WO2018190615A1 - 건설 기계의 유압 시스템 - Google Patents

건설 기계의 유압 시스템 Download PDF

Info

Publication number
WO2018190615A1
WO2018190615A1 PCT/KR2018/004193 KR2018004193W WO2018190615A1 WO 2018190615 A1 WO2018190615 A1 WO 2018190615A1 KR 2018004193 W KR2018004193 W KR 2018004193W WO 2018190615 A1 WO2018190615 A1 WO 2018190615A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
regenerative
spool
line
boom cylinder
Prior art date
Application number
PCT/KR2018/004193
Other languages
English (en)
French (fr)
Inventor
강병일
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to KR1020197029620A priority Critical patent/KR102309862B1/ko
Priority to US16/604,508 priority patent/US10988915B2/en
Priority to EP18784964.1A priority patent/EP3604691B1/en
Priority to CN201880024322.6A priority patent/CN110494612B/zh
Publication of WO2018190615A1 publication Critical patent/WO2018190615A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2207Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/857Monitoring of fluid pressure systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a hydraulic system of a construction machine, and more particularly, to a hydraulic system of a construction machine to improve the fuel efficiency by recovering the potential energy of the boom when the boom is lowered.
  • Construction machinery generally refers to all the machinery used in civil engineering and building construction.
  • a construction machine has an engine and a hydraulic pump that operates at the power of the engine, and travels or drives a work device with the power generated by the engine and the hydraulic pump.
  • an excavator a type of construction machine
  • a construction machine it consists of a traveling body which serves as a movement of equipment, an upper swinging body mounted on the traveling body to rotate 360 degrees, and a work device.
  • the excavator includes a traveling motor used for driving, a swing motor used for swinging the upper swing body, and driving devices such as a boom cylinder, an arm cylinder, a bucket cylinder, and an optional cylinder used for a work device.
  • driving devices such as a boom cylinder, an arm cylinder, a bucket cylinder, and an optional cylinder used for a work device.
  • These drive devices are driven by hydraulic oil discharged from a variable displacement hydraulic pump driven by an engine or an electric motor.
  • the excavator has an operation device including a joystick, an operation lever, a pedal, or the like for controlling the above-mentioned various driving devices.
  • the energy regeneration system accumulates high pressure hydraulic fluid in an accumulator, and operates a regenerative motor with the accumulated hydraulic fluid to reduce fuel economy of an engine driving a hydraulic pump.
  • the accumulator causes the pressure of the hydraulic oil discharged from the head side of the boom cylinder to fluctuate, and this fluctuation of the pressure makes it impossible to control the speed of the boom as the operator intends to operate. That is, the conventional energy regeneration system has a problem in that it can not cope with the change in the boom lowering speed that occurs regardless of the operator's operating intention due to the pressure change of the accumulator.
  • An embodiment of the present invention provides a hydraulic system of a construction machine capable of constantly controlling the speed of the boom at the operator's intention while recovering the potential energy of the boom when the boom is lowered.
  • a hydraulic system of a construction machine includes a boom cylinder divided into a head side and a rod side, and a first boom connected to the head side of the boom cylinder to supply hydraulic oil to the boom cylinder during an upward movement of the boom.
  • a boom regenerative valve including a first regenerative spool installed in the regenerative line and a second regenerative spool installed in the circulation line, and a lifting boom of the boom.
  • a pressure sensor installed at both ends of the second regenerative spool, wherein the controller is configured to pass the second regenerative spool through the second regenerative spool through the pressure difference between the two ends of the second regenerative spool and the open area of the second regenerative spool.
  • the flow rate may be calculated to estimate the speed of the boom cylinder, and when the estimated speed of the boom cylinder is smaller than a target speed, the open area of the first regenerative spool or the second regenerative spool may be increased.
  • a boom angle sensor installed at the construction machine to measure the angle of the boom, wherein the control unit estimates the speed of the boom cylinder according to the angle change amount of the boom angle sensor, and the estimated speed of the boom cylinder is a target speed.
  • the open area of the first regenerative spool or the second regenerative spool may be increased.
  • the hydraulic system of the construction machine may further include a main control valve for controlling the supply of hydraulic oil to the boom cylinder, and an operation device for transmitting a pilot signal to the main control valve.
  • the target speed may be a moving speed of the boom input through the manipulation device.
  • the first boom hydraulic line may connect the main control valve and the head side of the boom cylinder
  • the second boom hydraulic line may connect the main control valve and the rod side of the boom cylinder
  • the controller may maintain the open area of the first regenerative spool larger than the open area of the second regenerative spool.
  • the hydraulic system of the construction machine includes a main pump for discharging hydraulic oil, a main hydraulic line connecting the main pump and the main control valve, an engine driving the main pump, and the regenerative line to connect the engine. It may further include an auxiliary regenerative motor.
  • the controller may increase the swash plate angle of the regenerative motor during the lowering operation of the boom.
  • the hydraulic system of the construction machine may further include an energy storage line connecting the accumulator and the regenerative line, and an accumulator valve installed in the energy storage line.
  • the controller may close the accumulator valve when the boom is raised and open the accumulator valve when the boom is lowered.
  • the control unit may estimate the speed of the boom cylinder by calculating a flow rate of the hydraulic oil passing through the first regenerative spool through the pressure difference between both ends of the first regenerative spool and the opening area of the first regenerative spool.
  • the open area of the first regenerative spool or the second regenerative spool may be increased.
  • the hydraulic system of the construction machine may constantly control the speed of the boom according to the intention of the operator while recovering the potential energy of the boom when the boom is lowered to improve fuel economy.
  • FIG. 1 is a hydraulic circuit diagram of a hydraulic system of a construction machine according to an embodiment of the present invention.
  • FIG. 2 is a hydraulic circuit diagram showing an operating state of the hydraulic system of the construction machine of FIG.
  • FIG. 3 is a graph showing a change in the pressure of the hydraulic oil and a change in the size of the control signal according to the operation of the hydraulic system of the construction machine of FIG.
  • FIG. 4 is a control flowchart showing a control flow of the hydraulic system of the construction machine of FIG.
  • Embodiments of the invention specifically illustrate ideal embodiments of the invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
  • FIGS. 1 to 3 a hydraulic system 101 of a construction machine according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • the construction machine includes a boom for vertical movement.
  • the construction machine is not limited to the excavator, and any construction machine equipped with the same work device as the boom may be applicable.
  • the construction machine may be installed with a boom angle sensor 740 for measuring the angle of the boom.
  • the hydraulic system 101 of the construction machine is a boom cylinder 200, the first boom hydraulic line 621, the second boom hydraulic line 622, regeneration Line 670, circulation line 675, accumulator 800, boom regeneration valve 400, and control unit 700.
  • the hydraulic system 101 of the construction machine is the main control valve 500, the operating device 900, the main pump 310, the main hydraulic line 610, the engine 100, The regenerative motor 370, the energy storage line 680, and the accumulator valve 480 may be further included.
  • Engine 100 generates power by burning fuel. That is, the engine 100 supplies rotational power to the main pump 310 which will be described later.
  • an embodiment of the present invention is not limited to the above description, and other power devices such as an electric motor may be used instead of the engine 100.
  • the main pump 310 operates with power generated by the engine 100 and discharges hydraulic oil.
  • the hydraulic oil discharged from the main pump 310 may be supplied to various driving devices including the boom cylinder 200 to be described later.
  • the main pump 310 may be a variable displacement pump having a variable discharge rate according to the angle of the swash plate.
  • the main control valve (MCV) 500 controls the supply of hydraulic oil discharged from the main pump 310 to various driving devices including the boom cylinder 200.
  • the main control valve 500 may include a plurality of control spools. Each of the control spools controls the supply of hydraulic oil to various driving devices including the boom cylinder 200.
  • the main control valve 500 may further include a spool cap (not shown) connected to both ends of the control spool and receiving a pilot signal of an operation device to be described later to stroke the control spool.
  • an electronic proportional pressure reducing valve EPPRV
  • EPPRV electronic proportional pressure reducing valve
  • the operation device 900 includes a joystick, an operation lever, a pedal, and the like installed in a cab so that an operator can operate various work devices and a traveling device.
  • the operation device 900 is operated by an operator and transmits a pilot signal to the main control valve 500 as the operator intends.
  • the main control valve 500 may adjust the hydraulic oil supplied to the various driving devices according to the pilot signal received through the operation device 900.
  • the main hydraulic line 610 connects the main pump 310 and the main control valve 500. That is, the main hydraulic line 610 transmits the hydraulic oil discharged from the main pump 310 so that the main control valve 500 can distribute and adjust the hydraulic oil.
  • the regeneration motor 370 is connected to the regeneration line 670 to be described later to operate at the pressure of the hydraulic oil supplied through the regeneration line 670.
  • the regeneration motor 370 may assist the engine 100 to drive the main pump 310. That is, as the regenerative motor 370 drives the main pump 310, fuel efficiency of the engine 100 may be reduced.
  • the regeneration motor 370 may also be a variable capacitance type, and the swash plate angle may be adjusted by the regulator 375.
  • the regulator 375 for adjusting the swash plate angle of the regeneration motor 370 may be controlled by the controller 700 to be described later.
  • the engine 100, the main pump 310, and the regeneration motor 370 may be directly connected to each other.
  • the boom cylinder 200 drives the boom of the excavator in the vertical direction.
  • the boom cylinder 200 is divided into a head side 201 and a rod side 202.
  • the first boom hydraulic line 621 connects the main control valve 500 and the head side 201 of the boom cylinder 200
  • the second boom hydraulic line 622 connects the main control valve 500 and the boom cylinder ( The rod side 202 of the 200 is connected.
  • the first boom hydraulic line 621 is connected to the head side 201 of the boom cylinder 200 to supply the hydraulic oil to the boom cylinder 200 during the lifting operation of the boom.
  • the second boom hydraulic line 622 is connected to the rod side 202 of the boom cylinder 200 to supply hydraulic oil to the boom cylinder 200 during the lowering operation of the boom.
  • the regeneration line 670 branches from the first boom hydraulic line 621 to move the hydraulic oil discharged from the head side 201 of the boom cylinder 200 during the lowering operation of the boom.
  • the regenerative line 670 is connected to the regeneration motor 370, and the hydraulic oil moved along the regeneration line 670 operates the regeneration motor 370.
