WO2018192042A1 - 一种环境友好型囊袋式井下溶洞封堵装置及其封堵方法 - Google Patents

一种环境友好型囊袋式井下溶洞封堵装置及其封堵方法 Download PDF

Info

Publication number
WO2018192042A1
WO2018192042A1 PCT/CN2017/084793 CN2017084793W WO2018192042A1 WO 2018192042 A1 WO2018192042 A1 WO 2018192042A1 CN 2017084793 W CN2017084793 W CN 2017084793W WO 2018192042 A1 WO2018192042 A1 WO 2018192042A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
radial
slider
receiving tube
cement
Prior art date
Application number
PCT/CN2017/084793
Other languages
English (en)
French (fr)
Inventor
王匀
蒋志刚
姜鼎
张乐
於伟杰
许桢英
陆素雯
尹研
招玉春
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB1907009.3A priority Critical patent/GB2570259B/en
Publication of WO2018192042A1 publication Critical patent/WO2018192042A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D19/00Keeping dry foundation sites or other areas in the ground
    • E02D19/06Restraining of underground water
    • E02D19/12Restraining of underground water by damming or interrupting the passage of underground water

Definitions

  • the invention belongs to the field of oil drilling, and in particular relates to an environmentally friendly bag-type underground cave clogging device and a sealing method thereof.
  • the present invention provides an environmentally friendly bag-type downhole cave plugging device for plugging cavities from the wellhead to the bottom of the well.
  • the cement is slowly poured into the bag until the bag fills the cavity, and the bag filled with cement is put into the cave, and further drilling is performed when the cement in the bag is solidified.
  • This not only allows the cavern to be quickly blocked to prevent safety problems, but also effectively solves the problems of drilling fluid loss, cement leakage, etc., greatly improving the efficiency of the cavern plugging work and reducing the cost of plugging work.
  • the present invention adopts a mechanical transmission, and utilizes a combination of mechanical components such as a connecting rod, a hinge, a spring, a check valve, a slide rail, an ultrasonic sensor, a ratchet, an electromagnet, etc., and uses a bag to fill the cement and gradually expands.
  • mechanical components such as a connecting rod, a hinge, a spring, a check valve, a slide rail, an ultrasonic sensor, a ratchet, an electromagnet, etc.
  • An environmentally friendly bag-type underground cave clogging device comprising: a sleeve, a cement receiving device, a opening and closing device, a sensing control system, a drilling tool, and a liquid filling system; Having a first stepped cavity and a second stepped cavity for mounting the opening and closing device and the cement receiving device; the sidewall of the first stepped cavity of the sleeve is symmetrically opened with two drilling fluid openings Two longitudinal slider rails are symmetrically disposed on the sidewall of the first stepped cavity, and two symmetrically arranged radial sliders are mounted on the sidewall of the first stepped cavity.
  • the mounting slots of the two radial sliders are respectively located at the middle section of the longitudinal slider rail; the bottom surface of the first stepped cavity is fixed with four circumferentially evenly distributed racks, the sleeve Two symmetrically disposed sensor mounting slots are disposed on the side wall of the upper portion of the first stepped cavity, and two radial directions are disposed on the sidewall between the first stepped cavity and the second stepped cavity.
  • a mounting groove of the slider 3; the sleeve top is provided with a clamping pin, the first Stepped cavity provided between the clamping tube receiving a pin, disposed between the first cavity and the second stepped stepped two tube receiving cavity;
  • the opening and closing device comprises a pawl, a rubber stopper, a driven rocker, a ring, a longitudinal slider, a connecting plate, a connecting column, a connecting block, a hinge one, a hinge two, a hinge three, and a radial slider two;
  • the longitudinal sliders are respectively mounted on two longitudinal slider rails, and the connecting plates are welded on the longitudinal sliding blocks, one end of the connecting post is welded on the connecting plate, and the other end is welded to the ring, two followers
  • One end of the rocker is hinged on the ring and symmetrically arranged by a hinge, and the other end of the two driven rockers is hinged to a radial slider 2 by a hinge two, the bottom surface of the radial slider 2
  • the bottom surface of the first stepped cavity is in contact with and can cover the pipe of the receiving pipe 2, and the side of the radial sliding block 2 facing the opening of the drilling fluid is provided with a rubber plug, and the pawl is hinged to the
  • the cement receiving device is installed in the second stepped cavity and communicates with the receiving tube 2 through the receiving tube 3; the drilling tool is connected to the sleeve through the clamping pin; the liquid filling system is threadedly mounted on the drill Above
  • the sensing control system comprises a radial slider three, an electromagnet two, a radial slider one, an electromagnet one, an ultrasonic sensor, a control system, a spring one, a spring two; two radial sliders three are respectively installed in the diameter
  • the receiving tube 3 is placed in the mounting groove of the slider 3;
  • the two electromagnets 2 are respectively mounted on the outside of the mounting groove wall of the two radial sliders 3;
  • the two radial sliders are respectively mounted on the two paths In the mounting slot of the slider 1;
  • an electromagnet is arranged on each of the upper and lower sides of the outer wall of the two sensor mounting slots;
  • a radial spring is provided between the mounting slot and the radial slider, and the radial slider is provided a spring two is arranged between the mounting groove and the radial slider 3;
  • the cement receiving device comprises a bag, a hose clamp, a receiving tube 4, a check valve, and a receiving tube 3.
  • the receiving tube 3 is connected to the receiving tube 2.
  • the receiving tube 4 is connected by a thread.
  • the receiving pipe is three; the one-way valve is installed in the receiving pipe four, the one-way valve is connected with the bag; the throat hoop is sleeved on the receiving pipe four; the bag is sleeved in the receiving pipe through the throat hoop Four.
  • the drilling tool comprises a drill collar, a drill pipe, a kelly; the drill collar is connected to the clamping pin by a thread; the drill pipe has a plurality of wires connected by a threaded connection at the drill collar; The kelly is connected to the injection system by threads.
  • the liquid injection system includes a liquid injection port 1, a liquid injection port 2, a liquid injection port 3, a pipe joint, and a lower joint; the pipe joint is welded above the lower joint; the liquid injection port 2 is welded at Above the manifold; the liquid inlet 1 and the liquid inlet 3 are respectively welded on both sides of the manifold; the lower joint is screwed to the drill.
  • Step S1 when the underground drilling encounters the karst hole, the drilling tool is taken out from the drilling hole, and after the drill bit is removed from the drilling tool, the sleeve is threadedly mounted under the drilling tool;
  • step S2 after the drilling tool is deep underground and reaches the location of the karst cave, the ultrasonic sensor in the sleeve will measure the approximate volume of the karst, feedback the signal to the ground system, quantitatively calculate the volume of the karst cave, and select the amount of cement;
  • step S3 the drilling fluid is filled by the liquid injection port of the liquid injection system, and the radial slider 2 covers the pipeline of the receiving pipe 2, so the drilling fluid can only flow out from the drilling fluid opening and flush the well wall. Provide a certain pressure on the well wall to prevent the well wall from being unstable;
  • Step S4 after the drilling fluid is flushed, a wooden pellet is thrown into the liquid inlet of the liquid injection system, and the wooden pellet falls from the drill pipe until reaching the inside of the sleeve;
  • step S5 the ultrasonic sensor will receive a trigger sensing signal generated by the wooden pellet, and the control system will stop the electromagnet and lose its magnetism, and the radial slider that is adsorbed by the electromagnet will be stretched.
  • the tension of the spring one causes the radial slider to move from the radial diameter of the sleeve to the wall of the sleeve; the longitudinal slider that was originally caught by the radial slider will follow the longitudinal slider track due to gravity
  • the connecting plate, the connecting column and the connecting block which are welded together will move downward as the longitudinal slider descends; due to the function of the hinge one and the hinge two,
  • the driven rocker will rotate, causing the radial slider 2 to move from the radial diameter of the sleeve to the sleeve wall until the rubber plug blocks the drilling fluid opening; wherein, at the two ends of the radial slider A ratchet device consisting of a pawl and a rack is provided.
  • the radial slider 2 Due to the action of the pawl mounted on both ends of the radial slider, the radial slider 2 will only produce the movement from the radial diameter of the sleeve to the wall of the sleeve, but not Producing movement from the sleeve wall to the radial direction of the sleeve;
  • Step S6 after the rubber plug blocks the opening of the drilling fluid, the ultrasonic sensor receives the trigger signal, the ground system injects the cement from the liquid injection port, and the cement flows into the sleeve from the drill pipe, because the radial slider does not cover the receiving pipe.
  • the cement is poured from the pipe of the receiving pipe 2, flows through the receiving pipe 2, the receiving pipe 3 and the receiving pipe 4, and finally into the bag;
