WO2018191829A1 - 具有供电系统的交通工具断电系统 - Google Patents
具有供电系统的交通工具断电系统 Download PDFInfo
- Publication number
- WO2018191829A1 WO2018191829A1 PCT/CN2017/000419 CN2017000419W WO2018191829A1 WO 2018191829 A1 WO2018191829 A1 WO 2018191829A1 CN 2017000419 W CN2017000419 W CN 2017000419W WO 2018191829 A1 WO2018191829 A1 WO 2018191829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- accident
- power
- supply system
- vehicle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/04—Cutting off the power supply under fault conditions
Definitions
- the present invention relates to the field of vehicle safety, and more particularly to a vehicle power failure system having a power supply system.
- the battery management unit and other vehicle control units only receive the CAN signal from the airbag.
- the battery management system and other wholes are caused by the damage or excessive length of the CAN bus.
- the vehicle control unit cannot receive the signal from the airbag or the delay of the receiving signal, and the battery management unit and other vehicle control units cannot properly perform the relevant safety protection strategies, thereby causing casualties.
- the object of the present invention is to provide a new vehicle power-off system with a power supply system.
- the technical problem to be solved is that the power supply output can be cut off quickly, reliably, and stably after an accident occurs in the vehicle, thereby being more suitable for practical use.
- a vehicle power-off system with a power supply system includes an electric load system, an accident sensing system, a power supply system, and a pyrotechnic safety switch; wherein the electric load system includes a need in a vehicle The device for supplying power; wherein the accident sensing system is configured to identify an accident signal sent to the power supply system after an accident occurs and to identify an ignition signal to the pyrotechnic safety switch after the occurrence of the accident; wherein the power supply system, Providing power for the electric load system; the power supply system includes a power supply management subsystem, for cutting off a power supply output of the power supply system after receiving the accident signal; wherein the pyrotechnic safety switch is used for The power supply output of the power supply system is cut off after receiving the ignition signal.
- the aforementioned vehicle power-off system with a power supply system wherein the pyrotechnic safety switch is disposed on a main power supply circuit between the power supply system and the power load system.
- the foregoing vehicle power-off system with a power supply system further comprising a second power supply system;
- the power supply management subsystem includes a contactor for cutting off the power supply output of the power supply system;
- the second power supply system supplies power to the contactor.
- the foregoing vehicle power-off system with a power supply system wherein the power supply management subsystem includes a power management module for cutting off power supply of the contactor; the second power supply system further supplies power to the power supply management module;
- the safety switch is disposed on the circuit between the second power supply system and the power supply management module, and is configured to cut off power supply of the contactor by cutting off power supply of the power supply management module by the second power supply system.
- the foregoing vehicle power-off system with a power supply system wherein the accident sensing system is configured to identify an accident severity level according to an accident severity after an accident occurs, and send an ignition to the pyrotechnic safety switch when the accident severity level is high signal.
- the foregoing vehicle power-off system with a power supply system wherein the accident sensing system includes a collision safety module for identifying an accident signal sent to the power supply system after the occurrence of a collision accident and for identifying the fireworks after the occurrence of the collision accident
- the safety switch sends an ignition signal.
- the accident sensing system further comprises an airbag
- the collision safety module is configured to identify a serious level of the collision accident according to the severity of the collision accident after the collision accident occurs and in the accident When the severity level is high, the airbag is triggered and an ignition signal is sent to the pyrotechnic safety switch.
- the foregoing vehicle power-off system with a power supply system wherein the accident sensing system further includes an operating state control module for collecting an operating state of the vehicle and identifying an accident according to the operating state.
- the foregoing vehicle power-off system with a power supply system wherein the accident sensing system further comprises a gateway disposed between each module included in the accident sensing system and the power supply system.
- the aforementioned vehicle power-off system with a power supply system wherein the power supply system is a high-voltage power supply system, and the power load system is a high-voltage power load system.
- the aforementioned vehicle power-off system with a power supply system the vehicle being an electric vehicle.
- the present invention has significant advantages and advantageous effects over the prior art.
- the present invention proposes a vehicle power-off system with a power supply system.
- the pyrotechnic safety switch quickly cuts off the power supply output, and improves the speed, reliability, and reliability of the power-off.
- the stability which improves the safety of the vehicle, achieves considerable technological advancement and practicality, and has extensive industrial use value.
- Figure 1 is a block diagram showing a preferred embodiment of a power-off system of the present invention.
- FIG. 2 is a schematic view showing the structure of another preferred embodiment of the power-off system of the present invention.
- Power supply system 140 Pyrotechnic safety switch
- High-pressure air conditioning subsystem 121 collision safety module
- Airbag 123 Vehicle controller
- Gateway 131 Power Management Subsystem
- contactor 210 second power supply system
- the present invention is applicable to various vehicles having a power supply system, such as rail vehicles, ships, aircraft, automobiles, and the like.
- Power supply can also be pure electric, hybrid, fuel cell or fuel, etc., only need to have a power supply system.
- the invention is also particularly applicable to electric vehicles.
- the power-off system provided by the present invention will now be explained by taking an electric vehicle having a high-voltage power supply system as an example.
- the communication connection in the present invention may employ, but is not limited to, a CAN bus transmission.
