WO2018190497A1 - Joint box for ultra-high voltage direct current power cable, and ultra-high voltage direct current power cable system comprising same - Google Patents

Joint box for ultra-high voltage direct current power cable, and ultra-high voltage direct current power cable system comprising same Download PDF

Info

Publication number
WO2018190497A1
WO2018190497A1 PCT/KR2018/000943 KR2018000943W WO2018190497A1 WO 2018190497 A1 WO2018190497 A1 WO 2018190497A1 KR 2018000943 W KR2018000943 W KR 2018000943W WO 2018190497 A1 WO2018190497 A1 WO 2018190497A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating layer
junction box
high voltage
ultra
Prior art date
Application number
PCT/KR2018/000943
Other languages
French (fr)
Korean (ko)
Other versions
WO2018190497A8 (en
Inventor
윤호중
김성윤
정의환
홍성표
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170151534A external-priority patent/KR102505579B1/en
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to EP18784717.3A priority Critical patent/EP3611737B1/en
Publication of WO2018190497A1 publication Critical patent/WO2018190497A1/en
Publication of WO2018190497A8 publication Critical patent/WO2018190497A8/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/10Contact cables, i.e. having conductors which may be brought into contact by distortion of the cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients

Definitions

  • Extra junction box for ultra high voltage DC power cable and ultra high voltage DC power cable system including the same
  • the present invention relates to an intermediate junction box for an ultra high voltage direct current power cable and an ultra high voltage direct current power cable system including the same. Specifically, the present invention is to effectively mitigate the electric field of the portion where the electric field is structurally concentrated, the intermediate junction box of the cable by the local field accumulation effectively prevents, the intermediate junction box for ultra-high voltage DC power cable and the same An ultra high voltage DC power cable system.
  • the ultra high voltage cable is a device that transmits power by using an internal conductor, and can be divided into a high voltage direct current (DC) power cable and an alternating current (AC) power cable.
  • DC direct current
  • AC alternating current
  • a long voltage transmission line is formed by forming an ultra high voltage DC power cable system connecting the power cables to each other using an intermediate junction box. do.
  • a power cable is a conductor, inner semiconductive layer surrounding the conductor, an insulating layer surrounding the inner semiconductive layer made of a material such as cross-linked polyethylene (XLPE), the insulating layer is i surround the outer semiconductive layer, wherein Metal car surrounding the outer semiconducting layer It is possible to have a structure in which a closed layer and an outer shell for protecting the internal structure of the power cable from the layer stratification, pressure, and the like of the closed layer are sequentially stacked.
  • XLPE cross-linked polyethylene
  • the power cable may be connected to each other at its ends through an incremental connection box having a cross-sectional structure shown in FIG.
  • the conventional ultra high voltage cable system uses an incremental junction box 300 ′ to form a conductor (not shown), an inner semiconducting layer (not shown), an insulating layer 214, and an outer semiconducting layer 216. And a pair of power cables provided so that the ends of the conductor, the inner semiconducting layer, the insulating layer, and the outer semiconducting layer are sequentially exposed to each other.
  • the power cable system for direct current transmission has a resistive electric field distribution characteristic in which the electric field distribution in the interior depends on the volume resistivity.
  • the conventional intermediate 3 ⁇ 4 speed for the power cable or the DC power cable is the interface between the joint sleeve 320 ′ and the power cable, in which structures made of materials having different volume resistivity meet each other, and the second electrode ( 322 ').
  • the portion where the insulating layer 214 of the power cable and the junction box insulating layer 323 ′ meet and is divided by a broken line in FIG. 1, or the first electrode 32 ⁇ , the insulating layer 214 of the power cable, and the connection The area where the different materials are in contact with each other, such as part B, which is divided by a broken line in FIG.
  • Structural electric field structurally in the middle connection for high voltage DC power cable By mitigating the electric field of the concentrated part, it is possible to effectively prevent the breakdown of insulation by local electric field concentration and to alleviate the heat generation phenomenon at the connection part. Ultra high voltage DC power cable system is urgently needed.
  • the present invention provides an intermediate junction box for a cable and a cable system including the same, which can effectively prevent the junction breakdown caused by local electric field concentration by mitigating the electric field of a part where the electric field is structurally concentrated by the intermediate junction box for the cable. It aims to do it.
  • the present invention connects a pair of ultra-high voltage DC power cable including a conductor, an inner semiconductive layer surrounding the conductor, an insulating layer surrounding the inner semiconductive layer, and an outer semiconductive layer surrounding the insulating layer.
  • An intermittent junction box for an ultra-high voltage direct current power cable comprising: a first electrode having rounded left and right ends in a longitudinal direction of the intermediate junction box; A pair of agents formed to face each other at a predetermined distance from the first electrode to the left and the right in the longitudinal direction of the auxiliary junction box;
  • a joint sleeve including a junction box insulation portion, the junction box insulation portion comprising: a first insulation layer and a first insulation layer; And a second insulating layer having a lower volume resistivity than the first insulating layer, wherein the second insulating layer has an innermost surface of the joint sleeve, an interface between the first electrode and the 3 ⁇ 4-containing insulating portion, and
  • An additional junction box for an ultra-high voltage direct current power cable may be provided to surround at least a portion of the interface between the second electrode and the junction box insulation unit.
  • the thickness of the first insulating layer satisfies Equation 1 below.
  • Uo is the rated voltage of the intermediate junction box for the ultra-high voltage DC power cable
  • 1.85U 0 is the brain impulse test voltage (BIL; Bas ic impul s insulat ion level ) May be a thickness of the first insulating layer on the first electrode, and may be a breakdown voltage of the first insulation layer 340.
  • the second insulating layer may be formed to cover both the first electrode and the crab electrode so that the first electrode and the second electrode do not contact the first insulation layer.
  • the low] 2 electrode may gradually increase as the vertical distance from the innermost surface of the joint sleeve toward the first electrode.
  • the junction box shielding layer provided on the outside of the joint sleeve, shielding the electric field leaked to the outside of the intermediate junction box;
  • a third thickening point in which the first insulating layer, the second insulating layer, and the junction box shielding layer are in contact with each other, and a distance between the first electrode and the three thickening points is a distance between the first electrode and the second electrode.
  • the first insulating layer and the low 12 insulating layer have a volume resistivity of IX 10 "to IX.
  • the second insulating layer may be formed of a second insulating composition including a base resin and an additive for adjusting resistivity.
  • the base resin is at least one selected from the group consisting of liquid silicone rubber (LSR), fluororubber (FR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR) and chloroprene rubber (CR). It may include rubber.
  • the additive for regulating resistivity may be a glycol-based organic conductive filler. .
  • the glycol-based organic conductive filler may include polyglycol ether.
  • the present invention is an ultra-high voltage DC power cable system including a dual junction box for electrically connecting a pair of ultra-high voltage DC power cable and the pair of DC power cable, the ultra-high voltage DC power cable And a cable core portion including a silver conductor, an inner semiconducting layer surrounding the conductor, a cable insulation layer surrounding the inner semiconducting layer, and an outer semiconducting layer surrounding the insulation layer, and including a conductor connection part electrically connecting the conductors to each other.
  • the intermediate junction box comprises: a first electrode having rounded left and right ends in the longitudinal direction of the intermediate junction box; A pair of crab 2 electrodes formed to face each other at a predetermined distance from the first electrode to the left and right in the longitudinal direction of the intermediate junction box; And formed to surround the first electrode and the second electrode, the image being made of an elastic material which is contractible in the upper portion, and formed of an enlarged sleeve having a through hole therein in the longitudinal direction therein, and leakage of current to the outside of the intermediate junction box.
  • a cable system can be provided.
  • Equation 1 Equation 1
  • U 0 is the rated voltage of the intermediate junction box for the ultra-high voltage DC power cable
  • 1.85U 0 is the basic impuls insulation level (BIL: Basic impuls insulation level).
  • Dp MJ may be a thickness of the first insulating layer on the first electrode
  • BDV PMJ may be an insulation breakdown voltage of the first insulation layer 340.
  • the second insulating layer may be formed to cover both the first electrode and the second electrode such that the first electrode and the second electrode do not contact the first insulating layer.
  • the second electrode may gradually increase as the vertical distance from the innermost surface of the joint sleeve toward the first electrode.
  • junction box shielding layer provided outside the joint sleeve and shielding an electric field leaking out of the intermediate junction box
  • the first insulating layer, the second insulating layer and the junction box shielding layer is provided with a three-point contact with each other.
  • the distance between the first electrode and the triode may be greater than the distance between the first electrode and the second electrode.
  • the first insulating layer and the second insulating layer has a volume resistivity of 1 ⁇ 10 14 to 1 X 10 Q cm
  • the volume resistivity of the second insulation layer is 10 times lower than the volume resistivity of the first insulation layer and the volume resistivity of the cable insulation layer
  • the volume resistivity of the first insulation layer is the cable. It may be 10 times higher than the volume resistivity of the insulating layer.
  • the volume resistivity ratio of the cable insulating layer and the second insulating layer may be 20 or more.
  • the second insulating layer includes a base resin and an additive for adjusting resistivity
  • the base resin comprises at least one rubber selected from the group consisting of liquid silicone rubber (LSR), fluororubber (FR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR) and chloroprene rubber (CR).
  • LSR liquid silicone rubber
  • FR fluororubber
  • SBR styrene-butadiene rubber
  • NBR nitrile-butadiene rubber
  • CR chloroprene rubber
  • the resistivity adjusting additive may be a glycol-based organic conductive filler.
  • the glycol-based organic conductive filler may include polyglycol ether.
  • the content of the organic conductive filler may be 0.1 to 5% by weight, based on the total amount of the insulation composition.
  • the resistivity adjusting additive may further include an inorganic conductive filler.
  • the intermediate junction box for the ultra-high voltage direct current power cable prevents breakdown of the junction box by effectively mitigating an electric field in a region where the electric field can be structurally concentrated. It shows an excellent effect that can be done.
  • FIG. 1 is a schematic cross-sectional view of a conventional power cable system.
  • Figure 2 schematically shows a longitudinal cross-sectional view of the DC power cable of the ultra-high voltage DC power cable system according to the present invention.
  • Figure 3 schematically shows the cross-sectional structure of the ultra-high voltage DC power cable system according to the present invention.
  • FIG. 5 is a graph showing an equipotential line distribution between a first electrode and a second electrode in an embodiment.
  • Figure 2 schematically shows a longitudinal cross-sectional view of the ultra-high voltage DC power cable in the ultra-high voltage DC power cable system according to an embodiment of the present invention.
  • the ultra-high voltage DC power cable 200 includes a conductor 210, an inner semiconducting layer 212, an insulating layer 214, and an outer semiconducting layer 216, along the conductor 210. It is provided with a cable core portion that transmits power only in the longitudinal direction and prevents leakage of current in the radial direction of the cable.
  • the conductor 210 serves as a passage through which current flows to transmit power, and has a high conductivity and a strength and flexibility suitable for cable manufacture and use, such as copper or aluminum, to minimize power loss. And the like.
  • the conductor 210 may be a circular compressive body compressed into a circular shape by twisting a plurality of circular small wires, and the flat rectangular wire 210B is wrapped around the central center wire 210A and the circular core core wire 210A. It may be a flat conductor having a flat wire layer (210C) consisting of a circular cross section as a whole, the flat conductor has the advantage of reducing the outer diameter of the cable is relatively high spot ratio compared to the circular compressed conductor.
  • 210C flat wire layer
  • the conductor 210 is formed by twisting a plurality of element wires, its surface may not be smooth, and thus an electric field may be uneven, and corona discharge is likely to occur partially.
  • the insulating performance may be reduced.
  • the inner semiconducting layer 212 is formed outside the conductor 210.
  • the inner semiconducting layer 212 may have semiconductivity by adding conductive particles such as carbon black, carbon nanotubes, carbon or no plate, and graphite to an insulating material. It prevents abrupt electric field change between and stabilizes 3 ⁇ 4 performance. In addition, by suppressing the uneven charge distribution on the conductor surface, the electric field is made uniform, and the gap between the conductor 210 and the insulating layer 214 is prevented to prevent corona discharge, insulation breakdown, and the like.
  • the outer side of the inner semiconducting layer 212 is provided with an insulating layer 214 to electrically insulate the outside so that the current flowing along the conductor 210 does not leak to the outside.
  • the insulation layer 320 has a high breakdown voltage and should be able to be stably maintained for a long time. Furthermore, the dielectric loss is low and must have heat resistance such as heat resistance. Accordingly, the insulating layer 214 may be a polyolefin resin of polyethylene and polypropylene, more preferably a polyethylene resin.
  • the polyethylene resin may be made of a crosslinked resin.
  • the outer semiconducting layer 216 is provided outside the insulating layer 214.
  • the outer semiconducting layer 216 is formed of a material having semiconductivity by adding conductive particles, such as carbon black, carbon nanotubes, carbon nanoplates, graphite, etc., to an insulating material like the inner semiconducting layer.
  • the nonuniform charge distribution between the insulating layer 214 and the metal sheath 218 described later is suppressed to stabilize the insulating performance.
  • the outer semiconducting layer 216 smoothes the surface of the insulating layer 214 in the cable to mitigate electric field concentration, thereby preventing corona discharge, and also physically protects the insulating layer 214. .
  • the core part may further include a moisture absorbing part (not shown) to prevent moisture from penetrating the cable.
  • the moisture absorbing portion may be formed between stranded wires and / or outside the conductor 210, and has a high speed of absorbing moisture penetrating into the cable and has excellent ability to maintain the absorbed state (super absorbent po). It is composed of a powder, a tape, a coating layer or a film including a lymer (SAP), and serves to prevent moisture from penetrating in the cable length direction.
  • the moisture absorbing portion may have a semiconductivity to prevent a sudden electric field change.
  • a protective sheath part is provided on the outside of the core part, and a power cable installed in an environment exposed to moisture such as the sea bottom additionally includes an exterior part (not shown).
  • the protective sheath and the sheath protect the cable core from various environmental factors such as moisture penetration, mechanical trauma, and corrosion, which can affect the power transmission performance of the cable.
  • the protective sheath portion includes the metal sheath 218 and the inner sheath 220 to protect the cable from accidental currents, external forces or other external environmental factors.
  • the metal sheath layer 218 is grounded at the end of the power cable to serve as a passage through which an accident current flows in the event of a ground fault or short circuit, to protect the cable from external shocks, and to prevent the electric field from being discharged to the outside of the cable.
  • the metal sheath may be formed to seal the core part, thereby preventing foreign substances such as moisture from invading and deteriorating insulation performance. For example, by extruding the molten metal to the outside of the core portion to form a seamless continuous outer surface having a superior ordering performance can be made.
  • the metal lead or aluminum is used.
  • lead having excellent corrosion resistance to seawater, and alloy lead containing metal element to supplement mechanical properties. more preferably, all oy).
  • the metal sheath 218 is coated with an anti-corrosion compound, such as blown asphalt, to the surface to further improve the corrosion resistance, water resistance, etc. of the cable and to improve adhesion to the inner sheath 220.
  • an anti-corrosion compound such as blown asphalt
  • a copper direct tape (not shown) to a moisture absorbing layer (not shown) May be additionally provided.
  • the copper wire direct tape is composed of copper wire and nonwoven tape to facilitate electrical contact between the outer semiconducting layer and the metal sheath layer, and the moisture absorbing layer (not shown) absorbs moisture that has penetrated the cable.
  • the moisture absorbing layer may be configured to include a copper wire in the moisture hop layer.
  • an inner sheath 220 made of a resin such as polyvinyl chloride (PVC), polyethylene (po lyethy lene), etc. to improve the corrosion resistance, orderability, etc. of the cable, mechanical It can function to protect cables from trauma and other external environmental factors such as heat and ultraviolet rays.
  • PVC polyvinyl chloride
  • polyethylene resin having excellent degree of orderability
  • polyvinyl chloride resin is preferably used in an environment where flame retardancy is required.
  • the protective sheath portion is formed on a metal reinforcement layer (not shown) made of a galvanized steel cape or the like, and is formed on the upper and / or lower portion of the metal reinforcement layer and is made of a semiconductive nonwoven tape to complete an external force applied to a power cable. It further includes an external sheath (not shown) composed of a bedding layer (not shown) and resins such as polyvinyl chloride to polyethylene to further improve corrosion resistance and abrasion resistance of the power cable. The cable can be further protected against external environmental factors. In addition, power cables laid on the sea floor may be injured by anchors of ships. Since it may be easily damaged by bending current due to currents or waves, friction with sea bottoms, etc., an exterior portion (not shown) may be formed outside the protective sheath portion to prevent this.
  • the exterior part may include an armor layer (not shown) and a serving layer (not shown).
  • the armor layer may be made of steel, galvanized steel, copper, brass, bronze, etc., and may be configured as at least one layer by cross winding a wire having a circular cross section or a flat shape.
  • the armor layer 34 not only serves to enhance the mechanical properties and performance of the cable, but also additionally protects the cable from external forces.
  • the serving layer composed of polypropylene yarn or the like is formed in one or more layers on the upper and / or lower portion of the armor layer to protect the cable, and the outermost serving layer is formed of two or more materials having different colors.
  • 3 is a schematic cross-sectional view of an intermediate junction box for an ultra high voltage direct current power cable according to an embodiment of the present invention, and an ultra high voltage direct current power cable system including the same. It is.
  • the ultra-high voltage power cable system according to the present invention and a pair of power cable.
  • the outer side of the joint sleeve 320 is electrically connected to the outer semiconducting layer 216 to the metal sheath 218 of the pair of power cables to the power cable
  • a junction box shielding layer 324 serving as an outer semiconducting layer of a cable
  • a housing (not shown) consisting of a metal casing (met al cas ing) surrounding the joint sleeve 320, and the housing and the joint It may further include a waterproof material (not shown) disposed in the space between the sleeve 320 and the like.
  • the pair of power cables includes a conductor 210, an inner semiconducting layer 212 surrounding the conductor 210, and a cable ⁇ soft layer 214 surrounding the inner semiconducting layer 212. And a cable core including an outer semiconducting layer (216) surrounding the insulating layer (214).
  • the conductor connection part 310 includes a conductor fixing part for electrically connecting and fixing a pair of conductors 210 exposed at each end of the pair of power cables, and the conductor fixing part and the pair of power cables.
  • the conductor fixing part may be formed by inserting a sleeve into the pair of conductors and compressing the outer circumferential surface of the sleeve, fixing the pair of conductors inserted into the sleeve with bolts through the sleeve, or welding the conductor ends to each other.
  • the conductor 210 or the conductor fixing part may be configured to be electrically connected to the connection sleeve through a braided wire.
  • the joint sleeve 320 is made of an elastic material that can be contracted at room temperature, and is formed of a thickening sleeve having a through hole therein in the longitudinal direction, and a pair of cables electrically connected to each other by the conductor connecting portion 310, Specifically, each of the insulating layer 214, the outer semiconducting layer 216, and the conductor exposed at the ends of the pair of cables
  • the contact portion 310 is in close contact with the elastic restoring force.
  • the junction box including a junction box to prevent the leakage of current outside the junction box, at least a portion of the innermost surface of the joint sleeve 320 may be made of the junction box insulation. Specifically, the junction insulation may be in close contact with the conductor connecting portion by the elastic restoring force.
  • the joint sleeve 320 is provided in a pair to face each other in the first electrode 321 to the intermediate junction box 300 that is electrically connected to the conductor connection portion 310 of the pair of power cables.
  • a second electrode 322 electrically connected to the outer semiconducting layer 216 to the metal sheath 218 of the pair of power cables, wherein the first electrode 321 and the second electrode ( 322 may be surrounded by the junction box insulation.
  • the first electrode 321 and the second electrode 322 serve to spread the electric field evenly without being locally concentrated therebetween.
  • the first electrode 321 has a shape in which the left and right ends are rounded in the longitudinal direction of the power cable to the intermediate junction box, and are made of a semiconductive material and are provided outside the conductor connection part 310. And electrically connected to the conductor connecting portion 310 and the conductor 210 to serve as a so-called high voltage electrode (el ect rode).
  • the second electrode 322 is made of a semiconductive material, preferably the same material as the first electrode 321, the left side of the power cable to the expansion junction from the first electrode 321 in the longitudinal direction And a pair provided to face each other at a predetermined distance to the right, and are electrically connected in contact with the outer semiconducting layer 216 of the power cable to serve as a so-called shield electrode. Also, the pair of first The second electrode 322 increases as the vertical distance from the innermost surface of the joint sleeve 320 or the cable insulation layer 214 toward the first electrode 321 increases, and the increase rate of the vertical distance increases.
  • FIG. 1 is provided in an enlarged shape toward the first electrode 321, and a surface facing the first electrode 321 is formed as a curved surface.
  • the first electrode 321 and the second electrode 322 are formed in a rounded shape or rounded end, and between the first electrode 321 and the second electrode 322 according to the shape of each electrode. Equipotential lines are distributed to control the electric field distribution.
  • the junction box insulation part is provided to surround the first electrode 321 and the second electrode 322 to prevent the leakage of current flowing in the ultra-high voltage cable system to the outside to ensure insulation performance.
  • the electric field in the cable insulation layer and the junction box insulation is dependent on the dielectric constant of the cable insulation layer and the junction box 3 ⁇ 4 edge, and the dielectric constant does not change greatly with temperature, so Predictive and junction box design is easy.
  • the electric field distribution in the cable insulation layer and the junction box insulator has a resistive electric field distribution characteristic depending on the volume resistivity of the cable insulation layer and the junction box insulator. Because of the high electric field, and the volume resistivity is temperature dependent, it is extremely difficult to design the junction box considering the electric field distribution.
  • the first electrode 321 ′ to the second electrode 322 ′ are connected to the junction insulator 323 ′ and / or the cable insulation layer 214, as in the conventional junction box for the power cable of FIG. 1.
  • different materials having different volume resistivity are in contact with each other. If the DC current flows through the cable and the temperature change occurs, not only the volume resistivity changes but also the change rate varies depending on the material, which makes it difficult to predict the electric field distribution and may cause a problem that the electric field is locally concentrated.
  • the low U electrode 321 ′ to the second electrode 322 ′ are connected to a portion where air gaps or foreign substances are formed in contact with the insulation portion 323 ⁇ and / or the cable insulation layer 214. There is a possibility of this intrusion, and there is a fear of occurrence of dielectric breakdown when a high field is applied to a portion where the voids or foreign matter occurred.
  • the junction box insulating part of the present invention is surrounded by the first insulating layer 323 and the first insulating layer 323 and forms a second at least part of the innermost surface of the joint sleeve 320.
  • An insulating layer 325 is provided.
  • the first insulating layer 323 is a liquid silicone rubber (LSR), fluorine rubber (FR), styrene-butadiene rubber (SBR) excellent in insulation performance to ensure the insulating performance of the intermediate junction box.
  • a first insulating composition comprising nitrile-butadiene rubber (NBR), chloroprene rubber (CR), ethylene propylene diene monomer (EPDM) rubber or combinations thereof, preferably the composition has a tear strength and permanent Long-term reliability, such as change rate is excellent, and may include a liquid silicone rubber having the advantage of improving productivity in a rapid production process.
  • the silicone rubber can be molded in a variety of design products is improved moldability. Secondary vulcanization is unnecessary and has various advantages that can be molded by double injection. .
  • the second insulation layer 325 is formed between the first insulation layer 323 and the cable insulation layer 214 in various forms, such as a tube, coating, film, and the like, in particular the joint sleeve 320 At least one surface selected from the group consisting of an interface between the first electrode 321 and the junction box insulation and an interface between the second electrode 322 and the junction box insulation. At least partially wrapped, preferably formed to surround a portion where the first electrode 321 or the second electrode 322, the junction box insulation, and / or the cable insulation layer 214 meet. As the volume resistivity changes, the electric field may be concentrated or there may be gaps or foreign matter intrusion. Therefore, the electric field of the part where the insulation performance is unstable is alleviated.
  • the second insulating layer 325 is formed of a second insulating composition having a lower volume resistivity than the cable insulating layer 214, and the portion of which the insulation performance is relatively stable is applied to an electric field applied to a portion that may cause breakdown. Can be dispersed.
  • the second insulating composition may include a base resin and an additive for adjusting resistivity.
  • the base resin may have a volume resistivity of 10 15 Q cm or less, an insulation strength of 10 kV / mni or more, preferably a break strength of 10 N / ⁇ or more, and an elongation of 200% or more.
  • the base resin is, for example, liquid silicone rubber (LSR), fluorine rubber (FR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), chloroprene rubber (CR), ethylene propylene diene monomer (EPDM)
  • LSR liquid silicone rubber
  • FR fluorine rubber
  • SBR styrene-butadiene rubber
  • NBR nitrile-butadiene rubber
  • CR chloroprene rubber
  • EPDM ethylene propylene diene monomer
  • a liquid silicone rubber that can be made, including rubber or a combination thereof, excellent long-term reliability, such as tear strength and permanent change rate, and has the advantage of improving productivity in a rapid production process More preferably for close contact with the first insulating layer 323. It may be made of the same series of resins as.
  • the resistivity adjusting additive may include an organic conductive filler alone or a combination of an organic conductive filler and an inorganic conductive filler.
  • the organic conductive filler is a glycol-based filler such as ethylene glycol, propylene glycol, preferably polyglycol ether in consideration of compatibility with the base resin and electrical and mechanical properties of the second insulating layer 325. (po lyg lyco l ether; PGE), and the organic conductive filler may further improve the electrical and mechanical properties of the second insulating layer 325 by forming a chemical crosslink with the base resin. Can be.
  • the second insulating composition and the second insulating layer 325 formed therefrom are in accordance with the volume resistivity of each of the insulating layer 214 and the first insulating layer 323 of the cable in contact with the second insulating layer 325.
  • the second insulating composition may have a volume resistivity of less than or equal to the maximum volume resistivity ( ⁇ ) defined by Equation 1 below at 70 ° C.
  • maximum volume resistivity
  • the second insulating layer 325 formed from the second insulating composition has a temperature change due to a cable conduction state, and thus the cable insulating layer, the first insulating layer, and the second insulating layer.
  • f min (aX, bY) means the minimum of aX and bY
  • X is the volume resistivity at 7 (C of the cable insulation layer
  • Y is the volume resistivity at 70 ° C. of the first insulating layer
  • b is at least 2a.
  • a is 0.025 to 0.075.
  • the second insulating composition has a maximum volume resistivity defined by Equation 1 at 70 ° C.
  • the content of the resistivity adjusting additive is 0.1 to 5% by weight. Preferably it may be 0.5 to 3% by weight.
  • the first insulation layer 323, the second insulation layer 325, and the cable insulation layer 214 have a volume resistivity of 1 ⁇ 10 12 to 1X10 18 ⁇ , and the volume of the second insulation layer 325.
  • Resistivity is the volume resistivity of the first insulating layer 323 and the volume of the cable insulation 214
  • the resistivity may be 10 times lower than each, and the volume resistivity of the first insulating layer 323 may not be higher than 10 times higher than the volume resistivity of the cable insulation layer 214.
  • the volume resistivity of the cable insulation layer 214 may be 10 14 to 10 18 ⁇ ⁇
  • the volume resistivity of the first insulation layer 323 may be 10 14 to 10 18 ⁇ ⁇ .
  • the volume resistivity ratio of the cable insulation layer 214 and the second insulation layer 325 preferably satisfies Equation 2 below, and the lower limit of the volume specific resistance of the second insulation layer 325 is 10 12 ⁇ . may be ⁇ .
  • the electric field of the second insulation layer When the volume resistivity of the second insulation layer 325 is not more than 10 times lower than the volume resistivity of the first insulation layer 323 and the volume resistivity of the cable insulation layer 214, respectively, the electric field of the second insulation layer When the dispersing effect may be significantly lowered and the volume resistivity of the first insulation layer 323 is 10 times higher than the volume resistivity of the cable insulation layer 214, an excessively large electric field is formed in the first insulation layer. If the volume resistivity of the cable insulation layer 214 and the first insulating layer 323 is out of the above range, it may not satisfy the insulation characteristics required for the transmission of ultra-high voltage DC power.
  • volume resistivity ratio volume resistivity of the cable insulation layer / volume resistivity of the second insulation layer
  • volume resistivity of the cable insulation layer 214 and the second insulation layer 325 is less than 20, as shown in FIG.
  • the electric field at the triple point (Tr iple Po i nt) where the second electrode 322, the second insulating layer 325, and the cable insulating layer 214 contact each other rises rapidly, and the second insulating layer (325)
  • the volume intrinsic resistance is less than the lower limit, excessive heat is generated in the second insulating layer 325 due to Joule loss as shown in FIG. 4 (b).
  • an intermediate junction box for an ultra-high voltage DC power cable having a junction box insulator including a first insulation layer 323 and a second insulation layer 325, and an ultra-high voltage including the same.
  • the interface between the first insulating layer 323 and the second insulating layer 325 is preferably not in contact with the first electrode 321 and the second electrode 322.
  • first electrode 321 and the second electrode 322 are surrounded by the second insulating layer 325 without contacting the first insulating layer 323, the joint sleeve 320 ) Is a first triple point (P1), the second electrode 322, the second insulating layer (1) where the first electrode 321, the second insulating layer 325 and the cable insulating layer 214 abut each other.
  • the second triple point P2 in which the 325 and the cable insulation layer 214 contact each other, the junction box shielding layer 324, the first insulation layer 323, and the second insulation layer 325 contact each other. It may be provided with a third tritium (P3).
  • the electric field acting on the first triple point and the second triple point according to the resistive electric field distribution characteristic during direct current transmission is determined by the difference in volume resistivity between the low 2 insulating layer 325 and the first insulating layer 323. Shifted to the insulating layer 323, the spacing of the equipotential lines generated in the second insulating layer 325 1 evenly distributed in the second insulating layer 325 when the power cable system is placed under a direct current electric field. As the inorganic conductive filler becomes wider and becomes relatively constant, the electric field is concentrated in the local field concentration in the second insulation layer 325, in particular, the first triple point P1 and the second triple point P2. To be It can be suppressed.
  • the electric field of the second insulation layer 325 is shifted to the low 1 1 insulating layer 323 (sh ift). Therefore, the electric field is concentrated on the third tri-dot (P3) in which the elements consisting of three kinds of materials having different volume resistivity, including the first insulating layer 323 is in contact with each other to act as a weak insulation.
  • the third triple point P3 is spaced apart from the curved surface of the second electrode 322 facing the first electrode 321 by a predetermined distance in a direction opposite to the first electrode 321. It is preferably formed so as to be farther from the first electrode 321 than the second electrode 321.
  • the electric field is shifted from the second insulating layer 325 to the first insulating layer 323, the shifted electric field is shaped like the first electrode 321 and the second electrode 322, and the first and second electrodes 322.
  • a high field is applied relative to the part.
  • the third triple point can be formed farther from the first electrode 321 than the second electrode 322.
  • the distance tl between the third triple point P3 and the first electrode 321 is formed to be greater than the distance t2 between the first electrode and the second electrode, so that By eliminating the high electric field, natural performance can be improved.
  • the first insulating worm 323 is next It may have a thickness that satisfies the equation (3).
  • U 0 is the rated voltage of the intermediate junction box having the joint sleeve 320
  • is the brain impulse test voltage (BIL; Bas ic impul s insul at ion level).
  • BIL Bas ic impul s insul at ion level.
  • 0 ⁇ is the thickness of the first insulating layer 323 formed on the interface between the second insulating layer 325 and the first insulating layer 323 surrounding the first triple point and the first electrode 321.
  • BDV f is the breakdown voltage of the first insulating layer 323. That is, the first insulation layer 323 is formed so that the value obtained by dividing the crimp spread test voltage of the intermediate junction by the thickness of the first insulation layer 323 is smaller than the insulation breakdown voltage value of the first insulation layer 323. Can be formed.
  • the thickness of the insulation 11 layer 323 is greater than the brain impulse test voltage (1 .85 U 0 ) of the intermediate junction divided by the dielectric breakdown voltage value (BDW) of the first insulation layer 323.
  • the first insulating layer 323 has a higher volume resistivity than the second insulating layer 325, and in particular, has a higher electric field on the first electrode 321 than the second insulating layer 325.
  • the thickness of the first insulating layer 323 having a high electric field sharing is as described above, and the brain breakdown test voltage (1.851U) of the intermediate junction box is equal to the dielectric breakdown voltage of the first insulating layer 323.
  • the thickness of the first insulating layer 323 is equal to or greater than that of the brain impilation test voltage (1 .85 U 0 ) of the first insulation layer 323. It is possible to prevent the occurrence of dielectric breakdown in the first insulating layer 323 by being larger than the value divided by PMJ ).
  • the first insulating layer 323 may be formed on the first electrode 321 so that its thickness is three times or more than the thickness of the second insulating layer 325.
  • the intermediate junction box joint joint 320 for a cable may include, for example, inserting a mold into a molding mold and injecting a semiconductive material into the mold, thereby forming the first electrode 321 and the second electrode 322. ), And then injecting the composition and the insulating composition for controlling the electrical conductivity into the molding mold and then cured to form a crab 2 insulating layer and a first insulating layer.
  • the second insulation layer surrounds at least a portion of an interface to a point where the first electrode 321 to the second electrode 322 are formed in contact with the junction box insulation portion and / or the cable insulation layer. 2 may be prepared by applying and curing the insulating composition.
  • Example and Comparative Example The equipotential line distribution in the space between the first electrode and the second electrode measured at 70 ° C. with a voltage of 592 kV applied to each intermediate junction box is as shown in FIG.
  • the electric field values are shown in Table 2 below.
  • the indirect flux of the embodiment according to the present invention having the second insulating layer has a small distance between the equipotential lines between the first electrode and the second electrode, so that the electric field is not concentrated locally.
  • the intermediate junction box of the comparative example without the insulation layer had a region where the electric field was concentrated due to the narrow gap between the equipotential lines, and as shown in Table 2, the intermediate junction box of the example was structurally concentrated. Whereas the electric field in the possible area is considerably relaxed, the incremental junction of the comparative example is structurally It was confirmed that the electric field was concentrated in the area where it can be collected.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cable Accessories (AREA)