  • Step S7 after the cement is poured into the bag, the bag will rapidly expand and will grow against the wall of the cavity;
  • Step S8 according to the quantitative calculation of all the cement is injected into the bag, the bag is inflated to the size of the cave, the sensor control system will send a signal, the trigger circuit stops the electromagnet 2, and the electromagnet 2 loses magnetism, the radial slider The tension of the spring 2 is subjected to the tension state, thereby causing the radial slider to move from the diameter of the sleeve to the wall of the sleeve.
  • the receiving tube 3 which is originally stuck by the radial slider 3 will be subjected to gravity.
  • step S9 the drilling fluid is poured from the liquid injection port, the drilling tool and the sleeve are flushed, and the cement is discharged from the receiving tube 2, and the cement remaining inside the drilling tool and the sleeve is rinsed clean;
  • step S10 the device is taken out from the well, and after the cement in the bag is completely solidified, the cave is successfully sealed, and the next drilling operation can be performed.
  • the karst is a unilateral cave or a bilateral karst.
  • the environmentally friendly bag-type underground cavern blocking device blocks the cavity, and slowly injects cement from the wellhead into the bag at the bottom of the well until the bag fills the cavity and then fills the cement.
  • the bladder is placed in the cave and further drilling is performed as the cement in the bladder solidifies.
  • the plugging material can be used nearly 100%, which not only can quickly block the cavern to prevent safety problems, but also can effectively solve the loss of drilling fluid in the case of complex caves. Problems such as cement leakage greatly improve the efficiency of the cavern plugging work and reduce the cost of plugging. It can be used in large caves, leaky geological layers and honeycomb caverns. The requirements for plugging materials are not high, and the device has low manufacturing cost, convenient maintenance and low environmental pollution, which can replace the traditional plugging technology.
  • the structural design of the opening and closing device and the use in combination with a sensor control system enable the present invention It also has the characteristics of simple structure, good overall operation and high work efficiency.
  • FIG. 1 is a schematic view showing the overall structure of an environmentally friendly bag-type underground cavern blocking device according to the present invention.
  • Figure 2 is a schematic view showing the structure of the upper portion of the sleeve of the present invention.
  • Figure 3 is a schematic view showing the structure of the lower portion of the sleeve of the present invention.
  • Fig. 4 is a partial structural schematic view of the opening and closing device of the present invention.
  • Fig. 5 is a partial structural view showing the ratchet device of the opening and closing device of the present invention.
  • Figure 6 is a plan view of the upper half of the opening and closing device of the present invention.
  • Figure 7 is a plan view of the lower half of the opening and closing device of the present invention.
  • Figure 8 is a schematic view showing the structure of a drilling tool and a liquid injection system of the present invention.
  • Figure 9 is a schematic illustration of the state of a single side cavity of the present invention.
  • Figure 10 is a working view of the opening and closing device of the present invention.
  • Figure 11 is a working view of the lower portion of the sleeve of the present invention.
  • Figure 12 is a working view of the cement infusion in the state of one side of the present invention.
  • Figure 13 is a working view of the present invention for throwing a pouch in a single-sided cavity state.
  • Figure 14 is a schematic illustration of the state of the bilateral karst of the present invention.
  • Figure 15 is a working view of the cement infusion in the state of a double-sided cavity in the present invention.
  • Figure 16 is a view showing the operation of throwing a pouch in a state of a double-sided cavity in the present invention.
  • an environmentally friendly bag-type downhole cave blocking device comprises a sleeve 1, a cement receiving device 2, a opening and closing device 3, a sensing control system 4, a drilling tool 5, and a liquid injection system 6.
  • the middle portion and the bottom portion of the sleeve 1 respectively have a first stepped cavity and a second stepped space for mounting the opening and closing device 3 and the cement receiving device 2.
  • Two drilling fluid openings 101 are symmetrically disposed on the sidewalls of the first stepped cavity of the sleeve 1.
  • Two longitudinal slider rails 102 are symmetrically disposed on the sidewalls of the first stepped cavity.
  • the side wall of the first stepped cavity is further provided with two mounting slots 106 of symmetrically arranged radial sliders, and the mounting slots 106 of the two radial sliders are respectively located on the longitudinal slider track 102. In the middle of the section.
  • the racks 107 are welded on the bottom surface of the first stepped cavity, and the sleeve 1 is disposed on the side wall of the upper portion of the first stepped cavity
  • Two symmetrically arranged sensor mounting slots 103 are provided on the side wall between the first stepped cavity and the second stepped cavity with two mounting slots 109 for the radial sliders 3.
  • the top end of the sleeve 1 is provided with a clamping pin 104, which is mounted on the sleeve 1 by a threaded coupling.
  • a receiving tube 105 is disposed between the first stepped cavity and the clamping pin 104, and the receiving tube 105 is connected to the inner wall of the sleeve 1 by threads.
  • a receiving tube 202 is disposed between the first stepped cavity and the second stepped cavity.
  • the opening and closing device 3 includes a pawl 301, a rubber stopper 302, a driven rocker 303, a ring 304, a longitudinal slider 305, a connecting plate 306, a connecting post 307, a connecting block 308, a hinge 309, and a hinge two 310. , hinge three 311, radial slider two 312. Two of the longitudinal sliders 305 are respectively mounted on two longitudinal slider rails 102. The connecting plates 306 are welded on the longitudinal slider 305, and one end of the connecting post 307 is welded on the connecting plate 306, and the other end is connected to the ring. 304 solder joints, as shown in Figure 6.
  • One ends of the two driven rockers 303 are hinged on the ring 304 by a hinge 309 and are symmetrically arranged, and the other ends of the two driven rockers 303 are hinged to a radial slider 312 by a hinge two 310.
  • the bottom surface of the radial slider 312 is in contact with the bottom surface of the first stepped cavity, and can cover the pipe of the receiving tube 202, and the radial slider 312 is mounted on the side of the drilling fluid opening 101.
  • the pawl 301 is hinged on the radial slider 312 via the hinge three 311, and forms a ratchet mechanism with the rack 107, as shown in FIGS. 5 and 7.
  • the cement receiving device 2 is mounted in a second stepped cavity and is in communication with the receiving tube 202 via a receiving tube 205; the drill 5 is coupled to the sleeve 1 by a clamping pin 104; System 6 is threaded over the drill 5.
  • the cement receiving device 2 is screwed under the receiving tube 2, and the cement receiving device 2 includes a bag 201, a hose clamp 202, a receiving tube 203, a check valve 204, and a receiving tube 205; the receiving tube Three 205
  • the receiving tube 203 is connected to the receiving tube 205 by screwing; the one-way valve 204 is installed in the receiving tube 203, and the one-way valve 204 is connected to the capsular bag 201;
  • the hose clamp 202 is placed on the receiving tube 203; the bag 201 is placed on the receiving tube 203 through the hose clamp 202.
  • the sensing control system 4 includes a radial slider 401, an electromagnet two 402, a radial slider 403, an electromagnet 404, an ultrasonic sensor 405, a control system 406, a spring 407, and a spring 408;
  • the radial sliders 401 are respectively mounted in the mounting slots 109 of the radial sliders 3, and the receiving tubes 205 are respectively abutted; the two electromagnets 402 are respectively mounted on the outside of the mounting slots 109 of the two radial sliders 3.
  • Two radial sliders 403 are respectively mounted in the mounting slots 106 of the two radial sliders 1; an electromagnet 404 is disposed on the upper and lower sides of the outer walls of the two sensor mounting slots 103; A spring 407 is disposed between the 106 and the radial slider 403, and a spring 408 is disposed between the mounting groove 109 of the radial slider 3 and the radial slider 401.
  • the ultrasonic sensor 405 is configured to measure the volume of the cavity, sense the triggering sensing signal for blocking the drilling fluid opening 101, opening the pipe inlet of the receiving pipe 202, and detecting whether the drilling fluid opening 101 and the receiving pipe 108 are respectively connected to the pipe inlet.
  • the controller 406 controls the working state of the electromagnet-404 to activate the opening and closing device 3 according to the triggering sensing signal of the plugging drilling fluid opening 101 detected by the ultrasonic sensor 405 and opening the conduit inlet of the receiving tube 202.
  • the drill 5 includes a drill collar 501, a drill rod 502, and a kelly 503; the drill collar 501 is threadedly coupled to the clamping pin 104; the drill rod 205 has a plurality of Connected to the drill collar 501 by a threaded connection; the kelly 503 is connected to the liquid injection system 6 by threads.
  • the liquid filling system 6 includes a liquid filling port 601, a liquid filling port 602, a liquid filling port 603, a manifold 604, and a lower joint 605.