- the specific embodiment may use, but is not limited to, twisted pairs, cables, optical fibers, and/or hard wires to connect the two components.
- Electrical connections in the present invention may be, but are not limited to, wires, and embodiments may use, but are not limited to, cables.
- a vehicle power-off system with a power supply system mainly includes: an electrical load system 110 , an accident sensing system 120 , a power supply system 130 , and a pyrotechnic safety switch . (Pyrotechnic Safety Switch) 140.
- the electrical load system 110 therein may include an electric drive subsystem 111, a charging subsystem 112, a high pressure air conditioning subsystem 113, and any devices and subsystems in the vehicle that require power supply; preferably, these devices and sub-units in the electrical load system 110
- the system is a device and subsystem for high voltage power supply.
- the accident sensing system 120 is configured to identify the event to the power supply system 130 after the accident occurs. Therefore, the signal is used to send an ignition signal to the pyrotechnic safety switch 140.
- the accident sensing system 120 identifies whether an ignition signal is sent to the pyrotechnic safety switch 140 according to the severity of the accident after the accident occurs; more preferably, the accident The sensing system 120 sends an ignition signal to the pyrotechnic safety switch 140 when the severity of the accident is high; further preferably, at least two accident levels are set according to the severity of the accident, and two of the levels can be named as a first-level accident and In the secondary accident, the accident sensing system 120 does not perform any action when the first-level accident and the second-level accident are not reached, and the accident sensing system 120 only sends an accident signal to the power supply system 130 when the first-level accident is reached, and the accident occurs in the second-level accident.
- the sensing system 120 simultaneously transmits the above-mentioned accident signal and ignition signal; in a preferred embodiment, the accident sensing system 120 includes a collision safety module 121 and an airbag 122, and at least two collision accident levels are set according to the severity of the collision accident. Two of these levels can be named as first-level collision accidents and second-level collision accidents.
- the collision safety module 121 does not perform any action.
- the collision safety module 121 only sends an accident signal to the power supply system 130, and when the second-level collision accident is reached, the airbag 122 is ejected and collided.
- the security module 121 simultaneously transmits the above-described accident signal and ignition signal.
- the accident sensing system 120 further includes an operating state control module (not shown in FIG. 1) for collecting the operating state of the vehicle and identifying the accident according to the operating state; and operating the state control module when the vehicle is an electric vehicle.
- the vehicle controller 123 may be configured to send an operation state control signal to the power supply system 130 by collecting, judging, processing information such as accelerator pedals, gears, and the state of the vehicle (speed, temperature, etc.), and may The power supply system 130 sends an accident signal.
- the vehicle controller 123 and the collision safety module 121 can transmit signals to each other, and can be used to determine whether a safety accident occurs or determine an accident level based on the collected information.
- the accident sensing system 120 further includes a gateway 124, which can be disposed between the accident sensing system 120 and the power supply system 130 for interconnecting information transmission between modules, units, modules, and units.
- a gateway 124 which can be disposed between the accident sensing system 120 and the power supply system 130 for interconnecting information transmission between modules, units, modules, and units.
- the power supply system 130 is configured to provide power to the power load system 110.
- the power supply system 130 includes a high voltage battery unit (not shown in FIG. 1) for providing power; the power supply system 130 includes a power supply management subsystem. 131.
- the power supply system 130 can be cut off after receiving the accident signal.
- the power management subsystem 131 includes a contactor 132.
- the contactor 132 has at least two states of closed/open state, and the power supply system 130 and the power load when closed The system 110 is electrically connected, and the contactor 132 is switched to an open state after receiving the signal that the power supply management subsystem 131 sends off the power supply to disconnect the circuit between the power supply system 130 and the power load system 110; preferably, the contactor 132
- the closing/opening is reversible.
- the pyrotechnic safety switch 140 is configured to cut off the power supply of the power supply system 130 after receiving the ignition signal.
- the pyrotechnic safety switch 140 uses a pyrotechnic physical mode to cut off the circuit, and can disconnect the power supply output more quickly and stably than the software operation mode such as the bus code, and there is no power supply manager due to damage or excessive length of the entire vehicle CAN bus.
- System 131 cannot receive an accident signal or receive signal delay Late problems, thus ensuring the normal implementation of the relevant security protection strategy.
- the pyrotechnic safety switch 140 is disposed in the main circuit of the power supply system 130 and the electric load system 110. When the ignition signal is received, the pyrotechnic safety switch 140 physically cuts off the main circuit to cut off The power supply system 130 is powered; preferably, the pyrotechnic safety switch 140 is irreversible.
- the above preferred embodiment of the present invention is designed to realize that when a serious failure occurs in the vehicle, the collision and safety module recognizes an accident, and the bus code is required to be shut down according to the severity of the accident and/or the high-pressure main is quickly cut off by the pyrotechnic safety switch.
- the circuit which improves the speed, reliability and stability of the power failure, and improves the safety of the vehicle.
- another vehicle power-off system with a power supply system mainly includes: an electric load system 110, an accident sensing system 120, a power supply system 130, and a pyrotechnic safety switch 140.
- the second power supply system 210 is provided with a contactor 132 in the power supply system 130.
