WO2018190396A1 - Active matrix substrate - Google Patents

Active matrix substrate Download PDF

Info

Publication number
WO2018190396A1
WO2018190396A1 PCT/JP2018/015341 JP2018015341W WO2018190396A1 WO 2018190396 A1 WO2018190396 A1 WO 2018190396A1 JP 2018015341 W JP2018015341 W JP 2018015341W WO 2018190396 A1 WO2018190396 A1 WO 2018190396A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
source
control signal
electrode
lines
Prior art date
Application number
PCT/JP2018/015341
Other languages
French (fr)
Japanese (ja)
Inventor
山本 薫
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018190396A1 publication Critical patent/WO2018190396A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to an active matrix substrate.
  • An active matrix substrate used for a liquid crystal display device or the like has a display area having a plurality of pixels and an area other than the display area (non-display area or frame area).
  • the display region includes a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • TFT thin film transistor
  • a switching element such as a thin film transistor (hereinafter, “TFT”)
  • a TFT having an amorphous silicon film as an active layer hereinafter referred to as “amorphous silicon TFT”
  • polycrystalline silicon TFT a TFT having a polycrystalline silicon film as an active layer
  • oxide semiconductor TFT instead of amorphous silicon or polycrystalline silicon as a material for the active layer of TFT.
  • An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT.
  • Peripheral circuits such as drive circuits may be formed monolithically (integrated) in the non-display area of the active matrix substrate.
  • the drive circuit monolithically, the non-display area can be narrowed and the cost can be reduced by simplifying the mounting process.
  • the gate driver circuit may be formed monolithically and the source driver circuit may be mounted by a COG (Chip on Glass) method.
  • the SSD circuit is a circuit that distributes video data from one video signal line from each terminal of the source driver to a plurality of source lines.
  • the region (terminal portion / wiring forming region) in which the terminal portion and the wiring are arranged in the non-display region can be further narrowed.
  • the cost of the driver IC can be reduced.
  • Peripheral circuits such as drive circuits and SSD circuits include TFTs.
  • TFTs a TFT disposed as a switching element in each pixel in the display region
  • circuit TFT a TFT constituting a peripheral circuit
  • TFTs used as switching elements in the demultiplexer circuit (SSD circuit) are referred to as “DMX circuit TFTs”.
  • the DMX circuit TFT is preferably an oxide semiconductor TFT using the same oxide semiconductor film as the pixel TFT from the viewpoint of the manufacturing process.
  • the oxide semiconductor TFT Since the oxide semiconductor has a mobility that is about an order of magnitude smaller than that of polycrystalline silicon, the oxide semiconductor TFT has a smaller current driving force than the polycrystalline silicon TFT. For this reason, when forming a TFT for a DMX circuit using an oxide semiconductor, it is necessary to increase the size of the TFT (increase the channel width) or increase the driving voltage as compared with the case of using polycrystalline silicon. There is. When the size of the TFT is increased, the gate capacitance load increases and the driving power of the demultiplexer circuit increases. On the other hand, even if the driving voltage of the TFT is increased, the driving power of the demultiplexer circuit increases.
  • Embodiments of the present invention have been made in view of the above circumstances, and an object of the present invention is to provide an active matrix substrate capable of reducing driving power of peripheral circuits including oxide semiconductor TFTs.
  • An active matrix substrate includes a display region including a plurality of pixels, a non-display region provided around the display region, a substrate, supported by the substrate, and An active matrix substrate comprising at least one TFT disposed in a non-display area and a peripheral circuit including the at least one TFT, wherein the at least one TFT includes a gate electrode and a gate covering the gate electrode An insulating layer; an oxide semiconductor layer disposed on the gate insulating layer so as to at least partially overlap the gate electrode with the gate insulating layer interposed therebetween; and the oxide semiconductor on the oxide semiconductor layer A source electrode disposed in contact with a part of the layer; and a drain disposed on the oxide semiconductor layer so as to be in contact with another part of the oxide semiconductor layer.
  • the gate electrode has a first edge and a second edge facing each other when viewed from the normal direction of the substrate, and the first edge and the second edge Extends across the oxide semiconductor layer in the channel width direction of the at least one TFT, and when viewed from the normal direction of the substrate, the source electrode is connected to the first edge of the gate electrode.
  • the oxide semiconductor layer extends across the oxide semiconductor layer in the channel width direction so as to overlap, and the drain electrode overlaps the second edge portion of the gate electrode in the channel width direction. Extending across.
  • the source edge facing the drain electrode in the source electrode and / or the drain edge facing the source electrode in the drain electrode when viewed from the normal direction of the substrate has at least one projection protruding in the channel length direction of the at least one TFT, and a recess or notch adjacent to the at least one projection in the channel width direction.
  • the length of the at least one convex portion in the channel length direction is less than 1/3 of the width of the gate electrode in the channel length direction.
  • the total width in the channel width direction of the at least one protrusion disposed at the source edge or the drain edge is 70% or more and 90% of the channel width W of the at least one TFT. It is as follows.
  • each of the source edge and the drain edge includes the at least one protrusion and the recess or the notch
  • the at least one protrusion of the source edge includes: The at least one convex portion of the drain edge is opposed to the channel length direction, and the concave portion or the notch portion of the source edge portion corresponds to the concave portion or the notch portion of the drain edge portion and the channel length direction. Opposite to.
  • each of the source edge and the drain edge includes the at least one protrusion and the recess or the notch, and the at least one protrusion of the source edge includes: The recess or the notch of the drain edge is opposed to the channel length direction, and the recess or the notch of the source edge has at least one protrusion of the drain edge and the channel length direction. Opposite to.
  • the display region further includes a plurality of source bus lines extending in the channel width direction and a plurality of gate bus lines extending in the channel length direction of the at least one TFT
  • the peripheral circuit includes a plurality of peripheral buses.
  • the video signal is distributed to the source bus lines of the above integer)
  • each of the plurality of unit circuits includes at least n DMX circuit TFTs
  • the at least one TFT includes the at least n DMX circuits. TFT for use.
  • the demultiplexer circuit further includes a plurality of control signal trunk lines, and each of the plurality of unit circuits includes n branch wirings connected to the one video signal line, and the n number of branch lines.
  • the drain electrode of each DMX circuit TFT is a part of one of the n source bus lines
  • the source electrode is a part of one of the n branch wirings
  • the gate electrode is each of the plurality of unit circuits
  • each of the n branch wirings, the n control signal branch lines, and the n source bus lines is a part of the n control signal branch lines, And it extends to the serial channel width direction.
  • the demultiplexer circuit includes a plurality of sub-circuits, and each of the sub-circuits includes at least a first unit circuit and a second unit circuit of the plurality of unit circuits, and each of the sub-circuits , The n control signal branch lines in the first unit circuit and the second unit circuit are common.
  • the first unit circuit formation region in which the at least n DMX circuit TFTs of the first unit circuit are formed is the at least n DMX of the second unit circuit. It is located between the second unit circuit formation region where the circuit TFT is formed and the display region.
  • one of the at least n DMX circuit TFTs in the first unit circuit and one of the at least n DMX circuit TFTs in the second unit circuit are: It is connected to the same control signal branch line, and is arranged on the same control signal branch line with an interval.
  • the plurality of source bus lines are arranged in the channel length direction from one end, and each of the sub-circuits is Nth (N is a natural number), (N + 1) th from the one end. , (N + 2) th and (N + 3) th arrayed first source bus line, second source bus line, third source bus line and fourth source bus line, respectively.
  • 3 source bus lines are electrically connected to one of the plurality of video signal lines through the first unit circuit, and the second source bus line and the fourth source bus line are connected to the second unit circuit. It is electrically connected to another one of the video signal lines through a circuit.
  • one of the at least n DMX circuit TFTs of the first unit circuit when viewed from the normal direction of the substrate, includes the second source bus line and the Arranged between the fourth source bus lines.
  • the at least n DMX circuit TFTs include a plurality of TFTs arranged in the channel width direction and connected in parallel to each other.
  • the plurality of control signal trunks include n first control signal trunks and n second control signal trunks, and each of the n first control signal trunks includes the The same control signal as one of the n second control signal trunk lines is supplied, and the n control signal branch lines in some unit circuits of the plurality of unit circuits are the n first control signal trunk lines.
  • the n control signal branch lines in other part of the unit circuits are electrically connected to the n second control signal trunk lines.
  • the peripheral circuit includes a gate driver, the gate driver includes a plurality of shift registers, and the at least one TFT includes an output transistor in each of the plurality of shift registers.
  • An active matrix substrate includes a display area including a plurality of pixels and a non-display area provided around the display area, and is disposed in the non-display area. And a demultiplexer circuit supported by the substrate, a plurality of source bus lines extending in a first direction in the display region, and a plurality of gate bus lines extending in a second direction intersecting the first direction.
  • the demultiplexer circuit includes a plurality of unit circuits and a plurality of control signal trunk lines, and each of the plurality of unit circuits is connected to the plurality of sources from one video signal line among the plurality of video signal lines.
  • a video signal is distributed to n source bus lines (n is an integer of 2 or more) of bus lines, and each of the plurality of unit circuits is for at least n DMX circuits.
  • FT n branch wirings connected to the one video signal line, the n source bus lines, and n control signal branch lines, and the n control signal branch lines
  • Each is electrically connected to one of the plurality of control signal trunk lines, and in each of the plurality of unit circuits, the n branch wirings, the n control signal branch lines, and the n control signal main lines are connected.
  • Each source bus line extends in the first direction
  • each DMX circuit TFT includes a gate electrode, an oxide semiconductor layer disposed on the gate electrode via a gate insulating layer, A source electrode is disposed on the oxide semiconductor layer so as to be in contact with a part of the oxide semiconductor layer, and is disposed on the oxide semiconductor layer so as to be in contact with another part of the oxide semiconductor layer.
  • Drain electrode, and the drain electrode Is a part of one of the n source bus lines, the source electrode is a part of one of the n branch lines, and the gate electrode is one of the n control signal branch lines.
  • the gate electrode has a first edge and a second edge facing each other when viewed from the normal direction of the substrate, and the first edge and the second edge are
  • the physical semiconductor layer extends across the first direction, and when viewed from the normal direction of the substrate, the source electrode extends in the first direction so as to overlap the first edge, The drain electrode extends in the first direction so as to overlap the second edge.
  • the plurality of unit circuits include a first unit circuit and a second unit circuit, and in the display area, the plurality of source bus lines are arranged in the second direction from one end.
  • the first source bus line, the second source bus line, and the third source bus line arranged in the Nth (N is a natural number), (N + 1) th, (N + 2) th and (N + 3) th from the one end, respectively.
  • the fourth source bus line wherein the first source bus line and the third source bus line are electrically connected to one of the plurality of video signal lines through the first unit circuit
  • the second source bus line and the fourth source bus line are electrically connected to the other one of the plurality of video signal lines via the second unit circuit, and are normal to the substrate.
  • one of said at least n DMX circuit TFT of the first unit circuit is disposed between the second source bus line and the fourth source bus lines.
  • the n control signal branch lines in the first unit circuit and the second unit circuit are common, and one of the at least n DMX circuit TFTs in the first unit circuit;
  • One of the at least n DMX circuit TFTs in the second unit circuit is connected to the same control signal line, and is arranged on the same control signal line with a gap.
  • the source edge of the source electrode facing the drain electrode and / or the source electrode of the drain electrode when viewed from the normal direction of the substrate, the source edge of the source electrode facing the drain electrode and / or the source electrode of the drain electrode
  • the opposing drain edge includes a region overlapping with the oxide semiconductor layer, at least one protrusion protruding in the second direction, and a recess or notch adjacent to the at least one protrusion in the first direction.
  • the length of the at least one convex portion in the second direction is less than 1/3 of the width of the gate electrode in the second direction.
  • the oxide semiconductor layer includes an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor includes a crystalline portion.
  • an active matrix substrate capable of reducing driving power of a peripheral circuit including an oxide semiconductor TFT.
  • FIGS. 7A and 7B are a plan view and a cross-sectional view illustrating a circuit TFT (thin film transistor 10 ⁇ / b> A) included in a peripheral circuit monolithically formed on the active matrix substrate 1000 of the first embodiment, respectively.
  • (A) And (b) is the top view and sectional drawing which illustrate other circuit TFT (thin film transistor 10B) in 1st Embodiment, respectively.
  • (A) And (b) is the top view and sectional drawing which illustrate further other circuit TFT (thin film transistor 10C) in 1st Embodiment, respectively.
  • FIG. 10 is a plan view illustrating still another circuit TFT in the first embodiment.
  • (A)-(d) is a top view which shows TFT of the reference example 1 and Examples 1-3.
  • (A)-(c) is a top view which shows the structure of the sample TFT of the reference example used for the measurement, the sample TFT which has a symmetrical structure, and the sample TFT which has an asymmetrical structure, respectively. It is a figure which shows the measured value of the on-current per unit W / L of TFT which has a symmetrical structure and an asymmetrical structure.
  • FIG. 2 is a plan view illustrating an SSD unit circuit 100.
  • FIG. (A) and (b) are a plan view and a cross-sectional view taken along line IV-IV ′ of one pixel region PIX in the active matrix substrate 1000, respectively.
  • (A) And (b) is the top view and sectional drawing which show the other circuit TFT (thin film transistor 10D) in 1st Embodiment, respectively.
  • FIG. 10 is an enlarged plan view illustrating a sub circuit 200A of a demultiplexer circuit DMX according to a second embodiment. It is a top view which shows a part of other subcircuit 200B of the demultiplexer circuit DMX in 2nd Embodiment.
  • FIG. 3 is an enlarged plan view showing an example of a sub circuit 300.
  • FIG. It is a figure which illustrates the structure of the other subcircuits 400 (1) and 400 (2) of the demultiplexer circuit DMX in 2nd Embodiment.
  • (A) And (b) is the top view and sectional drawing which illustrate TFT (thin film transistor 90) of the reference example 2 used for the demultiplexer circuit DMX, respectively.
  • TFT thin film transistor 90
  • the active matrix substrate of the first embodiment will be described with reference to the drawings.
  • an active matrix substrate in which an SSD circuit and a gate driver are monolithically formed and a source driver is mounted will be described as an example.
  • the active matrix substrate of the present embodiment only needs to have a monolithic peripheral circuit including at least one TFT.
  • FIG. 1 is a schematic diagram illustrating an example of a planar structure of an active matrix substrate 1000 according to the present embodiment.
  • the active matrix substrate 1000 has a display area DR and an area (non-display area or frame area) FR other than the display area DR.
  • the display area DR is composed of pixel areas PIX arranged in a matrix.
  • the pixel region PIX (sometimes simply referred to as “pixel”) is a region corresponding to a pixel of the display device.
  • the non-display area FR is an area that is located around the display area DR and does not contribute to display.
  • a plurality of gate bus lines GL (1) to GL (j) (j is an integer of 2 or more, hereinafter referred to as “gate bus line GL”) extending in the x direction (also referred to as row direction or second direction).
  • a plurality of source bus lines SL (1) to SL (k) (k is an integer of 2 or more, hereinafter referred to as “source bus line SL”) extending in the y direction (also referred to as column direction or first direction).
  • source bus line SL a plurality of source bus lines SL (1) to SL (k) (k is an integer of 2 or more, hereinafter referred to as “source bus line SL”) extending in the y direction (also referred to as column direction or first direction).
  • Each pixel region PIX is defined by a gate bus line GL and a source bus line SL, for example.
  • Each gate bus line GL is connected to each terminal of the gate driver GD.
  • the source bus line SL is connected to each terminal of
  • Each pixel region PIX includes a thin film transistor Pt and a pixel electrode PE.
  • the thin film transistor Pt is also referred to as a “pixel TFT”.
  • the gate electrode of the thin film transistor Pt is electrically connected to the corresponding gate bus line GL
  • the source electrode is electrically connected to the corresponding source bus line SL.
  • the drain electrode is electrically connected to the pixel electrode PE.
  • the active matrix substrate 1000 is applied to a display device in a horizontal electric field mode such as an FFS (Fringe Field Switching) mode
  • the active matrix substrate 1000 is provided with a common electrode (common electrode) CE for a plurality of pixels. It is done.
  • the common electrode CE is provided on a counter substrate that is disposed to face the active matrix substrate 1000 with a liquid crystal layer interposed therebetween.
  • a gate driver GD that drives the gate bus line GL
  • a demultiplexer circuit DMX and the like are provided integrally (monolithically).
  • the demultiplexer circuit DMX functions as an SSD circuit that drives the source bus line SL in a time division manner.
  • the source driver SD that drives the source bus line SL is mounted on the active matrix substrate 1000, for example.
  • the gate driver GD is disposed in the region FRa located on both sides of the display region DR, and the source driver SD is mounted in the region FRb located below the display region DR.
  • the demultiplexer circuit DMX is arranged between the display region DR and the source driver SD in the region FRb. Between the demultiplexer circuit DMX and the source driver SD is a terminal portion / wiring forming region LR in which a plurality of terminal portions and wirings are formed.
  • ⁇ Structure of circuit TFT> 2A and 2B are a plan view and a cross-sectional view illustrating a circuit TFT (thin film transistor 10A) included in a peripheral circuit monolithically formed on the active matrix substrate 1000 of this embodiment, respectively.
  • the thin film transistor 10A can be used, for example, as a switching element (DMX circuit TFT) of an SSD circuit or as an output transistor of a gate driver circuit.
  • DMX circuit TFT switching element
  • the active matrix substrate 1000 of the present embodiment only needs to include at least one thin film transistor 10A as a circuit TFT, and may further include a circuit TFT having another structure.
  • the thin film transistor 10A is supported on the substrate 1 and formed in a non-display area.
  • the thin film transistor 10A includes a gate electrode (also referred to as “lower gate electrode”) 3 disposed on the substrate 1, a gate insulating layer 5 covering the gate electrode 3, an oxide semiconductor layer 7, a source electrode 8, and a drain electrode. 9.
  • the oxide semiconductor layer 7 is disposed on the gate insulating layer 5 so as to at least partially overlap the gate electrode 3 with the gate insulating layer 5 interposed therebetween.
  • the source electrode 8 is provided on the oxide semiconductor layer 7 and is in contact with a part of the oxide semiconductor layer 7.
  • the drain electrode 9 is provided on the oxide semiconductor layer 7 and is in contact with another part of the oxide semiconductor layer 7.
  • a portion of the oxide semiconductor layer 7 in contact with the source electrode 8 is referred to as a source contact region 7s
  • a portion in contact with the drain electrode 9 is referred to as a drain contact region 7d.
  • a region located between the source contact region 7 s and the drain contact region 7 d and overlapping the gate electrode 3 is a “channel region 7 c”.
  • the source contact region 7s is disposed on the end portion p1 side of the channel region 7c, and the end of the channel region 7c A drain contact region 7d is disposed on the portion p2 side.
  • the direction DL parallel to the direction of current flow in the channel region 7c is referred to as “channel length direction”, and the direction DW perpendicular to the channel length direction DL is referred to as “channel width direction”.
  • the channel length direction DL is the channel length L
  • the length along the channel width direction DW is the channel width W.
  • the channel length direction DL is a direction connecting the end portions p1 and p2.
  • a source contact region 7s, a channel region 7c, and a drain contact region 7d are arranged in this order along the channel length direction DL from the end p1 to the end p2.
  • a channel length direction DL is a direction connecting the end portions p1 and p2 of the oxide semiconductor layer 7 or a direction connecting the shortest distance between the source contact region 7s and the drain contact region 7d.
  • the source electrode 8 and the drain electrode 9 are preferably designed to overlap the gate electrode 3 when viewed from the normal direction of the substrate 1.
  • the lengths xs and xd where the source electrode 8 and the drain electrode 9 overlap the gate electrode 3 can be set in consideration of alignment accuracy.
  • the gate electrode 3 has a first edge 3e1 and a second edge 3e2 that face each other when viewed from the normal direction of the substrate 1.
  • the first edge 3e1 and the second edge 3e2 extend across the oxide semiconductor layer 7 generally in the channel width direction DW.
  • the first edge 3 e 1 crosses one end p 1 of the oxide semiconductor layer 7, and the second edge 3 e 2 crosses the other end p 2 of the oxide semiconductor layer 7.
  • the width wg of the gate electrode 3 in the channel length direction DL is smaller than the width ws of the oxide semiconductor layer 7 in the channel length direction DL.
  • the source electrode 8 extends across the oxide semiconductor layer 7 in the channel width direction DW so as to overlap the first edge 3e1 of the gate electrode 3 when viewed from the normal direction of the substrate 1.
  • the drain electrode 9 extends across the oxide semiconductor layer 7 in the channel width direction DW so as to overlap the second edge 3e2 of the gate electrode 3.
  • the gate-source / drain parasitic capacitance can be reduced as compared with the case where the entire width of the source electrode 8 and the drain electrode 9 overlaps with the gate electrode 3 (see FIG. 7A).
  • only one of the source electrode 8 and the drain electrode 9 is disposed so as to overlap the edge of the gate electrode 3, and the entire width of the other electrode is the same as that of the gate electrode 3. It may overlap.
  • the source electrode 8 extends so that the entire width thereof overlaps with the gate electrode 3, and the drain electrode 9 overlaps with the second edge 3 e 2 of the gate electrode 3.
  • the overlapping area of the drain electrode 9 and the gate electrode 3 may be smaller than the overlapping area of the source electrode 8 and the gate electrode 3.
  • the source electrode 8 has a first source edge 8e1 and a second source edge 8e2 extending in the channel width direction DW.
  • the first source edge 8e1 and the second source edge 8e2 of the source electrode 8 may both be located on the oxide semiconductor layer 7.
  • the drain electrode 9 has a first drain edge 9e1 and a second drain edge 9e2 extending in the channel width direction DW.
  • the first drain edge portion 9 e 1 and the second drain edge portion 9 e 2 of the drain electrode 9 may both be located on the oxide semiconductor layer 7. Good.
  • the width wT of the thin film transistor 10 ⁇ / b> A in the channel length direction DL is determined by the width ws of the oxide semiconductor layer 7.
  • the source electrode 8 and the drain electrode 9 are formed using the same conductive film as the source bus line SL (FIG. 1).
  • a layer formed using the same conductive film as the source bus line SL is referred to as a “source metal layer”.
  • the gate electrode 3 is formed using the same conductive film as the gate bus line GL (FIG. 1).
  • a layer formed using the same conductive film as the gate bus line GL is referred to as a “gate metal layer”.
  • the thin film transistor 10A is covered with a protective layer (here, an inorganic insulating layer) 11.
  • the inorganic insulating layer 11 is disposed so as to be in contact with the upper surfaces of the source electrode 8 and the drain electrode 9 and the channel region 7 c of the oxide semiconductor layer 7.
  • the lengths (overlapping lengths) xs and xd where the source electrode 8, the drain electrode 9 and the gate electrode 3 overlap can be set in consideration of alignment accuracy. For example, even when alignment occurs in the channel length direction DL, the oxide semiconductor layer 7 is set so that a region (offset region) that does not overlap any of the gate electrode 3, the source electrode 8, and the drain electrode 9 does not occur. Can be done.
  • the overlapping lengths xs and xd vary depending on the manufacturing apparatus, but are, for example, 1.5 ⁇ m or more and 3.0 ⁇ m or less.
  • FIGS. 3A and 3B are a plan view and a cross-sectional view illustrating another circuit TFT (thin film transistor 10B) in this embodiment, respectively.
  • 4A and 4B are a plan view and a cross-sectional view illustrating still another circuit TFT (thin film transistor 10C) in this embodiment, respectively.
  • the same components as those in FIG. 2 are denoted by the same reference numerals.
  • differences from the thin film transistor 10A shown in FIG. 2 will be mainly described, and description of the same configuration as the thin film transistor 10A will be omitted.
  • the thin film transistors 10B and 10C differ from the thin film transistor 10A in that the source electrode 8 and / or the drain electrode 9 have protrusions protruding in the channel length direction when viewed from the normal direction of the substrate 1.
  • the source electrode 8 in the thin film transistors 10B and 10C has a first source edge 8e1 facing the drain electrode 9.
  • the drain electrode 9 has a first drain edge 9 e 1 facing the source electrode 8.
  • the first source edge 8e1 includes one or a plurality of protrusions 82 protruding in the channel length direction DL, a recess 84 adjacent to the protrusion 82 in the channel width direction DW, and / or a region overlapping the oxide semiconductor layer 7. Or it has the notch part 86.
  • the first drain edge 9e1 includes one or a plurality of protrusions 92 protruding in the channel length direction DL and a recess adjacent to the protrusion 92 in the channel width direction DW in a region overlapping with the oxide semiconductor layer 7. 94 and / or a notch 96.
  • the channel length L is the distance between the portion of the convex portion 82 closest to the drain electrode 9 and the portion of the convex portion 92 closest to the source electrode 8.
  • the protrusions 82 and 92 are rectangular when viewed from the normal direction of the substrate 1, but may not be rectangular.
  • the convex portions 82 and 92 may be rounded.
  • the second source edge 8e2 of the source electrode 8 and the second drain edge 9e2 of the drain electrode 9 are located not on the oxide semiconductor layer 7 but on the gate insulating layer 5.
  • the width wT of the thin film transistors 10B and 10C in the channel length direction DL is determined by the distance wSD between the second source edge 8e2 and the second drain edge 9e2.
  • the protrusion 82 of the first source edge 8e1 and the protrusion 92 of the first drain edge 9e1 face each other in the channel length direction DL. Further, the recess 84 or notch 86 of the first source edge 8e1 and the recess 94 or notch 96 of the first drain edge 9e1 face each other in the channel length direction DL.
  • An electrode structure in which the convex portion 92 of the drain edge portion 9e1 is located is referred to as a “symmetric structure”.
  • the planar shape such as the length in the channel length direction may be different between the convex portion 82 and the convex portion 92.
  • the protrusion 82 of the first source edge 8e1 and the recess 94 or the notch 96 of the first drain edge 9e1 face each other in the channel length direction DL, and the recess of the first source edge 8e1.
  • 84 or the notch 86 and the protrusion 92 of the first drain edge 9e1 face each other in the channel length direction DL.
  • the first drain is formed on the line.
  • the electrode structure when the convex portion 92 of the edge portion 9e1 is not located is referred to as “asymmetric structure”.
  • the distance between the first edge 3e1 and the portion of the convex portion 82 of the source electrode 8 that is closest to the drain electrode 9 is the overlap length xs of the source electrode 8 and the gate electrode 3. .
  • the distance between the second edge 3e2 and the portion of the projection 92 of the drain electrode 9 that is closest to the source electrode 8 is the overlap length xd of the drain electrode 9 and the gate electrode 3. Therefore, it is possible to reduce the overlapping area between the source electrode 8 or the drain electrode 9 and the gate electrode 3 as compared with the thin film transistor 10A while ensuring predetermined overlapping lengths xd and xs (for example, 1.5 ⁇ m or more and 3.0 ⁇ m or less).
  • the source electrode is provided by the area of the concave portions 84 and 94 and the notches 86 and 96 while ensuring the on-current. 8 or the overlapping area of the drain electrode 9 and the gate electrode 3 can be reduced.
  • the source electrode 8 and the drain electrode 9 do not have a comb structure (see Patent Document 1) arranged so that the convex portion of the other electrode is positioned in the concave portion of one electrode. If it has a comb structure, the size and parasitic capacitance of the TFT may increase.
  • the length h of the protrusions 82 and 92 in the channel length direction DL is, for example, 1 / w of the width of the gate electrode 3 in the channel length direction DL (that is, the distance between the first edge 3e1 and the second edge 3e2). Less than 3. Thereby, the overlapping area of the source electrode 8 and the drain electrode 9 and the gate electrode 3 can be reduced while suppressing an increase in the TFT width wT. On the other hand, if the length h in the channel length direction DL of the protrusions 82 and 92 is, for example, 1/10 or more of the width wg of the gate electrode 3, the overlapping area of the source electrode 8 and the drain electrode 9 with the gate electrode 3 is further increased. It can be effectively reduced.
  • the width (length in the channel width direction DW) fs and fd of the plurality of protrusions 82 and 92 disposed on the oxide semiconductor layer 7 or only one protrusion 82 and 92 is disposed.
  • the widths fs and fd of the protrusions 82 and 92 may be 70% or more of the channel width W (here, the width of the oxide semiconductor layer 7 in the channel width direction DW).
  • W the width of the oxide semiconductor layer 7 in the channel width direction DW.
  • the widths fs and fd of the protrusions 82 and 92 or the sum thereof is 90% or less of the channel width W
  • the overlapping area between the source electrode 8 or the drain electrode 9 and the gate electrode 3 can be more effectively reduced.
  • the parasitic capacitance Cdg or Csg can be reduced more effectively. The above effect can be obtained if at least one of the widths fs and fd satisfies the above range.
  • the widths fs and fd of the respective convex portions 82 and 92 are the same as those of the convex portions 82 and 92. It may be 70% or more and 90% or less of the arrangement pitch.
  • the arrangement pitch, width, and length in the channel length direction of the projections 82 of the source electrode 8 may be the same as the arrangement pitch, width, and length in the channel length direction of the projections 92 of the drain electrode 9, respectively. May be different.
  • the source electrode 8 when viewed from the normal direction of the substrate 1, for example, as illustrated in FIG. And a part of one of the recesses or notches of the drain electrode 9 (here, the recess 94 and the notch 96 of the drain electrode 9) do not overlap with the gate electrode 3, and as a result, the oxide semiconductor layer 7 There is a possibility that an offset region 7off occurs.
  • the offset region 7off is located between the channel region 7c and the source electrode 8 and the drain electrode 9 in the oxide semiconductor layer 7 when viewed from the normal direction of the substrate 1, and the source electrode 8 and the drain electrode 9 And a region that does not overlap any of the gate electrode 3.
  • the width Loff of the offset region 7off in the channel length direction DL is defined as an “offset width”.
  • the offset width Loff is equal to or less than the overlap lengths xd and xs (design values). In general, when an offset region is generated, the offset region has a higher resistance than the channel region in the on-state of the TFT, and there is a problem that the on-current of the TFT becomes small.
  • the present embodiment a predetermined on-current can be ensured even when the offset region 7off occurs.
  • the region 7n adjacent to the offset region 7off in the channel width direction DW in the oxide semiconductor layer 7 overlaps the convex portion 92 of the drain electrode 9, and functions as the channel region 7c. That is, the plurality of offset regions 7off are arranged apart from each other in the channel width direction WD. Therefore, a decrease in on-current due to the offset region 7off is suppressed as compared with a case where an offset region is formed between the channel region 7c and the source contact region 7s or the drain contact region 7d in the oxide semiconductor layer 7. It is possible.
  • the structure of the thin film transistor in this embodiment is not limited to the structure described with reference to FIGS.
  • a convex portion may be formed on only one of the source electrode 8 and the drain electrode 9.
  • Such an electrode structure is also included in the “asymmetric structure”.
  • the thin film transistor of this embodiment may have a double gate structure in which another gate electrode is further provided above the oxide semiconductor layer 7). As a result, the on-current can be further increased.
  • FIGS. 7A to 7D are plan views showing TFTs of Reference Example 1 and Examples 1 to 3.
  • the TFTs of Examples 1 to 3 have the same structure as the thin film transistors 10A to 10C, respectively.
  • the channel length L is 2.5 ⁇ m
  • the channel width W is 20 ⁇ m
  • the width of the source electrode 8 and the drain electrode 9 is 2.5 ⁇ m
  • the first source edge 8e1 and the first drain edge The distance x1 between 9e1 and the edge of the oxide semiconductor layer 7 extending in the channel width direction DW was 3 ⁇ m.
  • the overlapping lengths xd and xs of the TFTs of Examples 1 to 3 were 1.5 ⁇ m.
  • the width wg in the channel length direction DL of the gate electrode 3 of the TFT of Reference Example 1 was set to 12 ⁇ m
  • the width wg of the gate electrode 3 of the TFT of Examples 1 to 3 in the channel length direction DL was set to 5.5 ⁇ m.
  • the projections 82 and 92 having widths fs and fd of 3.5 ⁇ m and a length h in the channel length direction of 0.9 ⁇ m are respectively formed on the source electrode 8 and the drain electrode 9 by 7 ⁇ m.
  • the parasitic capacitance (total of gate-drain capacitance Cdg and source-drain capacitance Csg) in the TFTs of Reference Example 1 and Examples 1 to 3 was calculated, it was assumed that the parasitic capacitance in the TFT of Reference Example 1 was 1.
  • the parasitic capacitance of the TFT of Example 1 was 0.71
  • the parasitic capacitance of the TFT of Example 2 was 0.63
  • the parasitic capacitance of the TFT of Example 3 was 0.57.
  • the parasitic capacitance of the TFTs of Examples 1 to 3 can be reduced as compared with the TFT of Reference Example 1. It was also confirmed that the parasitic capacitance can be further reduced as compared with the TFT of Example 1 by providing the projections 82 and 92 on the source electrode 8 and the drain electrode 9 (Examples 2 and 3). Furthermore, in the TFT of Example 3 having an asymmetric structure, the ratio of the width (total) of the protrusions 92 to the channel width W of one electrode (here, the drain electrode 9) can be reduced. It was found that the parasitic capacitance can be made smaller than that of the TFT 2.
  • the driving power of the peripheral circuit is 71% and 63%, respectively, as compared with the case of using the TFT of Reference Example 1. , It can be reduced to 57%.
  • Electrode width f corresponds to the width (or the total) of the convex portions of the source electrode 8 or the drain electrode 9 in the channel width direction DW in the thin film transistor of this embodiment.
  • FIGS. 8A to 8C are plan views showing the structures of the reference sample TFT used in the measurement, the sample TFT having a symmetric structure, and the sample TFT having an asymmetric structure, respectively.
  • the channel width W (here, the width in the channel width direction DW of the oxide semiconductor layer 7 is defined as the channel width) is 10 ⁇ m, and the channel length L is 3 ⁇ m.
  • the source electrode 8 and the drain electrode 9 are arranged over the channel width W as shown in FIG.
  • the width f of the source electrode 8 and the drain electrode 9 in the channel width direction DW is smaller than the channel width W (f ⁇ W).
  • the width f of the source electrode 8 and the drain electrode 9 is the same.
  • the source electrode 8 and the drain electrode 9 are arranged so as to be symmetrical with respect to the center line extending in the channel width direction DW of the oxide semiconductor layer 7.
  • sample TFTs having a symmetric structure a plurality of sample TFTs were produced with different electrode widths f.
  • the source electrode 8 is disposed over the channel width W as shown in FIG. 8C, but the width f of the drain electrode 9 in the channel width direction DW is greater than the channel width W. Is also small.
  • a plurality of sample TFTs were manufactured by changing the electrode width f of the drain electrode 9.
  • FIG. 9 is a diagram showing measured values of on-current per unit W / L of a sample TFT having a symmetric structure and an asymmetric structure.
  • the vertical axis represents the relative value of the on-current of each sample TFT when the on-current of the sample TFT of the reference example is 1.
  • the horizontal axis represents the ratio of the electrode width f to the channel width W (the width of the oxide semiconductor layer 7 in the channel width direction DW).
  • the effective channel width W ′ is larger than the electrode width f by the width ⁇ W1 of the region where current can flow along the arrow 52 (f ⁇ W ′ ⁇ W).
  • the ratio of the electrode width f is 0.7, it is possible to ensure an on-current substantially equal to that of the sample TFT of the reference example.
  • the sample TFT having an asymmetric structure when the ratio of the electrode width f of the drain electrode 9 to the channel width W is 0.6 or more, an on-current of 0.95 or more of the on-current of the sample TFT of the reference example is secured. it can.
  • an arrow 51 in FIG. 8C not only a current flows between a portion 9 a of the side surface of the drain electrode 9 facing the source electrode 8 and the source electrode 8 but also an arrow 53.
  • the current can also flow between the source electrode 8 and the portion 9b extending in the channel length direction DL on the side surface of the drain electrode 9.
  • the effective channel width W ′ is larger than the electrode width f by the width ⁇ W2 ( ⁇ W2> ⁇ W1) of the region where current can flow along the arrow 53 (f ⁇ W ′ ⁇ W).
  • the ratio of the electrode width f is 0.6, it is possible to ensure an on-current substantially equal to that of the sample TFT of the reference example.
  • the thin film transistors 10A to 10C described in the first embodiment can be applied, for example, to a switching element (“DMX circuit TFT”) of a demultiplexer circuit provided in a peripheral region of a display device.
  • DMX circuit TFT switching element
  • FIG. 10 is a diagram for explaining the configuration and operation of the demultiplexer circuit DMX in the active matrix substrate 1000 of the present embodiment.
  • a demultiplexer circuit DMX (in this case, an SSD circuit) is arranged between the source driver SD and the display area DR.
  • the demultiplexer circuit DMX and the source driver SD are controlled by the control circuit 150 provided in the non-display area FR.
  • the control signal trunk lines SW1 to SWn are connected to the control circuit 150.
  • Each of the output terminals V (1) to V (i) (hereinafter sometimes collectively referred to as “V terminal”) of the source driver SD has a plurality of video signal lines DO (1) to DO (i) (“ Any of the video signal lines DO may be collectively referred to.
  • a group of n source bus lines SL is associated with one video signal line DO.
  • An SSD unit circuit 100 is provided for each video signal line between the video signal line DO and the grouped source bus lines SL. The SSD unit circuit 100 distributes video data from one video signal line DO to n source bus lines SL.
  • the Nth video signal line is DO (N) (N is an integer from 1 to i), and the video signal line DO (N).
  • the SSD unit circuit 100 and the source bus line SL that are associated with are 100 (N), SL (N ⁇ 1) to SL (Nn), respectively.
  • Each SSD unit circuit 100 (N) includes n branch wirings B1 to Bn connected to the video signal line DO (N) and at least n (here, 3) TFTs 10 (1) to 10 for DMX circuits. 10 (n) (sometimes collectively referred to as “DMX circuit TFT 10”).
  • the DMX circuit TFT 10 functions as a selection switch.
  • the gate electrode of the DMX circuit TFT 10 is electrically connected to a corresponding one of the n control signal trunk lines SW1 to SWn.
  • the source electrode of the DMX circuit TFT 10 is electrically connected to a corresponding one of the branch lines B1 to Bn.
  • the drain electrode of the DMX circuit TFT 10 is connected to one corresponding source bus line among the source bus lines SL (N ⁇ 1) to SL (N ⁇ 3).
  • a selection signal (control signal) is supplied from one of the control signal trunk lines SW1 to SW3 to the gate electrode of the TFT 10 for DMX circuit.
  • the control signal defines the ON period of the selection switch in the same group and is synchronized with the time-series signal output from the source driver SD.
  • the SSD unit circuit 100 (N) converts the data potential obtained by time-sharing the output of the video signal line DO (N) to a plurality of source bus lines SL (N ⁇ 1) to source bus lines SL (Nn). Are written in time series (time division drive). Thereby, since the number of V terminals of the source driver SD can be reduced, the area of the non-display area FR can be further reduced (narrow frame).
  • FIG. 11 is a plan view illustrating the SSD unit circuit 100 according to this embodiment.
  • the SSD unit circuit 100 includes three DMX circuit TFTs 10 (1) to (3) supported on the substrate 1 (hereinafter may be collectively referred to as “DMX circuit TFTs 10”), and extends from the display region DR.
  • Source bus lines SL1 to SL3 (hereinafter sometimes collectively referred to as “source bus lines SL”), one video signal line DO, and branch wirings B1 to B3 (hereinafter collectively referred to as “branch wiring B”).
  • branch wiring B branch wirings B1 to B3
  • control signal trunk lines SW1 to SW3 hereinafter sometimes collectively referred to as “control signal trunk line SW”.