Abstract

The present invention relates to a joint box for an ultra-high voltage direct current power cable, and an ultra-high voltage direct current power cable system comprising the same. Specifically, the present invention relates to a joint box for an ultra-high voltage direct current power cable which can effectively prevent dielectric breakdown of the joint box of the cable due to local field concentration by alleviating an electric field at a portion on which the electric field structurally concentrates, and an ultra-high voltage direct current power cable system comprising the same.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
초고압 직류 전력케이블용 증간접속함 및 이를 포함하는 초고압 직류 전력케 이블 시스템  Extra junction box for ultra high voltage DC power cable and ultra high voltage DC power cable system including the same
【기술분야】 Technical Field
본 발명은 초고압 직류 전력케이블용 중간접속함 및 이를 포함하는 초고압 직류 전력케이블 시스템에 관한 것이다. 구체적으로, 본 발명은 구조적으로 전계가 집중되는 부분의 전계를 완화시킴으로써 국부적인 전계집증에 의한 케이블의 중간 접속함 절연파괴를 효과적으로 방지할 수 있는 , 초고압 직류 전력케이블용 중간접 속함 및 이를 포함하는 초고압 직류 전력케이블 시스템에 관한 것이다.  The present invention relates to an intermediate junction box for an ultra high voltage direct current power cable and an ultra high voltage direct current power cable system including the same. Specifically, the present invention is to effectively mitigate the electric field of the portion where the electric field is structurally concentrated, the intermediate junction box of the cable by the local field accumulation effectively prevents, the intermediate junction box for ultra-high voltage DC power cable and the same An ultra high voltage DC power cable system.
【배경기술】  Background Art
초고압 전력 케이블은 내부의 도체를 이용하여 전력을 전송하는 장치로서 초 고압 직류 (Di rect Current ; DC) 전력케이블과 초고압 교류 (Al ternat ing Current; AC) 전력케이블로 구분할 수 있다.  The ultra high voltage cable is a device that transmits power by using an internal conductor, and can be divided into a high voltage direct current (DC) power cable and an alternating current (AC) power cable.
상기 초고압 직류 전력케이블을 이용하는 직류 송전 방식은 전력손실이 적어 장거리 송전에 유리한 장점이 있으므로, 중간접속함을 이용하여 상기 전력케이블을 서로 연결한 초고압 직류 전력케이블 시스템을 형성함으로써 장거리 송전선로를 구 성한다.  Since the DC transmission method using the ultra high voltage DC power cable has a low power loss and has an advantage of long distance transmission, a long voltage transmission line is formed by forming an ultra high voltage DC power cable system connecting the power cables to each other using an intermediate junction box. do.
한편, 일반적으로 전력케이블은 도체, 상기 도체를 둘러싸는 내부반도전층, 상기 내부반도전층을 둘러싸며 가교폴리에틸렌 (XLPE) 등의 소재로 이루어지는 절연 층, 상기 절연층을 둘러싸는 외부반도전층, 상기 외부반도전층을 둘러싸는 금속차 폐층 및 외부의 층격, 압력 등으로부터 전력케이블의 내부 구성을 보호하는 외피 등이 순차적으로 적층된 구조를 보유할 수 있다. On the other hand, in general, a power cable is a conductor, inner semiconductive layer surrounding the conductor, an insulating layer surrounding the inner semiconductive layer made of a material such as cross-linked polyethylene (XLPE), the insulating layer is i surround the outer semiconductive layer, wherein Metal car surrounding the outer semiconducting layer It is possible to have a structure in which a closed layer and an outer shell for protecting the internal structure of the power cable from the layer stratification, pressure, and the like of the closed layer are sequentially stacked.
상기 전력 케이블은 도 1에 도시된 단면구조를 갖는 증간접속함을 통해 이의 말단들이 서로 연결될 수 있다.  The power cable may be connected to each other at its ends through an incremental connection box having a cross-sectional structure shown in FIG.
도 1에 도시된 바와 같이, 종래 초고압 전력케이블 시스템은 증간접속 함 (300 ' )을 이용하여 도체 (미도시) , 내부반도전층 (미도시) , 절연층 (214) 및 외부반 도전층 (216)을 구비하며 상기 도체, 내부반도전층, 절연층 및 외부반도전층이 순차 적으로 노출된 단부가 서로 대향하도록 구비된 한 쌍의 전력케이블을 서로 연결하 여 구성된다.  As shown in FIG. 1, the conventional ultra high voltage cable system uses an incremental junction box 300 ′ to form a conductor (not shown), an inner semiconducting layer (not shown), an insulating layer 214, and an outer semiconducting layer 216. And a pair of power cables provided so that the ends of the conductor, the inner semiconducting layer, the insulating layer, and the outer semiconducting layer are sequentially exposed to each other.
다만, 직류 송전을 위한 전력케이블 시스템은 그 내부에서의 전계분포가 체 적저항률에 의존하는 저항성 전계분포 특성을 가진다. 구체적으로 종래의 상기 전 력케이블 내지 직류 전력케이블용 중간 ¾속함은 서로 다른 체적저항률을 갖는 소재 로 이루어진 구조물이 서로 만나게 되는 상기 조인트 슬리브 (320 ' )와 상기 전력케 이블 간의 계면 상기 제 2 전극 (322 ' ) . 전력케이블의 절연층 (214 ) 및 접속함 절연 층 (323 ' )이 만나는 부분으로서 도 1에 파선으로 구획된 A 부분, 또는 제 1 전 극 (32Γ ) , 전력케이블의 절연층 (214) 및 접속함 절연층 (323 ' )이 만나는 부분으로서 도 2에 파선으로 구획된 B 부분 등 이종의 재료가 서로 접하는 부위는 온도 변화에 따른 각 재질의 체적저항률 변화, 접속함 제조상의 공극발생, 이물질 침입 등의 문 제가 있어 절연취약부로 작용하며, 특히 구조적으로 전계가 집중되어 접속함 절연 파괴가 일어날 수 있다.  However, the power cable system for direct current transmission has a resistive electric field distribution characteristic in which the electric field distribution in the interior depends on the volume resistivity. Specifically, the conventional intermediate ¾ speed for the power cable or the DC power cable is the interface between the joint sleeve 320 ′ and the power cable, in which structures made of materials having different volume resistivity meet each other, and the second electrode ( 322 '). The portion where the insulating layer 214 of the power cable and the junction box insulating layer 323 ′ meet and is divided by a broken line in FIG. 1, or the first electrode 32 Γ, the insulating layer 214 of the power cable, and the connection The area where the different materials are in contact with each other, such as part B, which is divided by a broken line in FIG. 2 as the insulating layer 323 ′ meets each other, changes in volume resistivity of each material according to temperature changes, voids in junction box manufacturing, foreign matter intrusion, etc. There is a problem, which acts as an insulation weakness. In particular, the electric field is concentrated structurally, and the junction breakdown may occur.
따라서. 초고압 직류 전력케이블용 중간접속함에 있어서 구조적으로 전계가 집중되는 부분의 전계를 완화시킴으로써 국부적인 전계집중에 의한 접속함 절연파 괴를 효과적으로 방지할 수 있으며, 접속부에서의 발열 현상을 완화할 수 있는, 초 고압 직류 전력케이블용 증간접속함 및 이를 포함하는 초고압 직류 전력케이블 시 스템이 절실히 요구되고 있는 실정이다. therefore. Structural electric field structurally in the middle connection for high voltage DC power cable By mitigating the electric field of the concentrated part, it is possible to effectively prevent the breakdown of insulation by local electric field concentration and to alleviate the heat generation phenomenon at the connection part. Ultra high voltage DC power cable system is urgently needed.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 케이블용 중간접속함으로서 구조적으로 전계가 집중되는 부분의 전계를 완화시킴으로써 국부적인 전계집중에 의한 접속함 절연파괴를 효과적으로 방지할 수 있는 , 케이블용 중간접속함 및 이를 포함하는 케이블 시스템을 제공하는 것을 목적으로 한다.  The present invention provides an intermediate junction box for a cable and a cable system including the same, which can effectively prevent the junction breakdown caused by local electric field concentration by mitigating the electric field of a part where the electric field is structurally concentrated by the intermediate junction box for the cable. It aims to do it.
【기술적 해결방법】  Technical Solution
상기 과제를 해결하기 위하여 , 본 발명은 도체 , 상기 도체를 감싸는 내부반 도전층, 상기 내부반도전층을 감싸는 절연층, 상기 절연층을 감싸는 외부반도전층 을 포함하는 초고압 직류 전력케이블 한 쌍을 서로 접속시키기 위한 초고압 직류 전력케이블용 증간접속함으로서, 상기 중간접속함의 길이방향으로 좌측 및 우측 단 부가 라운드진 형상의 제 1 전극; 상기 제 1 전극으로부터 상기 증간접속함의 길이방 향으로 좌측 및 우측으로 일정거리 이격되어 서로 대향하도록 형성되는 한 쌍의 제 In order to solve the above problems, the present invention connects a pair of ultra-high voltage DC power cable including a conductor, an inner semiconductive layer surrounding the conductor, an insulating layer surrounding the inner semiconductive layer, and an outer semiconductive layer surrounding the insulating layer. An intermittent junction box for an ultra-high voltage direct current power cable, comprising: a first electrode having rounded left and right ends in a longitudinal direction of the intermediate junction box; A pair of agents formed to face each other at a predetermined distance from the first electrode to the left and the right in the longitudinal direction of the auxiliary junction box;
2 전극; 및 상기 제 1 전극 및 상기 제 2 전극을 감싸도록 형성되고, 상온에서 수축 가능한 탄성 재질로 이루어지며 내부에 길이방향으로 관통공이 있는 중공형 슬리 브로 형성되고, 상기 증간접속함 외부로 전류가 누설되지 않도록 하는 접속함 절연 부를 포함하는 조인트 슬리브를 구비하고, 상기 접속함 절연부는 제 1 절연층 및 제 2 절연층을 구비하며, 상기 제 2 절연층은 상기 제 1 절연층 보다 체적저항률이 낮 고, 상기 제 2 절연층은 상기 조인트 슬리브 최내면, 상기 제 1 전극과 상기 ¾속함 절연부의 계면 내지 상기 제 2 전극과 상기 접속함 절연부의 계면 증 적어도 일부를 감싸는 것을 특징으로 하는 초고압 직류 전력케이블용 증간접속함을 제공할 수 있 다. 2 electrodes; And a hollow sleeve formed to surround the first electrode and the second electrode, made of an elastic material that can be contracted at room temperature, and having a through hole therein in the longitudinal direction, so that current does not leak out of the intermediate junction box. And a joint sleeve including a junction box insulation portion, the junction box insulation portion comprising: a first insulation layer and a first insulation layer; And a second insulating layer having a lower volume resistivity than the first insulating layer, wherein the second insulating layer has an innermost surface of the joint sleeve, an interface between the first electrode and the ¾-containing insulating portion, and An additional junction box for an ultra-high voltage direct current power cable may be provided to surround at least a portion of the interface between the second electrode and the junction box insulation unit.
또한, 상기 제 1 절연층의 두께는 다음의 수학식 1을 만족하며,  In addition, the thickness of the first insulating layer satisfies Equation 1 below.
[수학식 1]  [Equation 1]
1.85ί/0 1.85ί / 0
ᅳ ^ "ᅳ <BDV層 상기 수학식 1에서, Uo는 상기 초고압 직류 전력케이블용 중간접속함의 정격 전압이고, 1.85U0는 뇌 (雷) 임필스 시험 전압 (BIL ; Bas ic impul s insulat ion level ) 이고, ^ 는 상기 제 1 전극 상에서의 상기 제 1 절연층의 두께이고, 81^ 는 제 1 절 연층 (340)의 절연 파괴 전압 (breakdown vol tage )일 수 있다. BD ^ " ᅳ <BDV 層 In Equation 1, Uo is the rated voltage of the intermediate junction box for the ultra-high voltage DC power cable, 1.85U 0 is the brain impulse test voltage (BIL; Bas ic impul s insulat ion level ) May be a thickness of the first insulating layer on the first electrode, and may be a breakdown voltage of the first insulation layer 340.
이 경우, 상기 제 2 절연층은 상기 제 1 전극과 상기 제 2 전극이 상기 제 1 절 연층과 접하지 않도록 상기 제 1 전극과 상기 게 2 전극을 모두 덮도톡 형성될 수 있 다.  In this case, the second insulating layer may be formed to cover both the first electrode and the crab electrode so that the first electrode and the second electrode do not contact the first insulation layer.
그리고, 상기 저 ]2 전극은 상기 조인트 슬리브 최내면으로부터의 수직거리가 상기 제 1 전극 방향으로 갈수록 점점 증가할 수 있다. 여기서, 상기 조인트 슬리브 외측에 구비되어, 상기 중간접속함 외부로 누설 되는 전계를 차폐하는 접속함 차폐층; 및 상기 게 1 절연층, 상기 제 2 절연층 및 상 기 접속함 차폐층이 서로 접하는 삼증점을 구비하며, 상기 제 1 전극과 상기 삼증점 간의 거리가 상기 제 1 전극과 상기 제 2 전극간의 거리보다 클 수 있다. 또한, 상기 제 1 절연층과 상기 저 12 절연층은 체적저항률이 I X 10" 내지 I X In addition, the low] 2 electrode may gradually increase as the vertical distance from the innermost surface of the joint sleeve toward the first electrode. Here, the junction box shielding layer provided on the outside of the joint sleeve, shielding the electric field leaked to the outside of the intermediate junction box; And a third thickening point in which the first insulating layer, the second insulating layer, and the junction box shielding layer are in contact with each other, and a distance between the first electrode and the three thickening points is a distance between the first electrode and the second electrode. Can be greater than In addition, the first insulating layer and the low 12 insulating layer have a volume resistivity of IX 10 "to IX.
18 18
10 Ω αη이며, 상기 제 2 절연층의 체적저항률은 상기 제 1 절연층의 체적저항률에 비해 10배 이상 낮을 수 있다. 또한. 상기 제 2 절연층은 베이스 수지 및 저항률 조절용 첨가제를 포함하는 제 2 절연 조성물로 형성될 수 있다. 이 경우, 상기 베이스 수지는 액상 실리콘 고무 (LSR) , 불소고무 (FR) , 스티렌 -부타디엔 고무 (SBR) , 니트릴-부타디엔 고무 (NBR) 및 클로로프렌 고무 (CR)로 이루 어진 그룹으로부터 선택된 1종 이상의 고무를 포함할 수 있다. 그리고, 상기 저항률 조절용 첨가제는 글리콜 계열의 유기 전도성 필러일 수 있다. . 여기서, 상기 글리콜 계열의 유기 전도성 필러는 폴리글리콜에테르를 포함할 수 있다. 또한, 상기 절연 조성물의 총 증량을 기준으로, 상기 유기 전도성 필러의 함 량이 0. 1 내지 5 중량 일 수 있다. 이 경우, 상기 저항률 조절용 첨가제는 무기 전도성 필러를 추가로 포함할 수 있다. 또한. 상기 과제를 해결하기 위하여 , 본 발명은 한 쌍의 초고압 직류 전력케 이블과 상기 한 쌍의 직류 전력케이블을 서로 전기적으로 연결하는 증간접속함을 포함하는 초고압 직류 전력케이블 시스템으로서, 상기 초고압 직류 전력케이블은 도체, 상기 도체를 감싸는 내부반도전층, 상기 내부반도전층을 감싸는 케이블 절연 층 및 상기 절연층을 감싸는 외부반도전층을 포함하는 케이블 코어부를 구비하고, 상기 도체를 서로 전기적으로 연결하는 도체 접속부를 포함하몌 상기 중간접속함 은, 상기 중간접속함의 길이방향으로 좌측 및 우측 단부가 라운드진 형상의 제 1 전 극; 상기 제 1 전극으로부터 상기 중간접속함의 길이방향으로 좌측 및 우측으로 일 정거리 이격되어 서로 대향하도록 형성되는 한 쌍의 게 2 전극; 및 상기 제 1 전극 및 상기 제 2 전극을 감싸도록 형성되고, 상은에서 수축가능한 탄성 재질로 이루어 지며, 내부에 길이방향으로 관통공이 있는 증공형 슬리브로 형성되고, 상기 중간접 속함 외부로 전류가 누설되지 않도록 하는 접속함 절연부를 포함하는 조인트 슬리 브를 구비하고, 상기 접속함 절'연부는 제 1 절연층 및 제 2 절연층을 구비하며, 상기 제 2 절연층은 상기 제 1 절연층 보다 체적저항률이 낮고, 상기 제 2 절연층은 상기 조인트 슬리브 최내면, 상기 제 1 전극과 상기 접속함 절연부의 계면 내지 상기 제 2 전극과 상기 접속함 절연부의 계면 중 적어도 일부를 감싸는 것을 특징으로 하는 초고압 직류 전력케이블 시스템을 제공할 수 있다. 10 Ω αη, and the volume resistivity of the second insulation layer may be 10 times lower than the volume resistivity of the first insulation layer. Also. The second insulating layer may be formed of a second insulating composition including a base resin and an additive for adjusting resistivity. In this case, the base resin is at least one selected from the group consisting of liquid silicone rubber (LSR), fluororubber (FR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR) and chloroprene rubber (CR). It may include rubber. In addition, the additive for regulating resistivity may be a glycol-based organic conductive filler. . Herein, the glycol-based organic conductive filler may include polyglycol ether. In addition, based on the total amount of the insulation composition, the content of the organic conductive filler may be 0.1 to 5 weight. In this case, the additive for regulating resistivity may further include an inorganic conductive filler. Also. In order to solve the above problems, the present invention is an ultra-high voltage DC power cable system including a dual junction box for electrically connecting a pair of ultra-high voltage DC power cable and the pair of DC power cable, the ultra-high voltage DC power cable And a cable core portion including a silver conductor, an inner semiconducting layer surrounding the conductor, a cable insulation layer surrounding the inner semiconducting layer, and an outer semiconducting layer surrounding the insulation layer, and including a conductor connection part electrically connecting the conductors to each other. The intermediate junction box comprises: a first electrode having rounded left and right ends in the longitudinal direction of the intermediate junction box; A pair of crab 2 electrodes formed to face each other at a predetermined distance from the first electrode to the left and right in the longitudinal direction of the intermediate junction box; And formed to surround the first electrode and the second electrode, the image being made of an elastic material which is contractible in the upper portion, and formed of an enlarged sleeve having a through hole therein in the longitudinal direction therein, and leakage of current to the outside of the intermediate junction box. with a joint sleeve comprising junction box insulating portion to prevent, and the junction box section, edge of the first insulating layer and the second comprises an insulating layer, the second insulating layer has a volume resistivity than the first insulating layer And the second insulating layer surrounds at least a portion of the innermost surface of the joint sleeve, the interface between the first electrode and the junction box insulation, and the interface between the second electrode and the junction box insulation. A cable system can be provided.