  • the circulation line 675 is branched from the regenerative line 670 and connected to the second boom hydraulic line 622. Accordingly, some of the hydraulic oil discharged from the head side 201 of the boom cylinder 200 during the lowering operation of the boom moves along the circulation line 675 and then passes through the second boom hydraulic line 622 of the boom cylinder 200. It flows into the rod side 202. As such, when the boom descends, the hydraulic oil discharged from the head side 201 of the boom cylinder 200 flows into the rod side 202 of the boom cylinder 200, thereby increasing the descending speed of the boom and improving energy utilization efficiency. have.
  • the accumulator 800 is connected to the regenerative line 670 to accumulate hydraulic oil discharged from the boom cylinder 200.
  • the accumulator 800 is a device for storing high pressure hydraulic fluid in a hydraulic system.
  • the energy storage line 680 connects the accumulator 800 and the regenerative line 670, and the accumulator valve 480 is installed in the energy storage line 680 to open and close the energy storage line 680.
  • the accumulator valve 480 is controlled by the control unit 700 which will be described later, and is opened when the boom is lowered and when the regeneration motor 370 is driven using the high pressure hydraulic oil stored in the accumulator 800.
  • the boom regenerative valve 400 includes a first regenerative spool 410 installed in the regenerative line 670 and a second regenerative spool 420 installed in the circulation line 675.
  • the first regenerative spool 410 and the second regenerative spool 420 may open and close the regenerative line 670 and the circulation line 675, respectively, and may adjust a passage flow rate.
  • the controller 700 may control various components of the construction machine such as the engine 100 and the main control valve 500.
  • the controller 700 may include one or more of an engine control unit (ECU) and a vehicle control unit (VCU).
  • ECU engine control unit
  • VCU vehicle control unit
  • control unit 700 closes the boom regenerative valve 400 during the boom up operation and opens the first regenerative spool 410 and the second regenerative spool 420 during the down operation of the boom. Adjust the area.
  • the control unit 700 calculates the flow rate of the hydraulic oil passing through the second regenerative spool 420 through the pressure difference between both ends of the second regenerative spool 420 and the open area of the second regenerative spool 420, thereby boom cylinder Estimate the speed of 200.
  • the flow rate of the working oil passing through the second regenerative spool 420 is proportional to the descending speed of the boom.
  • the target speed is a moving speed of the boom input as the operator intends through the operating device 900.
  • the pressure of the accumulator 800 is increased, and the pressure of the regenerative line 670 is increased in proportion to the pressure increase of the accumulator 800.
  • the pressure difference between both ends of the first regenerative spool 410 decreases, the flow rate of the hydraulic oil discharged through the regenerative line 670 decreases, and thus, the descending speed of the boom starts to decrease.
  • the decrease in the lowering speed of the boom reduces the flow rate of the hydraulic oil passing through the second regenerative spool 420, and as a result, the pressure difference between both ends of the second regenerative spool 420 is also reduced.
  • the control unit 700 uses the information on the pressure difference between both ends of the second regenerative spool 420 and the opening area at the current position of the second regenerative spool 420, so that the speed of the boom cylinder 200, that is, the lowering speed of the boom Can be calculated. And since the pressure difference between the two ends of the second regenerative spool 420 is reduced it can be seen that the flow rate passing through the second regenerative spool 420 is reduced.
  • the control unit 700 compares the decrease in the flow rate of the hydraulic oil passing through the second regenerative spool 420 with the target flow rate of the second regenerative spool 420 according to the pilot signal of the operating device 900, and currently the second regenerative spool If the flow rate of the hydraulic fluid passing through 420 is less than the target flow rate, the flow rate of the hydraulic fluid is transmitted to the second regenerative spool 420 to follow the target flow rate.
  • the flow rate of the working oil passing through the second regenerative spool 420 corresponds to the estimated speed of the boom cylinder 200
  • the target flow rate of the second regenerative spool 420 according to the pilot signal of the operating device 900 is the boom. It corresponds to the target speed of the cylinder 200.
  • the control unit 700 is a boom cylinder (calculated through the difference between the control default value transmitted to the second regenerative spool 420 and the pressure difference between the second regenerative spool 420 according to the operation of the operator operating device 900 ( If it is found that the estimated speed of 200) is lower than the target speed, the second regenerative spool control signal value is increased to compensate for this.
  • the open area of the second regenerative spool 420 is increased, and the pressure applied to the rod side 202 of the boom cylinder 200 increases, thereby being discharged to the head side 201 of the boom cylinder 200.
  • the pressure of the hydraulic oil is further increased to compensate for the decrease in the lowering speed of the boom due to the pressure rising as the hydraulic oil accumulates in the accumulator 800. Therefore, the descending speed of the boom can be maintained constant as the operator intends to operate.
  • first pressure sensor 760 and the second pressure sensor 770 are installed on the circulation line 675 respectively connected to both ends of the second regenerative spool 420 or both ends of the second regenerative spool 420.
  • the controller 700 may determine a pressure difference between both ends of the second regenerative spool 420 based on the information provided by the first pressure sensor 760 and the second pressure sensor 770.
  • the control unit 700 maintains the open area of the first regenerative spool 410 larger than the open area of the second regenerative spool 420.
  • the opening area of the first regenerative spool 410 must be larger than the opening area of the second regenerative spool 420 so that more hydraulic fluid can be accumulated in the accumulator 800 through the regenerative line 670. That is, the hydraulic oil stored in the accumulator 800 may have a higher pressure. Therefore, in one embodiment of the present invention, the first regenerative spool control signal value is also increased in proportion to the second regenerative spool control signal value being increased.
  • control unit 700 drives the regeneration motor 370 using the energy stored in the accumulator 800 or increases the swash plate angle of the regeneration motor 370 during the lowering operation of the boom. For other operations, the swash plate angle of the regeneration motor 370 is maintained at the minimum swash plate angle.
  • the hydraulic system 101 of the construction machine can recover the potential energy of the boom when the boom is lowered and improve the fuel efficiency while still controlling the speed of the boom as the operator intended. Can be.
  • the control unit 700 opens the accumulator valve 480,
  • the first regenerative spool 410 and the second regenerative spool 420 of the boom regenerative valve 400 are controlled according to a control default value corresponding to the pilot signal of the operating device 900 to adjust their open areas.
  • the controller 700 increases the swash plate angle of the regeneration motor 370 at the minimum swash plate angle.
  • the pilot signal for lowering the boom may be generated through the boom down joystick.
  • section B corresponds to section B in FIG. 3.
  • the open area of the second regenerative spool 420 is small, a predetermined level of pressure difference exists between the head side 201 and the rod side 202 of the boom cylinder 200. Then, the hydraulic oil discharged from the head side 201 of the boom cylinder 200 is supplied to the regeneration motor 370 along the regeneration line 670 via the first regeneration spool 410 and the boom starts to descend.
  • the pressure of the regenerative line 670 is lower than the pressure of the accumulator 800 so that energy charging of the accumulator 800 does not occur.
  • the pressure of the regenerative line 670 increases and enters the section C of FIG. 3, the pressure of the regenerative line 670 becomes higher than the pre-charge pressure of the accumulator 800. Then, a part of the hydraulic oil passing through the first regenerative spool 410 starts to be charged in the accumulator 800.
  • the control unit 700 flows through the second regenerative spool 420 using the information on the pressure difference between both ends of the second regenerative spool 420 and the opening area at the current position of the second regenerative spool 420. Is calculated and the current speed of the boom cylinder 200 is estimated from the flow rate of the hydraulic oil passing through the second regenerative spool 420.
  • the speed of the boom cylinder 200 has the same meaning as the lowering speed of the boom. That is, when the pressure difference between both ends of the second regenerative spool 420 is reduced, it can be seen that the flow rate of the hydraulic oil passing through the second regenerative spool 420 is reduced, and thus the lowering speed of the boom is reduced.
  • control unit 700 passes through the first regenerative spool 410 using the information on the pressure difference between both ends of the first regenerative spool 410 and the open area at the current position of the first regenerative spool 410.
  • the flow rate of the boom cylinder 200 may be calculated and the current speed of the boom cylinder 200 may be estimated from the flow rate of the working oil passing through the first regenerative spool 410.
  • the controller 700 may estimate the current speed of the boom cylinder 200 by using the boom angle sensor 740 installed in the construction machine to measure the angle of the boom. That is, the controller 700 may estimate the speed of the boom cylinder 200 according to the angle change amount of the boom angle sensor 740.
  • the controller 700 confirms that the estimated speed of the boom cylinder 200 is smaller than the target speed of the boom cylinder 200 according to the operation of the operating device 900, the estimated speed of the boom cylinder 200 is the target speed.
  • the second regenerative spool control signal value transmitted to the second regenerative spool 420 is increased to follow, thereby increasing the open area of the second regenerative spool 420.
  • Such feedback control can be implemented using a proportional-integral-derivative controller.
  • the pressure applied to the rod side 202 of the boom cylinder 200 rises, thereby causing the hydraulic oil discharged to the head side 201 of the boom cylinder 200.
  • the pressure is further increased to compensate for the decrease in the lowering speed of the boom due to the rising pressure as the working oil accumulates in the accumulator 800.
  • the operating area of the first regenerative spool 410 may be kept larger than the opening area of the second regenerative spool 420, the working oil may be stored in the accumulator 800 to the maximum.
  • the open area of the first regenerative spool 410 is also increased.
  • the pilot signal transmitted through the operating device 900 is kept constant, and like the section C, a part of the hydraulic oil discharged from the head side 201 of the boom cylinder 200 It flows into the rod side 202 via the second regenerative spool 420, and the rest is supplied to the regeneration motor 370 and the accumulator 800 via the first regenerative spool 410.
  • the control unit 700 compensates for the decrease in the lowering speed of the boom, in the first regenerative spool 4100 and the second regenerative.
  • the first regenerative spool control signal value and the second regenerative spool control signal value transmitted to the spool 420 are respectively increased.
  • the descending speed of the boom can be maintained constant as the operator intends to operate.
  • Hydraulic system of the construction machine can be used to constantly control the speed of the boom as the operator intended while recovering the potential energy of the boom when the boom is lowered to improve fuel economy.