  • the video signal line DO is electrically connected to the branch lines B1 to B3.
  • the source bus line SL extends in the y direction
  • the control signal trunk line SW extends in the x direction intersecting the y direction.
  • the branch wiring B and the video signal line DO are formed in the source metal layer.
  • the gate electrode 3 and the control signal trunk line SW are formed in the gate metal layer.
  • the source electrode 8 extends in the channel width direction DW so as to overlap the first edge 3 e 1 of the gate electrode 3 and the drain electrode 9 overlaps the second edge 3 e 2 of the gate electrode 3.
  • the DMX circuit TFT 10 may be any of the above-described thin film transistors 10A to 10C.
  • each of the DMX circuit TFTs 10 is disposed between two adjacent source bus lines SL (overlapping one source bus line).
  • the DMX circuit TFT 10 is arranged such that its channel length direction DL is substantially parallel to the x direction and its channel width direction DW is substantially parallel to the y direction.
  • the source bus line SL may extend in the y direction from the display region toward the source driver SD, and may be in contact with the upper surface of one end p2 of the corresponding oxide semiconductor layer 7 extending in the channel width direction DW. A portion of the source bus line SL in contact with the oxide semiconductor layer 7 functions as the drain electrode 9 of the DMX circuit TFT 10.
  • Each branch wiring B extends in the y direction from the video signal line DO toward the display region, and is in contact with the upper surface of the other end p1 of the corresponding oxide semiconductor layer 7 extending in the channel width direction DW.
  • a portion of the branch wiring B that contacts the oxide semiconductor layer 7 functions as the source electrode 8 of the DMX circuit TFT 10.
  • the gate electrode 3 of the DMX circuit TFT 10 is electrically connected to the corresponding control signal trunk line SW.
  • the gate electrode 3 extends in the y direction toward the control signal main line SW.
  • the extended portion (extended portion) 23 is electrically connected to the corresponding control signal trunk line SW via a connection wiring 25 formed in the source metal layer.
  • the connection wiring 25 is in contact with the extending portion 23 in the first opening 5p provided in the gate insulating layer 5 and in the second opening 5q provided in the gate insulating layer 5. May be in contact with.
  • the extending portion 23 and the connection wiring 25 that connect the gate electrode 3 and the corresponding control signal trunk line SW may be collectively referred to as “control signal branch line”.
  • the DMX circuit TFT 10 and the demultiplexer circuit DMX may be covered with an inorganic insulating layer (passivation film) 11 (see FIG. 2).
  • a planarizing film such as an organic insulating film may or may not be provided.
  • the display region DR of the active matrix substrate 1000 may be covered with the organic insulating film, and the non-display region FR may not be covered with the organic insulating film.
  • FIGS. 12A and 12B are a plan view and a cross-sectional view taken along line IV-IV ′ of one pixel region PIX in the active matrix substrate 1000, respectively.
  • the pixel area PIX is an area surrounded by a source bus line SL extending in the y direction and a gate bus line GL extending in the x direction intersecting the source bus line SL.
  • the pixel region PIX includes a substrate 1, a TFT (hereinafter “pixel TFT”) 130 supported on the substrate 1, a lower transparent electrode 15, and an upper transparent electrode 19.
  • the upper transparent electrode 19 has a slit or notch for each pixel.
  • the lower transparent electrode 15 is a common electrode CE
  • the upper transparent electrode 19 is a pixel electrode PE.
  • the pixel TFT 10 is, for example, an oxide semiconductor TFT having a bottom gate structure.
  • the pixel TFT 130 is in contact with the gate electrode 103 supported on the substrate 1, the gate insulating layer 5 covering the gate electrode 103, the oxide semiconductor layer 107 formed on the gate insulating layer 5, and the oxide semiconductor layer 107.
  • This is a TFT having a bottom gate structure having a source electrode 108 and a drain electrode 109 arranged in the bottom. The source electrode 108 and the drain electrode 109 are in contact with the upper surface of the oxide semiconductor layer 107.
  • the gate electrode 103 is connected to the corresponding gate bus line GL, and the source electrode 108 is connected to the corresponding source bus line SL.
  • the drain electrode 109 is electrically connected to the pixel electrode PE.
  • the gate electrode 103 and the gate bus line GL may be integrally formed in the gate metal layer.
  • the source electrode 108 and the source bus line SL may be integrally formed in the source metal layer.
  • the interlayer insulating layer 13 is not particularly limited, and may include, for example, an inorganic insulating layer (passivation film) 11 and an organic insulating layer 12 disposed on the inorganic insulating layer 11. Note that the interlayer insulating layer 13 may not include the organic insulating layer 12.
  • the pixel electrode PE and the common electrode CE are arranged so as to partially overlap with each other via the dielectric layer 17.
  • the pixel electrode PE is separated for each pixel.
  • the common electrode CE may not be separated for each pixel.
  • the common electrode CE is formed on the interlayer insulating layer 13.
  • the common electrode CE may have an opening in a region where the pixel TFT 10 is formed, and may be formed over the entire pixel region PIX excluding this region.
  • the pixel electrode PE is formed on the dielectric layer 17 and is electrically connected to the drain electrode 109 in the opening CH1 provided in the interlayer insulating layer 13 and the dielectric layer 17.
  • Such an active matrix substrate 1000 can be applied to an FFS mode display device, for example.
  • the FFS mode is a transverse electric field mode in which a pair of electrodes is provided on one substrate and an electric field is applied to liquid crystal molecules in a direction parallel to the substrate surface (lateral direction).
  • an electric field expressed by electric lines of force that exit from the pixel electrode PE pass through a liquid crystal layer (not shown), and further pass through the slit-like opening of the pixel electrode PE to the common electrode CE is generated.
  • This electric field has a component transverse to the liquid crystal layer.
  • a horizontal electric field can be applied to the liquid crystal layer.
  • the horizontal electric field method has an advantage that a wider viewing angle can be realized than the vertical electric field method because liquid crystal molecules do not rise from the substrate.
  • An electrode structure in which the pixel electrode PE is disposed on the common electrode CE via the dielectric layer 17 is described in, for example, International Publication No. 2012/0886513.
  • the common electrode CE may be disposed on the pixel electrode PE via the dielectric layer 17. That is, the lower transparent electrode 15 formed on the lower transparent conductive layer may be the pixel electrode PE, and the upper transparent electrode 19 formed on the upper transparent conductive layer may be the common electrode CE.
  • Such electrode structures are described in, for example, Japanese Patent Application Laid-Open Nos. 2008-032899 and 2010-008758.
  • the entire disclosures of International Publication No. 2012/086513, Japanese Patent Application Laid-Open No. 2008-032899, and Japanese Patent Application Laid-Open No. 2010-008758 are incorporated herein by reference.
  • the substrate 1 can be, for example, a glass substrate, a silicon substrate, a heat-resistant plastic substrate (resin substrate), or the like.
  • the gate metal layer including the gate electrode 3 and the gate bus line GL is, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr ), Titanium (Ti), copper (Cu), or a metal thereof, or an alloy thereof, or a metal nitride thereof. Moreover, you may form from the laminated film of these several films
  • the gate metal layer can be formed by forming a metal film on the substrate 1 by sputtering or the like and patterning it by a known photolithography process (photoresist application, exposure, development, etching, resist stripping). Etching is performed by wet etching, for example.
  • the gate insulating layer (thickness: for example, 200 nm to 500 nm or less) 5 includes, for example, a silicon oxide (SiOx) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy; x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer and the like.
  • the gate insulating layer 5 may have a stacked structure. In that case, oxygen vacancies in the oxide semiconductor layer 7 can be effectively reduced by disposing the SiO 2 film on the side of the gate insulating layer 5 in contact with the oxide semiconductor layer 7.
  • the oxide semiconductor layer 7 is formed of an oxide semiconductor film (thickness: for example, 15 nm to 200 nm) such as an In—Ga—Zn—O-based semiconductor.
  • the source metal layer (thickness: for example, 50 nm or more and 500 nm or less) including the source electrode 8, the drain electrode 9, and the source bus line SL is, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta). , Chromium (Cr), titanium (Ti), copper (Cu) and other metals or alloys thereof, or a film containing a metal nitride thereof. Moreover, you may form from the laminated film of these several films
  • the source metal layer has a laminated structure in which a Ti film (thickness: 30 nm), an Al or Cu film (thickness: 300 nm), and a Ti film (thickness 50 nm) are stacked in this order from the oxide semiconductor layer side. It may be.
  • the inorganic insulating layer (thickness: for example, 100 to 500 nm, preferably 200 to 500 nm) 11 includes, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride (SiOxNy; x> y) film, and a nitride It is formed from an inorganic insulating film (passivation film) such as a silicon oxide (SiNxOy; x> y) film.
  • the inorganic insulating layer 11 may have a laminated structure. When the SiO 2 film is disposed on the side of the inorganic insulating layer 11 in contact with the oxide semiconductor layer 7, oxygen vacancies in the oxide semiconductor layer 7 can be effectively reduced.
  • the organic insulating layer (thickness; for example, 1 to 3 ⁇ m, preferably 2 to 3 ⁇ m) 12 is formed of, for example, an organic insulating film containing a photosensitive resin material.
  • the lower transparent electrode 15 and the upper transparent electrode 19 are, for example, an ITO (indium / tin oxide) film or an In—Zn—O-based oxide (indium / zinc oxide) film, respectively. , ZnO film (zinc oxide film) or the like.
  • the second inorganic insulating layer (thickness: for example, 70 nm to 300 nm) 17 includes a silicon nitride (SiNx) film, a silicon oxide (SiOx) film, a silicon oxynitride (SiOxNy; x> y) film, and a silicon nitride oxide (SiNxOy; x> y) It may be formed from a film or the like.
  • the above-described thin film transistors 10A to 10C and the pixel TFT 130 are channel etch TFTs.
  • an etch stop layer is not formed on the channel region, and the lower surface of the end of the source and drain electrodes on the channel side is disposed so as to be in contact with the upper surface of the oxide semiconductor layer.
  • a channel etch type TFT is formed, for example, by forming a conductive film for a source / drain electrode on an oxide semiconductor layer and performing source / drain separation. In the source / drain separation step, the surface portion of the channel region may be etched.
  • the circuit TFTs (thin film transistors 10A to 10C) in the present embodiment have other gate electrodes (hereinafter referred to as “upper gate electrodes”) above the oxide semiconductor layer 7, that is, on the opposite side of the oxide semiconductor layer 7 from the substrate 1. May be further provided. Such a TFT structure is called a double gate structure.
  • FIGS. 13A and 13B are a plan view and a cross-sectional view showing a thin film transistor 10D having a double gate structure, respectively.
  • the thin film transistor 10D is different from the thin film transistor 10A (FIG. 2) described above in that it has an upper gate electrode BG.
  • the upper gate electrode BG is disposed on the oxide semiconductor layer 7 via an insulating film.
  • the upper gate electrode BG at least partially overlaps the oxide semiconductor layer 7.
  • the upper gate electrode BG has two edges BGe1 and BGe2 that face each other and extend in the channel width direction WD.
  • the source electrode 8 may overlap with the edge BGe1
  • the drain electrode 9 may overlap with the edge BGe2.
  • the thin film transistor 10D is covered with an inorganic insulating layer 11 (passivation film), and the upper gate electrode BG is disposed on the inorganic insulating layer 11. That is, the inorganic insulating layer 11 is located between the upper gate electrode BG and the oxide semiconductor layer 7 and functions as a gate insulating film.
  • the upper gate electrode BG may be, for example, a transparent electrode formed using the same transparent conductive film as a transparent electrode (for example, the pixel electrode PE) disposed in the display area.
  • the lower transparent electrode 15 and the upper transparent electrode 19 are disposed in the display region via the dielectric layer 17 (see FIG. 12).
  • One of the lower transparent electrode 15 and the upper transparent electrode 19 is a pixel electrode PE, and the other is a common electrode CE.
  • the upper gate electrode BG can be formed using the same transparent conductive film as the lower transparent electrode 15 or the upper transparent electrode 19.
  • the inorganic insulating layer 11 that is a passivation film can function as a gate insulating film.
  • the inorganic insulating layer 11 and the dielectric layer 17 can function as a gate insulating film.
  • the upper gate electrode BG is provided in the thin film transistor 10A in FIG. 13, the upper gate electrode BG may be provided in the other thin film transistors 10B and 10C.
  • the oxide semiconductor included in the oxide semiconductor layer may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion.
  • Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • the oxide semiconductor layer may have a stacked structure of two or more layers.
  • the oxide semiconductor layer may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer.
  • a plurality of crystalline oxide semiconductor layers having different crystal structures may be included.
  • a plurality of amorphous oxide semiconductor layers may be included.
  • the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer.
  • the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the oxide semiconductor layer may contain at least one metal element of In, Ga, and Zn, for example.
  • the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor (eg, indium gallium zinc oxide).
  • Such an oxide semiconductor layer can be formed using an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • the TFT is suitably used as a driving TFT (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a pixel TFT (a TFT provided in the pixel).
  • a driving TFT for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels
  • a pixel TFT a TFT provided in the pixel
  • the oxide semiconductor layer may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the oxide semiconductor layer includes an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, and a Zn—Ti—O based semiconductor.
  • Cd—Ge—O based semiconductor Cd—Pb—O based semiconductor, CdO (cadmium oxide), Mg—Zn—O based semiconductor, In—Ga—Sn—O based semiconductor, In—Ga—O based semiconductor, A Zr—In—Zn—O based semiconductor, an Hf—In—Zn—O based semiconductor, an Al—Ga—Zn—O based semiconductor, a Ga—Zn—O based semiconductor, or the like may be included.
  • the active matrix substrate of the second embodiment includes a demultiplexer circuit (for example, an SSD circuit) DMX formed monolithically.
  • a demultiplexer circuit for example, an SSD circuit
  • FIG. 11 This embodiment is different from the above-described embodiment (FIG. 11) in the configuration and arrangement of the demultiplexer circuit.
  • differences from the above-described embodiment will be mainly described, and description of similar configurations will be omitted.
  • the demultiplexer circuit of the present embodiment includes a plurality (at least n) of control signal trunk lines SW and a plurality of sub-circuits.
  • Each sub-circuit includes at least two unit circuits (hereinafter referred to as “first unit circuit” and “second unit circuit”).
  • first unit circuit and “second unit circuit”.
  • second unit circuit From the control signal trunk line SW, n control signal branch lines C are provided for each sub-circuit.
  • Each of the n control signal branch lines C is connected to one of the control signal trunk lines SW. That is, in each sub-circuit, the first and second unit circuits use a common control signal branch line C.
  • the number of control signal branch lines C is n ⁇ number of sub-circuits. Therefore, the number of control signal branch lines C when the control signal branch line C is provided for each unit circuit (n ⁇ number of unit circuits) can be reduced to 1 ⁇ 2 or less.
  • each unit circuit includes two unit circuits
  • one unit circuit may include three or more unit circuits.
  • FIG. 14A is a diagram for explaining the configuration of the demultiplexer circuit DMX in the present embodiment, and shows one sub-circuit 200 in the demultiplexer circuit DMX.
  • the sub-circuit 200 has a first unit circuit and a second unit circuit.
  • a plurality of source bus lines SL extending in the y direction are arranged in the x direction.
  • a plurality of source bus lines SL included in one sub-circuit 200 are arranged in order from one end (here, the left end), respectively, the first source bus line SL1, the second source bus line SL2, These are referred to as a 3 source bus line SL3 and a fourth source bus line SL4.
  • the first unit circuit is associated with the first source bus line SL1 and the third source bus line SL3.
  • the video signal V1 from the corresponding video signal line DO1 is distributed to the first source bus line SL1 and the third source bus line SL3 via the first unit circuit.
  • the second unit circuit is associated with the second source bus line SL2 and the fourth source bus line SL4.
  • the video signal V2 from the video signal line DO2 different from the first unit circuit is distributed to the second source bus line SL2 and the fourth source bus line SL4 via the second unit circuit.
  • the first unit circuit and the second unit circuit also have common control signal branch lines C1 and C2.
  • the control signal branch lines C1 and C2 (which may be collectively referred to as “control signal branch line C”) are electrically connected to the control signal trunk lines SW1 and SW2, respectively.
  • the control signal branch line C is provided for each sub circuit.
  • the first unit circuit includes two thin film transistors (DMX circuit TFTs) T1a and T1b, two branch lines B1a and B1b, and two control signal branch lines C1 and C2.
  • the second unit circuit includes two thin film transistors (DMX circuit TFTs) T2a and T2b, two branch lines B2a and B2b, and control signal branch lines C1 and C2 common to the first unit circuit.
  • the branch lines B1a and B1b of the first unit circuit are electrically connected to the video signal line DO1
  • the branch lines B2a and B2b of the second unit circuit are electrically connected to the video signal line DO2.
  • the drain electrodes of the thin film transistors T1a and T1b of the first unit circuit are connected to the first source bus line SL1 and the third source bus line SL3, respectively, and the source electrodes are connected to the branch lines B1a and B1b, respectively.
  • the drain electrodes of the thin film transistors T2a and T2b of the second unit circuit are connected to the second source bus line SL2 and the fourth source bus line SL4, respectively, and the source electrodes are connected to the branch wirings B2a and B2b, respectively.
  • the gate electrodes of the thin film transistors T1a and T2a are electrically connected to the control signal trunk line SW1 via the control signal branch line C1, respectively.
  • the gate electrodes of the thin film transistors T1b and T2b are each electrically connected to the control signal trunk line SW2 via the control signal branch line C2.
  • N (here, two) source bus lines SL1, SL3 associated with the first unit circuit
  • n (here, two) source bus lines SL2, SL4 associated with the second unit circuit. May be arranged alternately one by one in the x direction (row direction) in the display area.
  • each of the DMX circuit TFTs may have a back gate electrode on the opposite side across the gate electrode and the oxide semiconductor layer (double gate structure).
  • the back gate electrode may be connected to the corresponding branch wiring B.
  • FIG. 14B shows an example of signal waveforms of the gate bus line GL, the control signal branch lines C1 and C2, the video signals V1 and V2, the first source bus line SL1, and the second source bus line SL2 (timing chart). ).
  • the horizontal axis represents time, the period t1 to t4 is the writing time to the gate bus line GL (M) (one horizontal scanning period (1H period)), and the period t5 to t8 is the time to the gate bus line GL (M + 1). Write time (1H period).
  • the control signal of the control signal branch line C1 becomes a high level (high), and one of the two DMX circuit TFTs in each unit circuit is selected.
  • the thin film transistors T1a and T2a are selected, and the video signal V1 is connected to the first source bus line SL1 via the thin film transistor T1a, and the video signal V2 is connected to the second source bus line SL2 via the thin film transistor T2a.
  • the video signals V1 and V2 are each driven to a desired potential to charge the first source bus line SL1 and the second source bus line SL2.
  • the control signal of the control signal branch line C1 becomes low level (low), and the gates of the thin film transistors T1a and T2a are turned off, so that the potentials of the first source bus line SL1 and the second source bus line SL2 are determined. .
  • the control signal of the control signal branch line C2 becomes high level, and the other DMX circuit TFT of each unit circuit is selected.
  • the thin film transistor T1b and the thin film transistor T2b are selected, and the video signal V1 is connected to the third source bus line SL3 via the thin film transistor T1b, and the video signal V2 is connected to the fourth source bus line SL4 via the thin film transistor T2b.
  • the video signals V1 and V2 are each driven to a desired potential, and the third source bus line SL3 and the fourth source bus line SL4 are charged.
  • the control signal of the control signal branch line C2 becomes low level, and the gates of the thin film transistors T1b and T2b are turned off, so that the potentials of the third source bus line SL3 and the fourth source bus line SL4 are determined.
  • the voltage of the scanning signal of the gate bus line GL (M) becomes low level, and writing of the pixel potential is completed.
  • FIG. 15 is a plan view showing an example of the layout of the demultiplexer circuit DMX.
  • the demultiplexer circuit DMX is disposed below the display region DR when viewed from the normal direction of the substrate 1.
  • the demultiplexer circuit DMX has a plurality of sub-circuits 200 arranged in the x direction. Each sub-circuit 200 has a shape extending in the y direction.
  • the DMX circuit TFT of the second unit circuit is disposed in the first unit circuit formation region u1 in which the DMX circuit TFT of the first unit circuit is disposed.
  • the second unit circuit formation region u2 is located on the display region side. That is, the first unit circuit is located between the second unit circuit and the display area. In this specification, such a configuration is referred to as a “two-stage configuration”.
  • control signal branch lines C1 and C2 of each sub-circuit 200 extend from the control signal trunk lines SW1 and SW2 into the demultiplexer circuit DMX, respectively.
  • a drive circuit and a video signal line mounted with COG are also provided between the demultiplexer circuit DMX and the periphery of the non-display area FR.
  • the branch lines B1a, B2a, B1b, and B2b of each sub circuit 200 extend from the video signal line into the demultiplexer circuit DMX.
  • FIG. 16 is an enlarged plan view illustrating one sub circuit 200A in the demultiplexer circuit DMX.
  • the branch wirings B1a, B2a, B1b, B2b, the control signal branch lines C1, C2, and the source bus lines SL1 to SL4 of the first unit circuit and the second unit circuit all extend in the y direction. Yes.
  • the control signal branch lines C1 and C2 each include a portion that functions as a gate electrode of the corresponding DMX circuit TFT.
  • the control signal branch line C1 is located between the branch wiring B1a and the branch wiring B2a when viewed from the normal direction of the substrate 1.
  • the control signal branch line C1 protrudes in the x direction on the branch wiring B2a side and functions as a gate electrode of the thin film transistor T2a, and protrudes in the x direction on the branch wiring B2a side and functions as a gate electrode of the thin film transistor T1a.
  • the oxide semiconductor layers 7 of the thin film transistors T1a and T2a are respectively disposed on these convex portions of the control signal branch line C1.
  • one of the DMX circuit TFTs in the first unit circuit and one of the DMX circuit TFTs in the second unit circuit have gate electrodes integrally formed on the same control signal branch line C. Are arranged on the same control signal branch line C with a gap (two-stage configuration).
  • Each of the source bus lines SL1 to SL4 is in contact with the corresponding oxide semiconductor layer 7 of the DMX circuit TFT and includes a portion that functions as a drain electrode.
  • the first source bus line SL1 extends in the y direction from the display region DR and is in contact with the upper surface of the oxide semiconductor layer 7 of the thin film transistor T1a.
  • the second source bus line SL2 extends from the display region DR between the thin film transistors T1a and T1b in the y direction and is in contact with the upper surface of the oxide semiconductor layer 7 of the thin film transistor T2a.
  • Branch wirings B1a, B2a, B1b, and B2b each include a portion that is in contact with the corresponding oxide semiconductor layer 7 of the DMX circuit TFT and functions as a source electrode.
  • the branch wiring B2a extends in the y direction from the COG side and is in contact with the upper surface of the oxide semiconductor layer 7 of the thin film transistor T2a.
  • the branch wiring B1b extends from the COG side between the thin film transistors T2a and T2b in the y direction and is in contact with the upper surface of the oxide semiconductor layer 7 of the thin film transistor T1b.
  • the DMX circuit TFT of the first unit circuit is arranged between the Nth and (N + 2) th source bus lines SL associated with the second unit circuit.
  • the thin film transistor T1b is disposed between the second source bus line SL2 and the fourth source bus line SL4.
  • the DMX circuit TFT of the second unit circuit is disposed between two adjacent branch lines B in the first unit circuit.
  • the thin film transistor T2a is disposed between the branch lines B1a and B1b of the first unit circuit.
  • each DMX circuit TFT is a part of the source bus line SL
  • the source electrode is a part of the branch wiring B
  • the gate electrode is a part of the control signal branch line C.
  • a common control signal branch line C is provided for two or more unit circuits.
  • a DMX circuit TFT having a desired size can be formed even if the arrangement pitch of the source bus lines SL is narrowed.
  • a DMX circuit TFT may be disposed between the Nth source bus line SL and the (N + 2) th source bus line SL.
  • the present embodiment can be suitably applied to an ultra-high definition active matrix substrate exceeding 1000 ppi, for example.
  • each sub-circuit may include three or more unit circuits, and the DMX circuit TFTs of these unit circuits may be arranged on the common control signal branch line with an interval.
  • DMX circuit TFT a TFT having the same structure as that in FIG. 7A is used as the DMX circuit TFT, but the structure of the DMX circuit TFT is not limited to this.
  • 17 and 18 are plan views showing parts of other sub-circuits 200B and 200C in the present embodiment, respectively.
  • thin film transistors T1a, T1b, T2a, and T2b having the same structure as the thin film transistor 10A shown in FIG. 2 are used as the DMX circuit TFTs.
  • thin film transistors T1a, T1b, T2a, and T2b having the same structure as the thin film transistor 10B having a symmetric structure are used as the DMX circuit TFTs.
  • a TFT having the same structure as the thin film transistor 10C having an asymmetric structure may be used as the TFT for the DMX circuit.
  • FIG. 19 is a plan view showing a part of a sub-circuit 200D in another demultiplexer circuit DMX in the present embodiment.
  • the sub circuit 200D is different from the sub circuit 200B shown in FIG. 17 in that a plurality of thin film transistors connected in parallel to one source bus line SL are provided.
  • a plurality of thin film transistors T1a connected in parallel to each other are connected to the first source bus line SL1, for example.
  • the thin film transistors T1a are arranged in the y direction on the control signal branch line C1, and a part of the control signal branch line C1 is a gate electrode, a part of the branch wiring B1a is a source electrode, and the first source bus line SL1 A part is provided as a drain electrode.
  • a plurality of thin film transistors T2a, T1b, and T2b connected in parallel are connected to the other source bus lines SL1 to SL4, respectively. With such a configuration, the current driving capability can be further increased while suppressing an increase in circuit area.
  • each thin film transistor has the same structure as the thin film transistor 10A, but may have another structure.
  • the thin film transistors 10B, 10C, and 10D may have the same structure as that shown in FIG.
  • the number of TFTs connected in parallel is not particularly limited, but can be set as appropriate so that the total channel width W of these TFTs becomes a predetermined value WTotal.
  • Each DMX circuit TFT may have a gate electrode on the substrate side and the opposite side of the substrate of the oxide semiconductor layer (double gate structure).
  • 20 to 22 are enlarged plan views showing parts of other sub-circuits 200E, 200F, and 200G in the demultiplexer circuit DMX of the present embodiment, respectively.
  • the sub-circuits 200E, 200F, and 200G are different from the sub-circuits 200A, 200B, and 200C illustrated in FIGS. 16 to 18 in that the thin film transistors T1a, T1b, T2a, and T2b further include the upper gate electrode BG (double gate structure).
  • BG double gate structure
  • a common upper gate electrode BG may be provided for these thin film transistors.
  • the common upper gate electrode BG may extend in the y direction.
  • the upper gate electrode BG of each thin film transistor may be connected to the video signal line DO (or V terminal) via the branch wiring B (that is, V terminal).
  • the reliability can be improved.
  • the potential of the source bus line SL is changed to a high potential (for example, a potential for displaying the highest gradation) from the low potential (for example, a potential for displaying the lowest gradation) to the source bus line SL through the thin film transistor.
  • a positive bias is applied to the back gate electrode BG of the thin film transistor only in the initial charging stage of the source bus line SL.
  • the threshold voltage of the DMX circuit TFT is effectively lowered, so that the driving force can be increased.
  • the contact portion 70 that connects the upper gate electrode BG to the branch wiring B is in a region us (hereinafter referred to as “connection region”) located between the first unit circuit formation region u1 and the second unit circuit formation region u2. It may be arranged. Thereby, an increase in the circuit area of the demultiplexer circuit DMX can be suppressed.
  • the upper gate electrode BG may be in direct contact with the branch wiring B in the opening formed in the inorganic insulating layer 11.
  • the contact portion 70 that connects the upper gate electrode BG and the branch wiring B in the thin film transistors T1a and T1b of the first unit circuit is disposed in the connection region us.
  • a contact portion for connecting the upper gate electrode BG and the branch wiring B in the thin film transistors T2a and T2b of the second unit circuit is disposed between the second unit circuit formation region u2 and the control signal trunk line SW. May be.
  • a contact portion that connects the upper gate electrode BG and the branch wiring B in the thin film transistors T2a and T2b of the second unit circuit is arranged in the connection region us, and branches from the upper gate electrode BG in the thin film transistors T1a and T1b of the first unit circuit.
  • a contact portion for connecting the wiring B may be disposed between the first unit circuit formation region u1 and the display region DR.
  • the unit circuit of the demultiplexer circuit of this embodiment has three or more sources. It may be associated with a bus line.
  • FIG. 23 is a diagram showing a configuration of the sub-circuit 300 in another demultiplexer circuit of the present embodiment.
  • the same components as those in FIG. 16 are denoted by the same reference numerals.
  • the sub circuit 300 includes a first unit circuit and a second unit circuit, similar to the sub circuit 200 described above. However, each unit circuit is different from the sub-circuit 200 shown in FIG. 16 in that each unit circuit distributes the video signal V1 from the video signal line DO (N) to the three source bus lines SL arranged every other line. .
  • the first unit circuit is associated with the first, third, and fifth source bus lines SL1, SL3, SL5 arranged every other line, and the second unit circuit is arranged every other line.
  • the second, fourth, and sixth source bus lines SL2, SL4, and SL6 are associated with each other.
  • the first unit circuit and the second unit circuit use common control signal branch lines C1, C2, and C3.
  • the first unit circuit includes three thin film transistors (DMX circuit TFTs) T1a, T1b, and Tc and three branch wirings B1a, B1b, and B1c.
  • the second unit circuit includes three thin film transistors (DMX circuit TFTs) T2a, T2b, T2c, and three branch lines B2a, B2b, B2c.
  • the branch wirings B1a, B1b, B1c of the first unit circuit are electrically connected to the video signal line DO1
  • the branch wirings B2a, B2b, B2c of the second unit circuit are electrically connected to the video signal line DO2. Yes.
  • the drain electrodes of the thin film transistors T1a, T1b, and T1c of the first unit circuit are connected to the first source bus line SL1, the third source bus line SL3, and the fifth source bus line SL5, respectively, and the source electrodes are respectively branched wirings. It is connected to B1a, B1b, B1c.
  • the drain electrodes of the thin film transistors T2a, T2b, and T2c of the second unit circuit are connected to the second source bus line SL2, the fourth source bus line SL4, and the sixth source bus line SL6, respectively, and the source electrodes are respectively branched wirings. It is connected to B2a, B2b, B2c.
  • the gate electrodes of the thin film transistors T1a and T2a are connected to the control signal trunk line SW1 via the control signal branch line C1, respectively.
  • the gate electrodes of the thin film transistors T1b and T2b are respectively connected to the control signal trunk line SW2 via the control signal branch line C2.
  • the gate electrodes of the thin film transistors T1c and T2c are connected to the control signal trunk line SW3 via the control signal branch line C3, respectively.
  • FIG. 24 is an enlarged plan view showing an example of the sub-circuit 300.
  • the first unit circuit formation region u1 in which the thin film transistors T1a, T1b, and T1c of the first unit circuit are arranged is the thin film transistors T2a, T2b, It is located closer to the display area than the second unit circuit formation area u2 where T2c is arranged.
  • the thin film transistor of the first unit circuit is disposed between the Nth and (N + 2) th source bus lines SL associated with the second unit circuit (N is a natural number).
  • the thin film transistor T1b is disposed between the second source bus line SL2 and the fourth source bus line SL4, and the thin film transistor T1c is disposed between the fourth source bus line SL4 and the sixth source bus line SL6.
  • the thin film transistor of the second unit circuit is disposed between the branch wirings B of the first unit circuit.
  • the thin film transistor T2a is disposed between the branch line B1a and the branch line B1b
  • the thin film transistor T2b is disposed between the branch line B1b and the branch line B1c.
  • each thin film transistor is not limited to the structure shown in the drawings, and may have a structure similar to that of the thin film transistors 10B, 10C, and 10D.
  • the control signal supplied by the control signal trunk line SW may be phase-expanded.
  • the demultiplexer circuit DMX described above has n control signal trunk lines SW, K ⁇ n (K is an integer of 2 or more) control signal trunk lines SW may be provided.
  • FIG. 25 is a diagram illustrating a configuration of two sub-circuits 400 (1) and 400 (2) in the demultiplexer circuit DMX in which the control signal is phase-expanded.
  • the sub-circuit 400 (1) includes a first unit circuit and a second unit circuit, and control signal branch lines C1 (1) and C2 (1).
  • the sub-circuit 400 (2) includes a first unit circuit and a second unit circuit, and control signal branch lines C1 (2) and C2 (2).
  • Control signal branch lines C1 (1) and C2 (1) of some subcircuits (including subcircuit 400 (1)) of demultiplexer circuit DMX are control signal trunk line SW1-1 and control signal trunk line SW2-1 ( Control signal branch lines C1 (2) and C2 of some other subcircuits (including subcircuit 400 (2)) of the demultiplexer circuit DMX. (2) is connected to the control signal main line SW1-2 and the control signal main line SW2-2 (sometimes referred to as “second control signal main line”).
  • the number of unit circuits connected to one control signal main line SW can be reduced, so that the load on each control signal main line SW can be reduced.
  • the transition time (rise and fall) of the control signal can be reduced, a higher speed operation is possible.
  • a TFT having a top gate structure can also be used as a switching element.
  • a gate electrode is provided above the oxide semiconductor layer (on the side opposite to the substrate) through an insulating film.
  • FIGS. 26A and 26B are a plan view and a cross-sectional view illustrating the TFT (thin film transistor 90) of Reference Example 2 used in the demultiplexer circuit DMX, respectively.
  • the thin film transistor 90 is a top gate structure TFT.
  • the thin film transistor 90 overlaps at least part of the oxide semiconductor layer 7 over the oxide semiconductor layer 7 provided over the substrate 1, the gate insulating layer 5 covering the oxide semiconductor layer 7, and the gate insulating layer 5. And a gate electrode 33 disposed on the surface.
  • the inorganic insulating layer 11 is provided on the gate electrode 33 as an interlayer insulating layer. Furthermore, a source electrode 8 and a drain electrode 9 are provided on the inorganic insulating layer 11. The source electrode 8 and the drain electrode 9 are respectively connected to the source contact region 7s and the drain contact region 7d of the oxide semiconductor layer 7 in the opening provided so as to penetrate the inorganic insulating layer 11 and the gate insulating layer 5, respectively. Has been. Further, the source electrode 8 and the drain electrode 9 are provided away from the gate electrode 33 when viewed from the substrate normal direction.
  • the oxide semiconductor layer 7 includes a channel region 7 c that is a region overlapping with the gate electrode 33 when viewed from the normal direction of the substrate 1, a source contact region 7 s in contact with the source electrode 8, and a drain contact region in contact with the drain electrode 9. 7d.
  • a source-side offset region 7os located between the source contact region 7s and the channel region 7c, and a drain-side offset region 7od located between the drain contact region 7d and the channel region 7c. And are provided.
  • the offset regions 7 os and 7 od are regions that do not overlap any of the gate electrode 33, the source electrode 8, and the drain electrode 9.
  • the channel length direction DL of the thin film transistor 90 may be the same as the x direction and the channel width direction DW may be the same as the y direction.
  • the drain electrode 9 of the thin film transistor 90 is a part of the corresponding source bus line SL
  • the source electrode 8 is a part of the corresponding branch wiring B
  • the gate electrode 33 is one of the corresponding control signal branch lines C.
  • another gate electrode (lower gate electrode) may be further provided on the substrate 1 side of the oxide semiconductor layer 7. The lower gate electrode may be connected to the V terminal side via the branch wiring B.
  • the active matrix substrate of the third embodiment has a gate driver formed monolithically.
  • the gate driver has one of the thin film transistors 10A to 10D described in the first embodiment.
  • the thin film transistors 10A to 10C are used as output transistors that require a large current to flow.
  • the gate driver GD includes a shift register.
  • the shift register includes a plurality of unit shift register circuits connected in multiple stages.
  • FIG. 27 is a diagram illustrating a shift register circuit.
  • the shift register circuit has a plurality of unit shift register circuits SR1 to SRz (z: integer of 2 or more) (hereinafter collectively referred to as “unit shift register circuit SR”).
  • the unit shift register SR of each stage includes a set terminal S that receives a set signal, an output terminal Z that outputs an output signal, a reset terminal R that receives a reset signal, and clock input terminals CK1 and CK2 that receive clock signals GCK1 and GCK2. It has.
  • the unit shift register circuit SR ⁇ ( ⁇ ⁇ 2)
  • the gate start pulse signal GSP is input to the set terminal S of the first stage unit shift register circuit SR1.
  • the unit shift register circuit SR at each stage also outputs an output signal to the corresponding gate bus line GL arranged in the display area.
  • the reset terminal R receives an output signal of the next unit shift register circuit.
  • a clear signal is input to the reset terminal R of the unit shift register circuit SRz at the final stage.
  • GCK1 and GCK2 which are two-phase clock signals are given to the two clock input terminals.
  • the clock signal GCK1 is input to one of the clock input terminals, and the clock signal GCK2 is input to the other clock input terminal.
  • the clock signal input to the clock input terminal is configured to be alternately switched between adjacent stages.
  • FIG. 28 is a diagram illustrating an example of the unit shift register circuit SR.
  • the unit shift register circuit SR includes four TFTs 31 to 34 and a capacitor part Cap.
  • TFT 31 is an input transistor.
  • the gate and drain of the TFT 31 are connected to the set terminal, and the source of the TFT 31 is connected to the gate of the TFT 34.
  • the TFT 34 is an output transistor.
  • the drain of the TFT 34 is connected to the clock input terminal CK1, and the source is connected to the output terminal Z.
  • the TFT 34 functions as a transmission gate to pass and block the clock signal input to the clock input terminal CK1.
  • the capacitor part Cap is connected between the gate and the source of the TFT 34 which is an output transistor.
  • the capacitor part Cap may be referred to as a “bootstrap capacitor part”.
  • a node connected to the gate of the TFT 34 is referred to as “node netA”, and a node connected to the output terminal Z is referred to as “node Z”.
  • One electrode of the capacitor part Cap is connected to the gate of the TFT 34 and the node netA, and the other electrode is connected to the source of the TFT 34 and the node Z.
  • the TFT 32 is disposed between the low power input terminal and the node netA.
  • the TFT 32 is a pull-down transistor for reducing the potential of the node netA.
  • the gate of the TFT 32 is connected to the reset terminal, the drain is connected to the node netA, and the source is connected to the low power input terminal.
  • a TFT 33 is connected to the node Z.
  • the TFT 33 has a gate connected to the clock signal input terminal CK2, a drain connected to the node Z, and a source connected to the low power input terminal.
  • the unit shift register SR includes a pull-up unit 501 including the TFT 34 serving as an output transistor and a capacitor unit Cap, a pull-down unit 502 including the TFT 33, a pull-up driving unit 503 including the TFT 31 serving as an input transistor, And a pull-down driver 504 including the TFT 32.
  • the above-described thin film transistors 10A to 10D are used as at least the TFTs 34 that are output transistors.
  • a TFT having a larger size than other TFTs is used as an output transistor for charging and discharging the gate bus line GL. For this reason, there is a problem that the load of the wiring that supplies the gate clock signals GCK1 and GCK2 to which the plurality of output transistors are connected increases, and the driving power increases. In contrast, in the present embodiment, since the thin film transistor having a structure with reduced parasitic capacitance is used as the output transistor, the load on the wiring can be reduced.
  • the embodiment of the present invention can be suitably applied to an active matrix substrate having a peripheral circuit formed monolithically.
  • active matrix substrates include liquid crystal display devices, display devices such as organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, imaging devices such as image sensor devices, image input devices, fingerprint readers, and semiconductors. It is applied to various electronic devices such as a memory.