- the electrical load system 110 therein may include an electric drive subsystem 111, a charging subsystem 112, a high pressure air conditioning subsystem 113, and any devices and subsystems in the vehicle that require power supply; preferably, these devices and sub-units in the electrical load system 110
- the system is a device and subsystem for high voltage power supply.
- the accident sensing system 120 is configured to identify an accident signal sent to the power supply system 130 after the accident occurs, and is used to send an ignition signal to the pyrotechnic safety switch 140.
- the accident sensing system 120 identifies the accident according to the accident. The degree is determined whether the ignition signal is sent to the pyrotechnic safety switch 140; more preferably, the accident sensing system 120 sends an ignition signal to the pyrotechnic safety switch 140 when the accident severity is high; further preferably, at least according to the severity of the accident Two accident levels, two of these levels can be named as first-level accidents and second-level accidents.
- the accident-sensing system 120 When the first-level accidents and second-level accidents are not reached, the accident-sensing system 120 does not perform any actions, and the accidents at the first-level accidents are reached.
- the sensing system 120 only sends an accident signal to the power supply system 130.
- the accident sensing system 120 simultaneously transmits the above-mentioned accident signal and ignition signal; in a preferred embodiment, the accident sensing system 120 includes a collision safety module. 121 and the airbag 122, according to the severity of the collision accident, setting at least two collision accident levels, this can be The two of the grades are named as the first-level collision accident and the second-level collision accident.
- the collision safety module 121 When the first-level collision accident and the second-level collision accident are not reached, the collision safety module 121 does not perform any action, and when the first-level collision accident is reached, the collision safety module 121 only The accident signal is sent to the power supply system 130, and the airbag 122 is ejected when the second-level collision accident is reached, and the collision safety module 121 simultaneously transmits the above-mentioned accident signal and ignition signal.
- the accident sensing system 120 further includes an operating state control module (not shown in FIG. 2) for collecting the operating state of the vehicle and identifying the accident according to the operating state; and operating the state control module when the vehicle is an electric vehicle.
- an operating state control module (not shown in FIG. 2) for collecting the operating state of the vehicle and identifying the accident according to the operating state; and operating the state control module when the vehicle is an electric vehicle.
- It may be a vehicle controller 123 for transmitting an operation state control signal to the power supply system 130 by collecting, judging, processing information such as an accelerator pedal, a gear position, and a vehicle state (speed, temperature, etc.), which may be generated when an accident occurs.
- the vehicle controller 123 and the collision safety module 121 can transmit signals to each other, and can be used to determine whether a safety accident occurs or determine the accident level based on the collected information.
- the accident sensing system 120 further includes a gateway 124, which can be disposed between the accident sensing system 120 and the power supply system 130 for interconnecting information transmission between modules, units, modules, and units.
- a gateway 124 which can be disposed between the accident sensing system 120 and the power supply system 130 for interconnecting information transmission between modules, units, modules, and units.
- the power supply system 130 is configured to provide power to the power load system 110.
- the power supply system 130 includes a high voltage battery unit (not shown in FIG. 2) for providing power.
- the power supply system 130 includes a power management module 231. After receiving the accident signal or after triggering the pyrotechnic safety switch 140, the signal to cut off the power supply may be sent to the contactor 132 or the power supply of the contactor 132 may be cut off by the trigger of the pyrotechnic switch 140 to cut off the power supply system 130.
- the second power supply system 210 supplies power to the contactor 132 through the power management module 231. When the pyrotechnic safety switch 140 is triggered, the power supply module 231 is powered off, thereby disconnecting the contactor. The power is supplied to the power supply system 130.
- the second power supply system 210 supplies power to the contactor 132 in the power supply system 130 through dedicated wires.
- the second power supply system 210 supplies power to the power management module 231 in the power supply system 130 through dedicated wires.
- the contactor 132 is electrically connected to the power management module 231, that is, the second power supply system 210 also supplies power to the contactor 132.
- the power supply provides a low voltage power supply; further preferably, the second power supply system 210 is a 12V battery, and the positive pole of the 12V battery is a contactor 132 through a dedicated wire (or power management in a preferred solution) Module 231) provides 12V power.
- the pyrotechnic safety switch 140 is configured to cut off the power supply of the power supply system 130 after receiving the ignition signal.
- the pyrotechnic safety switch 140 uses a pyrotechnic physical mode to cut off the circuit, and can disconnect the power supply output more quickly and stably than the software operation mode such as the bus code, and there is no power supply management module due to damage or excessive length of the entire vehicle CAN bus. 231 Cannot receive the problem of accident signal or delay of receiving signal, thus ensuring the normal execution of the relevant security protection strategy.
- the pyrotechnic safety switch 140 can be disposed on the wire for supplying power to the contactor 132. When the ignition signal is received, the pyrotechnic safety switch 140 physically cuts the wire to cut the contactor 132.
- the power is supplied to disconnect the power supply of the power supply system 130.
- the pyrotechnic safety switch 140 is disposed in the circuit of the second power supply system 210 and the power supply management module 231. After receiving the ignition signal, the pyrotechnic safety switch 140 physically cuts off the above circuit, cuts off the power supply of the power management module 231, thereby cutting off the power supply of the contactor 132 to disconnect the power supply of the power supply system 130.