이 경우, 상기 제 1 절연층의 두께는 다음의 수학식 1을 만족하며, [수학식 1] In this case, the thickness of the first insulating layer satisfies Equation 1 below. [Equation 1]
- ᅳ <BDVm -ᅳ <BDV m
UPMJ 상기 수학식 1에서, U0는 상기 초고압 직류 전력케이블용 중간접속함의 정격 전압이고, 1.85U0는 뇌 (雷) 임필스 시험 전압 (BIL:Basic impuls insulation level) 이고. DpMJ는 상기 제 1 전극 상에서의 상기 제 1 절연층의 두께이고, BDVPMJ는 제 1 절 연층 (340)의 절연 파괴 전압 (breakdown voltage)일 수 있다. U PMJ In Equation 1, U 0 is the rated voltage of the intermediate junction box for the ultra-high voltage DC power cable, 1.85U 0 is the basic impuls insulation level (BIL: Basic impuls insulation level). Dp MJ may be a thickness of the first insulating layer on the first electrode, and BDV PMJ may be an insulation breakdown voltage of the first insulation layer 340.
그리고, 상기 제 2 절연층은 상기 제 1 전극과 상기 제 2 전극이 상기 제 1 절연 층과 접하지 않도록 상기 제 1 전극과 상기 제 2 전극을 모두 덮도록 형성될 수 있 다.  The second insulating layer may be formed to cover both the first electrode and the second electrode such that the first electrode and the second electrode do not contact the first insulating layer.
여기서, 상기 제 2 전극은 상기 조인트 슬리브 최내면으로부터의 수직거리가 상기 제 1 전극 방향으로 갈수록 점점 증가할 수 있다.  Here, the second electrode may gradually increase as the vertical distance from the innermost surface of the joint sleeve toward the first electrode.
또한, 상기 조인트 슬리브 외측에 구비되어, 상기 증간접속함 외부로 누설되 는 전계를 차폐하는 접속함 차폐층; 및  In addition, a junction box shielding layer provided outside the joint sleeve and shielding an electric field leaking out of the intermediate junction box; And
상기 제 1 절연층, 상기 제 2 절연층 및 상기 접속함 차폐층이 서로 접하는 삼 중점을 구비하몌  The first insulating layer, the second insulating layer and the junction box shielding layer is provided with a three-point contact with each other.
상기 제 1 전극과 상기 삼증점간의 거리가 상기 제 1 전극과 상기 제 2 전극간 의 거리보다 클 수 있다. 여기서, 상기 제 1 절연층과 상기 제 2 절연층은 체적저항률이 1X1014 내지 1 X 10 Q cm이며, 상기 제 2 절연층의 체적저항률은 상기 제 1 절연층의 체적저항률과 상기 케이블 절연층의 체적저항률 각각에 비해 10배 이상 낮고, 상기 제 1 절연층의 체적저항률은 상기 케이블 절연층의 체적저항률에 비해 10배 이상 높을 수 있다. 또한, 상기 케이블 절연층과 상기 제 2 절연층의 체적저항률 비는 20 이상일 수 있다. The distance between the first electrode and the triode may be greater than the distance between the first electrode and the second electrode. Here, the first insulating layer and the second insulating layer has a volume resistivity of 1 × 10 14 to 1 X 10 Q cm, the volume resistivity of the second insulation layer is 10 times lower than the volume resistivity of the first insulation layer and the volume resistivity of the cable insulation layer, and the volume resistivity of the first insulation layer is the cable. It may be 10 times higher than the volume resistivity of the insulating layer. In addition, the volume resistivity ratio of the cable insulating layer and the second insulating layer may be 20 or more.
이 경우, 상기 제 2 절연층은 베이스 수지 및 저항률 조절용 첨가제를 포함하 며,  In this case, the second insulating layer includes a base resin and an additive for adjusting resistivity,
상기 베이스 수지는 액상 실리콘 고무 (LSR) , 불소고무 (FR) , 스티렌-부타디엔 고무 (SBR) , 니트릴—부타디엔 고무 (NBR) 및 클로로프렌 고무 (CR)로 이투어진 그룹으 로부터 선택된 1종 이상의 고무를 포함하고,  The base resin comprises at least one rubber selected from the group consisting of liquid silicone rubber (LSR), fluororubber (FR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR) and chloroprene rubber (CR). Including
상기 저항률 조껄용 첨가제는 글리콜 계열의 유기 전도성 필러일 수 있다. 그리고, 상기 글리콜 계열의 유기 전도성 필러는 폴리글리콜에테르를 포함할 수 있다.  The resistivity adjusting additive may be a glycol-based organic conductive filler. In addition, the glycol-based organic conductive filler may include polyglycol ether.
여기서, 상기 절연 조성물의 총 증량을 기준으로, 상기 유기 전도성 필러의 함량이 0. 1 내지 5 증량 % 일 수 있다.  Herein, the content of the organic conductive filler may be 0.1 to 5% by weight, based on the total amount of the insulation composition.
또한. 상기 저항률 조절용 첨가제는 무기 전도성 필러를 추가로 포함할 수 있다.  Also. The resistivity adjusting additive may further include an inorganic conductive filler.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 초고압 직류 전력케이블용 중간접속함은 구조적으로 전계가 집중될 수 있는 영역의 전계를 효과적으로 완화시킴으로써 접속함 절연파괴를 방지 할 수 있는 우수한 효과를 나타낸다. The intermediate junction box for the ultra-high voltage direct current power cable according to the present invention prevents breakdown of the junction box by effectively mitigating an electric field in a region where the electric field can be structurally concentrated. It shows an excellent effect that can be done.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 종래 전력케이블 시스템의 단면 구조를 개략적으로 도시한 것이다. 도 2는 본 발명에 따른 초고압 직류 전력케이블 시스템의 직류용 전력케이블 의 종단면도를 개략적으로 도시한 것이다.  1 is a schematic cross-sectional view of a conventional power cable system. Figure 2 schematically shows a longitudinal cross-sectional view of the DC power cable of the ultra-high voltage DC power cable system according to the present invention.
도 3은 본 발명에 따른 초고압 직류 전력케이블 시스템의 단면 구조를 개략 적으로 도시한 것이다.  Figure 3 schematically shows the cross-sectional structure of the ultra-high voltage DC power cable system according to the present invention.
도 4는 삼중점에서의 전계 해석 및 줄 손실을 나타내는 그래프이다.  4 is a graph showing the electric field analysis and the line loss at the triple point.
도 5는 실시예에서 제 1 전극과 제 2 전극 사이의 등전위선 분포를 나타내는 그래프이다.  FIG. 5 is a graph showing an equipotential line distribution between a first electrode and a second electrode in an embodiment. FIG.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설 명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 층분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and the spirit of the present invention may be fully conveyed to those skilled in the art. Like numbers refer to like elements throughout.
도 2는 본 발명의 일실시예에 따른 초고압 직류 전력케이블 시스템에서 초고 압 직류 전력 케이블의 종단면도를 개략적으로 도시한 것이다.  Figure 2 schematically shows a longitudinal cross-sectional view of the ultra-high voltage DC power cable in the ultra-high voltage DC power cable system according to an embodiment of the present invention.
도 2를 참조하면 , 상기 초고압 직류 전력케이블 (200)은 도체 (210) , 내부반도 전층 (212) , 절연층 (214) , 외부반도전층 (216)을 포함하여, 도체 (210)를 따라 케이블 길이 방향으로만 전력을 전송하고, 케이블 반경 방향으로는 전류가 누설되지 않도 록 하는 케이블 코어부를 구비한다. Referring to FIG. 2, the ultra-high voltage DC power cable 200 includes a conductor 210, an inner semiconducting layer 212, an insulating layer 214, and an outer semiconducting layer 216, along the conductor 210. It is provided with a cable core portion that transmits power only in the longitudinal direction and prevents leakage of current in the radial direction of the cable.
상기 도체 (210)는 전력을 전송하기 위해 전류가 흐르는 통로 역할을 하며, 전력 손실을 최소화할 수 있도톡 도전율이 우수하고 케이블 제조 및 사용에 적절한 강도와 유연성을 가진 소재, 예를 들어 구리 또는 알루미늄 등으로 구성될 수 있 다. 상기 도체 (210)는 복수개의 원형소선을 연선하여 원형으로 압축한 원형 압축도 체일 수 있고, 원형의 중심소선 (210A)과 상기 원형 증심소선 (210A)을 감싸도톡 연 선된 평각소선 (210B)으로 이루어진 평각소선층 (210C)을 구비하며 전체적으로 원형 의 단면을 가지는 평각도체일 수 있으며 , 상기 평각도체는 원형 압축도체에 비하여 점적율이 상대적으로 높아 케이블 외경을 축소할 수 있는 장점이 있다.  The conductor 210 serves as a passage through which current flows to transmit power, and has a high conductivity and a strength and flexibility suitable for cable manufacture and use, such as copper or aluminum, to minimize power loss. And the like. The conductor 210 may be a circular compressive body compressed into a circular shape by twisting a plurality of circular small wires, and the flat rectangular wire 210B is wrapped around the central center wire 210A and the circular core core wire 210A. It may be a flat conductor having a flat wire layer (210C) consisting of a circular cross section as a whole, the flat conductor has the advantage of reducing the outer diameter of the cable is relatively high spot ratio compared to the circular compressed conductor.
그런데, 도체 (210)는 복수의 소선을 연선하여 형성되므로 그 표면이 평활하 지 않아 전계가 불균일할 수 있으며, 부분적으로 코로나 방전이 일어나기 쉽다. 또 한, 도체 (210) 표면과 후술하는 절연층 (214) 사이에 공극이 생기게 되면 절연성능 이 저하될 수 있다. 상기와 같은 문제점을 해결하기 위하여 도체 (210) 외부에는 내 부반도전층 (212)이 형성된다.  However, since the conductor 210 is formed by twisting a plurality of element wires, its surface may not be smooth, and thus an electric field may be uneven, and corona discharge is likely to occur partially. In addition, when a gap is formed between the surface of the conductor 210 and the insulating layer 214 described later, the insulating performance may be reduced. In order to solve the above problems, the inner semiconducting layer 212 is formed outside the conductor 210.
상기 내부반도전층 (212)은 절연성 물질에 카본블랙, 카본 나노튜브, 카본나 노플레이트, 그라파이트 등의 도전성 입자가 첨가되어 반도전성을 가지게 되몌 상 기 도체 (210)와 후술하는 절연층 (214) 사이에서 급격한 전계변화가 발생하는 것을 방지하여 ¾연성능을 안정화하는 기능을 수행한다. 또한 도체면의 불균일한 전하 분포를 억제함으로써 전계를 균일하게 하고, 도체 (210)와 절연층 (214) 간의 공극 형성을 방지하여 코로나 방전, 절연파괴 등을 억제하는 역할도 하게 된다. 상기 내부반도전층 (212)의 바깥쪽에는 절연층 (214)이 구비되어 도체 (210)를 따라 흐르는 전류가 외부로 누설되지 않도록 외부와 전기적으로 절연시켜 준다. 일 반적으로 상기 절연층 (320)은 파괴전압이 높고, 절연성능이 장기간 안정적으로 유 지될 수 있어야 한다. 나아가 유전손실이 적으며 내열성 등의 열에 대한 저항 성능 을 지니고 있어야 한다. 따라서, 상기 절연층 (214)은 폴리에틸렌 및 폴리프로필렌 둥의 폴리을레핀 수지가 사용될 수 있으며, 나아가 폴리에틸렌 수지가 바람직하다. 여기서, 상기 폴리에틸렌 수지는 가교수지로 이루어질 수 있다. The inner semiconducting layer 212 may have semiconductivity by adding conductive particles such as carbon black, carbon nanotubes, carbon or no plate, and graphite to an insulating material. It prevents abrupt electric field change between and stabilizes ¾ performance. In addition, by suppressing the uneven charge distribution on the conductor surface, the electric field is made uniform, and the gap between the conductor 210 and the insulating layer 214 is prevented to prevent corona discharge, insulation breakdown, and the like. The outer side of the inner semiconducting layer 212 is provided with an insulating layer 214 to electrically insulate the outside so that the current flowing along the conductor 210 does not leak to the outside. In general, the insulation layer 320 has a high breakdown voltage and should be able to be stably maintained for a long time. Furthermore, the dielectric loss is low and must have heat resistance such as heat resistance. Accordingly, the insulating layer 214 may be a polyolefin resin of polyethylene and polypropylene, more preferably a polyethylene resin. Here, the polyethylene resin may be made of a crosslinked resin.
상기 절연층 (214)의 외부에는 외부반도전층 (216)이 구비된다. 상기 외부반도 전층 (216)은 내부반도전층과 같이 절연성 물질에 도전성 입자, 예를 들면 카본블 랙 , 카본나뉴튜브, 카본나노플레이트, 그라파이트 등이 첨가되어 반도전성을 가지 는 물질로 형성되어, 상기 절연층 (214)과 후술하는 금속시스 (218) 사이의 불균일한 전하 분포를 억제하여 절연 성능을 안정화한다. 또한, 상기 외부반도전층 ( 216)은 케이블에 있어서 절연층 (214)의 표면을 평활하게 하여 전계집중을 완화시켜 코로나 방전을 방지하며, 상기 절연층 (214 )을 물리적으로 보호하는 기능도 수행한다.  The outer semiconducting layer 216 is provided outside the insulating layer 214. The outer semiconducting layer 216 is formed of a material having semiconductivity by adding conductive particles, such as carbon black, carbon nanotubes, carbon nanoplates, graphite, etc., to an insulating material like the inner semiconducting layer. The nonuniform charge distribution between the insulating layer 214 and the metal sheath 218 described later is suppressed to stabilize the insulating performance. In addition, the outer semiconducting layer 216 smoothes the surface of the insulating layer 214 in the cable to mitigate electric field concentration, thereby preventing corona discharge, and also physically protects the insulating layer 214. .
상기 코어부는 케이블에 수분이 침투하는 것을 방지하기 위한 수분 흡수부 (미도시)를 추가적으로 구비할 수 있다. 상기 수분 흡수부는 연선된 소선 사이 및 / 또는 도체 (210)의 외부에 형성될 수 있으며 , 케이블에 침투한 수분을 흡수하는 속 도가 빠르고, 흡수 상태를 유지하는 능력이 우수한 고흡수성 수지 ( super absorbent po lymer ; SAP)를 포함하는 분말, 테이프, 코팅층 또는 필름 등의 형태로 구성되어 케이블 길이방향으로 수분이 침투하는 것을 방지하는 역할을 한다. 또한, 상기 수 분 흡수부는 급격한 전계 변화를 방지하기 위하여 반도전성을 가질 수 있다. 상기 코어부의 외부에는 보호 시스부가 구비되며, 해저와 같이 수분에 노출 이 많이 되는 환경에 포설되는 전력케이블은 외장부 (미도시)를 추가적으로 구비한 다. 상기 보호시스부 및 외장부는 케이블의 전력 전송 성능에 영향을 미칠 수 있는 수분침투, 기계적 외상, 부식 등의 다양한 환경요인으로부터 상기 케이블 코어부를 보호한다. The core part may further include a moisture absorbing part (not shown) to prevent moisture from penetrating the cable. The moisture absorbing portion may be formed between stranded wires and / or outside the conductor 210, and has a high speed of absorbing moisture penetrating into the cable and has excellent ability to maintain the absorbed state (super absorbent po). It is composed of a powder, a tape, a coating layer or a film including a lymer (SAP), and serves to prevent moisture from penetrating in the cable length direction. In addition, the moisture absorbing portion may have a semiconductivity to prevent a sudden electric field change. A protective sheath part is provided on the outside of the core part, and a power cable installed in an environment exposed to moisture such as the sea bottom additionally includes an exterior part (not shown). The protective sheath and the sheath protect the cable core from various environmental factors such as moisture penetration, mechanical trauma, and corrosion, which can affect the power transmission performance of the cable.
상기 보호 시스부는 금속시스 (218)와 내부, 시스 (220)를 포함하여, 사고전류, 외력 내지 기타 외부환경 요인으로부터 케이블을 보호한다.  The protective sheath portion includes the metal sheath 218 and the inner sheath 220 to protect the cable from accidental currents, external forces or other external environmental factors.
상기 금속 시스층 ( 218)는 전력케이블 단부에서의 접지되어 지락 또는 단락 둥의 사고 발생시 사고 전류가 흐르는 통로 역할을 하며, 외부의 충격으로부터 케 이불을 보호하고, 전계가 케이블 외부로 방전되지 못하도록 할 수 있다. 또한, 해 저 등의 환경에 부설되는 케이블의 경우, 상기 금속 시스가 상기 코어부를 실링하 도록 형성되어 수분과 같은 이물질이 침입하여 절연 성능이 저하되는 것을 방지할 수 있다. 예를 들면, 상기 코어부 외부에 용융된 금속을 압출하여 이음새가 없는 연속적인 외면을 가지도톡 형성하여 차수성능이 우수하게 할 수 있다. 상기 금속으 로는 납 (Lead) 또는 알루미늄을 사용하며ᅳ 특히 해저 케이블의 경우에는 해수에 대 한 내식성이 우수한 납을 사용하는 것이 바람직하고, 기계적 성질을 보완하기 위해 금속 원소를 첨가한 합금연 (Lead a l l oy)을 사용하는 것이 더욱 바람직하다. The metal sheath layer 218 is grounded at the end of the power cable to serve as a passage through which an accident current flows in the event of a ground fault or short circuit, to protect the cable from external shocks, and to prevent the electric field from being discharged to the outside of the cable. Can be. In addition, in the case of a cable installed in an environment such as a seabed, the metal sheath may be formed to seal the core part, thereby preventing foreign substances such as moisture from invading and deteriorating insulation performance. For example, by extruding the molten metal to the outside of the core portion to form a seamless continuous outer surface having a superior ordering performance can be made. As the metal, lead or aluminum is used. In particular, in the case of submarine cables, it is preferable to use lead having excellent corrosion resistance to seawater, and alloy lead containing metal element to supplement mechanical properties. more preferably, all oy).