Abstract

This active matrix substrate is provided with at least one TFT 10A, and a peripheral circuit containing the TFT 10A. The TFT 10A comprises a gate electrode 3, a gate insulating layer 5, an oxide semiconductor layer 7 arranged on the gate insulating layer, and a source electrode 8 and a drain electrode 9 arranged on the oxide semiconductor layer. Seen from the substrate normal direction, the gate electrode 3 has a first edge 3e1 and a second edge 3e2 opposite each other, and the first edge and the second edge extend across the oxide semiconductor layer 7 in the channel width direction DW of the TFT 10A. Seen from the substrate normal direction, the source electrode 8 extends across the oxide semiconductor layer 7 in the channel width direction DW so as to overlap the first edge 3e1, and the drain electrode extends across the oxide semiconductor layer 7 in the channel width direction DW so as to overlap the second edge 3e2.

Description

アクティブマトリクス基板Active matrix substrate
 本発明は、アクティブマトリクス基板に関する。 The present invention relates to an active matrix substrate.
 液晶表示装置等に用いられるアクティブマトリクス基板は、複数の画素を有する表示領域と、表示領域以外の領域(非表示領域または額縁領域)とを有している。表示領域には、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。このようなスイッチング素子としては、従来から、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられている。 An active matrix substrate used for a liquid crystal display device or the like has a display area having a plurality of pixels and an area other than the display area (non-display area or frame area). The display region includes a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel. Conventionally, as such a switching element, a TFT having an amorphous silicon film as an active layer (hereinafter referred to as “amorphous silicon TFT”) or a TFT having a polycrystalline silicon film as an active layer (hereinafter referred to as “polycrystalline silicon TFT”). Is widely used.
 TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いることが提案されている。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。 It has been proposed to use an oxide semiconductor instead of amorphous silicon or polycrystalline silicon as a material for the active layer of TFT. Such a TFT is referred to as an “oxide semiconductor TFT”. An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT.
 アクティブマトリクス基板の非表示領域に、駆動回路などの周辺回路をモノリシック(一体的)に形成される場合がある。駆動回路をモノリシックに形成することによって、非表示領域の狭小化や、実装工程簡略化によるコストダウンが実現される。例えば、非表示領域において、ゲートドライバ回路がモノリシックに形成され、ソースドライバ回路がCOG(Chip on Glass)方式で実装される場合がある。 ∙ Peripheral circuits such as drive circuits may be formed monolithically (integrated) in the non-display area of the active matrix substrate. By forming the drive circuit monolithically, the non-display area can be narrowed and the cost can be reduced by simplifying the mounting process. For example, in the non-display area, the gate driver circuit may be formed monolithically and the source driver circuit may be mounted by a COG (Chip on Glass) method.
 スマートフォンなどの狭額縁化の要求の高いデバイスでは、ゲートドライバに加えて、ソース切替(Source Shared driving:SSD)回路などのデマルチプレクサ回路をモノリシックに形成することが提案されている(例えば特許文献1および2)。SSD回路は、ソースドライバの各端子からのビデオ信号線1本から、複数本のソース配線へビデオデータを振り分ける回路である。SSD回路の搭載により、非表示領域における端子部および配線が配置される領域(端子部・配線形成領域)をさらに狭くできる。また、ソースドライバからの出力数が減り、回路規模を小さくできるので、ドライバICのコストを低減できる。 In devices with a high demand for narrow frames such as smartphones, it has been proposed to form a demultiplexer circuit such as a source switching (SSD) circuit monolithically in addition to a gate driver (for example, Patent Document 1). And 2). The SSD circuit is a circuit that distributes video data from one video signal line from each terminal of the source driver to a plurality of source lines. By mounting the SSD circuit, the region (terminal portion / wiring forming region) in which the terminal portion and the wiring are arranged in the non-display region can be further narrowed. In addition, since the number of outputs from the source driver is reduced and the circuit scale can be reduced, the cost of the driver IC can be reduced.
 駆動回路やSSD回路などの周辺回路はTFTを含んでいる。本明細書では、表示領域の各画素にスイッチング素子として配置されるTFTを「画素TFT」、周辺回路を構成するTFTを「回路TFT」と呼ぶ。また、回路TFTのうちデマルチプレクサ回路(SSD回路)においてスイッチング素子として用いられるTFTを「DMX回路用TFT」と呼ぶ。 Peripheral circuits such as drive circuits and SSD circuits include TFTs. In this specification, a TFT disposed as a switching element in each pixel in the display region is referred to as a “pixel TFT”, and a TFT constituting a peripheral circuit is referred to as a “circuit TFT”. Further, among the circuit TFTs, TFTs used as switching elements in the demultiplexer circuit (SSD circuit) are referred to as “DMX circuit TFTs”.
国際公開第2011/118079号International Publication No. 2011/118079 特開2010-102266号公報JP 2010-102266 A
 画素TFTとして酸化物半導体TFTを用いたアクティブマトリクス基板では、製造プロセスの観点から、DMX回路用TFTも、画素TFTと同じ酸化物半導体膜を用いた酸化物半導体TFTであることが好ましい。 In an active matrix substrate using an oxide semiconductor TFT as a pixel TFT, the DMX circuit TFT is preferably an oxide semiconductor TFT using the same oxide semiconductor film as the pixel TFT from the viewpoint of the manufacturing process.
 しかしながら、酸化物半導体TFTを用いてデマルチプレクサ回路を形成することは困難であり、従来は、DMX回路用TFTとして多結晶シリコンTFTが用いられていた。この理由は、以下のとおりである。 However, it is difficult to form a demultiplexer circuit using an oxide semiconductor TFT, and conventionally, a polycrystalline silicon TFT has been used as a TFT for a DMX circuit. The reason for this is as follows.
 酸化物半導体は多結晶シリコンよりも移動度が約1桁小さいことから、酸化物半導体TFTは多結晶シリコンTFTよりも電流駆動力が小さい。このため、酸化物半導体を用いてDMX回路用TFTを形成する場合には、多結晶シリコンを用いる場合よりもTFTのサイズを大きくする(チャネル幅を大きくする)か、あるいは、駆動電圧を高める必要がある。TFTのサイズを大きくすると、ゲート容量負荷が大きくなり、デマルチプレクサ回路の駆動電力が増大してしまう。一方、TFTの駆動電圧を高くしても、デマルチプレクサ回路の駆動電力が増大する。 Since the oxide semiconductor has a mobility that is about an order of magnitude smaller than that of polycrystalline silicon, the oxide semiconductor TFT has a smaller current driving force than the polycrystalline silicon TFT. For this reason, when forming a TFT for a DMX circuit using an oxide semiconductor, it is necessary to increase the size of the TFT (increase the channel width) or increase the driving voltage as compared with the case of using polycrystalline silicon. There is. When the size of the TFT is increased, the gate capacitance load increases and the driving power of the demultiplexer circuit increases. On the other hand, even if the driving voltage of the TFT is increased, the driving power of the demultiplexer circuit increases.
 なお、DMX回路用TFTの他に、大電流を流すTFTを含む周辺回路をモノリシックに形成する場合には、上記と同様の問題がある。 In addition to the DMX circuit TFT, when a peripheral circuit including a TFT through which a large current flows is formed monolithically, there is the same problem as described above.
 本発明の実施形態は上記事情に鑑みてなされたものであり、その目的は、酸化物半導体TFTを含む周辺回路の駆動電力を低減可能なアクティブマトリクス基板を提供することにある。 Embodiments of the present invention have been made in view of the above circumstances, and an object of the present invention is to provide an active matrix substrate capable of reducing driving power of peripheral circuits including oxide semiconductor TFTs.
 本発明による一実施形態のアクティブマトリクス基板は、複数の画素を含む表示領域と、前記表示領域の周辺に設けられた非表示領域とを有し、基板と、前記基板に支持され、かつ、前記非表示領域に配置された少なくとも1つのTFTと、前記少なくとも1つのTFTを含む周辺回路とを備えたアクティブマトリクス基板であって、前記少なくとも1つのTFTは、ゲート電極と、前記ゲート電極を覆うゲート絶縁層と、前記ゲート絶縁層上に、前記ゲート絶縁層を介して前記ゲート電極と少なくとも部分的に重なるように配置された酸化物半導体層と、前記酸化物半導体層上に、前記酸化物半導体層の一部と接するように配置されたソース電極と、前記酸化物半導体層上に、前記酸化物半導体層の他の一部と接するように配置されたドレイン電極とを有し、前記基板の法線方向から見たとき、前記ゲート電極は、互いに対向する第1縁部および第2縁部を有し、前記第1縁部および前記第2縁部は、前記少なくとも1つのTFTのチャネル幅方向に前記酸化物半導体層を横切って延びており、前記基板の法線方向から見たとき、前記ソース電極は、前記ゲート電極の前記第1縁部と重なるように、前記チャネル幅方向に前記酸化物半導体層を横切って延びており、前記ドレイン電極は、前記ゲート電極の前記第2縁部と重なるように、前記チャネル幅方向に前記酸化物半導体層を横切って延びている。 An active matrix substrate according to an embodiment of the present invention includes a display region including a plurality of pixels, a non-display region provided around the display region, a substrate, supported by the substrate, and An active matrix substrate comprising at least one TFT disposed in a non-display area and a peripheral circuit including the at least one TFT, wherein the at least one TFT includes a gate electrode and a gate covering the gate electrode An insulating layer; an oxide semiconductor layer disposed on the gate insulating layer so as to at least partially overlap the gate electrode with the gate insulating layer interposed therebetween; and the oxide semiconductor on the oxide semiconductor layer A source electrode disposed in contact with a part of the layer; and a drain disposed on the oxide semiconductor layer so as to be in contact with another part of the oxide semiconductor layer. The gate electrode has a first edge and a second edge facing each other when viewed from the normal direction of the substrate, and the first edge and the second edge Extends across the oxide semiconductor layer in the channel width direction of the at least one TFT, and when viewed from the normal direction of the substrate, the source electrode is connected to the first edge of the gate electrode. The oxide semiconductor layer extends across the oxide semiconductor layer in the channel width direction so as to overlap, and the drain electrode overlaps the second edge portion of the gate electrode in the channel width direction. Extending across.
 ある実施形態において、前記基板の法線方向から見たとき、前記ソース電極における前記ドレイン電極に対向するソース縁部、および/または、前記ドレイン電極における前記ソース電極に対向するドレイン縁部は、前記酸化物半導体層と重なる領域に、前記少なくとも1つのTFTのチャネル長方向に突出した少なくとも1つの凸部と、前記少なくとも1つの凸部に前記チャネル幅方向に隣接する凹部または切欠き部とを有し、前記少なくとも1つの凸部の前記チャネル長方向の長さは、前記ゲート電極の前記チャネル長方向の幅の1/3未満である。 In one embodiment, the source edge facing the drain electrode in the source electrode and / or the drain edge facing the source electrode in the drain electrode when viewed from the normal direction of the substrate, The region overlapping with the oxide semiconductor layer has at least one projection protruding in the channel length direction of the at least one TFT, and a recess or notch adjacent to the at least one projection in the channel width direction. The length of the at least one convex portion in the channel length direction is less than 1/3 of the width of the gate electrode in the channel length direction.
 ある実施形態において、前記ソース縁部または前記ドレイン縁部に配置された前記少なくとも1つの凸部の前記チャネル幅方向における幅の合計は、前記少なくとも1つのTFTのチャネル幅Wの70%以上90%以下である。 In one embodiment, the total width in the channel width direction of the at least one protrusion disposed at the source edge or the drain edge is 70% or more and 90% of the channel width W of the at least one TFT. It is as follows.
 ある実施形態において、前記ソース縁部および前記ドレイン縁部はいずれも、前記少なくとも1つの凸部と、前記凹部または前記切欠き部とを有し、前記ソース縁部の少なくとも1つの凸部は、前記ドレイン縁部の少なくとも1つの凸部と前記チャネル長方向に対向し、前記ソース縁部の前記凹部または前記切欠き部は、前記ドレイン縁部の前記凹部または前記切欠き部と前記チャネル長方向に対向している。 In one embodiment, each of the source edge and the drain edge includes the at least one protrusion and the recess or the notch, and the at least one protrusion of the source edge includes: The at least one convex portion of the drain edge is opposed to the channel length direction, and the concave portion or the notch portion of the source edge portion corresponds to the concave portion or the notch portion of the drain edge portion and the channel length direction. Opposite to.
 ある実施形態において、前記ソース縁部および前記ドレイン縁部はいずれも、前記少なくとも1つの凸部と、前記凹部または前記切欠き部とを有し、前記ソース縁部の少なくとも1つの凸部は、前記ドレイン縁部の前記凹部または前記切欠き部と前記チャネル長方向に対向し、前記ソース縁部の前記凹部または前記切欠き部は、前記ドレイン縁部の少なくとも1つの凸部と前記チャネル長方向に対向している。 In one embodiment, each of the source edge and the drain edge includes the at least one protrusion and the recess or the notch, and the at least one protrusion of the source edge includes: The recess or the notch of the drain edge is opposed to the channel length direction, and the recess or the notch of the source edge has at least one protrusion of the drain edge and the channel length direction. Opposite to.
 ある実施形態において、前記表示領域において、前記チャネル幅方向に延びる複数のソースバスラインと、前記少なくとも1つのTFTのチャネル長方向に延びる複数のゲートバスラインとをさらに備え、前記周辺回路は、複数の単位回路を含むデマルチプレクサ回路であり、前記複数の単位回路のそれぞれは、複数のビデオ信号線のうちの1つのビデオ信号線から、前記複数のソースバスラインのうちのn本(nは2以上の整数)のソースバスラインへビデオ信号を分配し、前記複数の単位回路のそれぞれは、少なくともn個のDMX回路用TFTを有し、前記少なくとも1つのTFTは、前記少なくともn個のDMX回路用TFTを含む。 In one embodiment, the display region further includes a plurality of source bus lines extending in the channel width direction and a plurality of gate bus lines extending in the channel length direction of the at least one TFT, and the peripheral circuit includes a plurality of peripheral buses. Each of the plurality of unit circuits from one video signal line out of the plurality of video signal lines to n lines out of the plurality of source bus lines (n is 2). The video signal is distributed to the source bus lines of the above integer), each of the plurality of unit circuits includes at least n DMX circuit TFTs, and the at least one TFT includes the at least n DMX circuits. TFT for use.
 ある実施形態において、前記デマルチプレクサ回路は、複数の制御信号幹線をさらに備え、前記複数の単位回路のそれぞれは、前記1つのビデオ信号線に接続されたn本の分岐配線と、前記n本のソースバスラインと、n本の制御信号枝線とをさらに備え、前記複数の制御信号枝線のそれぞれは、前記複数の制御信号幹線の1つに電気的に接続されており、前記複数の単位回路のそれぞれにおいて、各DMX回路用TFTのドレイン電極は前記n本のソースバスラインの1つの一部であり、ソース電極は前記n本の分岐配線の1つの一部であり、ゲート電極は前記n本の制御信号枝線の一部であり、前記複数の単位回路のそれぞれにおいて、前記n本の分岐配線、前記n本の制御信号枝線および前記n本のソースバスラインは、いずれも、前記チャネル幅方向に延びている。 In one embodiment, the demultiplexer circuit further includes a plurality of control signal trunk lines, and each of the plurality of unit circuits includes n branch wirings connected to the one video signal line, and the n number of branch lines. A source bus line; and n control signal branch lines, each of the plurality of control signal branch lines being electrically connected to one of the plurality of control signal trunk lines, In each of the circuits, the drain electrode of each DMX circuit TFT is a part of one of the n source bus lines, the source electrode is a part of one of the n branch wirings, and the gate electrode is each of the plurality of unit circuits, each of the n branch wirings, the n control signal branch lines, and the n source bus lines is a part of the n control signal branch lines, And it extends to the serial channel width direction.
 ある実施形態において、前記デマルチプレクサ回路は、複数のサブ回路を含み、各サブ回路のそれぞれは、前記複数の単位回路のうちの少なくとも第1単位回路および第2単位回路を含み、前記各サブ回路のそれぞれにおいて、前記第1単位回路および前記第2単位回路における前記n本の制御信号枝線は共通である。 In one embodiment, the demultiplexer circuit includes a plurality of sub-circuits, and each of the sub-circuits includes at least a first unit circuit and a second unit circuit of the plurality of unit circuits, and each of the sub-circuits , The n control signal branch lines in the first unit circuit and the second unit circuit are common.
 ある実施形態において、前記各サブ回路において、前記第1単位回路の前記少なくともn個のDMX回路用TFTが形成される第1単位回路形成領域は、前記第2単位回路の前記少なくともn個のDMX回路用TFTが形成される第2単位回路形成領域と前記表示領域との間に位置している。 In one embodiment, in each of the sub-circuits, the first unit circuit formation region in which the at least n DMX circuit TFTs of the first unit circuit are formed is the at least n DMX of the second unit circuit. It is located between the second unit circuit formation region where the circuit TFT is formed and the display region.
 ある実施形態において、前記各サブ回路において、前記第1単位回路における前記少なくともn個のDMX回路用TFTの1つと、前記第2単位回路における前記少なくともn個のDMX回路用TFTの1つとは、同じ制御信号枝線に接続され、かつ、前記同じ制御信号枝線の上に間隔を空けて配置されている。 In one embodiment, in each of the sub-circuits, one of the at least n DMX circuit TFTs in the first unit circuit and one of the at least n DMX circuit TFTs in the second unit circuit are: It is connected to the same control signal branch line, and is arranged on the same control signal branch line with an interval.
 ある実施形態において、前記複数のソースバスラインは、一方の端から前記チャネル長方向に配列されており、前記各サブ回路は、前記一方の端からN番目(Nは自然数)、(N+1)番目、(N+2)番目および(N+3)番目にそれぞれ配列された第1ソースバスライン、第2ソースバスライン、第3ソースバスラインおよび第4ソースバスラインを含み、前記第1ソースバスラインおよび前記第3ソースバスラインは、前記第1単位回路を介して、前記複数のビデオ信号線の1つに電気的に接続され、前記第2ソースバスラインおよび前記第4ソースバスラインは、前記第2単位回路を介して、前記複数のビデオ信号線の他の1つに電気的に接続されている。 In one embodiment, the plurality of source bus lines are arranged in the channel length direction from one end, and each of the sub-circuits is Nth (N is a natural number), (N + 1) th from the one end. , (N + 2) th and (N + 3) th arrayed first source bus line, second source bus line, third source bus line and fourth source bus line, respectively. 3 source bus lines are electrically connected to one of the plurality of video signal lines through the first unit circuit, and the second source bus line and the fourth source bus line are connected to the second unit circuit. It is electrically connected to another one of the video signal lines through a circuit.
 ある実施形態において、前記各サブ回路において、前記基板の法線方向から見たとき、前記第1単位回路の前記少なくともn個のDMX回路用TFTの1つは、前記第2ソースバスラインおよび前記第4ソースバスラインの間に配置されている。 In one embodiment, in each of the sub-circuits, when viewed from the normal direction of the substrate, one of the at least n DMX circuit TFTs of the first unit circuit includes the second source bus line and the Arranged between the fourth source bus lines.
 ある実施形態において、前記少なくともn個のDMX回路用TFTは、前記チャネル幅方向に配列され、かつ、互いに並列に接続された複数のTFTを含む。 In one embodiment, the at least n DMX circuit TFTs include a plurality of TFTs arranged in the channel width direction and connected in parallel to each other.
 ある実施形態において、前記複数の制御信号幹線は、n本の第1制御信号幹線と、n本の第2制御信号幹線とを含み、前記n本の第1制御信号幹線のそれぞれには、前記n本の第2制御信号幹線の1つと同じ制御信号が供給され、前記複数の単位回路のうち一部の単位回路における前記n本の制御信号枝線は、前記n本の第1制御信号幹線と電気的に接続されており、他の一部の単位回路における前記n本の制御信号枝線は、前記n本の第2制御信号幹線と電気的に接続されている。 In one embodiment, the plurality of control signal trunks include n first control signal trunks and n second control signal trunks, and each of the n first control signal trunks includes the The same control signal as one of the n second control signal trunk lines is supplied, and the n control signal branch lines in some unit circuits of the plurality of unit circuits are the n first control signal trunk lines. The n control signal branch lines in other part of the unit circuits are electrically connected to the n second control signal trunk lines.
 ある実施形態において、前記周辺回路は、ゲートドライバを含み、前記ゲートドライバは、複数のシフトレジスタを有し、前記少なくとも1つのTFTは、前記複数のシフトレジスタのそれぞれにおける出力トランジスタを含む。 In one embodiment, the peripheral circuit includes a gate driver, the gate driver includes a plurality of shift registers, and the at least one TFT includes an output transistor in each of the plurality of shift registers.
 本発明による他の一実施形態のアクティブマトリクス基板は、複数の画素を含む表示領域と、前記表示領域の周辺に設けられた非表示領域とを有し、基板と、前記非表示領域に配置され、かつ、前記基板に支持されたデマルチプレクサ回路と、前記表示領域において第1方向に延びる複数のソースバスラインと、前記第1方向と交差する第2方向に延びる複数のゲートバスラインとを備え、前記デマルチプレクサ回路は、複数の単位回路と、複数の制御信号幹線とを備え、前記複数の単位回路のそれぞれは、複数のビデオ信号線のうちの1つのビデオ信号線から、前記複数のソースバスラインのうちのn本(nは2以上の整数)のソースバスラインへビデオ信号を分配し、前記複数の単位回路のそれぞれは、少なくともn個のDMX回路用TFTと、前記1つのビデオ信号線に接続されたn本の分岐配線と、前記n本のソースバスラインと、n本の制御信号枝線とを有し、前記n本の制御信号枝線のそれぞれは、前記複数の制御信号幹線の1つに電気的に接続されており、前記複数の単位回路のそれぞれにおいて、前記n本の分岐配線、前記n本の制御信号枝線および前記n本のソースバスラインは、いずれも、前記第1方向に延びており、各DMX回路用TFTは、ゲート電極と、前記ゲート電極の上にゲート絶縁層を介して配置された酸化物半導体層と、前記酸化物半導体層上に、前記酸化物半導体層の一部と接するように配置されたソース電極と、前記酸化物半導体層上に、前記酸化物半導体層の他の一部と接するように配置されたドレイン電極とを有し、前記ドレイン電極は前記n本のソースバスラインの1つの一部であり、前記ソース電極は前記n本の分岐配線の1つの一部であり、前記ゲート電極は前記n本の制御信号枝線の1つの一部であり、前記基板の法線方向から見たとき、前記ゲート電極は互いに対向する第1縁部および第2縁部を有し、前記第1縁部および前記第2縁部は、前記酸化物半導体層を前記第1方向に横切って延びており、前記基板の法線方向から見たとき、前記ソース電極は、前記第1縁部と重なるように前記第1方向に延びており、前記ドレイン電極は、前記第2縁部と重なるように前記第1方向に延びている。 An active matrix substrate according to another embodiment of the present invention includes a display area including a plurality of pixels and a non-display area provided around the display area, and is disposed in the non-display area. And a demultiplexer circuit supported by the substrate, a plurality of source bus lines extending in a first direction in the display region, and a plurality of gate bus lines extending in a second direction intersecting the first direction. The demultiplexer circuit includes a plurality of unit circuits and a plurality of control signal trunk lines, and each of the plurality of unit circuits is connected to the plurality of sources from one video signal line among the plurality of video signal lines. A video signal is distributed to n source bus lines (n is an integer of 2 or more) of bus lines, and each of the plurality of unit circuits is for at least n DMX circuits. FT, n branch wirings connected to the one video signal line, the n source bus lines, and n control signal branch lines, and the n control signal branch lines Each is electrically connected to one of the plurality of control signal trunk lines, and in each of the plurality of unit circuits, the n branch wirings, the n control signal branch lines, and the n control signal main lines are connected. Each source bus line extends in the first direction, and each DMX circuit TFT includes a gate electrode, an oxide semiconductor layer disposed on the gate electrode via a gate insulating layer, A source electrode is disposed on the oxide semiconductor layer so as to be in contact with a part of the oxide semiconductor layer, and is disposed on the oxide semiconductor layer so as to be in contact with another part of the oxide semiconductor layer. Drain electrode, and the drain electrode Is a part of one of the n source bus lines, the source electrode is a part of one of the n branch lines, and the gate electrode is one of the n control signal branch lines. The gate electrode has a first edge and a second edge facing each other when viewed from the normal direction of the substrate, and the first edge and the second edge are The physical semiconductor layer extends across the first direction, and when viewed from the normal direction of the substrate, the source electrode extends in the first direction so as to overlap the first edge, The drain electrode extends in the first direction so as to overlap the second edge.
 ある実施形態において、前記複数の単位回路は、第1単位回路および第2単位回路を含み、前記表示領域において、前記複数のソースバスラインは、一方の端から前記第2方向に配列されており、前記一方の端からN番目(Nは自然数)、(N+1)番目、(N+2)番目および(N+3)番目にそれぞれ配列された第1ソースバスライン、第2ソースバスライン、第3ソースバスラインおよび第4ソースバスラインを含み、前記第1ソースバスラインおよび前記第3ソースバスラインは、前記第1単位回路を介して、前記複数のビデオ信号線の1つに電気的に接続され、前記第2ソースバスラインおよび前記第4ソースバスラインは、前記第2単位回路を介して、前記複数のビデオ信号線の他の1つに電気的に接続され、前記基板の法線方向から見たとき、前記第1単位回路の前記少なくともn個のDMX回路用TFTの1つは前記第2ソースバスラインおよび前記第4ソースバスラインの間に配置されている。 In one embodiment, the plurality of unit circuits include a first unit circuit and a second unit circuit, and in the display area, the plurality of source bus lines are arranged in the second direction from one end. The first source bus line, the second source bus line, and the third source bus line arranged in the Nth (N is a natural number), (N + 1) th, (N + 2) th and (N + 3) th from the one end, respectively. And the fourth source bus line, wherein the first source bus line and the third source bus line are electrically connected to one of the plurality of video signal lines through the first unit circuit, The second source bus line and the fourth source bus line are electrically connected to the other one of the plurality of video signal lines via the second unit circuit, and are normal to the substrate. When viewed from the direction, one of said at least n DMX circuit TFT of the first unit circuit is disposed between the second source bus line and the fourth source bus lines.
 ある実施形態において、前記第1単位回路および前記第2単位回路における前記n本の制御信号枝線は共通であり、前記第1単位回路における前記少なくともn個のDMX回路用TFTの1つと、前記第2単位回路における前記少なくともn個のDMX回路用TFTの1つとは、同じ制御信号線に接続され、かつ、前記同じ制御信号線の上に間隔を空けて配置されている。 In one embodiment, the n control signal branch lines in the first unit circuit and the second unit circuit are common, and one of the at least n DMX circuit TFTs in the first unit circuit; One of the at least n DMX circuit TFTs in the second unit circuit is connected to the same control signal line, and is arranged on the same control signal line with a gap.
 ある実施形態において、前記各DMX回路用TFTにおいて、前記基板の法線方向から見たとき、前記ソース電極における前記ドレイン電極に対向するソース縁部、および/または、前記ドレイン電極における前記ソース電極に対向するドレイン縁部は、前記酸化物半導体層と重なる領域に、前記第2方向に突出した少なくとも1つの凸部と、前記少なくとも1つの凸部に前記第1方向に隣接する凹部または切欠き部とを有し、前記少なくとも1つの凸部の前記第2方向の長さは、前記ゲート電極の前記第2方向の幅の1/3未満である。 In one embodiment, in each of the DMX circuit TFTs, when viewed from the normal direction of the substrate, the source edge of the source electrode facing the drain electrode and / or the source electrode of the drain electrode The opposing drain edge includes a region overlapping with the oxide semiconductor layer, at least one protrusion protruding in the second direction, and a recess or notch adjacent to the at least one protrusion in the first direction. The length of the at least one convex portion in the second direction is less than 1/3 of the width of the gate electrode in the second direction.
 ある実施形態において、前記酸化物半導体層は、In-Ga-Zn-O系半導体を含む。 In one embodiment, the oxide semiconductor layer includes an In—Ga—Zn—O-based semiconductor.
 ある実施形態において、前記In-Ga-Zn-O系半導体は結晶質部分を含む。 In one embodiment, the In—Ga—Zn—O-based semiconductor includes a crystalline portion.
 本発明の一実施形態によると、酸化物半導体TFTを含む周辺回路の駆動電力を低減可能なアクティブマトリクス基板を提供できる。 According to one embodiment of the present invention, it is possible to provide an active matrix substrate capable of reducing driving power of a peripheral circuit including an oxide semiconductor TFT.
第1の実施形態のアクティブマトリクス基板1000の平面構造の一例を示す概略図である。It is the schematic which shows an example of the planar structure of the active matrix substrate 1000 of 1st Embodiment. (a)および(b)は、それぞれ、第1の実施形態のアクティブマトリクス基板1000にモノリシックに形成された周辺回路に含まれる回路TFT(薄膜トランジスタ10A)を例示する平面図および断面図である。FIGS. 7A and 7B are a plan view and a cross-sectional view illustrating a circuit TFT (thin film transistor 10 </ b> A) included in a peripheral circuit monolithically formed on the active matrix substrate 1000 of the first embodiment, respectively. (a)および(b)は、それぞれ、第1の実施形態における他の回路TFT(薄膜トランジスタ10B)を例示する平面図および断面図である。(A) And (b) is the top view and sectional drawing which illustrate other circuit TFT (thin film transistor 10B) in 1st Embodiment, respectively. (a)および(b)は、それぞれ、第1の実施形態におけるさらに他の回路TFT(薄膜トランジスタ10C)を例示する平面図および断面図である。(A) And (b) is the top view and sectional drawing which illustrate further other circuit TFT (thin film transistor 10C) in 1st Embodiment, respectively. 位置合わせが生じた場合の薄膜トランジスタ10Bを例示する平面図である。It is a top view which illustrates thin-film transistor 10B when alignment arises. 第1の実施形態におけるさらに他の回路TFTを例示する平面図である。FIG. 10 is a plan view illustrating still another circuit TFT in the first embodiment. (a)~(d)は、参考例1および実施例1~3のTFTを示す平面図である。(A)-(d) is a top view which shows TFT of the reference example 1 and Examples 1-3. (a)~(c)は、それぞれ、測定に使用した参照例のサンプルTFT、対称構造を有するサンプルTFT、および非対称構造を有するサンプルTFTの構造を示す平面図である。(A)-(c) is a top view which shows the structure of the sample TFT of the reference example used for the measurement, the sample TFT which has a symmetrical structure, and the sample TFT which has an asymmetrical structure, respectively. 対称構造および非対称構造を有するTFTの単位W/Lあたりのオン電流の測定値を示す図である。It is a figure which shows the measured value of the on-current per unit W / L of TFT which has a symmetrical structure and an asymmetrical structure. 第1の実施形態におけるデマルチプレクサ回路DMXの構成および動作を説明するための図である。It is a figure for demonstrating the structure and operation | movement of the demultiplexer circuit DMX in 1st Embodiment. SSD単位回路100を例示する平面図である。2 is a plan view illustrating an SSD unit circuit 100. FIG. (a)および(b)は、それぞれ、アクティブマトリクス基板1000における1つの画素領域PIXの平面図およびIV-IV’線に沿った断面図である。(A) and (b) are a plan view and a cross-sectional view taken along line IV-IV ′ of one pixel region PIX in the active matrix substrate 1000, respectively. (a)および(b)は、それぞれ、第1の実施形態における他の回路TFT(薄膜トランジスタ10D)を示す平面図および断面図である。(A) And (b) is the top view and sectional drawing which show the other circuit TFT (thin film transistor 10D) in 1st Embodiment, respectively. (a)は、第2の実施形態におけるデマルチプレクサ回路DMXの構成を説明するための図であり、デマルチプレクサ回路DMXにおける1つのサブ回路200を示し、(b)は、サブ回路200の信号波形の一例を示す図(タイミングチャート)である。(A) is a figure for demonstrating the structure of the demultiplexer circuit DMX in 2nd Embodiment, and shows one subcircuit 200 in the demultiplexer circuit DMX, (b) is the signal waveform of the subcircuit 200 It is a figure (timing chart) which shows an example. 第2の実施形態におけるデマルチプレクサ回路DMXのレイアウトの一例を示す平面図である。It is a top view which shows an example of the layout of the demultiplexer circuit DMX in 2nd Embodiment. 第2の実施形態におけるデマルチプレクサ回路DMXのサブ回路200Aを例示する拡大平面図である。FIG. 10 is an enlarged plan view illustrating a sub circuit 200A of a demultiplexer circuit DMX according to a second embodiment. 第2の実施形態におけるデマルチプレクサ回路DMXの他のサブ回路200Bの一部を示す平面図である。It is a top view which shows a part of other subcircuit 200B of the demultiplexer circuit DMX in 2nd Embodiment. 第2の実施形態におけるデマルチプレクサ回路DMXの他のサブ回路200Cの一部を示す平面図である。It is a top view which shows a part of other subcircuit 200C of the demultiplexer circuit DMX in 2nd Embodiment. 第2の実施形態におけるデマルチプレクサ回路DMXの他のサブ回路200Dの一部を示す平面図である。It is a top view which shows a part of other subcircuit 200D of the demultiplexer circuit DMX in 2nd Embodiment. 第2の実施形態におけるデマルチプレクサ回路DMXの他のサブ回路200Eの一部を示す拡大平面図である。It is an enlarged plan view showing a part of another sub-circuit 200E of the demultiplexer circuit DMX in the second embodiment. 第2の実施形態におけるデマルチプレクサ回路DMXの他のサブ回路200Fの一部を示す拡大平面図である。It is an enlarged plan view showing a part of another sub-circuit 200F of the demultiplexer circuit DMX in the second embodiment. 第2の実施形態におけるデマルチプレクサ回路DMXの他のサブ回路200Gの一部を示す拡大平面図である。It is an enlarged plan view showing a part of another sub-circuit 200G of the demultiplexer circuit DMX in the second embodiment. 第2の実施形態におけるデマルチプレクサ回路DMXの他のサブ回路300の構成を示す図である。It is a figure which shows the structure of the other subcircuit 300 of the demultiplexer circuit DMX in 2nd Embodiment. サブ回路300の一例を示す拡大平面図である。3 is an enlarged plan view showing an example of a sub circuit 300. FIG. 第2の実施形態におけるデマルチプレクサ回路DMXの他のサブ回路400(1)、400(2)の構成を例示する図である。It is a figure which illustrates the structure of the other subcircuits 400 (1) and 400 (2) of the demultiplexer circuit DMX in 2nd Embodiment. (a)および(b)は、それぞれ、デマルチプレクサ回路DMXに使用される参考例2のTFT(薄膜トランジスタ90)を例示する平面図および断面図である。(A) And (b) is the top view and sectional drawing which illustrate TFT (thin film transistor 90) of the reference example 2 used for the demultiplexer circuit DMX, respectively. 第3の実施形態におけるシフトレジスタ回路を例示する図である。It is a figure which illustrates the shift register circuit in 3rd Embodiment. 単位シフトレジスタ回路SRの一例を示す図である。It is a figure which shows an example of the unit shift register circuit SR.
 (第1の実施形態)
 以下、図面を参照しながら、第1の実施形態のアクティブマトリクス基板を説明する。以下では、SSD回路およびゲートドライバがモノリシックに形成され、ソースドライバが実装されたアクティブマトリクス基板を例に説明する。なお、本実施形態のアクティブマトリクス基板は、TFTを少なくとも1つ含む周辺回路がモノリシックに形成されていればよい。
(First embodiment)
Hereinafter, the active matrix substrate of the first embodiment will be described with reference to the drawings. Hereinafter, an active matrix substrate in which an SSD circuit and a gate driver are monolithically formed and a source driver is mounted will be described as an example. Note that the active matrix substrate of the present embodiment only needs to have a monolithic peripheral circuit including at least one TFT.
 <アクティブマトリクス基板の構造>
 図1は、本実施形態のアクティブマトリクス基板1000の平面構造の一例を示す概略図である。
<Structure of active matrix substrate>
FIG. 1 is a schematic diagram illustrating an example of a planar structure of an active matrix substrate 1000 according to the present embodiment.
 アクティブマトリクス基板1000は、表示領域DRと、表示領域DR以外の領域(非表示領域または額縁領域)FRとを有している。表示領域DRは、マトリクス状に配列された画素領域PIXによって構成されている。画素領域PIX(単に「画素」と呼ぶこともある)は、表示装置の画素に対応する領域である。非表示領域FRは、表示領域DRの周辺に位置し、表示に寄与しない領域である。 The active matrix substrate 1000 has a display area DR and an area (non-display area or frame area) FR other than the display area DR. The display area DR is composed of pixel areas PIX arranged in a matrix. The pixel region PIX (sometimes simply referred to as “pixel”) is a region corresponding to a pixel of the display device. The non-display area FR is an area that is located around the display area DR and does not contribute to display.
 表示領域DRには、x方向(行方向、第2方向ともいう)に延びる複数のゲートバスラインGL(1)~GL(j)(jは2以上の整数、以下、「ゲートバスラインGL」と総称する)と、y方向(列方向、第1方向ともいう)に延びる複数のソースバスラインSL(1)~SL(k)(kは2以上の整数、以下、「ソースバスラインSL」と総称する)とが形成されている。各画素領域PIXは、例えばゲートバスラインGLおよびソースバスラインSLで規定されている。ゲートバスラインGLは、それぞれ、ゲートドライバGDの各端子に接続されている。ソースバスラインSLは、それぞれ、ソースドライバSDの各端子に接続されている。 In the display region DR, a plurality of gate bus lines GL (1) to GL (j) (j is an integer of 2 or more, hereinafter referred to as “gate bus line GL”) extending in the x direction (also referred to as row direction or second direction). And a plurality of source bus lines SL (1) to SL (k) (k is an integer of 2 or more, hereinafter referred to as “source bus line SL”) extending in the y direction (also referred to as column direction or first direction). Are collectively called). Each pixel region PIX is defined by a gate bus line GL and a source bus line SL, for example. Each gate bus line GL is connected to each terminal of the gate driver GD. The source bus line SL is connected to each terminal of the source driver SD.
 各画素領域PIXは、薄膜トランジスタPtと、画素電極PEとを有している。薄膜トランジスタPtは、「画素TFT」とも呼ばれる。薄膜トランジスタPtのゲート電極は、対応するゲートバスラインGLに電気的に接続され、ソース電極は、対応するソースバスラインSLに電気的に接続されている。ドレイン電極は画素電極PEに電気的に接続されている。アクティブマトリクス基板1000を、FFS(Fringe Field Switching)モードなどの横電界モードの表示装置に適用する場合には、アクティブマトリクス基板1000に、複数の画素に対して共通の電極(共通電極)CEが設けられる。アクティブマトリクス基板1000を縦電界モードの表示装置に適用する場合には、共通電極CEは、アクティブマトリクス基板1000とは液晶層を挟んで対向して配置される対向基板に設けられる。 Each pixel region PIX includes a thin film transistor Pt and a pixel electrode PE. The thin film transistor Pt is also referred to as a “pixel TFT”. The gate electrode of the thin film transistor Pt is electrically connected to the corresponding gate bus line GL, and the source electrode is electrically connected to the corresponding source bus line SL. The drain electrode is electrically connected to the pixel electrode PE. When the active matrix substrate 1000 is applied to a display device in a horizontal electric field mode such as an FFS (Fringe Field Switching) mode, the active matrix substrate 1000 is provided with a common electrode (common electrode) CE for a plurality of pixels. It is done. In a case where the active matrix substrate 1000 is applied to a vertical electric field mode display device, the common electrode CE is provided on a counter substrate that is disposed to face the active matrix substrate 1000 with a liquid crystal layer interposed therebetween.
 非表示領域FRには、例えばゲートバスラインGLを駆動するゲートドライバGD、デマルチプレクサ回路DMXなどが一体的(モノリシック)に設けられている。デマルチプレクサ回路DMXは、ソースバスラインSLを時分割で駆動するSSD回路として機能する。ソースバスラインSLを駆動するソースドライバSDは、例えば、アクティブマトリクス基板1000に実装されている。 In the non-display area FR, for example, a gate driver GD that drives the gate bus line GL, a demultiplexer circuit DMX, and the like are provided integrally (monolithically). The demultiplexer circuit DMX functions as an SSD circuit that drives the source bus line SL in a time division manner. The source driver SD that drives the source bus line SL is mounted on the active matrix substrate 1000, for example.
 図示する例では、ゲートドライバGDは表示領域DRを挟んで両側に位置する領域FRaに配置され、ソースドライバSDは表示領域DRの下側に位置する領域FRbに実装されている。デマルチプレクサ回路DMXは、領域FRbにおいて、表示領域DRとソースドライバSDとの間に配置されている。デマルチプレクサ回路DMXとソースドライバSDとの間は、複数の端子部および配線が形成される端子部・配線形成領域LRとなる。 In the illustrated example, the gate driver GD is disposed in the region FRa located on both sides of the display region DR, and the source driver SD is mounted in the region FRb located below the display region DR. The demultiplexer circuit DMX is arranged between the display region DR and the source driver SD in the region FRb. Between the demultiplexer circuit DMX and the source driver SD is a terminal portion / wiring forming region LR in which a plurality of terminal portions and wirings are formed.
 <回路TFTの構造>
 図2(a)および(b)は、それぞれ、本実施形態のアクティブマトリクス基板1000にモノリシックに形成された周辺回路に含まれる回路TFT(薄膜トランジスタ10A)を例示する平面図および断面図である。薄膜トランジスタ10Aは、例えば、SSD回路のスイッチング素子(DMX回路用TFT)として、あるいは、ゲートドライバ回路の出力トランジスタとして用いられ得る。なお、本実施形態のアクティブマトリクス基板1000は、回路TFTとして薄膜トランジスタ10Aを少なくとも1つ有していればよく、他の構造を有する回路TFTをさらに含んでいてもよい。
<Structure of circuit TFT>
2A and 2B are a plan view and a cross-sectional view illustrating a circuit TFT (thin film transistor 10A) included in a peripheral circuit monolithically formed on the active matrix substrate 1000 of this embodiment, respectively. The thin film transistor 10A can be used, for example, as a switching element (DMX circuit TFT) of an SSD circuit or as an output transistor of a gate driver circuit. Note that the active matrix substrate 1000 of the present embodiment only needs to include at least one thin film transistor 10A as a circuit TFT, and may further include a circuit TFT having another structure.
 薄膜トランジスタ10Aは、基板1上に支持され、非表示領域に形成されている。薄膜トランジスタ10Aは、基板1上に配置されたゲート電極(「下部ゲート電極」ともいう。)3と、ゲート電極3を覆うゲート絶縁層5と、酸化物半導体層7と、ソース電極8およびドレイン電極9とを備える。酸化物半導体層7は、ゲート絶縁層5上に、ゲート絶縁層5を介してゲート電極3と少なくとも部分的に重なるように配置されている。 The thin film transistor 10A is supported on the substrate 1 and formed in a non-display area. The thin film transistor 10A includes a gate electrode (also referred to as “lower gate electrode”) 3 disposed on the substrate 1, a gate insulating layer 5 covering the gate electrode 3, an oxide semiconductor layer 7, a source electrode 8, and a drain electrode. 9. The oxide semiconductor layer 7 is disposed on the gate insulating layer 5 so as to at least partially overlap the gate electrode 3 with the gate insulating layer 5 interposed therebetween.
 ソース電極8は、酸化物半導体層7上に設けられ、酸化物半導体層7の一部と接している。ドレイン電極9は、酸化物半導体層7上に設けられ、酸化物半導体層7の他の一部と接している。本明細書では、酸化物半導体層7のうち、ソース電極8と接する部分をソースコンタクト領域7s、ドレイン電極9と接する部分をドレインコンタクト領域7dと呼ぶ。基板1の法線方向から見たとき、ソースコンタクト領域7sおよびドレインコンタクト領域7dの間に位置し、かつ、ゲート電極3と重なっている領域が「チャネル領域7c」となる。本実施形態では、酸化物半導体層7において、チャネル長方向に互いに対向する端部をp1、p2とすると、チャネル領域7cの端部p1側にソースコンタクト領域7sが配置され、チャネル領域7cの端部p2側にドレインコンタクト領域7dが配置されている。 The source electrode 8 is provided on the oxide semiconductor layer 7 and is in contact with a part of the oxide semiconductor layer 7. The drain electrode 9 is provided on the oxide semiconductor layer 7 and is in contact with another part of the oxide semiconductor layer 7. In this specification, a portion of the oxide semiconductor layer 7 in contact with the source electrode 8 is referred to as a source contact region 7s, and a portion in contact with the drain electrode 9 is referred to as a drain contact region 7d. When viewed from the normal direction of the substrate 1, a region located between the source contact region 7 s and the drain contact region 7 d and overlapping the gate electrode 3 is a “channel region 7 c”. In this embodiment, when the end portions facing each other in the channel length direction of the oxide semiconductor layer 7 are p1 and p2, the source contact region 7s is disposed on the end portion p1 side of the channel region 7c, and the end of the channel region 7c A drain contact region 7d is disposed on the portion p2 side.
 本明細書では、基板1に平行な面内において、チャネル領域7cにおいて電流が流れる方向に平行な方向DLを「チャネル長方向」、チャネル長方向DLに直交する方向DWを「チャネル幅方向」と呼ぶ。チャネル領域7cにおけるチャネル長方向DLに沿った長さがチャネル長L、チャネル幅方向DWに沿った長さがチャネル幅Wとなる。本実施形態では、チャネル長方向DLは、端部p1、p2を結ぶ方向である。端部p1から端部p2に向かって、チャネル長方向DLに沿って、ソースコンタクト領域7s、チャネル領域7cおよびドレインコンタクト領域7dがこの順で配置されている。なお、ゲート電極3、酸化物半導体層7およびドレインコンタクト領域7dの形状および配置によって、チャネル領域7cを電流が流れる方向が一方向にならない場合もある。その場合には、酸化物半導体層7の端部p1、p2を結ぶ方向、あるいは、ソースコンタクト領域7sとドレインコンタクト領域7dとの最短距離で結ぶ方向をチャネル長方向DLとする。 In this specification, in a plane parallel to the substrate 1, the direction DL parallel to the direction of current flow in the channel region 7c is referred to as “channel length direction”, and the direction DW perpendicular to the channel length direction DL is referred to as “channel width direction”. Call. In the channel region 7c, the length along the channel length direction DL is the channel length L, and the length along the channel width direction DW is the channel width W. In the present embodiment, the channel length direction DL is a direction connecting the end portions p1 and p2. A source contact region 7s, a channel region 7c, and a drain contact region 7d are arranged in this order along the channel length direction DL from the end p1 to the end p2. Note that depending on the shape and arrangement of the gate electrode 3, the oxide semiconductor layer 7, and the drain contact region 7 d, the direction of current flow through the channel region 7 c may not be one direction. In that case, a channel length direction DL is a direction connecting the end portions p1 and p2 of the oxide semiconductor layer 7 or a direction connecting the shortest distance between the source contact region 7s and the drain contact region 7d.