- the pyrotechnic safety switch 140 is reversible.
- the contactor 132 has at least two closed/open states.
- the power supply system 130 When the power is turned on, the power supply system 130 is electrically connected to the power load system 110.
- the contactor 132 receives the signal from the power supply management module 231 to cut off the power supply or is After the power supply of the second power supply system 210 is cut off, it is converted into an open state.
- the closing/opening of the contactor 132 In order to disconnect the circuit between the power supply system 130 and the power load system 110; preferably, the closing/opening of the contactor 132 is reversible; preferably, the contactor 132 is an electromechanical contactor, and is set by electric shock. Close/open two states.
- the above preferred embodiment of the present invention is designed to realize that in the event of a serious failure of the vehicle, the collision and safety module recognizes an accident, shuts down the bus circuit according to the severity of the accident, and/or quickly cuts off the main circuit through the pyrotechnic safety switch.
- the contactor coil power supply control contactor is disconnected, which improves the speed, reliability and stability of the power failure and improves the safety of the vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种具有供电系统的交通工具断电系统,其包括电力负载系统(110)、事故传感系统(120)、供电系统(130)以及烟火式安全开关(Pyrotechnic Safety Switch)(140);事故传感系统(120),用于识别事故发生后向供电系统(130)发送事故信号并用于识别事故发生后向烟火式安全开关(140)发送点火信号;供电系统(130),用于为电力负载系统(120)提供电能;供电系统(130)包括供电管理子系统(131),用于在接收到事故信号后切断供电系统(130)的供电输出;其中烟火式安全开关(140),用于收到点火信号后切断供电系统(130)对电力负载系统的供电。当交通工具发生严重故障时,烟火式安全开关快速切断供电输出,提高了断电的快速性、可靠性和稳定性,从而提高了交通工具的安全性。
Description
本发明涉及交通工具安全领域,特别是涉及一种具有供电系统的交通工具断电系统。
近年来随着电动汽车保有量的日益增加,其安全问题,尤其是高压系统的安全问题也日益受到政府、消费者和汽车厂商的重视。电动汽车发生碰撞后起火、爆炸的新闻时有报道。2015年10月1日我国正式开始实施GB/T31498《电动汽车碰撞后安全要求》,对碰撞后的高压系统安全做了详细要求,为电动汽车的市场准入提高了门槛。
现有的断电系统,电池管理单元与其他整车控制单元仅接收安全气囊发出的CAN信号,在碰撞等事故过程中由于整车CAN总线的损坏或过长,会导致电池管理系统与其他整车控制单元无法接收安全气囊发出的信号或接收信号延迟,电池管理单元与其他整车控制单元无法正常执行相关安全保护策略,从而引起伤亡事故。
发明内容
本发明的目的是提供一种新的具有供电系统的交通工具断电系统,所要解决的技术问题是交通工具发生事故后可以快速、可靠、稳定的切断供电输出,从而更加适于实用。
本发明目的及解决其技术问题是采用以下的技术方案来实现的。依据本发明提出的具有供电系统的交通工具断电系统,包括电力负载系统、事故传感系统、供电系统以及烟火式安全开关(Pyrotechnic Safety Switch);其中所述电力负载系统,包括交通工具中需要电力供给的装置;其中所述事故传感系统,用于识别事故发生后向所述供电系统发送事故信号并用于识别事故发生后向所述烟火式安全开关发送点火信号;其中所述供电系统,用于为所述电力负载系统提供电能;所述供电系统包括供电管理子系统,用于在接收到所述事故信号后切断所述供电系统的供电输出;其中所述烟火式安全开关,用于收到所述点火信号后切断所述供电系统的供电输出。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
前述的具有供电系统的交通工具断电系统,其中所述烟火式安全开关设置于供电系统与电力负载系统之间的主供电电路上。
前述的具有供电系统的交通工具断电系统,其进一步包括第二供电系统;所述供电管理子系统包括接触器,用于切断所述供电系统供电输出;
所述第二供电系统为所述接触器供电。