  • the manifold 604 is welded to the lower joint 605.
  • the liquid injection port 601 is welded over the manifold 604; the liquid injection port 602 and the liquid injection port 603 are respectively welded on both sides of the manifold 604; the lower joint 605 and the drill 6 is connected by thread.
  • Step S1 as shown in FIG. 9, when the underground drilling encounters the single-sided cavity 702, the operator takes the drilling tool 5 out of the drilling hole, removes the drill bit from the drilling tool 5, and then installs the sleeve 1 through the thread. Below the drill 5;
  • step S2 after the drilling tool 5 is deep underground and reaches the designated one-side cave 702 position, the ultrasonic sensor 405 in the sleeve 1 will measure the approximate volume of the single-sided cavity 702, and feed back the signal to the ground system to quantitatively calculate the dissolved cavity capacity.
  • Product choose the amount of cement;
  • step S3 the drilling fluid is poured from the liquid injection port 601, and the drilling fluid flows out from the drilling fluid opening 101 to flush the well wall 701.
  • the drilling fluid brings the cuttings to the ground due to the pressure of the drilling fluid, and simultaneously faces the well wall 701.
  • a certain pressure is provided to prevent the well wall 701 from destabilizing, wherein the drilling fluid can only flow out of the drilling fluid opening 101 because the radial sliding block 312 covers the conduit of the receiving tube two 108, and not from the receiving tube two 108 conduit Flow into the bag 201;
  • Step S4 after the drilling fluid is flushed, a wooden pellet is injected from the liquid inlet port 602, and the wooden pellet falls from the pipeline of the drilling tool 5 until reaching the inside of the sleeve 1;
  • step S5 the ultrasonic sensor 405 will receive a trigger sensing signal generated by the wood pellet, and the control system 406 will stop the electromagnet 404 from operating, thereby losing magnetism, and the radial slider 403 adsorbed by the electromagnet 404 will The tension of the spring-407 in the stretched state is caused, thereby causing the radial slider 403 to move from the radial direction of the sleeve 1 to the wall of the sleeve 1; as shown in FIG. 10, it is originally stuck by the radial slider 403.
  • the longitudinal slider 305 will descend along the longitudinal slider track 102 due to gravity, and the welded connecting plate 306, the connecting post 307, and the connecting block 308 will move downward as the longitudinal slider 305 descends.
  • the driven rocker 303 will rotate, thereby causing the radial slider 312 to generate the movement from the radial direction of the sleeve 1 to the wall of the sleeve 1 until the rubber stopper 302 is blocked.
  • the drilling fluid opening 101 is disposed; wherein a ratchet device composed of the pawl 301 and the rack 107 is disposed at both ends of the radial slider 312, and the pawl 301 mounted at both ends of the radial slider 312 functions as a pawl 301
  • the radial slider two 312 will only produce the radial center sleeve from the sleeve 1 Moving a wall, can not move is generated by the sleeve wall 1 centripetal direction diameter of the sleeve 1;
  • FIG. 5 schematic configuration of a ratchet device
  • step S6 after the rubber plug 302 blocks the drilling fluid opening 101, the ultrasonic sensor 405 receives the trigger signal, and the ground system injects cement from the liquid filling port 603, and the cement flows into the sleeve 1 from the drilling tool 5, because there is no radial slip.
  • Block II 312 covers the pipe of the receiving pipe two 108, the cement is poured from the pipe of the receiving pipe two 108, flows through the receiving pipe two 108, the receiving pipe three 205 and the receiving pipe four 203, and finally into the bag 201;
  • Step S7 after the cement is poured into the bag 201, the bag 201 will rapidly expand and will grow against the wall of the single-sided cavity 702; the working state diagram is shown in FIG. 12;
  • step S8 when the cement calculated according to the quantitative calculation is completely injected into the pouch 201, the pouch 201 expands to the size of the single-sided cavity 702, and the sensor control system 406 sends a signal, and the trigger circuit stops the electromagnet two 402, the electromagnet II 402 After losing the magnetism, the radial slider 401 is subjected to the tension of the spring 408 in the stretched state, thereby causing the radial slider 401 to move from the radial direction of the sleeve 1 to the wall of the sleeve 1, which is originally radially slid
  • the receiving tube 3 205 stuck in the block 401 will be lowered due to the gravity, so that the receiving tube 205, the receiving tube 203, the check valve 204 and the capsular bag 201 are separated from the sleeve 1 and fall into the single-sided karst 702; Since the check valve 204 is installed in the receiving tube 203, After the cement flows into the bag 201, it cannot flow out; if
  • Step S9 injecting drilling fluid from the liquid filling port 601, rinsing the drilling tool 5 and the sleeve 1, and flowing out from the receiving tube 2, 108, and rinsing the cement remaining inside the drilling tool 5 and the sleeve 1;
  • step S10 the device is taken out from the well, and after the cement in the bag 201 is completely solidified, the single-sided cavity 702 is successfully sealed, and the next drilling operation can be performed;
  • Step S1 as shown in FIG. 14, when the underground drilling encounters the double-sided karst 705, the operator takes the drilling tool 5 out of the drilling hole, removes the drill bit from the drilling tool 5, and then installs the sleeve 1 through the thread. Below the drill 5;
  • step S2 after the drilling tool 5 is deepened into the ground and reaches the designated double-sided cavity 705 position, the ultrasonic sensor 405 in the sleeve 1 will measure the approximate volume of the double-sided cavity 705, and feed back the signal to the ground system to quantitatively calculate the two sides.
  • step S3 the drilling fluid is poured from the liquid injection port 601, and the drilling fluid flows out from the drilling fluid opening 101 to flush the well wall 701.
  • the drilling fluid brings the cuttings to the ground due to the pressure of the drilling fluid, and simultaneously faces the well wall 701.
  • a certain pressure is provided to prevent the well wall 701 from destabilizing; wherein, since the radial slider 312 covers the pipe of the receiving pipe 202, the drilling fluid can only flow out from the drilling fluid opening 101, and not from the receiving pipe 202. Flow into the bag 201;
  • Step S4 after the drilling fluid is flushed, a wooden pellet is injected from the liquid inlet port 602, and the wooden pellet falls from the pipeline of the drilling tool 5 until reaching the inside of the sleeve 1;
  • step S5 the ultrasonic sensor 405 will be subjected to a trigger sensing signal generated by the wood pellet, and the control system 406 will stop the electromagnet 404 from operating, thereby losing magnetism; the radial slider 403 adsorbed by the electromagnet 404 will Receiving the tension of the spring-407 in the stretched state, thereby causing the radial slider 403 to move from the radial direction of the sleeve 1 to the wall of the sleeve 1; as shown in Fig. 10, the original slider is 403 card.
  • the living longitudinal slider 305 will descend along the longitudinal slider track 102 due to gravity, and the welded connecting plate 306, the connecting post 307, and the connecting block 308 will be lowered as the longitudinal slider 305 is lowered.
  • FIG. 5 is a schematic view of the structure of the ratchet device
  • step S6 after the rubber plug 302 blocks the drilling fluid opening 101, the ultrasonic sensor 405 receives the trigger signal, and the ground system injects cement from the liquid filling port 603, and the cement flows into the sleeve 1 from the drilling tool 5, because there is no radial slip.
  • Block II 312 covers the pipe of the receiving pipe two 108, the cement is poured from the pipe of the receiving pipe two 108, flows through the receiving pipe two 108, the receiving pipe three 205 and the receiving pipe four 203, and finally into the bag 201;
  • Step S7 after the cement is poured into the bag 201, the bag 201 will rapidly expand and will grow against the wall of the double-sided cavity 705; the working state diagram is as shown in FIG. 15;
  • step S8 when all the cement calculated by the quantitative calculation is injected into the pouch 201, the pouch 201 expands to the size of the double-sided cavity 705, and the sensor control system 406 sends a signal, and the trigger circuit stops the electromagnet two 402, the electromagnet II 402 After losing the magnetism, the radial slider 401 is subjected to the tension of the spring 408 in the stretched state, thereby causing the radial slider 401 to move from the radial direction of the sleeve 1 to the wall of the sleeve 1, which is originally radially slid
  • the receiving tube 3 205 stuck in the block 401 will be lowered due to the gravity, so that the receiving tube 205, the receiving tube 203, the check valve 204 and the capsular bag 201 are separated from the sleeve 1 and fall into the double-sided karst 705; Since the check valve 204 is installed in the receiving pipe 203, the cement does not flow out after flowing into the bag 201; if the volume
  • Step S9 injecting drilling fluid from the liquid filling port 601, rinsing the drilling tool 5 and the sleeve 1, and flowing out from the receiving tube 2, 108, and rinsing the cement remaining inside the drilling tool 5 and the sleeve 1;
  • step S10 the device is taken out from the well, and after the cement in the bag 201 is completely solidified, the double-sided cavity 705 is successfully sealed, and the next drilling operation can be performed;