 ソース電極8およびドレイン電極9は、基板1の法線方向から見たとき、ゲート電極3と重なるように設計されることが好ましい。ソース電極8およびドレイン電極9と、ゲート電極3とが重なる部分の長さxs、xdは、位置合わせ精度を考慮して設定され得る。 The source electrode 8 and the drain electrode 9 are preferably designed to overlap the gate electrode 3 when viewed from the normal direction of the substrate 1. The lengths xs and xd where the source electrode 8 and the drain electrode 9 overlap the gate electrode 3 can be set in consideration of alignment accuracy.
 ゲート電極3は、基板1の法線方向から見たとき、互いに対向する第1縁部3e1および第2縁部3e2を有している。第1縁部3e1および第2縁部3e2は、概ねチャネル幅方向DWに酸化物半導体層7を横切って延びている。この例では、第1縁部3e1は酸化物半導体層7の一方の端部p1を横切り、第2縁部3e2は酸化物半導体層7の他方の端部p2を横切っている。ゲート電極3のチャネル長方向DLにおける幅wgは、酸化物半導体層7のチャネル長方向DLにおける幅wsよりも小さい。 The gate electrode 3 has a first edge 3e1 and a second edge 3e2 that face each other when viewed from the normal direction of the substrate 1. The first edge 3e1 and the second edge 3e2 extend across the oxide semiconductor layer 7 generally in the channel width direction DW. In this example, the first edge 3 e 1 crosses one end p 1 of the oxide semiconductor layer 7, and the second edge 3 e 2 crosses the other end p 2 of the oxide semiconductor layer 7. The width wg of the gate electrode 3 in the channel length direction DL is smaller than the width ws of the oxide semiconductor layer 7 in the channel length direction DL.
 ソース電極8は、基板1の法線方向から見たとき、ゲート電極3の第1縁部3e1と重なるように、チャネル幅方向DWに酸化物半導体層7を横切って延びている。同様に、ドレイン電極9は、ゲート電極3の第2縁部3e2と重なるように、チャネル幅方向DWに酸化物半導体層7を横切って延びている。このように、薄膜トランジスタ10Aでは、基板1の法線方向から見たとき、ソース電極8およびドレイン電極9における幅(チャネル長方向DL方向の幅)の一部のみがゲート電極3と重なるように配置される。従って、ソース電極8およびドレイン電極9の幅全体に亘ってゲート電極3と重なる場合(図7(a)参照)よりも、ゲート-ソース/ドレイン間寄生容量を低減できる。 The source electrode 8 extends across the oxide semiconductor layer 7 in the channel width direction DW so as to overlap the first edge 3e1 of the gate electrode 3 when viewed from the normal direction of the substrate 1. Similarly, the drain electrode 9 extends across the oxide semiconductor layer 7 in the channel width direction DW so as to overlap the second edge 3e2 of the gate electrode 3. As described above, in the thin film transistor 10A, when viewed from the normal direction of the substrate 1, only a part of the width of the source electrode 8 and the drain electrode 9 (width in the channel length direction DL direction) overlaps with the gate electrode 3. Is done. Therefore, the gate-source / drain parasitic capacitance can be reduced as compared with the case where the entire width of the source electrode 8 and the drain electrode 9 overlaps with the gate electrode 3 (see FIG. 7A).
 なお、基板1の法線方向から見たとき、ソース電極8およびドレイン電極9のいずれか一方のみがゲート電極3の縁部と重なるように配置され、他方の電極の幅全体がゲート電極3と重なっていてもよい。例えば、ソース電極8およびドレイン電極9の幅が略等しい場合に、ソース電極8はその幅全体がゲート電極3と重なるように延び、ドレイン電極9はゲート電極3の第2縁部3e2と重なるように延びるように配置されることで、ドレイン電極9とゲート電極3との重なり面積を、ソース電極8とゲート電極3との重なり面積よりも小さくしてもよい。 When viewed from the normal direction of the substrate 1, only one of the source electrode 8 and the drain electrode 9 is disposed so as to overlap the edge of the gate electrode 3, and the entire width of the other electrode is the same as that of the gate electrode 3. It may overlap. For example, when the widths of the source electrode 8 and the drain electrode 9 are substantially equal, the source electrode 8 extends so that the entire width thereof overlaps with the gate electrode 3, and the drain electrode 9 overlaps with the second edge 3 e 2 of the gate electrode 3. The overlapping area of the drain electrode 9 and the gate electrode 3 may be smaller than the overlapping area of the source electrode 8 and the gate electrode 3.
 ソース電極8は、チャネル幅方向DWに延びる第1ソース縁部8e1および第2ソース縁部8e2を有している。酸化物半導体層7のチャネル長方向DLにおける任意の断面において、ソース電極8の第1ソース縁部8e1および第2ソース縁部8e2は、いずれも、酸化物半導体層7上に位置していてもよい。ドレイン電極9は、チャネル幅方向DWに延びる第1ドレイン縁部9e1および第2ドレイン縁部9e2を有している。酸化物半導体層7のチャネル長方向DLにおける任意の断面において、ドレイン電極9の第1ドレイン縁部9e1および第2ドレイン縁部9e2は、いずれも、酸化物半導体層7上に位置していてもよい。このような構成では、薄膜トランジスタ10Aのチャネル長方向DLの幅wTは、酸化物半導体層7の幅wsによって決まる。 The source electrode 8 has a first source edge 8e1 and a second source edge 8e2 extending in the channel width direction DW. In any cross section of the oxide semiconductor layer 7 in the channel length direction DL, the first source edge 8e1 and the second source edge 8e2 of the source electrode 8 may both be located on the oxide semiconductor layer 7. Good. The drain electrode 9 has a first drain edge 9e1 and a second drain edge 9e2 extending in the channel width direction DW. In any cross section in the channel length direction DL of the oxide semiconductor layer 7, the first drain edge portion 9 e 1 and the second drain edge portion 9 e 2 of the drain electrode 9 may both be located on the oxide semiconductor layer 7. Good. In such a configuration, the width wT of the thin film transistor 10 </ b> A in the channel length direction DL is determined by the width ws of the oxide semiconductor layer 7.
 本実施形態では、ソース電極8およびドレイン電極9は、ソースバスラインSL(図1)と同一の導電膜を用いて形成されている。ソースバスラインSLと同一の導電膜を用いて形成された層を「ソースメタル層」と呼ぶ。また、ゲート電極3は、ゲートバスラインGL(図1)と同一の導電膜を用いて形成されている。ゲートバスラインGLと同一の導電膜を用いて形成された層を「ゲートメタル層」と呼ぶ。 In the present embodiment, the source electrode 8 and the drain electrode 9 are formed using the same conductive film as the source bus line SL (FIG. 1). A layer formed using the same conductive film as the source bus line SL is referred to as a “source metal layer”. The gate electrode 3 is formed using the same conductive film as the gate bus line GL (FIG. 1). A layer formed using the same conductive film as the gate bus line GL is referred to as a “gate metal layer”.
 薄膜トランジスタ10Aは、保護層(ここでは無機絶縁層)11で覆われている。無機絶縁層11は、ソース電極8およびドレイン電極9の上面および酸化物半導体層7のチャネル領域7cと接するように配置されている。 The thin film transistor 10A is covered with a protective layer (here, an inorganic insulating layer) 11. The inorganic insulating layer 11 is disposed so as to be in contact with the upper surfaces of the source electrode 8 and the drain electrode 9 and the channel region 7 c of the oxide semiconductor layer 7.
 ソース電極8、ドレイン電極9とゲート電極3とが重なる部分の長さ(重なり長さ)xs、xdは、位置合わせ精度を考慮して設定され得る。例えば、チャネル長方向DLに位置合わせが生じた場合でも、酸化物半導体層7に、ゲート電極3、ソース電極8およびドレイン電極9のいずれにも重ならない領域(オフセット領域)が生じないように設定され得る。重なり長さxs、xdは、製造装置などにより異なるが、例えば、1.5μm以上3.0μm以下である。 The lengths (overlapping lengths) xs and xd where the source electrode 8, the drain electrode 9 and the gate electrode 3 overlap can be set in consideration of alignment accuracy. For example, even when alignment occurs in the channel length direction DL, the oxide semiconductor layer 7 is set so that a region (offset region) that does not overlap any of the gate electrode 3, the source electrode 8, and the drain electrode 9 does not occur. Can be done. The overlapping lengths xs and xd vary depending on the manufacturing apparatus, but are, for example, 1.5 μm or more and 3.0 μm or less.
 図3(a)および(b)は、それぞれ、本実施形態における他の回路TFT(薄膜トランジスタ10B)を例示する平面図および断面図である。図4(a)および(b)は、それぞれ、本実施形態におけるさらに他の回路TFT(薄膜トランジスタ10C)を例示する平面図および断面図である。これらの図では、図2と同様の構成要素には同じ参照符号を付している。以下の説明では、図2に示す薄膜トランジスタ10Aと異なる点を主に説明し、薄膜トランジスタ10Aと同様の構成については説明を省略する。 FIGS. 3A and 3B are a plan view and a cross-sectional view illustrating another circuit TFT (thin film transistor 10B) in this embodiment, respectively. 4A and 4B are a plan view and a cross-sectional view illustrating still another circuit TFT (thin film transistor 10C) in this embodiment, respectively. In these drawings, the same components as those in FIG. 2 are denoted by the same reference numerals. In the following description, differences from the thin film transistor 10A shown in FIG. 2 will be mainly described, and description of the same configuration as the thin film transistor 10A will be omitted.
 薄膜トランジスタ10B、10Cは、基板1の法線方向から見たとき、ソース電極8および/またはドレイン電極9が、チャネル長方向に突出する凸部を有する点で、薄膜トランジスタ10Aと異なっている。 The thin film transistors 10B and 10C differ from the thin film transistor 10A in that the source electrode 8 and / or the drain electrode 9 have protrusions protruding in the channel length direction when viewed from the normal direction of the substrate 1.
 薄膜トランジスタ10B、10Cにおけるソース電極8は、ドレイン電極9に対向する第1ソース縁部8e1を有している。同様に、ドレイン電極9は、ソース電極8に対向する第1ドレイン縁部9e1を有している。第1ソース縁部8e1は、酸化物半導体層7と重なる領域において、チャネル長方向DLに突出した1つまたは複数の凸部82と、凸部82にチャネル幅方向DWに隣接する凹部84及び/または切欠き部86とを有している。同様に、第1ドレイン縁部9e1は、酸化物半導体層7と重なる領域において、チャネル長方向DLに突出した1つまたは複数の凸部92と、凸部92にチャネル幅方向DWに隣接する凹部94及び/または切欠き部96とを有している。本実施形態では、凸部82の最もドレイン電極9側に位置する部分と、凸部92の最もソース電極8側に位置する部分との距離が、チャネル長Lとなる。 The source electrode 8 in the thin film transistors 10B and 10C has a first source edge 8e1 facing the drain electrode 9. Similarly, the drain electrode 9 has a first drain edge 9 e 1 facing the source electrode 8. The first source edge 8e1 includes one or a plurality of protrusions 82 protruding in the channel length direction DL, a recess 84 adjacent to the protrusion 82 in the channel width direction DW, and / or a region overlapping the oxide semiconductor layer 7. Or it has the notch part 86. FIG. Similarly, the first drain edge 9e1 includes one or a plurality of protrusions 92 protruding in the channel length direction DL and a recess adjacent to the protrusion 92 in the channel width direction DW in a region overlapping with the oxide semiconductor layer 7. 94 and / or a notch 96. In the present embodiment, the channel length L is the distance between the portion of the convex portion 82 closest to the drain electrode 9 and the portion of the convex portion 92 closest to the source electrode 8.
 なお、図示する例では、基板1の法線方向から見たとき、凸部82、92は矩形であるが、矩形でなくてもよい。例えば凸部82、92は丸みを帯びていてもよい。 In the illustrated example, the protrusions 82 and 92 are rectangular when viewed from the normal direction of the substrate 1, but may not be rectangular. For example, the convex portions 82 and 92 may be rounded.
 この例では、ソース電極8の第2ソース縁部8e2およびドレイン電極9の第2ドレイン縁部9e2は、酸化物半導体層7上ではなく、ゲート絶縁層5上に位置している。この場合、薄膜トランジスタ10B、10Cのチャネル長方向DLの幅wTは、第2ソース縁部8e2と第2ドレイン縁部9e2との距離wSDによって決まる。 In this example, the second source edge 8e2 of the source electrode 8 and the second drain edge 9e2 of the drain electrode 9 are located not on the oxide semiconductor layer 7 but on the gate insulating layer 5. In this case, the width wT of the thin film transistors 10B and 10C in the channel length direction DL is determined by the distance wSD between the second source edge 8e2 and the second drain edge 9e2.
 薄膜トランジスタ10Bでは、第1ソース縁部8e1の凸部82と、第1ドレイン縁部9e1の凸部92とが、チャネル長方向DLにおいて互いに対向している。また、第1ソース縁部8e1の凹部84または切欠き部86と、第1ドレイン縁部9e1の凹部94または切欠き部96とが、チャネル長方向DLにおいて互いに対向している。本明細書では、薄膜トランジスタ10Bに例示するように、第1ソース縁部8e1の各凸部82の中心からドレイン側に向かってチャネル長方向DLに延びる線を引いたときに、その線上に第1ドレイン縁部9e1の凸部92が位置する場合の電極構造を「対称構造」と呼ぶ。なお、凸部82と凸部92とで、チャネル長方向の長さなどの平面形状が異なっていてもよい。 In the thin film transistor 10B, the protrusion 82 of the first source edge 8e1 and the protrusion 92 of the first drain edge 9e1 face each other in the channel length direction DL. Further, the recess 84 or notch 86 of the first source edge 8e1 and the recess 94 or notch 96 of the first drain edge 9e1 face each other in the channel length direction DL. In this specification, as illustrated in the thin film transistor 10B, when a line extending in the channel length direction DL from the center of each convex portion 82 of the first source edge 8e1 toward the drain side is drawn, An electrode structure in which the convex portion 92 of the drain edge portion 9e1 is located is referred to as a “symmetric structure”. In addition, the planar shape such as the length in the channel length direction may be different between the convex portion 82 and the convex portion 92.
 薄膜トランジスタ10Cでは、第1ソース縁部8e1の凸部82と、第1ドレイン縁部9e1の凹部94または切欠き部96とが、チャネル長方向DLにおいて互いに対向し、第1ソース縁部8e1の凹部84または切欠き部86と、第1ドレイン縁部9e1の凸部92とが、チャネル長方向DLにおいて互いに対向している。本明細書では、薄膜トランジスタ10Cに例示するように、第1ソース縁部8e1の凸部82の中心からドレイン側に向かってチャネル長方向DLに延びる線を引いたときに、その線上に第1ドレイン縁部9e1の凸部92が位置しない場合の電極構造を「非対称構造」と呼ぶ。 In the thin film transistor 10C, the protrusion 82 of the first source edge 8e1 and the recess 94 or the notch 96 of the first drain edge 9e1 face each other in the channel length direction DL, and the recess of the first source edge 8e1. 84 or the notch 86 and the protrusion 92 of the first drain edge 9e1 face each other in the channel length direction DL. In this specification, as illustrated in the thin film transistor 10C, when a line extending in the channel length direction DL from the center of the convex portion 82 of the first source edge 8e1 toward the drain side is drawn, the first drain is formed on the line. The electrode structure when the convex portion 92 of the edge portion 9e1 is not located is referred to as “asymmetric structure”.
 薄膜トランジスタ10B、10Cでは、第1縁部3e1と、ソース電極8の凸部82の最もドレイン電極9側に位置する部分との距離が、ソース電極8とゲート電極3との重なり長さxsになる。同様に、第2縁部3e2と、ドレイン電極9の凸部92の最もソース電極8側に位置する部分との距離が、ドレイン電極9とゲート電極3との重なり長さxdになる。従って、所定の重なり長さxd、xs(例えば1.5μm以上3.0μm以下)を確保しつつ、薄膜トランジスタ10Aよりもソース電極8またはドレイン電極9とゲート電極3との重なり面積を低減できる。例えば、重なり長さxd、xsが同じ場合には、凸部82、92を設けることによって、オン電流を確保しつつ、凹部84、94および切欠き部86、96の面積の分だけ、ソース電極8またはドレイン電極9とゲート電極3との重なり面積を小さくできる。 In the thin film transistors 10B and 10C, the distance between the first edge 3e1 and the portion of the convex portion 82 of the source electrode 8 that is closest to the drain electrode 9 is the overlap length xs of the source electrode 8 and the gate electrode 3. . Similarly, the distance between the second edge 3e2 and the portion of the projection 92 of the drain electrode 9 that is closest to the source electrode 8 is the overlap length xd of the drain electrode 9 and the gate electrode 3. Therefore, it is possible to reduce the overlapping area between the source electrode 8 or the drain electrode 9 and the gate electrode 3 as compared with the thin film transistor 10A while ensuring predetermined overlapping lengths xd and xs (for example, 1.5 μm or more and 3.0 μm or less). For example, in the case where the overlap lengths xd and xs are the same, by providing the convex portions 82 and 92, the source electrode is provided by the area of the concave portions 84 and 94 and the notches 86 and 96 while ensuring the on-current. 8 or the overlapping area of the drain electrode 9 and the gate electrode 3 can be reduced.
 なお、ソース電極8およびドレイン電極9は、一方の電極の凹部内に他方の電極の凸部が位置するように配置された櫛形構造(特許文献1参照)を有していないことが好ましい。櫛形構造を有していると、TFTのサイズおよび寄生容量が増大するおそれがある。 In addition, it is preferable that the source electrode 8 and the drain electrode 9 do not have a comb structure (see Patent Document 1) arranged so that the convex portion of the other electrode is positioned in the concave portion of one electrode. If it has a comb structure, the size and parasitic capacitance of the TFT may increase.
 凸部82、92のチャネル長方向DLにおける長さhは、例えば、ゲート電極3のチャネル長方向DLの幅(すなわち、第1縁部3e1と第2縁部3e2との距離)wgの1/3未満である。これにより、TFT幅wTの増大を抑制しつつ、ソース電極8およびドレイン電極9とゲート電極3との重なり面積を低減できる。一方、凸部82、92のチャネル長方向DLにおける長さhがゲート電極3の幅wgの例えば1/10以上であれば、ソース電極8およびドレイン電極9とゲート電極3との重なり面積をより効果的に低減できる。 The length h of the protrusions 82 and 92 in the channel length direction DL is, for example, 1 / w of the width of the gate electrode 3 in the channel length direction DL (that is, the distance between the first edge 3e1 and the second edge 3e2). Less than 3. Thereby, the overlapping area of the source electrode 8 and the drain electrode 9 and the gate electrode 3 can be reduced while suppressing an increase in the TFT width wT. On the other hand, if the length h in the channel length direction DL of the protrusions 82 and 92 is, for example, 1/10 or more of the width wg of the gate electrode 3, the overlapping area of the source electrode 8 and the drain electrode 9 with the gate electrode 3 is further increased. It can be effectively reduced.
 酸化物半導体層7上に配置された複数の凸部82、92の幅(チャネル幅方向DWにおける長さ)fs、fdの合計、あるいは凸部82、92が1つだけ配置されている場合にはその凸部82、92の幅fs、fdは、チャネル幅W(ここでは酸化物半導体層7のチャネル幅方向DWにおける幅)の70%以上であってもよい。これにより、オン電流の低下をより確実に抑制しつつ、ゲート-ドレイン間容量Cdgまたはソース-ドレイン間容量Csg(以下、「寄生容量Cdg、Csg」と略す。)を低減することが可能になる。一方、凸部82、92の幅fs、fdまたはその合計がチャネル幅Wの90%以下であれば、ソース電極8またはドレイン電極9とゲート電極3との重なり面積をより効果的に低減できるので、寄生容量CdgまたはCsgをより効果的に低減できる。なお、幅fs、fdの少なくとも一方が上記範囲を満たしていれば、上記効果が得られる。 When the width (length in the channel width direction DW) fs and fd of the plurality of protrusions 82 and 92 disposed on the oxide semiconductor layer 7 or only one protrusion 82 and 92 is disposed. The widths fs and fd of the protrusions 82 and 92 may be 70% or more of the channel width W (here, the width of the oxide semiconductor layer 7 in the channel width direction DW). As a result, it is possible to reduce the gate-drain capacitance Cdg or the source-drain capacitance Csg (hereinafter abbreviated as “parasitic capacitance Cdg, Csg”) while more reliably suppressing the decrease in the on-current. . On the other hand, if the widths fs and fd of the protrusions 82 and 92 or the sum thereof is 90% or less of the channel width W, the overlapping area between the source electrode 8 or the drain electrode 9 and the gate electrode 3 can be more effectively reduced. The parasitic capacitance Cdg or Csg can be reduced more effectively. The above effect can be obtained if at least one of the widths fs and fd satisfies the above range.
 第1ソース縁部8e1または第1ドレイン縁部9e1に複数の凸部82、92を周期的に配列する場合には、各凸部82、92の幅fs、fdは、凸部82、92の配列ピッチの70%以上90%以下であってもよい。 When the plurality of convex portions 82 and 92 are periodically arranged on the first source edge portion 8 e 1 or the first drain edge portion 9 e 1, the widths fs and fd of the respective convex portions 82 and 92 are the same as those of the convex portions 82 and 92. It may be 70% or more and 90% or less of the arrangement pitch.
 ソース電極8の凸部82の配列ピッチ、幅、チャネル長方向の長さは、それぞれ、ドレイン電極9の凸部92の配列ピッチ、幅、チャネル長方向の長さと同じであってもよいし、異なっていてもよい。 The arrangement pitch, width, and length in the channel length direction of the projections 82 of the source electrode 8 may be the same as the arrangement pitch, width, and length in the channel length direction of the projections 92 of the drain electrode 9, respectively. May be different.
 薄膜トランジスタ10B、10Cでは、チャネル長方向DLにゲートメタル層とソースメタル層との位置合わせずれが生じると、例えば図5に例示するように、基板1の法線方向から見たとき、ソース電極8およびドレイン電極9のいずれか一方の凹部または切欠き部(ここではドレイン電極9の凹部94および切欠き部96)の一部がゲート電極3と重ならなくなり、その結果、酸化物半導体層7にオフセット領域7offが生じる可能性がある。オフセット領域7offは、基板1の法線方向から見たとき、酸化物半導体層7のうちチャネル領域7cとソース電極8およびドレイン電極9との間に位置し、かつ、ソース電極8、ドレイン電極9およびゲート電極3のいずれにも重ならない領域をいう。オフセット領域7offのチャネル長方向DLの幅Loffを「オフセット幅」とする。オフセット幅Loffは、重なり長さxd、xs(設計値)以下である。一般に、オフセット領域が生じると、TFTのオン状態においてオフセット領域はチャネル領域よりも抵抗が高いことから、TFTのオン電流が小さくなるという問題がある。これに対し、本実施形態では、オフセット領域7offが生じても所定のオン電流を確保し得る。本実施形態では、酸化物半導体層7においてオフセット領域7offのチャネル幅方向DWに隣接する領域7nは、ドレイン電極9の凸部92と重なっており、チャネル領域7cとして機能する。つまり、複数のオフセット領域7offがチャネル幅方向WDに離間して配置される。従って、酸化物半導体層7のうちチャネル領域7cとソースコンタクト領域7sまたはドレインコンタクト領域7dとの間に亘ってオフセット領域が形成される場合よりも、オフセット領域7offに起因するオン電流の減少を抑えることが可能である。 In the thin film transistors 10B and 10C, when a misalignment between the gate metal layer and the source metal layer occurs in the channel length direction DL, the source electrode 8 when viewed from the normal direction of the substrate 1, for example, as illustrated in FIG. And a part of one of the recesses or notches of the drain electrode 9 (here, the recess 94 and the notch 96 of the drain electrode 9) do not overlap with the gate electrode 3, and as a result, the oxide semiconductor layer 7 There is a possibility that an offset region 7off occurs. The offset region 7off is located between the channel region 7c and the source electrode 8 and the drain electrode 9 in the oxide semiconductor layer 7 when viewed from the normal direction of the substrate 1, and the source electrode 8 and the drain electrode 9 And a region that does not overlap any of the gate electrode 3. The width Loff of the offset region 7off in the channel length direction DL is defined as an “offset width”. The offset width Loff is equal to or less than the overlap lengths xd and xs (design values). In general, when an offset region is generated, the offset region has a higher resistance than the channel region in the on-state of the TFT, and there is a problem that the on-current of the TFT becomes small. On the other hand, in the present embodiment, a predetermined on-current can be ensured even when the offset region 7off occurs. In the present embodiment, the region 7n adjacent to the offset region 7off in the channel width direction DW in the oxide semiconductor layer 7 overlaps the convex portion 92 of the drain electrode 9, and functions as the channel region 7c. That is, the plurality of offset regions 7off are arranged apart from each other in the channel width direction WD. Therefore, a decrease in on-current due to the offset region 7off is suppressed as compared with a case where an offset region is formed between the channel region 7c and the source contact region 7s or the drain contact region 7d in the oxide semiconductor layer 7. It is possible.
 本実施形態における薄膜トランジスタの構造は、図2~図4を参照して説明した構造に限定されない。例えば、図6に例示するように、ソース電極8およびドレイン電極9の一方のみに凸部が形成されていてもよい。このような電極構造も「非対称構造」に含まれる。また、図13を参照して後述するように、本実施形態の薄膜トランジスタは、酸化物半導体層7の上方に他のゲート電極をさらに備えたダブルゲート構造を有していてもよい)。これにより、オン電流をさらに高めることが可能になる。 The structure of the thin film transistor in this embodiment is not limited to the structure described with reference to FIGS. For example, as illustrated in FIG. 6, a convex portion may be formed on only one of the source electrode 8 and the drain electrode 9. Such an electrode structure is also included in the “asymmetric structure”. In addition, as will be described later with reference to FIG. 13, the thin film transistor of this embodiment may have a double gate structure in which another gate electrode is further provided above the oxide semiconductor layer 7). As a result, the on-current can be further increased.
 <TFTの寄生容量の試算>
 本発明者は、参考例1および実施例のTFTの寄生容量およびTFT特性を試算したので、その結果を説明する。
<Estimation of parasitic capacitance of TFT>
The present inventor has calculated the parasitic capacitance and TFT characteristics of the TFTs of Reference Example 1 and Example, and the results will be described.
 図7(a)~(d)は、参考例1および実施例1~3のTFTを示す平面図である。参考例1のTFTでは、基板1の法線方向から見たとき、ソース電極8およびドレイン電極9がその幅全体に亘ってゲート電極3と重なるように配置されている。実施例1~3のTFTは、それぞれ、薄膜トランジスタ10A~10Cと同様の構造を有している。 FIGS. 7A to 7D are plan views showing TFTs of Reference Example 1 and Examples 1 to 3. FIG. In the TFT of Reference Example 1, the source electrode 8 and the drain electrode 9 are arranged so as to overlap the gate electrode 3 over the entire width when viewed from the normal direction of the substrate 1. The TFTs of Examples 1 to 3 have the same structure as the thin film transistors 10A to 10C, respectively.
 図示するように、いずれのTFTでも、チャネル長Lを2.5μm、チャネル幅Wを20μm、ソース電極8およびドレイン電極9の幅を2.5μm、第1ソース縁部8e1および第1ドレイン縁部9e1と酸化物半導体層7のチャネル幅方向DWに延びる縁部との距離x1を3μmとした。実施例1~3のTFTの重なり長さxd、xsを1.5μmとした。また、参考例1のTFTのゲート電極3のチャネル長方向DLの幅wgを12μm、実施例1~3のTFTのゲート電極3のチャネル長方向DLの幅wgを5.5μmとした。さらに、実施例2、3のTFTでは、ソース電極8およびドレイン電極9に、それぞれ、幅fs、fdが3.5μm、チャネル長方向の長さhが0.9μmの凸部82、92を、7μmの配列ピッチp(fs)、p(fd)で配置した。 As shown in the figure, in any TFT, the channel length L is 2.5 μm, the channel width W is 20 μm, the width of the source electrode 8 and the drain electrode 9 is 2.5 μm, the first source edge 8e1 and the first drain edge. The distance x1 between 9e1 and the edge of the oxide semiconductor layer 7 extending in the channel width direction DW was 3 μm. The overlapping lengths xd and xs of the TFTs of Examples 1 to 3 were 1.5 μm. Further, the width wg in the channel length direction DL of the gate electrode 3 of the TFT of Reference Example 1 was set to 12 μm, and the width wg of the gate electrode 3 of the TFT of Examples 1 to 3 in the channel length direction DL was set to 5.5 μm. Further, in the TFTs of Examples 2 and 3, the projections 82 and 92 having widths fs and fd of 3.5 μm and a length h in the channel length direction of 0.9 μm are respectively formed on the source electrode 8 and the drain electrode 9 by 7 μm. Arrangement pitches p (fs) and p (fd).
 参考例1および実施例1~3のTFTにおける寄生容量(ゲート-ドレイン間容量Cdg、ソース-ドレイン間容量Csgの合計)を算出したところ、参考例1のTFTにおける寄生容量を1とすると、実施例1のTFTにおける寄生容量は0.71、実施例2のTFTにおける寄生容量は0.63、実施例3のTFTにおける寄生容量は0.57であった。 When the parasitic capacitance (total of gate-drain capacitance Cdg and source-drain capacitance Csg) in the TFTs of Reference Example 1 and Examples 1 to 3 was calculated, it was assumed that the parasitic capacitance in the TFT of Reference Example 1 was 1. The parasitic capacitance of the TFT of Example 1 was 0.71, the parasitic capacitance of the TFT of Example 2 was 0.63, and the parasitic capacitance of the TFT of Example 3 was 0.57.
 この結果から、実施例1~3のTFTでは、参考例1のTFTよりも寄生容量を低減できることが確認された。また、ソース電極8およびドレイン電極9に凸部82、92を設けることで(実施例2、3)、実施例1のTFTよりも寄生容量をさらに低減できることも確認された。さらに、非対称構造を有する実施例3のTFTでは、一方の電極(ここではドレイン電極9)におけるチャネル幅Wに対する凸部92の幅(の合計)の割合を小さくできるので、対称構造を有する実施例2のTFTよりも寄生容量を小さくできることが分かった。 From this result, it was confirmed that the parasitic capacitance of the TFTs of Examples 1 to 3 can be reduced as compared with the TFT of Reference Example 1. It was also confirmed that the parasitic capacitance can be further reduced as compared with the TFT of Example 1 by providing the projections 82 and 92 on the source electrode 8 and the drain electrode 9 (Examples 2 and 3). Furthermore, in the TFT of Example 3 having an asymmetric structure, the ratio of the width (total) of the protrusions 92 to the channel width W of one electrode (here, the drain electrode 9) can be reduced. It was found that the parasitic capacitance can be made smaller than that of the TFT 2.
 従って、実施例1~3のTFTを用いて周辺回路(例えばデマルチプレクサ回路)を形成すると、参考例1のTFTを用いる場合と比べて、周辺回路の駆動電力を、それぞれ、71%、63%、57%に低減し得ることが確認された。 Therefore, when a peripheral circuit (for example, a demultiplexer circuit) is formed using the TFTs of Examples 1 to 3, the driving power of the peripheral circuit is 71% and 63%, respectively, as compared with the case of using the TFT of Reference Example 1. , It can be reduced to 57%.
 <ソース/ドレイン電極のチャネル幅方向の幅とTFTのオン特性との関係>
 続いて、ソース電極8およびドレイン電極9のチャネル幅方向の幅(以下、「電極幅」と略す)fとTFTのオン電流との関係を調べた。電極幅fは、本実施形態の薄膜トランジスタにおけるソース電極8またはドレイン電極9の凸部のチャネル幅方向DWの幅(またはその合計)に相当する。ここでは、電極構造の異なる複数のサンプルTFTを作製し、そのオン電流を測定した。
<Relationship between width of source / drain electrode in channel width direction and on characteristics of TFT>
Subsequently, the relationship between the width of the source electrode 8 and the drain electrode 9 in the channel width direction (hereinafter referred to as “electrode width”) f and the on-current of the TFT was examined. The electrode width f corresponds to the width (or the total) of the convex portions of the source electrode 8 or the drain electrode 9 in the channel width direction DW in the thin film transistor of this embodiment. Here, a plurality of sample TFTs having different electrode structures were produced, and their on-currents were measured.
 図8(a)~(c)は、それぞれ、測定に使用した参照例のサンプルTFT、対称構造を有するサンプルTFT、および非対称構造を有するサンプルTFTの構造を示す平面図である。いずれのサンプルTFTでも、チャネル幅W(ここでは、酸化物半導体層7のチャネル幅方向DWの幅をチャネル幅とする)を10μmとし、チャネル長Lを3μmとした。 FIGS. 8A to 8C are plan views showing the structures of the reference sample TFT used in the measurement, the sample TFT having a symmetric structure, and the sample TFT having an asymmetric structure, respectively. In any sample TFT, the channel width W (here, the width in the channel width direction DW of the oxide semiconductor layer 7 is defined as the channel width) is 10 μm, and the channel length L is 3 μm.
 参照例のサンプルTFTでは、図8(a)に示すように、ソース電極8およびドレイン電極9がチャネル幅Wに亘って配置されている。 In the sample TFT of the reference example, the source electrode 8 and the drain electrode 9 are arranged over the channel width W as shown in FIG.
 対称構造を有するサンプルTFTでは、図8(b)に示すように、ソース電極8およびドレイン電極9のチャネル幅方向DWの幅fが、チャネル幅Wよりも小さい(f<W)。ソース電極8およびドレイン電極9の幅fは同じである。また、ソース電極8とドレイン電極9とは、酸化物半導体層7のチャネル幅方向DWに延びる中心線に対して線対称になるように配置されている。ここでは、対称構造を有するサンプルTFTとして、電極幅fを異ならせて、複数のサンプルTFTを作製した。 In the sample TFT having a symmetric structure, as shown in FIG. 8B, the width f of the source electrode 8 and the drain electrode 9 in the channel width direction DW is smaller than the channel width W (f <W). The width f of the source electrode 8 and the drain electrode 9 is the same. Further, the source electrode 8 and the drain electrode 9 are arranged so as to be symmetrical with respect to the center line extending in the channel width direction DW of the oxide semiconductor layer 7. Here, as sample TFTs having a symmetric structure, a plurality of sample TFTs were produced with different electrode widths f.
 非対称構造を有するサンプルTFTでは、図8(c)に示すように、ソース電極8はチャネル幅Wに亘って配置されているが、ドレイン電極9のチャネル幅方向DWの幅fがチャネル幅Wよりも小さい。ここでは、非対称構造を有するサンプルTFTとして、ドレイン電極9の電極幅fを異ならせて、複数のサンプルTFTを作製した。 In the sample TFT having an asymmetric structure, the source electrode 8 is disposed over the channel width W as shown in FIG. 8C, but the width f of the drain electrode 9 in the channel width direction DW is greater than the channel width W. Is also small. Here, as the sample TFT having an asymmetric structure, a plurality of sample TFTs were manufactured by changing the electrode width f of the drain electrode 9.
 次いで、上述した複数のサンプルTFTの単位W/Lあたりのオン電流を測定した。 Next, the on-current per unit W / L of the plurality of sample TFTs described above was measured.
 図9は、対称構造および非対称構造を有するサンプルTFTの単位W/Lあたりのオン電流の測定値を示す図である。縦軸は、参照例のサンプルTFTのオン電流を1とした場合の、各サンプルTFTのオン電流の相対値である。横軸は、チャネル幅W(酸化物半導体層7のチャネル幅方向DWの幅)に対する電極幅fの割合である。 FIG. 9 is a diagram showing measured values of on-current per unit W / L of a sample TFT having a symmetric structure and an asymmetric structure. The vertical axis represents the relative value of the on-current of each sample TFT when the on-current of the sample TFT of the reference example is 1. The horizontal axis represents the ratio of the electrode width f to the channel width W (the width of the oxide semiconductor layer 7 in the channel width direction DW).
 図9から分かるように、チャネル幅Wに対する電極幅fの割合が小さくなると、オン電流は低下する傾向がみられる。 As can be seen from FIG. 9, when the ratio of the electrode width f to the channel width W becomes smaller, the on-current tends to decrease.
 しかしながら、対称構造を有するサンプルTFTでは、チャネル幅Wに対する電極幅fの割合が0.7以上であれば、参照例のサンプルTFTのオン電流の0.95以上のオン電流を確保できる。これは、図8(b)に矢印51で示すように、ドレイン電極9の側面のうちソース電極8と対向する部分9aと、ソース電極8の側面のうちドレイン電極9と対向する部分8aとの間に電流が流れるだけでなく、矢印52に示すように、ドレイン電極9の側面のうちチャネル長方向DLに延びる部分9bと、ソース電極8の側面のうちチャネル長方向DLに延びる部分8bとの間にも電流を流すことができるからと考えられる。従って、実効的なチャネル幅W’は、電極幅fよりも矢印52に沿って電流を流すことが可能な領域の幅ΔW1だけ大きくなる(f<W’<W)。この結果、電極幅fの割合が0.7であっても、参照例のサンプルTFTと略同程度のオン電流を確保し得る。 However, in the sample TFT having a symmetric structure, when the ratio of the electrode width f to the channel width W is 0.7 or more, an on-current of 0.95 or more of the on-current of the sample TFT of the reference example can be secured. As shown by an arrow 51 in FIG. 8B, this is because the portion 9a of the side surface of the drain electrode 9 that faces the source electrode 8 and the portion of the side surface of the source electrode 8 that faces the drain electrode 9 are separated. In addition to the current flowing between them, as indicated by an arrow 52, a portion 9b extending in the channel length direction DL on the side surface of the drain electrode 9 and a portion 8b extending in the channel length direction DL on the side surface of the source electrode 8 This is probably because current can flow between them. Therefore, the effective channel width W ′ is larger than the electrode width f by the width ΔW1 of the region where current can flow along the arrow 52 (f <W ′ <W). As a result, even if the ratio of the electrode width f is 0.7, it is possible to ensure an on-current substantially equal to that of the sample TFT of the reference example.
 一方、非対称構造を有するサンプルTFTでは、チャネル幅Wに対するドレイン電極9の電極幅fの割合が0.6以上であれば、参照例のサンプルTFTのオン電流の0.95以上のオン電流を確保できる。これは、図8(c)に矢印51で示すように、ドレイン電極9の側面のうちソース電極8と対向する部分9aとソース電極8との間に電流が流れるだけでなく、矢印53に示すように、ドレイン電極9の側面のうちチャネル長方向DLに延びる部分9bとソース電極8との間にも電流を流すことができるからと考えられる。従って、実効的なチャネル幅W’は、電極幅fよりも矢印53に沿って電流を流すことが可能な領域の幅ΔW2(ΔW2>ΔW1)だけ大きくなる(f<W’<W)。この結果、電極幅fの割合が0.6であっても、参照例のサンプルTFTと略同程度のオン電流を確保し得る。 On the other hand, in the sample TFT having an asymmetric structure, when the ratio of the electrode width f of the drain electrode 9 to the channel width W is 0.6 or more, an on-current of 0.95 or more of the on-current of the sample TFT of the reference example is secured. it can. This is because, as shown by an arrow 51 in FIG. 8C, not only a current flows between a portion 9 a of the side surface of the drain electrode 9 facing the source electrode 8 and the source electrode 8 but also an arrow 53. Thus, it is considered that the current can also flow between the source electrode 8 and the portion 9b extending in the channel length direction DL on the side surface of the drain electrode 9. Therefore, the effective channel width W ′ is larger than the electrode width f by the width ΔW2 (ΔW2> ΔW1) of the region where current can flow along the arrow 53 (f <W ′ <W). As a result, even if the ratio of the electrode width f is 0.6, it is possible to ensure an on-current substantially equal to that of the sample TFT of the reference example.
 上記の検討結果から、本実施形態のTFT構造において、ソース電極8およびドレイン電極9の凸部の幅を適切に制御することで、高いオン電流を確保しつつ、寄生容量を低減できることが分かる。 From the above examination results, it can be seen that, in the TFT structure of this embodiment, by appropriately controlling the widths of the convex portions of the source electrode 8 and the drain electrode 9, it is possible to reduce the parasitic capacitance while ensuring a high on-current.
 <デマルチプレクサ回路の構成および動作>
 第1の実施形態で説明した薄膜トランジスタ10A~10Cは、例えば、表示装置の周辺領域に設けられるデマルチプレクサ回路のスイッチング素子(「DMX回路用TFT」)に適用され得る。
<Configuration and operation of demultiplexer circuit>
The thin film transistors 10A to 10C described in the first embodiment can be applied, for example, to a switching element (“DMX circuit TFT”) of a demultiplexer circuit provided in a peripheral region of a display device.
 図10は、本実施形態のアクティブマトリクス基板1000におけるデマルチプレクサ回路DMXの構成および動作を説明するための図である。 FIG. 10 is a diagram for explaining the configuration and operation of the demultiplexer circuit DMX in the active matrix substrate 1000 of the present embodiment.
 ソースドライバSDと表示領域DRとの間には、デマルチプレクサ回路DMX(ここではSSD回路)が配置されている。デマルチプレクサ回路DMXは、複数のSSD単位回路100(1)~100(i)(iは2以上の整数)(「SSD単位回路100」と総称することがある)と、制御信号幹線SW1~SWn(nは2以上の整数、ここではn=3)とを含んでいる。デマルチプレクサ回路DMXおよびソースドライバSDは、非表示領域FRに設けられた制御回路150によって制御される。制御信号幹線SW1~SWnは制御回路150に接続されている。 A demultiplexer circuit DMX (in this case, an SSD circuit) is arranged between the source driver SD and the display area DR. The demultiplexer circuit DMX includes a plurality of SSD unit circuits 100 (1) to 100 (i) (i is an integer of 2 or more) (sometimes collectively referred to as “SSD unit circuit 100”), and control signal trunk lines SW1 to SWn. (N is an integer of 2 or more, here n = 3). The demultiplexer circuit DMX and the source driver SD are controlled by the control circuit 150 provided in the non-display area FR. The control signal trunk lines SW1 to SWn are connected to the control circuit 150.
 ソースドライバSDの出力端子V(1)~V(i)(以下、「V端子」と総称することがある)のそれぞれには、複数のビデオ信号線DO(1)~DO(i)(「ビデオ信号線DO」と総称することがある)のいずれかが接続されている。1本のビデオ信号線DOには、グループ化されたn本のソースバスラインSLが対応付けられている。ビデオ信号線DOとグループ化されたソースバスラインSLとの間には、SSD単位回路100がビデオ信号線単位で設けられている。SSD単位回路100は、1つのビデオ信号線DOから、n本ソースバスラインSLへビデオデータを分配する。 Each of the output terminals V (1) to V (i) (hereinafter sometimes collectively referred to as “V terminal”) of the source driver SD has a plurality of video signal lines DO (1) to DO (i) (“ Any of the video signal lines DO may be collectively referred to. A group of n source bus lines SL is associated with one video signal line DO. An SSD unit circuit 100 is provided for each video signal line between the video signal line DO and the grouped source bus lines SL. The SSD unit circuit 100 distributes video data from one video signal line DO to n source bus lines SL.
 本実施形態において、複数のビデオ信号線DO(1)~DO(i)のうちN番目のビデオ信号線をDO(N)(Nは1からiまでの整数)、ビデオ信号線DO(N)に対応付けられたSSD単位回路100およびソースバスラインSLを、それぞれ、100(N)、SL(N-1)~SL(N-n)とする。ソースバスラインSL(N-1)~SL(N-n)は、例えば、R、G、B画素に対応付けられていてもよい(すなわちn=3)。 In this embodiment, among the plurality of video signal lines DO (1) to DO (i), the Nth video signal line is DO (N) (N is an integer from 1 to i), and the video signal line DO (N). Assume that the SSD unit circuit 100 and the source bus line SL that are associated with are 100 (N), SL (N−1) to SL (Nn), respectively. The source bus lines SL (N−1) to SL (Nn) may be associated with, for example, R, G, and B pixels (that is, n = 3).
 それぞれのSSD単位回路100(N)は、ビデオ信号線DO(N)に接続されたn本の分岐配線B1~Bnと、少なくともn個(ここでは3個)のDMX回路用TFT10(1)~10(n)(「DMX回路用TFT10」と総称することがある)とを備える。 Each SSD unit circuit 100 (N) includes n branch wirings B1 to Bn connected to the video signal line DO (N) and at least n (here, 3) TFTs 10 (1) to 10 for DMX circuits. 10 (n) (sometimes collectively referred to as “DMX circuit TFT 10”).
 DMX回路用TFT10は、選択スイッチとして機能する。DMX回路用TFT10のゲート電極は、n本の制御信号幹線SW1~SWnのうちの対応する1つに電気的に接続されている。DMX回路用TFT10のソース電極は、分岐配線B1~Bnのうちの対応する1つに電気的に接続されている。DMX回路用TFT10のドレイン電極は、ソースバスラインSL(N-1)~SL(N-3)のうちの対応する1つのソースバスラインに接続されている。 The DMX circuit TFT 10 functions as a selection switch. The gate electrode of the DMX circuit TFT 10 is electrically connected to a corresponding one of the n control signal trunk lines SW1 to SWn. The source electrode of the DMX circuit TFT 10 is electrically connected to a corresponding one of the branch lines B1 to Bn. The drain electrode of the DMX circuit TFT 10 is connected to one corresponding source bus line among the source bus lines SL (N−1) to SL (N−3).
 DMX回路用TFT10のゲート電極には、制御信号幹線SW1~SW3の1つから選択信号(制御信号)が供給される。制御信号は、同一のグループ内における選択スイッチのオン期間を規定しており、ソースドライバSDからの時系列的な信号出力と同期している。SSD単位回路100(N)は、ビデオ信号線DO(N)の出力を時分割することで得られるデータ電位を複数のソースバスラインSL(N-1)~ソースバスラインSL(N-n)に時系列的に書き込む(時分割駆動)。これにより、ソースドライバSDのV端子の数を削減できることができるので、非表示領域FRの面積をさらに低減できる(狭額縁化)。 A selection signal (control signal) is supplied from one of the control signal trunk lines SW1 to SW3 to the gate electrode of the TFT 10 for DMX circuit. The control signal defines the ON period of the selection switch in the same group and is synchronized with the time-series signal output from the source driver SD. The SSD unit circuit 100 (N) converts the data potential obtained by time-sharing the output of the video signal line DO (N) to a plurality of source bus lines SL (N−1) to source bus lines SL (Nn). Are written in time series (time division drive). Thereby, since the number of V terminals of the source driver SD can be reduced, the area of the non-display area FR can be further reduced (narrow frame).
 なお、デマルチプレクサ回路DMXを用いた表示装置の動作、時分割駆動のタイミングチャートなどは、例えば特開2008-225036号公報、特開2006-119404号公報、国際公開2011/118079号(特許文献1)などに開示されている。本明細書では、参考のため、特開2008-225036号公報、特開2006-119404号および国際公開2011/118079号公報の開示内容の全てを援用する。 The operation of the display device using the demultiplexer circuit DMX, the timing chart of time-division driving, etc. are disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-225036, Japanese Patent Application Laid-Open No. 2006-119404, International Publication No. 2011/118079 (Patent Document 1). ) And the like. In this specification, for the purpose of reference, the entire disclosures of JP 2008-225036 A, JP 2006-119404 A, and International Publication 2011/118079 are incorporated herein by reference.
 図11は、本実施形態におけるSSD単位回路100を例示する平面図である。ここでは、SSD単位回路100は、R、G、B画素に対応付けられたソースバスラインSL(1)~SL(3)に対して配置されている(つまりn=3である)。 FIG. 11 is a plan view illustrating the SSD unit circuit 100 according to this embodiment. Here, the SSD unit circuit 100 is arranged with respect to the source bus lines SL (1) to SL (3) associated with the R, G, and B pixels (that is, n = 3).