前述的具有供电系统的交通工具断电系统,其中所述烟火式安全开关设置于第二供电系统与接触器之间的供电电路上。
前述的具有供电系统的交通工具断电系统,其中所述供电管理子系统包括供电管理模块,用于切断所述接触器的供电;所述第二供电系统还为供电管理模块供电;所述烟火式安全开关设置于所述第二供电系统与所述供电管理模块之间的电路上,用于通过切断所述第二供电系统为所述供电管理模块的供电而切断所述接触器的供电。
前述的具有供电系统的交通工具断电系统,其中所述事故传感系统,用于识别事故发生后根据事故严重程度判断事故严重等级并在事故严重等级高时向所述烟火式安全开关发送点火信号。
前述的具有供电系统的交通工具断电系统,其中所述事故传感系统包括碰撞安全模块,用于识别碰撞事故发生后向所述供电系统发送事故信号并用于识别碰撞事故发生后向所述烟火式安全开关发送点火信号。
前述的具有供电系统的交通工具断电系统,其中所述事故传感系统进一步包括安全气囊;所述碰撞安全模块,用于识别碰撞事故发生后根据碰撞事故严重程度判断碰撞事故严重等级并在事故严重等级高时触发安全气囊和向所述烟火式安全开关发送点火信号。
前述的具有供电系统的交通工具断电系统,其中所述事故传感系统进一步包括运行状态控制模块,用于采集交通工具的运行状态并根据运行状态识别事故。
前述的具有供电系统的交通工具断电系统,其中所述事故传感系统进一步包括网关,所述网关设置于所述事故传感系统所包括的各模块与所述供电系统之间。
前述的具有供电系统的交通工具断电系统,其中所述供电系统为高压供电系统,所述电力负载系统为高压电力负载系统。
前述的具有供电系统的交通工具断电系统,所述交通工具为电动汽车。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明提出了一种具有供电系统的交通工具断电系统,在交通工具发生严重故障时,烟火式安全开关快速切断供电输出,提高了断电的快速性、可靠性和稳定性,从而提高了交通工具的安全性,从而达到相当的技术进步性及实用性,具有产业上的广泛利用价值。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图的简要说明
图1是本发明的断电系统一较佳实施例的结构示意图。
图2是本发明的断电系统另一较佳实施例的结构示意图。
【主要元件符号说明】
110:电力负载系统 120:事故传感系统
130:供电系统 140:烟火式安全开关
111:电驱动子系统 112:充电子系统
113:高压空调子系统 121:碰撞安全模块
122:安全气囊 123:整车控制器
124:网关 131:供电管理子系统
132:接触器 210:第二供电系统
231:供电管理模块
实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种具有供电系统的交通工具断电系统其具体实施方式、结构、特征及其功效,详细说明如后。
本发明适用于具有供电系统的各种交通工具,例如轨道交通工具、船舶、飞行器、汽车等。动力提供方式也可以是纯电动、混合动力、燃料电池或燃油等,仅需具有供电系统即可。
本发明还特别适用于电动汽车。现在以具有高压供电系统的电动汽车作为示例,来阐述本发明所提供的断电系统。
本发明中的通讯连接可以采用(但不限于)CAN总线传输方式,具体实施方式可使用(但不限于)双绞线、电缆、光纤和/或硬线来连接两个部件。
本发明中的电连接可以采用(但不限于)导线,具体实施方式可使用(但不限于)电缆。
请参阅图1所示,本发明较佳实施例的一种具有供电系统的交通工具断电系统,其主要包括:电力负载系统110,事故传感系统120,供电系统130,以及烟火式安全开关(Pyrotechnic Safety Switch)140。
其中的电力负载系统110可以包括电驱动子系统111、充电子系统112、高压空调子系统113以及交通工具中任何需要电力供给的装置和子系统;较优的,电力负载系统110中的这些装置和子系统是高压电力供给的装置和子系统。
其中的事故传感系统120,用于识别事故发生后向供电系统130发送事
故信号,并用于向烟火式安全开关140发送点火信号;较优的,事故传感系统120识别事故发生后根据事故严重程度判断是否向烟火式安全开关140发送点火信号;更较优的,事故传感系统120在事故严重程度高时向烟火式安全开关140发送点火信号;进一步较优的,根据事故严重程度设置至少两个事故等级,可以将这些等级中的两个命名为一级事故和二级事故,在未达到一级事故和二级事故时事故传感系统120不执行任何动作,达到一级事故时事故传感系统120仅向供电系统130发送事故信号,达到二级事故时事故传感系统120同时发送上述的事故信号和点火信号;在一种优选实施例中,事故传感系统120包括碰撞安全模块121和安全气囊122,根据碰撞事故严重程度设置至少两个碰撞事故等级,可以将这些等级中的两个命名为一级碰撞事故和二级碰撞事故,在未达到一级碰撞事故和二级碰撞事故时碰撞安全模块121不执行任何动作,达到一级碰撞事故时碰撞安全模块121仅向供电系统130发送事故信号,达到二级碰撞事故时执行安全气囊122的弹出并且碰撞安全模块121同时发送上述的事故信号和点火信号。
较优的,事故传感系统120还包括运行状态控制模块(图1中未画出),用于采集交通工具的运行状态并根据运行状态识别事故;在交通工具为电动汽车时运行状态控制模块可以是整车控制器123,用于通过采集、判断处理油门踏板、挡位等信息和交通工具状态(速度、温度等)信息,向供电系统130发送运行状态控制信号,在事故发生时可以向供电系统130发送事故信号;可选的,整车控制器123与碰撞安全模块121可以相互传递信号,可以用于判断是否发生安全事故或根据采集到的信息判断事故等级。
较优的,事故传感系统120还包括网关124,可以设置于事故传感系统120与供电系统130之间,用于实现各模块、各单元、模块与单元间信息传输的互连。
其中的供电系统130,用于为电力负载系统110提供电能,较优的,供电系统130包括高电压蓄电池单元(图1中未画出),用于提供电能;供电系统130包括供电管理子系统131,可以在接收到所述事故信号后切断供电系统130;较优的,供电管理子系统131包括接触器132,接触器132至少具有闭/开两个状态,闭合时供电系统130与电力负载系统110是电连接的,接触器132收到供电管理子系统131发出切断供电的信号后转换为打开的状态以断开供电系统130与电力负载系统110间的电路;较优的,接触器132的闭/开是可逆的。