또한. 상기 금속시스 (218)는 케이블의 내식성, 차수성 등을 추가로 향상시키 고 상기 내부 시스 (220)와의 접착력을 향상시키기 위해 표면에 부식 방지 컴파운 드, 예를 들어, 블로운 아스팔트 등이 도포될 수 있다. 뿐만 아니라, 상기 금속 시 스 (218 )와 상기 코어부 사이에는 동선직입 테이프 (미도시) 내지 수분 흡수층 (미도 시)이 추가적으로 구비될 수 있다. 상기 동선 직입테이프는 동선 (Copper w i re)과 부직포 테이프 등으로 구성되어 외부반도전층과 금속시스층간의 전기적 접촉을 원 활히 하는 작용을 하며, 상기 수분흡수층 (미도시)은 케이블에 침투한 수분을 흡수 하는 속도가 빠르고, 흡수 상 Efl를 유지하는 능력이 우수한 고흡수성 수지 ( super absorbent po lymer ; SAP)를 포함하는 분말, 테이프, 코팅층 또는 필름 등의 형태로 구성되어 케이블 길이방향으로 수분이 침투하는 것을 방지하는 역할을 한다. 또한, 상기 수분흡수층에서의 급격한 전계 변화를 방지하기 위해 수분 홉수층에 동선을 포함시켜 구성할 수도 있다. Also. The metal sheath 218 is coated with an anti-corrosion compound, such as blown asphalt, to the surface to further improve the corrosion resistance, water resistance, etc. of the cable and to improve adhesion to the inner sheath 220. Can be. In addition, between the metal sheath 218 and the core portion, a copper direct tape (not shown) to a moisture absorbing layer (not shown) May be additionally provided. The copper wire direct tape is composed of copper wire and nonwoven tape to facilitate electrical contact between the outer semiconducting layer and the metal sheath layer, and the moisture absorbing layer (not shown) absorbs moisture that has penetrated the cable. It is composed of powder, tape, coating layer or film containing super absorbent resin (SAP) which has high absorption rate and excellent ability to maintain the absorption phase Efl. Serves to prevent this from happening. In addition, in order to prevent a sudden electric field change in the moisture absorbing layer may be configured to include a copper wire in the moisture hop layer.
상기 금속 시스 (218)의 외부에는 폴리염화비닐 (PVC) , 폴리에틸 렌 (po lyethy l ene) 등과 같은 수지로 구성된 내부 시스 (220)가 형성되어 케이블의 내식성, 차수성 등을 향상시키고, 기계적 외상 및 열, 자외선 등의 기타 외부 환경 요인으로 부터 케이블을 보호하는 기능을 수행할 수 있다. 특히, 해저에 포설되는 전력케이블의 경우에는 차수성이 우수한 폴리에틸렌 수지를 사용하는 것이 바람직 하며, 난연성이 요구되는 환경에서는 폴리염화비닐 수지를 사용하는 것이 바람직하 다.  On the outside of the metal sheath 218 is formed an inner sheath 220 made of a resin such as polyvinyl chloride (PVC), polyethylene (po lyethy lene), etc. to improve the corrosion resistance, orderability, etc. of the cable, mechanical It can function to protect cables from trauma and other external environmental factors such as heat and ultraviolet rays. In particular, in the case of power cables laid on the sea floor, it is preferable to use polyethylene resin having excellent degree of orderability, and polyvinyl chloride resin is preferably used in an environment where flame retardancy is required.
상기 보호 시스부는 아연도금 처리된 강철 케이프 등으로 구성되는 금속 보 강층 (미도시) , 상기 금속보강층의 상부 및 /또는 하부에 형성되며 반도전성 부직포 테이프 등으로 이루어져 전력케이블에 가해지는 외력을 완층하는 베딩층 (미도시) , 폴리염화비닐 내지 폴리에틸렌 등의 수지로 구성되는 외부 시스 (미도시)를 더 구비 하여 전력케이블의 내식성 차수성 등을 더욱 향상시키고, 기계적 외상 및 열, 자 외선 등의 기타 외부 환경 요인으로 부터 케이블을 추가적으로 보호할 수 있다. 또한, 해저에 포설되는 전력케이블은 선박의 닻 등에 의해 외상을 입기. 쉬우 며, 해류나 파랑 둥에 의한 굽힘력, 해저면과의 마찰력 등에 의해서도 파손될 수 있으므로 이를 막기 위하여 상기 보호 시스부의 외부에는 외장부 (미도시)가 형성될 수 있다. The protective sheath portion is formed on a metal reinforcement layer (not shown) made of a galvanized steel cape or the like, and is formed on the upper and / or lower portion of the metal reinforcement layer and is made of a semiconductive nonwoven tape to complete an external force applied to a power cable. It further includes an external sheath (not shown) composed of a bedding layer (not shown) and resins such as polyvinyl chloride to polyethylene to further improve corrosion resistance and abrasion resistance of the power cable. The cable can be further protected against external environmental factors. In addition, power cables laid on the sea floor may be injured by anchors of ships. Since it may be easily damaged by bending current due to currents or waves, friction with sea bottoms, etc., an exterior portion (not shown) may be formed outside the protective sheath portion to prevent this.
상기 외장부는 아머층 (미도시 ) 및 써빙층 (미도시 )을 포함할 수 있다 . 상기 아머층은 강철, 아연도금강, 구리, 황동, 청동 등으로 이루어지고 단면 형태가 원 형, 평각형 등인 와이어를 횡권하여 적어도 1층 이상으로 구성할 수 있다. 상기 아 머층 (34)은 케이블의 기계적 특성과 성능을 강화하는 기능을 수행할 뿐만 아니라 외력으로부터 케이블을 추가적으로 보호한다. 폴리프로필렌 얀 등으로 구성되는 상 기 써빙층은 상기 아머층의 상부 및 /또는 하부에 1층 이상으로 형성되어 케이블을 보호하며 , 최외곽에 형성되는 써빙층은 색상이 다른 2종 이상의 재료로 구성되어 해저에서 포설된 케이블의 가시성을 확보할 수 있다.도 3은 본 발명의 일실시예에 따른 초고압 직류 전력케이블용 중간접속함 및 이를 포함하는 초고압 직류 전력케 이블 시스템의 단면 구조를 개략적으로 도시한 것이다.  The exterior part may include an armor layer (not shown) and a serving layer (not shown). The armor layer may be made of steel, galvanized steel, copper, brass, bronze, etc., and may be configured as at least one layer by cross winding a wire having a circular cross section or a flat shape. The armor layer 34 not only serves to enhance the mechanical properties and performance of the cable, but also additionally protects the cable from external forces. The serving layer composed of polypropylene yarn or the like is formed in one or more layers on the upper and / or lower portion of the armor layer to protect the cable, and the outermost serving layer is formed of two or more materials having different colors. 3 is a schematic cross-sectional view of an intermediate junction box for an ultra high voltage direct current power cable according to an embodiment of the present invention, and an ultra high voltage direct current power cable system including the same. It is.
도 3에 도시된 바와 같이, 본 발명에 따른 초고압 전력케이블 시스템은 한 쌍의 전력케이블과. 상기 한 쌍의 전력케이블의 도체 (210)와 절연층 (214)의 단부를 둘러싸며 상기 도체 (210)를 전기적으로 연결시키는 도체 접속부 (310)를 구비하며, 상기 도체 접속부 (310) 및 상기 한 쌍의 전력케이블 단부의 외측을 감싸며 상은에 서 수축가능한 탄성 재질로 이루어진 조인트 슬리브 (320)를 구비하는 중간접속함을 포함할 수 있다. 또한, 상기 조인트 슬리브 (320 )의 외측에는 상기 한 쌍의 전력케 이블의 외부반도전층 (216) 내지 금속시스 (218)와 전기적으로 연결되어 상기 전력케 이블의 외부반도전층과 같은 역할을 하는 접속함 차폐층 (324) , 상기 조인트 슬리 브 (320)를 감싸는 금속 케이싱 (met a l cas i ng)으로 이루어진 하우징 (미도시 ) 및 상 기 하우징과 상기 조인트 슬리브 (320) 사이의 공간에 배치된 방수재 (미도시) 등을 추가로 포함할 수 있다. As shown in Figure 3, the ultra-high voltage power cable system according to the present invention and a pair of power cable. A conductor connecting portion 310 surrounding the ends of the conductor 210 and the insulating layer 214 of the pair of power cables and electrically connecting the conductor 210, wherein the conductor connecting portion 310 and the han It may comprise an intermediate junction having a joint sleeve 320 made of an elastic material shrinkable at an upper end of the pair of power cable ends. In addition, the outer side of the joint sleeve 320 is electrically connected to the outer semiconducting layer 216 to the metal sheath 218 of the pair of power cables to the power cable A junction box shielding layer 324 serving as an outer semiconducting layer of a cable, a housing (not shown) consisting of a metal casing (met al cas ing) surrounding the joint sleeve 320, and the housing and the joint It may further include a waterproof material (not shown) disposed in the space between the sleeve 320 and the like.
상기 한 쌍의 전력케이블은 도 2에 도시된 바와 같이 도체 (210) , 상기 도 체 (210)를 감싸는 내부반도전층 (212)ᅳ 상기 내부반도전층 (212)을 감싸는 케이블 껄 연층 (214) 및 상기 절연층 (214)을 감싸는 외부반도전층 (216)을 포함하는 케이블 코 어부를 구비하며. 각 단부에서 상기 도체 (210) , 내부반도전층 (212) , 케이블 절연 층 (214) 및 외부 반도전층 (216)이 순차적으로 노출되어 서로 대향하도록 구비된다. 상기 도체 접속부 (310)는 상기 한 쌍의 전력케이블의 각 단부에서 노출된 한 쌍의 도체 (210)를 서로 전기적으로 연결하고 고정시키는 도체 고정부 및 상기 도체 고정부와 상기 한 쌍의 전력케이블의 단부에서 노출된 절연층 (214)의 단부를 둘러 싸는 접속 슬리브를 포함할 수 있다. 상기 도체 고정부는 상기 한 쌍의 도체에 슬 리브를 끼우고 슬리브 외주면을 압착하거나, 슬리브에 삽입되는 한 쌍의 도체를 상 기 슬리브를 관통하는 볼트로 고정하거나, 도체 단부를 서로 용접하여 형성할 수 있으며, 상기 도체 (210) 또는 도체 고정부는 상기 접속 슬리브와 편조선 등을 통해 전기적으로 연결되도록 구성될 수 있다.  As shown in FIG. 2, the pair of power cables includes a conductor 210, an inner semiconducting layer 212 surrounding the conductor 210, and a cable 껄 soft layer 214 surrounding the inner semiconducting layer 212. And a cable core including an outer semiconducting layer (216) surrounding the insulating layer (214). At each end, the conductor 210, the inner semiconducting layer 212, the cable insulation layer 214, and the outer semiconducting layer 216 are sequentially exposed to face each other. The conductor connection part 310 includes a conductor fixing part for electrically connecting and fixing a pair of conductors 210 exposed at each end of the pair of power cables, and the conductor fixing part and the pair of power cables. It may include a connecting sleeve surrounding the end of the insulating layer 214 exposed at the end. The conductor fixing part may be formed by inserting a sleeve into the pair of conductors and compressing the outer circumferential surface of the sleeve, fixing the pair of conductors inserted into the sleeve with bolts through the sleeve, or welding the conductor ends to each other. The conductor 210 or the conductor fixing part may be configured to be electrically connected to the connection sleeve through a braided wire.
상기 조인트 슬리브 (320)는 상온에서 수축가능한 탄성 재질로 이루어지고, 내부에 길이방향으로 관통공이 있는 증공형 슬리브로 형성되어, 상기 도체 접속 부 (310)에 의해 서로 전기적으로 연결된 한 쌍의 케이블, 구체적으로는 상기 한 쌍 의 케이블의 단부에서 노출된 각 절연층 (214) , 외부반도전층 ( 216) 내지 상기 도체 접속부 (310)에 탄성복원력에 의해 밀착된다. 또한, 상기 증간접속함 외부로 전류가 누설되지 않도록 하는 접속함 절연부를 포함하며, 상기 조인트 슬리브 (320)의 최내 면의 적어도 일부는 상기 접속함 절연부로 이루어질 수 있다. 구체적으로, 상기 접 속함 절연부가 탄성 복원력에 의해 상기 도체 접속부에 밀착될 수 있다. The joint sleeve 320 is made of an elastic material that can be contracted at room temperature, and is formed of a thickening sleeve having a through hole therein in the longitudinal direction, and a pair of cables electrically connected to each other by the conductor connecting portion 310, Specifically, each of the insulating layer 214, the outer semiconducting layer 216, and the conductor exposed at the ends of the pair of cables The contact portion 310 is in close contact with the elastic restoring force. In addition, the junction box including a junction box to prevent the leakage of current outside the junction box, at least a portion of the innermost surface of the joint sleeve 320 may be made of the junction box insulation. Specifically, the junction insulation may be in close contact with the conductor connecting portion by the elastic restoring force.
또한, 상기 조인트 슬리브 (320)는 상기 한 쌍의 전력케이블의 도체 접속 부 (310)와 전기적으로 연결되는 제 1 전극 (321) 내지 상기 중간접속함 (300)에서 서 로 대향하도록 한 쌍으로 구비되고 상기 한 쌍의 전력케이블의 외부반도전층 (216) 내지 금속시스 (218)와 전기적으로 연결되는 제 2 전극 (322)을 구비할 수 있고, 상기 제 1 전극 (321 ) 및 상기 제 2 전극 (322)은 상기 접속함 절연부에 의해 둘러싸일 수 있다.  In addition, the joint sleeve 320 is provided in a pair to face each other in the first electrode 321 to the intermediate junction box 300 that is electrically connected to the conductor connection portion 310 of the pair of power cables. And a second electrode 322 electrically connected to the outer semiconducting layer 216 to the metal sheath 218 of the pair of power cables, wherein the first electrode 321 and the second electrode ( 322 may be surrounded by the junction box insulation.
상기 제 1 전극 (321 )과 상기 제 2 전극 (322)은 그 사이에서 전계가 국부적으로 집중되지 않고 골고루 퍼지도록 하는 역할을 하게 된다.  The first electrode 321 and the second electrode 322 serve to spread the electric field evenly without being locally concentrated therebetween.
구체적으로, 상기 제 1 전극 (321 )은 전력케이블 내지 상기 중간접속함의 길이 방향으로 좌측 및 우측 단부가 라운드진 형상을 가지며, 반도전성 물질로 이루어지 고, 상기 도체 접속부 (310)의 외측에 구비되어 상기 도체 접속부 (310) 및 상기 도 체 (210)와 전기적으로 연결되어, 소위 고압전극 (e l ect rode )의 역할을 한다.  In detail, the first electrode 321 has a shape in which the left and right ends are rounded in the longitudinal direction of the power cable to the intermediate junction box, and are made of a semiconductive material and are provided outside the conductor connection part 310. And electrically connected to the conductor connecting portion 310 and the conductor 210 to serve as a so-called high voltage electrode (el ect rode).
상기 제 2 전극 (322)은 반도전성 물질, 바람직하게는 상기 제 1 전극 (321 )과 동일한 재질로 이루어지며, 상기 제 1 전극 (321)으로부터 상기 전력케이블 내지 상 기 증간접속함의 길이방향으로 좌측 및 우측으로 일정거리 이격되어 서로 대향하도 록 한 쌍이 구비되고, 전력케이블의 외부반도전층 (216)과 접촉하여 전기적으로 연 결됨으로써 소위 차폐전극 (Def l ector )의 역할을 하게 된다. 또한, 상기 한 쌍의 제 2 전극 (322 )은 상기 조인트 슬리브 (320)의 최내면 또는 상기 케이블 절연층 (214)으 로부터의 수직거리가 상기 제 1 전극 (321 )을 향하는 방향으로 갈수록 증가하며, 상 기 수직거리의 증가율도 제 1 전극 (321 )을 향하는 방향으로 점점 커지는 형상으로 구비되어, 상기 제 1 전극 (321)을 향하는 면이 곡면으로 구성된다. The second electrode 322 is made of a semiconductive material, preferably the same material as the first electrode 321, the left side of the power cable to the expansion junction from the first electrode 321 in the longitudinal direction And a pair provided to face each other at a predetermined distance to the right, and are electrically connected in contact with the outer semiconducting layer 216 of the power cable to serve as a so-called shield electrode. Also, the pair of first The second electrode 322 increases as the vertical distance from the innermost surface of the joint sleeve 320 or the cable insulation layer 214 toward the first electrode 321 increases, and the increase rate of the vertical distance increases. FIG. 1 is provided in an enlarged shape toward the first electrode 321, and a surface facing the first electrode 321 is formed as a curved surface.
따라서. 상기 제 1 전극 (321 )과 상기 제 2 전극 (322)은 단부가 라운드진 형상 내지 곡면으로 형성되어, 각 전극의 형상에 따라 상기 제 1 전극 (321)과 제 2 전 극 (322) 사이에서 등전위선이 분포되어, 전계분포를 조절할 수 있다.  therefore. The first electrode 321 and the second electrode 322 are formed in a rounded shape or rounded end, and between the first electrode 321 and the second electrode 322 according to the shape of each electrode. Equipotential lines are distributed to control the electric field distribution.
상기 접속함 절연부는 상기 제 1 전극 (321) 및 제 2 전극 (322)을 둘러싸도록 구비되어 상기 초고압 케이블 시스템에 흐르는 전류가 외부로 누설되는 것을 방지 하여 절연성능을 담보하게 된다.  The junction box insulation part is provided to surround the first electrode 321 and the second electrode 322 to prevent the leakage of current flowing in the ultra-high voltage cable system to the outside to ensure insulation performance.
한편 , 교류 전력케이블 시스템의 경우, 케이블 절연층 및 접속함 절연부에서 의 전계는 상기 케이블 절연층과 상기 접속함 ¾연부의 유전율에 의존하며, 상기 유전율은 온도에 따라 큰 변화가 없으므로 전계분포의 예측 및 접속함 설계가 용이 하다. 반면, 직류 전력케이블 시스템의 경우, 케이블 절연층과 접속함 절연부에서 의 전계분포가 상기 케이블 절연층과 상기 접속함 절연부의 체적저항률에 의존하는 저항성 전계분포 특성올 가지게 되어 체적저항률이 높은 부분에 고전계가 작용하 며, 이러한 체적저항률은 온도 의존성을 갖기 때문에 전계분포를 고려한 접속함 설 계가 극히 곤란하다.  On the other hand, in the case of an AC power cable system, the electric field in the cable insulation layer and the junction box insulation is dependent on the dielectric constant of the cable insulation layer and the junction box ¾ edge, and the dielectric constant does not change greatly with temperature, so Predictive and junction box design is easy. On the other hand, in the DC power cable system, the electric field distribution in the cable insulation layer and the junction box insulator has a resistive electric field distribution characteristic depending on the volume resistivity of the cable insulation layer and the junction box insulator. Because of the high electric field, and the volume resistivity is temperature dependent, it is extremely difficult to design the junction box considering the electric field distribution.
특히, 도 1의 종래 전력케이블용 중간접속함에서와 같이 제 1 전극 (321 ' ) 내 지 제 2 전극 (322' )이 접속함 절연부 (323 ' ) 및 /또는 케이블 절연층 (214)과 서로 접하는 부분은 체적저항률이 상이한 이종의 재질이 서로 접하게 되므로, 상기 전력 케이블에 직류 전류가 흘러 온도 변화가 발생하면 체적저항률도 변화할 뿐만 아니 라 그 변화율이 재질에 따라 상이하여, 전계분포를 예측하기 곤란하며 전계가 국부 적으로 집중되는 문제가 발생할 수 있다. 또한 전력케이블 시스템 제조시 상기 저 U 전극 (321' ) 내지 제 2 전극 (322 ' )이 접속함 절연부 (323 ᅳ) 및 /또는 케이블 절연 층 (214)과 서로 접하는 부분에는 공극이 발생하거나 이물질이 침입할 가능성이 있 으며, 상기 공극 내지 이물질이 발생한 부분에 고전계가 인가되는 경우 절연 파괴 발생의 우려가 있다. In particular, the first electrode 321 ′ to the second electrode 322 ′ are connected to the junction insulator 323 ′ and / or the cable insulation layer 214, as in the conventional junction box for the power cable of FIG. 1. In the parts in contact with each other, different materials having different volume resistivity are in contact with each other. If the DC current flows through the cable and the temperature change occurs, not only the volume resistivity changes but also the change rate varies depending on the material, which makes it difficult to predict the electric field distribution and may cause a problem that the electric field is locally concentrated. Also, when the power cable system is manufactured, the low U electrode 321 to the second electrode 322 ′ are connected to a portion where air gaps or foreign substances are formed in contact with the insulation portion 323 ᅳ and / or the cable insulation layer 214. There is a possibility of this intrusion, and there is a fear of occurrence of dielectric breakdown when a high field is applied to a portion where the voids or foreign matter occurred.
이러한 문제점을 해결하기 위해 본 발명의 접속함 절연부는 제 1 절연층 (323) 과 상기 제 1 절연층 (323)에 의해 둘러싸이며 상기 조인트 슬리브 (320)의 최내면의 적어도 일부를 형성하는 제 2 절연층 (325)을 구비한다.  In order to solve this problem, the junction box insulating part of the present invention is surrounded by the first insulating layer 323 and the first insulating layer 323 and forms a second at least part of the innermost surface of the joint sleeve 320. An insulating layer 325 is provided.
상기 제 1 절연층 (323)은 상기 중간접속함의 절연성능을 담보하기 위하여 절 연성능이 우수한 액상 실리콘 고무 (LSR) , 불소고무 (FR) , 스티렌-부타디엔 고 무 (SBR) . 니트릴-부타디엔 고무 (NBR) , 클로로프렌 고무 (CR) , 에틸렌프로필렌디엔모 노머 (EPDM) 고무 또는 이들의 배합물을 포함하는 제 1 절연 조성물 이루어질 수 있 고, 바람직하게는 상기 조성물은 인열강도 및 영구 변화율과 같은 장기신뢰성이 우 수하며, 빠른 생산공정으로 생산성이 향상되는 장점을 가지는 액상 실리콘 고무를 포함할 수 있다. 또한, 상기 실리본 고무는 다양한 디자인 제품의 성형이 가능하여 성형성이 향상되며. 2차 가류가 불필요하며 , 이중사출에 의한 성형이 가능한 다양 한 장점을 가진다. .  The first insulating layer 323 is a liquid silicone rubber (LSR), fluorine rubber (FR), styrene-butadiene rubber (SBR) excellent in insulation performance to ensure the insulating performance of the intermediate junction box. A first insulating composition comprising nitrile-butadiene rubber (NBR), chloroprene rubber (CR), ethylene propylene diene monomer (EPDM) rubber or combinations thereof, preferably the composition has a tear strength and permanent Long-term reliability, such as change rate is excellent, and may include a liquid silicone rubber having the advantage of improving productivity in a rapid production process. In addition, the silicone rubber can be molded in a variety of design products is improved moldability. Secondary vulcanization is unnecessary and has various advantages that can be molded by double injection. .
상기 제 2 절연층 (325)은 튜브, 코팅, 필름 등의 다양한 형태로 상기 제 1 절 연층 (323)과 케이블 절연층 (214) 사이에 형성되며, 특히 상기 조인트 슬리브 (320) 의 최내면, 상기 제 1 전극 (321 )과 상기 접속함 절연부 사이의 계면 및 상기 제 2 전 극 (322)과 상기 접속함 절연부 사이의 계면으로 이루어진 그룹으 ¾부터 선택되는 하나 이상의 면을 적어도 부분적으로 감싸고, 바람직하게는, 상기 제 1 전극 (321) 또는 상기 제 2 전극 (322) , 상기 접속함 절연부 및 /또는 상기 케이블 절연층 (214)이 만나는 부분을 감싸도록 형성됨으로써 온도에 따른 체적저항률의 변화에 따라 전계 가 집중될 우려가 있거나, 공극발생 내지 이물질 침입 등의 우려가 있어 절연성능 이 불안정한 부분의 전계를 완화시켜 중간접속함 절연파괴를 억제하는 기능을 수행 한다. The second insulation layer 325 is formed between the first insulation layer 323 and the cable insulation layer 214 in various forms, such as a tube, coating, film, and the like, in particular the joint sleeve 320 At least one surface selected from the group consisting of an interface between the first electrode 321 and the junction box insulation and an interface between the second electrode 322 and the junction box insulation. At least partially wrapped, preferably formed to surround a portion where the first electrode 321 or the second electrode 322, the junction box insulation, and / or the cable insulation layer 214 meet. As the volume resistivity changes, the electric field may be concentrated or there may be gaps or foreign matter intrusion. Therefore, the electric field of the part where the insulation performance is unstable is alleviated.
상기 제 2 절연층 (325)은 상기 케이블 절연층 (214) 보다 낮은 체적저항률을 가지는 제 2 절연 조성물로 형성되어, 절연파괴의 우려가 있는 부분에 인가되는 전 계를 절연성능이 상대적으로 안정적인 부분으로 분산시킬 수 있다.  The second insulating layer 325 is formed of a second insulating composition having a lower volume resistivity than the cable insulating layer 214, and the portion of which the insulation performance is relatively stable is applied to an electric field applied to a portion that may cause breakdown. Can be dispersed.
상기 제 2 절연 조성물은 베이스 수지 및 저항률 조절용 첨가제를 포함할 수 있다. 상기 베이스 수지는 1015 Q cm 이하의 체적저항를, 10 kV/mni 이상의 절연강도 를 보유할 수 있고, 바람직하게는 10 N/隱 이상의 파단강도, 200% 이상의 신율을 보유할 수 있다. 상기 베이스 수지는 예를 들어 액상 실리콘 고무 (LSR) , 불소고 무 (FR) , 스티렌—부타디엔 고무 (SBR) , 니트릴-부타디엔 고무 (NBR) , 클로로프렌 고 무 (CR) , 에틸렌프로필렌디엔모노머 (EPDM) 고무 또는 이들의 배합물을 포함하여 이 루어질 수 있고, 인열강도 및 영구 변화율과 같은 장기신뢰성이 우수하며, 빠른 생 산공정으로 생산성이 향상되는 장점을 가지는 액상 실리콘 고무를 포함하는 것이 바람직하고, 더욱 바람직하게는 상기 제 1 절연층 (323)과의 긴밀한 밀착을 위해 이 와 동일한 계열의 수지로 이루어질 수 있다. The second insulating composition may include a base resin and an additive for adjusting resistivity. The base resin may have a volume resistivity of 10 15 Q cm or less, an insulation strength of 10 kV / mni or more, preferably a break strength of 10 N / 隱 or more, and an elongation of 200% or more. The base resin is, for example, liquid silicone rubber (LSR), fluorine rubber (FR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), chloroprene rubber (CR), ethylene propylene diene monomer (EPDM) It is preferable to include a liquid silicone rubber that can be made, including rubber or a combination thereof, excellent long-term reliability, such as tear strength and permanent change rate, and has the advantage of improving productivity in a rapid production process More preferably for close contact with the first insulating layer 323. It may be made of the same series of resins as.
상기 저항률 조절용 첨가제로는 유기 전도성 필러를 단독으로 포함하거나ᅳ 유기 전도성 필러와 무기 전도성 필러의 배합물을 포함할 수 있다. 상기 유기 전도 성 필러는 상기 베이스 수지와의 상용성 및 상기 제 2 절연층 (325)의 전기적 특성 및 기계적 특성을 고려하여 에틸렌글리콜, 프로필렌글리콜 등의 글리콜 계열의 필 러, 바람직하게는 폴리글리콜에테르 (po lyg lyco l ether ; PGE)를 포함할 수 있고, 상 기 유기 전도성 필러는 상기 베이스 수지와 화학 가교결합을 형성함으로써 상기 제 2 절연층 (325)의 전기적 특성과 기계적 특성을 추가로 향상시킬 수 있다. 또한 무 기 전도성 필러에 비해 베이스 수지에 분산을 용이하게 할 수 있어 체적저항률 조 절을 용이하게 할 수 있는 장점이 있다.  The resistivity adjusting additive may include an organic conductive filler alone or a combination of an organic conductive filler and an inorganic conductive filler. The organic conductive filler is a glycol-based filler such as ethylene glycol, propylene glycol, preferably polyglycol ether in consideration of compatibility with the base resin and electrical and mechanical properties of the second insulating layer 325. (po lyg lyco l ether; PGE), and the organic conductive filler may further improve the electrical and mechanical properties of the second insulating layer 325 by forming a chemical crosslink with the base resin. Can be. In addition, there is an advantage that can be easily dispersed in the base resin compared to the inorganic conductive filler to facilitate the volume resistivity adjustment.
상기 제 2 절연 조성물 및 이로부터 구성된 상기 제 2 절연층 (325)은 상기 제 2 절연층 (325)과 접하는 케이블의 절연층 (214) 및 제 1 절연층 (323 ) 각각의 체적저항 률에 따라 정밀하게 제어된 체적저항률을 보유함으로써 상기 중간접속함 (300) 내부 에서 전계가 집중될 수 있는 영역의 전계를 효과적으로 분산시킬 수 있다.  The second insulating composition and the second insulating layer 325 formed therefrom are in accordance with the volume resistivity of each of the insulating layer 214 and the first insulating layer 323 of the cable in contact with the second insulating layer 325. By maintaining a precisely controlled volume resistivity, it is possible to effectively distribute the electric field in the region where the electric field can be concentrated inside the intermediate junction box (300).
구체적으로, 상기 제 2 절연 조성물은 70°C에서 아래 수학식 1로 정의되는 최 대 체적저항률 ( ^) 이하의 체적저항률을 보유할 수 있다. 이로써, 상기 제 2 절연 조성물로부터 형성되는 제 2 절연층 (325)은 접속되는 케이블이 직류 전력케이블인 경우 케이블 통전 상태에 의한 온도변화, 이에 따른 케이블 절연층, 제 1 절연층, 제 2 절연층 등 내의 전계분포 변화에 따른 최적의 체적저항률을 보유하여 구조적으 로 전계가 집중될 수 있는 영역에 대한 전계완화 효과를 극대화할 수 있다.  Specifically, the second insulating composition may have a volume resistivity of less than or equal to the maximum volume resistivity (^) defined by Equation 1 below at 70 ° C. Thus, when the cable to be connected is a DC power cable, the second insulating layer 325 formed from the second insulating composition has a temperature change due to a cable conduction state, and thus the cable insulating layer, the first insulating layer, and the second insulating layer. By having the optimum volume resistivity according to the change of electric field distribution in the back, it is possible to maximize the field relaxation effect in the area where the electric field can be structurally concentrated.
[수학식 1]
Figure imgf000023_0001
상기 수학식 1에서,
[Equation 1]
Figure imgf000023_0001
In Equation 1,
fmin(aX,bY)는 aX와 bY 중 최소값을 의미하고, f min (aX, bY) means the minimum of aX and bY,
X는 케이블 절연층의 7( C에서의 체적저항률이고, X is the volume resistivity at 7 (C of the cable insulation layer,
Y는 제 1 절연층의 70°C에서의 체적저항률이고, Y is the volume resistivity at 70 ° C. of the first insulating layer,
b는 2a 이상이고.  b is at least 2a.
b는 0.05 내지 0.15이고,  b is 0.05 to 0.15,
a는 0.025 내지 0.075이다.  a is 0.025 to 0.075.
상기 제 2 절연 조성물이 70°C에서 상기 수학식 1로 정의되는 최대 체적저항 률 ( „)을 초과한 체적저항률을 보유하는 경우 상기 제 2 절연 조성물로부터 형성된 제 2 절연층 (325)에 의한 전계 분산 효과가 층분하지 않아 전계집중에 의해 접속함 절연파괴가 유발될 수 있다. The electric field by the second insulating layer 325 formed from the second insulating composition when the second insulating composition has a volume resistivity exceeding the maximum volume resistivity („) defined by Equation 1 at 70 ° C. Dispersion effect is not good enough, and the electric field concentration can cause junction breakdown.
상기 제 2 절연 조성물은 70°C에서 상기 수학식 1로 정의되는 최대 체적저항 률 을 보유하기 위해, 예를 들어, 상기 제 2 절연 조성물의 총 증량을 기준으 로, 상기 저항률 조절용 첨가제의 함량이 0.1 내지 5 증량 %. 바람직하게는 0.5 내 지 3 증량%일 수 있다. The second insulating composition has a maximum volume resistivity defined by Equation 1 at 70 ° C. For example, based on the total increase of the second insulating composition, the content of the resistivity adjusting additive is 0.1 to 5% by weight. Preferably it may be 0.5 to 3% by weight.
또한, 상기 제 1 껄연층 (323), 상기 제 2 절연층 (325) 내지 상기 케이블 절연 층 (214)은 체적저항률이 1X1012 내지 1X1018 Ωαιι이며, 상기 제 2 절연층 (325)의 체 적저항률은 상기 제 1 절연층 (323)의 체적저항률과 상기 케이블 절연충 (214)의 체적 저항률 각각에 비해 10배 이상 낮을 수 있고, 상기 게 1 절연층 (323)의 체적저항률 은 상기 케이블 절연층 (214)의 체적저항률에 비해 10배 이상 높지 않을 수 있다. 특히, 상기 케이블 절연층 (214)의 체적저항률은 1014 내지 1018 Ω αιι이고, 상기 제 1 절연층 (323)의 체적저항률은 1014 내지 1018 Ω ιι일 수 있다. 상기 케이블 절연 층 (214)과 상기 제 2 절연층 (325)의 체적저항률 비는 아래 수학식 2를 만족하는 것 이 바람직하며 , 상기 제 2 절연층 (325)의 체적고유저항 하한치는 1012 Ω αΐΓ일 수 있 다. In addition, the first insulation layer 323, the second insulation layer 325, and the cable insulation layer 214 have a volume resistivity of 1 × 10 12 to 1X10 18 Ωαιι, and the volume of the second insulation layer 325. Resistivity is the volume resistivity of the first insulating layer 323 and the volume of the cable insulation 214 The resistivity may be 10 times lower than each, and the volume resistivity of the first insulating layer 323 may not be higher than 10 times higher than the volume resistivity of the cable insulation layer 214. In particular, the volume resistivity of the cable insulation layer 214 may be 10 14 to 10 18 Ω αιι, and the volume resistivity of the first insulation layer 323 may be 10 14 to 10 18 Ω ιι. The volume resistivity ratio of the cable insulation layer 214 and the second insulation layer 325 preferably satisfies Equation 2 below, and the lower limit of the volume specific resistance of the second insulation layer 325 is 10 12 Ω. may be αΐΓ.
[수학식 2 ]  Equation 2
(케이블 절연층의 체적저항률 /제 2 절연층의 체적저항률)≥20  (Volume resistivity of cable insulation layer / Volume resistivity of second insulation layer) ≥20
상기 제 2 절연층 (325)의 체적저항률이 상기 제 1 절연층 (323)의 체적저항률과 상기 케이블 절연층 (214)의 체적저항률 각각에 비해 10배 이상 낮지 않은 경우, 제 2 절연층의 전계 분산 효과가 현저히 저하될 수 있고, 상기 제 1 절연층 (323)의 체 적저항률이 상기 케이블 절연층 (214)의 체적저항률에 비해 10배 이상 높은 경우, 제 1 껄연층에 과도하게 많은 전계가 분담될 수 있으며, 상기 케이블 껄연층 (214)과 상기 제 1 절연층 (323)의 체적저항률이 상기 범위를 벗어나는 경우, 초고압 직류 전 력 송전시 요구되는 절연 특성을 만족시키지 못할 수 있다.  When the volume resistivity of the second insulation layer 325 is not more than 10 times lower than the volume resistivity of the first insulation layer 323 and the volume resistivity of the cable insulation layer 214, respectively, the electric field of the second insulation layer When the dispersing effect may be significantly lowered and the volume resistivity of the first insulation layer 323 is 10 times higher than the volume resistivity of the cable insulation layer 214, an excessively large electric field is formed in the first insulation layer. If the volume resistivity of the cable insulation layer 214 and the first insulating layer 323 is out of the above range, it may not satisfy the insulation characteristics required for the transmission of ultra-high voltage DC power.
또한, 상기 케이블 절연층 (214)과 상기 제 2 절연층 (325)의 체적저항률 비 (케 이블 절연층의 체적저항률 /제 2 절연층의 체적저항률)가 20 미만인 경우, 도 4( a)에 서와 같이 상기 제 2 전극 (322) , 제 2 절연층 (325) 및 케이블 절연층 (214)이 서로 접 하는 삼중점 (Tr i p l e Po i nt )에서의 전계가 급격히 상승하며, 상기 제 2 절연층 (325) 의 체적고유저항이 하한치 미만인 경우, 도 4(b)에서와 같이 줄 (Jou l e) 손실에 의 해 제 2 절연층 (325)에 과도하게 많은 열이 발생한다. In addition, when the volume resistivity ratio (volume resistivity of the cable insulation layer / volume resistivity of the second insulation layer) of the cable insulation layer 214 and the second insulation layer 325 is less than 20, as shown in FIG. As described above, the electric field at the triple point (Tr iple Po i nt) where the second electrode 322, the second insulating layer 325, and the cable insulating layer 214 contact each other rises rapidly, and the second insulating layer (325) When the volume intrinsic resistance is less than the lower limit, excessive heat is generated in the second insulating layer 325 due to Joule loss as shown in FIG. 4 (b).
상술한 바와 같이 제 1 절연층 (323)과 제 2 절연층 (325)을 포함하는 접속함 절 연부를 구비한 본 발명의 일실시예에 따른 초고압 직류 전력케이블용 중간접속함 및 이를 포함하는 초고압 직류 전력케이블 시스템은 상기 제 1 절연층 (323)과 제 2 절연층 (325) 사이의 계면이 상기 제 1 전극 (321) 및 상기 제 2 전극 (322)과 서로 접 하지 않는 것이 바람직하다.  As described above, an intermediate junction box for an ultra-high voltage DC power cable according to an embodiment of the present invention having a junction box insulator including a first insulation layer 323 and a second insulation layer 325, and an ultra-high voltage including the same. In the DC power cable system, the interface between the first insulating layer 323 and the second insulating layer 325 is preferably not in contact with the first electrode 321 and the second electrode 322.
구체적으로, 상기 제 1 전극 (321 ) 및 제 2 전극 (322)은 상기 제 1 절연층 (323) 과 접하지 않고 상기 제 2 절연층 (325 )에 의해 들러싸이며, 상기 조인트 슬리 브 (320)는 상기 제 1 전극 (321) , 상기 제 2 절연층 (325 ) 및 상기 케이블 절연층 (214) 이 서로 접하는 제 1 삼중점 (P1) , 상기 제 2 전극 (322) , 상기 제 2 절연층 (325) 및 상 기 케이블 절연층 (214)이 서로 접하는 제 2 삼중점 (P2) , 상기 접속함 차폐층 (324), 상기 제 1 절연층 (323) 및 상기 제 2 절연층 (325)이 서로 접하는 제 3 삼증점 (P3)을 구비할 수 있다.  Specifically, the first electrode 321 and the second electrode 322 are surrounded by the second insulating layer 325 without contacting the first insulating layer 323, the joint sleeve 320 ) Is a first triple point (P1), the second electrode 322, the second insulating layer (1) where the first electrode 321, the second insulating layer 325 and the cable insulating layer 214 abut each other. The second triple point P2 in which the 325 and the cable insulation layer 214 contact each other, the junction box shielding layer 324, the first insulation layer 323, and the second insulation layer 325 contact each other. It may be provided with a third tritium (P3).
이 경우. 직류 송전시의 저항성 전계분포 특성에 따라 상기 제 1 삼중점 및 상기 제 2 삼중점에 작용하는 전계는 상기 저 )2 절연층 (325)과 제 1 절연층 (323)의 체 적저항률 차이에 의해 제 1 절연층 (323)으로 쉬프트 ( shi f t )되며, 상기 전력케이블 시스템이 직류 전기장 하에 놓이는 경우에 상기 제 2 절연층 (325 1 발생하는 등전 위선의 간격이 상기 제 2 절연층 (325)에 골고루 분산되어 있는 상기 무기 전도성 필 러에 의해 넓어지고 비교적 일정하게 되므로 상기 제 2 껄연층 (325) 내에서의 국부 적인 전계 집중, 특히, 제 1 삼중점 (P1 ) 및 제 2 삼중점 (P2)에 전계가 집증되는 것을 억제할 수 있다. in this case. The electric field acting on the first triple point and the second triple point according to the resistive electric field distribution characteristic during direct current transmission is determined by the difference in volume resistivity between the low 2 insulating layer 325 and the first insulating layer 323. Shifted to the insulating layer 323, the spacing of the equipotential lines generated in the second insulating layer 325 1 evenly distributed in the second insulating layer 325 when the power cable system is placed under a direct current electric field. As the inorganic conductive filler becomes wider and becomes relatively constant, the electric field is concentrated in the local field concentration in the second insulation layer 325, in particular, the first triple point P1 and the second triple point P2. To be It can be suppressed.
다만, 상기 제 2 절연층 (325)과 제 1 절연층 (323)의 체적저항률 차이에 의해 상기 제 2 껄연층 (325)의 전계가 상기 저 1 1 절연층 (323)으로 쉬프트 ( sh i f t )되므로, 상기 제 1 절연층 (323)을 포함하여 체적저항률이 서로 상이한 3종류의 재질로 이루 어진 요소들이 서로 접하는 상기 제 3 삼증점 (P3)에 전계가 집중되어 절연 취약부로 작용할 우려가 있다.  However, due to the difference in volume resistivity between the second insulating layer 325 and the first insulating layer 323, the electric field of the second insulation layer 325 is shifted to the low 1 1 insulating layer 323 (sh ift). Therefore, the electric field is concentrated on the third tri-dot (P3) in which the elements consisting of three kinds of materials having different volume resistivity, including the first insulating layer 323 is in contact with each other to act as a weak insulation.
상술한 문제점을 해결하기 위하여, 상기 제 3 삼중점 (P3)은 상기 제 1 전 극 (321)을 향하는 상기 제 2 전극 (322)의 곡면으로부터 상기 제 1 전극 (321 )과 반대 방향으로 일정거리 이격시켜 형성되고, 상기 제 1 전극 (321 )으로부터 상기 제 2 전 극 (321 ) 보다 멀리 형성되는 것이 바람직하다. 상기 제 2 절연층 (325)에서 상기 제 1 절연층 (323)으로 전계가 쉬프트 되는 경우, 쉬프트된 전계는 상기 게 1 전극 (321)과 제 2 전극 (322)의 형상, 상기 제 1 , 2 전극 (321 , 322 )과 제 2 ¾연층 (325) 간의 체적 저항률 등의 영향으로 상기 제 1 절연층 중 상기 한 쌍의 제 2 전극 ( 322) 사이의 제 2 절연층 (325) 영역에 대응하는 부분에 상대적으로 고전계가 인가된다.  In order to solve the above-described problem, the third triple point P3 is spaced apart from the curved surface of the second electrode 322 facing the first electrode 321 by a predetermined distance in a direction opposite to the first electrode 321. It is preferably formed so as to be farther from the first electrode 321 than the second electrode 321. When the electric field is shifted from the second insulating layer 325 to the first insulating layer 323, the shifted electric field is shaped like the first electrode 321 and the second electrode 322, and the first and second electrodes 322. Corresponding to the region of the second insulating layer 325 between the pair of second electrodes 322 of the first insulating layer due to the volume resistivity between the electrodes 321, 322 and the second ¾ lead layer 325, etc. A high field is applied relative to the part.
따라서, 상기 제 3 삼중점을 상기 제 1 전극 (321)으로부터 상기 제 2 전극 (322) 보다 멀리 형성할 수 있고. 바람직하게는 상기 제 3 삼중점 (P3)과 상기 제 1 전 극 (321 ) 간의 거리 ( t l)가 상기 제 1전극과 상기 제 2전극 간의 간격 ( t2 ) 보다 크도록 형성하여 상기 제 3 삼증점에 고전계가 인가되지 않도톡 함으로써 껄연성능을 향상 시킬 수 있다.  Thus, the third triple point can be formed farther from the first electrode 321 than the second electrode 322. Preferably, the distance tl between the third triple point P3 and the first electrode 321 is formed to be greater than the distance t2 between the first electrode and the second electrode, so that By eliminating the high electric field, natural performance can be improved.
한편, 상기 제 1 삼증점 및 상기 제 1 전극 ( 321)을 둘러싸고 있는 제 2 절연 층 (325)과 상기 제 1 절연층 (323) 사이의 계면 상에서 상기 제 1 절연충 (323)은 다음 과 같은 수학식 3를 만족하는 두께를 가질 수 있다. On the other hand, on the interface between the second insulating layer 325 and the first insulating layer 323 surrounding the first tri-dot and the first electrode 321, the first insulating worm 323 is next It may have a thickness that satisfies the equation (3).
[수학식 3]  [Equation 3]
여기서, U0는 상기 조인트 슬리브 (320)를 갖는 중간접속함의 정격전압이고, Here, U 0 is the rated voltage of the intermediate junction box having the joint sleeve 320,
1.851)。는 뇌 (雷) 임필스 시험 전압 (BIL ; Bas i c impul s insul at ion level )이고. 0^는 상기 제 1 삼중점 및 상기 제 1 전극 (321)을 둘러싸고 있는 제 2 절연층 (325)과 상기 제 1 절연층 (323) 사이의 계면 상에 형성된 상기 제 1 절연층 (323)의 두께이며, BDVf 는 제 1 절연층 (323)의 절연 파괴 전압 (breakdown vol tage)이다. 즉, 중간접속함의 뇌임펼스 시험 전압을 상기 제 1 절연층 (323)의 두께로 나 눈 값이 상기 제 1 절연층 (323)의 절연 파괴 전압값 보다 작게 되도록 상기 제 1 절 연층 (323)이 형성될 수 있다. 다시 말하면, 상기 거 11 절연층 (323)의 두께는 중간접 속함의 뇌임필스 시험 전압 ( 1.85U0)을 상기 제 1 절연층 (323)의 절연 파괴 전압 값 (BDW으로 나눈 값보다 더 크게 형성할 수 있다. 상기 제 1 절연층 (323)은 상기 제 2 절연층 (325)에 비해 체적저항률이 높아 특 히 상기 제 1 전극 (321) 상에서 상기 제 2 절연층 (325)보다 더 높은 전계를 분담하게 된다. 이와 같이 전계 분담이 높은 상기 제 1 절연층 (323)의 두께가 상술한 바와 같 이 중간접속함의 뇌 임필스 시험 전압 ( 1.851U을 상기 제 1 절연층 (323)의 절연 파괴 전압값 (BDVPMJ)으로 나눈 값보다 작은 경우에는 상기 제 1 절연층 (323)에서의 전기력 선 밀도가 높아지게 되어 상기 제 1 절연층 (323)에서 절연파괴가 발생할 수 있다. 따라서, 본 발명의 일 실시예에서는 상기 제 1 절연층 (323)의 두께가 증간접 속함의 뇌 임필스 시험 전압 ( 1.85U0)을 상기 제 1 절연층 (323 )의 껄연 파괴 전압 값 (BDVPMJ )으로 나눈 값보다 크게 되도록 하여 상기 제 1 절연층 (323)에서 절연파괴 가 발생하는 것을 방지할 수 있다. 일 예로서 상기 제 1 절연층 (323)은 상기 제 1 전 극 (321 ) 상에서 그 두께가 상기 제 2 절연층 (325 )의 두께의 3배 이상이 되도록 형성 될 수 있다. 1.851)。 is the brain impulse test voltage (BIL; Bas ic impul s insul at ion level). 0 ^ is the thickness of the first insulating layer 323 formed on the interface between the second insulating layer 325 and the first insulating layer 323 surrounding the first triple point and the first electrode 321. And BDV f is the breakdown voltage of the first insulating layer 323. That is, the first insulation layer 323 is formed so that the value obtained by dividing the crimp spread test voltage of the intermediate junction by the thickness of the first insulation layer 323 is smaller than the insulation breakdown voltage value of the first insulation layer 323. Can be formed. In other words, the thickness of the insulation 11 layer 323 is greater than the brain impulse test voltage (1 .85 U 0 ) of the intermediate junction divided by the dielectric breakdown voltage value (BDW) of the first insulation layer 323. The first insulating layer 323 has a higher volume resistivity than the second insulating layer 325, and in particular, has a higher electric field on the first electrode 321 than the second insulating layer 325. As described above, the thickness of the first insulating layer 323 having a high electric field sharing is as described above, and the brain breakdown test voltage (1.851U) of the intermediate junction box is equal to the dielectric breakdown voltage of the first insulating layer 323. If smaller than the value divided by the value (BDV PMJ ), the electric force in the first insulating layer 323 As the line density increases, insulation breakdown may occur in the first insulating layer 323. Therefore, in one embodiment of the present invention, the thickness of the first insulating layer 323 is equal to or greater than that of the brain impilation test voltage (1 .85 U 0 ) of the first insulation layer 323. It is possible to prevent the occurrence of dielectric breakdown in the first insulating layer 323 by being larger than the value divided by PMJ ). As an example, the first insulating layer 323 may be formed on the first electrode 321 so that its thickness is three times or more than the thickness of the second insulating layer 325.
본 발명에 따른 케이블용 중간접속함 증 조인트 슬리브 (320)는 예를 들어 성 형 몰드에 금형을 삽입하고 상기 금형에 반도전성 물질을 주입하여 상기 제 1 전 극 (321) 및 제 2 전극 (322 )을 성형하고, 이어서 상기 성형 몰드에 전기 전도도 조절 용 조성물과 절연 조성물을 주입한 후 경화시켜 게 2 절연층 및 제 1 절연층을 형성 할 수 있다. 또한, 상기 제 2 껄연층은 제 1 전극 (321 ) 내지 제 2 전극 (322 )이 상기 접속함 절연부 및 /또는 케이블 절연층과 서로 접하여 형성되는 계면 내지 지점의 적어도 일부를 둘러싸도톡 상기 제 2 절연 조성물을 도포하여 경화시켜 제조될 수도 있다.  The intermediate junction box joint joint 320 for a cable according to the present invention may include, for example, inserting a mold into a molding mold and injecting a semiconductive material into the mold, thereby forming the first electrode 321 and the second electrode 322. ), And then injecting the composition and the insulating composition for controlling the electrical conductivity into the molding mold and then cured to form a crab 2 insulating layer and a first insulating layer. In addition, the second insulation layer surrounds at least a portion of an interface to a point where the first electrode 321 to the second electrode 322 are formed in contact with the junction box insulation portion and / or the cable insulation layer. 2 may be prepared by applying and curing the insulating composition.
[실시예]  EXAMPLE
1. 제조예  1. Manufacturing Example
아래 표 1에 나타난 바와 같은 체적저항률을 보유하고. 도 3에 도시된 제 2 절연층 (325)을 보유하는 접속함 절연부를 구비한 실시예의 중간접속함과 제 2 절연 층을 보유하지 않은 것을 제외하고 동일한 구조를 갖는 접속함 절연부를 구비한 비 교예의 중간 ¾속함을 각각 제조했다. It has a volume resistivity as shown in Table 1 below. Ratio with junction box insulator having the same structure except that the intermediate junction box of the embodiment with junction box insulation having the second insulation layer 325 shown in FIG. The middle three of each of the lessons were prepared.
【표 1】
Figure imgf000029_0001
Table 1
Figure imgf000029_0001
2. 등전위선 분포 및 전계값 평가  2. Equipotential line distribution and electric field value evaluation
실시예 및 비교예 각각의 중간접속함에 592 kV의 전압을 인가하고 70°C에서 측정한 게 1 전극과 제 2 전극 사이의 공간에서의 등전위선 분포는 도 5에 도시된 바 와 같고, 영역별 전계값은 아래 표 2에 나타난 바와 같다. Example and Comparative Example The equipotential line distribution in the space between the first electrode and the second electrode measured at 70 ° C. with a voltage of 592 kV applied to each intermediate junction box is as shown in FIG. The electric field values are shown in Table 2 below.
【표 2]
Figure imgf000029_0002
[Table 2]
Figure imgf000029_0002
- 계면 1 : 케이블 절연층 - 제 1 절연층 계면  -Interface 1: Cable insulation layer-1st insulation layer interface
- 삼증점 : 케이블 절연층 - 제 1 절연층 - 제 2 전극  -Triplet: cable insulation layer-1st insulation layer-2nd electrode
- 계면 2 : 제 1 절연층 - 제 1 전극  Interface 2: First insulating layer First electrode
도 5에 나타난 바와 같이, 제 2 절연층을 보유한 본 발명에 따른 실시예의 중 간접속함은 게 1 전극과 제 2 전극 사이에 등전위선 사이의 간격이 좁지 않아 국부적 으로 전계가 집중되지 않은 반면, 제 2 절연층을 보유하지 않는 비교예의 중간접속 함은 등전위선 사이의 간격이 좁아 국부적으로 전계가 집중되는 영역이 존재했고, 표 2에 나타난 바와 같이 , 실시예의 중간접속함은 구조적으로 전계가 집중될 수 있 는 영역의 전계가 층분히 완화된 반면, 비교예의 증간접속함은 구조적으로 전계가 집증될 수 있는 영역에 전계가 집증된 것으로 확인되었다. As shown in FIG. 5, the indirect flux of the embodiment according to the present invention having the second insulating layer has a small distance between the equipotential lines between the first electrode and the second electrode, so that the electric field is not concentrated locally. 2 The intermediate junction box of the comparative example without the insulation layer had a region where the electric field was concentrated due to the narrow gap between the equipotential lines, and as shown in Table 2, the intermediate junction box of the example was structurally concentrated. Whereas the electric field in the possible area is considerably relaxed, the incremental junction of the comparative example is structurally It was confirmed that the electric field was concentrated in the area where it can be collected.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기 술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구 성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다 .  Although the present specification has been described with reference to preferred embodiments of the invention, those skilled in the art may variously modify and modify the invention without departing from the spirit and scope of the invention as set forth in the claims set forth below. Changes may be made. Therefore, if the modified implementation includes basically the components of the claims of the present invention, all should be considered to be included in the technical scope of the present invention.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
도체, 상기 도체를 감싸는 내부반도전층, 상기 내부반도전층을 감싸는 절연 층, 상기 절연층을 감싸는 외부반도전층올 포함하는 초고압 직류 전력케이블 한 쌍 을 서로 접속시키기 위한 초고압 직류 전력케이블용 중간접속함에 있어서.  In the intermediate connection for the ultra-high voltage DC power cable for connecting a pair of ultra-high voltage DC power cable including a conductor, an inner semiconducting layer surrounding the conductor, an insulating layer surrounding the inner semiconducting layer, and an outer semiconducting layer surrounding the insulating layer. .
상기 중간접속함의 길이방향으로 좌측 및 우측 단부가 라운드진 형상의 제 1 전극;  First electrodes having rounded left and right ends in the longitudinal direction of the intermediate junction box;
상기 제 1 전극으로부터 상기 중간접속함의 길이방향으로 좌측 및 우측으로 일정거리 이격되어 서로 대향하도록 형성되는 한 쌍의 제 2 전극; 및  A pair of second electrodes spaced apart from each other by a predetermined distance in the longitudinal direction of the intermediate junction box from the first electrode to face each other; And