 SSD単位回路100は、基板1に支持された3個のDMX回路用TFT10(1)~(3)(以下、「DMX回路用TFT10」と総称することがある)と、表示領域DRから延設されたソースバスラインSL1~SL3(以下、「ソースバスラインSL」と総称することがある)と、1つのビデオ信号線DOと、分岐配線B1~B3(以下、「分岐配線B」と総称することがある)と、制御信号幹線SW1~SW3(以下、「制御信号幹線SW」と総称することがある)とを備える。ビデオ信号線DOは、分岐配線B1~B3に電気的に接続されている。この例では、ソースバスラインSLはy方向に延びており、制御信号幹線SWはy方向に交差するx方向に延びている。また、分岐配線B、ビデオ信号線DOは、ソースメタル層内に形成されている。ゲート電極3および制御信号幹線SWは、ゲートメタル層内に形成されている。 The SSD unit circuit 100 includes three DMX circuit TFTs 10 (1) to (3) supported on the substrate 1 (hereinafter may be collectively referred to as “DMX circuit TFTs 10”), and extends from the display region DR. Source bus lines SL1 to SL3 (hereinafter sometimes collectively referred to as “source bus lines SL”), one video signal line DO, and branch wirings B1 to B3 (hereinafter collectively referred to as “branch wiring B”). And control signal trunk lines SW1 to SW3 (hereinafter sometimes collectively referred to as “control signal trunk line SW”). The video signal line DO is electrically connected to the branch lines B1 to B3. In this example, the source bus line SL extends in the y direction, and the control signal trunk line SW extends in the x direction intersecting the y direction. The branch wiring B and the video signal line DO are formed in the source metal layer. The gate electrode 3 and the control signal trunk line SW are formed in the gate metal layer.
 DMX回路用TFT10では、ソース電極8はゲート電極3の第1縁部3e1と重なり、ドレイン電極9はゲート電極3の第2縁部3e2と重なるように、チャネル幅方向DWに延びている。DMX回路用TFT10は、前述した薄膜トランジスタ10A~10Cのいずれかであってもよい。 In the DMX circuit TFT 10, the source electrode 8 extends in the channel width direction DW so as to overlap the first edge 3 e 1 of the gate electrode 3 and the drain electrode 9 overlaps the second edge 3 e 2 of the gate electrode 3. The DMX circuit TFT 10 may be any of the above-described thin film transistors 10A to 10C.
 本実施形態では、DMX回路用TFT10は、それぞれ、隣接する2つのソースバスラインSLの間に(一方のソースバスラインとは重なる)配置されている。この例では、DMX回路用TFT10は、そのチャネル長方向DLがx方向に略平行となり、チャネル幅方向DWがy方向に略平行となるように配置されている。 In the present embodiment, each of the DMX circuit TFTs 10 is disposed between two adjacent source bus lines SL (overlapping one source bus line). In this example, the DMX circuit TFT 10 is arranged such that its channel length direction DL is substantially parallel to the x direction and its channel width direction DW is substantially parallel to the y direction.
 ソースバスラインSLは、表示領域からソースドライバSD側にy方向に延び、対応する酸化物半導体層7のチャネル幅方向DWに延びる一方の端部p2の上面と接してもよい。ソースバスラインSLのうち酸化物半導体層7と接する部分がDMX回路用TFT10のドレイン電極9として機能する。 The source bus line SL may extend in the y direction from the display region toward the source driver SD, and may be in contact with the upper surface of one end p2 of the corresponding oxide semiconductor layer 7 extending in the channel width direction DW. A portion of the source bus line SL in contact with the oxide semiconductor layer 7 functions as the drain electrode 9 of the DMX circuit TFT 10.
 各分岐配線Bは、ビデオ信号線DOから表示領域側にy方向に延び、対応する酸化物半導体層7のチャネル幅方向DWに延びる他方の端部p1の上面と接している。分岐配線Bのうち酸化物半導体層7と接する部分がDMX回路用TFT10のソース電極8として機能する。 Each branch wiring B extends in the y direction from the video signal line DO toward the display region, and is in contact with the upper surface of the other end p1 of the corresponding oxide semiconductor layer 7 extending in the channel width direction DW. A portion of the branch wiring B that contacts the oxide semiconductor layer 7 functions as the source electrode 8 of the DMX circuit TFT 10.
 DMX回路用TFT10のゲート電極3は、対応する制御信号幹線SWに電気的に接続されている。この例では、ゲート電極3は、制御信号幹線SWに向かってy方向に延設されている。延設された部分(延設部)23は、ソースメタル層内に形成された接続配線25を介して、対応する制御信号幹線SWに電気的に接続されている。接続配線25は、例えば、ゲート絶縁層5に設けられた第1開口部5p内で延設部23と接し、かつ、ゲート絶縁層5に設けられた第2開口部5q内で制御信号幹線SWと接していてもよい。なお、ゲート電極3と対応する制御信号幹線SWとを接続する延設部23および接続配線25を併せて「制御信号枝線」と呼ぶことがある。 The gate electrode 3 of the DMX circuit TFT 10 is electrically connected to the corresponding control signal trunk line SW. In this example, the gate electrode 3 extends in the y direction toward the control signal main line SW. The extended portion (extended portion) 23 is electrically connected to the corresponding control signal trunk line SW via a connection wiring 25 formed in the source metal layer. For example, the connection wiring 25 is in contact with the extending portion 23 in the first opening 5p provided in the gate insulating layer 5 and in the second opening 5q provided in the gate insulating layer 5. May be in contact with. The extending portion 23 and the connection wiring 25 that connect the gate electrode 3 and the corresponding control signal trunk line SW may be collectively referred to as “control signal branch line”.
 DMX回路用TFT10およびデマルチプレクサ回路DMXは、無機絶縁層(パッシベーション膜)11(図2参照)で覆われていてもよい。無機絶縁層11上には、有機絶縁膜などの平坦化膜を有していてもよいし、有していなくてもよい。例えば、アクティブマトリクス基板1000のうち表示領域DRが有機絶縁膜で覆われ、非表示領域FR上は有機絶縁膜で覆われていなくてもよい。 The DMX circuit TFT 10 and the demultiplexer circuit DMX may be covered with an inorganic insulating layer (passivation film) 11 (see FIG. 2). On the inorganic insulating layer 11, a planarizing film such as an organic insulating film may or may not be provided. For example, the display region DR of the active matrix substrate 1000 may be covered with the organic insulating film, and the non-display region FR may not be covered with the organic insulating film.
 <画素領域PIXの構成>
 次いで、アクティブマトリクス基板1000における各画素領域PIXの構成を説明する。ここでは、FFSモードのLCDパネルに適用されるアクティブマトリクス基板を例に説明する。
<Configuration of Pixel Area PIX>
Next, the configuration of each pixel region PIX in the active matrix substrate 1000 will be described. Here, an active matrix substrate applied to an FFS mode LCD panel will be described as an example.
 図12(a)および(b)は、それぞれ、アクティブマトリクス基板1000における1つの画素領域PIXの平面図およびIV-IV’線に沿った断面図である。 FIGS. 12A and 12B are a plan view and a cross-sectional view taken along line IV-IV ′ of one pixel region PIX in the active matrix substrate 1000, respectively.
 画素領域PIXは、y方向に延びるソースバスラインSL、および、ソースバスラインSLと交差するx方向に延びるゲートバスラインGLに包囲された領域である。画素領域PIXは、基板1と、基板1に支持されたTFT(以下、「画素TFT」)130と、下部透明電極15と、上部透明電極19とを有している。図示していないが、上部透明電極19は、画素ごとにスリットまたは切り欠き部を有する。この例では、下部透明電極15は共通電極CEであり、上部透明電極19は画素電極PEである。画素TFT10は、例えばボトムゲート構造を有する酸化物半導体TFTである。 The pixel area PIX is an area surrounded by a source bus line SL extending in the y direction and a gate bus line GL extending in the x direction intersecting the source bus line SL. The pixel region PIX includes a substrate 1, a TFT (hereinafter “pixel TFT”) 130 supported on the substrate 1, a lower transparent electrode 15, and an upper transparent electrode 19. Although not shown, the upper transparent electrode 19 has a slit or notch for each pixel. In this example, the lower transparent electrode 15 is a common electrode CE, and the upper transparent electrode 19 is a pixel electrode PE. The pixel TFT 10 is, for example, an oxide semiconductor TFT having a bottom gate structure.
 次いで、画素TFT130の構造をより詳細に説明する。 Next, the structure of the pixel TFT 130 will be described in more detail.
 画素TFT130は、基板1に支持されたゲート電極103と、ゲート電極103を覆うゲート絶縁層5と、ゲート絶縁層5上に形成された酸化物半導体層107と、酸化物半導体層107に接するように配置されたソース電極108およびドレイン電極109とを有するボトムゲート構造のTFTである。ソース電極108およびドレイン電極109は、それぞれ、酸化物半導体層107の上面と接している。 The pixel TFT 130 is in contact with the gate electrode 103 supported on the substrate 1, the gate insulating layer 5 covering the gate electrode 103, the oxide semiconductor layer 107 formed on the gate insulating layer 5, and the oxide semiconductor layer 107. This is a TFT having a bottom gate structure having a source electrode 108 and a drain electrode 109 arranged in the bottom. The source electrode 108 and the drain electrode 109 are in contact with the upper surface of the oxide semiconductor layer 107.
 ゲート電極103は対応するゲートバスラインGLに接続され、ソース電極108は対応するソースバスラインSLに接続されている。ドレイン電極109は画素電極PEと電気的に接続されている。ゲート電極103およびゲートバスラインGLは、ゲートメタル層内において一体的に形成されていてもよい。ソース電極108およびソースバスラインSLは、ソースメタル層内において一体的に形成されていてもよい。 The gate electrode 103 is connected to the corresponding gate bus line GL, and the source electrode 108 is connected to the corresponding source bus line SL. The drain electrode 109 is electrically connected to the pixel electrode PE. The gate electrode 103 and the gate bus line GL may be integrally formed in the gate metal layer. The source electrode 108 and the source bus line SL may be integrally formed in the source metal layer.
 層間絶縁層13は、特に限定しないが、例えば、無機絶縁層(パッシベーション膜)11と、無機絶縁層11上に配置された有機絶縁層12とを含んでいてもよい。なお、層間絶縁層13は有機絶縁層12を含んでいなくてもよい。 The interlayer insulating layer 13 is not particularly limited, and may include, for example, an inorganic insulating layer (passivation film) 11 and an organic insulating layer 12 disposed on the inorganic insulating layer 11. Note that the interlayer insulating layer 13 may not include the organic insulating layer 12.
 画素電極PEおよび共通電極CEは、誘電体層17を介して部分的に重なるように配置される。画素電極PEは、画素毎に分離されている。共通電極CEは、画素毎に分離されていなくても構わない。この例では、共通電極CEは、層間絶縁層13上に形成されている。共通電極CEは、画素TFT10が形成されている領域に開口部を有し、この領域を除く画素領域PIX全体に亘って形成されていてもよい。画素電極PEは、誘電体層17上に形成され、層間絶縁層13および誘電体層17に設けられた開口部CH1内で、ドレイン電極109と電気的に接続されている。 The pixel electrode PE and the common electrode CE are arranged so as to partially overlap with each other via the dielectric layer 17. The pixel electrode PE is separated for each pixel. The common electrode CE may not be separated for each pixel. In this example, the common electrode CE is formed on the interlayer insulating layer 13. The common electrode CE may have an opening in a region where the pixel TFT 10 is formed, and may be formed over the entire pixel region PIX excluding this region. The pixel electrode PE is formed on the dielectric layer 17 and is electrically connected to the drain electrode 109 in the opening CH1 provided in the interlayer insulating layer 13 and the dielectric layer 17.
 このようなアクティブマトリクス基板1000は、例えばFFSモードの表示装置に適用され得る。FFSモードは、一方の基板に一対の電極を設けて、液晶分子に、基板面に平行な方向(横方向)に電界を印加する横方向電界方式のモードである。この例では、画素電極PEから出て液晶層(図示せず)を通り、さらに画素電極PEのスリット状の開口を通って共通電極CEに出る電気力線で表される電界が生成される。この電界は、液晶層に対して横方向の成分を有している。その結果、横方向の電界を液晶層に印加することができる。横方向電界方式では、基板から液晶分子が立ち上がらないため、縦方向電界方式よりも広視野角を実現できるという利点がある。 Such an active matrix substrate 1000 can be applied to an FFS mode display device, for example. The FFS mode is a transverse electric field mode in which a pair of electrodes is provided on one substrate and an electric field is applied to liquid crystal molecules in a direction parallel to the substrate surface (lateral direction). In this example, an electric field expressed by electric lines of force that exit from the pixel electrode PE, pass through a liquid crystal layer (not shown), and further pass through the slit-like opening of the pixel electrode PE to the common electrode CE is generated. This electric field has a component transverse to the liquid crystal layer. As a result, a horizontal electric field can be applied to the liquid crystal layer. The horizontal electric field method has an advantage that a wider viewing angle can be realized than the vertical electric field method because liquid crystal molecules do not rise from the substrate.
 共通電極CE上に誘電体層17を介して画素電極PEが配置される電極構造は、例えば国際公開第2012/086513号に記載されている。なお、画素電極PE上に誘電体層17を介して共通電極CEが配置されていてもよい。すなわち、下部透明導電層に形成される下部透明電極15が画素電極PEであり、上部透明導電層に形成される上部透明電極19が共通電極CEであってもよい。このような電極構造は、例えば特開2008-032899号公報、特開2010-008758号公報に記載されている。参考のため、国際公開第2012/086513号、特開2008-032899号公報および特開2010-008758号公報の開示内容の全てを本明細書に援用する。 An electrode structure in which the pixel electrode PE is disposed on the common electrode CE via the dielectric layer 17 is described in, for example, International Publication No. 2012/0886513. Note that the common electrode CE may be disposed on the pixel electrode PE via the dielectric layer 17. That is, the lower transparent electrode 15 formed on the lower transparent conductive layer may be the pixel electrode PE, and the upper transparent electrode 19 formed on the upper transparent conductive layer may be the common electrode CE. Such electrode structures are described in, for example, Japanese Patent Application Laid-Open Nos. 2008-032899 and 2010-008758. For reference, the entire disclosures of International Publication No. 2012/086513, Japanese Patent Application Laid-Open No. 2008-032899, and Japanese Patent Application Laid-Open No. 2010-008758 are incorporated herein by reference.
 <アクティブマトリクス基板1000における各層の材料および厚さ>
 基板1は、例えばガラス基板、シリコン基板、耐熱性を有するプラスチック基板(樹脂基板)などであり得る。
<Material and thickness of each layer in active matrix substrate 1000>
The substrate 1 can be, for example, a glass substrate, a silicon substrate, a heat-resistant plastic substrate (resin substrate), or the like.
 ゲート電極3およびゲートバスラインGLを含むゲートメタル層(厚さ:例えば50nm以上500nm以下)は、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はその合金、若しくはその金属窒化物から形成されている。また、これら複数の膜の積層膜から形成されていてもよい。ゲートメタル層は、基板1上にスパッタ法などで金属膜を形成し、公知のフォトリソグラフィプロセス(フォトレジスト付与、露光、現像、エッチング、レジスト剥離)でパターニングすることによって形成され得る。エッチングは例えばウェットエッチングで行われる。 The gate metal layer including the gate electrode 3 and the gate bus line GL (thickness: for example, not less than 50 nm and not more than 500 nm) is, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr ), Titanium (Ti), copper (Cu), or a metal thereof, or an alloy thereof, or a metal nitride thereof. Moreover, you may form from the laminated film of these several films | membranes. The gate metal layer can be formed by forming a metal film on the substrate 1 by sputtering or the like and patterning it by a known photolithography process (photoresist application, exposure, development, etching, resist stripping). Etching is performed by wet etching, for example.
 ゲート絶縁層(厚さ:例えば200nm以上500nm以下)5は、例えば、酸化珪素(SiOx)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy;x>y)層、窒化酸化珪素(SiNxOy;x>y)層等である。ゲート絶縁層5は積層構造を有していてもよい。その場合、ゲート絶縁層5の酸化物半導体層7と接する側にSiO2膜を配置すると、酸化物半導体層7の酸素欠損を効果的に低減することができる。 The gate insulating layer (thickness: for example, 200 nm to 500 nm or less) 5 includes, for example, a silicon oxide (SiOx) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy; x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer and the like. The gate insulating layer 5 may have a stacked structure. In that case, oxygen vacancies in the oxide semiconductor layer 7 can be effectively reduced by disposing the SiO 2 film on the side of the gate insulating layer 5 in contact with the oxide semiconductor layer 7.
 酸化物半導体層7は、例えばIn-Ga-Zn-O系半導体などの酸化物半導体膜(厚さ:例えば15nm以上200nm以下)から形成されている。 The oxide semiconductor layer 7 is formed of an oxide semiconductor film (thickness: for example, 15 nm to 200 nm) such as an In—Ga—Zn—O-based semiconductor.
 ソース電極8、ドレイン電極9およびソースバスラインSLを含むソースメタル層(厚さ:例えば50nm以上500nm以下)は、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はその合金、若しくはその金属窒化物を含む膜を用いて形成されている。また、これら複数の膜の積層膜から形成されていてもよい。ソースメタル層は、酸化物半導体層側からTi膜(厚さ:30nm)、AlまたはCu膜(厚さ:300nm)、およびTi膜(厚さ50nm)をこの順で積み重ねた積層構造を有していてもよい。 The source metal layer (thickness: for example, 50 nm or more and 500 nm or less) including the source electrode 8, the drain electrode 9, and the source bus line SL is, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta). , Chromium (Cr), titanium (Ti), copper (Cu) and other metals or alloys thereof, or a film containing a metal nitride thereof. Moreover, you may form from the laminated film of these several films | membranes. The source metal layer has a laminated structure in which a Ti film (thickness: 30 nm), an Al or Cu film (thickness: 300 nm), and a Ti film (thickness 50 nm) are stacked in this order from the oxide semiconductor layer side. It may be.
 無機絶縁層(厚さ:例えば100~500nm、好ましくは200~500nm)11は、例えば、酸化珪素(SiOx)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等の無機絶縁膜(パッシベーション膜)から形成されている。無機絶縁層11は積層構造を有していてもよい。無機絶縁層11の酸化物半導体層7と接する側にSiO2膜を配置すると、酸化物半導体層7の酸素欠損を効果的に低減することができる。 The inorganic insulating layer (thickness: for example, 100 to 500 nm, preferably 200 to 500 nm) 11 includes, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride (SiOxNy; x> y) film, and a nitride It is formed from an inorganic insulating film (passivation film) such as a silicon oxide (SiNxOy; x> y) film. The inorganic insulating layer 11 may have a laminated structure. When the SiO 2 film is disposed on the side of the inorganic insulating layer 11 in contact with the oxide semiconductor layer 7, oxygen vacancies in the oxide semiconductor layer 7 can be effectively reduced.
 有機絶縁層(厚さ;例えば1~3μm、好ましくは2~3μm)12は、例えば、感光性樹脂材料を含む有機絶縁膜から形成されている。 The organic insulating layer (thickness; for example, 1 to 3 μm, preferably 2 to 3 μm) 12 is formed of, for example, an organic insulating film containing a photosensitive resin material.
 下部透明電極15および上部透明電極19(厚さ:例えば50nm以上200nm以下)は、それぞれ、例えばITO(インジウム・錫酸化物)膜、In-Zn-O系酸化物(インジウム・亜鉛酸化物)膜、ZnO膜(酸化亜鉛膜)などから形成されていてもよい。第2無機絶縁層(厚さ:例えば70nm以上300nm以下)17は、窒化珪素(SiNx)膜、酸化珪素(SiOx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等から形成されていてもよい。 The lower transparent electrode 15 and the upper transparent electrode 19 (thickness: for example, 50 nm or more and 200 nm or less) are, for example, an ITO (indium / tin oxide) film or an In—Zn—O-based oxide (indium / zinc oxide) film, respectively. , ZnO film (zinc oxide film) or the like. The second inorganic insulating layer (thickness: for example, 70 nm to 300 nm) 17 includes a silicon nitride (SiNx) film, a silicon oxide (SiOx) film, a silicon oxynitride (SiOxNy; x> y) film, and a silicon nitride oxide (SiNxOy; x> y) It may be formed from a film or the like.
 (TFT構造について)
 上述した薄膜トランジスタ10A~10Cおよび画素TFT130は、チャネルエッチ型のTFTである。チャネルエッチ型のTFTでは、チャネル領域上にエッチストップ層が形成されておらず、ソースおよびドレイン電極のチャネル側の端部下面は、酸化物半導体層の上面と接するように配置されている。チャネルエッチ型のTFTは、例えば酸化物半導体層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。ソース・ドレイン分離工程において、チャネル領域の表面部分がエッチングされる場合がある。
(About TFT structure)
The above-described thin film transistors 10A to 10C and the pixel TFT 130 are channel etch TFTs. In the channel etch TFT, an etch stop layer is not formed on the channel region, and the lower surface of the end of the source and drain electrodes on the channel side is disposed so as to be in contact with the upper surface of the oxide semiconductor layer. A channel etch type TFT is formed, for example, by forming a conductive film for a source / drain electrode on an oxide semiconductor layer and performing source / drain separation. In the source / drain separation step, the surface portion of the channel region may be etched.
 本実施形態における回路TFT(薄膜トランジスタ10A~10C)は、酸化物半導体層7の上方、すなわち酸化物半導体層7の基板1と反対側に他のゲート電極(以下、「上部ゲート電極」と称する)をさらに備えてもよい。このようなTFT構造を、ダブルゲート構造と呼ぶ。 The circuit TFTs (thin film transistors 10A to 10C) in the present embodiment have other gate electrodes (hereinafter referred to as “upper gate electrodes”) above the oxide semiconductor layer 7, that is, on the opposite side of the oxide semiconductor layer 7 from the substrate 1. May be further provided. Such a TFT structure is called a double gate structure.
 図13(a)および(b)は、それぞれ、ダブルゲート構造を有する薄膜トランジスタ10Dを示す平面図および断面図である。 FIGS. 13A and 13B are a plan view and a cross-sectional view showing a thin film transistor 10D having a double gate structure, respectively.
 薄膜トランジスタ10Dは、上部ゲート電極BGを有する点で、前述した薄膜トランジスタ10A(図2)と異なる。 The thin film transistor 10D is different from the thin film transistor 10A (FIG. 2) described above in that it has an upper gate electrode BG.
 上部ゲート電極BGは、酸化物半導体層7上に絶縁膜を介して配置されている。基板1の法線方向から見たとき、上部ゲート電極BGは、酸化物半導体層7と少なくとも部分的に重なっている。基板1の法線方向から見たとき、上部ゲート電極BGは、互いに対向し、チャネル幅方向WDに延びる2つの縁部BGe1、BGe2を有している。ソース電極8は縁部BGe1と重なり、ドレイン電極9は、縁部BGe2と重なっていてもよい。これにより、上部ゲート電極BGとソース電極8およびドレイン電極9との重なり面積を低減できる。 The upper gate electrode BG is disposed on the oxide semiconductor layer 7 via an insulating film. When viewed from the normal direction of the substrate 1, the upper gate electrode BG at least partially overlaps the oxide semiconductor layer 7. When viewed from the normal direction of the substrate 1, the upper gate electrode BG has two edges BGe1 and BGe2 that face each other and extend in the channel width direction WD. The source electrode 8 may overlap with the edge BGe1, and the drain electrode 9 may overlap with the edge BGe2. Thereby, the overlapping area of the upper gate electrode BG, the source electrode 8 and the drain electrode 9 can be reduced.
 この例では、薄膜トランジスタ10Dは無機絶縁層11(パッシベーション膜)で覆われており、無機絶縁層11上に上部ゲート電極BGが配置されている。つまり、無機絶縁層11は、上部ゲート電極BGと酸化物半導体層7との間に位置し、ゲート絶縁膜として機能する。上部ゲート電極BGは、例えば、表示領域に配置される透明電極(例えば画素電極PE)と同じ透明導電膜を用いて形成された透明な電極であってもよい。 In this example, the thin film transistor 10D is covered with an inorganic insulating layer 11 (passivation film), and the upper gate electrode BG is disposed on the inorganic insulating layer 11. That is, the inorganic insulating layer 11 is located between the upper gate electrode BG and the oxide semiconductor layer 7 and functions as a gate insulating film. The upper gate electrode BG may be, for example, a transparent electrode formed using the same transparent conductive film as a transparent electrode (for example, the pixel electrode PE) disposed in the display area.
 なお、横電界モードの表示装置に適用されるアクティブマトリクス基板では、表示領域には、下部透明電極15および上部透明電極19が誘電体層17を介して配置される(図12参照)。下部透明電極15および上部透明電極19の一方は画素電極PE、他方は共通電極CEである。この場合、上部ゲート電極BGは、下部透明電極15または上部透明電極19と同じ透明導電膜を用いて形成され得る。下部透明電極15と同じ透明導電膜を用いて上部ゲート電極BGを形成する場合、パッシベーション膜である無機絶縁層11がゲート絶縁膜として機能し得る。上部透明電極19と同じ透明導電膜を用いて上部ゲート電極BGを形成する場合には、無機絶縁層11および誘電体層17がゲート絶縁膜として機能し得る。 In the active matrix substrate applied to the horizontal electric field mode display device, the lower transparent electrode 15 and the upper transparent electrode 19 are disposed in the display region via the dielectric layer 17 (see FIG. 12). One of the lower transparent electrode 15 and the upper transparent electrode 19 is a pixel electrode PE, and the other is a common electrode CE. In this case, the upper gate electrode BG can be formed using the same transparent conductive film as the lower transparent electrode 15 or the upper transparent electrode 19. When the upper gate electrode BG is formed using the same transparent conductive film as the lower transparent electrode 15, the inorganic insulating layer 11 that is a passivation film can function as a gate insulating film. When the upper gate electrode BG is formed using the same transparent conductive film as the upper transparent electrode 19, the inorganic insulating layer 11 and the dielectric layer 17 can function as a gate insulating film.
 図13では、薄膜トランジスタ10Aに上部ゲート電極BGを設けているが、他の薄膜トランジスタ10B、10Cに上部ゲート電極BGを設けてもよい。 Although the upper gate electrode BG is provided in the thin film transistor 10A in FIG. 13, the upper gate electrode BG may be provided in the other thin film transistors 10B and 10C.
 (酸化物半導体について)
 酸化物半導体層に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
(About oxide semiconductors)
The oxide semiconductor included in the oxide semiconductor layer may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion. Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
 酸化物半導体層は、2層以上の積層構造を有していてもよい。酸化物半導体層が積層構造を有する場合には、酸化物半導体層は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。酸化物半導体層が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。 The oxide semiconductor layer may have a stacked structure of two or more layers. In the case where the oxide semiconductor layer has a stacked structure, the oxide semiconductor layer may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer. Alternatively, a plurality of crystalline oxide semiconductor layers having different crystal structures may be included. In addition, a plurality of amorphous oxide semiconductor layers may be included. In the case where the oxide semiconductor layer has a two-layer structure including an upper layer and a lower layer, the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer. However, when the difference in energy gap between these layers is relatively small, the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014-007399号公報に記載されている。参考のために、特開2014-007399号公報の開示内容の全てを本明細書に援用する。 The material, structure, film forming method, and structure of an oxide semiconductor layer having a stacked structure of the amorphous oxide semiconductor and each crystalline oxide semiconductor described above are described in, for example, Japanese Patent Application Laid-Open No. 2014-007399. . For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2014-007399 is incorporated herein by reference.
 酸化物半導体層は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体層は、例えば、In-Ga-Zn-O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体層は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。 The oxide semiconductor layer may contain at least one metal element of In, Ga, and Zn, for example. In this embodiment, the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor (eg, indium gallium zinc oxide). Here, the In—Ga—Zn—O-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and a ratio (composition ratio) of In, Ga, and Zn. Is not particularly limited, and includes, for example, In: Ga: Zn = 2: 2: 1, In: Ga: Zn = 1: 1: 1, In: Ga: Zn = 1: 1: 2, and the like. Such an oxide semiconductor layer can be formed using an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
 In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。 The In—Ga—Zn—O-based semiconductor may be amorphous or crystalline. As the crystalline In—Ga—Zn—O-based semiconductor, a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
 なお、結晶質In-Ga-Zn-O系の半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報、特開2014-209727号公報などに開示されている。参考のために、特開2012-134475号公報および特開2014-209727号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)および画素TFT(画素に設けられるTFT)として好適に用いられる。 Note that the crystal structure of a crystalline In—Ga—Zn—O-based semiconductor is disclosed in, for example, the above-described Japanese Patent Application Laid-Open Nos. 2014-007399, 2012-134475, and 2014-209727. ing. For reference, the entire contents disclosed in Japanese Patent Application Laid-Open Nos. 2012-134475 and 2014-209727 are incorporated herein by reference. A TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT). The TFT is suitably used as a driving TFT (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a pixel TFT (a TFT provided in the pixel).
 酸化物半導体層は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn2O3-SnO2-ZnO;InSnZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体層は、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体などを含んでいてもよい。 The oxide semiconductor layer may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor. For example, an In—Sn—Zn—O-based semiconductor (eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO) may be included. The In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc). Alternatively, the oxide semiconductor layer includes an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, and a Zn—Ti—O based semiconductor. Semiconductor, Cd—Ge—O based semiconductor, Cd—Pb—O based semiconductor, CdO (cadmium oxide), Mg—Zn—O based semiconductor, In—Ga—Sn—O based semiconductor, In—Ga—O based semiconductor, A Zr—In—Zn—O based semiconductor, an Hf—In—Zn—O based semiconductor, an Al—Ga—Zn—O based semiconductor, a Ga—Zn—O based semiconductor, or the like may be included.
 (第2の実施形態)
 第2の実施形態のアクティブマトリクス基板は、モノリシックに形成されたデマルチプレクサ回路(例えばSSD回路)DMXを有する。本実施形態は、デマルチプレクサ回路の構成、配置などが前述の実施形態(図11)と異なる。以下、前述の実施形態と異なる点を主に説明し、同様の構成については説明を省略する。
(Second Embodiment)
The active matrix substrate of the second embodiment includes a demultiplexer circuit (for example, an SSD circuit) DMX formed monolithically. This embodiment is different from the above-described embodiment (FIG. 11) in the configuration and arrangement of the demultiplexer circuit. Hereinafter, differences from the above-described embodiment will be mainly described, and description of similar configurations will be omitted.
 本実施形態のデマルチプレクサ回路は、複数(少なくともn本)の制御信号幹線SWと、複数のサブ回路とを含む。各サブ回路は、少なくとも2つの単位回路(以下、「第1単位回路」、「第2単位回路」と呼ぶ)を含む。制御信号幹線SWからは、サブ回路ごとにn本の制御信号枝線Cが設けられている。n本の制御信号枝線Cのそれぞれは、制御信号幹線SWの1つに接続されている。すなわち、各サブ回路において、第1および第2単位回路は、共通の制御信号枝線Cを用いている。制御信号枝線Cの数は、n×サブ回路数となる。従って、制御信号枝線Cを単位回路ごとに設ける場合の制御信号枝線Cの数(n×単位回路数)の1/2以下に減らすことができる。 The demultiplexer circuit of the present embodiment includes a plurality (at least n) of control signal trunk lines SW and a plurality of sub-circuits. Each sub-circuit includes at least two unit circuits (hereinafter referred to as “first unit circuit” and “second unit circuit”). From the control signal trunk line SW, n control signal branch lines C are provided for each sub-circuit. Each of the n control signal branch lines C is connected to one of the control signal trunk lines SW. That is, in each sub-circuit, the first and second unit circuits use a common control signal branch line C. The number of control signal branch lines C is n × number of sub-circuits. Therefore, the number of control signal branch lines C when the control signal branch line C is provided for each unit circuit (n × number of unit circuits) can be reduced to ½ or less.
 <デマルチプレクサ回路DMXの構成および動作>
 以下では、各サブ回路に2つの単位回路を含む例を説明するが、1つのサブ回路に3以上の単位回路が含まれていてもよい。
<Configuration and Operation of Demultiplexer Circuit DMX>
In the following, an example in which each unit circuit includes two unit circuits will be described, but one unit circuit may include three or more unit circuits.
 図14(a)は、本実施形態におけるデマルチプレクサ回路DMXの構成を説明するための図であり、デマルチプレクサ回路DMXにおける1つのサブ回路200を示す。 FIG. 14A is a diagram for explaining the configuration of the demultiplexer circuit DMX in the present embodiment, and shows one sub-circuit 200 in the demultiplexer circuit DMX.
 サブ回路200は、第1単位回路および第2単位回路を有している。ここでは、各単位回路は、2本のソースバスラインに対応付けられており(n=2)、ビデオ信号1つを2つのソースバスラインSLに分配する。 The sub-circuit 200 has a first unit circuit and a second unit circuit. Here, each unit circuit is associated with two source bus lines (n = 2), and distributes one video signal to two source bus lines SL.
 表示領域DRには、y方向に延びる複数のソースバスラインSLがx方向に配列されている。本明細書では、1つのサブ回路200に含まれる複数のソースバスラインSLを、一方の端部(ここでは左端)から順に、それぞれ、第1ソースバスラインSL1、第2ソースバスラインSL2、第3ソースバスラインSL3および第4ソースバスラインSL4と呼ぶ。 In the display area DR, a plurality of source bus lines SL extending in the y direction are arranged in the x direction. In this specification, a plurality of source bus lines SL included in one sub-circuit 200 are arranged in order from one end (here, the left end), respectively, the first source bus line SL1, the second source bus line SL2, These are referred to as a 3 source bus line SL3 and a fourth source bus line SL4.
 この例では、第1単位回路は、第1ソースバスラインSL1および第3ソースバスラインSL3に対応付けられている。対応するビデオ信号線DO1からのビデオ信号V1は、第1単位回路を介して、第1ソースバスラインSL1および第3ソースバスラインSL3に分配される。第2単位回路は、第2ソースバスラインSL2および第4ソースバスラインSL4に対応付けられている。第1単位回路とは異なるビデオ信号線DO2からのビデオ信号V2は、第2単位回路を介して、第2ソースバスラインSL2および第4ソースバスラインSL4に分配される。第1単位回路および第2単位回路は、また、共通の制御信号枝線C1、C2を有している。制御信号枝線C1、C2(「制御信号枝線C」と総称することがある)は、それぞれ、制御信号幹線SW1、SW2に電気的に接続されている。制御信号枝線Cは、サブ回路ごとに設けられる。 In this example, the first unit circuit is associated with the first source bus line SL1 and the third source bus line SL3. The video signal V1 from the corresponding video signal line DO1 is distributed to the first source bus line SL1 and the third source bus line SL3 via the first unit circuit. The second unit circuit is associated with the second source bus line SL2 and the fourth source bus line SL4. The video signal V2 from the video signal line DO2 different from the first unit circuit is distributed to the second source bus line SL2 and the fourth source bus line SL4 via the second unit circuit. The first unit circuit and the second unit circuit also have common control signal branch lines C1 and C2. The control signal branch lines C1 and C2 (which may be collectively referred to as “control signal branch line C”) are electrically connected to the control signal trunk lines SW1 and SW2, respectively. The control signal branch line C is provided for each sub circuit.
 各単位回路の構成をより具体的に説明する。第1単位回路は、2つの薄膜トランジスタ(DMX回路用TFT)T1a、T1bと、2本の分岐配線B1a、B1bと、2本の制御信号枝線C1、C2とを含む。第2単位回路は、2つの薄膜トランジスタ(DMX回路用TFT)T2a、T2bと、2本の分岐配線B2a、B2bと、第1単位回路と共通の制御信号枝線C1、C2とを含む。第1単位回路の分岐配線B1a、B1bはビデオ信号線DO1に電気的に接続されており、第2単位回路の分岐配線B2a、B2bはビデオ信号線DO2に電気的に接続されている。第1単位回路の薄膜トランジスタT1a、T1bのドレイン電極は、それぞれ、第1ソースバスラインSL1、第3ソースバスラインSL3に接続され、ソース電極は、それぞれ、分岐配線B1a、B1bに接続されている。第2単位回路の薄膜トランジスタT2a、T2bのドレイン電極は、それぞれ、第2ソースバスラインSL2、第4ソースバスラインSL4に接続され、ソース電極は、それぞれ、分岐配線B2a、B2bに接続されている。薄膜トランジスタT1a、T2aのゲート電極は、それぞれ、制御信号枝線C1を介して制御信号幹線SW1に電気的に接続されている。薄膜トランジスタT1b、T2bのゲート電極は、それぞれ、制御信号枝線C2を介して制御信号幹線SW2に電気的に接続されている。 The configuration of each unit circuit will be described more specifically. The first unit circuit includes two thin film transistors (DMX circuit TFTs) T1a and T1b, two branch lines B1a and B1b, and two control signal branch lines C1 and C2. The second unit circuit includes two thin film transistors (DMX circuit TFTs) T2a and T2b, two branch lines B2a and B2b, and control signal branch lines C1 and C2 common to the first unit circuit. The branch lines B1a and B1b of the first unit circuit are electrically connected to the video signal line DO1, and the branch lines B2a and B2b of the second unit circuit are electrically connected to the video signal line DO2. The drain electrodes of the thin film transistors T1a and T1b of the first unit circuit are connected to the first source bus line SL1 and the third source bus line SL3, respectively, and the source electrodes are connected to the branch lines B1a and B1b, respectively. The drain electrodes of the thin film transistors T2a and T2b of the second unit circuit are connected to the second source bus line SL2 and the fourth source bus line SL4, respectively, and the source electrodes are connected to the branch wirings B2a and B2b, respectively. The gate electrodes of the thin film transistors T1a and T2a are electrically connected to the control signal trunk line SW1 via the control signal branch line C1, respectively. The gate electrodes of the thin film transistors T1b and T2b are each electrically connected to the control signal trunk line SW2 via the control signal branch line C2.
 第1単位回路に対応付けられたn本(ここでは2本)のソースバスラインSL1、SL3と、第2単位回路に対応付けられたn本(ここでは2本)のソースバスラインSL2、SL4とは、表示領域においてx方向(行方向)に1本ずつ交互に配列されていてもよい。 N (here, two) source bus lines SL1, SL3 associated with the first unit circuit, and n (here, two) source bus lines SL2, SL4 associated with the second unit circuit. May be arranged alternately one by one in the x direction (row direction) in the display area.
 図示するように、DMX回路用TFTのそれぞれは、ゲート電極と酸化物半導体層を挟んで反対側にバックゲート電極を有していてもよい(ダブルゲート構造)。バックゲート電極は、対応する分岐配線Bに接続されていてもよい。 As shown in the figure, each of the DMX circuit TFTs may have a back gate electrode on the opposite side across the gate electrode and the oxide semiconductor layer (double gate structure). The back gate electrode may be connected to the corresponding branch wiring B.
 次いで、サブ回路200の動作を説明する。 Next, the operation of the sub circuit 200 will be described.
 図14(b)は、ゲートバスラインGL、制御信号枝線C1、C2、ビデオ信号V1、V2および第1ソースバスラインSL1、第2ソースバスラインSL2の信号波形の一例を示す図(タイミングチャート)である。ここでは、M段目のゲートバスラインGL(M)、および(M+1)段目のゲートバスラインGL(M+1)への書き込み動作部分のみを説明する。横軸は時間であり、期間t1~t4は、ゲートバスラインGL(M)への書き込み時間(1水平走査期間(1H期間))、期間t5~t8は、ゲートバスラインGL(M+1)への書き込み時間(1H期間)である。 FIG. 14B shows an example of signal waveforms of the gate bus line GL, the control signal branch lines C1 and C2, the video signals V1 and V2, the first source bus line SL1, and the second source bus line SL2 (timing chart). ). Here, only the write operation portion to the Mth gate bus line GL (M) and the (M + 1) th gate bus line GL (M + 1) will be described. The horizontal axis represents time, the period t1 to t4 is the writing time to the gate bus line GL (M) (one horizontal scanning period (1H period)), and the period t5 to t8 is the time to the gate bus line GL (M + 1). Write time (1H period).
 まず、期間t1で、制御信号枝線C1の制御信号がハイレベル(high)となり、各単位回路における2つのDMX回路用TFTのいずれか一方が選択される。この例では、薄膜トランジスタT1a、T2aが選択され、ビデオ信号V1が薄膜トランジスタT1aを介して第1ソースバスラインSL1に、ビデオ信号V2が薄膜トランジスタT2aを介して第2ソースバスラインSL2に、それぞれ接続される。このタイミングで、ビデオ信号V1、V2はそれぞれ所望の電位に駆動され、第1ソースバスラインSL1および第2ソースバスラインSL2の充電を行う。 First, in the period t1, the control signal of the control signal branch line C1 becomes a high level (high), and one of the two DMX circuit TFTs in each unit circuit is selected. In this example, the thin film transistors T1a and T2a are selected, and the video signal V1 is connected to the first source bus line SL1 via the thin film transistor T1a, and the video signal V2 is connected to the second source bus line SL2 via the thin film transistor T2a. . At this timing, the video signals V1 and V2 are each driven to a desired potential to charge the first source bus line SL1 and the second source bus line SL2.
 期間t2では、制御信号枝線C1の制御信号がローレベル(low)となり、薄膜トランジスタT1a、T2aのゲートがオフとなるので、第1ソースバスラインSL1および第2ソースバスラインSL2の電位が確定する。 In the period t2, the control signal of the control signal branch line C1 becomes low level (low), and the gates of the thin film transistors T1a and T2a are turned off, so that the potentials of the first source bus line SL1 and the second source bus line SL2 are determined. .
 期間t3では、制御信号枝線C2の制御信号がハイレベルとなり、各単位回路の他方のDMX回路用TFTが選択される。この例では、薄膜トランジスタT1b、薄膜トランジスタT2bが選択され、ビデオ信号V1が薄膜トランジスタT1bを介して第3ソースバスラインSL3に、ビデオ信号V2が薄膜トランジスタT2bを介して第4ソースバスラインSL4に、それぞれ接続される。このタイミングで、ビデオ信号V1、V2はそれぞれ所望の電位に駆動され、第3ソースバスラインSL3および第4ソースバスラインSL4の充電を行う。 In the period t3, the control signal of the control signal branch line C2 becomes high level, and the other DMX circuit TFT of each unit circuit is selected. In this example, the thin film transistor T1b and the thin film transistor T2b are selected, and the video signal V1 is connected to the third source bus line SL3 via the thin film transistor T1b, and the video signal V2 is connected to the fourth source bus line SL4 via the thin film transistor T2b. The At this timing, the video signals V1 and V2 are each driven to a desired potential, and the third source bus line SL3 and the fourth source bus line SL4 are charged.
 次いで、期間t4で制御信号枝線C2の制御信号がローレベルとなり、薄膜トランジスタT1b、T2bのゲートがオフとなるので、第3ソースバスラインSL3および第4ソースバスラインSL4の電位が確定する。このタイミングで、ゲートバスラインGL(M)の走査信号の電圧がローレベルとなり、画素電位の書き込みが完了する。 Next, in period t4, the control signal of the control signal branch line C2 becomes low level, and the gates of the thin film transistors T1b and T2b are turned off, so that the potentials of the third source bus line SL3 and the fourth source bus line SL4 are determined. At this timing, the voltage of the scanning signal of the gate bus line GL (M) becomes low level, and writing of the pixel potential is completed.
 期間t5~t8の動作も、上述した期間t1~t4の動作と同様である。 The operation during the period t5 to t8 is the same as the operation during the period t1 to t4 described above.
 <デマルチプレクサ回路のレイアウト>
 図15は、デマルチプレクサ回路DMXのレイアウトの一例を示す平面図である。
<Demultiplexer circuit layout>
FIG. 15 is a plan view showing an example of the layout of the demultiplexer circuit DMX.
 図15に示すように、デマルチプレクサ回路DMXは、基板1の法線方向から見たとき、表示領域DRの下方に配置されている。この例では、デマルチプレクサ回路DMXは、x方向に配列された複数のサブ回路200を有している。各サブ回路200は、y方向に延伸された形状を有している。 As shown in FIG. 15, the demultiplexer circuit DMX is disposed below the display region DR when viewed from the normal direction of the substrate 1. In this example, the demultiplexer circuit DMX has a plurality of sub-circuits 200 arranged in the x direction. Each sub-circuit 200 has a shape extending in the y direction.
 各サブ回路200を基板1の法線方向から見たとき、第1単位回路のDMX回路用TFTが配置されている第1単位回路形成領域u1は、第2単位回路のDMX回路用TFTが配置されている第2単位回路形成領域u2の表示領域側に位置している。つまり、第1単位回路は、第2単位回路と表示領域との間に位置している。本明細書では、このような構成を「2段構成」と呼ぶ。 When each sub-circuit 200 is viewed from the normal direction of the substrate 1, the DMX circuit TFT of the second unit circuit is disposed in the first unit circuit formation region u1 in which the DMX circuit TFT of the first unit circuit is disposed. The second unit circuit formation region u2 is located on the display region side. That is, the first unit circuit is located between the second unit circuit and the display area. In this specification, such a configuration is referred to as a “two-stage configuration”.