Abstract

본 발명의 실시예에 따른 건설 기계의 유압 시스템은 붐 실린더와, 제1 붐 유압 라인과, 제2 붐 유압 라인과, 회생 라인과, 순환 라인과, 어큐뮬레이터와, 붐 회생 밸브, 그리고 제어부를 포함하며, 붐 하강 시 붐이 가지는 위치에너지를 회수하여 연비를 향상시키면서도 붐의 속도를 조작자의 의도대로 일정하게 제어할 수 있는 건설 기계의 유압 시스템에 관한 것이다.

Description

건설 기계의 유압 시스템
본 발명은 건설 기계의 유압 시스템에 관한 것으로, 더욱 상세하게는 붐 하강 시 붐이 가지는 위치에너지를 회수하여 연비를 향상시킨 건설 기계의 유압 시스템에 관한 것이다.
건설 기계는 크게 토목 공사나 건축 공사에 사용되는 모든 기계를 말한다. 일반적으로 건설 기계는 엔진과 엔진의 동력으로 동작하는 유압 펌프를 가지며, 엔진과 유압 펌프를 통해 발생한 동력으로 주행을 하거나 작업 장치를 구동한다.
예를 들어, 건설 기계의 한 종류인 굴삭기는 토목, 건축, 건설 현장에서 땅을 파는 굴삭 작업, 토사를 운반하는 적재 작업, 건물을 해체하는 파쇄 작업, 지면을 정리하는 정지 작업 등의 작업을 행하는 건설 기계로서 장비의 이동 역할을 하는 주행체와, 주행체에 탑재되어 360도 회전하는 상부 선회체, 그리고 작업 장치로 구성되어 있다.
또한, 굴삭기는 주행에 이용되는 주행 모터와, 상부 선회체 스윙(swing)에 사용되는 스윙 모터, 그리고 작업 장치에 이용되는 붐 실린더, 암 실린더, 버킷 실린더, 및 옵션 실린더 등의 구동 장치들을 포함한다. 그리고 이러한 구동 장치들은 엔진 또는 전기 모터에 의해 구동되는 가변 용량형 유압 펌프로부터 토출되는 작동유에 의해 구동된다.
또한, 굴삭기는 전술한 각종 구동 장치를 제어하기 위한 조이스틱, 조작 레버, 또는 페달 등을 포함하는 조작 장치를 가지고 있다.
또한, 근래에는 작업 장치가 갖는 위치 에너지를 회수하여 회수된 에너지를 각종 구동 장치들의 동작에 보조적으로 활용하는 에너지 회생 시스템이 건설 기계에 적용되고 있다.
붐과 같은 작업 장치가 붐 실린더에 의해 상하로 움직이는 경우, 올린 붐을 내릴 때에는 붐 실린더의 헤드측의 작동유는 붐의 위치 에너지에 의해 붐 실린더로부터 고압으로 밀려 나온다. 이러한 고압의 작동유는 열에너지로 전환되어 발산되거나 저장 탱크로 복귀되면서 붐의 위치 에너지는 사라지게 된다.
따라서 에너지 회생 시스템은 어큐뮬레이터(accumulator)에 고압의 작동유를 축적하였다가 축적된 작동유로 재생 모터를 가동하여 유압 펌프를 구동하는 엔진의 연비를 절감시킬 수 있다.
하지만, 어큐뮬레이터로 인하여 붐 실린더의 헤드측에서 배출된 작동유의 압력이 변동하게 되고, 이러한 압력의 변동은 작업자가 조작하고자 하는 의도대로 붐의 속도를 제어할 수 없게 한다. 즉, 종래의 에너지 회생 시스템은 어큐뮬레이터의 압력 변화로 인하여 작업자의 조작 의도와 상관없이 발생하는 붐 하강 속도 변화에 대응할 수 없는 문제점이 있다.
구체적으로 예를 들어, 작업자가 조이스틱을 조작하여 붐을 하강시킬 때 붐이 일정한 속도로 하강하도록 조이스틱의 조작을 일정하게 유지하고 있는 경우에도 어큐뮬레이터에 축적되는 작동유로 인하여 압력이 변동하게 되고 결과적으로 작업자의 조작 의도와는 다르게 붐의 하강 속도가 감소하게 되는 문제점이 있다.
본 발명의 실시예는 붐 하강 시 붐이 가지는 위치에너지를 회수하여 연비를 향상시키면서도 붐의 속도를 조작자의 의도대로 일정하게 제어할 수 있는 건설 기계의 유압 시스템을 제공한다.
본 발명의 실시예에 따르면, 건설 기계의 유압 시스템은 헤드측과 로드측으로 구분된 붐 실린더와, 상기 붐 실린더의 헤드측에 연결되어 붐의 상승 동작 시 상기 붐 실린더에 작동유를 공급하는 제1 붐 유압 라인과, 상기 붐 실린더의 로드측에 연결되어 붐의 하강 동작 시 상기 붐 실린더에 작동유를 공급하는 제2 붐 유압 라인과, 상기 제1 붐 유압 라인에서 분기되어 붐의 하강 동작 시 상기 붐 실린더의 헤드측에서 배출된 작동유가 이동하는 회생 라인과, 상기 회생 라인에서 분기되어 상기 제2 붐 유압 라인과 연결된 순환 라인과, 상기 회생 라인과 연결되어 상기 붐 실린더에서 배출된 작동유를 축적하는 어큐뮬레이터와, 상기 회생 라인에 설치된 제1 회생 스풀과 상기 순환 라인에 설치된 제2 회생 스풀을 포함하는 붐 회생 밸브, 그리고 붐의 상승 동작 시 상기 붐 회생 밸브를 닫고 붐의 하강 동작 시 상기 실린더의 속도를 추정하여 상기 제1 회생 스풀과 상기 제2 회생 스풀의 개방 면적을 조절하는 제어부를 포함한다.
상기 제2 회생 스풀의 양단에 설치되는 압력 센서를 더 포함하며, 상기 제어부는 상기 제2 회생 스풀의 양단 압력 차이와 상기 제2 회생 스풀의 개방 면적을 통해 상기 제2 회생 스풀을 통과하는 작동유의 유량을 산출하여 상기 붐 실린더의 속도를 추정하고, 상기 붐 실린더의 추정 속도가 목표 속도보다 작을 경우 상기 제1 회생 스풀이나 상기 제2 회생 스풀의 개방 면적을 증가시킬 수 있다.
상기 건설 기계에 설치되어 붐의 각도를 측정하는 붐 각도 센서를 더 포함하며, 상기 제어부는 상기 붐 각도 센서의 각도 변화량에 따라 상기 붐 실린더의 속도를 추정하고, 상기 붐 실린더의 추정 속도가 목표 속도보다 작을 경우 상기 제1 회생 스풀이나 상기 제2 회생 스풀의 개방 면적을 증가시킬 수 있다.
상기한 건설 기계의 유압 시스템은 상기 붐 실린더에 대한 작동유의 공급을 제어하는 메인 컨트롤 밸브와, 상기 메인 컨트롤 밸브에 파일럿 신호를 전달하는 조작 장치를 더 포함할 수 있다. 그리고 상기 목표 속도는 상기 조작 장치를 통해 입력된 붐의 이동 속도일 수 있다.
상기 제1 붐 유압 라인은 상기 메인 컨트롤 밸브와 상기 붐 실린더의 헤드측을 연결하고, 상기 제2 붐 유압 라인은 상기 메인 컨트롤 밸브와 상기 붐 실린더의 로드측을 연결할 수 있다.
상기 제어부는 상기 제1 회생 스풀의 개방 면적을 상기 제2 회생 스풀의 개방 면적보다 크게 유지할 수 있다.
상기한 건설 기계의 유압 시스템은 작동유를 토출하는 메인 펌프와, 상기 메인 펌프와 상기 메인 컨트롤 밸브를 연결하는 메인 유압 라인과, 상기 메인 펌프를 구동하는 엔진, 그리고 상기 회생 라인과 연결되어 상기 엔진을 보조하는 재생 모터를 더 포함할 수 있다.
상기 제어부는 붐의 하강 동작 시 상기 재생 모터의 사판각을 증가시킬 수 있다.
상기한 건설 기계의 유압 시스템은 상기 어큐뮬레이터와 상기 회생 라인을 연결하는 에너지 저장 라인과, 상기 에너지 저장 라인에 설치된 어큐뮬레이터 밸브를 더 포함할 수 있다. 그리고 상기 제어부는 붐의 상승 동작 시 상기 어큐뮬레이터 밸브를 닫고 붐의 하강 동작 시 상기 어큐뮬레이터 밸브를 열 수 있다.
또한, 상기 제어부는 상기 제1 회생 스풀의 양단 압력 차이와 상기 제1 회생 스풀의 개방 면적을 통해 상기 제1 회생 스풀을 통과하는 작동유의 유량을 산출하여 상기 붐 실린더의 속도를 추정하고, 상기 붐 실린더의 추정 속도가 목표 속도보다 작을 경우 상기 제1 회생 스풀이나 상기 제2 회생 스풀의 개방 면적을 증가시킬 수 있다.