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

提供了一种环境友好型囊袋式井下溶洞封堵装置,涉及到石油钻井领域,主要用于对井下溶洞的封堵,其包括连杆、铰链(309、310、311)、弹簧(407、408)、单向阀(204)、滑轨(102)、传感器(405)、棘轮、电磁铁(402、404)等机械零部件组合传动方式,通过囊袋的方式实现整个环境友好型囊袋式井下溶洞封堵装置的自动封堵溶洞。还提供了一种环境友好型囊袋式井下溶洞封堵方法。该装置和方法减少了对堵漏材料和钻杆的要求,降低了封堵溶洞的成本与时间,并可在大的溶洞以及蜂窝状溶洞场合使用。

Description

一种环境友好型囊袋式井下溶洞封堵装置及其封堵方法 技术领域
本发明属于石油钻井领域,具体是涉及一种环境友好型囊袋式井下溶洞封堵装置及其封堵方法。
背景技术
在钻头向地下钻井时,由于钻井过深,经常会遇到极度恶劣的地质情况,如溶洞、裂缝非常发育、地下岩石硬脆、土质疏松等,这些情况将会导致钻井过程中钻井液与水泥等浆液的大量流失,将会产生浆液的极大浪费和严重的环境污染,造成大量的人力、物力、财力损失,甚至可能导致卡钻、井塌和井喷等一系列严重事故。因此,加强对钻井施工过程中溶洞的封堵处理刻不容缓。
从目前的溶洞堵漏技术来看,主要是对堵漏材料的完善,以及从井口向井底投入水泥球、碎石、粗砂和稻草树枝等物,然后添加堵漏剂。此类方法对地质情况良好的溶洞可以奏效,但是不能对体积比较大的溶洞以及蜂窝状溶洞进行封堵,往往这种方式成本高、效率低,对堵漏材料的速凝性、环境友好性要求很高。在遇到蜂窝状孔隙时,堵漏材料往往会渗漏严重,大多数堵漏材料尚未凝固即流入地下裂缝中,进而污染地下暗河,会造成严重的环境污染和资源浪费,大大增加了钻井所需的时间,严重影响封堵溶洞的效率和成本,这对封堵溶洞造成很大的困难。因此传统的堵漏方案只能适合溶洞较小、溶洞内部环境相对较好的情况下使用。
发明内容
为了解决现有堵漏技术对大溶洞、蜂窝状溶洞堵漏效率低的的问题,本发明提供一种环境友好型囊袋式井下溶洞封堵装置来对溶洞进行封堵,从井口向井底的囊袋中缓慢灌注水泥,直至囊袋将溶洞填满,再将装满水泥的囊袋投入溶洞中,等到囊袋中的水泥凝固时再进行进一步的钻井工作。这样不仅可以让快速堵住溶洞从而预防安全问题,而且还可以有效解决钻井液流失、水泥渗漏等问题,大大提高了溶洞堵漏工作的效率,减少了堵漏工作的成本。
为达到上述目的,本发明采用机械传动,利用连杆、铰链、弹簧、单向阀、滑轨、超声波传感器、棘轮、电磁铁等机械零部件组合传动方式,采用囊袋灌装水泥,逐渐膨胀至溶洞大小,最后囊袋坠落从而堵洞,以实现整个环境友好型囊袋式井下溶洞封堵装 置自动封堵溶洞的功能,减少了对堵漏材料的要求,并可在较大的溶洞以及蜂窝状溶洞场合使用。
实现本发明的具体方案是:
一种环境友好型囊袋式井下溶洞封堵装置,其特征在于,包括套筒、水泥接收装置、开合装置、传感控制系统、钻具、注液系统;所述套筒中部和底部分别具有用于安装开合装置和水泥接收装置的第一阶梯型空腔和第二阶梯型空腔;所述套筒第一阶梯型空腔处的侧壁上对称开设有两个钻井液开孔,所述第一阶梯型空腔的侧壁上对称设置两个纵向滑块轨道,所述第一阶梯型空腔的侧壁上还设有两个对称布置的径向滑块一的安装槽,所述两个径向滑块一的安装槽分别位于纵向滑块轨道的中间段处;所述第一阶梯型空腔的底面上固定四个周向均匀分布的齿条,所述套筒位于第一阶梯型空腔上部的侧壁上设有两个对称布置的传感器安装槽,所述第一阶梯型空腔与第二阶梯型空腔之间的侧壁上设有两个径向滑块三的安装槽;所述套筒顶端设有夹紧销,所述第一阶梯型空腔与夹紧销之间设置接收管一,所述第一阶梯型空腔与第二阶梯型空腔之间设置接收管二;
所述的开合装置包括棘爪、橡胶塞、从动摇杆、圆环、纵向滑块、连接板、连接柱、连接块、铰链一、铰链二、铰链三、径向滑块二;两个所述纵向滑块分别装在两个纵向滑块轨道上,所述连接板焊接在纵向滑块上,连接柱的一端焊接在连接板上、另一端与圆环焊接连接,两个从动摇杆的一端通过铰链一铰接在圆环上、且对称布置,所述两个从动摇杆的另一端通过铰链二与一个径向滑块二铰接,所述径向滑块二的底面与第一阶梯型空腔的底面接触、且能将接收管二的管道遮盖,所述径向滑块二朝向钻井液开孔的一侧装有橡胶塞,所述棘爪过铰链三铰接在径向滑块二上、且与齿条构成棘轮机构;
所述的水泥接收装置装在第二阶梯型空腔中、且通过接收管三与接收管二连通;所述钻具通过夹紧销与套筒连接;所述注液系统通过螺纹安装在钻具上方;
所述传感控制系统包括径向滑块三、电磁铁二、径向滑块一、电磁铁一、超声波传感器、控制系统、弹簧一、弹簧二;两个径向滑块三分别安装在径向滑块三的安装槽内,将接收管三抵住;两个电磁铁二各自安装在两个径向滑块三的安装槽壁外侧;两个径向滑块一分别安装在两个径向滑块一的安装槽内;两个传感器安装槽外壁上下两侧各设一个电磁铁一;径向滑块一安装槽与径向滑块一之间设置弹簧一,径向滑块三的安装槽与径向滑块三之间设置弹簧二;
所述超声波传感器用于测量溶洞的容积,感知堵塞钻井液开孔、打开接收管二的管道入口的触发感应信号,以及检测钻井液开孔和接收管二的管道入口是否分别处于堵塞 和打开的状态;所述控制器根据超声波传感器检测的堵塞钻井液开孔、打开接收管二的管道入口的触发感应信号控制电磁铁一的工作状态启动开合装置的工作,并根据超声波传感器检测的钻井液开孔和接收管二的管道入口分别处于堵塞和打开的状态的信号控制电磁铁二的工作状态使水泥接收装置与套筒分离。
进一步地,所述的水泥接收装置包括囊袋、喉箍、接收管四、单向阀、接收管三;所述的接收管三与接收管二连通;所述的接收管四通过螺纹连接在接收管三上;所述的单向阀安装在接收管四内,单向阀与囊袋连通;所述的喉箍套在接收管四上;所述的囊袋通过喉箍套在接收管四上。
进一步地,所述钻具包括钻铤、钻杆、方钻杆;所述的钻铤通过螺纹与夹紧销连接;所述的钻杆有若干根,通过螺纹连接在钻铤连接;所述的方钻杆通过螺纹与注液系统连接。
进一步地,所述的注液系统包括注液口一、注液口二、注液口三、管汇、下接头;所述的管汇焊接在下接头上方;所述的注液口二焊接在管汇上方;所述的注液口一与注液口三分别焊接在管汇的两侧;所述的下接头与钻具通过螺纹连接。
所述的环境友好型囊袋式井下溶洞封堵装置的井下溶洞封堵方法,其特征在于,包括以下步骤:
步骤S1,进行地下钻井遇到溶洞时,将钻具从钻井中取出,将钻头从钻具上取下后,将套筒通过螺纹安装在钻具下方;
步骤S2,将钻具深入地下,到达溶洞位置后,套筒内的超声波传感器将会测得溶洞大致容积,将信号反馈给地面系统,定量计算出溶洞容积,选择水泥量;
步骤S3,由注液系统的注液口一灌注钻井液,此时径向滑块二遮盖住接收管二的管道,因此钻井液只可从钻井液开孔流出,对井壁进行冲洗,同时对井壁提供一定压力防止井壁失稳;
步骤S4,钻井液冲洗完毕后,由注液系统的注液口二投入一个木质小球,木质小球从钻具管道内坠落,直至到达套筒内部;
步骤S5,超声波传感器将受到由木质小球产生的触发感应信号,控制系统将会使电磁铁一停止工作,从而失去磁性,被电磁铁一吸附的径向滑块一将会受到处于拉伸状态的弹簧一的拉力,从而导致径向滑块一由套筒径心向套筒壁的移动;原先被径向滑块一卡住的纵向滑块由于受到重力,将会沿着纵向滑块轨道下降,焊接在一起的连接板、连接柱、连接块将会随着纵向滑块的下降而整体向下移动;由于铰链一、铰链二的作用, 从动摇杆将会发生转动,从而引发径向滑块二产生由套筒径心向套筒壁的移动,直至橡胶塞堵住钻井液开孔;其中,在径向滑块二的两端设置由棘爪与齿条组成的棘轮装置,由于安装在径向滑块二两端的棘爪的作用,径向滑块二将只能产生由套筒径心向套筒壁的移动,而不能产生由套筒壁向套筒径心方向的移动;
步骤S6,橡胶塞堵住钻井液开口后,超声波传感器收到触发信号,地上系统从注液口三灌注水泥,水泥从钻具管道内流入套筒,由于没有径向滑块二遮盖住接收管二的管道,水泥从接收管二的管道中灌入,流经接收管二、接收管三和接收管四,最后灌入囊袋中;