 デマルチプレクサ回路DMXと非表示領域FRの周縁との間には、n本(ここでは2本)の制御信号幹線SW1、SW2が配置されている。各サブ回路200の制御信号枝線C1、C2は、それぞれ、制御信号幹線SW1、SW2からデマルチプレクサ回路DMX内に延びている。図示していないが、デマルチプレクサ回路DMXと非表示領域FRの周縁との間には、また、COG実装された駆動回路およびビデオ信号線が設けられている。各サブ回路200の分岐配線B1a、B2a、B1b、B2bは、それぞれ、ビデオ信号線からデマルチプレクサ回路DMX内に延びている。 Between the demultiplexer circuit DMX and the periphery of the non-display area FR, n (here, two) control signal main lines SW1 and SW2 are arranged. Control signal branch lines C1 and C2 of each sub-circuit 200 extend from the control signal trunk lines SW1 and SW2 into the demultiplexer circuit DMX, respectively. Although not shown, between the demultiplexer circuit DMX and the periphery of the non-display area FR, a drive circuit and a video signal line mounted with COG are also provided. The branch lines B1a, B2a, B1b, and B2b of each sub circuit 200 extend from the video signal line into the demultiplexer circuit DMX.
 図16は、デマルチプレクサ回路DMXにおける1つのサブ回路200Aを例示する拡大平面図である。 FIG. 16 is an enlarged plan view illustrating one sub circuit 200A in the demultiplexer circuit DMX.
 サブ回路200Aにおいて、第1単位回路および第2単位回路の分岐配線B1a、B2a、B1b、B2b、制御信号枝線C1、C2、およびソースバスラインSL1~SL4は、いずれも、y方向に延びている。 In the sub circuit 200A, the branch wirings B1a, B2a, B1b, B2b, the control signal branch lines C1, C2, and the source bus lines SL1 to SL4 of the first unit circuit and the second unit circuit all extend in the y direction. Yes.
 制御信号枝線C1、C2は、それぞれ、対応するDMX回路用TFTのゲート電極として機能する部分を含む。例えば、制御信号枝線C1は、基板1の法線方向から見たとき、分岐配線B1aと分岐配線B2aとの間に位置している。制御信号枝線C1は、分岐配線B2a側にx方向に突出し、薄膜トランジスタT2aのゲート電極として機能する凸部と、分岐配線B2a側にx方向に突出し、薄膜トランジスタT1aのゲート電極として機能する凸部とを有している。薄膜トランジスタT1aおよび薄膜トランジスタT2aの酸化物半導体層7は、それぞれ、制御信号枝線C1のこれらの凸部上に配置されている。このように、第1単位回路におけるDMX回路用TFTの1つと、第2単位回路におけるDMX回路用TFTの1つとは、同一の制御信号枝線Cに一体的に形成されたゲート電極を有しており、同一の制御信号枝線Cの上に間隔を空けて配置されている(2段構成)。 The control signal branch lines C1 and C2 each include a portion that functions as a gate electrode of the corresponding DMX circuit TFT. For example, the control signal branch line C1 is located between the branch wiring B1a and the branch wiring B2a when viewed from the normal direction of the substrate 1. The control signal branch line C1 protrudes in the x direction on the branch wiring B2a side and functions as a gate electrode of the thin film transistor T2a, and protrudes in the x direction on the branch wiring B2a side and functions as a gate electrode of the thin film transistor T1a. have. The oxide semiconductor layers 7 of the thin film transistors T1a and T2a are respectively disposed on these convex portions of the control signal branch line C1. As described above, one of the DMX circuit TFTs in the first unit circuit and one of the DMX circuit TFTs in the second unit circuit have gate electrodes integrally formed on the same control signal branch line C. Are arranged on the same control signal branch line C with a gap (two-stage configuration).
 ソースバスラインSL1~SL4は、それぞれ、対応するDMX回路用TFTの酸化物半導体層7と接し、ドレイン電極として機能する部分を含む。例えば第1ソースバスラインSL1は、表示領域DRからy方向に延びて、薄膜トランジスタT1aの酸化物半導体層7の上面と接している。第2ソースバスラインSL2は、表示領域DRから、薄膜トランジスタT1aと薄膜トランジスタT1bとの間をy方向に延びて、薄膜トランジスタT2aの酸化物半導体層7の上面と接している。 Each of the source bus lines SL1 to SL4 is in contact with the corresponding oxide semiconductor layer 7 of the DMX circuit TFT and includes a portion that functions as a drain electrode. For example, the first source bus line SL1 extends in the y direction from the display region DR and is in contact with the upper surface of the oxide semiconductor layer 7 of the thin film transistor T1a. The second source bus line SL2 extends from the display region DR between the thin film transistors T1a and T1b in the y direction and is in contact with the upper surface of the oxide semiconductor layer 7 of the thin film transistor T2a.
 分岐配線B1a、B2a、B1b、B2bは、それぞれ、対応するDMX回路用TFTの酸化物半導体層7と接し、ソース電極として機能する部分を含む。例えば分岐配線B2aは、COG側からy方向に延びて、薄膜トランジスタT2aの酸化物半導体層7の上面と接している。分岐配線B1bは、COG側から、薄膜トランジスタT2aと薄膜トランジスタT2bとの間をy方向に延びて、薄膜トランジスタT1bの酸化物半導体層7の上面と接している。 Branch wirings B1a, B2a, B1b, and B2b each include a portion that is in contact with the corresponding oxide semiconductor layer 7 of the DMX circuit TFT and functions as a source electrode. For example, the branch wiring B2a extends in the y direction from the COG side and is in contact with the upper surface of the oxide semiconductor layer 7 of the thin film transistor T2a. The branch wiring B1b extends from the COG side between the thin film transistors T2a and T2b in the y direction and is in contact with the upper surface of the oxide semiconductor layer 7 of the thin film transistor T1b.
 基板1の法線方向から見たとき、第1単位回路のDMX回路用TFTは、第2単位回路に対応付けられたN番目および(N+2)番目のソースバスラインSLの間に配置されている。例えば、薄膜トランジスタT1bは、第2ソースバスラインSL2および第4ソースバスラインSL4の間に配置されている。また、第2単位回路のDMX回路用TFTは、第1単位回路における隣接する2つの分岐配線Bの間に配置されている。例えば、薄膜トランジスタT2aは、第1単位回路の分岐配線B1a、B1bの間に配置されている。 When viewed from the normal direction of the substrate 1, the DMX circuit TFT of the first unit circuit is arranged between the Nth and (N + 2) th source bus lines SL associated with the second unit circuit. . For example, the thin film transistor T1b is disposed between the second source bus line SL2 and the fourth source bus line SL4. The DMX circuit TFT of the second unit circuit is disposed between two adjacent branch lines B in the first unit circuit. For example, the thin film transistor T2a is disposed between the branch lines B1a and B1b of the first unit circuit.
 本実施形態では、各DMX回路用TFTのドレイン電極はソースバスラインSLの一部であり、ソース電極は分岐配線Bの一部であり、ゲート電極は制御信号枝線Cの一部である。また、2以上の単位回路に共通の制御信号枝線Cを設けている。これにより、デマルチプレクサ回路DMXに要する面積をより効果的に低減できる。また、チャネル幅Wをy方向に大きくできるので、電流駆動力を確保できる。 In this embodiment, the drain electrode of each DMX circuit TFT is a part of the source bus line SL, the source electrode is a part of the branch wiring B, and the gate electrode is a part of the control signal branch line C. Further, a common control signal branch line C is provided for two or more unit circuits. Thereby, the area required for the demultiplexer circuit DMX can be more effectively reduced. In addition, since the channel width W can be increased in the y direction, the current driving force can be ensured.
 さらに、本実施形態では、複数の単位回路を2段構成で配置するので、ソースバスラインSLの配列ピッチが狭くなっても、所望のサイズのDMX回路用TFTを形成できる。例えば前述の実施形態では、隣接する2つのソースバスラインSLの間にDMX回路用TFTを配置する必要があった。これに対し、本実施形態では、例えば、N番目のソースバスラインSLと(N+2)番目のソースバスラインSLとの間にDMX回路用TFTを配置すればよいので、所望のチャネル長および重なり長さを有する信頼性の高いDMX回路用TFTを形成できる。従って、本実施形態は、例えば1000ppiを超えるような超高精細のアクティブマトリクス基板にも好適に適用され得る。酸化物半導体を用いたデマルチプレクサ回路DMXをモノリシックに形成することで、非表示領域における配線・端子部領域の面積を小さくできるので、狭額縁化を実現できる。 Furthermore, in this embodiment, since the plurality of unit circuits are arranged in a two-stage configuration, a DMX circuit TFT having a desired size can be formed even if the arrangement pitch of the source bus lines SL is narrowed. For example, in the above-described embodiment, it is necessary to dispose a DMX circuit TFT between two adjacent source bus lines SL. On the other hand, in the present embodiment, for example, a DMX circuit TFT may be disposed between the Nth source bus line SL and the (N + 2) th source bus line SL. Thus, a highly reliable DMX circuit TFT can be formed. Therefore, the present embodiment can be suitably applied to an ultra-high definition active matrix substrate exceeding 1000 ppi, for example. By forming the demultiplexer circuit DMX using an oxide semiconductor monolithically, the area of the wiring / terminal region in the non-display region can be reduced, so that a narrow frame can be realized.
 なお、ここでは、2段構成の例を示したが、3段以上の構成も採用し得る。その場合にも、上記と同様に、各サブ回路は3以上の単位回路を含み、これらの単位回路のDMX回路用TFTは、共通の制御信号枝線上に間隔を空けて配置されてもよい。 Although an example of a two-stage configuration is shown here, a configuration of three or more stages can also be adopted. In this case as well, each sub-circuit may include three or more unit circuits, and the DMX circuit TFTs of these unit circuits may be arranged on the common control signal branch line with an interval.
 図16では、図7(a)と同様の構造を有するTFTをDMX回路用TFTとして用いているが、DMX回路用TFTの構造はこれに限定されない。 In FIG. 16, a TFT having the same structure as that in FIG. 7A is used as the DMX circuit TFT, but the structure of the DMX circuit TFT is not limited to this.
 図17および図18は、それぞれ、本実施形態における他のサブ回路200B、200Cの一部を示す平面図である。 17 and 18 are plan views showing parts of other sub-circuits 200B and 200C in the present embodiment, respectively.
 図17に示すサブ回路200Bでは、DMX回路用TFTとして、図2に示す薄膜トランジスタ10Aと同様の構造を有する薄膜トランジスタT1a、T1b、T2a、T2bを用いている。 In the sub circuit 200B shown in FIG. 17, thin film transistors T1a, T1b, T2a, and T2b having the same structure as the thin film transistor 10A shown in FIG. 2 are used as the DMX circuit TFTs.
 また、図18に示すサブ回路200Cでは、DMX回路用TFTとして、対称構造を有する薄膜トランジスタ10B(図3)と同様の構造を有する薄膜トランジスタT1a、T1b、T2a、T2bを用いている。図示していないが、非対称構造を有する薄膜トランジスタ10C(図4)と同様の構造を有するTFTを、DMX回路用TFTとして用いてもよい。 Further, in the sub-circuit 200C shown in FIG. 18, thin film transistors T1a, T1b, T2a, and T2b having the same structure as the thin film transistor 10B having a symmetric structure (FIG. 3) are used as the DMX circuit TFTs. Although not shown, a TFT having the same structure as the thin film transistor 10C having an asymmetric structure (FIG. 4) may be used as the TFT for the DMX circuit.
 <TFT並列接続構造>
 図19は、本実施形態における他のデマルチプレクサ回路DMXにおけるサブ回路200Dの一部を示す平面図である。
<TFT parallel connection structure>
FIG. 19 is a plan view showing a part of a sub-circuit 200D in another demultiplexer circuit DMX in the present embodiment.
 サブ回路200Dでは、1つのソースバスラインSLに対し、並列に接続された複数の薄膜トランジスタが設けられている点で、図17に示すサブ回路200Bと異なっている。 The sub circuit 200D is different from the sub circuit 200B shown in FIG. 17 in that a plurality of thin film transistors connected in parallel to one source bus line SL are provided.
 この例では、例えば第1ソースバスラインSL1に、互いに並列に接続された複数の薄膜トランジスタT1aが接続されている。これらの薄膜トランジスタT1aは、制御信号枝線C1上にy方向に配列されており、制御信号枝線C1の一部をゲート電極、分岐配線B1aの一部をソース電極、第1ソースバスラインSL1の一部をドレイン電極として有する。同様に、他のソースバスラインSL1~SL4にも、それぞれ、並列に接続された複数の薄膜トランジスタT2a、T1b、T2bが接続されている。このような構成により、回路面積の増大を抑えつつ、電流駆動力をさらに高めることができる。 In this example, a plurality of thin film transistors T1a connected in parallel to each other are connected to the first source bus line SL1, for example. The thin film transistors T1a are arranged in the y direction on the control signal branch line C1, and a part of the control signal branch line C1 is a gate electrode, a part of the branch wiring B1a is a source electrode, and the first source bus line SL1 A part is provided as a drain electrode. Similarly, a plurality of thin film transistors T2a, T1b, and T2b connected in parallel are connected to the other source bus lines SL1 to SL4, respectively. With such a configuration, the current driving capability can be further increased while suppressing an increase in circuit area.
 ここでは、各薄膜トランジスタは、薄膜トランジスタ10Aと同様の構造を有するが、他の構造を有していてもよい。例えば薄膜トランジスタ10B、10C、10Dあるいは図7(a)と同様の構造を有していてもよい。 Here, each thin film transistor has the same structure as the thin film transistor 10A, but may have another structure. For example, the thin film transistors 10B, 10C, and 10D may have the same structure as that shown in FIG.
 並列接続されるTFTの数は特に限定しないが、これらのTFTのチャネル幅Wの合計が所定の値WTotalとなるように適宜設定され得る。ただし、各TFTのチャネル幅W(酸化物半導体層7のチャネル幅方向DWの長さ)が、例えば6μm以上100μm以下であることが好ましい。チャネル幅Wが6μm以下であれば所望の特性が得られない場合がある。チャネル幅Wが100μmよりも大きいと、TFT特性が安定しない可能性がある。例えば、WTotalが300μmの場合、W≦100μmのTFTを3つ以上並列接続させてもよい。なお、Wtが100μm以下であれば、複数のTFTを並列接続させる代わりに、チャネル幅Wの大きい(W=WTotal)TFTを1つ形成してもよい。 The number of TFTs connected in parallel is not particularly limited, but can be set as appropriate so that the total channel width W of these TFTs becomes a predetermined value WTotal. However, the channel width W of each TFT (the length of the oxide semiconductor layer 7 in the channel width direction DW) is preferably 6 μm or more and 100 μm or less, for example. If the channel width W is 6 μm or less, desired characteristics may not be obtained. If the channel width W is larger than 100 μm, the TFT characteristics may not be stable. For example, when WTotal is 300 μm, three or more TFTs with W ≦ 100 μm may be connected in parallel. If Wt is 100 μm or less, one TFT having a large channel width W (W = WTotal) may be formed instead of connecting a plurality of TFTs in parallel.
 <ダブルゲート構造TFT>
 各DMX回路用TFTは、酸化物半導体層の基板側および基板と反対側にそれぞれゲート電極を有していてもよい(ダブルゲート構造)。
<Double gate structure TFT>
Each DMX circuit TFT may have a gate electrode on the substrate side and the opposite side of the substrate of the oxide semiconductor layer (double gate structure).
 図20~図22は、それぞれ、本実施形態のデマルチプレクサ回路DMXにおける他のサブ回路200E、200F、200Gの一部を示す拡大平面図である。 20 to 22 are enlarged plan views showing parts of other sub-circuits 200E, 200F, and 200G in the demultiplexer circuit DMX of the present embodiment, respectively.
 サブ回路200E、200F、200Gは、薄膜トランジスタT1a、T1b、T2a、T2bが上部ゲート電極BGをさらに備える(ダブルゲート構造)点で、図16~図18に示すサブ回路200A、200B、200Cと異なる。ダブルゲート構造の詳細な説明は図13を参照しながら前述したので、ここでは省略する。 The sub-circuits 200E, 200F, and 200G are different from the sub-circuits 200A, 200B, and 200C illustrated in FIGS. 16 to 18 in that the thin film transistors T1a, T1b, T2a, and T2b further include the upper gate electrode BG (double gate structure). The detailed description of the double gate structure has been described above with reference to FIG.
 図示するように、並列に配列された複数の薄膜トランジスタをy方向に配列する場合、これらの薄膜トランジスタに対して、共通の上部ゲート電極BGを設けてもよい。共通の上部ゲート電極BGは、y方向に延びていてもよい。 As shown in the figure, when a plurality of thin film transistors arranged in parallel are arranged in the y direction, a common upper gate electrode BG may be provided for these thin film transistors. The common upper gate electrode BG may extend in the y direction.
 各薄膜トランジスタの上部ゲート電極BGは、分岐配線B(すなわちV端子)を介してビデオ信号線DO(またはV端子)に接続されていてもよい。これにより、上部ゲート電極BGのソース電極8に対する電位(バックゲート電位)Vbgを安定化(Vbg=0V)できるので、信頼性を高めることができる。また、薄膜トランジスタを介して、ソースバスラインSLの電位を低電位(例えば最低階調を表示する電位)から高電位(例えば最高階調を表示する電位)に変化させるように、ソースバスラインSLに書き込みを行う場合に、ソースバスラインSLの充電初期のみ、薄膜トランジスタのバックゲート電極BGにプラスバイアスがかかる。この結果、DMX回路用TFTの閾値電圧は実効的に低くなるので、駆動力を高めることが可能になる。 The upper gate electrode BG of each thin film transistor may be connected to the video signal line DO (or V terminal) via the branch wiring B (that is, V terminal). Thereby, since the potential (back gate potential) Vbg of the upper gate electrode BG with respect to the source electrode 8 can be stabilized (Vbg = 0 V), the reliability can be improved. Further, the potential of the source bus line SL is changed to a high potential (for example, a potential for displaying the highest gradation) from the low potential (for example, a potential for displaying the lowest gradation) to the source bus line SL through the thin film transistor. When writing is performed, a positive bias is applied to the back gate electrode BG of the thin film transistor only in the initial charging stage of the source bus line SL. As a result, the threshold voltage of the DMX circuit TFT is effectively lowered, so that the driving force can be increased.
 上部ゲート電極BGを分岐配線Bに接続するコンタクト部70は、第1単位回路形成領域u1と第2単位回路形成領域u2との間に位置する領域(以下、「接続領域」と呼ぶ)usに配置されていてもよい。これにより、デマルチプレクサ回路DMXの回路面積の増大を抑えることができる。コンタクト部70では、上部ゲート電極BGは、無機絶縁層11に形成された開口部内で分岐配線Bと直接接していてもよい。ここでは、第1単位回路の薄膜トランジスタT1a、T1bにおける上部ゲート電極BGと分岐配線Bとを接続するコンタクト部70を接続領域usに配置している。図示していないが、第2単位回路の薄膜トランジスタT2a、T2bにおける上部ゲート電極BGと分岐配線Bとを接続するコンタクト部を、第2単位回路形成領域u2と制御信号幹線SWとの間に配置してもよい。あるいは、第2単位回路の薄膜トランジスタT2a、T2bにおける上部ゲート電極BGと分岐配線Bとを接続するコンタクト部を接続領域usに配置し、第1単位回路の薄膜トランジスタT1a、T1bにおける上部ゲート電極BGと分岐配線Bとを接続するコンタクト部を第1単位回路形成領域u1と表示領域DRとの間に配置してもよい。 The contact portion 70 that connects the upper gate electrode BG to the branch wiring B is in a region us (hereinafter referred to as “connection region”) located between the first unit circuit formation region u1 and the second unit circuit formation region u2. It may be arranged. Thereby, an increase in the circuit area of the demultiplexer circuit DMX can be suppressed. In the contact portion 70, the upper gate electrode BG may be in direct contact with the branch wiring B in the opening formed in the inorganic insulating layer 11. Here, the contact portion 70 that connects the upper gate electrode BG and the branch wiring B in the thin film transistors T1a and T1b of the first unit circuit is disposed in the connection region us. Although not shown, a contact portion for connecting the upper gate electrode BG and the branch wiring B in the thin film transistors T2a and T2b of the second unit circuit is disposed between the second unit circuit formation region u2 and the control signal trunk line SW. May be. Alternatively, a contact portion that connects the upper gate electrode BG and the branch wiring B in the thin film transistors T2a and T2b of the second unit circuit is arranged in the connection region us, and branches from the upper gate electrode BG in the thin film transistors T1a and T1b of the first unit circuit. A contact portion for connecting the wiring B may be disposed between the first unit circuit formation region u1 and the display region DR.
 <その他のバリエーション>
 上記では、各単位回路が2本のソースバスラインに対応付けられた(n=2)デマルチプレクサ回路DMXを例に説明したが、本実施形態のデマルチプレクサ回路の単位回路は、3以上のソースバスラインに対応付けられていてもよい。
<Other variations>
In the above description, the demultiplexer circuit DMX (n = 2) in which each unit circuit is associated with two source bus lines has been described as an example. However, the unit circuit of the demultiplexer circuit of this embodiment has three or more sources. It may be associated with a bus line.
 図23は、本実施形態の他のデマルチプレクサ回路におけるサブ回路300の構成を示す図である。図23では、図16と同様の構成要素には同じ参照符号を付している。 FIG. 23 is a diagram showing a configuration of the sub-circuit 300 in another demultiplexer circuit of the present embodiment. In FIG. 23, the same components as those in FIG. 16 are denoted by the same reference numerals.
 サブ回路300は、前述したサブ回路200等と同様に、第1単位回路および第2単位回路を有している。ただし、各単位回路が、ビデオ信号線DO(N)からのビデオ信号V1を、1本おきに配列された3本のソースバスラインSLに分配する点で、図16に示すサブ回路200と異なる。 The sub circuit 300 includes a first unit circuit and a second unit circuit, similar to the sub circuit 200 described above. However, each unit circuit is different from the sub-circuit 200 shown in FIG. 16 in that each unit circuit distributes the video signal V1 from the video signal line DO (N) to the three source bus lines SL arranged every other line. .
 第1単位回路は、1本おきに配列された第1、第3および第5ソースバスラインSL1、SL3、SL5に対応付けられており、第2単位回路は、一本おきに配列された第2、第4および第6ソースバスラインSL2、SL4、SL6に対応付けられている。また、第1単位回路および第2単位回路は、共通の制御信号枝線C1、C2、C3を用いている。 The first unit circuit is associated with the first, third, and fifth source bus lines SL1, SL3, SL5 arranged every other line, and the second unit circuit is arranged every other line. The second, fourth, and sixth source bus lines SL2, SL4, and SL6 are associated with each other. The first unit circuit and the second unit circuit use common control signal branch lines C1, C2, and C3.
 第1単位回路は、3つの薄膜トランジスタ(DMX回路用TFT)T1a、T1b、Tcと、3本の分岐配線B1a、B1b、B1cとを含む。第2単位回路は、3つの薄膜トランジスタ(DMX回路用TFT)T2a、T2b、T2cと、3本の分岐配線B2a、B2b、B2cとを含む。第1単位回路の分岐配線B1a、B1b、B1cはビデオ信号線DO1に電気的に接続されており、第2単位回路の分岐配線B2a、B2b、B2cはビデオ信号線DO2に電気的に接続されている。第1単位回路の薄膜トランジスタT1a、T1b、T1cのドレイン電極は、それぞれ、第1ソースバスラインSL1、第3ソースバスラインSL3、第5ソースバスラインSL5に接続され、ソース電極は、それぞれ、分岐配線B1a、B1b、B1cに接続されている。第2単位回路の薄膜トランジスタT2a、T2b、T2cのドレイン電極は、それぞれ、第2ソースバスラインSL2、第4ソースバスラインSL4、第6ソースバスラインSL6に接続され、ソース電極は、それぞれ、分岐配線B2a、B2b、B2cに接続されている。薄膜トランジスタT1a、T2aのゲート電極は、それぞれ、制御信号枝線C1を介して制御信号幹線SW1に接続されている。薄膜トランジスタT1b、T2bのゲート電極は、それぞれ、制御信号枝線C2を介して制御信号幹線SW2に接続されている。薄膜トランジスタT1c、T2cのゲート電極は、それぞれ、制御信号枝線C3を介して制御信号幹線SW3に接続されている。 The first unit circuit includes three thin film transistors (DMX circuit TFTs) T1a, T1b, and Tc and three branch wirings B1a, B1b, and B1c. The second unit circuit includes three thin film transistors (DMX circuit TFTs) T2a, T2b, T2c, and three branch lines B2a, B2b, B2c. The branch wirings B1a, B1b, B1c of the first unit circuit are electrically connected to the video signal line DO1, and the branch wirings B2a, B2b, B2c of the second unit circuit are electrically connected to the video signal line DO2. Yes. The drain electrodes of the thin film transistors T1a, T1b, and T1c of the first unit circuit are connected to the first source bus line SL1, the third source bus line SL3, and the fifth source bus line SL5, respectively, and the source electrodes are respectively branched wirings. It is connected to B1a, B1b, B1c. The drain electrodes of the thin film transistors T2a, T2b, and T2c of the second unit circuit are connected to the second source bus line SL2, the fourth source bus line SL4, and the sixth source bus line SL6, respectively, and the source electrodes are respectively branched wirings. It is connected to B2a, B2b, B2c. The gate electrodes of the thin film transistors T1a and T2a are connected to the control signal trunk line SW1 via the control signal branch line C1, respectively. The gate electrodes of the thin film transistors T1b and T2b are respectively connected to the control signal trunk line SW2 via the control signal branch line C2. The gate electrodes of the thin film transistors T1c and T2c are connected to the control signal trunk line SW3 via the control signal branch line C3, respectively.
 図24は、サブ回路300の一例を示す拡大平面図である。サブ回路300でも、前述したサブ回路200A~200Gと同様に、第1単位回路の薄膜トランジスタT1a、T1b、T1cが配置された第1単位回路形成領域u1は、第2単位回路の薄膜トランジスタT2a、T2b、T2cが配置された第2単位回路形成領域u2よりも表示領域側に位置している。第1単位回路の薄膜トランジスタは、第2単位回路に対応付けられたN番目および(N+2)番目のソースバスラインSLの間に配置されている(Nは自然数)。例えば薄膜トランジスタT1bは第2ソースバスラインSL2と第4ソースバスラインSL4との間に配置され、薄膜トランジスタT1cは第4ソースバスラインSL4と第6ソースバスラインSL6との間に配置されている。また、第2単位回路の薄膜トランジスタは、第1単位回路の分岐配線Bの間に配置されている。例えば薄膜トランジスタT2aは分岐配線B1aと分岐配線B1bとの間に配置され、薄膜トランジスタT2bは分岐配線B1bと分岐配線B1cとの間に配置されている。 FIG. 24 is an enlarged plan view showing an example of the sub-circuit 300. Also in the sub circuit 300, the first unit circuit formation region u1 in which the thin film transistors T1a, T1b, and T1c of the first unit circuit are arranged is the thin film transistors T2a, T2b, It is located closer to the display area than the second unit circuit formation area u2 where T2c is arranged. The thin film transistor of the first unit circuit is disposed between the Nth and (N + 2) th source bus lines SL associated with the second unit circuit (N is a natural number). For example, the thin film transistor T1b is disposed between the second source bus line SL2 and the fourth source bus line SL4, and the thin film transistor T1c is disposed between the fourth source bus line SL4 and the sixth source bus line SL6. The thin film transistor of the second unit circuit is disposed between the branch wirings B of the first unit circuit. For example, the thin film transistor T2a is disposed between the branch line B1a and the branch line B1b, and the thin film transistor T2b is disposed between the branch line B1b and the branch line B1c.
 なお、各薄膜トランジスタの構造は図示する構造に限定されず、薄膜トランジスタ10B、10C、10Dなどと同様の構造を有していてもよい。 Note that the structure of each thin film transistor is not limited to the structure shown in the drawings, and may have a structure similar to that of the thin film transistors 10B, 10C, and 10D.
 <相展開>
 制御信号幹線SWによって供給される制御信号を相展開してもよい。上述したデマルチプレクサ回路DMXではn本の制御信号幹線SWを有するが、K×n(Kは2以上の整数)の制御信号幹線SWを設けてもよい。
<Phase development>
The control signal supplied by the control signal trunk line SW may be phase-expanded. Although the demultiplexer circuit DMX described above has n control signal trunk lines SW, K × n (K is an integer of 2 or more) control signal trunk lines SW may be provided.
 図25は、制御信号を相展開したデマルチプレクサ回路DMXにおける2つのサブ回路400(1)、400(2)の構成を例示する図である。各単位回路は2本のソースバスラインSLに対応付けられている(n=2)。 FIG. 25 is a diagram illustrating a configuration of two sub-circuits 400 (1) and 400 (2) in the demultiplexer circuit DMX in which the control signal is phase-expanded. Each unit circuit is associated with two source bus lines SL (n = 2).
 サブ回路400(1)は、第1単位回路および第2単位回路と、制御信号枝線C1(1)、C2(1)とを含む。サブ回路400(2)は、第1単位回路および第2単位回路と、制御信号枝線C1(2)、C2(2)とを含む。 The sub-circuit 400 (1) includes a first unit circuit and a second unit circuit, and control signal branch lines C1 (1) and C2 (1). The sub-circuit 400 (2) includes a first unit circuit and a second unit circuit, and control signal branch lines C1 (2) and C2 (2).
 この例では、デマルチプレクサ回路DMXは、4本の制御信号幹線SW1-1、SW1-2、SW2-1、SW2-2を有している(K=2)。制御信号幹線SW1-1、SW1-2には同じ制御信号が供給され、制御信号幹線SW2-1、SW2-2には同じ制御信号が供給される。デマルチプレクサ回路DMXの一部のサブ回路(サブ回路400(1)を含む)の制御信号枝線C1(1)、C2(1)は、制御信号幹線SW1-1、制御信号幹線SW2-1(「第1制御信号幹線」と呼ぶことがある)に接続され、デマルチプレクサ回路DMXの他の一部のサブ回路(サブ回路400(2)を含む)の制御信号枝線C1(2)、C2(2)は、制御信号幹線SW1-2、制御信号幹線SW2-2(「第2制御信号幹線」と呼ぶことがある)に接続される。 In this example, the demultiplexer circuit DMX has four control signal trunk lines SW1-1, SW1-2, SW2-1, SW2-2 (K = 2). The same control signal is supplied to the control signal trunk lines SW1-1 and SW1-2, and the same control signal is supplied to the control signal trunk lines SW2-1 and SW2-2. Control signal branch lines C1 (1) and C2 (1) of some subcircuits (including subcircuit 400 (1)) of demultiplexer circuit DMX are control signal trunk line SW1-1 and control signal trunk line SW2-1 ( Control signal branch lines C1 (2) and C2 of some other subcircuits (including subcircuit 400 (2)) of the demultiplexer circuit DMX. (2) is connected to the control signal main line SW1-2 and the control signal main line SW2-2 (sometimes referred to as “second control signal main line”).
 このように、制御信号幹線SWの制御信号の相展開を行うことにより、1つの制御信号幹線SWに接続される単位回路の数を低減できるので、各制御信号幹線SWにかかる負荷を小さくできる。この結果、制御信号の遷移時間(立上り、および立下り)を低減できるので、より高速な動作が可能になる。 Thus, by performing phase expansion of the control signal of the control signal main line SW, the number of unit circuits connected to one control signal main line SW can be reduced, so that the load on each control signal main line SW can be reduced. As a result, since the transition time (rise and fall) of the control signal can be reduced, a higher speed operation is possible.
 <参考例2の回路TFT>
 上述したデマルチプレクサ回路DMXにおいて、スイッチング素子として、トップゲート構造を有するTFT(トップゲート構造TFT)を用いることも可能である。トップゲート構造TFTでは、酸化物半導体層の上方(基板と反対側)に、絶縁膜を介してゲート電極が設けられている。
<Circuit TFT of Reference Example 2>
In the demultiplexer circuit DMX described above, a TFT having a top gate structure (top gate structure TFT) can also be used as a switching element. In the top gate structure TFT, a gate electrode is provided above the oxide semiconductor layer (on the side opposite to the substrate) through an insulating film.
 図26(a)および(b)は、それぞれ、デマルチプレクサ回路DMXに使用される参考例2のTFT(薄膜トランジスタ90)を例示する平面図および断面図である。 FIGS. 26A and 26B are a plan view and a cross-sectional view illustrating the TFT (thin film transistor 90) of Reference Example 2 used in the demultiplexer circuit DMX, respectively.
 薄膜トランジスタ90は、トップゲート構造TFTである。薄膜トランジスタ90は、基板1上に設けられた酸化物半導体層7と、酸化物半導体層7を覆うゲート絶縁層5と、ゲート絶縁層5上において、酸化物半導体層7の少なくとも一部と重なるように配置されたゲート電極33とを有している。 The thin film transistor 90 is a top gate structure TFT. The thin film transistor 90 overlaps at least part of the oxide semiconductor layer 7 over the oxide semiconductor layer 7 provided over the substrate 1, the gate insulating layer 5 covering the oxide semiconductor layer 7, and the gate insulating layer 5. And a gate electrode 33 disposed on the surface.
 また、ゲート電極33の上には層間絶縁層として無機絶縁層11が設けられている。さらに、無機絶縁層11上には、ソース電極8およびドレイン電極9が設けられている。ソース電極8およびドレイン電極9は、それぞれ、無機絶縁層11およびゲート絶縁層5を貫通するように設けられた開口部内で、酸化物半導体層7のソースコンタクト領域7sおよびドレインコンタクト領域7dにそれぞれ接続されている。また、ソース電極8およびドレイン電極9は、基板法線方向から見たときにゲート電極33から離間して設けられている。 Further, the inorganic insulating layer 11 is provided on the gate electrode 33 as an interlayer insulating layer. Furthermore, a source electrode 8 and a drain electrode 9 are provided on the inorganic insulating layer 11. The source electrode 8 and the drain electrode 9 are respectively connected to the source contact region 7s and the drain contact region 7d of the oxide semiconductor layer 7 in the opening provided so as to penetrate the inorganic insulating layer 11 and the gate insulating layer 5, respectively. Has been. Further, the source electrode 8 and the drain electrode 9 are provided away from the gate electrode 33 when viewed from the substrate normal direction.
 酸化物半導体層7は、基板1の法線方向から見たときにゲート電極33と重なる領域であるチャネル領域7cと、ソース電極8と接するソースコンタクト領域7sと、ドレイン電極9と接するドレインコンタクト領域7dとを含んでいる。また、酸化物半導体層7おいて、ソースコンタクト領域7sとチャネル領域7cとの間に位置するソース側オフセット領域7osと、ドレインコンタクト領域7dとチャネル領域7cとの間に位置するドレイン側オフセット領域7odとが設けられている。オフセット領域7os、7odは、ゲート電極33、ソース電極8およびドレイン電極9のいずれにも重ならない領域である。 The oxide semiconductor layer 7 includes a channel region 7 c that is a region overlapping with the gate electrode 33 when viewed from the normal direction of the substrate 1, a source contact region 7 s in contact with the source electrode 8, and a drain contact region in contact with the drain electrode 9. 7d. In the oxide semiconductor layer 7, a source-side offset region 7os located between the source contact region 7s and the channel region 7c, and a drain-side offset region 7od located between the drain contact region 7d and the channel region 7c. And are provided. The offset regions 7 os and 7 od are regions that do not overlap any of the gate electrode 33, the source electrode 8, and the drain electrode 9.
 デマルチプレクサ回路DMXにおいて、薄膜トランジスタ90のチャネル長方向DLはx方向、チャネル幅方向DWはy方向と同じであってもよい。また、薄膜トランジスタ90のドレイン電極9は、対応するソースバスラインSLの一部であり、ソース電極8は対応する分岐配線Bの一部であり、ゲート電極33は対応する制御信号枝線Cの一部であってもよい。図示していないが、酸化物半導体層7の基板1側に他のゲート電極(下部ゲート電極)をさらに備えていてもよい。下部ゲート電極は、分岐配線Bを介してV端子側に接続されていてもよい。 In the demultiplexer circuit DMX, the channel length direction DL of the thin film transistor 90 may be the same as the x direction and the channel width direction DW may be the same as the y direction. The drain electrode 9 of the thin film transistor 90 is a part of the corresponding source bus line SL, the source electrode 8 is a part of the corresponding branch wiring B, and the gate electrode 33 is one of the corresponding control signal branch lines C. Part. Although not shown, another gate electrode (lower gate electrode) may be further provided on the substrate 1 side of the oxide semiconductor layer 7. The lower gate electrode may be connected to the V terminal side via the branch wiring B.
 (第3の実施形態)
 第3の実施形態のアクティブマトリクス基板は、モノリシックに形成されたゲートドライバを有する。
(Third embodiment)
The active matrix substrate of the third embodiment has a gate driver formed monolithically.
 ゲートドライバは、第1の実施形態で説明した薄膜トランジスタ10A~10Dのいずれかを有している。例えば、ゲートドライバを構成する複数の回路TFTのうち、大電流を流す必要のある出力トランジスタとして、薄膜トランジスタ10A~10Cを用いる。 The gate driver has one of the thin film transistors 10A to 10D described in the first embodiment. For example, among the plurality of circuit TFTs constituting the gate driver, the thin film transistors 10A to 10C are used as output transistors that require a large current to flow.
 <モノリシックゲートドライバの構成および動作>
 ・ゲートドライバの回路構成
 まず、アクティブマトリクス基板にモノリシックに形成されるゲートドライバGDの回路構成および動作を説明する。ゲートドライバGDは、シフトレジスタを含んでいる。シフトレジスタは、多段に接続された複数の単位シフトレジスタ回路を含んでいる。
<Configuration and operation of monolithic gate driver>
-Circuit configuration of the gate driver First, the circuit configuration and operation of the gate driver GD formed monolithically on the active matrix substrate will be described. The gate driver GD includes a shift register. The shift register includes a plurality of unit shift register circuits connected in multiple stages.
 図27は、シフトレジスタ回路を例示する図である。 FIG. 27 is a diagram illustrating a shift register circuit.
 シフトレジスタ回路は、複数の単位シフトレジスタ回路SR1~SRz(z:2以上の整数)(以下、「単位シフトレジスタ回路SR」と総称する。)を有している。各段の単位シフトレジスタ回路SRは、セット信号を受け取るセット端子S、出力信号を出力する出力端子Z、リセット信号を受け取るリセット端子R、および、クロック信号GCK1、GCK2を受け取るクロック入力端子CK1、CK2を備えている。単位シフトレジスタ回路SRα(α≧2)において、セット端子Sには前段の単位シフトレジスタ回路SRの出力信号が入力される。初段の単位シフトレジスタ回路SR1のセット端子Sにはゲートスタートパルス信号GSPが入力される。各段の単位シフトレジスタ回路SRは、また、表示領域に配置された対応するゲートバスラインGLに出力信号を出力する。リセット端子Rには、次段の単位シフトレジスタ回路の出力信号が入力される。最終段の単位シフトレジスタ回路SRzのリセット端子Rにはクリア信号が入力される。 The shift register circuit has a plurality of unit shift register circuits SR1 to SRz (z: integer of 2 or more) (hereinafter collectively referred to as “unit shift register circuit SR”). The unit shift register SR of each stage includes a set terminal S that receives a set signal, an output terminal Z that outputs an output signal, a reset terminal R that receives a reset signal, and clock input terminals CK1 and CK2 that receive clock signals GCK1 and GCK2. It has. In the unit shift register circuit SRα (α ≧ 2), the output signal of the previous unit shift register circuit SR is input to the set terminal S. The gate start pulse signal GSP is input to the set terminal S of the first stage unit shift register circuit SR1. The unit shift register circuit SR at each stage also outputs an output signal to the corresponding gate bus line GL arranged in the display area. The reset terminal R receives an output signal of the next unit shift register circuit. A clear signal is input to the reset terminal R of the unit shift register circuit SRz at the final stage.
 2つのクロック入力端子には2相のクロック信号であるGCK1、GCK2が与えられる。クロック入力端子の一方にクロック信号GCK1が入力されるとともに他方のクロック入力端子にクロック信号GCK2が入力される。クロック入力端子に入力されるクロック信号は、隣接する段間で交互に入れ替わるように構成されている。 GCK1 and GCK2 which are two-phase clock signals are given to the two clock input terminals. The clock signal GCK1 is input to one of the clock input terminals, and the clock signal GCK2 is input to the other clock input terminal. The clock signal input to the clock input terminal is configured to be alternately switched between adjacent stages.
 図28は、単位シフトレジスタ回路SRの一例を示す図である。 FIG. 28 is a diagram illustrating an example of the unit shift register circuit SR.
 この例では、単位シフトレジスタ回路SRは、4つのTFT31~34および容量部Capを備えている。 In this example, the unit shift register circuit SR includes four TFTs 31 to 34 and a capacitor part Cap.
 TFT31は入力トランジスタである。TFT31のゲートおよびドレインはセット端子に接続され、TFT31のソースはTFT34のゲートに接続されている。TFT34は出力トランジスタである。TFT34のドレインはクロック入力端子CK1に、ソースは出力端子Zに、それぞれ接続されている。すなわち、TFT34は伝送ゲートとして、クロック入力端子CK1に入力されるクロック信号の通過および遮断を行う。 TFT 31 is an input transistor. The gate and drain of the TFT 31 are connected to the set terminal, and the source of the TFT 31 is connected to the gate of the TFT 34. The TFT 34 is an output transistor. The drain of the TFT 34 is connected to the clock input terminal CK1, and the source is connected to the output terminal Z. In other words, the TFT 34 functions as a transmission gate to pass and block the clock signal input to the clock input terminal CK1.
 容量部Capは、出力トランジスタであるTFT34のゲートとソースとの間に接続されている。本明細書では、容量部Capを「ブートストラップ容量部」と呼ぶことがある。また、TFT34のゲートに接続されたノードを「ノードnetA」、出力端子Zに接続されたノードを「ノードZ」と称する。容量部Capの一方の電極は、TFT34のゲートおよびノードnetAに接続され、他方の電極は、TFT34のソースおよびノードZに接続されている。 The capacitor part Cap is connected between the gate and the source of the TFT 34 which is an output transistor. In this specification, the capacitor part Cap may be referred to as a “bootstrap capacitor part”. A node connected to the gate of the TFT 34 is referred to as “node netA”, and a node connected to the output terminal Z is referred to as “node Z”. One electrode of the capacitor part Cap is connected to the gate of the TFT 34 and the node netA, and the other electrode is connected to the source of the TFT 34 and the node Z.
 TFT32は、Low電源入力端子とノードnetAとの間に配置されている。TFT32は、ノードnetAの電位を低下させるためのプルダウントランジスタである。TFT32のゲートはリセット端子に、ドレインはノードnetAに、ソースはLow電源入力端子に、それぞれ接続されている。 The TFT 32 is disposed between the low power input terminal and the node netA. The TFT 32 is a pull-down transistor for reducing the potential of the node netA. The gate of the TFT 32 is connected to the reset terminal, the drain is connected to the node netA, and the source is connected to the low power input terminal.
 ノードZにはTFT33が接続されている。TFT33のゲートはクロック信号の入力端子CK2に、ドレインはノードZに、ソースはLow電源入力端子に、それぞれ接続されている。 A TFT 33 is connected to the node Z. The TFT 33 has a gate connected to the clock signal input terminal CK2, a drain connected to the node Z, and a source connected to the low power input terminal.
 このように、単位シフトレジスタ回路SRは、出力トランジスタであるTFT34および容量部Capを含むプルアップ部501と、TFT33を含むプルダウン部502と、入力トランジスタであるTFT31を含むプルアップ駆動部503と、TFT32を含むプルダウン駆動部504とを含んでいる。 As described above, the unit shift register SR includes a pull-up unit 501 including the TFT 34 serving as an output transistor and a capacitor unit Cap, a pull-down unit 502 including the TFT 33, a pull-up driving unit 503 including the TFT 31 serving as an input transistor, And a pull-down driver 504 including the TFT 32.
 本実施形態では、TFT31~34のうち、少なくとも出力トランジスタであるTFT34として、前述した薄膜トランジスタ10A~10Dを用いる。 In the present embodiment, among the TFTs 31 to 34, the above-described thin film transistors 10A to 10D are used as at least the TFTs 34 that are output transistors.
 通常、ゲートバスラインGLの充放電を行う出力トランジスタとして、他のTFTよりも大きなサイズを有するTFTが使用される。このため、複数の出力トランジスタが接続されるゲートクロック信号GCK1、GCK2を供給する配線の負荷が大きくなり、駆動電力が大きくなってしまうという問題がある。これに対し、本実施形態では、出力トランジスタとして、寄生容量が低減された構造を有する薄膜トランジスタを用いるので、上記配線の負荷を低減できる。 Usually, a TFT having a larger size than other TFTs is used as an output transistor for charging and discharging the gate bus line GL. For this reason, there is a problem that the load of the wiring that supplies the gate clock signals GCK1 and GCK2 to which the plurality of output transistors are connected increases, and the driving power increases. In contrast, in the present embodiment, since the thin film transistor having a structure with reduced parasitic capacitance is used as the output transistor, the load on the wiring can be reduced.
 なお、本実施形態は、上述したシフトレジスタに限定されず、公知の種々のシフトレジスタに適用され得る。 Note that the present embodiment is not limited to the shift register described above, and can be applied to various known shift registers.
 本発明の実施形態は、モノリシックに形成された周辺回路を有するアクティブマトリクス基板に好適に適用され得る。このようなアクティブマトリクス基板は、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置、指紋読み取り装置、半導体メモリ等の種々の電子装置に適用される。 The embodiment of the present invention can be suitably applied to an active matrix substrate having a peripheral circuit formed monolithically. Such active matrix substrates include liquid crystal display devices, display devices such as organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, imaging devices such as image sensor devices, image input devices, fingerprint readers, and semiconductors. It is applied to various electronic devices such as a memory.
1          :基板
3          :ゲート電極
3e1、3e2    :ゲート電極の縁部
5          :ゲート絶縁層
7          :酸化物半導体層
7c         :チャネル領域
7d         :ドレインコンタクト領域
7s         :ソースコンタクト領域
7off       :オフセット領域
8          :ソース電極
8e1、8e2    :ソース縁部
9e1、9e2    :ドレイン電極
10A~10D    :薄膜トランジスタ(回路TFT)
11         :無機絶縁層
BG         :上部ゲート電極
BGe1、BGe2  :上部ゲート電極の縁部
70         :コンタクト部
82         :ソース電極の凸部
84         :ソース電極の凹部
86         :ソース電極の切欠き部
92         :ドレイン電極の凸部
94         :ドレイン電極の凹部
96         :ドレイン電極の切欠き部
100        :SSD単位回路
200、200A~200G、300、400    :サブ回路
1000       :アクティブマトリクス基板
DL         :チャネル長方向
DW         :チャネル幅方向
DR         :表示領域
FR         :非表示領域
GD         :ゲートドライバ
SD         :ソースドライバ
PIX        :画素領域
PE         :画素電極
GL         :ゲートバスライン
SL         :ソースバスライン
B、B1~B3    :分岐配線
C、C1~C3    :制御信号枝線
DO         :ビデオ信号線
SW、SW1~SW3 :制御信号幹線
SR         :単位シフトレジスタ回路
T1a、T1b、T1c、T2a、T2b、T2c   :薄膜トランジスタ
V          :出力端子
u1         :第1単位回路形成領域
u2         :第2単位回路形成領域
us         :接続領域
1: substrate 3: gate electrodes 3e1, 3e2: gate electrode edge 5: gate insulating layer 7: oxide semiconductor layer 7c: channel region 7d: drain contact region 7s: source contact region 7off: offset region 8: source electrode 8e1 8e2: Source edges 9e1, 9e2: Drain electrodes 10A to 10D: Thin film transistors (circuit TFTs)
11: Inorganic insulating layer BG: Upper gate electrode BGe1, BGe2: Upper gate electrode edge 70: Contact portion 82: Source electrode protrusion 84: Source electrode recess 86: Source electrode notch 92: Drain electrode Convex part 94: Concave part 96 of drain electrode: Notch part 100 of drain electrode: SSD unit circuit 200, 200A to 200G, 300, 400: Sub circuit 1000: Active matrix substrate DL: Channel length direction DW: Channel width direction DR: Display area FR: Non-display area GD: Gate driver SD: Source driver PIX: Pixel area PE: Pixel electrode GL: Gate bus line SL: Source bus lines B, B B3: Branch wiring C, C1-C3: Control signal branch line DO: Video signal line SW, SW1 to SW3: Control signal trunk line SR: Unit shift register circuit T1a, T1b, T1c, T2a, T2b, T2c: Thin film transistor V: Output terminal u1: First unit circuit formation region u2: Second unit circuit formation region us: Connection region