본 발명의 실시예에 따르면, 건설 기계의 유압 시스템은 붐 하강 시 붐이 가지는 위치에너지를 회수하여 연비를 향상시키면서도 붐의 속도를 조작자의 의도대로 일정하게 제어할 수 있다.
도 1은 본 발명의 일 실시예에 따른 건설 기계의 유압 시스템의 유압 회로도이다.
도 2는 도 1의 건설 기계의 유압 시스템의 동작 상태를 나타낸 유압 회로도이다.
도 3은 도 1의 건설 기계의 유압 시스템의 동작에 따른 작동유의 압력 변화 및 제어 신호의 크기 변화 등을 나타낸 그래프이다.
도 4는 도 1의 건설 기계의 유압 시스템의 제어 흐름을 나타낸 제어 흐름도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면들은 개략적이고 축척에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 축소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다.
본 발명의 실시예는 본 발명의 이상적인 실시예를 구체적으로 나타낸다. 그 결과, 도해의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.
이하, 도 1 내지 도 3을 참조하여 본 발명의 일 실시예에 따른 건설 기계의 유압 시스템(101)를 설명한다.
본 명세서에서는, 건설 기계로 굴삭기를 예로 들어 설명한다. 구체적으로, 건설 기계는 상하 운동을 하는 붐을 포함한다. 또한, 본 발명의 일 실시예에서, 건설 기계가 굴삭기에 한정되는 것은 아니며, 붐과 동일한 작업 장치가 장착된 모든 건설 기계가 해당될 수 있다.
또한, 건설 기계에는 붐의 각도를 측정하기 위한 붐 각도 센서(740)가 설치될 수 있다.
도 1에 도시한 바와 같이, 본 발명의 일 실시예에 따른 건설 기계의 유압 시스템(101)은 붐 실린더(200), 제1 붐 유압 라인(621), 제2 붐 유압 라인(622), 회생 라인(670), 순환 라인(675), 어큐뮬레이터(accumulator)(800), 붐 회생 밸브(400), 및 제어부(700)를 포함한다.
또한, 본 발명의 일 실시예에 따른 건설 기계의 유압 시스템(101)은 메인 컨트롤 밸브(500), 조작 장치(900), 메인 펌프(310), 메인 유압 라인(610), 엔진(100), 재생 모터(370), 에너지 저장 라인(680), 및 어큐뮬레이터 밸브(480)를 더 포함할 수 있다.
엔진(100)은 연료를 연소시켜 동력을 발생시킨다. 즉, 엔진(100)은 후술할 메인 펌프(310)에 회전 동력을 공급한다. 또한, 본 발명의 일 실시예가 전술한 바에 한정되는 것은 아니며, 엔진(100) 대신 전기 모터 등 다른 동력 장치가 사용될 수도 있다.
메인 펌프(310)는 엔진(100)이 발생시킨 동력으로 동작하며 작동유를 토출한다. 메인 펌프(310)에서 토출된 작동유는 후술할 붐 실린더(200)를 포함한 각종 구동 장치들에 공급될 수 있다. 또한, 메인 펌프(310)는 사판의 각도에 따라 토출되는 유량이 가변하는 가변 용량형 펌프일 수 있다.
메인 컨트롤 밸브(main control valve, MCV)(500)는 붐 실린더(200)를 포함한 각종 구동 장치들에 대한 메인 펌프(310)에서 토출된 작동유의 공급을 제어한다.
구체적으로, 메인 컨트롤 밸브(500)는 복수 개의 제어 스풀들을 포함할 수 있다. 그리고 각각의 제어 스풀들은 붐 실린더(200)를 포함한 각종 구동 장치들에 대한 작동유의 공급을 제어한다. 또한, 메인 컨트롤 밸브(500)는 제어 스풀의 양 단에 각각 연결되어 후술할 조작 장치의 파일럿 신호를 전달받아 제어 스풀을 스트로크(stroke)시키는 스풀 캡(미도시)을 더 포함할 수 있다. 일례로, 스풀 캡에는 전자 비례 감압 밸브(electronic proportional pressure reducing valve, EPPRV)가 설치될 수 있으며, 전자 비례 감압 밸브의 개폐 정도에 따라 작동유의 압력으로 전달되는 파일럿 신호가 제어 스풀에 가하는 압력이 달라지고, 제어 스풀은 파일럿 신호가 가하는 압력에 의해 양 방향으로 움직이게 된다.
조작 장치(900)는 각종 작업 장치와 주행 장치를 작업자가 조작할 수 있도록 운전실 내에 설치된 조이스틱, 조작 레버, 및 패달(pedal) 등을 포함한다. 조작 장치(900)는 작업자에 의해 조작되며 메인 컨트롤 밸브(500)에 작업자의 의도대로 파일럿 신호를 전달하게 된다. 그리고 메인 컨트롤 밸브(500)는 조작 장치(900)를 통해 전달받은 파일럿 신호에 따라 각종 구동 장치에 공급되는 작동유를 조절할 수 있다.
메인 유압 라인(610)은 메인 펌프(310)와 메인 컨트롤 밸브(500)를 연결한다. 즉, 메인 유압 라인(610)은 메인 펌프(310)가 토출한 작동유를 메인 컨트롤 밸브(500)가 분배 및 조절할 수 있도록 전달한다.
재생 모터(370)는 후술할 회생 라인(670)과 연결되어 회생 라인(670)을 통해 공급받은 작동유의 압력으로 동작한다. 재생 모터(370)는 엔진(100)을 보조하여 메인 펌프(310)를 구동시킬 수 있다. 즉, 재생 모터(370)가 메인 펌프(310)를 구동시킨 만큼 엔진(100)의 연비를 절감할 수 있다.
또한, 재생 모터(370)도 가변 용량형일 수 있으며, 레귤레이터(375)에 의해 사판각이 조절될 수 있다. 그리고 재생 모터(370)의 사판각을 조절하는 레귤레이터(375)는 후술할 제어부(700)에 의해 제어될 수 있다.
일례로, 엔진(100)과, 메인 펌프(310), 그리고 재생 모터(370)는 직결될 수 있다.
붐 실린더(200)는 굴삭기의 붐을 상하 방향으로 구동시킨다. 그리고 붐 실린더(200)는 헤드측(201)과 로드측(202)으로 구분된다.
제1 붐 유압 라인(621)은 메인 컨트롤 밸브(500)와 붐 실린더(200)의 헤드측(201)을 연결하고, 제2 붐 유압 라인(622)은 메인 컨트롤 밸브(500)와 붐 실린더(200)의 로드측(202)을 연결한다. 구체적으로, 제1 붐 유압 라인(621)은 붐 실린더(200)의 헤드측(201)에 연결되어 붐의 상승 동작 시 붐 실린더(200)에 작동유를 공급한다. 그리고 제2 붐 유압 라인(622)은 붐 실린더(200)의 로드측(202)에 연결되어 붐의 하강 동작 시 붐 실린더(200)에 작동유를 공급한다.
회생 라인(670)은 제1 붐 유압 라인(621)에서 분기되어 붐의 하강 동작 시 붐 실린더(200)의 헤드측(201)에서 배출된 작동유를 이동시킨다. 그리고 회생 라인(670)은 재생 모터(370)와 연결되며, 회생 라인(670)을 따라 이동한 작동유는 재생 모터(370)를 동작시키게 된다.
순환 라인(675)은 회생 라인(670)에서 분기되어 제2 붐 유압 라인(622)과 연결된다. 따라서, 붐의 하강 동작 시 붐 실린더(200)의 헤드측(201)에서 배출된 작동유 중 일부는 순환 라인(675)을 따라 이동하다가 제2 붐 유압 라인(622)을 거쳐 붐 실린더(200)의 로드측(202)으로 유입된다. 이와 같이, 붐의 하강 시 붐 실린더(200)의 헤드측(201)에서 배출된 작동유가 붐 실린더(200)의 로드측(202)으로 유입됨으로써 붐의 하강 속도를 높이고 에너지 이용 효율을 향상시킬 수 있다.
