WO2018190437A1 - Film capacitor, connection-type capacitor, and inverter and electric vehicle in which said capacitors are used - Google Patents
Film capacitor, connection-type capacitor, and inverter and electric vehicle in which said capacitors are used Download PDFInfo
- Publication number
- WO2018190437A1 WO2018190437A1 PCT/JP2018/015678 JP2018015678W WO2018190437A1 WO 2018190437 A1 WO2018190437 A1 WO 2018190437A1 JP 2018015678 W JP2018015678 W JP 2018015678W WO 2018190437 A1 WO2018190437 A1 WO 2018190437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- metal film
- metal
- capacitor
- inverter
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 99
- 239000002184 metal Substances 0.000 claims abstract description 193
- 229910052751 metal Inorganic materials 0.000 claims abstract description 193
- 239000010408 film Substances 0.000 description 299
- 239000011104 metalized film Substances 0.000 description 51
- 238000009413 insulation Methods 0.000 description 20
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000011256 inorganic filler Substances 0.000 description 8
- 229910003475 inorganic filler Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- -1 polypropylene Polymers 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 229920001230 polyarylate Polymers 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/32—Wound capacitors
Definitions
- the present disclosure relates to a film capacitor, a coupled capacitor, an inverter using the capacitor, and an electric vehicle.
- the film capacitor has, for example, a dielectric film formed by forming a polypropylene resin into a film and a metal film formed on the surface of the dielectric film by vapor deposition.
- the metal film is used as an electrode.
- the film capacitor can prevent ignition and electric shock when the electric circuit is short-circuited.
- power supply circuits such as LED (Light Emitting Diode) lighting
- LED Light Emitting Diode
- the use of film capacitors has begun to be applied to power supply circuits such as LED (Light Emitting Diode) lighting, and has been expanded to drive motors for hybrid vehicles, inverter systems for photovoltaic power generation, and the like.
- the structure of the film capacitor is classified into a wound type and a laminated type.
- the generation of wrinkles of the dielectric film and the deterioration of the insulation due to the wrinkles, which are found in the wound film capacitor are unlikely to occur.
- multilayer film capacitors are often obtained by cutting a laminated body in which a plurality of dielectric films and metal films are laminated, so that it is possible to reduce the insulation deterioration of the cut surface by cutting the deposited metal part.
- a method of removing a metal film at a cut portion is disclosed (see Patent Document 2).
- the film capacitor of the present disclosure includes a main body portion in which a plurality of rectangular dielectric films and metal films are alternately stacked, and an external electrode.
- the external electrodes are respectively provided at a pair of body end portions located at both ends in the first direction of the body portion.
- the rectangular dielectric film includes a first end and a second end located at both ends in the first direction, and a third end located at both ends in a second direction different from the first direction;
- Have The metal film includes a first metal film and a second metal film disposed between the first metal film and the third end portion, and the first metal film and the second metal film are In addition to being spaced apart, at least a part of the first metal film is connected to the external electrode at the end of the main body.
- the connected capacitor according to the present disclosure includes a plurality of film capacitors and a bus bar connecting the plurality of film capacitors, and the film capacitor includes the film capacitor.
- the inverter according to the present disclosure includes a bridge circuit configured by a switching element and a capacitor unit connected to the bridge circuit, and the capacitor unit includes the film capacitor.
- An electric vehicle is an electric vehicle including a power source, an inverter connected to the power source, a motor connected to the inverter, and wheels driven by the motor, and the inverter is the inverter described above. It is.
- FIG. 1A It is a perspective view which shows a multilayer type film capacitor typically. It is a top view of FIG. 1A. It is one of the examples of the ii-ii sectional view taken on the line of FIG. 1A. 3 is another example of a cross-sectional view taken along line ii-ii in FIG. 1A. It is a top view of the metallized film of 1st Embodiment of FIG. 2A. It is a top view of the 1st metallized film 5a of 1st Embodiment of FIG. 2B. It is a top view of the 2nd metallized film 5a of 1st Embodiment of FIG. 2B.
- FIG. 4 is a sectional view taken along line iv-iv in FIG.
- FIG. 3A It is a top view of the metallized film of 2nd Embodiment of FIG. 2A. It is the top view to which the broken-line part of FIG. 5A was expanded. It is a top view which shows the metallized film 5a of 2nd Embodiment of FIG. 2B. It is a top view which shows one of the example of a change of a 2nd metal film.
- FIG. 6B is a sectional view taken along line vi-vi in FIG. 6A. It is a top view which shows one of the example of a change of a 2nd metal film. It is a top view which shows one of the example of a change of a 2nd metal film.
- the film capacitor A is composed of a film capacitor main body 3 and a pair of external electrodes 4a and 4b provided on the opposite end surfaces of the film capacitor main body 3 by metallicons.
- the film capacitor body 3 may be simply referred to as the body 3.
- the main body 3 has a plurality of rectangular dielectric films 1 and metal films 2 stacked alternately.
- the metallized film 5a having the metal film 2a on one side of the dielectric film 1a and the metallized film 5b having the metal film 2b on one side of the dielectric film 1b are alternately laminated.
- the metal film 2 a is electrically connected to the external electrode 4 a at one main body end 3 a of the main body 3.
- the metal film 2 b is electrically connected to the external electrode 4 b at the other body end 3 b of the body 3.
- the main body 3 has a main body end surface 3c on which the external electrode 4 is not provided, in addition to the main body ends 3a and 3b.
- the direction in which the external electrodes are arranged is a first direction x
- the second direction y is a direction orthogonal to the first direction x.
- the z direction is the thickness direction of the dielectric films 1a and 1b and the metal films 2a and 2b, in other words, the stacking direction.
- the metallized film 5a is obtained by forming a metal film 2a on one surface of the dielectric film 1a.
- the metallized film 5b is obtained by forming a metal film 2b on one surface of the dielectric film 1b.
- these metallized films 5a and 5b are laminated in a state slightly shifted in the width direction, that is, the first direction x. That is, the main body part 3 has a shift part S where the metallized films 5a and 5b do not overlap with the main body end parts 3a and 3b.
- a width in which the shift portion S is shifted is defined as a shift amount s.
- the metallized film 5a composed of the dielectric film 1a and the metal film 2a and the metallized film 5b composed of the dielectric film 1b and the metal film 2b are shown in FIG. 2A.
- the main body 3 may have a cover film on the outer side where the metallized film 5a and the metallized film 5b are laminated.
- the metal films 2a and 2b are electrically connected to the external electrodes 4a and 4b at different body end portions 3a and 3b located at both ends in the first direction x of the body portion 3, respectively.
- the symbols a and b may be omitted below as shown in FIG. 3A, for example. Further, in the cross-sectional view, the thickness direction z of the film is shown in an enlarged manner for easy explanation.
- the dielectric film 1a has a first end 1c located on one side in the first direction x, a second end 1d located on the other side, and third ends 1e located on both ends in the second direction y. is doing. In the vicinity of the second end portion 1d, so-called insulating margin portions 6 (6a, 6b) are provided in which the metal film 2 is not formed and the dielectric film 1 is exposed.
- the insulating margin 6 may be simply referred to as the margin 6.
- a metallized film 5a having a metal film 2a1 and a metal film 2a2 on the first surface 1ac of the dielectric film 1a, and a metal film 2b on the second surface 1bc of the dielectric film 1b.
- the metallized films 5b are alternately laminated.
- the metal film 2 a 1 is electrically connected to the external electrode 4 a at the first end 3 a of the main body 3.
- the metal film 2 a 2 is electrically connected to the external electrode 4 b at the second end 3 b of the main body 3.
- the metal film 2b is not electrically connected to either the external electrode 4a or the external electrode 4b.
- the film capacitor A having such a structure is called a series connection type film capacitor.
- FIG. 2B is a cross-sectional view taken along the line ii-ii of FIG. 1 in the case of a series-connected film capacitor A.
- the dielectric film 1a, the dielectric film 1b, the metal film 2a1, the metal film 2a2, and the metal film 2b have a width direction in the first direction x, a length direction in the second direction y, and a thickness direction in the third direction. z.
- the dielectric film 1a has a first end 1ac located at one side in the first direction x, a second end 1ad located at the other side, and third ends 1ae located at both ends in the second direction y. is doing.
- the dielectric film 1b has a first end 1bc located on one side in the first direction x, a second end 1bd located on the other side, and third ends 1be located on both ends in the second direction y. is doing.
- the metallized film 5a is obtained by forming the metal film 2a1 and the metal film 2a2 on one surface of the dielectric film 1a.
- the metallized film 5a has a so-called insulating margin portion 6a in which a metal film is not formed at the central portion in the first direction x, that is, a portion where the dielectric film 1a is exposed continuously exists in the second direction y. Have.
- the metallized film 5b is obtained by forming a metal film 2b on one surface of the dielectric film 1b.
- a metal film is not formed in the vicinity of the first end 1bc and the second end 1bd, that is, a portion where the dielectric film 1b is exposed is continuously present in the second direction y.
- a so-called insulating margin 6b is provided.
- the width of the dielectric film 1b is slightly smaller than that of the dielectric film 1a.
- These metallized films 5a and 5b are laminated in a state in which the metallized film 5a slightly protrudes on both sides in the first direction x, as shown in FIG. 2B. Since the width of the dielectric film 1b is slightly smaller than that of the dielectric film 1a, the main body portion 3 has a shift portion S at which the metallized films 5a and 5b do not overlap with each other at the main body end portions 3a and 3b.
- the first capacitor C1 having the effective region 7a and the second capacitor C2 having the effective region 7b are connected in series.
- the thickness of the dielectric film 1 may be, for example, 5 ⁇ m or less.
- a dielectric film 1 having a thickness of 0.5 to 4 ⁇ m may be used.
- the metal film 2 (2a, 2b) may have a heavy edge structure in the vicinity of the connection portion with the external electrode 4 (4a, 4b).
- the heavy edge structure is a structure in which the resistance of the metal film 2 in the vicinity of the connection portion with the external electrode 4 is lower than the resistance of the effective region 7 where the metal films 2a and 2b overlap.
- the metal film 2 in the vicinity of the connection portion with the high-resistance external electrode 4 may be referred to as a heavy edge portion.
- the heavy edge structure refers to a structure in which the thickness of the metal film 2 in the heavy edge portion is thicker than the thickness of the metal film 2 in the effective region 7.
- the metal film 2 having a larger thickness than the metal film 2 having a self-recovering property that can be evaporated and scattered by short-circuit energy is generally a heavy edge regardless of whether or not it is positioned in the effective region 7. Sometimes called a department.
- the thickness of the metal film 2 may be, for example, 20 nm or less, particularly 5 to 15 nm in the effective region 7. By setting the metal film 2 to such a thickness, the area resistance (sheet resistance) becomes 18 to 50 ⁇ / ⁇ , and self-recovery can be exhibited.
- the thickness of the first metal film 2c and the thickness of the second metal film 2d may be the same.
- Either one of the metal film 2a and the metal film 2b may have a thickness of 20 nm or less, and the other may be a heavy edge portion. Further, the thickness of the metal film 2 in the vicinity of the connection portion with the external electrode 4 (heavy edge portion) may be 2 to 4 times the effective region 7, that is, a range of 10 to 80 nm.
- the metal film 2 includes a first metal film 2c (2a1c, 2a2c, and 2bc) and a second metal film 2d (2a1d, 2a2d, and 2bd). Composed.
- the first metal film 2c is separated from the third end 1e.
- the second metal film 2d is disposed between the first metal film 2c and the third end 1e.
- the second metal film 2d extends in a strip shape in the first direction x adjacent to the first metal film 2c, and is separated from the first metal film 2c.
- a first groove 8 extending in the first direction x exists between the first metal film 2c and the second metal film 2d. As shown in FIG. 4, there is no metal film at the bottom of the first groove 8, and the first metal film 2 c and the second metal film 2 d are separated by the first groove 8.
- the first metal film 2c and the second metal film 2d need only be separated from each other, and the first metal film 2c and the second metal film 2d are separated from each other by the first groove extending in the first direction x. It may not be 8.
- the metal film 2 is composed of the first metal film 2c and the second metal film 2d.
- the second metal film 2d exists between the dielectric films 1a and 1b in the vicinity of the main body end surface 3c. Therefore, the dielectric films 1a and 1b are less likely to adhere to each other in the vicinity of the main body end surface 3c.
- the gas can effectively escape from the vicinity of the main body end face 3c.
- the ability to escape the gas generated by the evaporation and scattering of the metal film 2 is improved, and the self-recoverability of the film capacitor A can be improved.
- the end of the second metal film 2d in the second direction y may be located at the third end 1e of the dielectric film 1. Since the end portion of the second metal film 2d in the second direction y is located at the third end portion 1e, that is, faces the main body end surface 3c, the dielectric films 1a and 1b are formed near the main body end surface 3c. It becomes more difficult to adhere. As a result, the gas escape property is further improved, and the self-recovery property of the film capacitor A can be further enhanced.
- the gas passes between the dielectric film 1 and the metal film 2 for comparison. It becomes easy to come off.
- at least a part of the end portion in the second direction y of the second metal film 2d only needs to be positioned at the third end portion 1e. Since at least a part of the end portion in the second direction y of the second metal film 2d is located at the third end portion 1e, that is, located at the main body end surface 3c, a path through which gas escapes through the main body end surface 3c is secured. The slipping out property is improved.
- the second metal film 2d may be connected to the external electrode at the main body end 3a or 3b.
- W1 when the distance between the third end 1e in the second direction y and the first part 2c forming the effective region is W1, W1 may be in the range of 3 to 10 mm, particularly 2 to 5 mm.
- W1 By setting W1 in the range of 3 to 10 mm, particularly 2 to 5 mm, it is possible to obtain a film capacitor A that secures electrostatic capacity and has an excellent self-healing function.
- the range of W1 can be applied to other embodiments described below.
- the first metal film 2c is located at either the first end 1c or the second end 1d of the dielectric film 1 and extends toward the third end 1e.
- the extending portion 2e may be provided.
- FIG. 5B is an enlarged plan view of the broken line portion of FIG. 5A.
- the extension 2e may be located in the vicinity of the second end 1d.
- the vicinity of the first end 1ac of the dielectric film 1a is a state in which the metallized film 5a and the metallized film 5b are laminated, and the dielectric film 1a is a dielectric.
- the point which overlaps the margin part 6b of the film 1b is pointed out. That is, the metal film 2ac electrically connected to the external electrode 4a at the main body end 3a where the first end 1ac is located has the extension 2e at the third end 1e in the vicinity of the first end 1ac. Only.
- the vicinity of the first end portion 1bc of the dielectric film 1b is a portion where the dielectric film 1b overlaps the margin portion 6a of the dielectric film 1a in a state where the metallized film 5a and the metallized film 5b are laminated.
- the metal film 2bc electrically connected to the external electrode 4b at the main body end 3b where the first end 1bc is located has the extension 2e at the third end 1e in the vicinity of the first end 1bc. Only.
- the symbols a and b are omitted in order to explain the features common to the metallized films 5a and 5b in FIG. 2A.
- the vicinity of the first end portions 1ac and 1bc may further include a shift portion S where the metallized film 5a and the metallized film 5b do not overlap.
- the vicinity of the first end 1ac and the vicinity of the second end 1ad of the dielectric film 1a are, in the present disclosure, the metallized film 5a and the metallized film 5b. Is a portion where the dielectric film 1a overlaps the margin portion 6b of the dielectric film 1b. That is, as shown in FIG. 5C, at the third end 1e in the vicinity of the first end 1ac, the metal film 2a1c electrically connected to the external electrode 4a at the body end 3a where the first end 1ac is located is formed.
- the metal film 2a2c electrically connected to the external electrode 4b is extended at the body end 3b where the second end 1ad is located. It has a protruding portion 2e.
- the metal film 2bc is not connected to any of the external electrodes 4a and 4b and does not have the extending portion 2e.
- the vicinity of the first end 1ac and the vicinity of the second end 1ad may further include a shift portion S where the metallized film 5a and the metallized film 5b do not overlap.
- the second metal film 2d is provided as shown in FIG. That is, the first groove 8 extends from the margin portion 6 in the first direction x, and extends to the third end portion 1e toward the third end portion 1e in the vicinity of the first end portion 1c or the second end portion 1d. ing. Due to the first groove 8, the first metal film 2 c and the second metal film 2 d are separated from each other.
- the metal film 2a is electrically insulated from the external electrode 4b by the margin portion 6a
- the metal film 2b is electrically insulated from the external electrode 4a by the margin portion 6b
- the metal film 2a1 is electrically insulated from the external electrode 4b by the margin portion 6a
- the metal film 2a2 is electrically insulated from the external electrode 4a by the margin portion 6a.
- the metal film 2b is electrically insulated from both the external electrodes 4a and 4b by the margin portion 6b. Therefore, in the second embodiment, the second metal film 2d is not connected to the external electrode 4 in both cases of FIG. 2A and FIG. 2B. Therefore, even if the second metal films 2d located in different layers come into contact with each other on the main body end surface 3c of the main body portion 3, the insulation deterioration of the film capacitor A itself is reduced.
- the width of the margin portion 6 is t1, the distance between the portion closest to the second end 1d of the extending portion 2e and the first end 1c is t2, and the first groove 8, the width at the third end 1e is t3.
- the extending part 2e is housed in a part whose distance from the first end part 1c is t2 or less.
- the width t1 of the margin portion 6 may be, for example, not less than 1.5 mm and not more than 3.0 mm.
- the shift amount s of the shift portion S may be, for example, 0.2 mm or more and 1.0 mm or less.
- t3 may be, for example, 0.15 mm or more.
- t2 may be set such that the sum of t2 and t3 is equal to or less than the sum of t1 and s, that is, (t2 + t3) ⁇ (t1 + s).
- (t2 + t3) ⁇ (t1 + s) the insulation deterioration of the film capacitor A itself can be further reduced.
- T2 may specifically be 4.0 mm or less, for example, 2.0 mm or less, and particularly 1.8 mm or less. Moreover, t2 may be 0.05 mm or more, for example.
- the margin portion 6 having the general width t1 and the film capacitor A having the general shift width s are set to t2 in such a range, the insulation deterioration of the film capacitor A itself can be further reduced.
- the above relationship shows the relationship between t1, t2, t3 and s located at the main body end 3a, and also shows the relationship between t1, t2, t3 and s located at the main body end 3b. .
- the second metal film 2d may have a plurality of divided portions 2di that are separated from each other. 6A and FIGS. 7A to 7C each correspond to an enlarged plan view of the broken line portion of FIGS. 3A to 3C. As shown in FIG. 6A, the second groove 9 may extend in the first direction x and divide the second metal film 2d into a plurality of divided portions 2di. 6B is a cross-sectional view taken along the line vi-vi in FIG. 6A. As shown in FIG. 7A, the second metal film 2d may be composed of a plurality of divided portions 2di separated from each other by a third groove 10 extending in the second direction y. The third groove 10 may be connected to the first groove 8.
- channel 10 are the space
- the second groove 9 and the third groove 10 may be arranged independently, or both may be arranged simultaneously as shown in FIG. 7A.
- the gas can escape to the outside through the second groove 9 and / or the third groove 10. Further, the gas detachability is further improved.
- the third groove 10 may have a role of separating at least a part of the divided portion 2di of the second metal film 2d from the external electrode 4. In this case, none of them is connected to the external electrode 4, and even if the divided portions 2di located in different layers come into contact with each other at the main body end surface 3c of the main body 3, the insulation deterioration of the film capacitor A itself is reduced.
- the angle is set with respect to the first direction x and the second direction y.
- the second metal film 2d may be divided into a plurality of divided portions 2di by the fourth groove 11 that is provided.
- the fourth groove 11 includes two kinds of grooves extending in at least two different directions, and the two kinds of grooves may intersect each other.
- the first groove 8 may be linearly extended in the first direction x.
- the first groove 8 is in two different directions as in the fourth groove 11.
- the extending groove may be connected to form the first groove 8.
- the region where the first groove 8 is disposed may extend in the first direction x.
- the first groove 8 is a portion of the fourth groove 11 located closest to the first metal film 2c.
- W1 is the minimum value of the distance between the third end 1e in the second direction y and the first part 2c forming the effective region 7.
- W2 shown in FIGS. 6A, 6B, 7A, and 7B is the width of the first groove 8.
- FIG. P1 shown in FIGS. 6A, 6B, and 7A is an interval (pitch) between the plurality of second grooves 9
- P2 shown in FIG. 7A is an interval (pitch) between the plurality of third grooves 10.
- P3 shown in FIG. 7B is an interval (pitch) between the fourth grooves 11.
- the width W2 of the first groove 8 may be in the range of 0.01 to 0.30 mm. W2 may in particular be 0.10 to 0.30 mm. By setting the width W2 of the first groove 8 to 0.01 to 0.30 mm, particularly 0.10 to 0.30 mm, the discharge between the first metal film 2c and the second metal film 2d can be suppressed. , Gas detachability can be secured.
- the widths of the second groove 9, the third groove 10, and the fourth groove 11 are not particularly limited.
- the same width as the width W2 of the first groove 8 is 0.01 to 0.30 mm, particularly 0.
- the range may be 10 to 0.30 mm.
- the interval P1 between the second grooves 9 and the interval P2 between the third grooves 10 may all be the same or different.
- the intervals P3 of the fourth grooves 11 may all be the same, or may be different between the fourth grooves 11 extending in different directions. Further, all the intervals P3 of the fourth grooves 11 may be different.
- the bottoms of the second groove 9, the third groove 10, and the fourth groove 11 have no metal film, that is, the dielectric film 1 may be exposed, but the first metal film 2c, the second metal film You may be comprised with the metal film 2 whose thickness is thinner than 2d. That is, the depth in the z direction of the second groove 9, the third groove 10, and the fourth groove 11 may be smaller than the thickness in the z direction of the second metal film 2d.
- the second metal film 2d may be constituted by the divided portion 2di divided by the first groove 8, the second groove 9, the third groove 10, and the fourth groove 11, As shown to FIG. 7C, you may be comprised by the division
- the ratio of the area occupied by the divided parts 2di may be, for example, 25 to 50%.
- the divided portion 2di is formed in a strip shape or a rectangular shape.
- the shape is not limited to this, and the division is not limited to this.
- the part 2di may be used.
- both the metal films 2a and 2b may have the structure as described above.
- Such a film capacitor A is a film capacitor that has high insulation properties, good gas escape characteristics even when the dielectric breakdown partially occurs, and an excellent self-healing function.
- Examples of the insulating resin material used for the dielectric film 1 include polypropylene (PP), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), polyarylate (PAR), and polyphenylene ether (PPE). ), Polyetherimide (PEI), and cycloolefin polymer (COP).
- PP polypropylene
- PET polyethylene terephthalate
- PPS polyphenylene sulfide
- PEN polyethylene naphthalate
- PAR polyarylate
- PPE polyphenylene ether
- COP Polyetherimide
- COP cycloolefin polymer
- PAR polyarylate
- cycloolefin polymer (COP) and polyarylate (PAR) have high adhesion between films when formed into a film and gas tends not to evaporate.
- the second metal film 2d as described above is provided. As a result, a large self-recovery improvement effect can be obtained.
- the dielectric film 1 is obtained, for example, by forming a resin solution in which an insulating resin is dissolved in a solvent into a sheet shape on a surface of a base material made of, for example, polyethylene terephthalate (PET), and drying to volatilize the solvent. It is done.
- the forming method may be appropriately selected from known film forming methods such as a doctor blade method, a die coater method, and a knife coater method.
- Solvents used for molding include, for example, methanol, isopropanol, n-butanol, ethylene glycol, ethylene glycol monopropyl ether, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dimethylacetamide, cyclohexane Alternatively, an organic solvent containing a mixture of two or more selected from these may be used. Further, a resin film produced by a melt extrusion method may be stretched.
- the dielectric film 1 may be composed of only the insulating resin described above, but may include other materials. Examples of components other than the resin contained in the dielectric film 1 include the above-described organic solvents and inorganic fillers.
- the inorganic filler for example, inorganic oxides such as alumina, titanium oxide, and silicon dioxide, inorganic nitrides such as silicon nitride, glass, and the like can be used.
- the inorganic filler may be subjected to a surface treatment such as a silane coupling treatment or a titanate coupling treatment.
- the dielectric film 1 When such an inorganic filler is used for the dielectric film 1, a composite film containing less than 50% by mass of the inorganic filler and 50% by mass or more of the resin is used to maintain the flexibility of the resin. Effects such as improvement of relative dielectric constant can be obtained.
- the size (average particle diameter) of the inorganic filler may be 4 to 1000 nm.
- both ends in the first direction x or the central part in the first direction x are exposed on one surface of the dielectric film 1, in the structure shown in FIG. 2A, on one end in the first direction x, in the structure shown in FIG. 2B, both ends in the first direction x or the central part in the first direction x.
- a metal component such as aluminum (Al) is vapor-deposited to form a metal film 2 to obtain a metallized film 5.
- Al aluminum
- the metallized film 5 other than the part where the heavy edge is formed is masked, and, for example, zinc (Zn) is vapor-deposited on the part without the mask of the deposited metal component.
- Zn zinc
- the thickness of the film deposited as a heavy edge is set to 1 to 3 times the thickness of the deposited metal component.
- a pattern is formed on the metal film 2 as necessary.
- a laser marker machine or a laser trimmer machine capable of skipping a metal vapor deposition film is used.
- the laser any one of a green laser, a YAG laser, and a CO 2 laser may be used.
- the multilayer film capacitor A of the present disclosure may be manufactured as follows. After the metallized film 5 (5a, 5b) having the metal film 2 (2a, 2b) on one surface is cut into a desired shape, a plurality of layers are laminated to obtain a laminate. At this time, in the structure shown in FIG. 2A, the metallized films 5a and 5b are alternately stacked so that the margin portions 6a and 6b are located at different end portions in the first direction x. Moreover, as shown in FIG. 2A, the metallized films 5a and 5b are overlapped with each other while being slightly shifted in the first direction x. In the case of the structure shown in FIG.
- a metallized film 5a having a margin 6a in the center of the first direction x, and a width in the first direction x slightly smaller than that, and margin portions 6b at both ends of the first direction x.
- the metallized films 5b are alternately laminated as shown in FIG. 2B.
- the main body part 3 of an individual piece is obtained by cut
- the surface in the vicinity of the portion to be cut is irradiated with laser in advance to form the first groove 8 extending in the first direction x.
- the laser irradiation direction is the z direction, that is, the stacking direction.
- the dielectric film 1 is transparent and transmits the laser, the metal film 2 in the layer irradiated with the laser is removed, so that the metal film 2 in the next layer is irradiated with the laser. Therefore, the 1st groove
- the main body 3 having the cut surface as the third end 1e is obtained by cutting the laminate along the formed first groove 8 in the vicinity thereof.
- two first grooves 8 are formed with a cut portion interposed therebetween, and the laminated body is cut between the two first grooves 8.
- the main body 3 having the first metal film 2c and the second metal film 2d disposed between the first metal film 2c and the third end 1e is obtained.
- the film capacitor A is obtained by forming the metallicon electrodes on both end faces in the first direction x of the main body 3 to be the external electrodes 4.
- the external electrode 4 for example, metal spraying, sputtering, plating, or the like is suitable.
- the surface of the main body 3 on which the external electrode 4 is formed may be covered with an exterior member (not shown).
- Examples of the material of the metal film 2 include metals such as aluminum (Al) and zinc (Zn) and alloys.
- the material of the metallicon electrode includes at least one metal material selected from zinc, aluminum, copper and solder.
- the first groove 8 can also be formed by masking the position of the first groove 8 when depositing a metal component on the dielectric film 1.
- the second groove 9, the third groove 10, the fourth groove 11, and the like are formed, and when the plurality of divided portions 2 di are formed in the second metal film 2 d,
- the first groove 4 to the fourth groove 11 may be formed by irradiating the metal film 2 of the metallized film 5 with laser or irradiating the surface of the laminate with laser.
- FIG. 8 is a perspective view schematically showing one embodiment of a coupled capacitor.
- the case and the mold resin are omitted for easy understanding of the configuration.
- the coupled capacitor C a plurality of film capacitors are connected in parallel by a pair of bus bars 21 and 23.
- the bus bars 21 and 23 have lead terminal portions 21b and 23b connected to the external connection terminal portions 21a and 23a and the external electrodes 4a and 4b of the film capacitor A, respectively.
- the connected capacitor C includes the film capacitor A described above, the connected capacitor C having excellent self-recovery property can be obtained.
- connection type capacitor C is formed by attaching bus bars 21 and 23 to the external electrodes 4a and 4b formed on both ends of the main body part 3 with bonding materials in a state where a plurality of, for example, four film capacitors are arranged. can get.
- the film capacitor A and the connected capacitor C can be made into a resin mold type (case mold type) capacitor after being accommodated in the case and filled with a resin in the gap in the case.
- FIG. 9 is a schematic configuration diagram for explaining one of the embodiments of the inverter.
- FIG. 9 shows an example of an inverter D that generates alternating current from direct current.
- the inverter D of the present embodiment includes a bridge circuit 31 composed of a switching element (for example, an IGBT (Insulated Gate Bipolar Transistor)) and a diode, and an input of the bridge circuit 31 for voltage stabilization. And a capacitor 33 disposed between the terminals.
- the inverter D includes the film capacitor A described above as the capacitor unit 33.
- the inverter D is connected to a booster circuit 35 that boosts the voltage of the DC power supply.
- the bridge circuit 31 is connected to a motor generator (motor M) serving as a drive source.
- FIG. 10 is a schematic configuration diagram of an electric vehicle.
- FIG. 10 shows a hybrid vehicle (HEV) as an example of the embodiment.
- HEV hybrid vehicle
- the electric vehicle E includes a driving motor 41, an engine 43, a transmission 45, an inverter 47, a power source (battery) 49, a front wheel 51a, and a rear wheel 51b.
- the electric vehicle E has outputs of the motor 41, the engine 43, or both as a drive source.
- the output of the drive source is transmitted to the pair of left and right front wheels 51a via the transmission 45.
- the power source 49 is connected to the inverter 47, and the inverter 47 is connected to the motor 41.
- the electric vehicle E shown in FIG. 10 includes a vehicle ECU 53 and an engine ECU 57.
- the vehicle ECU 53 performs overall control of the entire electric vehicle E.
- the engine ECU 57 controls the rotational speed of the engine 43 to drive the electric vehicle E.
- the electric vehicle E further includes driving devices such as an ignition key 55 operated by the driver, an accelerator pedal (not shown), and a brake.
- a drive signal corresponding to the operation of the driving device by the driver or the like is input to the vehicle ECU 53.
- vehicle ECU 53 Based on the drive signal, vehicle ECU 53 outputs an instruction signal to engine ECU 57, power supply 49, and inverter 47 as a load.
- the engine ECU 57 controls the rotational speed of the engine 43 in response to the instruction signal and drives the electric vehicle E.
- the inverter D that is, the inverter D to which the film capacitor A or the connected capacitor C is applied as the capacity unit 33 is used.
- the film capacitor A is excellent in self-recovery, the electrostatic capacity can be maintained for a long period of time, and the switching noise generated in the inverter 47 or the like can be reduced for a long period of time. it can.
- the inverter D of this embodiment can be applied not only to the hybrid vehicle (HEV) described above but also to various power conversion application products such as an electric vehicle (EV), a fuel cell vehicle, an electric bicycle, a generator, and a solar cell. .
- EV electric vehicle
- a fuel cell vehicle an electric bicycle
- a generator an electric bicycle
- a solar cell a solar cell
- a dielectric film having an average thickness of 3 ⁇ m was prepared using ZEONOR (registered trademark) (manufactured by ZEON), which is a cyclic cycloolefin resin.
- ZEONOR registered trademark
- ZEON a cyclic cycloolefin resin.
- ZEONOR registered trademark
- Nippon Zeon was dissolved in toluene, applied onto a polyethylene terephthalate (PET) substrate using a coater, and molded into a sheet. After molding, heat treatment was performed at 130 ° C. to remove toluene, and a dielectric film was obtained.
- the obtained dielectric film was peeled off from the substrate and slitted to a width of 130 mm, and then a 97 mm wide Al metal film was formed by vacuum deposition using a metal mask as a metal film on one main surface of the dielectric film. Formed.
- the laser irradiation conditions were an output of 4 W, a frequency of 140 kHz, and a scanning speed of 4 m / second.
- a 130 mm wide metallized film was further slit to obtain a 50 mm wide metallized film having a 1.5 mm insulation margin (a metal film non-formed part where the dielectric film was exposed).
- This metallized film was overlapped so that the metal film faced through the dielectric film, to produce a laminate.
- the metallized film was laminated
- a predetermined portion was irradiated with a laser using a green laser marker to form grooves as shown in Table 1 in the metal film 2.
- This laminate was cut along the first groove formed by laser irradiation to obtain a main body.
- a film capacitor was obtained by spraying an alloy of zinc and tin on the opposing end faces in the first direction x of the main body to form a metallicon electrode as an external electrode.
- the capacitance, withstand voltage, and insulation resistance before and after the withstand voltage test of the produced film capacitor were measured.
- the capacitance was measured using an LCR meter under the conditions of AC 1 V and 1 kHz.
- the insulation resistance and withstand voltage were measured using an insulation resistance meter.
- the withstand voltage was a voltage when a DC voltage was applied to the film capacitor at a boosting rate of 0 V to 10 V per second using an insulation resistance meter, and the leakage current reached 0.01 A.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Inverter Devices (AREA)
Abstract
A film capacitor comprising: a body part 3 in which a plurality of rectangular dielectric films 1 and metal films 2 are laminated in alternating fashion; and an external electrode 4, the external electrode 4 being provided to each of a pair of body end parts 3a, 3b positioned at both ends in a first direction of the body part 3. The rectangular dielectric film 1 has a first end part 1c and a second end part 1d positioned at both ends in the first direction, and a third end part 1e positioned at both ends in a second direction that is different from the first direction. The metal film 2 includes a first metal film 2c and one or more of a second metal film 2d disposed between the first metal film 2c and the third end part 1e. The first metal film 2c and the second metal film 2d are separated, and at least a portion of the first metal film 2c is connected to the external electrode 4 by the body end part 3a or 3b.
Description
本開示は、フィルムコンデンサ、連結型コンデンサと、これを用いたインバータおよび電動車輌に関するものである。
The present disclosure relates to a film capacitor, a coupled capacitor, an inverter using the capacitor, and an electric vehicle.
フィルムコンデンサは、例えば、ポリプロピレン樹脂をフィルム化した誘電体フィルムと、当該誘電体フィルムの表面に蒸着によって形成された金属膜を有している。金属膜は電極として用いられる。このような構成により、フィルムコンデンサでは、誘電体フィルムの絶縁欠陥部で短絡が生じた場合にも、短絡のエネルギーで欠陥部周辺の金属膜が蒸発、飛散して、絶縁欠陥部が絶縁化され、フィルムコンデンサの絶縁破壊を防止できる(自己回復性)という利点を有している(例えば、特許文献1を参照)。
The film capacitor has, for example, a dielectric film formed by forming a polypropylene resin into a film and a metal film formed on the surface of the dielectric film by vapor deposition. The metal film is used as an electrode. With such a configuration, in a film capacitor, even when a short circuit occurs in an insulation defect portion of the dielectric film, the metal film around the defect portion is evaporated and scattered by the short circuit energy, and the insulation defect portion is insulated. The film capacitor has an advantage that dielectric breakdown of the film capacitor can be prevented (self-recovery) (see, for example, Patent Document 1).
このように、フィルムコンデンサは電気回路が短絡した際の発火や感電を防止することができる。この点が注目され、近年、フィルムコンデンサの用途は、LED(Light Emitting Diode)照明等の電源回路への適用を始め、ハイブリッド自動車のモータ駆動や太陽光発電のインバータシステム等に拡大しつつある。
Thus, the film capacitor can prevent ignition and electric shock when the electric circuit is short-circuited. In recent years, the use of film capacitors has begun to be applied to power supply circuits such as LED (Light Emitting Diode) lighting, and has been expanded to drive motors for hybrid vehicles, inverter systems for photovoltaic power generation, and the like.
フィルムコンデンサの構造は、捲回型と積層型に分類される。積層型のフィルムコンデンサでは捲回型のフィルムコンデンサに見られる誘電体フィルムのシワの発生や、シワに起因する絶縁性の低下が起こりにくい。一方、積層型のフィルムコンデンサは、誘電体フィルムと金属膜とを複数積層した積層体を切断して得る場合が多いため、蒸着金属部分を切断することによる切断面の絶縁劣化を低減することを目的として、切断箇所の金属膜を除去する方法が開示されている(特許文献2を参照)。
The structure of the film capacitor is classified into a wound type and a laminated type. In the multilayer film capacitor, the generation of wrinkles of the dielectric film and the deterioration of the insulation due to the wrinkles, which are found in the wound film capacitor, are unlikely to occur. On the other hand, multilayer film capacitors are often obtained by cutting a laminated body in which a plurality of dielectric films and metal films are laminated, so that it is possible to reduce the insulation deterioration of the cut surface by cutting the deposited metal part. As a purpose, a method of removing a metal film at a cut portion is disclosed (see Patent Document 2).
本開示のフィルムコンデンサは、矩形状の誘電体フィルムと、金属膜とが、交互に複数積層された本体部と、外部電極と、を具備している。外部電極は、前記本体部の第1方向の両端に位置する一対の本体端部にそれぞれ設けられている。前記矩形状の誘電体フィルムは、前記第1方向の両端に位置する第1端部および第2端部と、前記第1方向とは異なる第2方向の両端に位置する第3端部と、を有する。前記金属膜は、第1金属膜と、該第1金属膜と前記第3端部との間に配置された第2金属膜とを含み、前記第1金属膜と前記第2金属膜とが離間しているとともに、前記第1金属膜の少なくとも一部が前記本体端部で前記外部電極に接続している。
The film capacitor of the present disclosure includes a main body portion in which a plurality of rectangular dielectric films and metal films are alternately stacked, and an external electrode. The external electrodes are respectively provided at a pair of body end portions located at both ends in the first direction of the body portion. The rectangular dielectric film includes a first end and a second end located at both ends in the first direction, and a third end located at both ends in a second direction different from the first direction; Have The metal film includes a first metal film and a second metal film disposed between the first metal film and the third end portion, and the first metal film and the second metal film are In addition to being spaced apart, at least a part of the first metal film is connected to the external electrode at the end of the main body.
本開示の連結型コンデンサは、複数のフィルムコンデンサと、該複数のフィルムコンデンサを接続するバスバーと、を備え、前記フィルムコンデンサが、上記のフィルムコンデンサを含む。
The connected capacitor according to the present disclosure includes a plurality of film capacitors and a bus bar connecting the plurality of film capacitors, and the film capacitor includes the film capacitor.
本開示のインバータは、スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続された容量部とを備え、前記容量部が上記のフィルムコンデンサを含む。
The inverter according to the present disclosure includes a bridge circuit configured by a switching element and a capacitor unit connected to the bridge circuit, and the capacitor unit includes the film capacitor.
本開示の電動車輌は、電源と、該電源に接続されたインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備える電動車両であって、前記インバータが上記のインバータである。
An electric vehicle according to the present disclosure is an electric vehicle including a power source, an inverter connected to the power source, a motor connected to the inverter, and wheels driven by the motor, and the inverter is the inverter described above. It is.
フィルムコンデンサAは、図1Aおよび図1Bに示すように、フィルムコンデンサ本体部3と、フィルムコンデンサ本体部3の対向する端面にメタリコンにより設けられた一対の外部電極4a、4bとにより構成される。以下、フィルムコンデンサ本体部3を単に本体部3という場合もある。本体部3は、図2Aおよび図2Bに示すように、矩形状の誘電体フィルム1と金属膜2とが交互に複数積層されている。
As shown in FIGS. 1A and 1B, the film capacitor A is composed of a film capacitor main body 3 and a pair of external electrodes 4a and 4b provided on the opposite end surfaces of the film capacitor main body 3 by metallicons. Hereinafter, the film capacitor body 3 may be simply referred to as the body 3. As shown in FIGS. 2A and 2B, the main body 3 has a plurality of rectangular dielectric films 1 and metal films 2 stacked alternately.
図2Aに示す本体部3では、誘電体フィルム1aの片面に金属膜2aを備えた金属化フィルム5aと、誘電体フィルム1bの片面に金属膜2bを備えた金属化フィルム5bとが交互に積層されている。金属膜2aは本体部3の一方の本体端部3aで外部電極4aに電気的に接続されている。金属膜2bは、本体部3の他方の本体端部3bで外部電極4bに電気的に接続されている。本体部3は、本体端部3a、3bのほか、外部電極4が設けられていない本体端面3cを有している。
2A, the metallized film 5a having the metal film 2a on one side of the dielectric film 1a and the metallized film 5b having the metal film 2b on one side of the dielectric film 1b are alternately laminated. Has been. The metal film 2 a is electrically connected to the external electrode 4 a at one main body end 3 a of the main body 3. The metal film 2 b is electrically connected to the external electrode 4 b at the other body end 3 b of the body 3. The main body 3 has a main body end surface 3c on which the external electrode 4 is not provided, in addition to the main body ends 3a and 3b.
図1Aでは、誘電体フィルム1a、1bおよび金属膜2a、2bの面において、外部電極が配置された方向を第1方向xとし、第2方向yは第1方向xに直行する方向として示している。z方向は、誘電体フィルム1a、1bおよび金属膜2a、2bの厚さ方向、言い換えれば積層方向である。
In FIG. 1A, in the surfaces of the dielectric films 1a and 1b and the metal films 2a and 2b, the direction in which the external electrodes are arranged is a first direction x, and the second direction y is a direction orthogonal to the first direction x. Yes. The z direction is the thickness direction of the dielectric films 1a and 1b and the metal films 2a and 2b, in other words, the stacking direction.
金属化フィルム5aは、誘電体フィルム1aの一方の面上に金属膜2aを形成したものである。金属化フィルム5bは、誘電体フィルム1bの一方の面上に金属膜2bを形成したものである。これらの金属化フィルム5a、5bは、図2Aに示すように、幅方向すなわち第1方向xに少しずれた状態で積層されている。すなわち、本体部3は本体端部3a、3bに金属化フィルム5aと5bとが重ならないずらし部Sを有している。ずらし部Sがずれている幅を、ずらし量sとする。
The metallized film 5a is obtained by forming a metal film 2a on one surface of the dielectric film 1a. The metallized film 5b is obtained by forming a metal film 2b on one surface of the dielectric film 1b. As shown in FIG. 2A, these metallized films 5a and 5b are laminated in a state slightly shifted in the width direction, that is, the first direction x. That is, the main body part 3 has a shift part S where the metallized films 5a and 5b do not overlap with the main body end parts 3a and 3b. A width in which the shift portion S is shifted is defined as a shift amount s.
このように、フィルムコンデンサAは、誘電体フィルム1aおよび金属膜2aにより構成される金属化フィルム5aと、誘電体フィルム1bおよび金属膜2bにより構成される金属化フィルム5bとが、図2Aに示すように積層されている。本体部3は、金属化フィルム5aと金属化フィルム5bとが積層されたさらに外側に、カバーフィルムを有していてもよい。
Thus, in the film capacitor A, the metallized film 5a composed of the dielectric film 1a and the metal film 2a and the metallized film 5b composed of the dielectric film 1b and the metal film 2b are shown in FIG. 2A. Are stacked. The main body 3 may have a cover film on the outer side where the metallized film 5a and the metallized film 5b are laminated.
金属膜2a、2bは、本体部3の第1方向xの両端に位置する互いに異なる本体端部3a、3bで、外部電極4a、4bにそれぞれ電気的に接続されている。
The metal films 2a and 2b are electrically connected to the external electrodes 4a and 4b at different body end portions 3a and 3b located at both ends in the first direction x of the body portion 3, respectively.
金属化フィルム5a、5bに共通する特徴について説明するため、以下では、たとえば図3Aに示すように、a、bの符号を省略する場合がある。また、断面図においては、説明を容易にするためにフィルムの厚さ方向zを拡大して示している。
In order to describe the features common to the metallized films 5a and 5b, the symbols a and b may be omitted below as shown in FIG. 3A, for example. Further, in the cross-sectional view, the thickness direction z of the film is shown in an enlarged manner for easy explanation.
誘電体フィルム1aは、第1方向xの一方に位置する第1端部1cと他方に位置する第2端部1dと、第2方向yの両端に位置する第3端部1eと、を有している。第2端部1d近傍には、金属膜2が形成されず誘電体フィルム1が露出したいわゆる絶縁マージン部6(6a、6b)が設けられている。絶縁マージン部6は、単にマージン部6という場合もある。
The dielectric film 1a has a first end 1c located on one side in the first direction x, a second end 1d located on the other side, and third ends 1e located on both ends in the second direction y. is doing. In the vicinity of the second end portion 1d, so-called insulating margin portions 6 (6a, 6b) are provided in which the metal film 2 is not formed and the dielectric film 1 is exposed. The insulating margin 6 may be simply referred to as the margin 6.
金属膜2aと金属膜2bとの間に電位差があると、金属膜2aと金属膜2bとが誘電体フィルム1を挟んで重なりあう有効領域7に静電容量が発生する。
When there is a potential difference between the metal film 2a and the metal film 2b, an electrostatic capacity is generated in the effective region 7 where the metal film 2a and the metal film 2b overlap with the dielectric film 1 interposed therebetween.
<直列接続型>
図2Bに示す本体部3では、誘電体フィルム1aの第1面1acに金属膜2a1および金属膜2a2を備えた金属化フィルム5aと、誘電体フィルム1bの第2面1bcに金属膜2bを備えた金属化フィルム5bとが交互に積層されている。金属膜2a1は本体部3の第1端部3aで外部電極4aに電気的に接続されている。金属膜2a2は、本体部3の第2端部3bで外部電極4bに電気的に接続されている。金属膜2bは、外部電極4aおよび外部電極4bのいずれとも電気的に接続されていない。このような構造を有するフィルムコンデンサAは、直列接続型のフィルムコンデンサと呼ばれる。 <Series connection type>
2B, a metallizedfilm 5a having a metal film 2a1 and a metal film 2a2 on the first surface 1ac of the dielectric film 1a, and a metal film 2b on the second surface 1bc of the dielectric film 1b. The metallized films 5b are alternately laminated. The metal film 2 a 1 is electrically connected to the external electrode 4 a at the first end 3 a of the main body 3. The metal film 2 a 2 is electrically connected to the external electrode 4 b at the second end 3 b of the main body 3. The metal film 2b is not electrically connected to either the external electrode 4a or the external electrode 4b. The film capacitor A having such a structure is called a series connection type film capacitor.
図2Bに示す本体部3では、誘電体フィルム1aの第1面1acに金属膜2a1および金属膜2a2を備えた金属化フィルム5aと、誘電体フィルム1bの第2面1bcに金属膜2bを備えた金属化フィルム5bとが交互に積層されている。金属膜2a1は本体部3の第1端部3aで外部電極4aに電気的に接続されている。金属膜2a2は、本体部3の第2端部3bで外部電極4bに電気的に接続されている。金属膜2bは、外部電極4aおよび外部電極4bのいずれとも電気的に接続されていない。このような構造を有するフィルムコンデンサAは、直列接続型のフィルムコンデンサと呼ばれる。 <Series connection type>
2B, a metallized
図2Bは、直列接続型のフィルムコンデンサAの場合の図1のii-ii線断面図である。図2Bでは、誘電体フィルム1a、誘電体フィルム1b、金属膜2a1、金属膜2a2および金属膜2bの幅方向が第1方向x、長さ方向が第2方向y、厚さ方向が第3方向zである。
FIG. 2B is a cross-sectional view taken along the line ii-ii of FIG. 1 in the case of a series-connected film capacitor A. In FIG. 2B, the dielectric film 1a, the dielectric film 1b, the metal film 2a1, the metal film 2a2, and the metal film 2b have a width direction in the first direction x, a length direction in the second direction y, and a thickness direction in the third direction. z.
誘電体フィルム1aは、第1方向xの一方に位置する第1端部1acと他方に位置する第2端部1adと、第2方向yの両端に位置する第3端部1aeと、を有している。誘電体フィルム1bは、第1方向xの一方に位置する第1端部1bcと他方に位置する第2端部1bdと、第2方向yの両端に位置する第3端部1beと、を有している。
The dielectric film 1a has a first end 1ac located at one side in the first direction x, a second end 1ad located at the other side, and third ends 1ae located at both ends in the second direction y. is doing. The dielectric film 1b has a first end 1bc located on one side in the first direction x, a second end 1bd located on the other side, and third ends 1be located on both ends in the second direction y. is doing.
金属化フィルム5aとは、誘電体フィルム1aの一方の面上に金属膜2a1および金属膜2a2を形成したものである。金属化フィルム5aは、第1方向xの中央部に、金属膜が形成されていない、すなわち誘電体フィルム1aが露出した部分が第2方向yに連続して存在する、いわゆる絶縁マージン部6aを有している。
The metallized film 5a is obtained by forming the metal film 2a1 and the metal film 2a2 on one surface of the dielectric film 1a. The metallized film 5a has a so-called insulating margin portion 6a in which a metal film is not formed at the central portion in the first direction x, that is, a portion where the dielectric film 1a is exposed continuously exists in the second direction y. Have.
金属化フィルム5bとは、誘電体フィルム1bの一方の面上に金属膜2bを形成したものである。金属化フィルム5bは、第1端部1bcおよび第2端部1bdの近傍に、金属膜が形成されていない、すなわち誘電体フィルム1bが露出した部分が第2方向yに連続して存在する、いわゆる絶縁マージン部6bを有している。誘電体フィルム1bの幅は、誘電体フィルム1aよりも少し小さい。
The metallized film 5b is obtained by forming a metal film 2b on one surface of the dielectric film 1b. In the metallized film 5b, a metal film is not formed in the vicinity of the first end 1bc and the second end 1bd, that is, a portion where the dielectric film 1b is exposed is continuously present in the second direction y. A so-called insulating margin 6b is provided. The width of the dielectric film 1b is slightly smaller than that of the dielectric film 1a.
これらの金属化フィルム5a、5bは、図2Bに示すように、金属化フィルム5aが第1方向xの両側に少し突出した状態で積層されている。誘電体フィルム1bの幅は、誘電体フィルム1aよりも少し小さいため、本体部3は本体端部3a、3bに金属化フィルム5aと5bとが重ならないずらし部Sを有している。
These metallized films 5a and 5b are laminated in a state in which the metallized film 5a slightly protrudes on both sides in the first direction x, as shown in FIG. 2B. Since the width of the dielectric film 1b is slightly smaller than that of the dielectric film 1a, the main body portion 3 has a shift portion S at which the metallized films 5a and 5b do not overlap with each other at the main body end portions 3a and 3b.
金属膜2a1と金属膜2bとの間に電位差があると、金属膜2a1と金属膜2bとが、誘電体フィルム1aまたは1bを挟んで重なり合う有効領域7aに、静電容量が発生する。金属膜2a2と金属膜2bとの間に電位差があると、金属膜2a2と金属膜2bとが、誘電体フィルム1aまたは1bを挟んで重なり合う有効領域7bに、静電容量が発生する。有効領域7aを有する第1容量部C1と、有効領域7bを有する第2容量部C2は直列接続されている。
If there is a potential difference between the metal film 2a1 and the metal film 2b, a capacitance is generated in the effective region 7a where the metal film 2a1 and the metal film 2b overlap with the dielectric film 1a or 1b interposed therebetween. When there is a potential difference between the metal film 2a2 and the metal film 2b, an electrostatic capacity is generated in the effective region 7b where the metal film 2a2 and the metal film 2b overlap with the dielectric film 1a or 1b interposed therebetween. The first capacitor C1 having the effective region 7a and the second capacitor C2 having the effective region 7b are connected in series.
以下、特に記載のない限り、図2Aおよび図2BのいずれのフィルムコンデンサAにも適用できる特徴について説明する。
Hereinafter, unless otherwise specified, characteristics that can be applied to any film capacitor A in FIGS. 2A and 2B will be described.
誘電体フィルム1の厚さは、例えば5μm以下としてもよい。0.5~4μmの厚さの誘電体フィルム1を用いてもよい。
The thickness of the dielectric film 1 may be, for example, 5 μm or less. A dielectric film 1 having a thickness of 0.5 to 4 μm may be used.
金属膜2(2a、2b)は、外部電極4(4a、4b)との接続部の近傍にヘビーエッジ構造を有していてもよい。ヘビーエッジ構造とは、外部電極4との接続部の近傍における金属膜2の抵抗が、金属膜2a、2bが重なり合う有効領域7の抵抗よりも低い構造である。抵抗の高い外部電極4との接続部の近傍の金属膜2を、ヘビーエッジ部という場合もある。換言すれば、ヘビーエッジ構造とは、ヘビーエッジ部の金属膜2の厚さが、有効領域7の金属膜2の厚さよりも厚い構造を指す。なお、短絡のエネルギーで蒸発、飛散が可能な自己回復性を有する金属膜2に対し、それよりも厚さが厚い金属膜2を、有効領域7に位置するか否かにかかわらず総じてヘビーエッジ部という場合もある。
The metal film 2 (2a, 2b) may have a heavy edge structure in the vicinity of the connection portion with the external electrode 4 (4a, 4b). The heavy edge structure is a structure in which the resistance of the metal film 2 in the vicinity of the connection portion with the external electrode 4 is lower than the resistance of the effective region 7 where the metal films 2a and 2b overlap. The metal film 2 in the vicinity of the connection portion with the high-resistance external electrode 4 may be referred to as a heavy edge portion. In other words, the heavy edge structure refers to a structure in which the thickness of the metal film 2 in the heavy edge portion is thicker than the thickness of the metal film 2 in the effective region 7. It should be noted that the metal film 2 having a larger thickness than the metal film 2 having a self-recovering property that can be evaporated and scattered by short-circuit energy is generally a heavy edge regardless of whether or not it is positioned in the effective region 7. Sometimes called a department.
金属膜2の厚さは、有効領域7において、例えば20nm以下、特には5~15nmの範囲としてもよい。金属膜2をこのような厚さとすることで、面積抵抗(シート抵抗)が18~50Ω/□となり、自己回復性を発揮できる。第1の金属膜2cの厚さと第2の金属膜2dの厚さとは、同じでもよい。金属膜2aおよび金属膜2bのいずれか一方の全体を20nm以下の厚さとし、もう一方の全体をヘビーエッジ部としてもよい。また、外部電極4との接続部近傍(ヘビーエッジ部)における金属膜2の厚さは、有効領域7の2~4倍、すなわち10~80nmの範囲としてもよい。
The thickness of the metal film 2 may be, for example, 20 nm or less, particularly 5 to 15 nm in the effective region 7. By setting the metal film 2 to such a thickness, the area resistance (sheet resistance) becomes 18 to 50Ω / □, and self-recovery can be exhibited. The thickness of the first metal film 2c and the thickness of the second metal film 2d may be the same. Either one of the metal film 2a and the metal film 2b may have a thickness of 20 nm or less, and the other may be a heavy edge portion. Further, the thickness of the metal film 2 in the vicinity of the connection portion with the external electrode 4 (heavy edge portion) may be 2 to 4 times the effective region 7, that is, a range of 10 to 80 nm.
<第1実施形態>
第1実施形態は、本開示の実施形態のうちの一つである。第1実施形態では、金属膜2が、図3A、図3Bおよび図3Cに示すように、第1金属膜2c(2a1c、2a2cおよび2bc)および第2金属膜2d(2a1d、2a2dおよび2bd)により構成される。第1金属膜2cは、第3端部1eとは離間している。第2金属膜2dは、第1金属膜2cと第3端部1eとの間に配置されている。 <First Embodiment>
The first embodiment is one of the embodiments of the present disclosure. In the first embodiment, as shown in FIGS. 3A, 3B, and 3C, themetal film 2 includes a first metal film 2c (2a1c, 2a2c, and 2bc) and a second metal film 2d (2a1d, 2a2d, and 2bd). Composed. The first metal film 2c is separated from the third end 1e. The second metal film 2d is disposed between the first metal film 2c and the third end 1e.
第1実施形態は、本開示の実施形態のうちの一つである。第1実施形態では、金属膜2が、図3A、図3Bおよび図3Cに示すように、第1金属膜2c(2a1c、2a2cおよび2bc)および第2金属膜2d(2a1d、2a2dおよび2bd)により構成される。第1金属膜2cは、第3端部1eとは離間している。第2金属膜2dは、第1金属膜2cと第3端部1eとの間に配置されている。 <First Embodiment>
The first embodiment is one of the embodiments of the present disclosure. In the first embodiment, as shown in FIGS. 3A, 3B, and 3C, the
第2金属膜2dは、第1金属膜2cに隣接して第1方向xに短冊状に延びており、第1金属膜2cとは、離間している。第1金属膜2cと第2金属膜2dとの間には第1方向xに延びる第1の溝8が存在する。図4に示すように、第1の溝8の底部には金属膜が無く、第1の溝8により第1金属膜2cと第2金属膜2dとは離間している。なお、第1金属膜2cと第2金属膜2dとは離間していればよく、第1金属膜2cと第2金属膜2dとを離間させるのは、第1方向xに延びる第1の溝8でなくてもよい。
The second metal film 2d extends in a strip shape in the first direction x adjacent to the first metal film 2c, and is separated from the first metal film 2c. A first groove 8 extending in the first direction x exists between the first metal film 2c and the second metal film 2d. As shown in FIG. 4, there is no metal film at the bottom of the first groove 8, and the first metal film 2 c and the second metal film 2 d are separated by the first groove 8. The first metal film 2c and the second metal film 2d need only be separated from each other, and the first metal film 2c and the second metal film 2d are separated from each other by the first groove extending in the first direction x. It may not be 8.
このように、第1実施形態では、金属膜2が第1金属膜2cと第2金属膜2dとにより構成される。第1実施形態では、本体端面3c近傍の誘電体フィルム1aと1bとの間に第2金属膜2dが存在する。そのため、本体端面3c近傍で、誘電体フィルム1aと1bとが密着しにくくなる。その結果、絶縁欠陥部で短絡が生じて金属膜2が蒸発、飛散してガスが発生しても、そのガスが本体端面3c近傍から効果的に抜けることができる。このように、第1実施形態では、金属膜2の蒸発、飛散により発生するガスの抜け性が向上し、フィルムコンデンサAの自己回復性を高めることができる。
Thus, in the first embodiment, the metal film 2 is composed of the first metal film 2c and the second metal film 2d. In the first embodiment, the second metal film 2d exists between the dielectric films 1a and 1b in the vicinity of the main body end surface 3c. Therefore, the dielectric films 1a and 1b are less likely to adhere to each other in the vicinity of the main body end surface 3c. As a result, even if a short circuit occurs in the insulation defect portion and the metal film 2 evaporates and scatters to generate gas, the gas can effectively escape from the vicinity of the main body end face 3c. As described above, in the first embodiment, the ability to escape the gas generated by the evaporation and scattering of the metal film 2 is improved, and the self-recoverability of the film capacitor A can be improved.
第2金属膜2dの第2方向yの端部は、誘電体フィルム1の第3端部1eに位置していてもよい。第2金属膜2dの第2方向yの端部が第3端部1eに位置している、すなわち本体端面3cに面していることにより、本体端面3c近傍で誘電体フィルム1aと1bとがより密着しにくくなる。その結果、ガスの抜け性がさらに向上し、フィルムコンデンサAの自己回復性をより高めることができる。
The end of the second metal film 2d in the second direction y may be located at the third end 1e of the dielectric film 1. Since the end portion of the second metal film 2d in the second direction y is located at the third end portion 1e, that is, faces the main body end surface 3c, the dielectric films 1a and 1b are formed near the main body end surface 3c. It becomes more difficult to adhere. As a result, the gas escape property is further improved, and the self-recovery property of the film capacitor A can be further enhanced.
誘電体フィルム1同士が直接接する場合の密着力に対し、誘電体フィルム1と金属膜2との密着力は比較的小さいため、ガスは誘電体フィルム1と金属膜2との間を通って比較的抜けやすくなる。この場合、第2金属膜2dの第2方向yの端部は、その少なくとも一部が、第3端部1eに位置していればよい。第2金属膜2dの第2方向yの端部の少なくとも一部が第3端部1eに位置する、すなわち本体端面3cに位置することで、本体端面3cを通じてガスが抜ける経路が確保され、ガスの抜け性が向上する。
Since the adhesion between the dielectric film 1 and the metal film 2 is relatively small compared to the adhesion when the dielectric films 1 are in direct contact with each other, the gas passes between the dielectric film 1 and the metal film 2 for comparison. It becomes easy to come off. In this case, at least a part of the end portion in the second direction y of the second metal film 2d only needs to be positioned at the third end portion 1e. Since at least a part of the end portion in the second direction y of the second metal film 2d is located at the third end portion 1e, that is, located at the main body end surface 3c, a path through which gas escapes through the main body end surface 3c is secured. The slipping out property is improved.
第1実施形態では、第2金属膜2dは本体端部3aまたは3bで外部電極に接続されていてもよい。
In the first embodiment, the second metal film 2d may be connected to the external electrode at the main body end 3a or 3b.
第1実施形態では、図3A~図3C、および図4に示すように、第2方向yにおける第3端部1eと、有効領域を形成する第1部位2cとの距離をW1としたとき、W1が3~10mm、特には2~5mmの範囲であってもよい。W1を3~10mm、特には2~5mmの範囲とすることで、静電容量を確保するとともに、自己回復機能に優れたフィルムコンデンサAとすることができる。上記のW1の範囲は以下で説明する他の実施形態にも、適用できる。
In the first embodiment, as shown in FIGS. 3A to 3C and FIG. 4, when the distance between the third end 1e in the second direction y and the first part 2c forming the effective region is W1, W1 may be in the range of 3 to 10 mm, particularly 2 to 5 mm. By setting W1 in the range of 3 to 10 mm, particularly 2 to 5 mm, it is possible to obtain a film capacitor A that secures electrostatic capacity and has an excellent self-healing function. The range of W1 can be applied to other embodiments described below.
<第2実施形態>
第1金属膜2cは、図5A、図5Bに示すように、誘電体フィルム1の第1端部1cまたは第2端部1dのいずれかに位置し、第3端部1eに向かって延びている延出部2eを有していてもよい。図5Bは図5Aの破線部を拡大した平面図である。第1金属膜2cが、第1端部1cの近傍に延出部2eを有すると、第1金属膜2cと外部電極4との接続部の面積が大きくなり、接続部の抵抗を小さくできる。図5Cに示すように、延出部2eは第2端部1dの近傍に位置していてもよい。 Second Embodiment
As shown in FIGS. 5A and 5B, thefirst metal film 2c is located at either the first end 1c or the second end 1d of the dielectric film 1 and extends toward the third end 1e. The extending portion 2e may be provided. FIG. 5B is an enlarged plan view of the broken line portion of FIG. 5A. When the first metal film 2c has the extended portion 2e in the vicinity of the first end 1c, the area of the connection portion between the first metal film 2c and the external electrode 4 is increased, and the resistance of the connection portion can be reduced. As shown in FIG. 5C, the extension 2e may be located in the vicinity of the second end 1d.
第1金属膜2cは、図5A、図5Bに示すように、誘電体フィルム1の第1端部1cまたは第2端部1dのいずれかに位置し、第3端部1eに向かって延びている延出部2eを有していてもよい。図5Bは図5Aの破線部を拡大した平面図である。第1金属膜2cが、第1端部1cの近傍に延出部2eを有すると、第1金属膜2cと外部電極4との接続部の面積が大きくなり、接続部の抵抗を小さくできる。図5Cに示すように、延出部2eは第2端部1dの近傍に位置していてもよい。 Second Embodiment
As shown in FIGS. 5A and 5B, the
たとえば、図2Aに示すフィルムコンデンサAでは、誘電体フィルム1aの第1端部1acの近傍とは、金属化フィルム5aと金属化フィルム5bとが積層された状態で、誘電体フィルム1aが誘電体フィルム1bのマージン部6bと重なる部分を指す。すなわち、第1端部1ac近傍の第3端部1eに延出部2eを有するのは、第1端部1acが位置する本体端部3aで外部電極4aに電気的に接続される金属膜2acのみである。また、誘電体フィルム1bの第1端部1bcの近傍とは、金属化フィルム5aと金属化フィルム5bとが積層された状態で、誘電体フィルム1bが誘電体フィルム1aのマージン部6aと重なる部分を指す。すなわち、第1端部1bc近傍の第3端部1eに延出部2eを有するのは、第1端部1bcが位置する本体端部3bで外部電極4bに電気的に接続される金属膜2bcのみである。なお、図5Aは図2Aの金属化フィルム5a、5bに共通な特徴を説明するため、a、bの符号を省略している。
For example, in the film capacitor A shown in FIG. 2A, the vicinity of the first end 1ac of the dielectric film 1a is a state in which the metallized film 5a and the metallized film 5b are laminated, and the dielectric film 1a is a dielectric. The point which overlaps the margin part 6b of the film 1b is pointed out. That is, the metal film 2ac electrically connected to the external electrode 4a at the main body end 3a where the first end 1ac is located has the extension 2e at the third end 1e in the vicinity of the first end 1ac. Only. The vicinity of the first end portion 1bc of the dielectric film 1b is a portion where the dielectric film 1b overlaps the margin portion 6a of the dielectric film 1a in a state where the metallized film 5a and the metallized film 5b are laminated. Point to. That is, the metal film 2bc electrically connected to the external electrode 4b at the main body end 3b where the first end 1bc is located has the extension 2e at the third end 1e in the vicinity of the first end 1bc. Only. In FIG. 5A, the symbols a and b are omitted in order to explain the features common to the metallized films 5a and 5b in FIG. 2A.
第1端部1ac、1bcの近傍は、さらに金属化フィルム5aと金属化フィルム5bとが重ならないずらし部Sを含んでもよい。
The vicinity of the first end portions 1ac and 1bc may further include a shift portion S where the metallized film 5a and the metallized film 5b do not overlap.
図2Bに示す直列接続型のフィルムコンデンサAの場合、誘電体フィルム1aの第1端部1acの近傍および第2端部1adの近傍とは、本開示では、金属化フィルム5aと金属化フィルム5bとが積層された状態で、誘電体フィルム1aが誘電体フィルム1bのマージン部6bと重なる部分をいう。すなわち、図5Cに示すように、第1端部1ac近傍の第3端部1eでは、第1端部1acが位置する本体端部3aで外部電極4aに電気的に接続される金属膜2a1cが延出部2eを有し、第2端部1ad近傍の第3端部1eでは、第2端部1adが位置する本体端部3bで外部電極4bに電気的に接続される金属膜2a2cが延出部2eを有する。金属膜2bcは外部電極4a、4bのいずれにも接続されず、延出部2eを有さない。
In the case of the serial connection type film capacitor A shown in FIG. 2B, the vicinity of the first end 1ac and the vicinity of the second end 1ad of the dielectric film 1a are, in the present disclosure, the metallized film 5a and the metallized film 5b. Is a portion where the dielectric film 1a overlaps the margin portion 6b of the dielectric film 1b. That is, as shown in FIG. 5C, at the third end 1e in the vicinity of the first end 1ac, the metal film 2a1c electrically connected to the external electrode 4a at the body end 3a where the first end 1ac is located is formed. In the third end 1e having the extending portion 2e and in the vicinity of the second end 1ad, the metal film 2a2c electrically connected to the external electrode 4b is extended at the body end 3b where the second end 1ad is located. It has a protruding portion 2e. The metal film 2bc is not connected to any of the external electrodes 4a and 4b and does not have the extending portion 2e.
第1端部1ac近傍、第2端部1ad近傍は、さらに金属化フィルム5aと金属化フィルム5bとが重ならないずらし部Sを含んでもよい。
The vicinity of the first end 1ac and the vicinity of the second end 1ad may further include a shift portion S where the metallized film 5a and the metallized film 5b do not overlap.
以下、図2Aおよび図2Bに共通する特徴について説明する。第1金属膜2cが延出部2eを有する場合、第2金属膜2dは、図4に示すように設けられる。すなわち、第1の溝8が、マージン部6から第1方向xに延びるとともに、第1端部1cまたは第2端部1dの近傍で第3端部1eに向かって第3端部1eまで延びている。第1の溝8により、第1金属膜2cと第2金属膜2dとは離間している。
Hereinafter, features common to FIGS. 2A and 2B will be described. When the first metal film 2c has the extending portion 2e, the second metal film 2d is provided as shown in FIG. That is, the first groove 8 extends from the margin portion 6 in the first direction x, and extends to the third end portion 1e toward the third end portion 1e in the vicinity of the first end portion 1c or the second end portion 1d. ing. Due to the first groove 8, the first metal film 2 c and the second metal film 2 d are separated from each other.
図2Aの場合、金属膜2aはマージン部6aにより外部電極4bと電気的に絶縁され、金属膜2bはマージン部6bにより外部電極4aと電気的に絶縁されている。また、図2Bの場合、金属膜2a1はマージン部6aにより外部電極4bと電気的に絶縁され、金属膜2a2はマージン部6aにより外部電極4aと電気的に絶縁されている。金属膜2bはマージン部6bにより外部電極4a、4bの両方と電気的に絶縁されている。そのため、第2実施形態では図2A、図2Bいずれも場合も、第2金属膜2dは外部電極4に接続されない。したがって、本体部3の本体端面3cにおいて、切断により異なる層に位置する第2金属膜2d同士が接触しても、フィルムコンデンサA自体の絶縁劣化は低減される。
In the case of FIG. 2A, the metal film 2a is electrically insulated from the external electrode 4b by the margin portion 6a, and the metal film 2b is electrically insulated from the external electrode 4a by the margin portion 6b. In the case of FIG. 2B, the metal film 2a1 is electrically insulated from the external electrode 4b by the margin portion 6a, and the metal film 2a2 is electrically insulated from the external electrode 4a by the margin portion 6a. The metal film 2b is electrically insulated from both the external electrodes 4a and 4b by the margin portion 6b. Therefore, in the second embodiment, the second metal film 2d is not connected to the external electrode 4 in both cases of FIG. 2A and FIG. 2B. Therefore, even if the second metal films 2d located in different layers come into contact with each other on the main body end surface 3c of the main body portion 3, the insulation deterioration of the film capacitor A itself is reduced.
図5A、図5Bに示すように、マージン部6の幅をt1とし、延出部2eの第2端部1dに最も近い部位と第1端部1cとの距離をt2とし、第1の溝8の第3端部1eにおける幅をt3とする。言い換えれば、延出部2eは第1端部1cからの距離がt2以下の部位に納まっている。マージン部6の幅t1は、たとえば1.5mm以上3.0mm以下としてもよい。ずらし部Sのずらし量sは、たとえば0.2mm以上1.0mm以下としてもよい。t3は、たとえば0.15mm以上としてもよい。t2は、たとえばt2とt3との和が、t1とsとの和以下、すなわち(t2+t3)≦(t1+s)となるようにしてもよい。(t2+t3)≦(t1+s)とすることで、フィルムコンデンサA自体の絶縁劣化をより低減することができる。
As shown in FIGS. 5A and 5B, the width of the margin portion 6 is t1, the distance between the portion closest to the second end 1d of the extending portion 2e and the first end 1c is t2, and the first groove 8, the width at the third end 1e is t3. In other words, the extending part 2e is housed in a part whose distance from the first end part 1c is t2 or less. The width t1 of the margin portion 6 may be, for example, not less than 1.5 mm and not more than 3.0 mm. The shift amount s of the shift portion S may be, for example, 0.2 mm or more and 1.0 mm or less. t3 may be, for example, 0.15 mm or more. For example, t2 may be set such that the sum of t2 and t3 is equal to or less than the sum of t1 and s, that is, (t2 + t3) ≦ (t1 + s). By satisfying (t2 + t3) ≦ (t1 + s), the insulation deterioration of the film capacitor A itself can be further reduced.
t2は、具体的にはたとえば4.0mm以下としてもよく、さらに2.0mm以下、特に1.8mm以下としてもよい。また、t2はたとえば0.05mm以上であってもよい。一般的な幅t1を有するマージン部6および一般的なずらし幅sを有するフィルムコンデンサAで、t2をこのような範囲とすると、フィルムコンデンサA自体の絶縁劣化をより低減することができる。なお、上述の関係は、本体端部3aに位置するt1、t2、t3およびsの関係を示しており、また、本体端部3bに位置するt1、t2、t3およびsの関係を示している。
T2 may specifically be 4.0 mm or less, for example, 2.0 mm or less, and particularly 1.8 mm or less. Moreover, t2 may be 0.05 mm or more, for example. When the margin portion 6 having the general width t1 and the film capacitor A having the general shift width s are set to t2 in such a range, the insulation deterioration of the film capacitor A itself can be further reduced. The above relationship shows the relationship between t1, t2, t3 and s located at the main body end 3a, and also shows the relationship between t1, t2, t3 and s located at the main body end 3b. .
以下、第2金属膜2dの変更例について説明する。これらの変更例は、第1実施形態、第2実施形態のどちらにも適用できる。
Hereinafter, a modified example of the second metal film 2d will be described. These modifications can be applied to both the first embodiment and the second embodiment.
第2金属膜2dは、互いに離間した複数の分割部位2diを有していてもよい。図6A、図7A~図7Cは、いずれも図3A~図3Cの破線部を拡大した平面図に相当する。図6Aに示すように、第2の溝9は、第1方向xに延び、第2金属膜2dを複数の分割部位2diに分割していてもよい。図6Bは図6Aのvi-vi線断面図である。また、図7Aに示すように、第2金属膜2dは、第2方向yに延びた第3の溝10により互いに離間した複数の分割部位2diにより構成されていてもよい。第3の溝10は、第1の溝8とつながっていてもよい。第2の溝9、第3の溝10は、複数の分割部位2diを互いに離間させる空隙である。第2の溝9と第3の溝10は、それぞれ単独で配置されてもよいし、図7Aに示すように両方が同時に配置されてもよい。
The second metal film 2d may have a plurality of divided portions 2di that are separated from each other. 6A and FIGS. 7A to 7C each correspond to an enlarged plan view of the broken line portion of FIGS. 3A to 3C. As shown in FIG. 6A, the second groove 9 may extend in the first direction x and divide the second metal film 2d into a plurality of divided portions 2di. 6B is a cross-sectional view taken along the line vi-vi in FIG. 6A. As shown in FIG. 7A, the second metal film 2d may be composed of a plurality of divided portions 2di separated from each other by a third groove 10 extending in the second direction y. The third groove 10 may be connected to the first groove 8. The 2nd groove | channel 9 and the 3rd groove | channel 10 are the space | gap which spaces apart the some division | segmentation site | part 2di from each other. The second groove 9 and the third groove 10 may be arranged independently, or both may be arranged simultaneously as shown in FIG. 7A.
このように、第1の溝8に加え第2の溝9および/または第3の溝10が存在すると、第2の溝9および/または第3の溝10を通じてガスが外部に抜けることができ、ガスの抜け性がさらに向上する。
As described above, when the second groove 9 and / or the third groove 10 exist in addition to the first groove 8, the gas can escape to the outside through the second groove 9 and / or the third groove 10. Further, the gas detachability is further improved.
第1実施形態において、第3の溝10は第2金属膜2dの分割部位2diのうち少なくとも一部を外部電極4と切り離す役割を有していてもよい。この場合、いずれも外部電極4に接続されず、異なる層に位置する分割部位2di同士が、本体部3の本体端面3cで接触しても、フィルムコンデンサA自体の絶縁劣化は低減される。
In the first embodiment, the third groove 10 may have a role of separating at least a part of the divided portion 2di of the second metal film 2d from the external electrode 4. In this case, none of them is connected to the external electrode 4, and even if the divided portions 2di located in different layers come into contact with each other at the main body end surface 3c of the main body 3, the insulation deterioration of the film capacitor A itself is reduced.
第1方向xに延びた第2の溝9、第2方向yに延びた第3の溝10に替えて、図7Bに示すように、第1方向x、第2方向yに対して角度を有する第4の溝11により、第2金属膜2dが複数の分割部位2diに分割されていてもよい。第4の溝11は、互いに異なる少なくとも2つの方向に延びる2種類の溝からなり、当該2種類の溝は互いに交差していてもよい。このとき、第1の溝8は、第1の方向xに直線的に延びたものであってもよいが、図7Bに示すように、第4の溝11と同様に互いに異なる2つの方向に延びる溝がつながって第1の溝8を構成してもよい。この場合、第1の溝8が配置された領域が第1の方向xに延びていてもよい。図7Bでは、第1の溝8は、第4の溝11の最も第1金属膜2c側に位置する部位であるといってもよい。このとき、W1は、第2方向yにおける第3端部1eと、有効領域7を形成する第1部位2cとの距離の最小値とする。
Instead of the second groove 9 extending in the first direction x and the third groove 10 extending in the second direction y, as shown in FIG. 7B, the angle is set with respect to the first direction x and the second direction y. The second metal film 2d may be divided into a plurality of divided portions 2di by the fourth groove 11 that is provided. The fourth groove 11 includes two kinds of grooves extending in at least two different directions, and the two kinds of grooves may intersect each other. At this time, the first groove 8 may be linearly extended in the first direction x. However, as shown in FIG. 7B, the first groove 8 is in two different directions as in the fourth groove 11. The extending groove may be connected to form the first groove 8. In this case, the region where the first groove 8 is disposed may extend in the first direction x. In FIG. 7B, it can be said that the first groove 8 is a portion of the fourth groove 11 located closest to the first metal film 2c. At this time, W1 is the minimum value of the distance between the third end 1e in the second direction y and the first part 2c forming the effective region 7.
図6A、図6B、図7Aおよび図7Bに示すW2は、第1の溝8の幅である。図6A、図6Bおよび図7Aに示すP1は、複数の第2の溝9の間隔(ピッチ)であり、図7Aに示すP2は、複数の第3の溝10の間隔(ピッチ)であり、図7Bに示すP3は、第4の溝11の間隔(ピッチ)である。
W2 shown in FIGS. 6A, 6B, 7A, and 7B is the width of the first groove 8. FIG. P1 shown in FIGS. 6A, 6B, and 7A is an interval (pitch) between the plurality of second grooves 9, and P2 shown in FIG. 7A is an interval (pitch) between the plurality of third grooves 10. P3 shown in FIG. 7B is an interval (pitch) between the fourth grooves 11.
第1の溝8の幅W2は、0.01~0.30mmの範囲であってもよい。W2は特に0.10~0.30mmであってもよい。第1の溝8の幅W2を0.01~0.30mm、特に0.10~0.30mmとすることで、第1金属膜2cと第2金属膜2dとの間の放電を抑制できるとともに、ガスの抜け性を確保できる。
The width W2 of the first groove 8 may be in the range of 0.01 to 0.30 mm. W2 may in particular be 0.10 to 0.30 mm. By setting the width W2 of the first groove 8 to 0.01 to 0.30 mm, particularly 0.10 to 0.30 mm, the discharge between the first metal film 2c and the second metal film 2d can be suppressed. , Gas detachability can be secured.
なお、第2の溝9、第3の溝10および第4の溝11の幅は、特に限定しないが、例えば第1の溝8の幅W2と同様な0.01~0.30mm、特に0.10~0.30mmの範囲とすればよい。
The widths of the second groove 9, the third groove 10, and the fourth groove 11 are not particularly limited. For example, the same width as the width W2 of the first groove 8 is 0.01 to 0.30 mm, particularly 0. The range may be 10 to 0.30 mm.
第2の溝9の間隔P1、第3の溝10の間隔P2は、すべて同じでもよいし、それぞれ異なっていてもよい。第4の溝11の間隔P3は、すべて同じでもよいし、異なる方向に延びる第4の溝11同士でそれぞれ異なっていてもよい。また、第4の溝11の間隔P3がすべて異なっていてもよい。
The interval P1 between the second grooves 9 and the interval P2 between the third grooves 10 may all be the same or different. The intervals P3 of the fourth grooves 11 may all be the same, or may be different between the fourth grooves 11 extending in different directions. Further, all the intervals P3 of the fourth grooves 11 may be different.
第2の溝9、第3の溝10および第4の溝11の底部は、金属膜がない、すなわち誘電体フィルム1が露出していてもよいが、第1金属膜2c、第2金属膜2dよりも厚さが薄い金属膜2により構成されていてもよい。すなわち、第2の溝9、第3の溝10および第4の溝11のz方向の深さは、第2金属膜2dのz方向の厚さより小さくてもよい。
The bottoms of the second groove 9, the third groove 10, and the fourth groove 11 have no metal film, that is, the dielectric film 1 may be exposed, but the first metal film 2c, the second metal film You may be comprised with the metal film 2 whose thickness is thinner than 2d. That is, the depth in the z direction of the second groove 9, the third groove 10, and the fourth groove 11 may be smaller than the thickness in the z direction of the second metal film 2d.
第2金属膜2dは、上述のように第1の溝8、第2の溝9、第3の溝10、第4の溝11により分割された分割部位2diにより構成されていてもよいが、図7Cに示すように、飛び石状に配置された分割部位2diにより構成されていてもよい。分割部位2diを飛び石状に配置する場合、分割部位2diが占有する面積の比率は、たとえば25~50%としてもよい。
As described above, the second metal film 2d may be constituted by the divided portion 2di divided by the first groove 8, the second groove 9, the third groove 10, and the fourth groove 11, As shown to FIG. 7C, you may be comprised by the division | segmentation site | part 2di arrange | positioned at stepping stone shape. When the divided parts 2di are arranged in a stepping stone shape, the ratio of the area occupied by the divided parts 2di may be, for example, 25 to 50%.
また、図6A、図6B、および図7A~図7Cでは分割部位2diを短冊状または矩形状としたが、これに限らず、三角形状、多角形状、円形状、楕円形状、さらに不定形状の分割部位2diであってもよい。
6A, 6B, and 7A to 7C, the divided portion 2di is formed in a strip shape or a rectangular shape. However, the shape is not limited to this, and the division is not limited to this. The part 2di may be used.
なお、フィルムコンデンサAでは、金属膜2a、2bの両方が、上述のような構造を有していてもよい。
In the film capacitor A, both the metal films 2a and 2b may have the structure as described above.
このようなフィルムコンデンサAは、絶縁性が高く、部分的に絶縁破壊しても発生したガスのガス抜け性が良好で、自己回復機能に優れたフィルムコンデンサとなる。
Such a film capacitor A is a film capacitor that has high insulation properties, good gas escape characteristics even when the dielectric breakdown partially occurs, and an excellent self-healing function.
誘電体フィルム1に用いる絶縁性の樹脂の材料としては、例えばポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、ポリエチレンナフタレート(PEN)、ポリアリレート(PAR)、ポリフェニレンエーテル(PPE)、ポリエーテルイミド(PEI)、およびシクロオレフィンポリマー(COP)などが挙げられる。特にシクロオレフィンポリマー(COP)、ポリアリレート(PAR)は、絶縁破壊電圧が高い。
Examples of the insulating resin material used for the dielectric film 1 include polypropylene (PP), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), polyarylate (PAR), and polyphenylene ether (PPE). ), Polyetherimide (PEI), and cycloolefin polymer (COP). In particular, cycloolefin polymer (COP) and polyarylate (PAR) have a high dielectric breakdown voltage.
また、シクロオレフィンポリマー(COP)、ポリアリレート(PAR)は、フィルム化した時のフィルム同士の密着性が高く、ガスが蒸散しにくい傾向があるが、上述のような第2金属膜2dを設けることにより大きな自己回復性の向上効果が得られる。
In addition, cycloolefin polymer (COP) and polyarylate (PAR) have high adhesion between films when formed into a film and gas tends not to evaporate. However, the second metal film 2d as described above is provided. As a result, a large self-recovery improvement effect can be obtained.
誘電体フィルム1は、例えば絶縁性の樹脂を溶媒に溶解した樹脂溶液を、例えば、ポリエチレンテレフタレート(PET)製の基材の表面にシート状に成形し、乾燥して溶剤を揮発させることにより得られる。成形方法としては、ドクターブレード法、ダイコータ法およびナイフコータ法等、周知の成膜方法から適宜選択すればよい。成形に使用する溶剤としては、例えば、メタノール、イソプロパノール、n-ブタノール、エチレングリコール、エチレングリコールモノプロピルエーテル、メチルエチルケトン、メチルイソブチルケトン、キシレン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、シクロヘキサン、又は、これらから選択された2種以上の混合物を含んだ有機溶剤を用いてもよい。また、溶融押し出し法で作製した樹脂のフィルムを延伸加工してもよい。
The dielectric film 1 is obtained, for example, by forming a resin solution in which an insulating resin is dissolved in a solvent into a sheet shape on a surface of a base material made of, for example, polyethylene terephthalate (PET), and drying to volatilize the solvent. It is done. The forming method may be appropriately selected from known film forming methods such as a doctor blade method, a die coater method, and a knife coater method. Solvents used for molding include, for example, methanol, isopropanol, n-butanol, ethylene glycol, ethylene glycol monopropyl ether, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dimethylacetamide, cyclohexane Alternatively, an organic solvent containing a mixture of two or more selected from these may be used. Further, a resin film produced by a melt extrusion method may be stretched.
誘電体フィルム1は、上述の絶縁性の樹脂のみにより構成されていてもよいが、他の材料を含んでいてもよい。誘電体フィルム1に含まれる樹脂以外の構成要素としては、例えば上述の有機溶剤や無機フィラーが挙げられる。無機フィラーには、例えば、アルミナ、酸化チタン、二酸化珪素などの無機酸化物、窒化珪素など無機窒化物、ガラスなどを用いることができる。特に、ペロブスカイト型構造を有する複合酸化物など比誘電率の高い材料を無機フィラーとして用いた場合には、誘電体フィルム1全体の比誘電率が向上し、フィルムコンデンサを小型化することができる。また、無機フィラーと樹脂との相溶性を高める上で、無機フィラーにシランカップリング処理やチタネートカップリング処理等の表面処理を行ってもよい。
The dielectric film 1 may be composed of only the insulating resin described above, but may include other materials. Examples of components other than the resin contained in the dielectric film 1 include the above-described organic solvents and inorganic fillers. As the inorganic filler, for example, inorganic oxides such as alumina, titanium oxide, and silicon dioxide, inorganic nitrides such as silicon nitride, glass, and the like can be used. In particular, when a material having a high relative dielectric constant such as a composite oxide having a perovskite structure is used as the inorganic filler, the relative dielectric constant of the entire dielectric film 1 is improved, and the film capacitor can be reduced in size. In order to improve the compatibility between the inorganic filler and the resin, the inorganic filler may be subjected to a surface treatment such as a silane coupling treatment or a titanate coupling treatment.
誘電体フィルム1にこのような無機フィラーを用いる場合、無機フィラーを50質量%未満、樹脂を50質量%以上含有する複合フィルムとすることで、樹脂の可撓性を維持したまま、無機フィラーによる比誘電率向上などの効果を得ることができる。また、無機フィラーのサイズ(平均粒径)は、4~1000nmとしてもよい。
When such an inorganic filler is used for the dielectric film 1, a composite film containing less than 50% by mass of the inorganic filler and 50% by mass or more of the resin is used to maintain the flexibility of the resin. Effects such as improvement of relative dielectric constant can be obtained. The size (average particle diameter) of the inorganic filler may be 4 to 1000 nm.
誘電体フィルム1の一方の面に、図2Aに示す構造では第1方向xの端部の一方に、図2Bに示す構造では第1方向xの端部の両方または第1方向xの中央部にマスクをした後、アルミニウム(Al)などの金属成分を蒸着して金属膜2を形成し、金属化フィルム5とする。このとき、マスクした部分はマージン部6となる。
On one surface of the dielectric film 1, in the structure shown in FIG. 2A, on one end in the first direction x, in the structure shown in FIG. 2B, both ends in the first direction x or the central part in the first direction x. After masking, a metal component such as aluminum (Al) is vapor-deposited to form a metal film 2 to obtain a metallized film 5. At this time, the masked portion becomes the margin portion 6.
ヘビーエッジ構造を形成する場合は、上述の金属化フィルム5のヘビーエッジを形成する部分以外をマスクし、上述の蒸着した金属成分のマスクの無い部分の上にさらに、たとえば亜鉛(Zn)を蒸着して形成する。このとき、ヘビーエッジとして蒸着する膜の厚さは、上述の蒸着した金属成分の1~3倍の厚さとする。
In the case of forming a heavy edge structure, the metallized film 5 other than the part where the heavy edge is formed is masked, and, for example, zinc (Zn) is vapor-deposited on the part without the mask of the deposited metal component. To form. At this time, the thickness of the film deposited as a heavy edge is set to 1 to 3 times the thickness of the deposited metal component.
金属膜2には、必要に応じてパターンを形成する。金属膜2のパターン形成には、金属蒸着膜を飛ばすことが可能な、レーザーマーカー機またはレーザートリマー機を用いる。レーザーとしては、グリーンレーザー、YAGレーザーおよびCO2レーザーのうちいずれかを用いればよい。
A pattern is formed on the metal film 2 as necessary. For the pattern formation of the metal film 2, a laser marker machine or a laser trimmer machine capable of skipping a metal vapor deposition film is used. As the laser, any one of a green laser, a YAG laser, and a CO 2 laser may be used.
<フィルムコンデンサの作製方法>
本開示の積層型のフィルムコンデンサAは、以下のようにして作製すればよい。一方の面に金属膜2(2a、2b)を有する金属化フィルム5(5a、5b)を所望の形状に切断した後、複数積層し、積層体を得る。このとき、図2Aに示す構造では、金属化フィルム5aと5bとを、マージン部6a、6bが第1方向xの異なる端部に位置するように、交互に積層する。また、金属化フィルム5aと5bとは、図2Aに示すように、少し第1方向xにずれた状態で重ねあわせる。図2Bに示す構造の場合は、第1方向xの中央にマージン6aを有する金属化フィルム5aと、それより第1方向xの幅が少し小さく、第1方向xの両端にマージン部6bを有する金属化フィルム5bとを図2Bのように交互に積層する。 <Production method of film capacitor>
The multilayer film capacitor A of the present disclosure may be manufactured as follows. After the metallized film 5 (5a, 5b) having the metal film 2 (2a, 2b) on one surface is cut into a desired shape, a plurality of layers are laminated to obtain a laminate. At this time, in the structure shown in FIG. 2A, the metallized films 5a and 5b are alternately stacked so that the margin portions 6a and 6b are located at different end portions in the first direction x. Moreover, as shown in FIG. 2A, the metallized films 5a and 5b are overlapped with each other while being slightly shifted in the first direction x. In the case of the structure shown in FIG. 2B, a metallized film 5a having a margin 6a in the center of the first direction x, and a width in the first direction x slightly smaller than that, and margin portions 6b at both ends of the first direction x. The metallized films 5b are alternately laminated as shown in FIG. 2B.
本開示の積層型のフィルムコンデンサAは、以下のようにして作製すればよい。一方の面に金属膜2(2a、2b)を有する金属化フィルム5(5a、5b)を所望の形状に切断した後、複数積層し、積層体を得る。このとき、図2Aに示す構造では、金属化フィルム5aと5bとを、マージン部6a、6bが第1方向xの異なる端部に位置するように、交互に積層する。また、金属化フィルム5aと5bとは、図2Aに示すように、少し第1方向xにずれた状態で重ねあわせる。図2Bに示す構造の場合は、第1方向xの中央にマージン6aを有する金属化フィルム5aと、それより第1方向xの幅が少し小さく、第1方向xの両端にマージン部6bを有する金属化フィルム5bとを図2Bのように交互に積層する。 <Production method of film capacitor>
The multilayer film capacitor A of the present disclosure may be manufactured as follows. After the metallized film 5 (5a, 5b) having the metal film 2 (2a, 2b) on one surface is cut into a desired shape, a plurality of layers are laminated to obtain a laminate. At this time, in the structure shown in FIG. 2A, the metallized
得られた積層体を切断することで、個片の本体部3を得る。このとき、切断する箇所の近傍の表面にあらかじめレーザーを照射し、第1方向xに延びる第1の溝8を形成する。レーザーの照射方向はz方向、すなわち積層方向とする。
The main body part 3 of an individual piece is obtained by cut | disconnecting the obtained laminated body. At this time, the surface in the vicinity of the portion to be cut is irradiated with laser in advance to form the first groove 8 extending in the first direction x. The laser irradiation direction is the z direction, that is, the stacking direction.
誘電体フィルム1は透明でレーザーを透過させるため、レーザーが照射された層の金属膜2が除去されることで、次の層の金属膜2にレーザーが照射される。したがって、積層体の表面にレーザーを照射することで、積層された金属化フィルム5のすべての同じ位置に、第1の溝8を形成することができる。
Since the dielectric film 1 is transparent and transmits the laser, the metal film 2 in the layer irradiated with the laser is removed, so that the metal film 2 in the next layer is irradiated with the laser. Therefore, the 1st groove | channel 8 can be formed in all the same positions of the laminated | stacked metallized film 5 by irradiating the surface of a laminated body with a laser.
形成された第1の溝8に沿ってその近傍で積層体を切断することで、切断面を第3端部1eとする本体部3が得られる。積層体には、切断箇所を挟んで2つの第1の溝8を形成し、その2つの第1の溝8の間で積層体切断する。これにより、第1金属膜2cと、第1金属膜2cと第3端部1eとの間に配置された第2金属膜2dと、を有する本体部3が得られる。
The main body 3 having the cut surface as the third end 1e is obtained by cutting the laminate along the formed first groove 8 in the vicinity thereof. In the laminated body, two first grooves 8 are formed with a cut portion interposed therebetween, and the laminated body is cut between the two first grooves 8. Thereby, the main body 3 having the first metal film 2c and the second metal film 2d disposed between the first metal film 2c and the third end 1e is obtained.
得られた本体部3の第1方向xの両端面にメタリコン電極を形成して外部電極4とすることで、フィルムコンデンサAが得られる。外部電極4の形成には、例えば、金属の溶射、スパッタ法、メッキ法などが好適である。
The film capacitor A is obtained by forming the metallicon electrodes on both end faces in the first direction x of the main body 3 to be the external electrodes 4. For the formation of the external electrode 4, for example, metal spraying, sputtering, plating, or the like is suitable.
次いで、必要に応じ、外部電極4を形成した本体部3の表面を図示しない外装部材で覆ってもよい。
Next, if necessary, the surface of the main body 3 on which the external electrode 4 is formed may be covered with an exterior member (not shown).
金属膜2の材料としては、例えばアルミニウム(Al)、亜鉛(Zn)などの金属や合金などが挙げられる。
Examples of the material of the metal film 2 include metals such as aluminum (Al) and zinc (Zn) and alloys.
また、メタリコン電極の材料としては、亜鉛、アルミニウム、銅およびハンダから選ばれる少なくとも1種の金属材料が挙げられる。
Also, the material of the metallicon electrode includes at least one metal material selected from zinc, aluminum, copper and solder.
なお、第1の溝8は、誘電体フィルム1に金属成分を蒸着する際に、第1の溝8の位置にマスクをすることにより形成することもできる。第1の溝8の他、第2の溝9、第3の溝10、第4の溝11等を形成し、第2金属膜2dに複数の分割部位2diを形成する場合は、積層前の金属化フィルム5の金属膜2にレーザー照射する、または、積層体の表面にレーザー照射することで第1の溝8~第4の溝11を形成してもよい。
The first groove 8 can also be formed by masking the position of the first groove 8 when depositing a metal component on the dielectric film 1. In addition to the first groove 8, the second groove 9, the third groove 10, the fourth groove 11, and the like are formed, and when the plurality of divided portions 2 di are formed in the second metal film 2 d, The first groove 4 to the fourth groove 11 may be formed by irradiating the metal film 2 of the metallized film 5 with laser or irradiating the surface of the laminate with laser.
<連結型コンデンサ>
図8は、連結型コンデンサの実施形態の一つを模式的に示した斜視図である。図8では、構成を分かりやすくするために、ケースおよびモールド樹脂を省略している。連結型コンデンサCでは、複数個のフィルムコンデンサが一対のバスバー21、23により並列接続されている。バスバー21、23は、外部接続用の端子部21a、23aとフィルムコンデンサAの外部電極4a、4bにそれぞれ接続される引出端子部21b、23bを有している。 <Connected capacitor>
FIG. 8 is a perspective view schematically showing one embodiment of a coupled capacitor. In FIG. 8, the case and the mold resin are omitted for easy understanding of the configuration. In the coupled capacitor C, a plurality of film capacitors are connected in parallel by a pair of bus bars 21 and 23. The bus bars 21 and 23 have lead terminal portions 21b and 23b connected to the external connection terminal portions 21a and 23a and the external electrodes 4a and 4b of the film capacitor A, respectively.
図8は、連結型コンデンサの実施形態の一つを模式的に示した斜視図である。図8では、構成を分かりやすくするために、ケースおよびモールド樹脂を省略している。連結型コンデンサCでは、複数個のフィルムコンデンサが一対のバスバー21、23により並列接続されている。バスバー21、23は、外部接続用の端子部21a、23aとフィルムコンデンサAの外部電極4a、4bにそれぞれ接続される引出端子部21b、23bを有している。 <Connected capacitor>
FIG. 8 is a perspective view schematically showing one embodiment of a coupled capacitor. In FIG. 8, the case and the mold resin are omitted for easy understanding of the configuration. In the coupled capacitor C, a plurality of film capacitors are connected in parallel by a pair of
連結型コンデンサCが上記したフィルムコンデンサAを含むと、自己回復性に優れた連結型コンデンサCを得ることができる。
When the connected capacitor C includes the film capacitor A described above, the connected capacitor C having excellent self-recovery property can be obtained.
連結型コンデンサCは、フィルムコンデンサを複数個、たとえば4個並べた状態で、本体部3の両端にそれぞれ形成された外部電極4a、4bに、接合材を介してバスバー21、23を取り付けることによって得られる。
The connection type capacitor C is formed by attaching bus bars 21 and 23 to the external electrodes 4a and 4b formed on both ends of the main body part 3 with bonding materials in a state where a plurality of, for example, four film capacitors are arranged. can get.
なお、フィルムコンデンサAや連結型コンデンサCは、ケースに収納したのちケース内の空隙に樹脂を充填し、樹脂モールド型(ケースモールド型)のコンデンサとすることもできる。
Note that the film capacitor A and the connected capacitor C can be made into a resin mold type (case mold type) capacitor after being accommodated in the case and filled with a resin in the gap in the case.
<インバータ>
図9は、インバータの実施形態のひとつを説明するための概略構成図である。図9には、直流から交流を作り出すインバータDの例を示している。本実施形態のインバータDは、図9に示すように、スイッチング素子(例えば、IGBT(Insulated gate Bipolar Transistor))とダイオードにより構成されるブリッジ回路31と、電圧安定化のためにブリッジ回路31の入力端子間に配置された容量部33とを備えている。インバータDは、容量部33として上記のフィルムコンデンサAを含む。 <Inverter>
FIG. 9 is a schematic configuration diagram for explaining one of the embodiments of the inverter. FIG. 9 shows an example of an inverter D that generates alternating current from direct current. As shown in FIG. 9, the inverter D of the present embodiment includes a bridge circuit 31 composed of a switching element (for example, an IGBT (Insulated Gate Bipolar Transistor)) and a diode, and an input of the bridge circuit 31 for voltage stabilization. And acapacitor 33 disposed between the terminals. The inverter D includes the film capacitor A described above as the capacitor unit 33.
図9は、インバータの実施形態のひとつを説明するための概略構成図である。図9には、直流から交流を作り出すインバータDの例を示している。本実施形態のインバータDは、図9に示すように、スイッチング素子(例えば、IGBT(Insulated gate Bipolar Transistor))とダイオードにより構成されるブリッジ回路31と、電圧安定化のためにブリッジ回路31の入力端子間に配置された容量部33とを備えている。インバータDは、容量部33として上記のフィルムコンデンサAを含む。 <Inverter>
FIG. 9 is a schematic configuration diagram for explaining one of the embodiments of the inverter. FIG. 9 shows an example of an inverter D that generates alternating current from direct current. As shown in FIG. 9, the inverter D of the present embodiment includes a bridge circuit 31 composed of a switching element (for example, an IGBT (Insulated Gate Bipolar Transistor)) and a diode, and an input of the bridge circuit 31 for voltage stabilization. And a
なお、このインバータDは、直流電源の電圧を昇圧する昇圧回路35に接続される。一方、ブリッジ回路31は駆動源となるモータジェネレータ(モータM)に接続される。
The inverter D is connected to a booster circuit 35 that boosts the voltage of the DC power supply. On the other hand, the bridge circuit 31 is connected to a motor generator (motor M) serving as a drive source.
<電動車輌>
図10は、電動車輌の概略構成図である。図10には、実施形態の一例として、ハイブリッド自動車(HEV)を示している。 <Electric vehicle>
FIG. 10 is a schematic configuration diagram of an electric vehicle. FIG. 10 shows a hybrid vehicle (HEV) as an example of the embodiment.
図10は、電動車輌の概略構成図である。図10には、実施形態の一例として、ハイブリッド自動車(HEV)を示している。 <Electric vehicle>
FIG. 10 is a schematic configuration diagram of an electric vehicle. FIG. 10 shows a hybrid vehicle (HEV) as an example of the embodiment.
電動車輌Eは、駆動用のモータ41、エンジン43、トランスミッション45、インバータ47、電源(電池)49、前輪51aおよび後輪51bを備えている。
The electric vehicle E includes a driving motor 41, an engine 43, a transmission 45, an inverter 47, a power source (battery) 49, a front wheel 51a, and a rear wheel 51b.
電動車輌Eは、駆動源としてモータ41、エンジン43、またはその両方の出力を備えている。駆動源の出力は、トランスミッション45を介して左右一対の前輪51aに伝達される。電源49は、インバータ47に接続され、インバータ47はモータ41に接続されている。
The electric vehicle E has outputs of the motor 41, the engine 43, or both as a drive source. The output of the drive source is transmitted to the pair of left and right front wheels 51a via the transmission 45. The power source 49 is connected to the inverter 47, and the inverter 47 is connected to the motor 41.
また、図10に示した電動車輌Eは、車輌ECU53、およびエンジンECU57を備えている。車輌ECU53は、電動車輌E全体の統括的な制御を行う。エンジンECU57は、エンジン43の回転数を制御し電動車輌Eを駆動する。電動車輌Eは、さらに運転者に操作されるイグニッションキー55、図示しないアクセルペダル、およびブレーキ等の運転装置を備えている。車輌ECU53には、運転者等による運転装置の操作に応じた駆動信号が入力される。車輌ECU53は、その駆動信号に基づいて、指示信号をエンジンECU57、電源49、および負荷としてのインバータ47に出力する。エンジンECU57は、指示信号に応答してエンジン43の回転数を制御し、電動車輌Eを駆動する。
Further, the electric vehicle E shown in FIG. 10 includes a vehicle ECU 53 and an engine ECU 57. The vehicle ECU 53 performs overall control of the entire electric vehicle E. The engine ECU 57 controls the rotational speed of the engine 43 to drive the electric vehicle E. The electric vehicle E further includes driving devices such as an ignition key 55 operated by the driver, an accelerator pedal (not shown), and a brake. A drive signal corresponding to the operation of the driving device by the driver or the like is input to the vehicle ECU 53. Based on the drive signal, vehicle ECU 53 outputs an instruction signal to engine ECU 57, power supply 49, and inverter 47 as a load. The engine ECU 57 controls the rotational speed of the engine 43 in response to the instruction signal and drives the electric vehicle E.
電動車輌Eのインバータ47として、インバータD、すなわち上記のフィルムコンデンサAまたは連結型コンデンサCを容量部33として適用したインバータDを用いる。このような電動車輌Eでは、フィルムコンデンサAが自己回復性に優れたものであるため、静電容量が長期間に渡り維持でき、インバータ47等で発生するスイッチング・ノイズを長期間低減することができる。
As the inverter 47 of the electric vehicle E, the inverter D, that is, the inverter D to which the film capacitor A or the connected capacitor C is applied as the capacity unit 33 is used. In such an electric vehicle E, since the film capacitor A is excellent in self-recovery, the electrostatic capacity can be maintained for a long period of time, and the switching noise generated in the inverter 47 or the like can be reduced for a long period of time. it can.
なお、本実施形態のインバータDは、上記のハイブリッド自動車(HEV)のみならず、電気自動車(EV)や燃料電池車、あるいは電動自転車、発電機、太陽電池など種々の電力変換応用製品に適用できる。
In addition, the inverter D of this embodiment can be applied not only to the hybrid vehicle (HEV) described above but also to various power conversion application products such as an electric vehicle (EV), a fuel cell vehicle, an electric bicycle, a generator, and a solar cell. .
環状シクロオレフィン系の樹脂であるZEONOR(登録商標)(日本ゼオン製)を用いて、平均厚さ3μmの誘電体フィルムを作製した。ZEONOR(登録商標)(日本ゼオン製)をトルエンに溶解し、コータを用いてポリエチレンテレフタレート(PET)製の基材上に塗布し、シート状に成形した。成形後、130℃で熱処理してトルエンを除去し、誘電体フィルムを得た。
A dielectric film having an average thickness of 3 μm was prepared using ZEONOR (registered trademark) (manufactured by ZEON), which is a cyclic cycloolefin resin. ZEONOR (registered trademark) (manufactured by Nippon Zeon) was dissolved in toluene, applied onto a polyethylene terephthalate (PET) substrate using a coater, and molded into a sheet. After molding, heat treatment was performed at 130 ° C. to remove toluene, and a dielectric film was obtained.
得られた誘電体フィルムを基材から剥離し、130mm幅にスリット加工した後、誘電体フィルムの一方の主面に金属膜として、メタルマスクを用いて97mm幅のAl金属膜を真空蒸着法により形成した。
The obtained dielectric film was peeled off from the substrate and slitted to a width of 130 mm, and then a 97 mm wide Al metal film was formed by vacuum deposition using a metal mask as a metal film on one main surface of the dielectric film. Formed.
次いで、グリーン・レーザーマーカーを用いて金属膜にパターンを形成した。レーザー照射条件は、出力4W、周波数140kHz、スキャン速度4m/秒とした。
Next, a pattern was formed on the metal film using a green laser marker. The laser irradiation conditions were an output of 4 W, a frequency of 140 kHz, and a scanning speed of 4 m / second.
130mm幅の金属化フィルムをさらにスリット加工し、1.5mmの絶縁マージン部(誘電体フィルムが露出した金属膜非形成部)を有する50mm幅の金属化フィルムとした。
A 130 mm wide metallized film was further slit to obtain a 50 mm wide metallized film having a 1.5 mm insulation margin (a metal film non-formed part where the dielectric film was exposed).
この金属化フィルムを、金属膜が誘電体フィルムを介して対向するように重ね合わせて積層体を作製した。なお、金属化フィルムの絶縁マージン部が、第1方向xの異なる側に交互に配置されるように積層した。また、金属化フィルムは、図2Aに示すように、1層ごとに第1方向xに0.5mmずれた状態で積層した。積層数は100層とした。
This metallized film was overlapped so that the metal film faced through the dielectric film, to produce a laminate. In addition, it laminated | stacked so that the insulation margin part of a metallized film might be alternately arrange | positioned on the different side of the 1st direction x. Moreover, the metallized film was laminated | stacked in the state which shifted | deviated 0.5 mm in the 1st direction x for every layer, as shown to FIG. 2A. The number of layers was 100.
得られた積層体には、グリーン・レーザーマーカーを用いて所定の部位にレーザーを照射し、金属膜2に表1に示すような溝を形成した。この積層体を、レーザー照射により形成した第1の溝に沿って切断し、本体部を得た。
In the obtained laminate, a predetermined portion was irradiated with a laser using a green laser marker to form grooves as shown in Table 1 in the metal film 2. This laminate was cut along the first groove formed by laser irradiation to obtain a main body.
得られた本体部の第1方向xの対向する端面に亜鉛と錫との合金を溶射し、外部電極であるメタリコン電極を形成してフィルムコンデンサとした。
A film capacitor was obtained by spraying an alloy of zinc and tin on the opposing end faces in the first direction x of the main body to form a metallicon electrode as an external electrode.
作製したフィルムコンデンサの静電容量、耐電圧、耐電圧試験前後の絶縁抵抗を測定した。静電容量は、LCRメータを用いてAC1V、1kHzの条件で測定した。絶縁抵抗および耐電圧は、絶縁抵抗計を用いて測定した。耐電圧は、絶縁抵抗計を用いて、フィルムコンデンサに0Vから毎秒10Vの昇圧速度で直流電圧を印加する昇圧試験を行い、リーク電流が0.01Aに達したときの電圧とした。
The capacitance, withstand voltage, and insulation resistance before and after the withstand voltage test of the produced film capacitor were measured. The capacitance was measured using an LCR meter under the conditions of AC 1 V and 1 kHz. The insulation resistance and withstand voltage were measured using an insulation resistance meter. The withstand voltage was a voltage when a DC voltage was applied to the film capacitor at a boosting rate of 0 V to 10 V per second using an insulation resistance meter, and the leakage current reached 0.01 A.
試料No.1~20は、耐電圧試験前後の絶縁抵抗の低下が小さく、自己回復性に優れたものであった。一方、第2金属膜を形成しなかった試料、すなわち誘電体フィルムの第3端部近傍の金属膜を除去した試料No.21、および第1の溝を形成しなかった試料No.22は、耐電圧が低く、耐電圧試験後に絶縁抵抗が大きく低下し、自己回復性が充分に機能しなかった。なお、t2が4.0mm以下の試料No.15~17、19、20は、耐電圧試験後に絶縁抵抗の低下が小さかった。
Sample No. In Nos. 1 to 20, the decrease in insulation resistance before and after the withstand voltage test was small, and the self-recovering property was excellent. On the other hand, the sample in which the second metal film was not formed, that is, the sample No. 1 in which the metal film in the vicinity of the third end of the dielectric film was removed. 21 and the sample No. in which the first groove was not formed. No. 22 had a low withstand voltage, the insulation resistance greatly decreased after the withstand voltage test, and the self-recovery did not function sufficiently. In addition, sample No. with t2 of 4.0 mm or less In Nos. 15 to 17, 19 and 20, the decrease in insulation resistance was small after the withstand voltage test.
A:フィルムコンデンサ
C:連結型コンデンサ
D:インバータ
E:電動車輌
S:ずらし部
1、1a、1b:誘電体フィルム
2、2a、2a1、2a2、2b:金属膜
2c、2a1c、2a2c:第1金属膜
2d、2a1d、2a2d:第2金属膜
2e、2a1e、2a2e:第1金属膜の延出部
3:本体部
3a、3b:本体端部
3c:本体端面
4、4a、4b:外部電極
5、5a、5b:金属化フィルム
6:絶縁マージン部
7:有効領域
8:第1の溝
9:第2の溝
10:第3の溝
11:第4の溝
21、23:バスバー
31:ブリッジ回路
33:容量部
35:昇圧回路
41:モータ
43:エンジン
45:トランスミッション
47:インバータ
49:電源
51a:前輪
51b:後輪
53:車輌ECU
55:イグニッションキー
57:エンジンECU A: Film capacitor C: Connection type capacitor D: Inverter E: Electric vehicle S: Shifting part 1, 1a, 1b: Dielectric film 2, 2a, 2a1, 2a2, 2b: Metal film 2c, 2a1c, 2a2c: First metal Film 2d, 2a1d, 2a2d: second metal film 2e, 2a1e, 2a2e: first metal film extension part 3: main body part 3a, 3b: main body end part 3c: main body end face 4, 4a, 4b: external electrode 5, 5a, 5b: Metallized film 6: Insulation margin 7: Effective area 8: First groove 9: Second groove 10: Third groove 11: Fourth groove 21, 23: Bus bar 31: Bridge circuit 33 : Capacitor 35: Booster circuit 41: Motor 43: Engine 45: Transmission 47: Inverter 49: Power supply 51a: Front wheel 51b: Rear wheel 53: Vehicle ECU
55: Ignition key 57: Engine ECU
C:連結型コンデンサ
D:インバータ
E:電動車輌
S:ずらし部
1、1a、1b:誘電体フィルム
2、2a、2a1、2a2、2b:金属膜
2c、2a1c、2a2c:第1金属膜
2d、2a1d、2a2d:第2金属膜
2e、2a1e、2a2e:第1金属膜の延出部
3:本体部
3a、3b:本体端部
3c:本体端面
4、4a、4b:外部電極
5、5a、5b:金属化フィルム
6:絶縁マージン部
7:有効領域
8:第1の溝
9:第2の溝
10:第3の溝
11:第4の溝
21、23:バスバー
31:ブリッジ回路
33:容量部
35:昇圧回路
41:モータ
43:エンジン
45:トランスミッション
47:インバータ
49:電源
51a:前輪
51b:後輪
53:車輌ECU
55:イグニッションキー
57:エンジンECU A: Film capacitor C: Connection type capacitor D: Inverter E: Electric vehicle S: Shifting
55: Ignition key 57: Engine ECU
Claims (12)
- 矩形状の誘電体フィルムと、金属膜とが、交互に複数積層された本体部と、外部電極と、を具備し、
該外部電極は、前記本体部の第1方向の両端に位置する一対の本体端部にそれぞれ設けられ、
前記矩形状の誘電体フィルムは、前記第1方向の両端に位置する第1端部および第2端部と、前記第1方向とは異なる第2方向の両端に位置する第3端部と、を有し、
前記金属膜は、第1金属膜と、該第1金属膜と前記第3端部との間に配置された1つ以上の第2金属膜とを含み、
前記第1金属膜と前記第2金属膜とが離間しているとともに、前記第1金属膜の少なくとも一部が前記本体端部で前記外部電極に接続している、フィルムコンデンサ。 A rectangular dielectric film and a metal film, and a plurality of alternately laminated main body portions and external electrodes,
The external electrodes are respectively provided at a pair of body end portions located at both ends in the first direction of the body portion,
The rectangular dielectric film includes a first end and a second end located at both ends in the first direction, and a third end located at both ends in a second direction different from the first direction; Have
The metal film includes a first metal film, and one or more second metal films disposed between the first metal film and the third end,
The film capacitor, wherein the first metal film and the second metal film are separated from each other, and at least a part of the first metal film is connected to the external electrode at the end of the main body. - 前記第1金属膜と、前記第2金属膜との間に、第1の溝を有する、請求項1に記載のフィルムコンデンサ。 The film capacitor according to claim 1, further comprising a first groove between the first metal film and the second metal film.
- 前記第1の溝が、前記第1方向に延びている、請求項2に記載のフィルムコンデンサ。 The film capacitor according to claim 2, wherein the first groove extends in the first direction.
- 前記第2金属膜の前記第2方向の端面の少なくとも一部が、前記第3端部に位置している、請求項1~3のいずれかに記載のフィルムコンデンサ。 4. The film capacitor according to claim 1, wherein at least a part of the end surface in the second direction of the second metal film is located at the third end.
- 前記第2金属膜の少なくとも1つが、前記外部電極に電気的に接続されていない、請求項1~4のいずれかに記載のフィルムコンデンサ。 5. The film capacitor according to claim 1, wherein at least one of the second metal films is not electrically connected to the external electrode.
- 前記本体端部で前記外部電極と電気的に接続される前記第1金属膜が、前記第1端部および前記第2端部の少なくともいずれかに位置し、前記第3端部に向かって延びている延出部を有する、請求項1~5のいずれかに記載のフィルムコンデンサ。 The first metal film electrically connected to the external electrode at the end of the main body is located at at least one of the first end and the second end, and extends toward the third end. 6. The film capacitor according to claim 1, wherein the film capacitor has an extending portion.
- 前記延出部は、該延出部の位置する前記第1端部または前記第2端部からの距離が4.0mm以下の部位に納まっている、請求項6に記載のフィルムコンデンサ。 The film capacitor according to claim 6, wherein the extension portion is housed in a portion having a distance of 4.0 mm or less from the first end portion or the second end portion where the extension portion is located.
- 前記延出部の前記第1方向の長さをt2としたとき、該t2が0.05mm以上である、請求項6または7に記載のフィルムコンデンサ。 The film capacitor according to claim 6 or 7, wherein when the length of the extending portion in the first direction is t2, the t2 is 0.05 mm or more.
- 前記第2金属膜が、互いに離間した複数の分割部位を有する、請求項1~8のいずれかに記載のフィルムコンデンサ。 The film capacitor according to any one of claims 1 to 8, wherein the second metal film has a plurality of divided parts spaced apart from each other.
- 複数のフィルムコンデンサと、該複数のフィルムコンデンサを接続するバスバーと、を備え、
前記フィルムコンデンサが、請求項1~9のいずれかに記載のフィルムコンデンサを含む、連結型コンデンサ。 A plurality of film capacitors, and a bus bar connecting the plurality of film capacitors,
A connected capacitor, wherein the film capacitor includes the film capacitor according to any one of claims 1 to 9. - スイッチング素子により構成されたブリッジ回路と、該ブリッジ回路に接続された容量部とを備え、
前記容量部が、請求項1~9のいずれかに記載のフィルムコンデンサを含む、インバータ。 A bridge circuit configured by a switching element, and a capacitor connected to the bridge circuit,
An inverter, wherein the capacitor section includes the film capacitor according to any one of claims 1 to 9. - 電源と、該電源に接続されたインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備え、
前記インバータが、請求項11に記載のインバータである、電動車輌。 A power source, an inverter connected to the power source, a motor connected to the inverter, and a wheel driven by the motor,
An electric vehicle, wherein the inverter is the inverter according to claim 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019512589A JP6744486B2 (en) | 2017-04-14 | 2018-04-16 | Film capacitor, concatenated capacitor, and inverter and electric vehicle using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017080641 | 2017-04-14 | ||
JP2017-080641 | 2017-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018190437A1 true WO2018190437A1 (en) | 2018-10-18 |
Family
ID=63793404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015678 WO2018190437A1 (en) | 2017-04-14 | 2018-04-16 | Film capacitor, connection-type capacitor, and inverter and electric vehicle in which said capacitors are used |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6744486B2 (en) |
WO (1) | WO2018190437A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021049380A1 (en) * | 2019-09-13 | 2021-03-18 | 京セラ株式会社 | Film capacitor element |
US20220130611A1 (en) * | 2019-08-30 | 2022-04-28 | Murata Manufacturing Co., Ltd. | Film capacitor |
WO2022210130A1 (en) * | 2021-03-30 | 2022-10-06 | 京セラ株式会社 | Film capacitor, coupling capacitor, inverter, and electric vehicle |
US20220367116A1 (en) * | 2019-09-30 | 2022-11-17 | Kyocera Corporation | Film capacitor device |
CN116348979A (en) * | 2020-10-16 | 2023-06-27 | 株式会社指月电机制作所 | Thin film capacitor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS612313A (en) * | 1984-06-15 | 1986-01-08 | 松下電器産業株式会社 | Laminated metallized film capacitor |
JPH01222424A (en) * | 1988-03-01 | 1989-09-05 | Hitachi Condenser Co Ltd | Manufacture of laminated capacitor |
JPH10149939A (en) * | 1996-11-19 | 1998-06-02 | Matsushita Electric Ind Co Ltd | Layered metallized film capacitor |
JP2004039910A (en) * | 2002-07-04 | 2004-02-05 | Matsushita Electric Ind Co Ltd | Laminated metallized film capacitor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000269074A (en) * | 1999-03-19 | 2000-09-29 | Taiyo Yuden Co Ltd | Multilayer ceramic capacitor and manufacture thereof |
-
2018
- 2018-04-16 JP JP2019512589A patent/JP6744486B2/en active Active
- 2018-04-16 WO PCT/JP2018/015678 patent/WO2018190437A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS612313A (en) * | 1984-06-15 | 1986-01-08 | 松下電器産業株式会社 | Laminated metallized film capacitor |
JPH01222424A (en) * | 1988-03-01 | 1989-09-05 | Hitachi Condenser Co Ltd | Manufacture of laminated capacitor |
JPH10149939A (en) * | 1996-11-19 | 1998-06-02 | Matsushita Electric Ind Co Ltd | Layered metallized film capacitor |
JP2004039910A (en) * | 2002-07-04 | 2004-02-05 | Matsushita Electric Ind Co Ltd | Laminated metallized film capacitor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220130611A1 (en) * | 2019-08-30 | 2022-04-28 | Murata Manufacturing Co., Ltd. | Film capacitor |
WO2021049380A1 (en) * | 2019-09-13 | 2021-03-18 | 京セラ株式会社 | Film capacitor element |
US20220367116A1 (en) * | 2019-09-30 | 2022-11-17 | Kyocera Corporation | Film capacitor device |
US11961678B2 (en) * | 2019-09-30 | 2024-04-16 | Kyocera Corporation | Film capacitor device |
CN116348979A (en) * | 2020-10-16 | 2023-06-27 | 株式会社指月电机制作所 | Thin film capacitor |
CN116348979B (en) * | 2020-10-16 | 2024-06-11 | 株式会社指月电机制作所 | Thin film capacitor |
WO2022210130A1 (en) * | 2021-03-30 | 2022-10-06 | 京セラ株式会社 | Film capacitor, coupling capacitor, inverter, and electric vehicle |
JP7576160B2 (en) | 2021-03-30 | 2024-10-30 | 京セラ株式会社 | Film capacitors, coupled capacitors, inverters and electric vehicles |
Also Published As
Publication number | Publication date |
---|---|
JP6744486B2 (en) | 2020-08-19 |
JPWO2018190437A1 (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018190437A1 (en) | Film capacitor, connection-type capacitor, and inverter and electric vehicle in which said capacitors are used | |
JP7011053B2 (en) | Film capacitors, articulated capacitors, inverters and electric vehicles using them | |
JP6574922B1 (en) | Film capacitors, coupled capacitors, inverters and electric vehicles | |
US10535464B2 (en) | Film capacitor, combination type capacitor, and inverter and electric vehicle using the same | |
CN111213217B (en) | Film capacitor, connection type capacitor, inverter using the same, and electric vehicle | |
JP6687373B2 (en) | Film capacitor, concatenated capacitor, and inverter and electric vehicle using the same | |
WO2017188327A1 (en) | Film capacitor, connected-type capacitor, inverter using same, and electric vehicle | |
JP6737818B2 (en) | Film capacitors, concatenated capacitors, inverters, and electric vehicles | |
JP7228027B2 (en) | Multilayer capacitors, concatenated capacitors, inverters and electric vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18784946 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019512589 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18784946 Country of ref document: EP Kind code of ref document: A1 |