其中的烟火式安全开关140,用于收到点火信号后切断供电系统130的供电。烟火式安全开关140采用烟火式的物理方式切断电路,能够比总线电码等的软件运算方式更快更稳定的断开供电输出,也不存在由于整车CAN总线的损坏或过长导致供电管理子系统131无法接收事故信号或接收信号延
迟的问题,从而保证相关安全保护策略的正常执行。在本实施例中,将烟火式安全开关140设置在供电系统130与电力负载系统110的主电路中,当收到点火信号后,烟火式安全开关140用物理方式切断上述的主电路,以切断供电系统130的供电;较优的,烟火式安全开关140是不可逆的。
上述的本发明较佳实施例的设计实现了在交通工具发生严重故障时,碰撞和安全模块识别到发生事故,根据事故严重程度通过总线电码要求关闭和/或通过烟火式安全开关快速切断高压主电路,这样就提高了断电的快速性、可靠性和稳定性,提高了交通工具的安全性。
请参阅图2所示,本发明较佳实施例的另一具有供电系统的交通工具断电系统,其主要包括:电力负载系统110,事故传感系统120,供电系统130,烟火式安全开关140,第二供电系统210,其中的供电系统130中设置有接触器132。
其中的电力负载系统110可以包括电驱动子系统111、充电子系统112、高压空调子系统113以及交通工具中任何需要电力供给的装置和子系统;较优的,电力负载系统110中的这些装置和子系统是高压电力供给的装置和子系统。
其中的事故传感系统120,用于识别事故发生后向供电系统130发送事故信号,并用于向烟火式安全开关140发送点火信号;较优的,事故传感系统120识别事故发生后根据事故严重程度判断是否向烟火式安全开关140发送点火信号;更较优的,事故传感系统120在事故严重程度高时向烟火式安全开关140发送点火信号;进一步较优的,根据事故严重程度设置至少两个事故等级,可以将这些等级中的两个命名为一级事故和二级事故,在未达到一级事故和二级事故时事故传感系统120不执行任何动作,达到一级事故时事故传感系统120仅向供电系统130发送事故信号,达到二级事故时事故传感系统120同时发送上述的事故信号和点火信号;在一种优选实施例中,事故传感系统120包括碰撞安全模块121和安全气囊122,根据碰撞事故严重程度设置至少两个碰撞事故等级,可以将这些等级中的两个命名为一级碰撞事故和二级碰撞事故,在未达到一级碰撞事故和二级碰撞事故时碰撞安全模块121不执行任何动作,达到一级碰撞事故时碰撞安全模块121仅向供电系统130发送事故信号,达到二级碰撞事故时执行安全气囊122的弹出并且碰撞安全模块121同时发送上述的事故信号和点火信号。
较优的,事故传感系统120还包括运行状态控制模块(图2中未画出),用于采集交通工具的运行状态并根据运行状态识别事故;在交通工具为电动汽车时运行状态控制模块可以是整车控制器123,用于通过采集、判断、处理油门踏板、挡位等信息和交通工具状态(速度、温度等)信息,向供电系统130发送运行状态控制信号,在事故发生时可以向供电系统130发送事
故信号;可选的,整车控制器123与碰撞安全模块121可以相互传递信号,可以用于判断是否发生安全事故或根据采集到的信息判断事故等级。
较优的,事故传感系统120还包括网关124,可以设置于事故传感系统120与供电系统130之间,用于实现各模块、各单元、模块与单元间信息传输的互连。
其中的供电系统130,用于为电力负载系统110提供电能,较优的,供电系统130包括高电压蓄电池单元(图2中未画出),用于提供电能;供电系统130包括供电管理模块231,可以在接收到所述事故信号后或是触发烟火式安全开关140后,向接触器132发送切断供电的信号或是通过烟火式开关140的触发切断接触器132的供电,以切断供电系统130的供电;较优的,所述第二供电系统210通过供电管理模块231为所述接触器132供电,当触发烟火式安全开关140后,断开供电管理模块231的供电,从而断开接触器132的供电,以断开供电系统130的供电。
其中的第二供电系统210,通过专用的导线为供电系统130中的接触器132供电;较优的,所述第二供电系统210通过专用的导线为供电系统130中的供电管理模块231供电,并且如图2所示,接触器132与供电管理模块231电连接,即第二供电系统210也为接触器132供电。较优的,所述供电提供的是低压电源;进一步较优的,第二供电系统210为12V蓄电池,该12V蓄电池的正极通过专用的导线为接触器132(或是在优选方案中为供电管理模块231)提供12V电。
其中的烟火式安全开关140,用于收到点火信号后切断供电系统130的供电。烟火式安全开关140采用烟火式的物理方式切断电路,能够比总线电码等的软件运算方式更快更稳定的断开供电输出,也不存在由于整车CAN总线的损坏或过长导致供电管理模块231无法接收事故信号或接收信号延迟的问题,从而保证相关安全保护策略的正常执行。在本实施例中,可以将烟火式安全开关140设置在上述的为接触器132供电的导线上,当收到点火信号后,烟火式安全开关140用物理方式切断上述导线,从而切断接触器132的供电,以断开供电系统130的供电。较优的,如图2所示,在第二供电系统210通过供电管理模块231为接触器132供电的情形下,烟火式安全开关140设置于第二供电系统210与供电管理模块231的电路之间,收到点火信号后,烟火式安全开关140用物理方式切断上述电路,切断供电管理模块231的供电,从而切断接触器132的供电,以断开供电系统130的供电。较优的,烟火式安全开关140是可逆的。
其中的接触器132,接触器132至少具有闭/开两个状态,闭合时供电系统130与电力负载系统110是电连接的,接触器132收到供电管理模块231发出切断供电的信号或是被切断第二供电系统210的供电后,转换为打开的状
态,以断开供电系统130与电力负载系统110间的电路;较优的,接触器132的闭/开是可逆的;较优的,上述接触器132为电动机械式接触器,通过触电设置闭/开两个状态。