步骤S7,水泥灌入囊袋后,囊袋将迅速膨胀,并将贴着溶洞壁生长;
步骤S8,根据定量计算所得的水泥全部注入囊袋时,囊袋即膨胀至溶洞大小,传感器控制系统将发出信号,触发电路使得电磁铁二停止工作,电磁铁二失去磁性后,径向滑块三受到处于拉伸状态的弹簧二的拉力,从而导致径向滑块三作由套筒径心向套筒壁的移动,原先被径向滑块三卡住的接收管三由于受到重力将会下降,使得接收管三、接收管四、单向阀和囊袋与套筒分离,落入溶洞中;由于接收管四内安装单向阀,水泥流入囊袋后不可流出;若溶洞容积过大,将钻杆与套筒拉出地面,重新安装一个套筒,反复进行以上动作,将溶洞内部的地下暗河、底部裂缝彻底封堵;
步骤S9,由注液口一灌注钻井液,对钻具、套筒进行冲洗,从接收管二流出,将残留在钻具与套筒内部的水泥冲洗干净;
步骤S10,将本装置从钻井中取出,等到囊袋中的水泥彻底凝固后,溶洞即成功封堵,可进行下一步钻井工作。
进一步地,所述溶洞为单侧溶洞或双侧溶洞。
本发明所述的环境友好型囊袋式井下溶洞封堵装置来对溶洞进行封堵,通过从井口向井底的囊袋中缓慢灌注水泥,直至囊袋将溶洞填满,再将装满水泥的囊袋投入溶洞中,等到囊袋中的水泥凝固时再进行进一步的钻井工作。由于套筒下方有囊袋填装堵漏材料,堵漏材料可以得到将近百分之百的利用,这样不仅可以快速堵住溶洞从而预防安全问题,而且还可以有效解决在复杂溶洞情况下的钻井液流失、水泥渗漏等问题,大大提高了溶洞堵漏工作的效率,减少了堵漏工作的成本。可在大的溶洞、渗漏性地质层以及蜂窝状溶洞场合使用,对堵漏材料的要求不高,且本装置制造成本低、维修方便、对环境污染小,可代替传统的堵漏技术。
另外,所述开合装置的结构设计,以及与传感器控制系统的结合使用,使得本发明 还具有结构简单、整体操作性好、工作效率高的特点。
附图说明
图1为本发明所述环境友好型囊袋式井下溶洞封堵装置的总体结构示意图。
图2是本发明的套筒上部分的结构示意图。
图3是本发明的套筒下部分的结构示意图。
图4是本发明的开合装置的局部结构示意图。
图5是本发明的开合装置的棘轮装置局部结构示意图。
图6是本发明的开合装置的上半部分俯视图。
图7是本发明的开合装置的下半部分俯视图。
图8是本发明的钻具与注液系统结构示意图。
图9是本发明的单侧溶洞状态示意图。
图10是本发明的开合装置工作图。
图11是本发明的套筒下部分工作图。
图12是本发明在单侧溶洞状态下灌注水泥工作图。
图13是本发明在单侧溶洞状态下投掷囊袋工作图。
图14是本发明的双侧溶洞状态示意图。
图15是本发明在双侧溶洞状态下灌注水泥工作图。
图16是本发明在双侧溶洞状态下投掷囊袋工作图。
图中:
1-套筒,101-钻井液开孔,102-纵向滑块轨道,103-传感器安装槽,104-夹紧销,105-接收管一,106-径向滑块一的安装槽,107-齿条,108-接收管二,109-径向滑块三的安装槽,2-水泥接收装置,201-囊袋,202-喉箍,203-接收管四,204-单向阀,205-接收管三,3-开合装置,301-棘爪,302-橡胶塞,303-从动摇杆,304-圆环,305-纵向滑块,306-连接板,307-连接柱,308-连接块,309-铰链一,310-铰链二,311-铰链三,312-径向滑块二,4-传感控制系统,401-径向滑块三,402-电磁铁二,403-径向滑块一,404-电磁铁一,405-超声波传感器,406-控制系统,407-弹簧一,408-弹簧二,5-钻具,501-钻铤,502-钻杆,503-方钻杆,6-注液系统,601-注液口一,602-注液口二,603-注液口三,604-管汇,605-下接头,701-岩壁,702-单侧溶洞,703-地下暗河,704-溶洞底部裂缝,705-双侧溶洞。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,一种环境友好型囊袋式井下溶洞封堵装置,包括套筒1、水泥接收装置2、开合装置3、传感控制系统4、钻具5、注液系统6。
如图1、图2、图3和图4所示,所述套筒1中部和底部分别具有用于安装开合装置3和水泥接收装置2的第一阶梯型空腔和第二阶梯型空腔。所述套筒1第一阶梯型空腔处的侧壁上对称开设有两个钻井液开孔101,所述第一阶梯型空腔的侧壁上对称设置两个纵向滑块轨道102。所述第一阶梯型空腔的侧壁上还设有两个对称布置的径向滑块一的安装槽106,所述两个径向滑块一的安装槽106分别位于纵向滑块轨道102的中间段处。固定四个周向均匀分布的齿条107,所述齿条107焊接在所述第一阶梯型空腔的底面上,所述套筒1位于第一阶梯型空腔上部的侧壁上设有两个对称布置的传感器安装槽103,所述第一阶梯型空腔与第二阶梯型空腔之间的侧壁上设有两个径向滑块三的安装槽109。所述套筒1顶端设有夹紧销104,所述夹紧销104通过螺纹联接安装在套筒1上。所述第一阶梯型空腔与夹紧销104之间设置接收管一105,接收管一105通过螺纹与套筒1内壁连接。所述第一阶梯型空腔与第二阶梯型空腔之间设置接收管二108。
所述的开合装置3包括棘爪301、橡胶塞302、从动摇杆303、圆环304、纵向滑块305、连接板306、连接柱307、连接块308、铰链一309、铰链二310、铰链三311、径向滑块二312。两个所述纵向滑块305分别装在两个纵向滑块轨道102上,所述连接板306焊接在纵向滑块305上,连接柱307的一端焊接在连接板306上、另一端与圆环304焊接连接,如图6所示。两个从动摇杆303的一端通过铰链一309铰接在圆环304上、且对称布置,所述两个从动摇杆303的另一端通过铰链二310与一个径向滑块二312铰接,所述径向滑块二312的底面与第一阶梯型空腔的底面接触、且能将接收管二108的管道遮盖,所述径向滑块二312朝向钻井液开孔101的一侧装有橡胶塞302,所述棘爪301过铰链三311铰接在径向滑块二312上、且与齿条107构成棘轮机构,如图5、图7所示。
所述的水泥接收装置2装在第二阶梯型空腔中、且通过接收管三205与接收管二108连通;所述钻具5通过夹紧销104与套筒1连接;所述注液系统6通过螺纹安装在钻具5上方。水泥接收装置2通过螺纹连接在接收管二108下方,所述的水泥接收装置2包括囊袋201、喉箍202、接收管四203、单向阀204、接收管三205;所述的接收管三205 与接收管二108连通;所述的接收管四203通过螺纹连接在接收管三205上;所述的单向阀204安装在接收管四203内,单向阀204与囊袋201连通;所述的喉箍202套在接收管四203上;所述的囊袋201通过喉箍202套在接收管四203上。
所述传感控制系统4包括径向滑块三401、电磁铁二402、径向滑块一403、电磁铁一404、超声波传感器405、控制系统406、弹簧一407、弹簧二408;两个径向滑块三401分别安装在径向滑块三的安装槽109内,将接收管三205抵住;两个电磁铁二402各自安装在两个径向滑块三的安装槽109壁外侧;两个径向滑块一403分别安装在两个径向滑块一的安装槽106内;两个传感器安装槽103外壁上下两侧各设一个电磁铁一404;径向滑块一安装槽106与径向滑块一403之间设置弹簧一407,径向滑块三的安装槽109与径向滑块三401之间设置弹簧二408。
所述超声波传感器405用于测量溶洞的容积,感知堵塞钻井液开孔101、打开接收管二108的管道入口的触发感应信号,以及检测钻井液开孔101和接收管二108的管道入口是否分别处于堵塞和打开的状态;所述控制器406根据超声波传感器405检测的堵塞钻井液开孔101、打开接收管二108的管道入口的触发感应信号控制电磁铁一404的工作状态启动开合装置3的工作,并根据超声波传感器405检测的钻井液开孔101和接收管二108的管道入口分别处于堵塞和打开的状态的信号控制电磁铁二402的工作状态使水泥接收装置2与套筒1分离。