어큐뮬레이터(accumulator)(800)는 회생 라인(670)과 연결되어 붐 실린더(200)에서 배출된 작동유를 축적한다. 어큐뮬레이터(800)는 유압 시스템에서 고압의 작동유를 저장해 놓는 장치이다.
에너지 저장 라인(680)는 어큐뮬레이터(800)와 회생 라인(670)을 연결하고, 어큐뮬레이터 밸브(480)는 에너지 저장 라인(680)에 설치되어 에너지 저장 라인(680)을 개폐한다. 어큐뮬레이터 밸브(480)는 후술할 제어부(700)에 의해 제어되며, 붐의 하강 동작 시와 어큐뮬레이터(800)에 저장된 고압의 작동유를 이용하여 재생 모터(370)를 구동할 때에 열리게 된다.
붐 회생 밸브(400)는 회생 라인(670)에 설치된 제1 회생 스풀(410)과 순환 라인(675)에 설치된 제2 회생 스풀(420)을 포함한다. 그리고, 제1 회생 스풀(410)과 제2 회생 스풀(420)은 각각 회생 라인(670)과 순환 라인(675)을 개폐할 뿐만 아니라 통과 유량을 조절할 수 있다.
제어부(700)는 엔진(100)과 메인 컨트롤 밸브(500) 등 건설 기계의 여러 구성들을 제어할 수 있다. 그리고 제어부(700)는 엔진 제어 장치(engine control unit, ECU) 및 차량 제어 장치(vehicle control unit, VCU) 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 일 실시예에서, 제어부(700)는 붐의 상승 동작 시 붐 회생 밸브(400)를 닫고 붐의 하강 동작 시 제1 회생 스풀(410)과 제2 회생 스풀(420)의 개방 면적을 조절한다.
구체적으로, 제어부(700)는 제2 회생 스풀(420)의 양단 압력 차이와 제2 회생 스풀(420)의 개방 면적을 통해 제2 회생 스풀(420)을 통과하는 작동유의 유량을 산출하여 붐 실린더(200)의 속도를 추정한다. 제2 회생 스풀(420)을 통과하는 작동유의 유량은 붐의 하강 속도와 비례한다. 그리고 붐 실린더(200)의 추정 속도가 목표 속도보다 작을 경우 제2 회생 스풀(420)의 개방 면적을 증가시키고 붐 실린더(200)의 추정 속도가 목표 속도보다 클 경우 제2 회생 스풀(420)의 개방 면적을 감소시킨다. 여기서, 목표 속도는 조작 장치(900)를 통해 작업자의 의도대로 입력된 붐의 이동 속도이다.
어큐뮬레이터(800)에 작동유가 축적되기 시작하면 어큐뮬레이터(800)의 압력이 상승되고, 어큐뮬레이터(800)의 압력 상승과 비례하여 회생 라인(670)의 압력도 상승된다. 이로 인하여 제1 회생 스풀(410)의 양단 압력 차이가 감소하면 회생 라인(670)을 통해 배출되는 작동유의 유량이 감소되므로, 붐의 하강 속도가 감소하기 시작한다. 이러한 붐의 하강 속도의 감소는 제2 회생 스풀(420)을 통과하는 작동유의 유량을 감소시키게 되므로, 결과적으로 제2 회생 스풀(420)의 양단 압력 차이도 감소하게 된다.
제어부(700)는 제2 회생 스풀(420)의 양단 압력 차이와 제2 회생 스풀(420)의 현재 위치에서의 개방 면적에 대한 정보를 이용하여 붐 실린더(200)의 속도, 즉 붐의 하강 속도를 산출할 수 있다. 그리고 제2 회생 스풀(420)의 양단 압력 차이가 감소됨으로 인해 제2 회생 스풀(420)을 통과하는 유량이 감소함을 파악할 수 있게 된다.
제어부(700)는 제2 회생 스풀(420)을 통과하는 작동유의 유량 감소와, 조작 장치(900)의 파일럿 신호에 따른 제2 회생 스풀(420)의 목표 유량을 비교하고, 현재 제2 회생 스풀(420)을 통과하는 작동유의 유량이 목표 유량 보다 작으면 통과 유량이 목표 유량을 추종하도록 제2 회생 스풀(420)에 증가된 제어 신호를 전달하게 된다.
제2 회생 스풀(420)을 통과하는 작동유의 유량이 증가할수록 붐 실린더(200)의 속도가 증가하고 제2 회생 스풀(420)을 통과하는 작동유의 유량이 감소할수록 붐 실린더(200)의 속도도 감소된다. 따라서, 제2 회생 스풀(420)을 통과하는 작동유의 유량은 붐 실린더(200)의 추정 속도에 대응되며, 조작 장치(900)의 파일럿 신호에 따른 제2 회생 스풀(420)의 목표 유량은 붐 실린더(200)의 목표 속도에 대응된다.
이와 같이, 제어부(700)는 작업자의 조작 장치(900)의 조작에 따라 제2 회생 스풀(420)에 전달되는 제어 기본값과 제2 회생 스풀(420)의 양단 압력 차이를 통해 산출된 붐 실린더(200)의 추정 속도가 목표 속도보다 감소한 것을 파악하게 되면, 이를 보상하기 위해 제2 회생 스풀 제어 신호값을 증가시킨다. 이에, 제2 회생 스풀(420)의 개방 면적이 증가되고, 붐 실린더(200)의 로드측(202)에 가해지는 압력이 상승하고 이로 인해 붐 실린더(200)의 헤드측(201)으로 배출되는 작동유의 압력이 더욱 상승하여 어큐뮬레이터(800)에 작동유가 축적되면서 상승되는 압력으로 인한 붐의 하강 속도 감소를 보상하게 된다. 따라서, 최종적으로 작업자의 조작 의도대로 붐의 하강 속도를 일정하게 유지할 수 있다.
또한, 제1 압력 센서(760)와 제2 압력 센서(770)는 제2 회생 스풀(420)의 양단 또는 제2 회생 스풀(420)의 양단에 각각 연결된 순환 라인(675) 상에 설치된다. 제어부(700)는 제1 압력 센서(760)와 제2 압력 센서(770)가 제공하는 정보에 근거하여 제2 회생 스풀(420)의 양단 압력 차이를 파악할 수 있다.
또한, 본 발명의 일 실시예에서, 제어부(700)는 제1 회생 스풀(410)의 개방 면적을 제2 회생 스풀(420)의 개방 면적보다 크게 유지한다. 제1 회생 스풀(410)의 개방 면적이 제2 회생 스풀(420)의 개방 면적보다 커져야 회생 라인(670)을 통해 어큐뮬레이터(800)에 더 많은 작동유를 축적할 수 있게 된다. 즉, 어큐뮬레이터(800)에 저장되는 작동유가 더 높은 압력을 가질 수 있게 된다. 따라서, 본 발명의 일 실시예에서는, 제2 회생 스풀 제어 신호값이 증가되는 것에 비례하여 제1 회생 스풀 제어 신호값도 증가된다.
또한, 본 발명의 일 실시예에서, 제어부(700)는 어큐뮬레이터(800)에 저장된 에너지를 이용하여 재생 모터(370)를 구동하거나 붐의 하강 동작 시에 재생 모터(370)의 사판각을 증가시키며, 그 외 동작의 경우에는 재생 모터(370)의 사판각을 최소 사판각으로 유지한다.
이와 같은 구성에 의하여, 본 발명의 일 실시예에 따른 건설 기계의 유압 시스템(101)은 붐 하강 시 붐이 가지는 위치에너지를 회수하여 연비를 향상시키면서도 붐의 속도를 조작자의 의도대로 일정하게 제어할 수 있다.
이하, 도 1 내지 도 4를 참조하여 본 발명의 일 실시예에 따른 건설 기계의 유압 시스템(101)의 동작 원리를 상세히 설명한다.
도 1 및 도 3에 도시한 바와 같이, 붐이 상승 중이거나 중립 상태일 때에는 붐 회생 밸브(400)의 제1 회생 스풀(410)과 제2 회생 스풀(420), 그리고 어큐뮬레이터 밸브(480)는 닫힌 상태가 된다. 이러한 중립 상태는 도 3에서 A구간에 해당된다.