상기 제 1 전극 및 상기 제 2 전극을 감싸도록 형성되고, 상은에서 수축가능한 탄성 재질로 이루어지며, 내부에 길이방향으로 관통공이 있는 중공형 슬리브로 형 성되고, 상기 중간접속함 외부로 전류가 누설되지 않도록 하는 접속함 절연부를 포 함하는 조인트 슬리브를 구비하고.  It is formed to surround the first electrode and the second electrode, the image is made of a resilient material that is contractible in, is formed of a hollow sleeve having a through hole in the longitudinal direction therein, the current leakage to the outside of the intermediate junction box And a joint sleeve including junction box insulation to prevent damage.
상기 접속함 절연부는 제 1 절연층 및 제 2 절연층을 구비하며,  The junction box insulating portion includes a first insulating layer and a second insulating layer,
상기 거 12 절연층은 상기 게 1 절연층 보다 체적저항률이 낮고,  The 12 insulating layer has a lower volume resistivity than the 1 insulating layer,
상기 제 2 절연층은 상기 조인트 슬리브 최내면 상기 제 1 전극과 상기 접속 함 절연부의 계면 내지 상기 제 2 전극과 상기 접속함 절연부의 계면 중 적어도 일 부를 감싸는 것을 특징으로 하는 초고압 직류 전력케이블용 중간접속함.  The second insulation layer covers at least a portion of an interface of the innermost surface of the joint sleeve and the interface between the first electrode and the junction box insulation, and an interface between the second electrode and the junction box insulation. box.
【청구항 2】  [Claim 2]
게 1항에 있어서,  According to claim 1,
상기 제 1 절연층의 두께는 다음의 수학식 1을 만족하는 것을 특징으로 하는 초고압 직류 전력케이블용 중간접속함. The thickness of the first insulating layer is characterized by satisfying the following equation Intermediate junction box for high voltage DC power cables.
[수학식 1] ᅳ^ᅳᅳ < DVPM3 Equation 1 DV ^ ᅳ ᅳ <DV PM3
PMJ 상기 수학식 1에서,  PMJ In Equation 1,
Uo는 상기 초고압 직류 전력케이블용 중간접속함의 정격전압이고,  Uo is the rated voltage of the intermediate junction box for the ultra-high voltage DC power cable,
1.85U0는 뇌 (雷) 임필스 시험 전압 (BIL;Basic impuls insulation level)이 고, 1.85U 0 is the basic impuls insulation level (BIL),
DBU는 상기 제 1 전극 상에서의 상기 제 1 절연층의 두께이고, BDVPMJ는 제 1 절연층 (340)의 절연 파괴 전압 (breakdown voltage), DBU is the thickness of the first insulating layer on the first electrode, BDV PMJ is the breakdown voltage of the first insulating layer 340,
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 제 2 절연층은 상기 제 1 전극과 상기 제 2 전극이 상기 제 1 절연층과 접 하지 않도록 상기 제 1 전극과 상기 계 2 전극을 모두 덮도록 형성되는 것을 특징으 로 하는 초고압 직류 전력케이블용 증간접속함.  The second insulating layer is formed to cover both the first electrode and the second electrode so that the first electrode and the second electrode does not contact the first insulating layer, characterized in that for the ultra-high voltage DC power cable Extra connection.
【청구항 4]  [Claim 4]
제 1항 내지 3항 증 어느 한 항에 있어서,  The method according to any one of claims 1 to 3,
상기 제 2 전극은 상기 조인트 슬리브 최내면으로부터의 수직거리가 상기 제 1 전극 방향으로 갈수록 점점 증가하는 것을 특징으로 하는 초고압 직류 전력케이블 용 중간접속함 . The second electrode is an ultra-high voltage DC power cable, characterized in that the vertical distance from the innermost surface of the joint sleeve gradually increases toward the first electrode Intermediate junction box.
【청구항 5】  [Claim 5]
제 4항에 있어서,  The method of claim 4, wherein
상기 조인트 슬리브 외측에 구비되어, 상기 중간접속함 외부로 누설되는 전 계를 차폐하는 접속함 차폐층; 및  A junction box shielding layer provided outside the joint sleeve to shield an electric field leaking outside the intermediate junction box; And
상기 제 1 절연층, 상기 제 2 절연층 및 상기 접속함 차폐층이 서로 접하는 삼 증점을 구비하며.  And the first insulating layer, the second insulating layer, and the junction box shielding layer are in contact with each other.
상기 제 1 전극과 상기 삼중점간의 거리가 상기 제 1 전극과 상기 제 2 전극간 의 거리보다 큰 것을 특징으로 하는 초고압 직류 전력케이블용 증간접속함  An incremental junction box for an ultra high voltage direct current power cable, wherein a distance between the first electrode and the triple point is greater than a distance between the first electrode and the second electrode.
【청구항 6】 [Claim 6]
제 1항에 있어서, 상기 제 1 절연층과 상기 제 2 절연층은 체적저항률이 I X 1014 내지 I X 1018 Ω cm이며, 상기 제 2 절연층의 체적저항률은 상기 게 1 절연층의 체적저항률에 비해 10 배 이상 낮은 것을 특징으로 하는 초고압 직류 전력케이블용 중간접속함. The volume resistivity of the first insulation layer and the second insulation layer is IX 10 14 to IX 10 18 Ω cm, and the volume resistivity of the second insulation layer is equal to the volume resistivity of the first insulation layer. Intermediate junction box for ultra high voltage DC power cables, characterized by more than 10 times lower.
[청구항 7】  [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 제 2 절연층은 베이스 수지 및 저항률 조절용 첨가제를 포함하는 제 2 절 연 조성물로 형성되는 것을 특징으로 하는 초고압 직류 전력케이블용 중간접속함.  The second insulating layer is an intermediate junction box for an ultra-high voltage DC power cable, characterized in that formed of a second insulation composition comprising a base resin and a resistivity control additive.
【청구항 8】 [Claim 8]
제 7항에 있어서, 상기 베이스 수지는 액상 실리콘 고무 (LSR) , 불소고무 (FR) , 스티렌-부타디엔 고무 (SBR) , 니트릴-부타디엔 고무 (NBR) 및 클로로프렌 고무 (CR)로 이투어진 그룹으 로부터 선택된 1종 이상의 고무를 포함하는 것을 특징으로 하는 초고압 직류 전력 케이블용 증간접속함. The method of claim 7, wherein The base resin may include at least one rubber selected from the group consisting of liquid silicone rubber (LSR), fluorine rubber (FR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR) and chloroprene rubber (CR). Extra junction box for ultra-high voltage DC power cable, characterized in that it comprises a.
【청구항 9】  [Claim 9]
제 7항에 있어서,  The method of claim 7, wherein
상기 저항률 조절용 첨가제는 글리콜 계열의 유기 전도성 필러인 것을 특징 으로 하는 초고압 직류 전력케이블용 중간접속함.  The resistivity control additive is an intermediate junction box for ultra-high voltage direct current power cable, characterized in that the glycol-based organic conductive filler.
【청구항 10】  [Claim 10]
제 9항에 있어서,  The method of claim 9,
상기 글리콜 계열의 유기 전도성 필러는 폴리글리콜에테르를 포함하는 것을 특징으로 하는 초고압 직류 전력케이블용 증간접속함.  The glycol-based organic conductive filler is an extra junction for an ultra high voltage DC power cable, characterized in that it comprises a polyglycol ether.
【청구항 11】  [Claim 11]
제 10항에 있어서,  The method of claim 10,
상기 절연 조성물의 총 중량을 기준으로, 상기 유기 전도성 필러의 함량이 0. 1 내지 5 중량 % 인 것을 특징으로 하는 초고압 직류 전력케이블용 중간접속함.  Based on the total weight of the insulating composition, the content of the organic conductive filler is an intermediate junction box for ultra-high voltage DC power cable, characterized in that 0.1 to 5% by weight.
【청구항 12] [Claim 12]
제 9항에 있어서,  The method of claim 9,
상기 저항률 조절용 첨가제는 무기 전도성 필러를 추가로 포함하는 것을 특 징으로 하는 초고압 직류 전력케이블용 중간접속함.  The resistivity control additive is an intermediate junction box for ultra-high voltage DC power cable, characterized in that it further comprises an inorganic conductive filler.
【청구항 13】 한 쌍의 초고압 직류 전력케이블과 상기 한 쌍의 직류 전력케이블을 서로 전 기적으로 연결하는 중간접속함을 포함하는 초고압 직류 전력케이블 시스템으로세 상기 초고압 직류 전력케이블은 도체, 상기 도체를 감싸는 내부반도전층. 상 기 내부반도전층을 감싸는 케이블 껄연층 및 상기 ¾연층을 감싸는 외부반도전층을 포함하는 케이블 코어부를 구비하고 . [Claim 13] An ultra high voltage DC power cable system including an intermediate junction box electrically connecting a pair of ultra high voltage DC power cables and the pair of DC power cables to each other, wherein the ultra high voltage DC power cables include a conductor and an inner semiconducting layer surrounding the conductor. . And a cable core portion including a cable insulation layer surrounding the inner semiconducting layer and an outer semiconducting layer surrounding the ¾ edge layer.
상기 도체를 서로 전기적으로 연결하는 도체 접속부를 포함하몌  A conductor connection for electrically connecting the conductors to each other;
상기 중간접속함은.  The intermediate junction is.
상기 증간접속함의 길이방향으로 좌측 및 우측 단부가 라운드진 형상의 제 1 전극;  First electrodes having rounded left and right ends in the longitudinal direction of the intermediate junction box;
상기 제 1 전극으로부터 상기 중간접속함의 길이방향으로 좌측 및 우측으로 일정거리 이격되어 서로 대향하도톡 형성되는 한 쌍의 제 2 전극; 및  A pair of second electrodes spaced apart from each other by a predetermined distance in the longitudinal direction of the intermediate junction box from the first electrode to face each other; And
상기 제 1 전극 및 상기 제 2 전극을 감싸도록 형성되고. '상온에서 수축가능한 탄성 재질로 이루어지며. 내부에 길이방향으로 관통공이 있는 중공형 슬리브로 형 성되고. 상기 중간접속함 외부로 전류가 누설되지 않도록 하는 접속함 절연부를 포 함하는 조인트 슬리브를 구비하고, And surround the first electrode and the second electrode. '' Made of elastic material that can shrink at room temperature. It is formed as a hollow sleeve with a through hole in the longitudinal direction therein. And a joint sleeve including a junction box insulator to prevent current from leaking out of the intermediate junction box,
상기 접속함 절연부는 제 1 절연층 및 제 2 절연층을 구비하며,  The junction box insulating portion includes a first insulating layer and a second insulating layer,
상기 제 2 절연층은 상기 제 1 절연층 보다 체적저항률이 낮고,  The second insulating layer has a lower volume resistivity than the first insulating layer,
상기 제 2 절연층은 상기 조인트 슬리브 최내면, 상기 제 1 전극과 상기 접속 함 절연부의 계면 내지 상기 제 2 전극과 상기 접속함 절연부의 계면 중 적어도 일 부를 감싸는 것을 특징으로 하는 초고압 직류 전력케이블 시스템 .  And the second insulating layer surrounds at least a portion of an innermost surface of the joint sleeve, an interface between the first electrode and the junction box insulation portion, and an interface between the second electrode and the junction box insulation portion.
[청구항 14】 제 13항에 있어서, [Claim 14] The method of claim 13,
상기 제 1 절연층의 두께는 다음의 수학식 1을 만족하는 것을 특징으로 하는 초고압 직류 전력케이블 시스템 .  Ultra-high voltage DC power cable system, characterized in that the thickness of the first insulating layer satisfies the following equation (1).
[수학식 1]  [Equation 1]
1.85[/0 1.85 [/ 0
^ ~ <BDVP ^ ~ <BDV P
상기 수학식 1에서, In Equation 1,
Uo는 상기 초고압 직류 전력케이블용 중간접속함의 정격전압이고,  Uo is the rated voltage of the intermediate junction box for the ultra-high voltage DC power cable,
1.85U0는 뇌 (雷) 임펼스 시험 전압 (BIL;Basic impuls insulation level)이 고, 1.85U 0 is the basic impuls insulation level (BIL),
DPW는 상기 제 1 전극 상에서의 상기 제 1 절연층의 두께이고. BDVPMJ는 제 1 절연층 (340)의 절연 파괴 전압 (breakdown voltage). DPW is the thickness of the first insulating layer on the first electrode. BDV PMJ is the breakdown voltage of the first insulating layer 340.
【청구항 15] [Claim 15]
제 13항에 있어서.  The method of claim 13.
상기 제 2 절연층은 상기. 제 1 전극과 상기 제 2 전극이 상기 게 1 절연층과 접 하지 않도톡 상기 제 1 전극과 상기 제 2 전극을 모두 덮도록 형성되는 것을 특징으 로 하는 초고압 직류 전력케이블 시스템 . The second insulating layer is the . An ultra-high voltage DC power cable system, characterized in that the first electrode and the second electrode is formed so as to cover both the first electrode and the second electrode so as not to contact the first insulating layer.
【청구항 16】  [Claim 16]
제 13항 내지 15항 증 어느 한 항에 있어서, 상기 제 2 전극은 상기 조인트 슬리브 최내면으로부터의 수직거리가 상기 제 1 전극 방향으로 갈수록 점점 증가하는 것을 특징으로 하는 초고압 직류 전력케이블 시스템 The method according to any one of claims 13 to 15, The second electrode is a very high voltage DC power cable system, characterized in that the vertical distance from the innermost surface of the joint sleeve gradually increases toward the first electrode
【청구항 17]  [Claim 17]
제 16항에 있어서,  The method of claim 16,
상기 조인트 슬리브 외측에 구비되어, 상기 중간접속함 외부로 누설되는 전 계를 차폐하는 접속함 차폐층; 및  A junction box shielding layer provided outside the joint sleeve to shield an electric field leaking outside the intermediate junction box; And
상기 제 1 절연층 상기 제 2 절연층 및 상기 접속함 차폐층이 서로 접하는 삼 중점을 구비하며, 상기 제 1 전극과 상기 삼중점간의 거리가 상기 제 1 전극과 상기 제 2 전극간 의 거리보다 큰 것을 특징으로 하는 초고압 직류 전력케이블 시스템. The first insulating layer, the second insulating layer, and the junction box shielding layer having three midpoints in contact with each other , wherein a distance between the first electrode and the triple point is greater than a distance between the first electrode and the second electrode. Ultra high voltage DC power cable system.
【청구항 18】  [Claim 18]
제 13항에 있어서,  The method of claim 13,
14 i8 상기 제 1 절연층과 상기 게 2 절연층은 체적저항률이 1 X 10 내지 1 X 10 Ω cm이며, 상기 제 2 절연층의 체적저항률은 상기 제 1 절연층의 체적저항률과 상기 케 이블 절연층의 체적저항률 각각에 비해 10배 이상 낮고, 상기 제 1 절연층의 체적저 항률은 상기 케이블 절연층의 체적저항률에 비해 10배 이상 높은 것을 특징으로 하 는 초고압 직류 전력케이블 시스템 .  14 i8 The first insulating layer and the second insulating layer have a volume resistivity of 1 X 10 to 1 X 10 Ω cm, and the volume resistivity of the second insulating layer is the volume resistivity of the first insulating layer and the cable insulation. And a volume resistivity of the first insulation layer is 10 times higher than that of each of the layers, and the volume resistivity of the first insulation layer is 10 times higher than the volume resistivity of the cable insulation layer.
【청구항 19】  [Claim 19]
제 18항에 있어서, 상기 케이블 절연층과 상기 제 2 절연층의 체적저항률 비는 20 이상인 것을 특징으로 하는 초고압 직류 전력케이블 시스템 . The method of claim 18, The ultra-high voltage DC power cable system, characterized in that the volume resistivity ratio of the cable insulation layer and the second insulation layer is 20 or more.
【청구항 20】  [Claim 20]
제 13항에 있어서,  The method of claim 13,
상기 제 2 절연층은 베이스 수지 및 저항률 조절용 첨가제를 포함하며 , 상기 베이스 수지는 액상 실리콘 고무 (LSR) , 불소고무 (FR) , 스티렌—부타디엔 고무 (SBR) , 니트릴-부타디엔 고무 (NBR) 및 클로로프렌 고무 (CR)로 이루어진 그룹으 로부터 선택된 1종 이상의 고무를 포함하고,  The second insulating layer includes a base resin and an additive for adjusting resistivity, wherein the base resin is liquid silicone rubber (LSR), fluororubber (FR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR) and chloroprene At least one rubber selected from the group consisting of rubber (CR),
상기 저항률 조절용 첨가제는 글리콜 계열의 유기 전도성 필러인 것을 특징 으로 하는 초고압 직류 전력케이블 시스템.  The resistivity control additive is an ultra-high voltage DC power cable system, characterized in that the glycol-based organic conductive filler.
【청구항 21]  [Claim 21]
제 20항에 있어서,  The method of claim 20,
상기 글리콜 계열의 유기 전도성 필러는 폴리글리콜에테르를 포함하는 것을 특징으로 하는 초고압 직류 전력케이블 시스템 .  The glycol-based organic conductive filler is ultra-high voltage DC power cable system characterized in that it comprises a polyglycol ether.
【청구항 22】  [Claim 22]
제 21항에 있어서,  The method of claim 21,
상기 절연 조성물의 총 중량을 기준으로, 상기 유기 전도성 필러의 함량이 0. 1 내지 5 중량 % 인 것을 특징으로 하는 초고압 직류 전력케이블 시스템.  Ultra high voltage DC power cable system, characterized in that the content of the organic conductive filler is 0.1 to 5% by weight based on the total weight of the insulating composition.
【청구항 23]  [Claim 23]
제 20항에 있어서,  The method of claim 20,
상기 저항률 조절용 첨가제는 무기 전도성 필러를 추가로 포함하는 것을 특 징으로 하는 초고압 직류 전력케이블 시스템. The resistivity adjusting additive may further include an inorganic conductive filler. Ultra high voltage DC power cable system.
PCT/KR2018/000943 2017-04-11 2018-01-22 Joint box for ultra-high voltage direct current power cable, and ultra-high voltage direct current power cable system comprising same WO2018190497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18784717.3A EP3611737B1 (en) 2017-04-11 2018-01-22 Joint box for ultra-high voltage direct current power cable, and ultra-high voltage direct current power cable system comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0046775 2017-04-11
KR20170046775 2017-04-11
KR10-2017-0151534 2017-11-14
KR1020170151534A KR102505579B1 (en) 2017-04-11 2017-11-14 Joint For Ultra High Voltage Cable And Ultra High Voltage Cable System Having The Same