如图8所示,所述的钻具5包括钻铤501、钻杆502、方钻杆503;所述的钻铤501通过螺纹与夹紧销104连接;所述的钻杆205有若干根,通过螺纹连接在钻铤501连接;所述的方钻杆503通过螺纹与注液系统6连接。
如图8所示,所述的注液系统6包括注液口一601、注液口二602、注液口三603、管汇604、下接头605;所述的管汇604焊接在下接头605上方;所述的注液口一601焊接在管汇604上方;所述的注液口二602与注液口三603分别焊接在管汇604的两侧;所述的下接头605与钻具6通过螺纹连接。
实施例1:
在结合附图详细说明一种环境友好型囊袋式井下溶洞封堵装置,其包含以下步骤:
步骤S1,如图9所示,进行地下钻井遇到单侧溶洞702时,操作者将钻具5从钻井中取出,将钻头从钻具5上取下后,将套筒1通过螺纹安装在钻具5下方;
步骤S2,将钻具5深入地下,到达指定单侧溶洞702位置后,套筒1内的超声波传感器405将会测得单侧溶洞702大致容积,将信号反馈给地面系统,定量计算出溶洞容 积,选择水泥量;
步骤S3,由注液口一601灌注钻井液,钻井液从钻井液开口101流出,对井壁701进行冲洗,由于钻井液的压力作用,钻井液将岩屑带至地面,同时对井壁701提供一定压力防止井壁701失稳,其中,由于径向滑块二312遮盖住接收管二108的管道,因此钻井液只可从钻井液开孔101流出,而不可以从接收管二108管道内流入囊袋201;
步骤S4,钻井液冲洗完毕后,由注液口二602投入一个木质小球,木质小球从钻具5管道内坠落,直至到达套筒1内部;
步骤S5,超声波传感器405将受到由木质小球产生的触发感应信号,控制系统406将会使电磁铁一404停止工作,从而失去磁性,被电磁铁一404吸附的径向滑块一403将会受到处于拉伸状态的弹簧一407的拉力,从而导致径向滑块一403由套筒1径心向套筒1壁的移动;如图10所示,原先被径向滑块一403卡住的纵向滑块305由于受到重力,将会沿着纵向滑块轨道102下降,焊接在一起的连接板306、连接柱307、连接块308将会随着纵向滑块305的下降而整体向下移动;由于铰链一309、铰链二310的作用,从动摇杆303将会发生转动,从而引发径向滑块二312产生由套筒1径心向套筒1壁的移动,直至橡胶塞302堵住钻井液开孔101;其中,在径向滑块二312的两端设置由棘爪301与齿条107组成的棘轮装置,由于安装在径向滑块二312两端的棘爪301的作用,径向滑块二312将只能产生由套筒1径心向套筒1壁的移动,而不能产生由套筒1壁向套筒1径心方向的移动;图5为棘轮装置结构示意图;
步骤S6,橡胶塞302堵住钻井液开口101后,超声波传感器405收到触发信号,地上系统从注液口三603灌注水泥,水泥从钻具5管道内流入套筒1,由于没有径向滑块二312遮盖住接收管二108的管道,水泥从接收管二108的管道中灌入,流经接收管二108、接收管三205和接收管四203,最后灌入囊袋201中;
步骤S7,水泥灌入囊袋201后,囊袋201将迅速膨胀,并将贴着单侧溶洞702壁生长;工作状态图如图12所示;
步骤S8,根据定量计算所得的水泥全部注入囊袋201时,囊袋201即膨胀至单侧溶洞702大小,传感器控制系统406将发出信号,触发电路使得电磁铁二402停止工作,电磁铁二402失去磁性后,径向滑块三401受到处于拉伸状态的弹簧二408的拉力,从而导致径向滑块三401作由套筒1径心向套筒1壁的移动,原先被径向滑块三401卡住的接收管三205由于受到重力将会下降,使得接收管三205、接收管四203、单向阀204和囊袋201与套筒1分离,落入单侧溶洞702中;由于接收管四203内安装单向阀204, 水泥流入囊袋201后不可流出;若单侧溶洞702容积过大,将钻杆502与套筒1拉出地面,重新安装一个套筒1,反复进行以上动作,将单侧溶洞702内部的地下暗河703、底部裂缝704彻底封堵;工作状态图如图11与图13所示;
步骤S9,由注液口一601灌注钻井液,对钻具5、套筒1进行冲洗,从接收管二108流出,将残留在钻具5与套筒1内部的水泥冲洗干净;
步骤S10,将本装置从钻井中取出,等到囊袋201中的水泥彻底凝固后,单侧溶洞702即成功封堵,可进行下一步钻井工作;
实施例2:
在结合附图详细说明一种环境友好型囊袋式井下溶洞封堵装置,其包含以下步骤:
步骤S1,如图14所示,进行地下钻井遇到双侧溶洞705时,操作者将钻具5从钻井中取出,将钻头从钻具5上取下后,将套筒1通过螺纹安装在钻具5下方;
步骤S2,将钻具5深入地下,到达指定双侧溶洞705位置后,套筒1内的超声波传感器405将会测得双侧溶洞705大致容积,将信号反馈给地面系统,定量计算出双侧溶洞705容积,选择水泥量;
步骤S3,由注液口一601灌注钻井液,钻井液从钻井液开口101流出,对井壁701进行冲洗,由于钻井液的压力作用,钻井液将岩屑带至地面,同时对井壁701提供一定压力防止井壁701失稳;其中,由于径向滑块二312遮盖住接收管二108的管道,因此钻井液只可从钻井液开孔101流出,而不可以从接收管二108管道内流入囊袋201;
步骤S4,钻井液冲洗完毕后,由注液口二602投入一个木质小球,木质小球从钻具5管道内坠落,直至到达套筒1内部;
步骤S5,超声波传感器405将受到由木质小球产生的触发感应信号,控制系统406将会使电磁铁一404停止工作,从而失去磁性;被电磁铁一404吸附的径向滑块一403将会受到处于拉伸状态的弹簧一407的拉力,从而导致径向滑块一403作由套筒1径心向套筒1壁的移动;如图10所示,原先被径向滑块一403卡住的纵向滑块305由于受到重力,将会沿着纵向滑块轨道102下降,焊接在一起的连接板306、连接柱307、连接块308将会随着纵向滑块305的下降而整体向下移动;由于铰链一309、铰链二310的作用,从动摇杆303将会发生转动,从而引发径向滑块二312产生由套筒1径心向套筒1壁的移动,直至橡胶塞302堵住钻井液开孔101;其中,在径向滑块二312的两端设置由棘爪301与齿条107组成的棘轮装置,由于安装在径向滑块二312两端的棘爪301的作用,径向滑块二312将只能产生由套筒1径心向套筒1壁的移动,而不能产生由套筒1壁向 套筒1径心方向的移动;图5为棘轮装置结构示意图;
步骤S6,橡胶塞302堵住钻井液开口101后,超声波传感器405收到触发信号,地上系统从注液口三603灌注水泥,水泥从钻具5管道内流入套筒1,由于没有径向滑块二312遮盖住接收管二108的管道,水泥从接收管二108的管道中灌入,流经接收管二108、接收管三205和接收管四203,最后灌入囊袋201中;
步骤S7,水泥灌入囊袋201后,囊袋201将迅速膨胀,并将贴着双侧溶洞705壁生长;工作状态图如图15所示;
步骤S8,根据定量计算所得的水泥全部注入囊袋201时,囊袋201即膨胀至双侧溶洞705大小,传感器控制系统406将发出信号,触发电路使得电磁铁二402停止工作,电磁铁二402失去磁性后,径向滑块三401受到处于拉伸状态的弹簧二408的拉力,从而导致径向滑块三401作由套筒1径心向套筒1壁的移动,原先被径向滑块三401卡住的接收管三205由于受到重力将会下降,使得接收管三205、接收管四203、单向阀204和囊袋201与套筒1分离,落入双侧溶洞705中;由于接收管四203内安装单向阀204,水泥流入囊袋201后不可流出;若双侧溶洞705体积过大,将钻具5与套筒1拉出地面,重新安装一个套筒1,反复进行以上动作,将双侧溶洞705内部的地下暗河703、底部裂缝704彻底封堵;工作状态图如图11与图16所示;
步骤S9,由注液口一601灌注钻井液,对钻具5、套筒1进行冲洗,从接收管二108流出,将残留在钻具5与套筒1内部的水泥冲洗干净;
步骤S10,将本装置从钻井中取出,等到囊袋201中的水泥彻底凝固后,双侧溶洞705即成功封堵,可进行下一步钻井工作;
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (6)