일례로, 중립 상태에서 붐 실린더(200)의 헤드측(201)의 압력을 100bar, 붐 실린더(200)의 로드측(202) 압력을 5bar, 그리고 어큐뮬레이터(800)의 충전 전 압력을 130bar로 가정해 볼 수 있다.
도 2 및 도 4에 도시한 바와 같이, 조작 장치(900)를 통해 붐의 하강을 위한 파일럿 신호가 메인 컨트롤 밸브(500)에 전달되면, 제어부(700)는 어큐뮬레이터 밸브(480)를 개방하고, 붐 회생 밸브(400)의 제1 회생 스풀(410)와 제2 회생 스풀(420)을 조작 장치(900)의 파일럿 신호에 대응하는 제어 기본값에 따라 제어하여 이들의 개방 면적을 조절한다. 그리고 제어부(700)는 재생 모터(370)의 사판각을 최소 사판각에서 증가시킨다. 여기서, 붐의 하강을 위한 파일럿 신호는 붐 다운 조이스틱을 통해 발생될 수 있다.
그러면 붐 실린더(200)의 헤드측(201)에서 배출된 작동유가 제2 회생 스풀(420)을 거쳐 붐 실린더(200)의 로드측(202)으로 전달되어 붐 실린더(200)의 로드측(202) 압력은 상승하며, 상승된 로드측(202) 압력은 다시 헤드측(201) 압력을 증가시키게 된다. 결과적으로, 붐 실린더(200)의 헤드측(201)와 로드측(202) 압력이 모두 상승하게 된다.
이는 도 3에서 B구간에 해당된다. 다만, B구간에서는 제2 회생 스풀(420)의 개방 면적이 작기 때문에 붐 실린더(200)의 헤드측(201)와 로드측(202) 사이에는 일정 수준의 압력 차이가 존재하게 된다. 그리고 붐 실린더(200)의 헤드측(201)에서 배출되는 작동유가 제1 회생 스풀(410)을 거쳐 회생 라인(670)을 따라 재생 모터(370)로 공급되면서 붐은 하강을 시작하게 된다.
하지만, B구간에서는 회생 라인(670)의 압력이 어큐뮬레이터(800)의 압력보다 낮아 어큐뮬레이터(800)의 에너지 충전은 일어나지 않는다.
회생 라인(670)의 압력이 상승하면서 도 3의 C구간에 진입하게 되면, 회생 라인(670)의 압력이 어큐뮬레이터(800)의 충전 전 압력보다 높아지게 된다. 그러면 제1 회생 스풀(410)을 통과한 작동유 중 일부가 어큐뮬레이터(800)에 충전되기 시작한다.
어큐뮬레이터(800)에 작동유가 축적되면 어큐뮬레이터(800)의 압력이 상승되고, 어큐뮬레이터(800)의 압력이 상승되면 이와 연결된 회생 라인(670)의 압력도 상승하게 된다.
이로 인해, 제1 회생 스풀(410)의 양단 압력 차이가 감소하면 회생 라인(670)을 통해 배출되는 작동유의 유량이 감소되므로, 붐의 하강 속도가 감소하기 시작한다. 이러한 붐의 하강 속도의 감소는 제2 회생 스풀(420)을 통과하는 작동유의 유량을 감소시키게 되므로, 결과적으로 제2 회생 스풀(420)의 양단 압력 차이도 감소하게 된다.
제어부(700)는 제2 회생 스풀(420)의 양단 압력 차이와 제2 회생 스풀(420)의 현재 위치에서의 개방 면적에 대한 정보를 이용하여 제2 회생 스풀(420)을 통과하는 작동유의 유량을 산출하고, 제2 회생 스풀(420)을 통과하는 작동유의 유량으로부터 붐 실린더(200)의 현재 속도를 추정한다. 여기서, 붐 실린더(200)의 속도는 붐의 하강 속도와 동일한 의미를 갖는다. 즉, 제2 회생 스풀(420)의 양단 압력 차이가 감소되면 제2 회생 스풀(420)을 통과하는 작동유의 유량이 감소되고, 따라서 붐의 하강 속도가 감소됨을 파악할 수 있다.
또한, 본 발명의 일 실시예가 전술한 바에 한정되는 것은 아니다. 즉, 제어부(700)는 제1 회생 스풀(410)의 양단 압력 차이와 제1 회생 스풀(410)의 현재 위치에서의 개방 면적에 대한 정보를 이용하여 제1 회생 스풀(410)을 통과하는 작동유의 유량을 산출하고, 제1 회생 스풀(410)을 통과하는 작동유의 유량으로부터 붐 실린더(200)의 현재 속도를 추정할 수도 있다.
또한, 제어부(700)는 건설 기계에 설치되어 붐의 각도를 측정하는 붐 각도 센서(740)를 사용하여 붐 실린더(200)의 현재 속도를 추정할 수도 있다. 즉, 제어부(700)는 붐 각도 센서(740)의 각도 변화량에 따라 붐 실린더(200)의 속도를 추정할 수도 있다.
또한, 제어부(700)는 붐 실린더(200)의 추정 속도가 조작 장치(900)의 조작에 따른 붐 실린더(200)의 목표 속도보다 작은 것을 확인하게 되면 붐 실린더(200)의 추정 속도가 목표 속도를 추종하도록 제2 회생 스풀(420)에 전달하는 제2 회생 스풀 제어 신호값을 증가시켜 제2 회생 스풀(420)의 개방 면적을 증가시킨다. 이러한 피드백 제어는 비례-적분-미분 제어기(Proportional-Integral-Derivative controller)를 사용하여 구현할 수 있다.
제2 회생 스풀(420)의 개방 면적이 증가되면, 붐 실린더(200)의 로드측(202)에 가해지는 압력이 상승하고 이로 인해 붐 실린더(200)의 헤드측(201)으로 배출되는 작동유의 압력이 더욱 상승하여 어큐뮬레이터(800)에 작동유가 축적되면서 상승되는 압력으로 인한 붐의 하강 속도 감소를 보상하게 된다.
또한, 제1 회생 스풀(410)의 개방 면적을 제2 회생 스풀(420)의 개방 면적보다 크게 유지하여야 어큐뮬레이터(800)에 작동유를 최대한으로 저장할 수 있으므로, 제2 회생 스풀(420)에 전달하는 제2 회생 스풀 제어 신호값의 증가에 비례하여 제1 회생 스풀(410)에 전달하는 제1 회생 스풀 제어 신호값도 증가시킴으로써, 제1 회생 스풀(410)의 개방 면적도 증가시킨다.
도 3의 D구간에 진입하게 되면, 조작 장치(900)를 통해 전달되는 파일럿 신호가 일정하게 유지되며, C구간과 마찬가지로, 붐 실린더(200)의 헤드측(201)에서 배출된 작동유의 일부가 제2 회생 스풀(420)을 거쳐 로드측(202)으로 유입되고, 나머지는 제1 회생 스풀(410)을 거쳐 재생 모터(370)와 어큐뮬레이터(800)로 공급된다.
또한, 어큐뮬레이터(800)에 작동유가 축적될수록 어큐뮬레이터(800)의 압력은 지속적으로 상승되고, 그에 비례하여 회생 라인(670)의 압력도 상승하게 된다.
이로 인하여 제1 회생 스풀(410)의 양단 압력 차이도 지속적으로 감소되므로, 제어부(700)는, C구간에서와 마찬가지로, 붐의 하강 속도 감소를 보상하기 위하여 제1 회생 스풀(4100 및 제2 회생 스풀(420)에 각각 전달하는 제1 회생 스풀 제어 신호값 및 제2 회생 스풀 제어 신호값을 증가시킨다.
따라서, 최종적으로 작업자의 조작 의도대로 붐의 하강 속도를 일정하게 유지할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명은 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명의 실시예에 따른 건설 기계의 유압 시스템은 붐 하강 시 붐이 가지는 위치에너지를 회수하여 연비를 향상시키면서도 붐의 속도를 조작자의 의도대로 일정하게 제어하기 위해 사용될 수 있다.