上述的本发明较佳实施例的设计实现了在交通工具发生严重故障时,碰撞和安全模块识别到发生事故,根据事故严重程度通过总线电码要求关闭和/或通过烟火式安全开关快速切断主回路接触器线圈供电控制接触器断开,这样就提高了断电的快速性、可靠性和稳定性,提高了交通工具的安全性。
以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (12)
- 一种具有供电系统的交通工具断电系统,其特征在于其包括:电力负载系统、事故传感系统、供电系统以及烟火式安全开关;其中所述电力负载系统,包括交通工具中需要电力供给的装置;其中所述事故传感系统,用于识别事故发生后向所述供电系统发送事故信号并用于识别事故发生后向所述烟火式安全开关发送点火信号;其中所述供电系统,用于为所述电力负载系统提供电能;所述供电系统包括供电管理子系统,用于在接收到所述事故信号后切断所述供电系统的供电输出;其中所述烟火式安全开关,用于收到所述点火信号后切断所述供电系统的供电输出。
- 根据权利要求1所述的具有供电系统的交通工具断电系统,其特征在于:其中所述烟火式安全开关设置于供电系统与电力负载系统之间的主供电电路上。
- 根据权利要求1所述的具有供电系统的交通工具断电系统,其特征在于:其进一步包括第二供电系统;所述供电管理子系统包括接触器,用于切断所述供电系统供电输出;所述第二供电系统为所述接触器供电。
- 根据权利要求3所述的具有供电系统的交通工具断电系统,其特征在于:其中所述烟火式安全开关设置于第二供电系统与接触器之间的供电电路上。
- 根据权利要求3所述的具有供电系统的交通工具断电系统,其特征在于:其中所述供电管理子系统包括供电管理模块,用于接收到所述事故信号后或是被切断供电后切断所述接触器的供电;所述第二供电系统还为供电管理模块供电;所述烟火式安全开关设置于所述第二供电系统与所述供电管理模块之间的电路上,用于通过切断所述第二供电系统为所述供电管理模块的供电而切断所述第二供电系统为所述接触器的供电。
- 根据权利要求1到5中任意一项所述的具有供电系统的交通工具断电系统,其特征在于:其中所述事故传感系统,用于识别事故发生后根据事故严重程度判断事故严重等级并在事故严重等级高时向所述烟火式安全开关发送点火信号。
- 根据权利要求1到5中任意一项所述的具有供电系统的交通工具断电系统,其特征在于:其中所述事故传感系统包括碰撞安全模块,用于识别碰撞事故发生后向所述供电系统发送事故信号并用于识别碰撞事故发生后向所述烟火式安全开关发送点火信号。
- 根据权利要求7所述的具有供电系统的交通工具断电系统,其特征 在于:其中所述事故传感系统进一步包括安全气囊;所述碰撞安全模块,用于识别碰撞事故发生后根据碰撞事故严重程度判断碰撞事故严重等级并在事故严重等级高时触发安全气囊和向所述烟火式安全开关发送点火信号。
- 根据权利要求1到5中任意一项所述的具有供电系统的交通工具断电系统,其特征在于:其中所述事故传感系统进一步包括运行状态控制模块,用于采集交通工具的运行状态并根据运行状态识别事故。
- 根据权利要求1到5中任意一项所述的具有供电系统的交通工具断电系统,其特征在于:其中所述事故传感系统进一步包括网关,所述网关设置于所述事故传感系统所包括的各模块与所述供电系统之间。
- 根据权利要求1到5中任意一项所述的具有供电系统的交通工具断电系统,其特征在于:其中所述供电系统为高压供电系统,所述电力负载系统为高压电力负载系统。
- 根据权利要求1到5中任意一项所述的具有供电系统的交通工具断电系统,其特征在于:所述交通工具为电动汽车。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720408471.5U CN206797136U (zh) | 2017-04-18 | 2017-04-18 | 具有供电系统的交通工具断电系统 |
CN201720408471.5 | 2017-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018191829A1 true WO2018191829A1 (zh) | 2018-10-25 |
Family
ID=60732720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/000419 WO2018191829A1 (zh) | 2017-04-18 | 2017-07-05 | 具有供电系统的交通工具断电系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN206797136U (zh) |
WO (1) | WO2018191829A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2761252C1 (ru) * | 2019-12-19 | 2021-12-06 | Сименс Мобилити Гмбх | Рельсовое транспортное средство |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108327539B (zh) * | 2018-01-08 | 2021-08-17 | 蔚来(安徽)控股有限公司 | 电动汽车、车辆安全控制方法及装置 |
CN109624716B (zh) * | 2018-12-03 | 2020-09-11 | 浙江吉利汽车研究院有限公司 | 一种电动汽车的碰撞保护方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202480896U (zh) * | 2012-01-13 | 2012-10-10 | 浙江吉利汽车研究院有限公司 | 一种汽车动力电池系统的安全冗余装置 |
CN203496695U (zh) * | 2013-08-29 | 2014-03-26 | 海马商务汽车有限公司 | 一种汽车电源控制装置及系统 |
CN104192000A (zh) * | 2014-08-07 | 2014-12-10 | 奇瑞汽车股份有限公司 | 一种电动汽车高压碰撞安全控制系统及其控制方法 |