  1. 一种环境友好型囊袋式井下溶洞封堵装置,其特征在于,包括套筒(1)、水泥接收装置(2)、开合装置(3)、传感控制系统(4)、钻具(5)、注液系统(6);
    所述套筒(1)中部和底部分别具有用于安装开合装置(3)和水泥接收装置(2)的第一阶梯型空腔和第二阶梯型空腔;所述套筒(1)第一阶梯型空腔处的侧壁上对称开设有两个钻井液开孔(101),所述第一阶梯型空腔的侧壁上对称设置两个纵向滑块轨道(102),所述第一阶梯型空腔的侧壁上还设有两个对称布置的径向滑块一的安装槽(106),所述两个径向滑块一的安装槽(106)分别位于纵向滑块轨道(102)的中间段处;所述第一阶梯型空腔的底面上固定四个周向均匀分布的齿条(107),所述套筒(1)位于第一阶梯型空腔上部的侧壁上设有两个对称布置的传感器安装槽(103),所述第一阶梯型空腔与第二阶梯型空腔之间的侧壁上设有两个径向滑块三的安装槽(109);所述套筒(1)顶端设有夹紧销(104),所述第一阶梯型空腔与夹紧销(104)之间设置接收管一(105),所述第一阶梯型空腔与第二阶梯型空腔之间设置接收管二(108);
    所述的开合装置(3)包括棘爪(301)、橡胶塞(302)、从动摇杆(303)、圆环(304)、纵向滑块(305)、连接板(306)、连接柱(307)、连接块(308)、铰链一(309)、铰链二(310)、铰链三(311)、径向滑块二(312);两个所述纵向滑块(305)分别装在两个纵向滑块轨道(102)上,所述连接板(306)焊接在纵向滑块(305)上,连接柱(307)的一端焊接在连接板(306)上、另一端与圆环(304)焊接连接,两个从动摇杆(303)的一端通过铰链一(309)铰接在圆环(304)上、且对称布置,所述两个从动摇杆(303)的另一端通过铰链二(310)与一个径向滑块二(312)铰接,所述径向滑块二(312)的底面与第一阶梯型空腔的底面接触、且能将接收管二(108)的管道遮盖,所述径向滑块二(312)朝向钻井液开孔(101)的一侧装有橡胶塞(302),所述棘爪(301)过铰链三(311)铰接在径向滑块二(312)上、且与齿条(107)构成棘轮机构;
    所述的水泥接收装置(2)装在第二阶梯型空腔中、且通过接收管三(205)与接收管二(108)连通;所述钻具(5)通过夹紧销(104)与套筒(1)连接;所述注液系统(6)通过螺纹安装在钻具(5)上方;
    所述传感控制系统(4)包括径向滑块三(401)、电磁铁二(402)、径向滑块一(403)、电磁铁一(404)、超声波传感器(405)、控制系统(406)、弹簧一(407)、弹簧二(408);两个径向滑块三(401)分别安装在径向滑块三的安装槽(109)内,将接收管三(205)抵住;两个电磁铁二(402)各自安装在两个径向滑块三的安装槽(109)壁外 侧;两个径向滑块一(403)分别安装在两个径向滑块一的安装槽(106)内;两个传感器安装槽(103)外壁上下两侧各设一个电磁铁一(404);径向滑块一安装槽(106)与径向滑块一(403)之间设置弹簧一(407),径向滑块三的安装槽(109)与径向滑块三(401)之间设置弹簧二(408);
    所述超声波传感器(405)用于测量溶洞的容积,感知堵塞钻井液开孔(101)、打开接收管二(108)的管道入口的触发感应信号,以及检测钻井液开孔(101)和接收管二(108)的管道入口是否分别处于堵塞和打开的状态;所述控制器(406)根据超声波传感器(405)检测的堵塞钻井液开孔(101)、打开接收管二(108)的管道入口的触发感应信号控制电磁铁一(404)的工作状态启动开合装置(3)的工作,并根据超声波传感器(405)检测的钻井液开孔(101)和接收管二(108)的管道入口分别处于堵塞和打开的状态的信号控制电磁铁二(402)的工作状态使水泥接收装置(2)与套筒(1)分离。
  2. 根据权利要求1所述的环境友好型囊袋式井下溶洞封堵装置,其特征在于,所述的水泥接收装置(2)包括囊袋(201)、喉箍(202)、接收管四(203)、单向阀(204)、接收管三(205);所述的接收管三(205)与接收管二(108)连通;所述的接收管四(203)通过螺纹连接在接收管三(205)上;所述的单向阀(204)安装在接收管四(203)内,单向阀(204)与囊袋(201)连通;所述的喉箍(202)套在接收管四(203)上;所述的囊袋(201)通过喉箍(202)套在接收管四(203)上。
  3. 根据权利要求1所述的环境友好型囊袋式井下溶洞封堵装置,其特征在于,所述钻具(5)包括钻铤(501)、钻杆(502)、方钻杆(503);所述的钻铤(501)通过螺纹与夹紧销(104)连接;所述的钻杆(502)有若干根,通过螺纹连接在钻铤(501)连接;所述的方钻杆(503)通过螺纹与注液系统(6)连接。
  4. 根据权利要求1所述的一种环境友好型囊袋式井下溶洞封堵装置,其特征在于:所述的注液系统(6)包括注液口一(601)、注液口二(602)、注液口三(603)、管汇(604)、下接头(605);所述的管汇(604)焊接在下接头(605)上方;所述的注液口二(602)焊接在管汇(604)上方;所述的注液口一(601)与注液口三(603)分别焊接在管汇(604)的两侧;所述的下接头(605)与钻具(5)通过螺纹连接。
  5. 根据权利要求1-4中任一项所述的环境友好型囊袋式井下溶洞封堵装置的井下溶洞封堵方法,其特征在于,包括以下步骤:
    步骤S1,进行地下钻井遇到溶洞时,将钻具(5)从钻井中取出,将钻头从钻具(5)上取下后,将套筒(1)通过螺纹安装在钻具(5)下方;
    步骤S2,将钻具(5)深入地下,到达溶洞位置后,套筒(1)内的超声波传感器 (405)将会测得溶洞大致容积,将信号反馈给地面系统,定量计算出溶洞容积,选择水泥量;
    步骤S3,由注液系统的注液口一(601)灌注钻井液,此时径向滑块二(312)遮盖住接收管二(108)的管道,因此钻井液只可从钻井液开孔(101)流出,对井壁(701)进行冲洗,同时对井壁(701)提供一定压力防止井壁(701)失稳;
    步骤S4,钻井液冲洗完毕后,由注液系统的注液口二(602)投入一个木质小球,木质小球从钻具(5)管道内坠落,直至到达套筒(1)内部;
    步骤S5,超声波传感器(405)将受到由木质小球产生的触发感应信号,控制系统(406)将会使电磁铁一(404)停止工作,从而失去磁性,被电磁铁一(404)吸附的径向滑块一(403)将会受到处于拉伸状态的弹簧一(407)的拉力,从而导致径向滑块一(403)由套筒(1)径心向套筒(1)壁的移动;原先被径向滑块一(403)卡住的纵向滑块(305)由于受到重力,将会沿着纵向滑块轨道(102)下降,焊接在一起的连接板(306)、连接柱(307)、连接块(308)将会随着纵向滑块(305)的下降而整体向下移动;由于铰链一(309)、铰链二(310)的作用,从动摇杆(303)将会发生转动,从而引发径向滑块二(312)产生由套筒(1)径心向套筒(1)壁的移动,直至橡胶塞(302)堵住钻井液开孔(101);其中,在径向滑块二(312)的两端设置由棘爪(301)与齿条(107)组成的棘轮装置,由于安装在径向滑块二(312)两端的棘爪(301)的作用,径向滑块二(312)将只能产生由套筒(1)径心向套筒(1)壁的移动,而不能产生由套筒(1)壁向套筒(1)径心方向的移动;
    步骤S6,橡胶塞(302)堵住钻井液开口(101)后,超声波传感器(405)收到触发信号,地上系统从注液口三(603)灌注水泥,水泥从钻具(5)管道内流入套筒(1),由于没有径向滑块二(312)遮盖住接收管二(108)的管道,水泥从接收管二(108)的管道中灌入,流经接收管二(108)、接收管三(205)和接收管四(203),最后灌入囊袋(201)中;
    步骤S7,水泥灌入囊袋(201)后,囊袋(201)将迅速膨胀,并将贴着溶洞壁生长;
    步骤S8,根据定量计算所得的水泥全部注入囊袋(201)时,囊袋(201)即膨胀至溶洞大小,传感器控制系统(406)将发出信号,触发电路使得电磁铁二(402)停止工作,电磁铁二(402)失去磁性后,径向滑块三(401)受到处于拉伸状态的弹簧二(408)的拉力,从而导致径向滑块三(401)作由套筒(1)径心向套筒(1)壁的移动,原先被径向滑块三(401)卡住的接收管三(205)由于受到重力将会下降,使得接收管三 (205)、接收管四(203)、单向阀(204)和囊袋(201)与套筒(1)分离,落入溶洞中;由于接收管四(203)内安装单向阀(204),水泥流入囊袋(201)后不可流出;若溶洞容积过大,将钻杆(502)与套筒(1)拉出地面,重新安装一个套筒(1),反复进行以上动作,将溶洞内部的地下暗河(703)、底部裂缝(704)彻底封堵;
    步骤S9,由注液口一(601)灌注钻井液,对钻具(5)、套筒(1)进行冲洗,从接收管二(108)流出,将残留在钻具(5)与套筒(1)内部的水泥冲洗干净;
    步骤S10,将本装置从钻井中取出,等到囊袋(201)中的水泥彻底凝固后,溶洞即成功封堵,可进行下一步钻井工作。
  6. 根据权利要求5所述的环境友好型囊袋式井下溶洞封堵方法,其特征在于,所述溶洞为单侧溶洞(702)或双侧溶洞(705)。
PCT/CN2017/084793 2017-04-18 2017-05-18 一种环境友好型囊袋式井下溶洞封堵装置及其封堵方法 WO2018192042A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1907009.3A GB2570259B (en) 2017-04-18 2017-05-18 Environmentally friendly capsular bag-type downhole karst cave blocking device and blocking method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710254531.7 2017-04-18
CN201710254531.7A CN106948789B (zh) 2017-04-18 2017-04-18 一种环境友好型囊袋式井下溶洞封堵装置及其封堵方法

Publications (1)

Publication Number Publication Date
WO2018192042A1 true WO2018192042A1 (zh) 2018-10-25

Family

ID=59476386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084793 WO2018192042A1 (zh) 2017-04-18 2017-05-18 一种环境友好型囊袋式井下溶洞封堵装置及其封堵方法

Country Status (3)

Country Link
CN (1) CN106948789B (zh)
GB (1) GB2570259B (zh)
WO (1) WO2018192042A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109403954A (zh) * 2018-12-18 2019-03-01 徐州天地岩土科技有限公司 一种实时钻孔测斜纠偏装置
CN110145276A (zh) * 2019-06-02 2019-08-20 河南志林矿山设备科技有限公司 一种注浆封堵器及其封堵方法
CN113153213A (zh) * 2021-05-13 2021-07-23 重庆工程职业技术学院 一种瓦斯采集孔洞封堵装置及其封堵方法
CN113324454A (zh) * 2021-07-09 2021-08-31 广东中人岩土工程有限公司 一种岩溶地质基坑爆破施工装置及其工艺
US11118417B1 (en) 2020-03-11 2021-09-14 Saudi Arabian Oil Company Lost circulation balloon
CN114198142A (zh) * 2021-11-22 2022-03-18 中铁第四勘察设计院集团有限公司 一种岩溶塌陷的处置方法
CN114737916A (zh) * 2022-04-04 2022-07-12 阜宁县宏达石化机械有限公司 一种可溶桥塞
CN115949084A (zh) * 2023-01-16 2023-04-11 水利部交通运输部国家能源局南京水利科学研究院 一种应用于岩溶地区突泥涌水的纤维布袋灌浆封堵方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740682B (zh) * 2017-11-28 2024-03-22 长江大学 一种自动调节式堵漏工具
US10822916B2 (en) * 2018-02-14 2020-11-03 Saudi Arabian Oil Company Curing a lost circulation zone in a wellbore
US11851959B2 (en) 2020-07-28 2023-12-26 Saudi Arabian Oil Company Method and apparatus for the exact placement of resin and cement plugs
CN112031706B (zh) * 2020-08-20 2022-04-29 北京大地高科地质勘查有限公司 一种水平井裂隙封堵的高效注浆设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD262887A1 (de) * 1987-08-05 1988-12-14 Komb Gasanlagen Mittenwalde Ve Vorrichtung zum einbringen eines dichtmittels in ein bohrloch
CN202970767U (zh) * 2012-12-26 2013-06-05 王爱国 气囊封堵装置
CN105298518A (zh) * 2015-10-14 2016-02-03 山东大学 一种隐蔽型深长大溶洞内架桥封堵装置及封堵涌水的治理方法
CN105421475A (zh) * 2015-12-14 2016-03-23 中国建筑科学研究院 一种气囊式帷幕渗漏堵漏装置和方法
CN105821894A (zh) * 2016-01-22 2016-08-03 中国水电基础局有限公司 伴有涌水的大型溶洞地下暗河处理方法及其结构
CN205776263U (zh) * 2016-05-19 2016-12-07 中国电建集团贵阳勘测设计研究院有限公司 一种溶洞封堵结构
CN106320728A (zh) * 2016-01-29 2017-01-11 中天建设集团有限公司 双液注浆囊袋式快速封孔装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2648056Y (zh) * 2003-08-14 2004-10-13 四川石油管理局 袋式堵漏工具
CN101092557A (zh) * 2007-07-16 2007-12-26 王玲 封堵地下岩层的裂缝、溶洞、空洞和孔隙的方法和配方
CN101718183A (zh) * 2009-12-15 2010-06-02 中国地质科学院探矿工艺研究所 地质钻孔及石油天然气钻井用拦截式堵漏工具
US9816341B2 (en) * 2015-04-28 2017-11-14 Thru Tubing Solutions, Inc. Plugging devices and deployment in subterranean wells
CN105239957A (zh) * 2015-10-28 2016-01-13 长江大学 一种可组装可释放的膨大管堵漏装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD262887A1 (de) * 1987-08-05 1988-12-14 Komb Gasanlagen Mittenwalde Ve Vorrichtung zum einbringen eines dichtmittels in ein bohrloch
CN202970767U (zh) * 2012-12-26 2013-06-05 王爱国 气囊封堵装置
CN105298518A (zh) * 2015-10-14 2016-02-03 山东大学 一种隐蔽型深长大溶洞内架桥封堵装置及封堵涌水的治理方法
CN105421475A (zh) * 2015-12-14 2016-03-23 中国建筑科学研究院 一种气囊式帷幕渗漏堵漏装置和方法
CN105821894A (zh) * 2016-01-22 2016-08-03 中国水电基础局有限公司 伴有涌水的大型溶洞地下暗河处理方法及其结构
CN106320728A (zh) * 2016-01-29 2017-01-11 中天建设集团有限公司 双液注浆囊袋式快速封孔装置
CN205776263U (zh) * 2016-05-19 2016-12-07 中国电建集团贵阳勘测设计研究院有限公司 一种溶洞封堵结构

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109403954A (zh) * 2018-12-18 2019-03-01 徐州天地岩土科技有限公司 一种实时钻孔测斜纠偏装置
CN109403954B (zh) * 2018-12-18 2024-01-19 徐州天地岩土科技有限公司 一种实时钻孔测斜纠偏装置
CN110145276A (zh) * 2019-06-02 2019-08-20 河南志林矿山设备科技有限公司 一种注浆封堵器及其封堵方法
US11118417B1 (en) 2020-03-11 2021-09-14 Saudi Arabian Oil Company Lost circulation balloon
CN113153213A (zh) * 2021-05-13 2021-07-23 重庆工程职业技术学院 一种瓦斯采集孔洞封堵装置及其封堵方法
CN113324454A (zh) * 2021-07-09 2021-08-31 广东中人岩土工程有限公司 一种岩溶地质基坑爆破施工装置及其工艺
CN113324454B (zh) * 2021-07-09 2022-09-02 广东中人岩土工程有限公司 一种岩溶地质基坑爆破施工装置及其工艺
CN114198142B (zh) * 2021-11-22 2023-12-05 中铁第四勘察设计院集团有限公司 一种岩溶塌陷的处置方法
CN114198142A (zh) * 2021-11-22 2022-03-18 中铁第四勘察设计院集团有限公司 一种岩溶塌陷的处置方法
CN114737916A (zh) * 2022-04-04 2022-07-12 阜宁县宏达石化机械有限公司 一种可溶桥塞
CN114737916B (zh) * 2022-04-04 2023-11-03 阜宁县宏达石化机械有限公司 一种可溶桥塞
CN115949084B (zh) * 2023-01-16 2023-09-08 水利部交通运输部国家能源局南京水利科学研究院 一种应用于岩溶地区突泥涌水的纤维布袋灌浆封堵方法
CN115949084A (zh) * 2023-01-16 2023-04-11 水利部交通运输部国家能源局南京水利科学研究院 一种应用于岩溶地区突泥涌水的纤维布袋灌浆封堵方法

Also Published As

Publication number Publication date
CN106948789A (zh) 2017-07-14
GB2570259B (en) 2021-11-10
CN106948789B (zh) 2019-04-02
GB2570259A (en) 2019-07-17
GB201907009D0 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2018192042A1 (zh) 一种环境友好型囊袋式井下溶洞封堵装置及其封堵方法
CN102561992B (zh) 一种采用变形止水器的注浆封堵工艺
CN101975041B (zh) 绕煤层固井方法及装置
CN112903961B (zh) 一种模拟井下钻井液循环形成泥饼的装置的使用方法
CN105178947A (zh) 一种水平井找堵水一体化方法
CN105986795B (zh) 煤层气水平井煤层改造方法
CN204875933U (zh) 深层承压自流井封堵系统
CN107762444B (zh) 一种用于固井防砂的一体化管柱及使用方法
CN206737880U (zh) 一种井下探放水钻孔套管段孔壁注浆加固装置
CN100538003C (zh) 膨胀式筛管悬挂方法
CN109138904B (zh) 双封隔器分层注浆止水装置及其使用方法
CN101775977A (zh) 双管分注井安全生产管柱
CN103470212A (zh) 一种主动式钻孔封孔装置及方法
CN206830131U (zh) 一种注水井用沉砂定压单流阀
CN109854202A (zh) 一种双管挤压式分层止水器
CN201443382U (zh) 井下加药装置
CN203716947U (zh) 油田注水井井下防返吐、可反洗工艺管柱系统
CN108071376B (zh) 一种煤层气井中的注采管柱
CN105298443A (zh) 油管浮阀及欠平衡完井下油管防喷、气举和压裂联作方法
CN203716926U (zh) 长水平段井碰压固井工具
CN206309360U8 (zh) 一种注水井分层注水管柱
CN210068073U (zh) 一种多层非均质油藏选择性调驱管柱
CN105134147B (zh) 一种可以实现分质注采的层内非均质井网模型
CN111021983A (zh) 高效封隔注浆分层止水装置及其井管及其止水方法
CN201953352U (zh) 全能浮阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201907009

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170518

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906122

Country of ref document: EP

Kind code of ref document: A1