Claims (10)

  1. 헤드측과 로드측으로 구분된 붐 실린더;
    상기 붐 실린더의 헤드측에 연결되어 붐의 상승 동작 시 상기 붐 실린더에 작동유를 공급하는 제1 붐 유압 라인;
    상기 붐 실린더의 로드측에 연결되어 붐의 하강 동작 시 상기 붐 실린더에 작동유를 공급하는 제2 붐 유압 라인;
    상기 제1 붐 유압 라인에서 분기되어 붐의 하강 동작 시 상기 붐 실린더의 헤드측에서 배출된 작동유가 이동하는 회생 라인;
    상기 회생 라인에서 분기되어 상기 제2 붐 유압 라인과 연결된 순환 라인;
    상기 회생 라인과 연결되어 상기 붐 실린더에서 배출된 작동유를 축적하는 어큐뮬레이터;
    상기 회생 라인에 설치된 제1 회생 스풀과 상기 순환 라인에 설치된 제2 회생 스풀을 포함하는 붐 회생 밸브; 및
    붐의 상승 동작 시 상기 붐 회생 밸브를 닫고 붐의 하강 동작 시 상기 붐 실린더의 속도를 추정하여 상기 제1 회생 스풀과 상기 제2 회생 스풀의 개방 면적을 조절하는 제어부
    를 포함하는 건설 기계의 유압 시스템.
  2. 제1항에 있어서,
    상기 제2 회생 스풀의 양단에 설치되는 압력 센서를 더 포함하고,
    상기 제어부는,
    상기 압력 센서를 통해 측정된 상기 제2 회생 스풀의 양단 압력 차이와 상기 제2 회생 스풀의 개방 면적을 통해 상기 제2 회생 스풀을 통과하는 작동유의 유량을 산출하여 상기 붐 실린더의 속도를 추정하고,
    상기 붐 실린더의 추정 속도가 목표 속도보다 작을 경우 상기 제1 회생 스풀이나 상기 제2 회생 스풀의 개방 면적을 증가시키는 것을 특징으로 하는 건설 기계의 유압 시스템.
  3. 제1항에 있어서,
    상기 건설 기계에 설치되어 붐의 각도를 측정하는 붐 각도 센서를 더 포함하고,
    상기 제어부는,
    상기 붐 각도 센서의 각도 변화량에 따라 상기 붐 실린더의 속도를 추정하고,
    상기 붐 실린더의 추정 속도가 목표 속도보다 작을 경우 상기 제1 회생 스풀이나 상기 제2 회생 스풀의 개방 면적을 증가시키는 것을 특징으로 하는 건설 기계의 유압 시스템.
  4. 제2항에 있어서,
    상기 붐 실린더에 대한 작동유의 공급을 제어하는 메인 컨트롤 밸브;
    상기 메인 컨트롤 밸브에 파일럿 신호를 전달하는 조작 장치
    를 더 포함하며,
    상기 목표 속도는 상기 조작 장치를 통해 입력된 붐의 이동 속도인 것을 특징으로 하는 건설 기계의 유압 시스템.
  5. 제4항에 있어서,
    상기 제1 붐 유압 라인은 상기 메인 컨트롤 밸브와 상기 붐 실린더의 헤드측을 연결하고,
    상기 제2 붐 유압 라인은 상기 메인 컨트롤 밸브와 상기 붐 실린더의 로드측을 연결하는 건설 기계의 유압 시스템.
  6. 제2항에 있어서,
    상기 제어부는 상기 제1 회생 스풀의 개방 면적을 상기 제2 회생 스풀의 개방 면적보다 크게 유지하는 것을 특징으로 하는 건설 기계의 유압 시스템.
  7. 제1항에 있어서,
    작동유를 토출하는 메인 펌프;
    상기 메인 펌프와 상기 메인 컨트롤 밸브를 연결하는 메인 유압 라인;
    상기 메인 펌프를 구동하는 엔진; 및
    상기 회생 라인과 연결되어 상기 엔진을 보조하는 재생 모터
    를 더 포함하는 것을 특징으로 하는 건설 기계의 유압 시스템.
  8. 제7항에 있어서,
    상기 제어부는 붐의 하강 동작 시 상기 재생 모터의 사판각을 증가시키는 것을 특징으로 하는 건설 기계의 유압 시스템.
  9. 제1항에 있어서,
    상기 어큐뮬레이터와 상기 회생 라인을 연결하는 에너지 저장 라인과, 상기 에너지 저장 라인에 설치된 어큐뮬레이터 밸브를 더 포함하며,
    상기 제어부는 붐의 상승 동작 시 상기 어큐뮬레이터 밸브를 닫고 붐의 하강 동작 시 상기 어큐뮬레이터 밸브를 여는 것을 특징으로 하는 건설 기계의 유압 시스템.
  10. 제1항에 있어서,
    상기 제어부는,
    상기 제1 회생 스풀의 양단 압력 차이와 상기 제1 회생 스풀의 개방 면적을 통해 상기 제1 회생 스풀을 통과하는 작동유의 유량을 산출하여 상기 붐 실린더의 속도를 추정하고,
    상기 붐 실린더의 추정 속도가 목표 속도보다 작을 경우 상기 제1 회생 스풀이나 상기 제2 회생 스풀의 개방 면적을 증가시키는 것을 특징으로 하는 건설 기계의 유압 시스템.
PCT/KR2018/004193 2017-04-10 2018-04-10 건설 기계의 유압 시스템 WO2018190615A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197029620A KR102309862B1 (ko) 2017-04-10 2018-04-10 건설 기계의 유압 시스템
US16/604,508 US10988915B2 (en) 2017-04-10 2018-04-10 Hydraulic system of construction machinery
EP18784964.1A EP3604691B1 (en) 2017-04-10 2018-04-10 Hydraulic system of construction machinery
CN201880024322.6A CN110494612B (zh) 2017-04-10 2018-04-10 工程机械的液压系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170046226 2017-04-10
KR10-2017-0046226 2017-04-10