Claims (21)

  1.  複数の画素を含む表示領域と、前記表示領域の周辺に設けられた非表示領域とを有し、
     基板と、前記基板に支持され、かつ、前記非表示領域に配置された少なくとも1つのTFTと、前記少なくとも1つのTFTを含む周辺回路とを備えたアクティブマトリクス基板であって、
     前記少なくとも1つのTFTは、
      ゲート電極と、
      前記ゲート電極を覆うゲート絶縁層と、
      前記ゲート絶縁層上に、前記ゲート絶縁層を介して前記ゲート電極と少なくとも部分的に重なるように配置された酸化物半導体層と、
      前記酸化物半導体層上に、前記酸化物半導体層の一部と接するように配置されたソース電極と、
      前記酸化物半導体層上に、前記酸化物半導体層の他の一部と接するように配置されたドレイン電極と
    を有し、
     前記基板の法線方向から見たとき、前記ゲート電極は、互いに対向する第1縁部および第2縁部を有し、前記第1縁部および前記第2縁部は、前記少なくとも1つのTFTのチャネル幅方向に前記酸化物半導体層を横切って延びており、
     前記基板の法線方向から見たとき、前記ソース電極は、前記ゲート電極の前記第1縁部と重なるように、前記チャネル幅方向に前記酸化物半導体層を横切って延びており、前記ドレイン電極は、前記ゲート電極の前記第2縁部と重なるように、前記チャネル幅方向に前記酸化物半導体層を横切って延びている、アクティブマトリクス基板。
    A display area including a plurality of pixels and a non-display area provided around the display area;
    An active matrix substrate comprising a substrate, at least one TFT supported by the substrate and disposed in the non-display area, and a peripheral circuit including the at least one TFT,
    The at least one TFT comprises:
    A gate electrode;
    A gate insulating layer covering the gate electrode;
    An oxide semiconductor layer disposed on the gate insulating layer so as to at least partially overlap the gate electrode with the gate insulating layer interposed therebetween;
    A source electrode disposed on the oxide semiconductor layer so as to be in contact with a part of the oxide semiconductor layer;
    A drain electrode disposed on the oxide semiconductor layer so as to be in contact with another part of the oxide semiconductor layer;
    When viewed from the normal direction of the substrate, the gate electrode has a first edge and a second edge facing each other, and the first edge and the second edge are the at least one TFT. Extending across the oxide semiconductor layer in the channel width direction of
    When viewed from the normal direction of the substrate, the source electrode extends across the oxide semiconductor layer in the channel width direction so as to overlap the first edge of the gate electrode, and the drain electrode Is an active matrix substrate extending across the oxide semiconductor layer in the channel width direction so as to overlap the second edge of the gate electrode.
  2.  前記基板の法線方向から見たとき、前記ソース電極における前記ドレイン電極に対向するソース縁部、および/または、前記ドレイン電極における前記ソース電極に対向するドレイン縁部は、前記酸化物半導体層と重なる領域に、前記少なくとも1つのTFTのチャネル長方向に突出した少なくとも1つの凸部と、前記少なくとも1つの凸部に前記チャネル幅方向に隣接する凹部または切欠き部とを有し、
     前記少なくとも1つの凸部の前記チャネル長方向の長さは、前記ゲート電極の前記チャネル長方向の幅の1/3未満である、請求項1に記載のアクティブマトリクス基板。
    When viewed from the normal direction of the substrate, the source edge of the source electrode facing the drain electrode and / or the drain edge of the drain electrode facing the source electrode are formed with the oxide semiconductor layer. In the overlapping region, it has at least one protrusion protruding in the channel length direction of the at least one TFT, and a recess or notch adjacent to the at least one protrusion in the channel width direction,
    2. The active matrix substrate according to claim 1, wherein a length of the at least one convex portion in the channel length direction is less than 1/3 of a width of the gate electrode in the channel length direction.
  3.  前記ソース縁部または前記ドレイン縁部に配置された前記少なくとも1つの凸部の前記チャネル幅方向における幅の合計は、前記少なくとも1つのTFTのチャネル幅Wの70%以上90%以下である、請求項2に記載のアクティブマトリクス基板。 The total width in the channel width direction of the at least one protrusion disposed at the source edge or the drain edge is not less than 70% and not more than 90% of the channel width W of the at least one TFT. Item 3. The active matrix substrate according to Item 2.
  4.  前記ソース縁部および前記ドレイン縁部はいずれも、前記少なくとも1つの凸部と、前記凹部または前記切欠き部とを有し、
     前記ソース縁部の少なくとも1つの凸部は、前記ドレイン縁部の少なくとも1つの凸部と前記チャネル長方向に対向し、
     前記ソース縁部の前記凹部または前記切欠き部は、前記ドレイン縁部の前記凹部または前記切欠き部と前記チャネル長方向に対向している、請求項2または3に記載のアクティブマトリクス基板。
    Each of the source edge and the drain edge has the at least one protrusion and the recess or the notch,
    At least one protrusion of the source edge is opposed to at least one protrusion of the drain edge in the channel length direction;
    4. The active matrix substrate according to claim 2, wherein the recess or the notch of the source edge is opposed to the recess or the notch of the drain edge in the channel length direction. 5.
  5.  前記ソース縁部および前記ドレイン縁部はいずれも、前記少なくとも1つの凸部と、前記凹部または前記切欠き部とを有し、
     前記ソース縁部の少なくとも1つの凸部は、前記ドレイン縁部の前記凹部または前記切欠き部と前記チャネル長方向に対向し、
     前記ソース縁部の前記凹部または前記切欠き部は、前記ドレイン縁部の少なくとも1つの凸部と前記チャネル長方向に対向している、請求項2または3に記載のアクティブマトリクス基板。
    Each of the source edge and the drain edge has the at least one protrusion and the recess or the notch,
    At least one protrusion of the source edge is opposed to the recess or notch of the drain edge in the channel length direction;
    4. The active matrix substrate according to claim 2, wherein the concave portion or the notch portion of the source edge portion opposes at least one convex portion of the drain edge portion in the channel length direction. 5.
  6.  前記表示領域において、前記チャネル幅方向に延びる複数のソースバスラインと、前記少なくとも1つのTFTのチャネル長方向に延びる複数のゲートバスラインとをさらに備え、
     前記周辺回路は、複数の単位回路を含むデマルチプレクサ回路であり、前記複数の単位回路のそれぞれは、複数のビデオ信号線のうちの1つのビデオ信号線から、前記複数のソースバスラインのうちのn本(nは2以上の整数)のソースバスラインへビデオ信号を分配し、
     前記複数の単位回路のそれぞれは、少なくともn個のDMX回路用TFTを有し、前記少なくとも1つのTFTは、前記少なくともn個のDMX回路用TFTを含む、請求項1から5のいずれかに記載のアクティブマトリクス基板。
    In the display region, further comprising a plurality of source bus lines extending in the channel width direction and a plurality of gate bus lines extending in the channel length direction of the at least one TFT,
    The peripheral circuit is a demultiplexer circuit including a plurality of unit circuits, and each of the plurality of unit circuits is connected to one of the plurality of source signal lines from one video signal line. distributing video signals to n source bus lines (n is an integer of 2 or more);
    6. Each of the plurality of unit circuits includes at least n DMX circuit TFTs, and the at least one TFT includes the at least n DMX circuit TFTs. Active matrix substrate.
  7.  前記デマルチプレクサ回路は、複数の制御信号幹線をさらに備え、
     前記複数の単位回路のそれぞれは、前記1つのビデオ信号線に接続されたn本の分岐配線と、前記n本のソースバスラインと、n本の制御信号枝線とをさらに備え、
     前記複数の制御信号枝線のそれぞれは、前記複数の制御信号幹線の1つに電気的に接続されており、
     前記複数の単位回路のそれぞれにおいて、各DMX回路用TFTのドレイン電極は前記n本のソースバスラインの1つの一部であり、ソース電極は前記n本の分岐配線の1つの一部であり、ゲート電極は前記n本の制御信号枝線の一部であり、
     前記複数の単位回路のそれぞれにおいて、前記n本の分岐配線、前記n本の制御信号枝線および前記n本のソースバスラインは、いずれも、前記チャネル幅方向に延びている、請求項6に記載のアクティブマトリクス基板。
    The demultiplexer circuit further comprises a plurality of control signal trunks,
    Each of the plurality of unit circuits further includes n branch wirings connected to the one video signal line, the n source bus lines, and n control signal branch lines.
    Each of the plurality of control signal branch lines is electrically connected to one of the plurality of control signal trunk lines,
    In each of the plurality of unit circuits, the drain electrode of each DMX circuit TFT is a part of one of the n source bus lines, and the source electrode is a part of one of the n branch lines, A gate electrode is a part of the n control signal branches;
    In each of the plurality of unit circuits, the n branch wirings, the n control signal branch lines, and the n source bus lines all extend in the channel width direction. The active matrix substrate as described.
  8.  前記デマルチプレクサ回路は、複数のサブ回路を含み、
     各サブ回路は、前記複数の単位回路のうちの少なくとも第1単位回路および第2単位回路を含み、
     前記各サブ回路において、前記第1単位回路および前記第2単位回路における前記n本の制御信号枝線は共通である、請求項7に記載のアクティブマトリクス基板。
    The demultiplexer circuit includes a plurality of sub-circuits,
    Each sub-circuit includes at least a first unit circuit and a second unit circuit among the plurality of unit circuits,
    The active matrix substrate according to claim 7, wherein in each of the sub-circuits, the n control signal branch lines in the first unit circuit and the second unit circuit are common.
  9.  前記各サブ回路において、前記第1単位回路の前記少なくともn個のDMX回路用TFTが形成される第1単位回路形成領域は、前記第2単位回路の前記少なくともn個のDMX回路用TFTが形成される第2単位回路形成領域と前記表示領域との間に位置している、請求項8に記載のアクティブマトリクス基板。 In each of the sub-circuits, the first unit circuit formation region in which the at least n DMX circuit TFTs of the first unit circuit are formed includes the at least n DMX circuit TFTs of the second unit circuit. The active matrix substrate according to claim 8, wherein the active matrix substrate is located between the second unit circuit forming region and the display region.
  10.  前記各サブ回路において、前記第1単位回路における前記少なくともn個のDMX回路用TFTの1つと、前記第2単位回路における前記少なくともn個のDMX回路用TFTの1つとは、同じ制御信号枝線に接続され、かつ、前記同じ制御信号枝線の上に間隔を空けて配置されている、請求項8または9に記載のアクティブマトリクス基板。 In each of the sub-circuits, one of the at least n DMX circuit TFTs in the first unit circuit and one of the at least n DMX circuit TFTs in the second unit circuit are the same control signal branch line. 10. The active matrix substrate according to claim 8, wherein the active matrix substrate is connected to the same control signal branch line and spaced apart from each other.
  11.  前記複数のソースバスラインは、一方の端から前記チャネル長方向に配列されており、前記各サブ回路は、前記一方の端からN番目(Nは自然数)、(N+1)番目、(N+2)番目および(N+3)番目にそれぞれ配列された第1ソースバスライン、第2ソースバスライン、第3ソースバスラインおよび第4ソースバスラインを含み、
     前記第1ソースバスラインおよび前記第3ソースバスラインは、前記第1単位回路を介して、前記複数のビデオ信号線の1つに電気的に接続され、
     前記第2ソースバスラインおよび前記第4ソースバスラインは、前記第2単位回路を介して、前記複数のビデオ信号線の他の1つに電気的に接続されている、請求項8から10のいずれかに記載のアクティブマトリクス基板。
    The plurality of source bus lines are arranged in the channel length direction from one end, and each of the sub-circuits is Nth (N is a natural number), (N + 1) th, (N + 2) th from the one end. And a (N + 3) th array of a first source bus line, a second source bus line, a third source bus line, and a fourth source bus line,
    The first source bus line and the third source bus line are electrically connected to one of the plurality of video signal lines through the first unit circuit,
    11. The device according to claim 8, wherein the second source bus line and the fourth source bus line are electrically connected to the other one of the plurality of video signal lines through the second unit circuit. An active matrix substrate according to any one of the above.
  12.  前記各サブ回路において、前記基板の法線方向から見たとき、前記第1単位回路の前記少なくともn個のDMX回路用TFTの1つは、前記第2ソースバスラインおよび前記第4ソースバスラインの間に配置されている、請求項11に記載のアクティブマトリクス基板。 In each of the sub-circuits, when viewed from the normal direction of the substrate, one of the at least n DMX circuit TFTs of the first unit circuit includes the second source bus line and the fourth source bus line. The active matrix substrate according to claim 11, which is disposed between the two.
  13.  前記少なくともn個のDMX回路用TFTは、前記チャネル幅方向に配列され、かつ、互いに並列に接続された複数のTFTを含む、請求項7から12のいずれかに記載のアクティブマトリクス基板。 13. The active matrix substrate according to claim 7, wherein the at least n DMX circuit TFTs include a plurality of TFTs arranged in the channel width direction and connected in parallel to each other.
  14.  前記複数の制御信号幹線は、n本の第1制御信号幹線と、n本の第2制御信号幹線とを含み、前記n本の第1制御信号幹線のそれぞれには、前記n本の第2制御信号幹線の1つと同じ制御信号が供給され、
     前記複数の単位回路のうち一部の単位回路における前記n本の制御信号枝線は、前記n本の第1制御信号幹線と電気的に接続されており、他の一部の単位回路における前記n本の制御信号枝線は、前記n本の第2制御信号幹線と電気的に接続されている、請求項7から13のいずれかに記載のアクティブマトリクス基板。
    The plurality of control signal trunk lines include n first control signal trunk lines and n second control signal trunk lines, and each of the n first control signal trunk lines includes the n second control signal trunk lines. The same control signal as one of the control signal trunks is supplied,
    The n control signal branch lines in some unit circuits among the plurality of unit circuits are electrically connected to the n first control signal trunk lines, and the other unit circuit includes the unit control circuit branch lines. 14. The active matrix substrate according to claim 7, wherein n control signal branch lines are electrically connected to the n second control signal trunk lines.
  15.  前記周辺回路は、ゲートドライバを含み、
     前記ゲートドライバは、複数のシフトレジスタを有し、
     前記少なくとも1つのTFTは、前記複数のシフトレジスタのそれぞれにおける出力トランジスタを含む、請求項1から5のいずれかに記載のアクティブマトリクス基板。
    The peripheral circuit includes a gate driver,
    The gate driver has a plurality of shift registers,
    The active matrix substrate according to claim 1, wherein the at least one TFT includes an output transistor in each of the plurality of shift registers.
  16.  複数の画素を含む表示領域と、前記表示領域の周辺に設けられた非表示領域とを有し、
     基板と、
     前記非表示領域に配置され、かつ、前記基板に支持されたデマルチプレクサ回路と、
     前記表示領域において第1方向に延びる複数のソースバスラインと、
     前記第1方向と交差する第2方向に延びる複数のゲートバスラインと
    を備え、
     前記デマルチプレクサ回路は、複数の単位回路と、複数の制御信号幹線とを備え、
     前記複数の単位回路のそれぞれは、複数のビデオ信号線のうちの1つのビデオ信号線から、前記複数のソースバスラインのうちのn本(nは2以上の整数)のソースバスラインへビデオ信号を分配し、
     前記複数の単位回路のそれぞれは、少なくともn個のDMX回路用TFTと、前記1つのビデオ信号線に接続されたn本の分岐配線と、前記n本のソースバスラインと、n本の制御信号枝線とを有し、前記n本の制御信号枝線のそれぞれは、前記複数の制御信号幹線の1つに電気的に接続されており、
     前記複数の単位回路のそれぞれにおいて、前記n本の分岐配線、前記n本の制御信号枝線および前記n本のソースバスラインは、いずれも、前記第1方向に延びており、
     各DMX回路用TFTは、ゲート電極と、前記ゲート電極の上にゲート絶縁層を介して配置された酸化物半導体層と、前記酸化物半導体層上に、前記酸化物半導体層の一部と接するように配置されたソース電極と、前記酸化物半導体層上に、前記酸化物半導体層の他の一部と接するように配置されたドレイン電極とを有し、
     前記ドレイン電極は前記n本のソースバスラインの1つの一部であり、前記ソース電極は前記n本の分岐配線の1つの一部であり、前記ゲート電極は前記n本の制御信号枝線の1つの一部であり、
     前記基板の法線方向から見たとき、前記ゲート電極は互いに対向する第1縁部および第2縁部を有し、前記第1縁部および前記第2縁部は、前記酸化物半導体層を前記第1方向に横切って延びており、
     前記基板の法線方向から見たとき、前記ソース電極は、前記第1縁部と重なるように前記第1方向に延びており、前記ドレイン電極は、前記第2縁部と重なるように前記第1方向に延びている、アクティブマトリクス基板。
    A display area including a plurality of pixels and a non-display area provided around the display area;
    A substrate,
    A demultiplexer circuit disposed in the non-display area and supported by the substrate;
    A plurality of source bus lines extending in a first direction in the display region;
    A plurality of gate bus lines extending in a second direction intersecting the first direction,
    The demultiplexer circuit includes a plurality of unit circuits and a plurality of control signal trunk lines.
    Each of the plurality of unit circuits transmits a video signal from one video signal line of the plurality of video signal lines to n (n is an integer of 2 or more) source bus lines of the plurality of source bus lines. Distribute
    Each of the plurality of unit circuits includes at least n DMX circuit TFTs, n branch wirings connected to the one video signal line, the n source bus lines, and n control signals. Each of the n control signal branch lines is electrically connected to one of the plurality of control signal trunk lines,
    In each of the plurality of unit circuits, the n branch wirings, the n control signal branch lines, and the n source bus lines all extend in the first direction,
    Each TFT for DMX circuit is in contact with a part of the oxide semiconductor layer on the gate electrode, the oxide semiconductor layer disposed on the gate electrode through a gate insulating layer, and the oxide semiconductor layer A source electrode disposed on the oxide semiconductor layer, and a drain electrode disposed on the oxide semiconductor layer so as to be in contact with another part of the oxide semiconductor layer,
    The drain electrode is a part of one of the n source bus lines, the source electrode is a part of one of the n branch lines, and the gate electrode is a part of the n control signal branch lines. Part of one,
    When viewed from the normal direction of the substrate, the gate electrode has a first edge and a second edge facing each other, and the first edge and the second edge are formed of the oxide semiconductor layer. Extending across the first direction,
    When viewed from the normal direction of the substrate, the source electrode extends in the first direction so as to overlap the first edge, and the drain electrode overlaps the second edge. An active matrix substrate extending in one direction.
  17.  前記複数の単位回路は、第1単位回路および第2単位回路を含み、
     前記表示領域において、前記複数のソースバスラインは、一方の端から前記第2方向に配列されており、前記一方の端からN番目(Nは自然数)、(N+1)番目、(N+2)番目および(N+3)番目にそれぞれ配列された第1ソースバスライン、第2ソースバスライン、第3ソースバスラインおよび第4ソースバスラインを含み、
     前記第1ソースバスラインおよび前記第3ソースバスラインは、前記第1単位回路を介して、前記複数のビデオ信号線の1つに電気的に接続され、
     前記第2ソースバスラインおよび前記第4ソースバスラインは、前記第2単位回路を介して、前記複数のビデオ信号線の他の1つに電気的に接続され、
     前記基板の法線方向から見たとき、前記第1単位回路の前記少なくともn個のDMX回路用TFTの1つは前記第2ソースバスラインおよび前記第4ソースバスラインの間に配置されている、請求項16に記載のアクティブマトリクス基板。
    The plurality of unit circuits include a first unit circuit and a second unit circuit,
    In the display area, the plurality of source bus lines are arranged in the second direction from one end, and are Nth (N is a natural number), (N + 1) th, (N + 2) th from the one end, and A first source bus line, a second source bus line, a third source bus line, and a fourth source bus line arranged in the (N + 3) th,
    The first source bus line and the third source bus line are electrically connected to one of the plurality of video signal lines through the first unit circuit,
    The second source bus line and the fourth source bus line are electrically connected to the other one of the plurality of video signal lines through the second unit circuit,
    When viewed from the normal direction of the substrate, one of the at least n DMX circuit TFTs of the first unit circuit is disposed between the second source bus line and the fourth source bus line. The active matrix substrate according to claim 16.
  18.  前記第1単位回路および前記第2単位回路における前記n本の制御信号枝線は共通であり、
     前記第1単位回路における前記少なくともn個のDMX回路用TFTの1つと、前記第2単位回路における前記少なくともn個のDMX回路用TFTの1つとは、同じ制御信号線に接続され、かつ、前記同じ制御信号線の上に間隔を空けて配置されている、請求項17に記載のアクティブマトリクス基板。
    The n control signal branch lines in the first unit circuit and the second unit circuit are common,
    One of the at least n DMX circuit TFTs in the first unit circuit and one of the at least n DMX circuit TFTs in the second unit circuit are connected to the same control signal line, and The active matrix substrate according to claim 17, wherein the active matrix substrate is disposed on the same control signal line with a space therebetween.
  19.  前記各DMX回路用TFTにおいて、前記基板の法線方向から見たとき、前記ソース電極における前記ドレイン電極に対向するソース縁部、および/または、前記ドレイン電極における前記ソース電極に対向するドレイン縁部は、前記酸化物半導体層と重なる領域に、前記第2方向に突出した少なくとも1つの凸部と、前記少なくとも1つの凸部に前記第1方向に隣接する凹部または切欠き部とを有し、
     前記少なくとも1つの凸部の前記第2方向の長さは、前記ゲート電極の前記第2方向の幅の1/3未満である、請求項17または18に記載のアクティブマトリクス基板。
    In each of the DMX circuit TFTs, when viewed from the normal direction of the substrate, the source edge of the source electrode facing the drain electrode and / or the drain edge of the drain electrode facing the source electrode Has at least one protrusion protruding in the second direction in a region overlapping with the oxide semiconductor layer, and a recess or notch adjacent to the at least one protrusion in the first direction,
    19. The active matrix substrate according to claim 17, wherein a length of the at least one protrusion in the second direction is less than 1/3 of a width of the gate electrode in the second direction.
  20.  前記酸化物半導体層は、In-Ga-Zn-O系半導体を含む、請求項1から19のいずれかに記載のアクティブマトリクス基板。 The active matrix substrate according to claim 1, wherein the oxide semiconductor layer includes an In—Ga—Zn—O-based semiconductor.
  21.  前記In-Ga-Zn-O系半導体は結晶質部分を含む、請求項20に記載のアクティブマトリクス基板。 21. The active matrix substrate according to claim 20, wherein the In—Ga—Zn—O based semiconductor includes a crystalline portion.
PCT/JP2018/015341 2017-04-13 2018-04-12 Active matrix substrate WO2018190396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-080051 2017-04-13
JP2017080051 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018190396A1 true WO2018190396A1 (en) 2018-10-18