CN104494544A (zh) * | 2014-12-25 | 2015-04-08 | 东风汽车公司 | 一种电动汽车碰撞断电保护系统 |
US20150255975A1 (en) * | 2014-03-07 | 2015-09-10 | Ford Global Technologies, Llc | High voltage cutoff for electrified vehicles |
CN205168210U (zh) * | 2015-12-07 | 2016-04-20 | 北京新能源汽车股份有限公司 | 动力电池高压输出断电装置 |
-
2017
- 2017-04-18 CN CN201720408471.5U patent/CN206797136U/zh active Active
- 2017-07-05 WO PCT/CN2017/000419 patent/WO2018191829A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202480896U (zh) * | 2012-01-13 | 2012-10-10 | 浙江吉利汽车研究院有限公司 | 一种汽车动力电池系统的安全冗余装置 |
CN203496695U (zh) * | 2013-08-29 | 2014-03-26 | 海马商务汽车有限公司 | 一种汽车电源控制装置及系统 |
US20150255975A1 (en) * | 2014-03-07 | 2015-09-10 | Ford Global Technologies, Llc | High voltage cutoff for electrified vehicles |
CN104192000A (zh) * | 2014-08-07 | 2014-12-10 | 奇瑞汽车股份有限公司 | 一种电动汽车高压碰撞安全控制系统及其控制方法 |
CN104494544A (zh) * | 2014-12-25 | 2015-04-08 | 东风汽车公司 | 一种电动汽车碰撞断电保护系统 |
CN205168210U (zh) * | 2015-12-07 | 2016-04-20 | 北京新能源汽车股份有限公司 | 动力电池高压输出断电装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2761252C1 (ru) * | 2019-12-19 | 2021-12-06 | Сименс Мобилити Гмбх | Рельсовое транспортное средство |
Also Published As
Publication number | Publication date |
---|---|
CN206797136U (zh) | 2017-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106828107B (zh) | 纯电动汽车高压互锁检测装置及其方法 | |
CN205168210U (zh) | 动力电池高压输出断电装置 | |
KR101755894B1 (ko) | 차량용 배터리의 과방전 방지 장치 및 그 방법 | |
CN103879291B (zh) | 一种车辆的安全装置 | |
CN202480896U (zh) | 一种汽车动力电池系统的安全冗余装置 | |
CN105150854A (zh) | 一种电动汽车高压安全保护系统 | |
WO2018192271A1 (zh) | 具有供电系统的交通工具安全控制方法和系统 | |
CN101596901A (zh) | 一种电动汽车的安全监控系统及其监控方法 | |
CN103381781A (zh) | 车辆接线盒的暗电流切断系统和方法 | |
CN102004222A (zh) | 一种车载电池管理系统中继电器状态监测方法和装置 | |
CN104527446A (zh) | 电动汽车高压安全电气互锁机构及控制方法、电动汽车 | |
WO2018191829A1 (zh) | 具有供电系统的交通工具断电系统 | |
CN204956144U (zh) | 一种燃料电池大巴车的高压动力配电系统 | |
Kong et al. | Comprehensive fault diagnosis and fault-tolerant protection of in-vehicle intelligent electric power supply network | |
US20190092173A1 (en) | High-Voltage Battery System Having a Safety Device | |
CN106004454A (zh) | 一种电动汽车安全控制方法及装置 | |
CN111137132A (zh) | 一种电动汽车碰撞断电控制方法、系统及一种电动汽车 | |
CN102431457A (zh) | 一种电动汽车的安全监控系统的监控方法 | |
CN206456246U (zh) | 纯电动汽车高压互锁检测装置 | |
CN104057828A (zh) | 一种电动/混合动力汽车高压安全的碰撞保护系统及其保护方法 | |
CN102673402B (zh) | 一种电动汽车高压保护系统 | |
CN103802676B (zh) | 一种整车电源控制系统 | |
CN107128181B (zh) | 一种用于试验型电动车的安全回路 | |
CN204037361U (zh) | 一种纯电动客车碰撞自断路控制机构 | |
CN103580245A (zh) | 蓄电池管理系统、机动车以及蓄电池系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17906018 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17906018 Country of ref document: EP Kind code of ref document: A1 |