Publications (1)

Publication Number Publication Date
WO2018190615A1 true WO2018190615A1 (ko) 2018-10-18

Family

ID=63793513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004193 WO2018190615A1 (ko) 2017-04-10 2018-04-10 건설 기계의 유압 시스템

Country Status (5)

Country Link
US (1) US10988915B2 (ko)
EP (1) EP3604691B1 (ko)
KR (1) KR102309862B1 (ko)
CN (1) CN110494612B (ko)
WO (1) WO2018190615A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019691A1 (ko) * 2020-07-24 2022-01-27 두산인프라코어 주식회사 건설 기계 및 그 제어 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067004B2 (en) * 2018-03-27 2021-07-20 Pratt & Whitney Canada Corp. Gas turbine engine fluid system with accumulator and hydraulic accessory
EP3844350B1 (en) * 2018-08-30 2023-07-26 Volvo Construction Equipment AB Hydraulic circuit for construction equipment
KR20220014177A (ko) * 2020-07-28 2022-02-04 현대두산인프라코어(주) 건설 기계
JP7389728B2 (ja) * 2020-09-09 2023-11-30 川崎重工業株式会社 油圧ショベル駆動システム
KR20220091867A (ko) * 2020-12-24 2022-07-01 현대두산인프라코어(주) 건설기계
CN113250270B (zh) * 2021-04-27 2021-10-08 徐州徐工挖掘机械有限公司 动臂操作控制系统及挖掘机
WO2023162883A1 (ja) * 2022-02-28 2023-08-31 イーグル工業株式会社 流体圧回路
KR20230165716A (ko) 2022-05-27 2023-12-05 레디로버스트머신 주식회사 모바일 연동 건설기계용 붐 에너지 및 선회 에너지 회수 시스템
KR102594142B1 (ko) 2022-05-27 2023-10-25 레디로버스트머신 주식회사 에너지 회수 장치
KR20230165717A (ko) 2022-05-27 2023-12-05 레디로버스트머신 주식회사 건설기계용 붐 에너지 회수 유압시스템
KR20230165714A (ko) 2022-05-27 2023-12-05 레디로버스트머신 주식회사 건설기계용 붐 에너지 회수 유압시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100953809B1 (ko) * 2002-12-27 2010-04-21 두산인프라코어 주식회사 휠로더의 붐완충장치
KR101217755B1 (ko) * 2004-07-13 2013-01-02 보쉬 렉스로트 아게 유압 제어 장치
KR101650692B1 (ko) * 2008-11-07 2016-08-24 하이닥 시스템 게엠베하 유압 유효 압력을 보상하기 위한 디바이스
KR20160101926A (ko) * 2013-12-26 2016-08-26 두산인프라코어 주식회사 붐 에너지 회생 제어 회로 및 제어 방법
KR101658326B1 (ko) * 2014-09-10 2016-09-22 가부시키가이샤 고마쓰 세이사쿠쇼 작업 차량 및 작업 차량의 제어 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634911B2 (en) * 2007-06-29 2009-12-22 Caterpillar Inc. Energy recovery system
JP2009275769A (ja) * 2008-05-13 2009-11-26 Caterpillar Japan Ltd 流体圧シリンダ制御回路
CN102241379B (zh) * 2010-05-13 2014-05-07 济南谨恒节能技术有限公司 节能型行走式液压搬运机械
KR101735117B1 (ko) * 2011-01-24 2017-05-12 두산인프라코어 주식회사 재생 에너지를 이용하는 유압회로
US9279236B2 (en) 2012-06-04 2016-03-08 Caterpillar Inc. Electro-hydraulic system for recovering and reusing potential energy
JP6090781B2 (ja) * 2013-01-28 2017-03-08 キャタピラー エス エー アール エル エンジンアシスト装置および作業機械
KR102510852B1 (ko) * 2015-12-04 2023-03-16 현대두산인프라코어 주식회사 건설기계의 유압 시스템 및 유압 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100953809B1 (ko) * 2002-12-27 2010-04-21 두산인프라코어 주식회사 휠로더의 붐완충장치
KR101217755B1 (ko) * 2004-07-13 2013-01-02 보쉬 렉스로트 아게 유압 제어 장치
KR101650692B1 (ko) * 2008-11-07 2016-08-24 하이닥 시스템 게엠베하 유압 유효 압력을 보상하기 위한 디바이스
KR20160101926A (ko) * 2013-12-26 2016-08-26 두산인프라코어 주식회사 붐 에너지 회생 제어 회로 및 제어 방법
KR101658326B1 (ko) * 2014-09-10 2016-09-22 가부시키가이샤 고마쓰 세이사쿠쇼 작업 차량 및 작업 차량의 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604691A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019691A1 (ko) * 2020-07-24 2022-01-27 두산인프라코어 주식회사 건설 기계 및 그 제어 방법

Also Published As

Publication number Publication date
CN110494612B (zh) 2022-03-11
EP3604691A4 (en) 2020-05-13
US20200123737A1 (en) 2020-04-23
KR20190124289A (ko) 2019-11-04
US10988915B2 (en) 2021-04-27
EP3604691A1 (en) 2020-02-05
KR102309862B1 (ko) 2021-10-08
EP3604691B1 (en) 2023-07-26
CN110494612A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2018190615A1 (ko) 건설 기계의 유압 시스템
WO2011078586A9 (ko) 하이브리드 굴삭기 붐 구동시스템 및 그 제어방법
WO2015099353A1 (ko) 붐 에너지 회생 제어 회로 및 제어 방법
WO2012087080A2 (ko) 하이브리드 굴삭기 붐 구동시스템 및 그 제어방법
WO2013008964A1 (ko) 건설기계용 유압 액츄에이터 댐핑 제어시스템
KR20090070802A (ko) 건설장비의 전자유압 시스템
WO2012091187A1 (ko) 건설기계의 붐-선회 복합구동 유압 제어시스템
WO2019074301A1 (ko) 건설기계의 붐 증속 유압 시스템
WO2017094986A1 (ko) 건설기계의 유압 시스템 및 유압 제어 방법
WO2017200257A1 (ko) 건설 기계의 안전 시스템
WO2012074145A1 (ko) 건설기계의 유압펌프 제어시스템
WO2014163362A1 (ko) 건설기계의 스풀 변위 가변 제어장치 및 제어방법
WO2017094985A1 (ko) 건설기계의 유압 제어 장치 및 유압 제어 방법
WO2022025556A1 (ko) 건설 기계
WO2020166975A1 (ko) 건설 기계
WO2015093791A1 (ko) 건설 기계의 폐회로 유압 시스템
WO2018044099A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2021010634A1 (ko) 건설 기계 및 이의 제어 방법
WO2022019691A1 (ko) 건설 기계 및 그 제어 방법
WO2016190468A1 (ko) 건설기계의 작업장치 제어 방법
WO2013100218A1 (ko) 건설기계의 엔진 제어방법
KR20080107494A (ko) 유압실린더용 위치에너지 회생장치 및 회생방법
WO2013081213A1 (ko) 레귤레이터에 의해 제어되는 미터 아웃 유압 제어시스템
WO2016137041A1 (ko) 건설기계의 시동 보조장치
WO2023229125A1 (ko) 에너지 회수 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197029620

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018784964

Country of ref document: EP

Effective date: 20191030