Family

ID=63793379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015341 WO2018190396A1 (en) 2017-04-13 2018-04-12 Active matrix substrate

Country Status (1)

Country Link
WO (1) WO2018190396A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755507A (en) * 2019-03-29 2020-10-09 夏普株式会社 Active matrix substrate and method for manufacturing the same
CN112054031A (en) * 2019-06-06 2020-12-08 夏普株式会社 Active matrix substrate and method for manufacturing the same
CN112542545A (en) * 2020-04-21 2021-03-23 友达光电股份有限公司 Active component
CN113540122A (en) * 2020-04-21 2021-10-22 夏普株式会社 Active matrix substrate and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138851A (en) * 1992-10-30 1994-05-20 Nec Corp Active matrix liquid crystal display
JP2007206392A (en) * 2006-02-02 2007-08-16 Epson Imaging Devices Corp Electro-optical device, driving method thereof, and electronic equipment
JP2011233882A (en) * 2010-04-07 2011-11-17 Semiconductor Energy Lab Co Ltd Transistor
WO2013018597A1 (en) * 2011-08-02 2013-02-07 シャープ株式会社 Display device and method for powering same
JP2013110397A (en) * 2011-10-24 2013-06-06 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
WO2014112459A1 (en) * 2013-01-18 2014-07-24 シャープ株式会社 Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138851A (en) * 1992-10-30 1994-05-20 Nec Corp Active matrix liquid crystal display
JP2007206392A (en) * 2006-02-02 2007-08-16 Epson Imaging Devices Corp Electro-optical device, driving method thereof, and electronic equipment
JP2011233882A (en) * 2010-04-07 2011-11-17 Semiconductor Energy Lab Co Ltd Transistor
WO2013018597A1 (en) * 2011-08-02 2013-02-07 シャープ株式会社 Display device and method for powering same
JP2013110397A (en) * 2011-10-24 2013-06-06 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
WO2014112459A1 (en) * 2013-01-18 2014-07-24 シャープ株式会社 Display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755507A (en) * 2019-03-29 2020-10-09 夏普株式会社 Active matrix substrate and method for manufacturing the same
CN111755507B (en) * 2019-03-29 2023-08-11 夏普株式会社 Active matrix substrate and method for manufacturing same
CN112054031A (en) * 2019-06-06 2020-12-08 夏普株式会社 Active matrix substrate and method for manufacturing the same
CN112054031B (en) * 2019-06-06 2023-06-27 夏普株式会社 Active matrix substrate and method for manufacturing same
CN112542545A (en) * 2020-04-21 2021-03-23 友达光电股份有限公司 Active component
CN113540122A (en) * 2020-04-21 2021-10-22 夏普株式会社 Active matrix substrate and display device
CN112542545B (en) * 2020-04-21 2023-06-09 友达光电股份有限公司 Active device
CN113540122B (en) * 2020-04-21 2023-08-15 夏普株式会社 Active matrix substrate and display device

Similar Documents

Publication Publication Date Title
US10558097B2 (en) Active matrix substrate and demultiplexer circuit
WO2018190396A1 (en) Active matrix substrate
CN109661696B (en) Active matrix substrate and method for manufacturing the same
US10571761B2 (en) Active matrix substrate and demultiplexer circuit
US10978529B2 (en) Active matrix substrate and method for manufacturing the same
US10629630B2 (en) Active matrix substrate, and liquid crystal display device provided with active matrix substrate
WO2018150962A1 (en) Active matrix substrate
WO2017094682A1 (en) Semiconductor device, and method for manufacturing same
US11069722B2 (en) Active matrix substrate and method of manufacturing same
WO2018225690A1 (en) Active-matrix substrate and display device
KR102365774B1 (en) Thin film trannsistor array panel and manufacturing method thereof
JP6718988B2 (en) Active matrix substrate and display device using the same
WO2018190395A1 (en) Active matrix substrate and demultiplexer circuit
US11830454B2 (en) Active matrix substrate and display device
CN109690661B (en) Active matrix substrate and display device provided with active matrix substrate
US11631704B2 (en) Active matrix substrate and display device
US20230221605A1 (en) Semiconductor device
JP2022178523A (en) Active matrix substrate and liquid crystal display device
KR20170079376A (en) Thin film transistor, display device having built-in gate driver using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP