网上的结构示意;
图4为根据本发明实施例的链式储能设备为三角型拓扑结构且三相线路通过电抗器并联在电网上的结构示意图;
图5为根据本发明实施例的链式储能设备为三角型拓扑结构且三相线路通过隔离变压器串联在电网上的结构示意;
图6为根据本发明实施例的链节的结构示意图;
图7为根据本发明实施例的储能单元的结构示意图;
图8为根据本发明实施例的链节拓扑结构示意图;
图9为根据本发明实施例的储能电站的结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
如图1所示,本发明实施例提供一种链式储能设备,其应用于电网。该链式储能设备100包括三相线路,三相线路通过电抗器并联在电网上,或者通过隔离变压器串联在电网上;其中,每一相线路包括多个串联的链节(101,102,103,104,105,106)和电能质量优化模块107;电能质量优化模块用于平衡负荷产生的无功功率和谐波以及电网电压波动。
本实施例中,三相线路的连接形式可以是星型连接形式也可以是三角型连接形式。图2示例性地示出了链式储能设备为星型拓扑结构且三相线路通过电抗器并联在电网上的结构示意图;图3示例性地示出了链式储能设备为星型拓扑结构且三相线路通过隔离变压器串联在电网上的结构示意;图4示例性地示出了链式储能设备为三角型拓扑结构且三相线路通过电抗器并联在电网上的结构示意图;图5示例性地示出了链式储能设备为三角型拓扑结构且三相线路通过隔离变压器串联在电网上的结构示意。
根据接入电压等级设备的情况,每相线路可以有N个链节,其中N取正整数。上述实施例中的附图标记不应视为对本发明保护范围的不当限定。
本发明实施例通过采取上述技术方案将储能单元与DC/DC单元和H桥变流器集成在一起,同时考虑了动力应用与储能;解决了以下技术问题:(1)由三相负载不平衡所引起三相电流和电压不平衡;(2)由负荷引起的无功功率;(3)由非线性负荷引起的谐波;(4)由冲击性负荷及线路大阻抗引起的电压波动、闪变;(5)输电线路中存在的区域间阻尼震荡;当从动力应用到储能时,可以直接针对储能单元,重新标定相关控制与保护参数即可,并且通过将储能设备与电能治理设备合二为一,从而节省了安装空间和成本。
在一些实施例中,在上述实施例的基础上,如图6所示,该链节60包括储能单元61、DC/DC单元62和H桥变流器63;其中,DC/DC单元62用于将储能单元61输出的电压控制在恒定值,并将恒定值输入H桥变流器63。其中,对于DC/DC单元的具体结构,本领域技术人员可以参见以下文献中的实施方式:《高电压宽范围输入低电压输出的DC-DC辅助电源设计》,胡亮灯等,电工技术学报,第30卷,第3期,2015年。对于H桥变流器的具体结构,本领域技术人员可以参考以下文献中的设计构思:《基于H桥级联变流器的功率单元设计》,刘景芳等,电源学报,第4期,2011年;《级联H桥型变流器的调制方法建模与优化策略》,高志刚等,电力自动化设备,第30卷,第10期,2010年;《基于DSP和FPGA的七电平级联H桥型变流器的控制研究》,王刚等,硕士论文,2006年。
在一些实施例中,如图7所示,上述储能单元70包括电池71、DC/DC双向逆变器72和DC/AC逆变模组73。其中,DC/DC双向逆变器72与电池71直接连接。DC/AC逆变模组73与DC/DC双向逆变器72相连。储能单元在交流输出侧串联,匹配电网电压后串联电抗器接入电网。
上述储能单元可以是储能电池组。在储能单元中,电池为DC/DC单元提供直流电压,DC/DC单元将该直流电压进行变换,然后输入至H桥变流器。
在一些实施例中,电能质量优化模块包括电压传感器和电流传感器。其中,电压传感器用于检测电网电压的相位和电压峰值,并根据电网电压波动进行电压支撑和电压抑制。电流传感器用于根据电压的相位和峰值,计算无功功率和反谐波,平衡负荷产生的无功功率和谐波。
在一个优选的实施例中,上述链式储能设备还包括第一检测模块。其中,第一检测模块用于通过电流传感器检测负荷侧是否有无功功率,并在检测到有无功功率时发出反向无功功率进行抵消。
本实施例中,链式储能设备在检测到负荷侧的无功功率时,发出反向无功功率以抵消该无功功率。在实际应用中,本实施例可以实施为链式储能设备的电能优化工作模式。
在一个优选的实施例中,上述链式储能设备还包括第二检测模块。其中,该第二检测模块用于通过电流传感器检测负荷侧是否有谐波含量,并在检测到谐波含量时发出反向谐波进行抵消。
本实施例中,链式储能设备通过产生反向谐波来抵消负荷侧的谐波含量。示例性地,可以通过电流传感器对补偿对象的电流进行检测,得到补偿电流,从而使补偿电流与负荷侧的谐波电流相抵消。例如,本领域技术人员可以参考《有源电力滤波器的非线性控制策略研究》,杨覆岳,硕士学位论文,2011年。在实际应用中,本实施例可以实施为链式储能设备的电能优化工作模式。
在一个优选的实施例中,上述链式储能设备还包括第三检测模块;电网包括开关,开关分别与三相线路相连。其中,第三检测模块用于通过电压传感器检测开关的测量电压是否分别低于额定电压和第一电压限值且高于第二电压限值,若是,则根据电网阻抗计算补偿无功值进行电压支撑。
其中,额定电压由电网设计的原理和条件决定。第一电压限值和第二电压限值可以根据电网特性进行设置。
上述实施例中,当第三检测模块检测到开关两端的测量电压低于额定电压和第一电压限值且高于第二电压限值时,补偿无功,进行电压支撑。本领域技术人员可以根据电能质量中电压补偿的标准方法来由电网阻抗计算得到补偿无功值,以进行电压支撑,也可以参考以下文献进行实施:《10kV馈线无功补偿选点的负荷功率阻抗矩方法》,颜伟,电力系统及其自动化学报,第17卷,第5期,2005;《配电网无功与谐波综合补偿原理及方法的研究》,潘发君,学位论文,2007;《地区电网感性无功补偿优化配置方法》,张勇军等,电网技术,第11期,2011年;《地区电网感性无功补偿优化配置研究》,刘瀚林,学位论文,2012年。在实际应用中,本实施例可以实施为链式储能设备的电能优化工作模式。
在一个优选的实施例中,上述链式储能设备还包括第四检测模块;电网包括开关,开关分别与三相线路相连。其中,第四检测模块用于通过电压传感器检测开关的测量电压是否分别高于额定电压和第三电压限值且低于第四电压限值,若是,则根据电网阻抗计算补偿感性无功值进行电压抑制。本领域技术人员可以利用电能质量中电压补偿的标 准方法由电网阻抗计算补偿感性无功值进行电压抑制,也可以参考以下文献进行实施:《10kV馈线无功补偿选点的负荷功率阻抗矩方法》,颜伟,电力系统及其自动化学报,第17卷,第5期,2005;《配电网无功与谐波综合补偿原理及方法的研究》,潘发君,学位论文,2007;《地区电网感性无功补偿优化配置方法》,张勇军等,电网技术,第11期,2011年;《地区电网感性无功补偿优化配置研究》,刘瀚林,学位论文,2012年。
其中,第三电压限值和第四电压限值可以根据电网特性进行设置。
本实施例中,当第四检测模块检测到开关两端的测量电压高于额定电压和第三电压限值且低于第四电压限值时,则进行感性无功补偿,进行电压抑制。本领域技术人员可以利用电能质量中电压补偿的标准方法由电网阻抗计算补偿感性无功值进行电压抑制。在实际应用中,本实施例可以实施为链式储能设备的电能优化工作模式。
在一个优选的实施例中,上述链式储能设备还包括评估模块,评估模块用于采集电网的电压信号,评估电网的低频波动,并利用线路阻抗和设备的无功功率发出反向阻尼波动进行抑制。
本实施例中,链式储能设备对采集到的电网电压信号进行分析,评估电网的低频波动情况,并利用线路阻抗和链式储能设备的无功功率,产生反向阻尼波动,进行波动抑制。示例性地,本领域技术人员可以参考电力系统中针对区域电网震荡频率在0.1~5Hz之间的震荡所采用的标准阻尼控制算法来产生反向阻尼波动,进行波动抑制。在实际应用中,本实施例可以实施为链式储能设备的电能优化工作模式。
在一个优选的实施例中,上述链式储能设备还包括第五检测模块;电网包括开关,开关分别与三相线路相连;其中,第五检测模块用于通过电压传感器检测开关的测量电压是否低于第五电压限值,若是,则断开开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为负荷供电。
本实施例中,当第五检测模块通过电压传感器检测开关的测量电压低于第五电压限值时,断开开关,同步跟踪电网侧电压的相位及频率,并产生额定电压,来为负荷供电。在实际应用中,本实施例可以 实施为能量供给工作模式。其中,第五电压限值可以根据电网特性进行设置。
在一个优选的实施例中,上述链式储能设备还包括第六检测模块;电网包括开关,开关分别与三相线路相连。其中,第六检测模块用于通过电压传感器检测开关的测量电压是否低于第五电压限值,若是,则断开开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为负荷供电。
其中,当第六检测模块通过电压传感器检测开关的测量电压低于第五电压限值时,则断开开关,同步跟踪电网侧电压的相位及频率,并产生额定电压,为负荷供电。这里,第五电压限值可以根据电网特性进行设置。
本实施例可以与包括第一检测模块的链式储能设备实施例、包括第二检测模块的链式储能设备实施例以及包括评估模块的链式储能设备实施例同时实施。这在实际应用中可以表现为能量供给工作模式与电能优化工作模式共存的情况。
在一个优选的实施例中,上述链式储能设备还包括第七检测模块;第七检测模块用于通过电压传感器检测开关的测量电压是否低于第五电压限值,若是,则断开开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为负荷供电。
本实施例可以与包括第三检测模块的链式储能设备实施例和包括第四检测模块的链式储能设备实施例同时实施。这在实际应用中可以表现为能量供给工作模式与电能优化工作模式共存的情况。
在一个优选的实施例中,在包括第五检测模块的链式储能设备实施例的基础上,上述链式储能设备还包括切换模块。其中,切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换;其中,在待机模式中,电网给负荷供电;电能优化模式为电能质量优化模块工作的模式;在能量供给模式中,链式储能设备为负荷供电。
在上述待机模式、电能优化模式和能量供给模式三种工作模式中均可以采用星型结构或三角型结构,也均可以采用串联拓扑结构或并联拓扑结构。
本实施例通过采用切换模块,实现了由电能优化工作模式向待机工作模式的转换。
在上述实施例的基础上,本发明链式储能设备实施例中的切换模块还用于使链式储能设备同时处于电能优化模式和能量供给模式,并还用于使链式储能设备从电能优化模式切换至待机模式。
在一个优选的实施例中,在包括第一检测模块的链式储能设备实施例、包括第二检测模块的链式储能设备实施例、包括第三检测模块的链式储能设备实施例、包括第四检测模块的链式储能设备实施例、包括评估模块的链式储能设备实施例的基础上,链式储能设备还包括切换模块,切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换,还用于分别使得:第一检测模块发出反向无功功率,第二检测模块发出反向谐波,第三检测模块进行电压支撑,第四检测模块进行电压抑制,评估模块发出反向阻尼波动,第五检测模块发出额定电压并为负荷供电;其中,在待机模式中,电网给负荷供电;电能优化模式为电能质量优化模块工作的模式;在能量供给模式中,链式储能设备为负荷供电。
本实施例通过采用切换模块,实现了链式储能设备在待机模式、电能优化模式和能量供给模式三种工作模式之间的相互切换。该链式储能设备可以利用第一检测模块通过电流传感器检测负荷侧是否有无功功率,并发出反向无功功率来抵消负荷侧的无功功率,可以利用第二检测模块通过电流传感器来检测负荷侧的谐波含量,并发出反向谐波抵消负荷侧的谐波,可以利用第三检测模块通过电压传感器检测电网电压值是否低于额定电压和第一电压限值并大于第二电压限值,若是,则根据电网阻抗计算补偿无功值进行电压支撑,可以利用四检测模块,通过电压传感器检测电网电压值是否高于额定电压且高于第三电压限值并低于第四电压限值,若是,则根据电网阻抗计算补偿感性无功值进行电压抑制,可以利用评估模块对采集到的电网电压信号进行分析,评估电网的低频波动情况,并利用线路阻抗及链式储能设备的无功功率发出反向阻尼波动进行抑制,可以利用第五检测模块检测电网侧电压是否低于电压阈值(在实际应用中,该电压阈值可以小于第一电压限值),若是,则分断电网侧的开关,同步跟踪电网侧的电压、相位及频率,发出额定电压,以为负荷供电。
在一个优选的实施例中,在包括第六检测模块的链式储能设备实施例的基础上,本实施例还可以包括切换模块,该切换模块用于在 待机模式、电能优化模式和能量供给模式之间进行切换,以及用于使得第六检测模块发出额定电压并为负荷供电;其中,在待机模式中,电网给负荷供电;电能优化模式为电能质量优化模块工作的模式;在能量供给模式中,链式储能设备为负荷供电。
本实施例通过采用切换模块,实现了由能量供给工作模式向待机工作模式的转换。本实施例的其他相关说明可以参考其他实施例,在此不再赘述。
在一个优选的实施例中,在包括第七检测模块的链式储能设备实施例的基础上,本实施例还可以包括切换模块,该切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换,以及用于使得第七检测模块发出额定电压并为负荷供电;其中,在待机模式中,电网给负荷供电;电能优化模式为电能质量优化模块工作的模式;在能量供给模式中,链式储能设备为负荷供电。
本实施例通过采用切换模块,实现了由能量供给工作模式向待机工作模式的转换。本实施例的其他相关说明可以参考其他实施例,在此不再赘述。
在一个优选的实施例中,在链式储能设备的三相线路通过隔离变压器串联在电网上时,根据电网侧当前电压与电网额定电压的偏差ΔV,将负荷侧的电压维持在电网额定电压。
举例来说,以星型或三角型拓扑结构的链式储能设备为例,在三相线路通过隔离变压器串联在所述电网上的情况下,链式储能设备通过电压互感器检测到电网侧当前电压值V1,V1与电网额定电压Vn的偏差为ΔV=V1-Vn,则链式储能设备发出ΔV的电压,以保证负荷侧的电压维持在电网额定电压,从而实现了电压抑制。
下面结合图2-5和8以一优选实施例来详细说明本发明。
图2、3、4、5示例性地示出了链式储能设备连接到电网上的示意图。这里,以链式储能设备为星型拓扑结构且三相线路通过电抗器并联在电网上为例进行说明。如图2所示,本优选实施例假设链节(A1,A2,…An-1,An,B1,B2,…Bn-1,Bn,C1,C2,…Cn-1,Cn)的数量为3n,储能单元个数为3n个,每个链节包括储能单元、DC/DC单元与H桥变流器。其中,H桥变流器作为逆变单元。储能单元包括电池、与电池直接连接的DC/DC双向逆变器和与DC/DC双向逆变器相连的DC/AC逆变模 组。3n个储能单元在交流输出侧串联,并匹配电网电压后串联电抗器L直接接入电网。
图8示例性地示出了链节拓扑结构示意图。如图8所示,链式储能设备的工作原理为:蓄电池提供直流电压DCB+/DCB-给DC/DC模块作为输入,DC/DC模块将该电压变换为DC+/DC-输入H桥变流器。DC/DC环节的主要目的是为了提高蓄电池的利用率,将DC+/DC-的直流电压控制在一个恒定值。T1、T2、T3和T4是4个IGBT(绝缘栅门极晶体管),将DC+/DC-侧的直流电逆变成脉冲交流从AC1和AC2输出。
本发明实施例通过采用上述技术方案,将储能单元与DC/DC单元和H桥变流器集成在一起,同时考虑了动力应用与储能;解决了以下技术问题:(1)由三相负载不平衡所引起三相电流和电压不平衡;(2)由负荷引起的无功功率;(3)由非线性负荷引起的谐波;(4)由冲击性负荷及线路大阻抗引起的电压波动、闪变;(5)输电线路中存在的区域间阻尼震荡;当从动力应用到储能时,可以直接针对储能单元,重新标定相关控制与保护参数即可,并且通过将储能设备与电能治理设备合二为一,从而节省了安装空间和成本;而且还可以实现待机工作模式、电能优化工作模式与能量供给工作模式,这与现有技术相比(常规的传能工作模式,即能量供给模式),本发明实施例可单独运行于能量供给(工作)模式,也可同时运行于电能优化工作模式与能量供给工作模式的组合模式。链式储能设备实施例可以为电动汽车、电动自行车等进行充电。
此外,本发明实施例还提供一种储能电站。如图9所示,该储能电站实施例与上述链式储能设备实施例属于一个总的发明构思。该储能电站90包括上述各个链式储能设备实施例91。
需要说明的是,文中术语“第一”、“第二”等不应视为对本发明的不当限定。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,上述各实施例相同的部分可以相互参见,出于简要的目的,不再赘述,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (20)

  1. 一种链式储能设备,其应用于电网;其特征在于,所述设备包括三相线路,所述三相线路通过电抗器并联在所述电网上,或者通过隔离变压器串联在所述电网上;其中,每一相线路包括多个串联的链节和电能质量优化模块;所述电能质量优化模块用于平衡负荷产生的无功功率和谐波以及电网电压波动。
  2. 根据权利要求1所述的链式储能设备,其特征在于,所述链节包括储能单元、DC/DC单元和H桥变流器;其中,所述DC/DC单元用于将所述储能单元输出的电压控制在恒定值,并将所述恒定值输入所述H桥变流器。
  3. 根据权利要求2所述的链式储能设备,其特征在于,所述储能单元在交流输出侧串联,匹配电网电压后串联所述电抗器接入所述电网,并且包括:
    电池;
    DC/DC双向逆变器,与所述电池直接连接;
    DC/AC逆变模组,与所述DC/DC双向逆变器相连。
  4. 根据权利要求1所述的链式储能设备,其特征在于,所述电能质量优化模块包括:
    电压传感器,用于检测电网电压的相位和电压峰值,并根据所述电网电压波动进行电压支撑和电压抑制;
    电流传感器,用于根据电压的相位和峰值,计算无功功率和反谐波,平衡所述负荷产生的所述无功功率和所述谐波。
  5. 根据权利要求4所述的链式储能设备,其特征在于,所述设备还包括第一检测模块;其中,所述第一检测模块用于通过所述电流传感器检测负荷侧是否有无功功率,并在检测到有所述无功功率时发出反向无功功率进行抵消。
  6. 根据权利要求4所述的链式储能设备,其特征在于,所述设备还包括第二检测模块;其中,所述第二检测模块用于通过所述电流传感器检测负荷侧是否有谐波含量,并在检测到所述谐波含量时发出反向谐波进行抵消。
  7. 根据权利要求4所述的链式储能设备,其特征在于,所述设备还 包括第三检测模块;所述电网包括开关,所述开关分别与所述三相线路相连;其中,所述第三检测模块用于通过所述电压传感器检测所述开关的测量电压是否分别低于额定电压和第一电压限值且高于第二电压限值,若是,则根据电网阻抗计算补偿无功值进行电压支撑。
  8. 根据权利要求4所述的链式储能设备,其特征在于,所述设备还包括第四检测模块;所述电网包括开关,所述开关分别与所述三相线路相连;其中,所述第四检测模块用于通过所述电压传感器检测所述开关的测量电压是否分别高于所述额定电压和第三电压限值且低于第四电压限值,若是,则根据所述电网阻抗计算补偿感性无功值进行电压抑制。
  9. 根据权利要求5所述的链式储能设备,其特征在于,所述设备还包括评估模块,所述评估模块用于采集所述电网的电压信号,评估所述电网的低频波动,并利用线路阻抗和所述设备的无功功率发出反向阻尼波动进行抑制。
  10. 根据权利要求4所述的链式储能设备,其特征在于,所述设备还包括第五检测模块;所述电网包括开关,所述开关分别与所述三相线路相连;其中,所述第五检测模块用于通过所述电压传感器检测所述开关的测量电压是否低于第五电压限值,若是,则断开所述开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为所述负荷供电。
  11. 根据权利要求5、6或9所述的链式储能设备,其特征在于,所述设备还包括第六检测模块;所述电网包括开关,所述开关分别与所述三相线路相连;其中,所述第六检测模块用于通过所述电压传感器检测所述开关的测量电压是否低于第五电压限值,若是,则断开所述开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为所述负荷供电。
  12. 根据权利要求7或8所述的链式储能设备,其特征在于,所述设备还包括第七检测模块;所述第七检测模块用于通过所述电压传感器检测所述开关的测量电压是否低于第五电压限值,若是,则断开所述开关,同步跟踪电网侧电压的相位及频率,并发出额定电压,为所述负荷供电。
  13. 根据权利要求10所述的链式储能设备,其特征在于,所述设备还包括切换模块,用于在待机模式、电能优化模式和能量供给模式之间进行切换;其中,在所述待机模式中,所述电网给所述负荷供电;所述电能优化模式为所述电能质量优化模块工作的模式;在所述能量供给模式中,所述链式储能设备为所述负荷供电。
  14. 根据权利要求13所述的链式储能设备,其特征在于,所述切换模块还用于使所述链式储能设备同时处于所述电能优化模式和所述能量供给模式,并还用于使所述链式储能设备从所述电能优化模式切换至所述待机模式。
  15. 根据权利要求5、6、7、8、9或10所述的链式储能设备,其特征在于,所述设备还包括切换模块,所述切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换,还用于分别使得:所述第一检测模块发出反向无功功率,所述第二检测模块发出反向谐波,所述第三检测模块进行电压支撑,所述第四检测模块进行电压抑制,所述评估模块发出反向阻尼波动,所述第五检测模块发出额定电压并为所述负荷供电;其中,在所述待机模式中,所述电网给所述负荷供电;所述电能优化模式为所述电能质量优化模块工作的模式;在所述能量供给模式中,所述链式储能设备为所述负荷供电。
  16. 根据权利要求11所述的链式储能设备,其特征在于,所述设备还包括切换模块,所述切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换,以及用于使得所述第六检测模块发出额定电压并为所述负荷供电;其中,在所述待机模式中,所述电网给所述负荷供电;所述电能优化模式为所述电能质量优化模块工作的模式;在所述能量供给模式中,所述链式储能设备为所述负荷供电。
  17. 根据权利要求12所述的链式储能设备,其特征在于,所述设备还包括切换模块,所述切换模块用于在待机模式、电能优化模式和能量供给模式之间进行切换,以及用于使得所述第七检测模块发出额定电压并为所述负荷供电;其中,在所述待机模式中,所述电网给所述负荷供电;所述电能优化模式为所述电能质量优化模块工作的模式;在所述能量供给模式中,所述链式储能设备为所述负荷供电。
  18. 根据权利要求1所述的链式储能设备,其特征在于,所述三相线路为星型或三角型连接形式。
  19. 根据权利要求14所述的链式储能设备,其特征在于,当所述三相线路通过隔离变压器串联在所述电网上时,根据电网侧当前电压与电网额定电压的偏差,将负荷侧的电压维持在所述电网额定电压。
  20. 一种储能电站,其特征在于,包括权利要求1-19中任一所述的链式储能设备。
PCT/CN2017/104975 2017-04-19 2017-09-30 链式储能设备和储能电站 WO2018192191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710258858.1A CN106936149B (zh) 2017-04-19 2017-04-19 链式储能设备和储能电站
CN201710258858.1 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018192191A1 true WO2018192191A1 (zh) 2018-10-25

Family

ID=59437889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104975 WO2018192191A1 (zh) 2017-04-19 2017-09-30 链式储能设备和储能电站

Country Status (2)

Country Link
CN (1) CN106936149B (zh)
WO (1) WO2018192191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366716A (zh) * 2020-10-28 2021-02-12 广东电网有限责任公司韶关供电局 一种低压台区的电压平衡系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936149B (zh) * 2017-04-19 2024-02-02 上海蔚来汽车有限公司 链式储能设备和储能电站
CN110299733B (zh) * 2018-03-23 2023-04-07 比亚迪股份有限公司 集成式动力电池包、储能系统和使用梯次电池包储能的方法
CN110299734A (zh) * 2018-03-23 2019-10-01 比亚迪股份有限公司 储能系统和使用梯次电池包进行储能的方法
CN110299735A (zh) * 2018-03-23 2019-10-01 比亚迪股份有限公司 集成式动力电池包、储能系统和使用梯次电池包储能的方法
CN109301912B (zh) * 2018-10-12 2024-02-20 苏州唯控汽车科技有限公司 电动车直接充电电压匹配单相转三相矩阵式切换开关

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814849A (zh) * 2010-04-26 2010-08-25 哈尔滨九洲电气股份有限公司 一种全桥三电平控制的变流装置
CN103151783A (zh) * 2013-04-09 2013-06-12 马伏军 一种三相高压级联型混合功率补偿器及其控制方法
CN103457271A (zh) * 2013-08-02 2013-12-18 上海交通大学 带有功调节能力的链式静止同步补偿器及其级联单元
CN103580048A (zh) * 2013-10-12 2014-02-12 上海交通大学 一种集成有源电力滤波器的链式电池储能系统
CN205724898U (zh) * 2016-06-22 2016-11-23 全球能源互联网研究院 串联混合型静止同步串联补偿器
CN106936149A (zh) * 2017-04-19 2017-07-07 上海蔚来汽车有限公司 链式储能设备和储能电站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453171B (zh) * 2008-09-12 2011-09-28 清华大学 基于变压器串联多重化和链式结构的统一电能质量控制器
CN102957151A (zh) * 2011-08-22 2013-03-06 台达电子企业管理(上海)有限公司 一种用于可再生能源系统的功率补偿装置及其方法
CN102969730B (zh) * 2012-11-16 2015-12-09 上海交通大学 一种双级链式储能变流器控制方法
CN103280829B (zh) * 2013-04-26 2016-06-01 上海交通大学 一种应用于大容量电池储能的隔离双级链式变流器
CN103401462B (zh) * 2013-07-09 2016-02-10 上海交通大学 基于三电平h桥级联的单相链式静止同步补偿器
CN103675539B (zh) * 2013-11-27 2016-06-22 广州智光电气股份有限公司 一种级联式储能变流器检测平台及其控制方法
CN104410063B (zh) * 2014-03-21 2016-03-23 南车株洲电力机车研究所有限公司 一种级联型统一电能质量调节系统
CN207039202U (zh) * 2017-04-19 2018-02-23 上海蔚来汽车有限公司 链式储能设备和储能电站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814849A (zh) * 2010-04-26 2010-08-25 哈尔滨九洲电气股份有限公司 一种全桥三电平控制的变流装置
CN103151783A (zh) * 2013-04-09 2013-06-12 马伏军 一种三相高压级联型混合功率补偿器及其控制方法
CN103457271A (zh) * 2013-08-02 2013-12-18 上海交通大学 带有功调节能力的链式静止同步补偿器及其级联单元
CN103580048A (zh) * 2013-10-12 2014-02-12 上海交通大学 一种集成有源电力滤波器的链式电池储能系统
CN205724898U (zh) * 2016-06-22 2016-11-23 全球能源互联网研究院 串联混合型静止同步串联补偿器
CN106936149A (zh) * 2017-04-19 2017-07-07 上海蔚来汽车有限公司 链式储能设备和储能电站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366716A (zh) * 2020-10-28 2021-02-12 广东电网有限责任公司韶关供电局 一种低压台区的电压平衡系统

Also Published As

Publication number Publication date
CN106936149A (zh) 2017-07-07
CN106936149B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2018192191A1 (zh) 链式储能设备和储能电站
CN109412166B (zh) 基于双母线交叉供电的动态电压恢复系统
CN110729909B (zh) 一种多端口铁路功率调节器系统及其综合控制方法
CN113725856B (zh) 一种基于混合储能和晶闸管的多功能电能质量治理装置
CN103606926A (zh) 基于链式结构的大容量统一电能质量控制器及其控制方法
CN103580048A (zh) 一种集成有源电力滤波器的链式电池储能系统
Zhang et al. Consensus enhanced droop control strategy for islanding mode multi converter system
Salimbeni et al. Integration of active filter and energy storage system for power quality improvement in microgrids
Vechiu et al. Power quality improvement using an advanced control of a four-leg multilevel converter
CN207039202U (zh) 链式储能设备和储能电站
Li et al. Dual buck based power decoupling circuit for single phase inverter/rectifier
KR20140075063A (ko) 풍력 발전 출력 보상 방법 및 시스템
CN111106621B (zh) 一种具有低电压穿越功能的谐波隔离电源装置及控制方法
KR101592227B1 (ko) 에너지저장시스템의 dc 버스 불균형 제어 회로
CN210327048U (zh) 一种交流微电网模拟系统
CN202172283U (zh) 一种无主从自均流并网并联不间断电源系统
Neira et al. Sequential phase-shifted model predictive control for a multilevel converter with integrated battery energy storage
Łukasz et al. Control of a Four-wire Hybrid Prosumer Converter for Balancing Utility Grids
Townsend et al. Fractionally-rated DC-DC stages for use in multilevel cascaded converter utility-scale battery energy storage systems
CN110912132A (zh) 一种单相级联型有源电力滤波器谐波补偿控制方法
Zare et al. Harmonic Cancellations in Parallel Active Front End Inverters in Distribution Networks: IEC 61000-3-16 and Phase-Angles
CN116914801B (zh) 集成电能质量治理功能的多端口能量路由器及其控制方法
Ren et al. Distributed Power Management and Adaptive Coordinated Control for SST-Based Power Systems
Thomas Bidirectional dual inverter algorithm for grid tied microgrid systems
Zhai et al. An impedance-based active-filter additional control method of PWM-converters to mitigate voltage unbalance and harmonics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906698

Country of ref document: EP

Kind code of ref document: A1