Publications (2)

Publication Number Publication Date
WO2018190497A1 true WO2018190497A1 (en) 2018-10-18
WO2018190497A8 WO2018190497A8 (en) 2019-10-31

Family

ID=63792513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000943 WO2018190497A1 (en) 2017-04-11 2018-01-22 Joint box for ultra-high voltage direct current power cable, and ultra-high voltage direct current power cable system comprising same

Country Status (1)

Country Link
WO (1) WO2018190497A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303870B1 (en) * 1999-02-03 2001-10-16 Turbine Controls, Inc. Insulator cover
JP2002078180A (en) * 2000-08-28 2002-03-15 Showa Electric Wire & Cable Co Ltd Prefabricated junction box for dc cv cable line
KR20150115470A (en) * 2014-04-04 2015-10-14 엘에스전선 주식회사 Wide use type premolded join
KR20160063219A (en) * 2014-11-26 2016-06-03 엘에스전선 주식회사 Joint for High-Voltage Direct Current
KR20160088780A (en) * 2015-01-15 2016-07-26 엘에스전선 주식회사 Joint sleeve and Connection structrue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303870B1 (en) * 1999-02-03 2001-10-16 Turbine Controls, Inc. Insulator cover
JP2002078180A (en) * 2000-08-28 2002-03-15 Showa Electric Wire & Cable Co Ltd Prefabricated junction box for dc cv cable line
KR20150115470A (en) * 2014-04-04 2015-10-14 엘에스전선 주식회사 Wide use type premolded join
KR20160063219A (en) * 2014-11-26 2016-06-03 엘에스전선 주식회사 Joint for High-Voltage Direct Current
KR20160088780A (en) * 2015-01-15 2016-07-26 엘에스전선 주식회사 Joint sleeve and Connection structrue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611737A4 *

Also Published As

Publication number Publication date
WO2018190497A8 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US3259688A (en) High voltage insulated electrical cable with layer of irradiated semiconductive ethylene copolymer
CN104269218A (en) Water-tree-prevention ultrahigh-voltage cross linked polyethylene insulating power cable
JP2018523268A (en) Electric power cables and processes for the production of power cables
KR20150022988A (en) Device comprising a space charge trapping layer
KR102238971B1 (en) Termination connection box for DC cable
KR102386760B1 (en) Joint for High-Voltage Direct Current
US10957469B2 (en) High voltage three-phase cable
US10153069B2 (en) Water-tight power cable with metallic screen rods
KR20160088780A (en) Joint sleeve and Connection structrue
KR102386728B1 (en) Joint for ultra high voltage cable and ultra high voltage cable joint system comprising the same
KR102378680B1 (en) Joint for high voltage DC power cable and high voltage DC power cable joint system comprising the same
KR102505579B1 (en) Joint For Ultra High Voltage Cable And Ultra High Voltage Cable System Having The Same
KR20210120368A (en) Connecting Structure of Power Cable Conductor And Connecting Box Of Power Cable Using The Same
CN110709946B (en) Intermediate connection system of ultra-high voltage direct current power cable
WO2018190497A1 (en) Joint box for ultra-high voltage direct current power cable, and ultra-high voltage direct current power cable system comprising same
KR20170105246A (en) Joint sleeve for cable connecting case and cable having joint sleeve
KR102442668B1 (en) Terminal joint for high voltage DC power cable
KR102594700B1 (en) Conductor compression sleeve and ultra high voltage DC power cable system using the same
KR101867224B1 (en) Power cable
KR20200122500A (en) Molding System For Jointing Structure Of Power Cable
KR20150117355A (en) Termination connection part for power cable
KR102249186B1 (en) System for measuring volume electricla resistivity of DC cable
KR102604898B1 (en) High voltage DC power cable system
KR20230175124A (en) DC Power Cable System
EP4163932A1 (en) Hvac-cable with composite conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018784717

Country of ref document: EP

Effective date: 20191111