WO2018190387A1 - Molten metal agitating device and continuous casting device system provided with same - Google Patents

Molten metal agitating device and continuous casting device system provided with same Download PDF

Info

Publication number
WO2018190387A1
WO2018190387A1 PCT/JP2018/015286 JP2018015286W WO2018190387A1 WO 2018190387 A1 WO2018190387 A1 WO 2018190387A1 JP 2018015286 W JP2018015286 W JP 2018015286W WO 2018190387 A1 WO2018190387 A1 WO 2018190387A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
magnetic field
electrode
case
mold
Prior art date
Application number
PCT/JP2018/015286
Other languages
French (fr)
Japanese (ja)
Inventor
謙三 高橋
リチャード アレン ウェイメント
Original Assignee
謙三 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018072699A external-priority patent/JP6445201B2/en
Application filed by 謙三 高橋 filed Critical 謙三 高橋
Priority to CN201890000712.5U priority Critical patent/CN211614249U/en
Priority to KR1020197033319A priority patent/KR102260278B1/en
Priority to NZ757587A priority patent/NZ757587B2/en
Priority to EP18784252.1A priority patent/EP3610968B1/en
Priority to US16/604,049 priority patent/US10814379B2/en
Priority to CA3057130A priority patent/CA3057130C/en
Priority to AU2018252827A priority patent/AU2018252827B2/en
Publication of WO2018190387A1 publication Critical patent/WO2018190387A1/en
Priority to US17/027,749 priority patent/US11161171B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects

Definitions

  • the present invention relates to a molten metal stirring apparatus and a continuous casting apparatus system including the molten metal stirring apparatus.
  • a metal melt having conductivity that is, a non-ferrous metal (for example, Al, Cu, Zn or Si, or at least two of these alloys, Mg alloy, etc.) or other than a non-ferrous metal It has been practiced to obtain a product (round bar-shaped ingot or the like) by continuously casting a molten metal.
  • a non-ferrous metal for example, Al, Cu, Zn or Si, or at least two of these alloys, Mg alloy, etc.
  • the cooling rate of the molten metal differs greatly between the peripheral portion and the central portion of the product. That is, the molten metal is rapidly cooled in the peripheral portion of the product, whereas the molten metal is cooled more slowly in the central portion. Thereby, the crystal structure of the metal in the peripheral part and the central part of the product is greatly different. As a result, it is inevitable that the mechanical characteristics of the product are greatly impaired.
  • the molten metal stirring device of the embodiment of the present invention is A molten metal stirring device for stirring molten metal in the mold or molten metal in the mold in a continuous casting apparatus for continuously forming a product by flowing a molten metal of conductive metal into the mold, A cylindrical case with an open top that is immersed in the molten metal, and a pipe stored in the case,
  • the case has an outer cylinder and an inner cylinder accommodated in the outer cylinder, and a gap for flowing cooling air is formed between the outer cylinder and the inner cylinder.
  • a magnetic field device in which the pipe is inserted is housed, and the magnetic field device has a magnetic field line from the magnetic field device passing through the inner cylinder and the outer cylinder to the molten metal, Or, the magnetic lines of force that run in the molten metal penetrate through the inner cylinder and the outer cylinder and reach the magnetic field device, and are magnetized with strength.
  • the first electrode penetrating the inner cylinder and the outer cylinder, one end is exposed in the inner cylinder, the other end is exposed outside the outer cylinder and can contact the molten metal,
  • the one end of the first electrode is electrically connected to a lead wire body running in the pipe;
  • it has the 2nd electrode attached to the said outer cylinder, and the attachment position to the said outer cylinder of the said 2nd electrode is via a molten metal between the said 2nd electrode and the said 1st electrode. It is set at a position where a flowing current crosses the magnetic field lines and generates a Lorentz force that rotationally drives the molten metal around the vertical axis. Configured as a thing.
  • the molten metal stirring device of the embodiment of the present invention is A molten metal stirring device for stirring molten metal in the mold or molten metal in the mold in a continuous casting apparatus for continuously forming a product by flowing a molten metal of conductive metal into the mold, A cylindrical case with an open top that is immersed in the molten metal; and a pipe that is accommodated in the case, and a communication gap is formed between the lower end of the pipe and the inside of the bottom surface of the case. The interior of the pipe communicates with the interior of the case through the communication gap to form a cooling air passage.
  • a magnetic field device in which the pipe is inserted is accommodated in the inner cylinder, and the magnetic field device has a magnetic field line from the magnetic field device passing through the case to the molten metal, or in the molten metal.
  • the magnetic field lines that run through the case reach the magnetic field device, and are magnetized in strength.
  • the first electrode has a first electrode that penetrates the case, one end is exposed to the case, and the other end is exposed to the outside of the case and can be in contact with the molten metal, and the one end of the first electrode Is electrically connected to the lead wire running through the pipe, Furthermore, it has the 2nd electrode attached to the said case, The attachment position to the said case of the said 2nd electrode is the electric current which flows through a molten metal between the said 2nd electrode and the said 1st electrode. Is set at a position to generate Lorentz force that crosses the magnetic field lines and drives the molten metal to rotate about the vertical axis. Configured as a thing.
  • the continuous casting apparatus system of the embodiment of the present invention is: Any one of the molten metal stirrers, a bowl for introducing the molten metal from the melting furnace, and a mold attached in a state where a molten metal inlet is in communication with the bottom surface of the bowl, the molten metal stirring apparatus has the lower end side at the lower end side. It is configured as being incorporated in a state where it is inserted into the molten metal lead-out path in the dredger.
  • FIG. 2 is a longitudinal explanatory view of a molten metal stirring device in the apparatus of FIG.
  • Partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus of 7th Embodiment corresponding to embodiment of FIG.
  • FIG. 2B is an explanatory diagram showing a current flow path in the embodiment of FIG. 2A. Operation
  • the partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus as the 2nd Embodiment of this invention.
  • FIG. 3 is a longitudinal explanatory view of a modification of the magnetic field device of the molten metal stirring device in the device of FIGS.
  • FIG. 6 is a longitudinal explanatory view of a magnetic field device of a molten metal stirring device in the devices of FIGS. 4 and 5.
  • Plane explanatory drawing of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 4 FIG. Longitudinal explanatory drawing of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 6,
  • Partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus as the 4th Embodiment of this invention.
  • Longitudinal explanatory drawing which longitudinally cuts the molten metal stirring apparatus in the apparatus of FIG.
  • Partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus in 8th Embodiment corresponding to embodiment of FIG. Operation
  • FIG. 18 is a longitudinal explanatory view showing a part of the prototype of FIG.
  • FIG. 18 is a longitudinal explanatory view showing a different part of the prototype of FIG. 17.
  • FIG. 18 is a longitudinal explanatory view showing a further different part of the prototype of FIG. 17.
  • FIG. 19 is a longitudinal explanatory view showing a manufacturing process of a part of the prototype of FIG. 18.
  • FIG. 20 is a longitudinal explanatory view showing a manufacturing process of a part of the prototype of FIG. 19.
  • FIG. 21 is a longitudinal explanatory view showing a part of the manufacturing process of the prototype of FIG. 20.
  • longitudinal explanatory drawing which shows the manufacture process of the prototype for demonstrating a different experiment.
  • the temperature distribution explanatory drawing which shows the temperature distribution of the molten metal (liquid), semi-solidified layer part, prototype (solid) in the manufacturing process of FIG.
  • FIG. 25 is a longitudinal explanatory view showing a positional relationship of a sample (first test piece) taken out from the prototype corresponding to FIG. 24.
  • the longitudinal section explanatory drawing which shows the positional relationship in each sample (1st test piece) of the sample (2nd test piece) further taken out from each taken out sample (1st test piece).
  • the graph which shows the zinc concentration of the taken-out sample (2nd test piece).
  • FIG. 1 shows the overall configuration of a continuous casting apparatus as a first embodiment of the present invention, and shows a case where a round bar-like ingot is obtained as a product P.
  • this apparatus is a melting furnace for non-ferrous metals or other metals of conductors (conductors) such as Al, Cu, Zn, at least two of these alloys, or Mg alloys (see FIG. 1).
  • the molten metal M from (not shown) is caused to flow into the mold 1 through the trough 2 and finally the product P is obtained.
  • the molten metal stirring apparatus 3 is provided in order to improve the quality of the product P finally obtained.
  • the molten metal stirring device 3 is held in a state immersed in the molten metal M at the end portion of the trough 2 by a predetermined means.
  • this molten metal stirring device 3 while rotating the molten metal M around the molten metal stirring device 3 by the Lorentz force, as can be seen from FIG. 1 (first embodiment), To send it to.
  • the other embodiment will be briefly described in connection with this invention.
  • the molten metal stirring device is used to change the molten metal M in the mold 1 in FIG. 4 (second embodiment), and in FIG. 6 (third embodiment). Both the molten metal M in the mold 2 and the mold 1 are sent to the mold 1 while being rotationally driven by Lorentz force to obtain a product P with improved quality.
  • a molten metal M from a melting furnace (not shown) is guided to a mold 1 by a firewood 2. That is, the mold 1 is attached to the front end (end) of the flange 2 in a communicating state. More specifically, the molten metal inlet of the mold 1 is attached to the bottom surface of the bowl 2, and the molten metal stirring device 1 is incorporated in a state where the lower end side is inserted into the molten metal outlet path in the bowl 2. .
  • the molten metal M reaches from the bowl 2 to the mold 1 and is cooled there to obtain a so-called solid phase product P having improved quality.
  • a so-called liquid-phase molten metal M that has not yet cooled down. That is, as can be seen from FIG. 1, in the mold 1, the upper part is a molten metal M in a liquid phase state and the lower part is a product P in a solid phase state. Make and touch each other.
  • the molten metal stirring device 3 is held in the bowl 2 in a state of being floated by a desired means.
  • the position of the molten metal stirring device 1 can be adjusted up and down in FIG. Therefore, in FIG. 1, the lower end of the molten metal stirring device 3 is slightly in the mold 1, but the molten metal stirring device 3 can be held so that all of the molten metal stirring device 3 exists only in the tub 2.
  • a longitudinal explanatory view of the molten metal stirring device 3 is shown in FIG. 2, and an enlarged view thereof is shown in FIG. 3 as an operation explanatory view.
  • the molten metal stirring device 3 includes a substantially cylindrical case 6 having a double structure and an open top, a magnetic field device 7 having a permanent magnet 18 accommodated in the case 6, and a case 6. And an electrode portion 8 having a pair of attached electrodes (first electrode 24, second electrode 25).
  • the molten metal stirrer 3 is configured to have an air cooling structure that can be cooled with compressed air by paying attention to the high temperature property of the molten metal M. By this air cooling, for example, the permanent magnet 18 of the magnetic field device 7 can maintain its ability.
  • the case 6 has an outer cylinder 11 and an inner cylinder 12 which are made of a fire-resistant material and open in a cylindrical shape.
  • a gap 14 for flowing compressed air for cooling is formed between the outer cylinder 11 and the inner cylinder 12.
  • a plurality of vent holes 12a are formed concentrically at the bottom of the inner cylinder 12 so that the inside of the inner cylinder 12 communicates with the gap 14. Thereby, the cooling air path from the inner cylinder 12C to the gap 14 and further to the atmosphere via the vent hole 12a is formed. That is, as can be seen from FIG.
  • the compressed air for cooling flows into the inner cylinder 12 from above as shown by an arrow AR1, reaches the bottom, reaches the bottom of the gap 14 from the vent hole 12a.
  • the gap 14 rises and is eventually released into the atmosphere.
  • the compressed air exchanges heat in the flow path to cool the magnetic field device 7 and the like.
  • the molten metal stirring device 3 can be fixed to a desired external fixing device by the flange portion of the outer cylinder 11. Further, the molten metal stirring device 3 can appropriately adjust the depth of immersion in the trough 2 and the mold 1. Thereby, the said immersion depth can be adjusted according to the physical property etc. of the molten metal M to be used on the spot, and the molten metal M can be stirred more appropriately.
  • the magnetic field device 7 is housed in the inner cylinder 12 with a stainless steel pipe 16 inserted. Details of the magnetic field device 7 are shown in FIGS. 8a and 8b. That is, the magnetic field device 7 is configured as an integrally configured cylindrical permanent magnet 18 and has a through hole 18a for allowing the pipe 16 to pass through the central axis portion.
  • the permanent magnet 18 is magnetized to the south pole on the center side and to the north pole on the outer peripheral side. (Naturally, the direction of magnetization may be opposite to that described above. In this case, the direction of current flow can be changed by the external power supply panel 27 described later if necessary.) As can be seen from FIG.
  • magnetic field lines ML appear radially from the magnetic field device 7 and run in the molten metal M in the bowl 2.
  • the configuration of the magnetic field device 7 is not limited to that shown in FIGS. 8a and 8b, but may be any as long as the magnetic field lines ML appear as shown in FIG.
  • FIGS. 9a and 9b an example is shown in FIGS. 9a and 9b.
  • the permanent magnets 18 in these drawings have a plurality of bar-like permanent magnet pieces 19 that are long in the vertical direction.
  • the mode of magnetization of each permanent magnet piece 19 is shown in FIGS. 9a and 9b.
  • the magnetic field device 7 is configured as a concentric arrangement of the permanent magnet pieces 19 as viewed in plan.
  • the magnetic field device 7 is housed in the inner cylinder 12 in a state in which the pipe 16 is inserted, as can be seen from FIG. Thereby, the said magnetic field apparatus 7 emits the magnetic force line ML radially, and this magnetic force line ML reaches the molten metal M in the tub 2 and runs through it.
  • the compressed air flows through the inner cylinder 12, the compressed air reaches the vent hole 12a while cooling the magnetic field device 7 and the like.
  • a first electrode 24 made of tungsten, graphite or the like is attached to the lower end of the guide rod 22 in an electrically conductive state.
  • the first electrode 24 penetrates the inner cylinder 12 and the outer cylinder 11 in a liquid-tight state (at least in a molten-metal state), exposes the tip (lower end) to the outside, and contacts the molten metal M in the bowl 2. It is possible.
  • the second electrode 25 configured in a ring shape by graphite or the like, which is paired with the first electrode 24, is attached to the outer peripheral surface of the outer cylinder 11 so as to be detachably inserted.
  • the current i is transferred from the second electrode 25 to the first electrode 24 via the molten metal M as shown in FIG. Flows.
  • the magnetic field lines ML from the magnetic field device 7 and the current i flowing between the first electrode 24 and the second electrode 25 intersect to generate Lorentz force.
  • the molten metal M in the tub 2 is rotationally driven.
  • the second electrode 25 can be replaced with another one as necessary, for example, when worn.
  • the molten metal M in the cocoon 2 is rotationally driven, that is, stirred, and the following advantages are obtained.
  • the impurities existing inside rise in the molten metal M and gather in the surface portion, and the quality of the molten metal M other than the surface portion, that is, the molten metal M flowing into the mold 1 is improved. Thereby, the quality of the product P obtained with the mold 1 is improved.
  • the molten metal M is stirred in the bowl 2 and flows into the mold 1 while rotating. As a result, the molten metal M also rotates in the mold 1. That is, the molten metal M is indirectly rotated in the mold 1 as well. Due to the rotation in the mold 1, the molten metal M is solidified in a state where the temperatures of the inner part and the outer part are averaged. Thereby, coupled with the removal of impurities in the molten metal M as described above, the product P can be obtained with a higher quality. Such a quality improvement mechanism is also applicable to other embodiments and modifications described below.
  • the first electrode 24 and the second electrode 25 are connected to an external power supply panel 27 so that a desired DC current can be supplied.
  • the amount of supplied current can be adjusted by the external power supply panel 27, and the polarity can also be switched.
  • the rotation direction of the molten metal M in the trough 2 and the mold 1 can be reversed.
  • Such control can also be performed while observing the stirring state of the molten metal M in the field, thereby individually controlling each characteristic of the molten metal M to be used, not depending on the characteristics of the molten metal M to be used, and higher quality.
  • Product P can be obtained.
  • such control is possible by a simple operation on the external power supply panel 27, and its usefulness in the field is extremely high.
  • a circulation path 1a for circulating cooling water is formed.
  • a plurality of locations facing the product P in the circulation path 1a are used as cooling water ports 1b penetrating to the outside.
  • the product P is manufactured while being cooled by the cooling water discharged from these cooling water ports 1b.
  • the molten metal M is also stirred in the mold 1 so as to make the temperature uniform, and in combination with the removal of impurities in the tub 2, higher quality is achieved. You can get a product.
  • the rotational speed of the molten metal M in the trough 2 and in the mold 1 can be adjusted. That is, the quality, properties, components, etc. of the molten metal M flowing from the melting furnace (not shown) are not always the same, but the amount of current is adjusted depending on the quality, properties, etc. of the molten metal M used. Regardless of the physical properties of M, a product P having more appropriate quality can be obtained.
  • the rotation direction of the molten metal M in the trough 2 can be changed in a very short time to make a so-called vibration state, thereby further promoting the removal of impurities. You can also
  • the permanent magnet 18A mounted on the molten metal stirring device 3A is not the molten metal M in the bowl 2, but before the solidification in the mold 1.
  • the molten metal M is rotationally driven. Even if the molten metal M in the mold 1 is agitated, as can be seen from the description in the first embodiment of the present invention, it is possible to obtain substantially the same operational effects as in the case of the first embodiment of the present invention. Obviously you can.
  • the melt stirring apparatus 3A mounted in the second embodiment of the present invention shown in FIG. 4 is shown in FIG.
  • the melt stirrer 3A shown in FIG. 5 differs from the melt stirrer 3 shown in FIG. 3 only in the direction in which the lines of magnetic force ML appear, as can be easily seen from the comparison of both figures.
  • the permanent magnet 18A of the magnetic field device 7A in FIG. Details of the magnetic field device 7A are shown in FIGS. 10a and 10b.
  • 10a is a longitudinal sectional view
  • FIG. 10b is a plan view.
  • the outer shape is almost the same as that of FIGS. 8a and 8b, but the mode of magnetization is different, and the upper part of the cylindrical body is magnetized to the S pole and the lower part is magnetized to the N pole.
  • the magnetic field lines ML from the magnetic field device 7A and the current i flowing between the pair of electrodes are on the bottom surface of the outer cylinder 11 of the magnetic field device 7A. Cross on the outside. Due to the Lorentz force f generated thereby, the molten metal M in the mold 1 is rotationally driven as shown in FIG.
  • the third embodiment of the present invention uses the permanent magnets 18B1, 18B2 (see FIG. 7) mounted on the molten metal stirring device 3B to solidify the molten metal M in the bowl 2 and the mold 1.
  • Both the previous molten metal M and both molten metals M are directly driven to rotate. Since both the molten metal M in the bowl 2 and the molten metal M in the mold 1 are directly agitated, they are almost the same as those in the first embodiment of the present invention and the second embodiment of the present invention. Obviously, it is possible to obtain an action effect or more.
  • FIG. 7 shows a longitudinally enlarged operation explanatory view of the molten metal stirring device 3B of FIG.
  • the molten metal stirring device 3B (third embodiment) shown in FIG. 7 includes the molten metal stirring device 3 (first embodiment) shown in FIG. 3 and the molten metal stirring device 3B (second embodiment) shown in FIG. ) Is configured to have both functions.
  • the cylindrical first permanent magnet 18B1 and the second permanent magnet 18B2 are stacked one above the other through spacers 30 made of nonmagnetic material.
  • FIGS. 11a longitudinal explanatory view
  • FIG. 11b top view
  • FIG. 11c bottom view
  • the first permanent magnet 18B1 is composed of a plurality of permanent magnet pieces 19 similar to those shown in FIGS. 9a and 9b, with the inside being the S pole and the outside being the N pole. It is said that.
  • the second permanent magnet 18B2 is magnetized with the N pole on the upper side and the S pole on the lower side, as shown in FIGS. 10a and 10b.
  • the first permanent magnet 18B1 and the second permanent magnet 18B2 are integrally configured with the spacer 30 interposed therebetween.
  • the magnetic field lines ML from the permanent magnet 18 ⁇ / b> B ⁇ b> 1 of the magnetic field device 7 ⁇ / b> B and the current i flowing between the pair of electrodes (first electrode 24, second electrode 25) are on the side surface of the outer cylinder 11. Cross on the outside.
  • the magnetic field lines ML from the second permanent magnet 18B2 of the magnetic field device 7B and the current i flowing between the pair of electrodes (the first electrode 24 and the second electrode 25) are those of the outer cylinder 11 of the magnetic field device 7A. Cross on the outside of the side.
  • the two types of Lorentz forces f generated thereby rotate and drive the outer side of the outer peripheral surface of the magnetic field device 7B in the cage 2 and the outer side of the bottom surface in the mold 1, respectively.
  • the case 6 has a double structure of the outer cylinder 11 and the inner cylinder 12, and a gap 14 is formed between the two, and compressed air for cooling is provided here. I tried to distribute it. However, the strength of the case 6 can also be increased by overlapping the outer cylinder 11 and the inner cylinder 12 in close contact with each other without a gap. In this case, a separate cooling air flow path is secured. Fourth to sixth embodiments of the present invention that embody this technical idea are shown in FIGS. In these embodiments, the compressed air for cooling is fed from the pipe 16C.
  • FIGS. A fourth embodiment of the present invention is shown in FIGS.
  • the melt M before solidification in the mold 1 is rotationally driven by a permanent magnet 18C mounted on the melt stirring device 3C.
  • a permanent magnet equivalent to that shown in FIGS. 8a and 8b is used.
  • the molten metal stirring device 3C of FIG. 14 (fourth embodiment of the present invention) differs from the molten metal stirring device 3 of FIG. 3 (first embodiment of the present invention) in that the case 6C is connected to the outer cylinder 11C. The point is that the cylinder 12C is superposed without gaps, and that the compressed air for cooling is sent from the pipe 16C that is slightly thicker.
  • the inner cylinder 12C can be configured to function as a heat insulating cylinder by a heat insulating member.
  • a communication gap for communication is formed between the lower end of the pipe 16C and the bottom surface of the inner cylinder 12C.
  • the inside of the pipe communicates with the inside of the case through the communication gap to form a cooling air passage, and the inside of the pipe and the inside of the inner cylinder are connected via the communication gap.
  • a cooling air path is formed in communication.
  • the compressed air sent into the pipe 16C reaches the gap 14C between the pipe 16C and the inner cylinder 12C from the lower end of the pipe 16C, as shown by an arrow AR2, and is inverted and raised and discharged to the outside.
  • the permanent magnet 18C and the like are cooled by the compressed air that rises in the reverse direction.
  • FIG. 15 shows a molten metal stirring device 3D as a main part.
  • a magnetic field device 7D using a permanent magnet 18D equivalent to that shown in FIG. 10a is used. Since other configurations and operations are substantially the same as those in FIGS. 14 and 5, detailed description thereof is omitted.
  • FIG. 16 shows a molten metal stirring device 3E as a main part.
  • a magnetic field device 7E using a first permanent magnet 18E1 and a second permanent magnet 18E2 equivalent to those shown in FIG. 11a is used.
  • Other configurations are almost the same as those of FIGS. 14 and 7, and detailed description thereof is omitted.
  • the outer cylinder 11D in the case 6D is made of a conductive material that generates heat by energization and reaches several hundred degrees close to the temperature of the molten metal.
  • the electric resistance of the conductive material is larger than that of the molten metal M used.
  • this conductive material various materials such as graphite can be used as long as they have fire resistance and are resistant to the molten metal used.
  • the upper second electrode 25D in the electrode portion 8D is provided above the second electrode 25 in FIG. 2 so as not to contact the molten metal M during actual use.
  • the outer cylinder 11D can be self-heated by energization. Due to the self-heating, it can be several hundred degrees, for example. Thereby, if it is made into a high temperature state by energization prior to actual use, it can be used immediately after being actually submerged in the molten metal, and waste of time can be reduced as much as possible. In other words, according to this embodiment, it is not necessary to wait for several hours in order to sink the molten metal stirring device 3D into the molten metal and actually operate the molten metal stirring apparatus 3D.
  • FIG. 2B is an explanatory diagram showing a current path in the molten metal stirring device 3D.
  • the current from the positive terminal 27a of the external power supply panel 27 passes through the outer cylinder 11D such as graphite from the second electrode 25D, and then the molten metal M having a relatively low electric resistance. , Reaches the first electrode 24, and returns to the negative terminal 27b of the external power supply panel 27.
  • FIG. 13A shows an eighth embodiment of the present invention.
  • the second electrode 25E of the electrode portion 8E of the molten metal stirring apparatus 3E is provided on the upper side as in the embodiment of FIG.
  • An example in which the outer cylinder 11E in the case 6E is made of a conductive material such as graphite is shown. The rest is almost the same as the example of FIG.
  • the stirring efficiency is extremely high.
  • It can efficiently handle large ingots.
  • a plurality of molten metal stirring devices may be incorporated.
  • the depth of the ingot in the mold to the interface varies depending on the drawing speed and size of the product. In this case, the molten metal can be stirred more appropriately by adjusting the depth of the molten metal stirring device and the immersion depth in the mold.
  • the molten metal stirrer can be made compact, so that a large space is not required for installation. (6) Thereby, application to the existing mold apparatus etc. is easy. (7)
  • the crystal structure of the product (ingot) can be refined.
  • the crystal structure of the product (ingot) can be made uniform.
  • Product production speed can be increased. For example, production can be increased by 10-30%.
  • the continuous casting apparatus has various advantages. Among the advantages, the improvement of the production speed (productivity) of the product will be further described as follows.
  • product productivity depends on the product drawing speed. Increasing the drawing speed increases productivity. However, when the drawing speed is increased to a certain speed or more, one or more cracks extending vertically are generated inside the product. The presence of this crack can be confirmed by, for example, cutting the cooled product and observing the inside of the product.
  • a high-quality product can be said to be a product with a finer crystal structure.
  • the molten metal may be rapidly cooled. In other words, the crystal structure is not refined unless cooled rapidly.
  • a solid phase part SP that has already solidified by cooling of the molten metal (see SP1 in FIG. 21, etc.), and a liquid phase part LP to solidify in the future (see LP1 in FIG. 21, etc.) are adjacent to each other, creating an interface.
  • a semi-solidified layer portion (Mussy zone: Mushy Zone) MZ (see MZ1 in FIG. 21, etc.) having an intermediate property between the solid phase and the liquid phase appears at the interface portion between the two.
  • This semi-solidified layer portion MZ is a transition layer in the process of transition from the liquid phase to the solid phase.
  • the inventor has produced a number of products and cut the product that the semi-solidified layer portion MZ appears as thin when cooling is performed rapidly and appears as thick when it is performed slowly. And I knew it independently by observing. Therefore, conversely, when the semi-solidified layer portion MZ is thin, the quality of the crystal structure in the solid phase portion SP is fine and good, and when it is thick, the quality of the crystal structure in the solid phase portion SP is rough and malicious. That is, it can be said that if the thickness of the semi-solidified layer portion MZ is seen, it can be seen whether the crystal structure inside the product is fine, high quality or rough, non-quality.
  • the semi-solid phase portion MZ does not become thick even if the drawing speed is increased beyond the speed of the conventional continuous casting apparatus.
  • the molten metal is supplied to the mold in a stirring state, which has not been performed in the conventional continuous casting apparatus and is impossible in the first place. This is because the melt just before it hardens is now stirred. That is, according to the continuous casting apparatus of the embodiment of the present invention, a high-quality product can be obtained even if the production efficiency is increased. This was confirmed by the following experiment conducted by the present inventors.
  • the finished product becomes all the solid phase part SP, the liquid phase part LP and the semi-solidified layer part MZ disappear, and the liquid phase part LP and the semi-solidified layer part MZ are visually confirmed. Can not.
  • a special treatment was applied at a certain moment in the manufacturing process, and the finished product was a solid product (prototype).
  • the liquid phase portion LP was once shown in FIG. The portion that was once, the portion that was once the semi-solidified layer portion MZ, and the portion that was once the solid phase portion SP can be visually identified.
  • the inventor manufactured the prototype TP using the continuous casting apparatus according to the embodiment of the present invention shown in FIG. 1, with the molten metal stirring apparatus 3 in FIG. 1 removed (continuous casting apparatus before improvement) and A continuous prototype TP shown in FIG. 17 was manufactured by switching between the state where the molten metal stirring device 3 is used as it is (continuous casting device according to the embodiment of the present invention).
  • FIG. 17 a part of the prototype TP is shown broken (cut) for easy understanding. That is, the inside of the prototype TP can be observed by being longitudinally cut after manufacture.
  • the same prototype TP as in FIG. 17 can be obtained by using the continuous casting device of the embodiment of the present invention in FIGS. 4, 6, 12, 15, and 16. It is clear that can be obtained.
  • the first prototype 100 is a part manufactured by the continuous casting apparatus before the improvement
  • the second prototype 200 is manufactured by the continuous casting apparatus according to the embodiment of the present invention. It is the part which did.
  • the first prototype part 100 is obtained by drawing in the direction of arrow AR at a slow low speed drawing portion 50A obtained by drawing at a slow drawing speed (casting speed) and at a drawing speed (casting speed) faster than that.
  • a first high-speed extraction portion 50B On the other hand, the second prototype part 200 has a second high-speed drawing part 60B obtained by drawing at the same drawing speed (casting speed) as that of the first high-speed drawing part 50B.
  • the first high-speed drawing portion 50B obtained by the continuous casting apparatus before improvement has cracks.
  • C the presence of cracks was not recognized in the second high-speed drawing portion 60B obtained by the continuous casting apparatus of the present invention. That is, according to the experiment conducted by the present inventor, it has been confirmed that according to the continuous casting apparatus of the present invention, a cast product having no cracks can be obtained even if the drawing speed (casting speed) is increased. That is, productivity could be improved in continuous casting.
  • the low-speed extraction portion 50A, the first high-speed extraction portion 50B, and the second high-speed extraction portion 60B were obtained by the experiment A, the experiment B, and the experiment C, respectively.
  • the low speed drawing portion 50A, the first high speed drawing portion 50B, and the second high speed drawing portion 60B are shown enlarged in FIGS. 18, 19, and 20, respectively.
  • 18, 19, and 20 are partial cross-sectional views of the prototype (solid) TP. From FIGS. 18, 19, and 20, there are various processes in the manufacturing process using the continuous casting apparatus. The state of the inside of the mold 1 at the moment is grasped in FIG. 21, FIG. 22, and FIG. 23 as three phases of solid, semi-solidified layer, and liquid coexist.
  • FIGS. 21, 22 and 23 as explanatory diagrams showing the inside of the mold at a certain moment in the product manufacturing process.
  • the prototype part 100 as a product (casting product) by performing extraction with the continuous casting device before improvement by removing the molten metal stirring device 3 from the continuous casting device of FIG.
  • the speed was changed to low speed and then switched to high speed. That is, the low-speed extraction part 50A of FIG. 17 was obtained by the initial low-speed extraction, and then the first high-speed extraction part 50B was obtained by switching to high speed.
  • the condition 1 (experiment A) at the time of the low speed drawing and the condition 2 (experiment B) at the time of the high speed drawing were as follows. Further, as shown in FIG. 21 and FIG. 22 showing a certain moment in the manufacturing process, the sump depths (maximum depth of the liquid phase portion LP) d1, d2, which appear in the case of these conditions 1 and 2, It can be seen from FIGS. 18 and 19 showing the prototype TP that the thicknesses t1 and t2 of the semi-solidified layer portion (Mushy ⁇ Zone) MZ were as follows.
  • drawing was performed at a low speed under the above condition 1 by the continuous casting apparatus before the improvement.
  • Zinc was added to the liquid phase part LP1 at a certain moment when the extraction under the condition 1 was performed.
  • the added zinc instantly diffused into the aluminum of the liquid phase part LP1, and formed an alloy, which served as a contrast agent.
  • Drawing was performed under the above condition 1 for a predetermined time after the addition.
  • the low speed drawing part 50A of FIG.17 and FIG.18 was obtained. A mechanism for obtaining the low speed drawing portion 50A will be described later.
  • FIG. 21 shows a longitudinal section of the top (top) of the product in the mold 1 at a certain moment.
  • a solid phase portion SP1 already solidified appears on the lower side
  • a liquid phase portion LP1 to be solidified appears on the upper side.
  • a semi-solid phase portion (Mushy Zone) MZ1 appears at the interface portion between the two phases.
  • the longitudinal section of the uppermost part (top) of the mold 1 is as shown in FIG.
  • the solid phase part SP2 already solidified appears on the lower side
  • the liquid phase part LP2 to be solidified appears on the upper side.
  • a semi-solid phase portion (Mushy Zone) MZ2 appears at the interface portion between the two phases.
  • the sump depth (maximum depth of the liquid phase portion LP) d2 282.2 mm
  • the thickness t2 of the semi-solidified layer portion (Mushy Zone) MZ2 is 5.5 mm.
  • the drawing speed (casting speed) is high, generation of cracks (cavities) is observed in the liquid phase portion LP2. Accordingly, the first high-speed drawing portion 50B including the crack shown in FIG. 17 is formed.
  • the drawing speed (casting speed) for producing the prototype 200 as a product (casting product) by performing drawing with the continuous casting apparatus of the present invention shown in FIG. 1 is the first high speed in the first prototype part 100.
  • the same high speed drawing speed (casting speed) as that for manufacturing the drawn portion 50B was used.
  • the second high speed drawing portion 60B of FIG. 17 was obtained.
  • condition 3 at the time of the high speed drawing was as follows. Further, the sump depth (maximum depth of the liquid phase portion LP) d3 and the thickness t3 of the semi-solidified layer portion (Mushy Zone) appearing in the case of Condition 3 were as follows.
  • FIG. 23 The process of experiment C under the condition 3 is shown in FIG.
  • a solid phase portion SP3 that has already solidified appears on the lower side, and a liquid phase portion LP3 that solidifies from now on appears on the upper side.
  • a semi-solid phase portion (Mushy Zone) MZ3 appeared at the interface portion between the two phases.
  • the sump depth (maximum depth of the liquid phase portion LP3) d3 276.2 mm
  • the thickness t3 4 mm of the semi-solid phase portion (Mushy Zone) MZ3.
  • no cracks (cavities) were observed in the liquid phase portion LP3, although the drawing speed (casting speed) was increased.
  • the thickness of the semi-solid phase portion (Mushy Zone) MZ3 is increased although the sump depth is increased as compared with the case of the condition 1 where no crack is generated. There was little increase. Since the semi-solid phase part (Mushy Zone) MZ3 does not become thick, even if high speed drawing casting is performed by the apparatus of the present invention, the heat transfer in the material is accelerated, the crystal structure becomes uniform and refined, and It can be expected that productivity will be improved while maintaining the mechanical strength of the product. Thus, as shown in FIG. 20, it was possible to form the low-speed drawing portion 60A without cracks.
  • various ingot metal products such as round bars or prisms are obtained through a process of solidifying a raw material metal, adjusting components, and solidifying into a predetermined shape.
  • the quality of the final product for example, mechanical properties, homogenization and refinement of the crystal structure, is determined by the state in the sump during solidification (the unsolidified liquid portion at the top of the product during continuous casting). End up.
  • Solidification of the molten metal occurs due to heat transfer, but since the heat conduction in the solid is twice that of the liquid, the molten metal in the container or continuous casting mold progresses from the outer periphery to the center. To do. In the case of continuous casting, for example, as can be seen from FIG. 1, solidification proceeds in a state where a liquid and a solid coexist in the top portion of the product.
  • An important point for improving the quality of the product is, for example, to reduce the liquid part and the semi-solidified layer part in FIG. 1 as much as possible. It is very difficult to achieve.
  • the present inventor paid attention to the fact that the thermal conductivity of the liquid is lower than the thermal conductivity of the solid, and applied the magnetic field and current to the molten metal and stirred to thereby reduce the drawing speed (casting speed). Even if the sump is deepened when it is raised, cracks are prevented from occurring.
  • the heat transfer is performed more smoothly as the temperature gradient proportional to the difference between the high temperature side temperature TH and the low temperature side temperature TL increases.
  • FIG. 24 is a longitudinal explanatory view at a certain point in one process in which a molten metal (liquid) is changed into a product (solid) inside a mold in general continuous casting.
  • FIG. 25 shows the heat state of the portion surrounded by the elongated circle CIR in FIG.
  • the solid line SL indicating the temperature is for continuous casting without stirring, and the broken line BL is for stirring according to the present invention.
  • the solid line SL indicates the temperature distribution when the molten metal is not stirred
  • the broken line BL indicates the temperature distribution when the molten metal is stirred.
  • the outer side (right side in the figure) of the point b to be described later of the solid line SL shows a common temperature distribution in two cases with and without stirring.
  • the portion of the center line CL shows the highest temperature TH1, and gradually decreases toward the outer periphery, on the boundary line between the liquid portion LP and the semi-solidified layer portion MZ1. It drops to the temperature at point a.
  • the cooling rate is faster than that of the liquid portion LP, and the temperature drops to the temperature at the point b on the boundary line between the semi-solidified layer portion MZ1 and the solid portion SP.
  • the temperature rapidly decreases and reaches the temperature TL in FIG.
  • the temperature distribution in the liquid (molten metal) is almost uniform, so that the temperature gradient is almost from the center line CL to the inside of the semi-solidified layer portion MZ2. Does not occur. That is, in this case, the temperature of the center line CL is also the temperature TH2 lower than the previous temperature TH1.
  • the thickness L2 of the semi-solidified layer portion MZ2 becomes thinner by the thickness T11 than the thickness T1 by stirring.
  • This temperature TH2 continues to a point c inside the semi-solidified layer portion MZ2. In the semi-solidified layer portion MZ2, the temperature decreases from the point c to the point b. Thereafter, the temperature becomes TL as in the case of no stirring.
  • the temperature difference between the inner surface and the outer surface of the semi-solidified layer portion MZ is the temperature difference ⁇ Tn when there is no stirring, and the temperature difference ⁇ Tm when there is stirring. Therefore, when comparing the temperature gradient with and without stirring, ⁇ Tn / L1 ⁇ Tm / L2. When this is compared with Newton's law of cooling, it can be seen that the cooling rate is overwhelmingly faster with cooling.
  • the temperature distribution of the liquid portion LP is uniform, and it is desirable that the cooling is performed at a high speed.
  • the liquid phase portion LP at the top of the product, which appears during continuous casting, is not cooled by natural cooling, but is forcibly agitated, whereby the temperatures of the central portion and the peripheral portion of the liquid phase portion LP are obtained.
  • the difference is made as small as possible, and the semi-solidified layer portion MZ is made thin so as to be cooled.
  • FIG. 26 shows the prototype divided vertically after solidification.
  • the portion that was liquid was SP (LP)
  • the portion that was a semi-solidified layer portion was SP (MZ)
  • the portion that was solid was SP.
  • each center line CA, CB,... Is oriented along the thickness direction of the portion SP (MZ) that was once the semi-solidified layer portion MZ.
  • the average values a1, a2,... A5 of the zinc concentration are plotted in FIG. From FIG. 28, it was found that the thickness of the semi-solidified layer portion MZ was about 2 mm.

Abstract

[Problem] In continuous casting, to provide a product having excellent quality with high productivity. [Solution] Molten metal from a melting furnace is agitated and driven by means of a Lorentz force resulting from an intersection of a line of magnetic force from a magnet and a direct current, and is fed to a mold while the quality of the molten metal is improved, or the molten metal immediately before solidification in the mold is agitated and driven by said Lorentz force to homogenize the temperature of the molten metal immediately before solidification in the mold, thereby ultimately obtaining a high-quality product and providing a means for cooling the magnet and maintaining the performance of the magnet.

Description

溶湯攪拌装置及びそれを備えた連続鋳造装置システムMolten metal stirrer and continuous casting system provided with the same
 本発明は溶湯攪拌装置及びそれを備えた連続鋳造装置システムに関する。 The present invention relates to a molten metal stirring apparatus and a continuous casting apparatus system including the molten metal stirring apparatus.
 従来、導電性(伝導性)を有する金属の溶湯、即ち、非鉄金属(例えば、Al,Cu,Zn又はSi、あるいはこれらのうちの少なくとも2つの合金、あるいはMg合金等)の溶湯又は非鉄金属以外の金属の溶湯を連続鋳造して製品(丸棒状のインゴット等)を得ることが行われている。 Conventionally, a metal melt having conductivity (conductivity), that is, a non-ferrous metal (for example, Al, Cu, Zn or Si, or at least two of these alloys, Mg alloy, etc.) or other than a non-ferrous metal It has been practiced to obtain a product (round bar-shaped ingot or the like) by continuously casting a molten metal.
 この連続鋳造においては、例えば、溶湯を溶解炉から樋により導き、モールド(鋳型)に流し込むことが一般的に採用されていた。 In this continuous casting, for example, it has been generally adopted that a molten metal is guided from a melting furnace with a scissors and poured into a mold.
 しかしながら、本発明者だけは、従来の製造方法に対し、独自に、以下のような見解を持っている。 However, only the inventor of the present invention has the following opinions with respect to the conventional manufacturing method.
 即ち、まず、溶湯がモールドに入る際に、溶湯が空気中を落下しながら空気を巻き込んでしまう。このため、製品の品質が低下するのが避けられない。 That is, first, when the molten metal enters the mold, the molten metal entrains air while falling in the air. For this reason, it is inevitable that the quality of the product deteriorates.
 さらに、モールドから得られる製品が大型の場合(特に横断面積が大きい場合)は、製品の周辺部分と中央部分とで、溶湯の冷却速度が大きく異なる。つまり、製品の周辺部分では溶湯が急速に冷却されるのに対し、中央部分では溶湯はそれよりもゆっくりと冷却される。これにより、製品の周辺部分と中央部分における金属の結晶組織が大きく異なるものとなる。これにより、製品の機械的な特性が大幅に損なわれるのが避けられない。 Furthermore, when the product obtained from the mold is large (especially when the cross-sectional area is large), the cooling rate of the molten metal differs greatly between the peripheral portion and the central portion of the product. That is, the molten metal is rapidly cooled in the peripheral portion of the product, whereas the molten metal is cooled more slowly in the central portion. Thereby, the crystal structure of the metal in the peripheral part and the central part of the product is greatly different. As a result, it is inevitable that the mechanical characteristics of the product are greatly impaired.
 従来、本発明者以外の当業者は特には製品の品質や生産効率について大きな不満や問題点は持っていなかった。そのため本発明者以外の当業者は、製品の品質や生産効率の点から製造装置や製造方法について工夫改良を行わねばならないという問題意識を持ち合わせていなかった。しかしながら、上述のように、当業者のうちでも本発明者だけは、前記のような本発明者に独自の問題意識(課題)を持っていた。つまり、本発明者は、技術者として、今よりも、より優れた製品をより高い効率のもとに提供しなければならないという課題を持っていた。 Conventionally, those skilled in the art other than the present inventor have not had any great dissatisfaction or problems with regard to product quality or production efficiency. For this reason, those skilled in the art other than the present inventor have no awareness of the problem of having to devise and improve the manufacturing apparatus and manufacturing method in terms of product quality and production efficiency. However, as described above, only the present inventor among those skilled in the art has an original problem awareness (issue) as described above. In other words, the present inventor has had the problem that, as an engineer, a better product must be provided with higher efficiency than now.
 本発明の実施形態の溶湯攪拌装置は、
 導電性金属の溶湯をモールドに流入させて製品を連続的に成形する連続鋳造装置における前記モールドに流入させる溶湯又は前記モールド中の溶湯を攪拌するための溶湯攪拌装置であって、
 溶湯中に浸漬させる上方が開放した筒状のケースと、前記ケースに収納されるパイプと、を備え、
 前記ケースは外筒と前記外筒に収納される内筒とを有し、前記外筒と前記内筒との間には冷却用の空気を流通させる隙間が形成されており、前記内筒には前記内筒の内部と前記隙間とを連通する通気孔が穿けられて、前記内筒から前記通気孔を介して前記隙間にいたる冷却空気路が構成されており、
 前記内筒の内部には、前記パイプが被挿された状態の磁場装置が収納され、前記磁場装置は、前記磁場装置からの磁力線が前記内筒及び前記外筒を貫通して溶湯に至り、又は、溶湯中を走る磁力線が前記内筒及び前記外筒を貫通して前記磁場装置に至る、強度に磁化されており、
 さらに、前記内筒及び前記外筒を貫通し、一端が前記内筒内に露呈し、他端が前記外筒外に露呈して溶湯と接することが可能な、第1の電極を有し、前記第1の電極の前記一端は前記パイプ内を走る引出線体に電気的に導通状態に接続され、
 さらに、前記外筒に取り付けられた第2の電極を備え、前記第2の電極の前記外筒への取り付け位置は、前記第2の電極と前記第1の電極との間に溶湯を介して流れる電流が前記磁力線と交叉して溶湯を縦軸の回りに回転駆動するローレンツ力を発生させる位置に設定してある、
 ものとして構成される。
The molten metal stirring device of the embodiment of the present invention is
A molten metal stirring device for stirring molten metal in the mold or molten metal in the mold in a continuous casting apparatus for continuously forming a product by flowing a molten metal of conductive metal into the mold,
A cylindrical case with an open top that is immersed in the molten metal, and a pipe stored in the case,
The case has an outer cylinder and an inner cylinder accommodated in the outer cylinder, and a gap for flowing cooling air is formed between the outer cylinder and the inner cylinder. Has a vent hole communicating the inside of the inner cylinder and the gap, and constitutes a cooling air passage from the inner cylinder to the gap via the vent hole,
Inside the inner cylinder, a magnetic field device in which the pipe is inserted is housed, and the magnetic field device has a magnetic field line from the magnetic field device passing through the inner cylinder and the outer cylinder to the molten metal, Or, the magnetic lines of force that run in the molten metal penetrate through the inner cylinder and the outer cylinder and reach the magnetic field device, and are magnetized with strength.
Furthermore, the first electrode, penetrating the inner cylinder and the outer cylinder, one end is exposed in the inner cylinder, the other end is exposed outside the outer cylinder and can contact the molten metal, The one end of the first electrode is electrically connected to a lead wire body running in the pipe;
Furthermore, it has the 2nd electrode attached to the said outer cylinder, and the attachment position to the said outer cylinder of the said 2nd electrode is via a molten metal between the said 2nd electrode and the said 1st electrode. It is set at a position where a flowing current crosses the magnetic field lines and generates a Lorentz force that rotationally drives the molten metal around the vertical axis.
Configured as a thing.
 本発明の実施形態の溶湯攪拌装置は、
 導電性金属の溶湯をモールドに流入させて製品を連続的に成形する連続鋳造装置における前記モールドに流入させる溶湯又は前記モールド中の溶湯を攪拌するための溶湯攪拌装置であって、
 溶湯中に浸漬させる上方が開放した筒状のケースと、前記ケースに収納されるパイプと、を備え、前記パイプの下端と前記ケースの底面の内側との間に連通用の連通隙間を形成し、この連通隙間を介して前記パイプの内部と前記ケースの内部とが連通して冷却空気路が形成されており、
 前記内筒の内部には、前記パイプが被挿された状態の磁場装置が収納され、前記磁場装置は、前記磁場装置からの磁力線が前記ケースを貫通して溶湯に至り、又は、溶湯中を走る磁力線が前記ケースを貫通して前記磁場装置に至る、強度に磁化されており、
 さらに、前記ケースを貫通し、一端が前記ケースに露呈し、他端が前記ケース外に露呈して溶湯と接することが可能な、第1の電極を有し、前記第1の電極の前記一端は前記パイプ内を走る引出線体に電気的に導通状態に接続され、
 さらに、前記ケースに取り付けられた第2の電極を備え、前記第2の電極の前記ケースへの取り付け位置は、前記第2の電極と前記第1の電極との間に溶湯を介して流れる電流が前記磁力線と交叉して溶湯を縦軸の回りに回転駆動するローレンツ力を発生させる位置に設定してある、
 ものとして構成される。
The molten metal stirring device of the embodiment of the present invention is
A molten metal stirring device for stirring molten metal in the mold or molten metal in the mold in a continuous casting apparatus for continuously forming a product by flowing a molten metal of conductive metal into the mold,
A cylindrical case with an open top that is immersed in the molten metal; and a pipe that is accommodated in the case, and a communication gap is formed between the lower end of the pipe and the inside of the bottom surface of the case. The interior of the pipe communicates with the interior of the case through the communication gap to form a cooling air passage.
A magnetic field device in which the pipe is inserted is accommodated in the inner cylinder, and the magnetic field device has a magnetic field line from the magnetic field device passing through the case to the molten metal, or in the molten metal. The magnetic field lines that run through the case reach the magnetic field device, and are magnetized in strength.
Further, the first electrode has a first electrode that penetrates the case, one end is exposed to the case, and the other end is exposed to the outside of the case and can be in contact with the molten metal, and the one end of the first electrode Is electrically connected to the lead wire running through the pipe,
Furthermore, it has the 2nd electrode attached to the said case, The attachment position to the said case of the said 2nd electrode is the electric current which flows through a molten metal between the said 2nd electrode and the said 1st electrode. Is set at a position to generate Lorentz force that crosses the magnetic field lines and drives the molten metal to rotate about the vertical axis.
Configured as a thing.
 本発明の実施形態の連続鋳造装置システムは、
 上記のいずれかの溶湯攪拌装置と、溶解炉から溶湯を導く樋と、前記樋の底面に溶湯流入口が連通した状態に取り付けられたモールドと、を備え、前記溶湯攪拌装置はその下端側が前記樋における溶湯導出路内に挿入された状態に組み込まれている
 ものとして構成される。
The continuous casting apparatus system of the embodiment of the present invention is:
Any one of the molten metal stirrers, a bowl for introducing the molten metal from the melting furnace, and a mold attached in a state where a molten metal inlet is in communication with the bottom surface of the bowl, the molten metal stirring apparatus has the lower end side at the lower end side. It is configured as being incorporated in a state where it is inserted into the molten metal lead-out path in the dredger.
本発明の第1の実施形態としての連続鋳造装置の全体構成を示す一部縦断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS Partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus as the 1st Embodiment of this invention. 図1の装置における溶湯攪拌装置を縦断した縦断説明図。FIG. 2 is a longitudinal explanatory view of a molten metal stirring device in the apparatus of FIG. 図2の実施形態に対応する第7の実施形態の連続鋳造装置の全体構成を示す一部縦断面説明図。Partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus of 7th Embodiment corresponding to embodiment of FIG. 図2Aの実施形態における電流の流路を示す説明図。FIG. 2B is an explanatory diagram showing a current flow path in the embodiment of FIG. 2A. 図1の装置における溶湯攪拌装置の動作を説明する動作説明図。Operation | movement explanatory drawing explaining operation | movement of the molten metal stirring apparatus in the apparatus of FIG. 本発明の第2の実施形態としての連続鋳造装置の全体構成を示す一部縦断面説明図。The partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus as the 2nd Embodiment of this invention. 図4の装置における溶湯攪拌装置の動作を説明する動作説明図。Operation | movement explanatory drawing explaining operation | movement of the molten metal stirring apparatus in the apparatus of FIG. 本発明の第3の実施形態としての連続鋳造装置の全体構成を示す一部縦断面説明図。The partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus as the 3rd Embodiment of this invention. 図6の装置における溶湯攪拌装置の動作を説明する動作説明図。Operation | movement explanatory drawing explaining operation | movement of the molten metal stirring apparatus in the apparatus of FIG. 図1、図2の装置における溶湯攪拌装置の磁場装置の縦断説明図。The longitudinal section explanatory drawing of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 1, FIG. 図1、図2の装置における溶湯攪拌装置の磁場装置の平面説明図。Plane | planar explanatory drawing of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 1, FIG. 図1、図2の装置における溶湯攪拌装置の磁場装置の変形例の縦断説明図。FIG. 3 is a longitudinal explanatory view of a modification of the magnetic field device of the molten metal stirring device in the device of FIGS. 図1、図2の装置における溶湯攪拌装置の磁場装置の変形例の平面説明図。Plane explanatory drawing of the modification of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 1, FIG. 図4、図5の装置における溶湯攪拌装置の磁場装置の縦断説明図。FIG. 6 is a longitudinal explanatory view of a magnetic field device of a molten metal stirring device in the devices of FIGS. 4 and 5. 図4、図5の装置における溶湯攪拌装置の磁場装置の平面説明図。Plane explanatory drawing of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 4, FIG. 図6、図7の装置における溶湯攪拌装置の磁場装置の縦断説明図。Longitudinal explanatory drawing of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 6, FIG. 図6、図7の装置における溶湯攪拌装置の磁場装置の平面説明図。Plane | planar explanatory drawing of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 6, FIG. 図6、図7の装置における溶湯攪拌装置の磁場装置の底面説明図。Explanatory drawing of the bottom of the magnetic field apparatus of the molten metal stirring apparatus in the apparatus of FIG. 6, FIG. 本発明の第4の実施形態としての連続鋳造装置の全体構成を示す一部縦断面説明図。Partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus as the 4th Embodiment of this invention. 図12の装置における溶湯攪拌装置を縦断した縦断説明図。Longitudinal explanatory drawing which longitudinally cuts the molten metal stirring apparatus in the apparatus of FIG. 図12の実施形態に対応する第8の実施形態における連続鋳造装置の全体構成を示す一部縦断面説明図。Partial longitudinal cross-section explanatory drawing which shows the whole structure of the continuous casting apparatus in 8th Embodiment corresponding to embodiment of FIG. 図12、図13の装置における溶湯攪拌装置の動作を説明する動作説明図。Operation | movement explanatory drawing explaining operation | movement of the molten metal stirring apparatus in the apparatus of FIG. 12, FIG. 本発明の第5の実施形態としての連続鋳造装置に使用する溶湯攪拌装置の構成及び動作を説明する構造動作説明図。Structural operation explanatory drawing explaining the structure and operation | movement of the molten metal stirring apparatus used for the continuous casting apparatus as the 5th Embodiment of this invention. 本発明の第6の実施形態としての連続鋳造装置に使用する溶湯攪拌装置の構成及び動作を説明する構造動作説明図。Structural operation explanatory drawing explaining a structure and operation | movement of the molten metal stirring apparatus used for the continuous casting apparatus as the 6th Embodiment of this invention. 図1の溶湯攪拌装置を取り外した状態と、溶湯攪拌装置をそのまま用いる状態と、を切り替えて得た連続する1本の試作品の部分縦断説明図。The partial longitudinal cross-section explanatory drawing of one continuous prototype obtained by switching the state which removed the molten metal stirring apparatus of FIG. 1, and the state which uses a molten metal stirring apparatus as it is. 図17の試作品の一部を示す縦断説明図。18 is a longitudinal explanatory view showing a part of the prototype of FIG. 図17の試作品の異なる一部を示す縦断説明図。FIG. 18 is a longitudinal explanatory view showing a different part of the prototype of FIG. 17. 図17の試作品のさらに異なる一部を示す縦断説明図。FIG. 18 is a longitudinal explanatory view showing a further different part of the prototype of FIG. 17. 図18の試作品の一部の製造過程を示す縦断説明図。FIG. 19 is a longitudinal explanatory view showing a manufacturing process of a part of the prototype of FIG. 18. 図19の試作品の一部の製造過程を示す縦断説明図。FIG. 20 is a longitudinal explanatory view showing a manufacturing process of a part of the prototype of FIG. 19. 図20の試作品の一部の製造過程を示す縦断説明図。FIG. 21 is a longitudinal explanatory view showing a part of the manufacturing process of the prototype of FIG. 20. さらに異なる実験を説明図するための試作品の製造過程を示す縦断説明図。Furthermore, longitudinal explanatory drawing which shows the manufacture process of the prototype for demonstrating a different experiment. 図24の製造過程における溶湯(液体)、半凝固層部分、試作品(固体)の温度分布を示す温度分布説明図。The temperature distribution explanatory drawing which shows the temperature distribution of the molten metal (liquid), semi-solidified layer part, prototype (solid) in the manufacturing process of FIG. 図24に対応する試作品から取り出す試料(第1試験片)の位置関係を示す縦断説明図。FIG. 25 is a longitudinal explanatory view showing a positional relationship of a sample (first test piece) taken out from the prototype corresponding to FIG. 24. 取り出した各試料(第1試験片)からさらに取り出した試料(第2試験片)の各試料(第1試験片)における位置関係を示す縦断説明図。The longitudinal section explanatory drawing which shows the positional relationship in each sample (1st test piece) of the sample (2nd test piece) further taken out from each taken out sample (1st test piece). 取り出した試料(第2試験片)の亜鉛濃度を示すグラフ。The graph which shows the zinc concentration of the taken-out sample (2nd test piece).
 図1は本発明の第1の実施形態としての連続鋳造装置の全体構成を示し、丸棒状のインゴットを製品Pとして得る場合を示している。この図1から分かるように、この装置は、Al,Cu,Zn又はこれらのうちの少なくとも2つの合金、あるいはMg合金等の伝導体(導電体)の非鉄金属あるいはその他の金属の溶解炉(図示せず)からの溶湯Mを、樋2を介してモールド1に流入させて、最終的に製品Pを得るように構成したものである。本発明の第1の実施形態においては、最終的に得られる製品Pの品質を向上すべく、溶湯攪拌装置3を備える。つまり、樋2の終端部分における溶湯M中に溶湯攪拌装置3を所定の手段で浸漬した状態に保持している。この溶湯攪拌装置3により、追って詳しく説明するように、ローレンツ力により、図1(第1の実施形態)から分かるように、溶湯Mを溶湯攪拌装置3の回りに回転駆動させながら、モールド1中に送り込むようにしている。これとの関連発明で他の実施形態について簡単に説明すれば、溶湯攪拌装置により、図4(第2の実施形態)ではモールド1中の溶湯Mを、図6(第3実施形態)では樋2中とモールド1中の両方の溶湯Mを、ローレンツ力により、回転駆動させながらモールド1に送り込み、品質の改善された製品Pを得るように構成している。 FIG. 1 shows the overall configuration of a continuous casting apparatus as a first embodiment of the present invention, and shows a case where a round bar-like ingot is obtained as a product P. As can be seen from FIG. 1, this apparatus is a melting furnace for non-ferrous metals or other metals of conductors (conductors) such as Al, Cu, Zn, at least two of these alloys, or Mg alloys (see FIG. 1). The molten metal M from (not shown) is caused to flow into the mold 1 through the trough 2 and finally the product P is obtained. In 1st Embodiment of this invention, in order to improve the quality of the product P finally obtained, the molten metal stirring apparatus 3 is provided. That is, the molten metal stirring device 3 is held in a state immersed in the molten metal M at the end portion of the trough 2 by a predetermined means. As will be described in detail later by this molten metal stirring device 3, while rotating the molten metal M around the molten metal stirring device 3 by the Lorentz force, as can be seen from FIG. 1 (first embodiment), To send it to. The other embodiment will be briefly described in connection with this invention. The molten metal stirring device is used to change the molten metal M in the mold 1 in FIG. 4 (second embodiment), and in FIG. 6 (third embodiment). Both the molten metal M in the mold 2 and the mold 1 are sent to the mold 1 while being rotationally driven by Lorentz force to obtain a product P with improved quality.
 以下に本発明の第1の実施形態についてより詳しく説明する。 Hereinafter, the first embodiment of the present invention will be described in more detail.
 図1において、溶解炉(図示せず)からの溶湯Mを樋2によりモールド1に導いている。つまり、樋2の先端(終端)にモールド1が連通状態に取り付けられている。より詳しくは、樋2の底面にモールド1の溶湯流入口が連通した状態に取り付けられており、溶湯攪拌装置1はその下端側が樋2における溶湯導出路内に挿入された状態に組み込まれている。 In FIG. 1, a molten metal M from a melting furnace (not shown) is guided to a mold 1 by a firewood 2. That is, the mold 1 is attached to the front end (end) of the flange 2 in a communicating state. More specifically, the molten metal inlet of the mold 1 is attached to the bottom surface of the bowl 2, and the molten metal stirring device 1 is incorporated in a state where the lower end side is inserted into the molten metal outlet path in the bowl 2. .
 溶湯Mは樋2からモールド1に至り、そこで冷却されていわゆる固相状態の製品Pが品質が改善されたものとして得られる。この製品Pの上方にはまだ冷え切っていないいわゆる液相状態の溶湯Mが存在している。つまり、図1から分かるように、モールド1中においては、上部が液相状態の溶湯M、下部が固相状態の製品Pとなっており、これらは下に凸の放物面状の界面Iを作って互いに接している。 The molten metal M reaches from the bowl 2 to the mold 1 and is cooled there to obtain a so-called solid phase product P having improved quality. Above this product P is a so-called liquid-phase molten metal M that has not yet cooled down. That is, as can be seen from FIG. 1, in the mold 1, the upper part is a molten metal M in a liquid phase state and the lower part is a product P in a solid phase state. Make and touch each other.
 前記樋2中に、溶湯攪拌装置3が、所望の手段により浮かした状態に、保持されている。溶湯攪拌装置1は樋2及びモールド1に対して図1中上下に位置調節可能にされている。よって、図1では溶湯攪拌装置3の下端が少しモールド1中に入り込んだ状態となっているが溶湯攪拌装置3をその全てが樋2中だけに存するように保持すること等もできる。この溶湯攪拌装置3の縦断説明図が図2に示され、その拡大図が動作説明図として図3に示される。 The molten metal stirring device 3 is held in the bowl 2 in a state of being floated by a desired means. The position of the molten metal stirring device 1 can be adjusted up and down in FIG. Therefore, in FIG. 1, the lower end of the molten metal stirring device 3 is slightly in the mold 1, but the molten metal stirring device 3 can be held so that all of the molten metal stirring device 3 exists only in the tub 2. A longitudinal explanatory view of the molten metal stirring device 3 is shown in FIG. 2, and an enlarged view thereof is shown in FIG. 3 as an operation explanatory view.
 特に図3から分かるように、溶湯攪拌装置3は、二重構造で上方が開放したほぼ筒状のケース6と、このケース6に収納される永久磁石18を有する磁場装置7と、ケース6に付設される一対の電極(第1の電極24、第2の電極25)を有する電極部8とを有する。前記溶湯攪拌装置3は、溶湯Mの高温性に着目し圧縮空気により空冷可能な空冷構造を有するものとして構成されている。この空冷により、例えば、磁場装置7の永久磁石18はその能力を維持発揮可能とされている。 In particular, as can be seen from FIG. 3, the molten metal stirring device 3 includes a substantially cylindrical case 6 having a double structure and an open top, a magnetic field device 7 having a permanent magnet 18 accommodated in the case 6, and a case 6. And an electrode portion 8 having a pair of attached electrodes (first electrode 24, second electrode 25). The molten metal stirrer 3 is configured to have an air cooling structure that can be cooled with compressed air by paying attention to the high temperature property of the molten metal M. By this air cooling, for example, the permanent magnet 18 of the magnetic field device 7 can maintain its ability.
 より詳しくは、特に図3において、前記ケース6は、共に耐火材で、上方が開放した筒状のものとして作られた外筒11と内筒12を有する。外筒11と内筒12の間には、冷却用の圧縮空気を流すための隙間14を形成している。さらに、この冷却用の空気を通すため、内筒12の底部には同心円上に複数の通気孔12aを穿設して、内筒12の内部と前記隙間14とを連通させている。これにより、内筒12Cから前記通気孔12aを介して前記隙間14、さらには大気にいたる冷却空気路が構成されることになる。つまり、図3から分かるように、冷却用の圧縮空気は、矢印AR1に示すように、内筒12の内部に上方から流入し、底部に達し、前記通気孔12aから前記隙間14の底部に至り、その隙間14を上昇し、やがて大気中に放出される。この間に圧縮空気は、流路内で熱交換を行い、磁場装置7等を冷却する。前記外筒11におけるフランジ部分により、溶湯攪拌装置3は所望の外部の固定装置に固定可能とされている。また、この溶湯攪拌装置3は、樋2及びモールド1中への浸漬の深さを適宜調節可能とされている。これにより、現場において、用いる溶湯Mの物性等に応じて前記浸漬深さを調節して、より適切に溶湯Mを攪拌可能とすることができる。 More specifically, in FIG. 3 in particular, the case 6 has an outer cylinder 11 and an inner cylinder 12 which are made of a fire-resistant material and open in a cylindrical shape. A gap 14 for flowing compressed air for cooling is formed between the outer cylinder 11 and the inner cylinder 12. Further, in order to allow this cooling air to pass, a plurality of vent holes 12a are formed concentrically at the bottom of the inner cylinder 12 so that the inside of the inner cylinder 12 communicates with the gap 14. Thereby, the cooling air path from the inner cylinder 12C to the gap 14 and further to the atmosphere via the vent hole 12a is formed. That is, as can be seen from FIG. 3, the compressed air for cooling flows into the inner cylinder 12 from above as shown by an arrow AR1, reaches the bottom, reaches the bottom of the gap 14 from the vent hole 12a. The gap 14 rises and is eventually released into the atmosphere. During this time, the compressed air exchanges heat in the flow path to cool the magnetic field device 7 and the like. The molten metal stirring device 3 can be fixed to a desired external fixing device by the flange portion of the outer cylinder 11. Further, the molten metal stirring device 3 can appropriately adjust the depth of immersion in the trough 2 and the mold 1. Thereby, the said immersion depth can be adjusted according to the physical property etc. of the molten metal M to be used on the spot, and the molten metal M can be stirred more appropriately.
 この磁場装置7は、図3から分かるように、ステンレス製のパイプ16が被挿された状態で、内筒12内に収納されている。磁場装置7の詳細は図8a、図8bに示される。つまり、磁場装置7は一体構成の筒状の永久磁石18として構成され、中心軸部分に前記パイプ16を貫通させるための貫通孔18aを有する。永久磁石18は、中心側がS極に、外周側がN極に磁化されている。(磁化の方向は前記とは逆であってもよいのは当然である。この場合には必要に応じて後述する外部電源盤27により電流を流す方向を変えることもできる。)これにより、図3からわかるように、この磁場装置7からは磁力線MLが放射状に出て、樋2中の溶湯M中を走ることとなる。なお、磁場装置7の構成は図8a、図8bのものに限るものではなく、図3に示すように磁力線MLが出るものであれば良い。例えば、図9a、図9bにその一例が示される。これらの図における永久磁石18は上下に長い棒状の複数の永久磁石片19を有する。各永久磁石片19の磁化の態様は図9a、図9bに示される。それらの各永久磁石片19を平面的に見て同心円状に並べたものとして磁場装置7が構成される。前述のように、前記磁場装置7は、図3からわかるように、前記パイプ16が被挿された状体で前記内筒12内に収納される。これにより、前記磁場装置7は、放射状に磁力線MLを出し、この磁力線MLは樋2内の溶湯Mに至りその中を走る。前記圧縮空気は前記内筒12内を流れるときに、磁場装置7等を冷却しながら前記通気孔12aに至る。 As can be seen from FIG. 3, the magnetic field device 7 is housed in the inner cylinder 12 with a stainless steel pipe 16 inserted. Details of the magnetic field device 7 are shown in FIGS. 8a and 8b. That is, the magnetic field device 7 is configured as an integrally configured cylindrical permanent magnet 18 and has a through hole 18a for allowing the pipe 16 to pass through the central axis portion. The permanent magnet 18 is magnetized to the south pole on the center side and to the north pole on the outer peripheral side. (Naturally, the direction of magnetization may be opposite to that described above. In this case, the direction of current flow can be changed by the external power supply panel 27 described later if necessary.) As can be seen from FIG. 3, magnetic field lines ML appear radially from the magnetic field device 7 and run in the molten metal M in the bowl 2. Note that the configuration of the magnetic field device 7 is not limited to that shown in FIGS. 8a and 8b, but may be any as long as the magnetic field lines ML appear as shown in FIG. For example, an example is shown in FIGS. 9a and 9b. The permanent magnets 18 in these drawings have a plurality of bar-like permanent magnet pieces 19 that are long in the vertical direction. The mode of magnetization of each permanent magnet piece 19 is shown in FIGS. 9a and 9b. The magnetic field device 7 is configured as a concentric arrangement of the permanent magnet pieces 19 as viewed in plan. As described above, the magnetic field device 7 is housed in the inner cylinder 12 in a state in which the pipe 16 is inserted, as can be seen from FIG. Thereby, the said magnetic field apparatus 7 emits the magnetic force line ML radially, and this magnetic force line ML reaches the molten metal M in the tub 2 and runs through it. When the compressed air flows through the inner cylinder 12, the compressed air reaches the vent hole 12a while cooling the magnetic field device 7 and the like.
 図3から分かるように、前記ステンレス製の前記パイプ16の内部には、引き出し線体として機能する、銅等の導電性材製の案内杆22が収納されている。この案内杆22の下端にはタングステン又はグラファイト等で構成された第1の電極24が電気的に導通した状態に取り付けられている。この第1の電極24は、前記内筒12及び前記外筒11を液密状態(少なくとも溶湯密状態)に貫通し、その先端(下端)を外部に露呈し、樋2中の溶湯Mに接触可能とされている。 As can be seen from FIG. 3, a guide rod 22 made of a conductive material such as copper, which functions as a lead wire body, is accommodated in the stainless steel pipe 16. A first electrode 24 made of tungsten, graphite or the like is attached to the lower end of the guide rod 22 in an electrically conductive state. The first electrode 24 penetrates the inner cylinder 12 and the outer cylinder 11 in a liquid-tight state (at least in a molten-metal state), exposes the tip (lower end) to the outside, and contacts the molten metal M in the bowl 2. It is possible.
 前記第1の電極24と対をなす、グラファイト等により例えばリング状に構成された第2の電極25が前記外筒11の外周面に着脱可能挿入された状態に取り付けられている。これにより、溶湯攪拌装置3を前記樋2の溶湯M中に浸漬した状態にあっては、図3に示すように、第2の電極25から第1の電極24へ溶湯Mを介して電流iが流れる。これにより、前記磁場装置7からの磁力線MLと、第1の電極24と第2の電極25との間を流れる電流iと、が交叉してローレンツ力を発生させる。これにより、図1に示すように、樋2中の溶湯Mが回転駆動される。なお、前記第2の電極25は必要に応じて、例えば損耗時等には、別のものと交換可能である。 The second electrode 25 configured in a ring shape by graphite or the like, which is paired with the first electrode 24, is attached to the outer peripheral surface of the outer cylinder 11 so as to be detachably inserted. As a result, when the molten metal stirring device 3 is immersed in the molten metal M of the tub 2, the current i is transferred from the second electrode 25 to the first electrode 24 via the molten metal M as shown in FIG. Flows. As a result, the magnetic field lines ML from the magnetic field device 7 and the current i flowing between the first electrode 24 and the second electrode 25 intersect to generate Lorentz force. Thereby, as shown in FIG. 1, the molten metal M in the tub 2 is rotationally driven. The second electrode 25 can be replaced with another one as necessary, for example, when worn.
 樋2中の溶湯Mは回転駆動つまり攪拌されることにより以下のような利点が得られる。 The molten metal M in the cocoon 2 is rotationally driven, that is, stirred, and the following advantages are obtained.
 先ず、内部に存在する不純物が溶湯M中を上昇して表面部分に集まり、表面部分以外の溶湯Mつまりモールド1中に流れ込む溶湯Mの品質向上が行われる。これにより、モールド1で得られる製品Pの品質の向上が図られる。 First, the impurities existing inside rise in the molten metal M and gather in the surface portion, and the quality of the molten metal M other than the surface portion, that is, the molten metal M flowing into the mold 1 is improved. Thereby, the quality of the product P obtained with the mold 1 is improved.
 また、溶湯Mは樋2中で攪拌されることにより、回転しながらモールド1中に流れ込むことになる。これにより、溶湯Mはモールド1内でも回転することとなる。つまり溶湯Mはモールド1内においても間接的に回転駆動されることになる。このモールド1内での回転により、溶湯Mは、内部部分と外部部分との温度の平均化がなされた状態で固化していく。これにより、前記のように溶湯M中の不純物が除去されていることと相俟って、製品Pはより品質の優れたものとして得られる。このような品質改善のメカニズムは、以下に説明する他の実施形態や変形例においても全て当てはまる。 Further, the molten metal M is stirred in the bowl 2 and flows into the mold 1 while rotating. As a result, the molten metal M also rotates in the mold 1. That is, the molten metal M is indirectly rotated in the mold 1 as well. Due to the rotation in the mold 1, the molten metal M is solidified in a state where the temperatures of the inner part and the outer part are averaged. Thereby, coupled with the removal of impurities in the molten metal M as described above, the product P can be obtained with a higher quality. Such a quality improvement mechanism is also applicable to other embodiments and modifications described below.
 図1に戻って説明するに、前記第1の電極24と第2の電極25は外部電源盤27に接続され、所望の直流電流が供給可能とされている。外部電源盤27により供給電流量は加減調節可能にされており、極性も切り替え可能とされている。極性の切り替えにより、樋2、モールド1中での溶湯Mの回転方向を逆とすることができる。このような制御は、現場において溶湯Mの攪拌状態を見ながら行うこともでき、これにより、用いる溶湯Mの特性毎に個別に制御して、用いる溶湯Mの特性に左右されず、より高品質の製品Pを得ることができる。しかもこのような制御は、外部電源盤27での簡単な操作で可能であり、現場での有用性は極めて高い。 Referring back to FIG. 1, the first electrode 24 and the second electrode 25 are connected to an external power supply panel 27 so that a desired DC current can be supplied. The amount of supplied current can be adjusted by the external power supply panel 27, and the polarity can also be switched. By rotating the polarity, the rotation direction of the molten metal M in the trough 2 and the mold 1 can be reversed. Such control can also be performed while observing the stirring state of the molten metal M in the field, thereby individually controlling each characteristic of the molten metal M to be used, not depending on the characteristics of the molten metal M to be used, and higher quality. Product P can be obtained. In addition, such control is possible by a simple operation on the external power supply panel 27, and its usefulness in the field is extremely high.
 前記モールド1の内部には、例えば図1から分かるように、冷却水を循環させる循環路1aが形成されている。この循環路1aのうちの前記製品Pに対向する複数の箇所を外部に貫通する冷却水口1bとしている。これらの冷却水口1bから放出される冷却水により冷却されながら製品Pが製造されることになる。而して、前述のように、モールド1中においても溶湯Mは回転駆動されるので、温度の均一化を図って、より高品質の製品Pを得ることができる。なお、前記界面Iの形状が図1に示されるように下に凸の放物面状になるのは、溶湯Mの外部部分と内部部分との冷却速度が異なることに起因する。製品Pが大型化つまり横断面の差し渡しが大きくなるに従って界面Iの放物面の頂点近傍のカーブがより急峻なものとなる。また、製品Pの引き抜き速度が上がるほど、同じく、前記がより急峻なものとなる。これにより、外部部分と内部部分との冷却速度の差がより大きくなる。これにより、製品Pの内部的な品質にばらつきが生じるのが避けられない。しかしながら、前述のように、モールド1内でも溶湯Mを攪拌して温度の均一化を図っていることから、樋2中で不純物の除去も行われていることと相俟って、より高品質の製品を得ることができる。 In the mold 1, for example, as can be seen from FIG. 1, a circulation path 1a for circulating cooling water is formed. A plurality of locations facing the product P in the circulation path 1a are used as cooling water ports 1b penetrating to the outside. The product P is manufactured while being cooled by the cooling water discharged from these cooling water ports 1b. Thus, as described above, since the molten metal M is driven to rotate in the mold 1 as well, it is possible to obtain a higher quality product P by making the temperature uniform. The reason why the shape of the interface I is a downwardly convex paraboloid as shown in FIG. 1 is that the cooling rate of the outer portion and the inner portion of the molten metal M is different. As the product P increases in size, that is, when the cross section is increased, the curve near the apex of the paraboloid of the interface I becomes steeper. Similarly, the higher the drawing speed of the product P, the sharper the above. Thereby, the difference of the cooling rate of an external part and an internal part becomes larger. This inevitably causes variations in the internal quality of the product P. However, as described above, the molten metal M is also stirred in the mold 1 so as to make the temperature uniform, and in combination with the removal of impurities in the tub 2, higher quality is achieved. You can get a product.
 以上の説明で本発明の第1の実施形態の動作は理解できると思うが、以下にも簡単に説明する。 Although the operation of the first embodiment of the present invention can be understood from the above description, it will be briefly described below.
 図1の外部電源盤27から、図3に示すように、一対の電極(第1の電極24、第2の電極25)間に電流iを流す。この電流iは磁力線MLと交叉してローレンツ力fを発生させる。このローレンツ力fにより樋2中の溶湯M(及びモールド1中の少しの溶湯M)が図1に示すように回転駆動される。これにより溶湯Mは回転しながらモールド1中に流入し、モールド1中でも回転しながら、冷却水口1bからの冷却水で冷却されて固化し、製品Pとなる。ここで、外部電源盤27からの電流量を加減することにより、樋2中及びモールド1中での溶湯Mの回転速度を加減することができる。つまり、溶解炉(図示せず)から流れてくる溶湯Mの品質、性質、成分等はいつも同じではないが、用いる溶湯Mの品質、性質等に応じて、前記電流量を加減して、溶湯Mの物性に拘わらず、より適切な品質の製品Pを得ることができる。また、前記電流iの流れる向きを小刻みに変えることにより、溶湯Mの樋2中での回転方向を極短時間で変えて、いわゆる振動状態とすることもでき、これにより不純物の除去をより促進することもできる。 1, current i flows between a pair of electrodes (first electrode 24 and second electrode 25) as shown in FIG. 3 from the external power supply panel 27 of FIG. This current i crosses the magnetic field line ML to generate a Lorentz force f. Due to the Lorentz force f, the molten metal M in the bowl 2 (and a little molten metal M in the mold 1) is rotationally driven as shown in FIG. As a result, the molten metal M flows into the mold 1 while rotating, and is cooled and solidified by cooling water from the cooling water port 1b while rotating in the mold 1 to become a product P. Here, by adjusting the amount of current from the external power supply panel 27, the rotational speed of the molten metal M in the trough 2 and in the mold 1 can be adjusted. That is, the quality, properties, components, etc. of the molten metal M flowing from the melting furnace (not shown) are not always the same, but the amount of current is adjusted depending on the quality, properties, etc. of the molten metal M used. Regardless of the physical properties of M, a product P having more appropriate quality can be obtained. In addition, by changing the flow direction of the current i in small increments, the rotation direction of the molten metal M in the trough 2 can be changed in a very short time to make a so-called vibration state, thereby further promoting the removal of impurities. You can also
 次に、本発明の第2の実施形態について説明する。 Next, a second embodiment of the present invention will be described.
 本発明の第2の実施形態は、特に図4から分かるように、溶湯攪拌装置3Aに搭載した永久磁石18A(図5参照)により、樋2内の溶湯Mではなく、モールド1内の固化前の溶湯Mを回転駆動するようにしたものである。モールド1内の溶湯Mを攪拌しても、前記本発明の第1の実施形態での説明からも分かるように、本発明の第1の実施形態の場合とほぼ同様の作用効果を得ることができるのは明らかである。 In the second embodiment of the present invention, as can be seen from FIG. 4 in particular, the permanent magnet 18A (see FIG. 5) mounted on the molten metal stirring device 3A is not the molten metal M in the bowl 2, but before the solidification in the mold 1. The molten metal M is rotationally driven. Even if the molten metal M in the mold 1 is agitated, as can be seen from the description in the first embodiment of the present invention, it is possible to obtain substantially the same operational effects as in the case of the first embodiment of the present invention. Obviously you can.
 以下には本発明の第1の実施形態と異なる点を主体的に説明する。図4の本発明の第2の実施形態に搭載された溶湯攪拌装置3Aは、図5に、縦断拡大動作説明図が示される。この図5に示された溶湯攪拌装置3Aが、図3に示す溶湯攪拌装置3と異なる点は、両方の図の比較から容易に分かるように、磁力線MLの出る方向だけであり、その他の構成はほぼ同じである。つまり、図5の磁場装置7Aの永久磁石18Aは、図中下方に磁力線MLを出している。この磁場装置7Aの詳細は図10a、図10bに示される。図10aは縦断面図、図10bは平面図である。これらの図から分かるように、外形は図8a、図8bとほぼ同様であるが、磁化の態様が異なり、円筒状体の上部がS極に、下部がN極に磁化されている。 Hereinafter, differences from the first embodiment of the present invention will be mainly described. The melt stirring apparatus 3A mounted in the second embodiment of the present invention shown in FIG. 4 is shown in FIG. The melt stirrer 3A shown in FIG. 5 differs from the melt stirrer 3 shown in FIG. 3 only in the direction in which the lines of magnetic force ML appear, as can be easily seen from the comparison of both figures. Are almost the same. That is, the permanent magnet 18A of the magnetic field device 7A in FIG. Details of the magnetic field device 7A are shown in FIGS. 10a and 10b. 10a is a longitudinal sectional view, and FIG. 10b is a plan view. As can be seen from these drawings, the outer shape is almost the same as that of FIGS. 8a and 8b, but the mode of magnetization is different, and the upper part of the cylindrical body is magnetized to the S pole and the lower part is magnetized to the N pole.
 図5から分かるように、磁場装置7Aからの磁力線MLと、一対の電極(第1の電極24、第2の電極25)間に流れる電流iと、は磁場装置7Aの外筒11の底面の外側で交叉する。これにより生じるローレンツ力fにより、モールド1内の溶湯Mは、図4に示すように回転駆動される。 As can be seen from FIG. 5, the magnetic field lines ML from the magnetic field device 7A and the current i flowing between the pair of electrodes (the first electrode 24 and the second electrode 25) are on the bottom surface of the outer cylinder 11 of the magnetic field device 7A. Cross on the outside. Due to the Lorentz force f generated thereby, the molten metal M in the mold 1 is rotationally driven as shown in FIG.
 前に述べたように、この本発明の第2の実施形態において、上記した以外の構成及び動作は、本発明の第1の実施形態のものとほぼ同じであるので詳しい説明は省略する。 As described above, in the second embodiment of the present invention, the configuration and operation other than those described above are substantially the same as those of the first embodiment of the present invention, and thus detailed description thereof is omitted.
 次に、本発明の第3の実施形態について説明する。 Next, a third embodiment of the present invention will be described.
 本発明の第3の実施形態は、特に図6から分かるように、溶湯攪拌装置3Bに搭載した永久磁石18B1,18B2(図7参照)により、樋2内の溶湯Mと、モールド1内の固化前の溶湯Mと、の両方の溶湯Mを共に直接的に回転駆動するものである。樋2中の溶湯Mとモールド1内の溶湯Mとを共に直接的に攪拌するものであるため、前記本発明の第1の実施形態及本発明の第2の実施形態の場合とほぼ同様の又はそれ以上の作用効果を得ることができるのは明らかである。 As can be seen from FIG. 6 in particular, the third embodiment of the present invention uses the permanent magnets 18B1, 18B2 (see FIG. 7) mounted on the molten metal stirring device 3B to solidify the molten metal M in the bowl 2 and the mold 1. Both the previous molten metal M and both molten metals M are directly driven to rotate. Since both the molten metal M in the bowl 2 and the molten metal M in the mold 1 are directly agitated, they are almost the same as those in the first embodiment of the present invention and the second embodiment of the present invention. Obviously, it is possible to obtain an action effect or more.
 より詳しくは、図6の溶湯攪拌装置3Bは、図7にその縦断拡大動作説明図が示される。この図7に示された溶湯攪拌装置3B(第3の実施形態)は、図3に示す溶湯攪拌装置3(第1の実施形態)及び図5に示す溶湯攪拌装置3B(第2の実施形態)の両方の機能を併せ持つものとして構成されている。その具体的な構成は、図7から分かるように、磁場装置7Bは、共に円筒状の第1の永久磁石18B1と第2の永久磁石18B2を非磁性材のスペーサ30を介して上下に積み重ねた状態に一体に固定されたものとして構成されており、それらの詳細は図11a(縦断説明図)、図11b(上面図)、図11c(底面図)に示される。図11a、図11bから分かるように、第1の永久磁石18B1は、図9a、図9bに示すものと同様に、複数の永久磁石片19から構成され、内側がS極に、外側がN極とされている。また、図11a、図11cから分かるように、第2の永久磁石18B2は、図10a、図10bに示すものと同様に、上側がN極、下側がS極に磁化されている。これらの第1の永久磁石18B1と第2の永久磁石18B2とがスペーサ30を挟んで一体に構成されている。 More specifically, FIG. 7 shows a longitudinally enlarged operation explanatory view of the molten metal stirring device 3B of FIG. The molten metal stirring device 3B (third embodiment) shown in FIG. 7 includes the molten metal stirring device 3 (first embodiment) shown in FIG. 3 and the molten metal stirring device 3B (second embodiment) shown in FIG. ) Is configured to have both functions. As can be seen from FIG. 7, in the magnetic field device 7B, the cylindrical first permanent magnet 18B1 and the second permanent magnet 18B2 are stacked one above the other through spacers 30 made of nonmagnetic material. The details are shown in FIGS. 11a (longitudinal explanatory view), FIG. 11b (top view), and FIG. 11c (bottom view). As can be seen from FIGS. 11a and 11b, the first permanent magnet 18B1 is composed of a plurality of permanent magnet pieces 19 similar to those shown in FIGS. 9a and 9b, with the inside being the S pole and the outside being the N pole. It is said that. As can be seen from FIGS. 11a and 11c, the second permanent magnet 18B2 is magnetized with the N pole on the upper side and the S pole on the lower side, as shown in FIGS. 10a and 10b. The first permanent magnet 18B1 and the second permanent magnet 18B2 are integrally configured with the spacer 30 interposed therebetween.
 図7から分かるように、磁場装置7Bの永久磁石18B1からの磁力線MLと、一対の電極(第1の電極24、第2の電極25)間に流れる電流iと、は外筒11の側面の外側で交叉する。また、磁場装置7Bの第2の永久磁石18B2からの磁力線MLと、一対の電極(第1の電極24、第2の電極25)間に流れる電流iと、は磁場装置7Aの外筒11の側面の外側で交叉する。これにより生じる2種類のローレンツ力fにより、図6に示すように、樋2中では磁場装置7Bの外周面の外側で、及び、モールド1中では底面の外側で、それぞれ回転駆動される。 As can be seen from FIG. 7, the magnetic field lines ML from the permanent magnet 18 </ b> B <b> 1 of the magnetic field device 7 </ b> B and the current i flowing between the pair of electrodes (first electrode 24, second electrode 25) are on the side surface of the outer cylinder 11. Cross on the outside. The magnetic field lines ML from the second permanent magnet 18B2 of the magnetic field device 7B and the current i flowing between the pair of electrodes (the first electrode 24 and the second electrode 25) are those of the outer cylinder 11 of the magnetic field device 7A. Cross on the outside of the side. As shown in FIG. 6, the two types of Lorentz forces f generated thereby rotate and drive the outer side of the outer peripheral surface of the magnetic field device 7B in the cage 2 and the outer side of the bottom surface in the mold 1, respectively.
 この本発明の第3の実施形態において、上記した以外の構成及び動作は、本発明の第1及び2の実施形態のものとほぼ同じであるので詳しい説明は省略する。 In the third embodiment of the present invention, the configuration and operation other than those described above are substantially the same as those of the first and second embodiments of the present invention, and thus detailed description thereof is omitted.
 以上に説明した本発明の第1乃至3の実施形態では、ケース6を外筒11と内筒12の二重構造とすると共に両者の間に隙間14を作り、ここに冷却用の圧縮空気を流通させるようにしていた。しかしながら、外筒11と内筒12とを隙間無く密着状態に重ね合わせてケース6の強度を高めることもできる。この場合には、冷却用の空気の流路は別に確保される。この技術思想を具現した本発明の第4乃至6の実施形態は、図12乃至図16に示される。これらの実施形態では、冷却用の圧縮空気をパイプ16Cから送り込むようにしている。 In the first to third embodiments of the present invention described above, the case 6 has a double structure of the outer cylinder 11 and the inner cylinder 12, and a gap 14 is formed between the two, and compressed air for cooling is provided here. I tried to distribute it. However, the strength of the case 6 can also be increased by overlapping the outer cylinder 11 and the inner cylinder 12 in close contact with each other without a gap. In this case, a separate cooling air flow path is secured. Fourth to sixth embodiments of the present invention that embody this technical idea are shown in FIGS. In these embodiments, the compressed air for cooling is fed from the pipe 16C.
 次に、まず、本発明の第4の実施形態について説明する。 Next, a fourth embodiment of the present invention will be described first.
 本発明の第4の実施形態は、図12乃至図14に示される。特に図14から分かるように、この実施形態は、溶湯攪拌装置3Cに搭載した永久磁石18Cによりモールド1内の固化前の溶湯Mを回転駆動するものである。この本発明の第4の実施形態では、図8a、図8bに示すと同等の永久磁石を用いている。この図14(本発明の第4の実施形態)の溶湯攪拌装置3Cが、図3(本発明の第1の実施形態)の溶湯攪拌装置3と異なる点は、ケース6Cを外筒11Cと内筒12Cを隙間無く重合することにより構成した点と、冷却用の圧縮空気をやや太めに構成したパイプ16Cから送り込むようにした点にある。この内筒12Cは断熱部材により断熱筒として機能するものとして構成することもできる。このパイプ16Cの下端と内筒12Cの底面との間には連通用の連通隙間が形成されている。これにより、この連通隙間を介して前記パイプの内部と前記ケースの内部とが連通して冷却空気路が形成されており、この連通隙間を介して前記パイプの内部と前記内筒の内部とが連通して冷却空気路が形成されることになる。これにより、パイプ16Cに送り込まれた圧縮空気は、矢印AR2に示すように、パイプ16Cの下端からパイプ16Cと内筒12Cの間の隙間14Cに至り、反転上昇して外部に放出される。永久磁石18C等はこの反転上昇する圧縮空気によって冷却される。 A fourth embodiment of the present invention is shown in FIGS. As can be seen from FIG. 14 in particular, in this embodiment, the melt M before solidification in the mold 1 is rotationally driven by a permanent magnet 18C mounted on the melt stirring device 3C. In the fourth embodiment of the present invention, a permanent magnet equivalent to that shown in FIGS. 8a and 8b is used. The molten metal stirring device 3C of FIG. 14 (fourth embodiment of the present invention) differs from the molten metal stirring device 3 of FIG. 3 (first embodiment of the present invention) in that the case 6C is connected to the outer cylinder 11C. The point is that the cylinder 12C is superposed without gaps, and that the compressed air for cooling is sent from the pipe 16C that is slightly thicker. The inner cylinder 12C can be configured to function as a heat insulating cylinder by a heat insulating member. A communication gap for communication is formed between the lower end of the pipe 16C and the bottom surface of the inner cylinder 12C. Thereby, the inside of the pipe communicates with the inside of the case through the communication gap to form a cooling air passage, and the inside of the pipe and the inside of the inner cylinder are connected via the communication gap. A cooling air path is formed in communication. As a result, the compressed air sent into the pipe 16C reaches the gap 14C between the pipe 16C and the inner cylinder 12C from the lower end of the pipe 16C, as shown by an arrow AR2, and is inverted and raised and discharged to the outside. The permanent magnet 18C and the like are cooled by the compressed air that rises in the reverse direction.
 この第4の実施形態におけるその他の構成及び動作は前述の実施形態と同様であるため詳しい説明は省略する。 Other configurations and operations in the fourth embodiment are the same as those in the above-described embodiment, and thus detailed description thereof is omitted.
 次に、本発明の第5の実施形態について説明する。 Next, a fifth embodiment of the present invention will be described.
 この本発明の第5の実施形態は、図4の本発明の第2の実施形態と同様に、モールド1内の溶湯Mを直接駆動しようとするものである。図15に要部としての溶湯攪拌装置3Dを示す。この本発明の第4の実施形態では、図10aに示すのと同等の永久磁石18Dによる磁場装置7Dを用いている。その他の構成及び動作は図14及び図5のものとほぼ同等であるため詳しい説明は省略する。 In the fifth embodiment of the present invention, similar to the second embodiment of the present invention shown in FIG. 4, the molten metal M in the mold 1 is directly driven. FIG. 15 shows a molten metal stirring device 3D as a main part. In the fourth embodiment of the present invention, a magnetic field device 7D using a permanent magnet 18D equivalent to that shown in FIG. 10a is used. Since other configurations and operations are substantially the same as those in FIGS. 14 and 5, detailed description thereof is omitted.
 次に、本発明の第6の実施形態について説明する。 Next, a sixth embodiment of the present invention will be described.
 この本発明の第6の実施形態は、図6の本発明の第3の実施形態と同様に、樋2内の溶湯M及びモールド1内の溶湯Mを直接駆動しようとするものである。図16に要部としての溶湯攪拌装置3Eを示す。この本発明の第6の実施形態では、図11aに示すのと同等の第1の永久磁石18E1、第2の永久磁石18E2による磁場装置7Eを用いている。その他の構成は図14及び図7のものとほぼ同等であるため詳しい説明は省略する。 In the sixth embodiment of the present invention, the molten metal M in the tub 2 and the molten metal M in the mold 1 are to be driven directly, as in the third embodiment of the present invention in FIG. FIG. 16 shows a molten metal stirring device 3E as a main part. In the sixth embodiment of the present invention, a magnetic field device 7E using a first permanent magnet 18E1 and a second permanent magnet 18E2 equivalent to those shown in FIG. 11a is used. Other configurations are almost the same as those of FIGS. 14 and 7, and detailed description thereof is omitted.
 次に、本発明の第7の実施形態について説明する。 Next, a seventh embodiment of the present invention will be described.
 この本発明の第7の実施形態は、図2Aに示され、ケース6Dにおける外筒11Dを、通電により発熱して溶湯の温度に近い数百度等になる、導電性材料で構成している。また、この導電性材料の電気抵抗は、用いる溶湯Mのそれよりも大きいものを用いている。この導電性材料としては、グラファイト等の各種の材料を用いることができ、耐火性を有し、用いる溶湯に強い材質のものであれば良い。 In the seventh embodiment of the present invention, as shown in FIG. 2A, the outer cylinder 11D in the case 6D is made of a conductive material that generates heat by energization and reaches several hundred degrees close to the temperature of the molten metal. The electric resistance of the conductive material is larger than that of the molten metal M used. As this conductive material, various materials such as graphite can be used as long as they have fire resistance and are resistant to the molten metal used.
 また、電極部8Dのうちの上部の第2の電極25Dは、図2の第2の電極25よりも上方に設けて、実際の使用時に溶湯Mに接触しないようにしている。 Also, the upper second electrode 25D in the electrode portion 8D is provided above the second electrode 25 in FIG. 2 so as not to contact the molten metal M during actual use.
 その他の構成は、実質的に、図2の実施形態と同様である。 Other configurations are substantially the same as those of the embodiment of FIG.
 この本発明の第7の実施形態においては、上記のように、外筒11Dを通電により自己発熱可能としている。その自己発熱により、例えば数百度になることを可能である。これにより、実際の使用に先立ち通電により高温状態としておけば、実際の使用に当たって直ぐに溶湯中に沈めて使用が可能で、時間の無駄を可及的に少なくすることができる。つまり、この実施形態によれば、溶湯攪拌装置3Dを溶湯中に沈めて実際に稼働させるのに、数時間待つ必要はなくなる。 In the seventh embodiment of the present invention, as described above, the outer cylinder 11D can be self-heated by energization. Due to the self-heating, it can be several hundred degrees, for example. Thereby, if it is made into a high temperature state by energization prior to actual use, it can be used immediately after being actually submerged in the molten metal, and waste of time can be reduced as much as possible. In other words, according to this embodiment, it is not necessary to wait for several hours in order to sink the molten metal stirring device 3D into the molten metal and actually operate the molten metal stirring apparatus 3D.
 図2Bは、前記溶湯攪拌装置3Dにおける電流のパスを示す説明図である。この図2Bの矢印ARDから分かるように、外部電源盤27のプラスの端子27aからの電流は、第2の電極25Dからグラファイト等の外筒11Dを通り、次いで相対的に電気抵抗の低い溶湯Mを流れ、第1の電極24に達し、外部電源盤27のマイナスの端子27bに戻る。 FIG. 2B is an explanatory diagram showing a current path in the molten metal stirring device 3D. As can be seen from the arrow ARD in FIG. 2B, the current from the positive terminal 27a of the external power supply panel 27 passes through the outer cylinder 11D such as graphite from the second electrode 25D, and then the molten metal M having a relatively low electric resistance. , Reaches the first electrode 24, and returns to the negative terminal 27b of the external power supply panel 27.
 図13Aは、本発明の第8の実施形態を示す。 FIG. 13A shows an eighth embodiment of the present invention.
 この本発明の第8の実施形態は、図13に示す装置と比較すれば、溶湯攪拌装置3Eの電極部8Eの第2の電極25Eを、図2Bの実施形態と同様に、上方に設け、ケース6Eにおける外筒11Eをグラファイト等の導電性材料で構成した例を示す。その他は、図2Bの例とほぼ同様であるため詳しい説明は省略する。 In the eighth embodiment of the present invention, as compared with the apparatus shown in FIG. 13, the second electrode 25E of the electrode portion 8E of the molten metal stirring apparatus 3E is provided on the upper side as in the embodiment of FIG. An example in which the outer cylinder 11E in the case 6E is made of a conductive material such as graphite is shown. The rest is almost the same as the example of FIG.
 以上に説明した各実施形態によれば以下のような利点が得られる。
(1)溶湯を直接攪拌するようにしたので攪拌効率が極めて高い。
(2)大型のインゴットにも効率良く対応できる。
(3)大型のインゴットの場合には複数の溶湯攪拌装置を組み込めば良い。
(4)モールド中のインゴットの前記界面までの深さは製品の引き抜き速度、サイズ等によって異なる。この場合、溶湯攪拌装置の樋、モールド中への浸漬深さを調節して、より適切に溶湯を攪拌できる。
(5)溶湯攪拌装置はコンパクトに構成することができ、これによりその設置に当たっては大きな場所を必要としない。
(6)これにより、既存のモールド装置等への適用が容易である。
(7)製品(インゴット)の結晶組織の微細化ができる。
(8)製品(インゴット)の結晶組織の均一化ができる。
(9)製品の生産速度を上げることができる。例えば、10-30%くらいの増産が可能である。
(10)溶湯を内部的に攪拌するようにしたので溶湯の酸化を防いで製品の品質を向上させることができる。
According to each embodiment described above, the following advantages are obtained.
(1) Since the molten metal is directly stirred, the stirring efficiency is extremely high.
(2) It can efficiently handle large ingots.
(3) In the case of a large ingot, a plurality of molten metal stirring devices may be incorporated.
(4) The depth of the ingot in the mold to the interface varies depending on the drawing speed and size of the product. In this case, the molten metal can be stirred more appropriately by adjusting the depth of the molten metal stirring device and the immersion depth in the mold.
(5) The molten metal stirrer can be made compact, so that a large space is not required for installation.
(6) Thereby, application to the existing mold apparatus etc. is easy.
(7) The crystal structure of the product (ingot) can be refined.
(8) The crystal structure of the product (ingot) can be made uniform.
(9) Product production speed can be increased. For example, production can be increased by 10-30%.
(10) Since the molten metal is agitated internally, oxidation of the molten metal can be prevented and the quality of the product can be improved.
 上述のように、本発明の実施形態の連続鋳造装置には各種の利点が得られる。その利点のうち製品の生産速度(生産性)の向上についてさらに説明すれば以下の通りである。 As described above, the continuous casting apparatus according to the embodiment of the present invention has various advantages. Among the advantages, the improvement of the production speed (productivity) of the product will be further described as follows.
 一般に、連続鋳造において、製品の生産性は、製品の引き抜き速度に依存する。引き抜き速度を上げれば生産性は向上する。しかしながら、引き抜き速度をある速度以上に上げると、製品の内部に縦に延びる1又は複数のクラックが発生してしまう。このクラックの存在は、例えば冷却後の製品を切断して製品の内部を観察することにより確認することができる。 Generally, in continuous casting, product productivity depends on the product drawing speed. Increasing the drawing speed increases productivity. However, when the drawing speed is increased to a certain speed or more, one or more cracks extending vertically are generated inside the product. The presence of this crack can be confirmed by, for example, cutting the cooled product and observing the inside of the product.
 このように、従来は、生産性を上げようとしても、引き抜き速度を上げることに限界があり、そのため生産性の向上を十分に図れなかった。 Thus, in the past, even if it was attempted to increase productivity, there was a limit to increasing the drawing speed, and therefore productivity could not be sufficiently improved.
 しかるに、本発明の実施形態の連続鋳造装置によれば、前記従来の連続鋳造装置における速度以上に引き抜き速度を上げても、内部にクラックの存在しない良質の製品を得ることができる。これは先に述べた説明からも理解できると思うが、本発明者は以下に説明する実験を行い実際に試作品を製造して、このことを確認した。 However, according to the continuous casting apparatus of the embodiment of the present invention, even if the drawing speed is increased beyond the speed of the conventional continuous casting apparatus, it is possible to obtain a high-quality product having no cracks inside. I think this can be understood from the above-mentioned explanation, but the present inventor conducted an experiment described below and actually manufactured a prototype to confirm this.
 また、製品の品質の良否を判断する基準として、結晶組織の微細化の程度がある。つまり、高品質の製品とは、結晶組織がより微細化されている製品といえる。結晶組織を微細化するには、溶湯を急冷すれば良い。つまり、逆に、急速に冷却しないと、結晶組織は微細化されない。 Also, as a standard for judging the quality of the product, there is a degree of refinement of the crystal structure. That is, a high-quality product can be said to be a product with a finer crystal structure. In order to refine the crystal structure, the molten metal may be rapidly cooled. In other words, the crystal structure is not refined unless cooled rapidly.
 連続鋳造の過程においては、モールドの上方部分には、溶湯の冷却により既に固化した固相部分SP(図21等SP1参照)と、これから固化する液相部分LP(図21等LP1参照)と、が界面を作って上下に隣り合って存在する。さらに、両者の界面部分には、固相と液相の中間的な性質の半凝固層部分(マッシーゾーン:Mushy Zone)MZ(図21等MZ1参照)が現れる。この半凝固層部分MZは、液相から固相へ遷移する過程の遷移層である。 In the process of continuous casting, in the upper part of the mold, a solid phase part SP that has already solidified by cooling of the molten metal (see SP1 in FIG. 21, etc.), and a liquid phase part LP to solidify in the future (see LP1 in FIG. 21, etc.) Are adjacent to each other, creating an interface. Further, a semi-solidified layer portion (Mussy zone: Mushy Zone) MZ (see MZ1 in FIG. 21, etc.) having an intermediate property between the solid phase and the liquid phase appears at the interface portion between the two. This semi-solidified layer portion MZ is a transition layer in the process of transition from the liquid phase to the solid phase.
 本発明者は、冷却が急速に行われる場合にはこの半凝固層部分MZが薄いものとして現れ、緩やかに行われる場合は厚いものとして現れる、ことを数多くの製品を製造し、その製品を切断して観察することにより独自に知得していた。よって、逆に、この半凝固層部分MZが薄い時には固相部分SPにおける結晶組織の品質は微細で良質であり、厚い時には固相部分SPにおける結晶組織の品質は粗く悪質である、と言える。つまり、半凝固層部分MZの厚さを見れば、製品の内部の結晶組織が細かい良質のものか、粗い非良質のものか、が分かる、と言える。 The inventor has produced a number of products and cut the product that the semi-solidified layer portion MZ appears as thin when cooling is performed rapidly and appears as thick when it is performed slowly. And I knew it independently by observing. Therefore, conversely, when the semi-solidified layer portion MZ is thin, the quality of the crystal structure in the solid phase portion SP is fine and good, and when it is thick, the quality of the crystal structure in the solid phase portion SP is rough and malicious. That is, it can be said that if the thickness of the semi-solidified layer portion MZ is seen, it can be seen whether the crystal structure inside the product is fine, high quality or rough, non-quality.
 しかるに、本発明の実施形態の連続鋳造装置によれば、従来の連続鋳造装置での速度以上に引き抜き速度を上げても、前記半凝固相部分MZが厚くなることはない。それは、本発明の実施形態の連続鋳造装置によれば、従来の連続鋳造装置では行われていなかったと共にそもそも不可能であった、溶湯を攪拌状態としてモールドに供給すると共にさらにこれによりモールド内で固まる直前の溶湯が攪拌されるようになったからである。つまり、本発明の実施形態の連続鋳造装置によれば、生産効率を上げても、良質の製品を得ることができる。これは、本発明者の行った以下の実験により、確かめられた。 However, according to the continuous casting apparatus of the embodiment of the present invention, the semi-solid phase portion MZ does not become thick even if the drawing speed is increased beyond the speed of the conventional continuous casting apparatus. According to the continuous casting apparatus of the embodiment of the present invention, the molten metal is supplied to the mold in a stirring state, which has not been performed in the conventional continuous casting apparatus and is impossible in the first place. This is because the melt just before it hardens is now stirred. That is, according to the continuous casting apparatus of the embodiment of the present invention, a high-quality product can be obtained even if the production efficiency is increased. This was confirmed by the following experiment conducted by the present inventors.
(実験1)
 実験の概要
 前記液相部分LPと前記半凝固層部分MZはこの後完全に固化しやがて固相部分SPのみとなる。本発明者が行った実験では、視覚的に確認可能なるように、最終的に得られる試作品TPにおいて、本来は消失してしまう、製造の過程でのみ現れる前記液相部分LP及び半凝固層部分MZが、表れるようにした。つまり、試作品TPは当然全て固体(固相)として得れるが、製造過程のある瞬間で見ると、試作品TPは、かつて液相部分LPだった第1の固体部分SP(MZ)、かつて半凝固層部分MZだった第2の固体部分SP(MZ)、かつても固体だった第3の固体部分SP(SP)の3つの固体部分からなる。本実験では、これらの3つの固体部分を、試作品TPにおいて視覚的に把握できるようにして、試作品TPの品質を容易に判定することができるようにした。
(Experiment 1)
Outline of Experiment The liquid phase portion LP and the semi-solidified layer portion MZ are then completely solidified and become only the solid phase portion SP. In the experiment conducted by the present inventor, the liquid phase portion LP and the semi-solidified layer appearing only in the manufacturing process, which are originally disappeared in the prototype TP finally obtained so as to be visually confirmed. Part MZ was made to appear. In other words, the prototype TP can be obtained entirely as a solid (solid phase). However, when viewed at a certain moment in the manufacturing process, the prototype TP is the first solid portion SP (MZ) that was once the liquid phase portion LP. It consists of three solid parts, the second solid part SP (MZ) that was the semi-solidified layer part MZ and the third solid part SP (SP) that was also solid. In this experiment, these three solid portions can be visually grasped in the prototype TP so that the quality of the prototype TP can be easily determined.
 つまり、一般には、出来上がった製品は全てが固相部分SPとなり、前記液相部分LPや半凝固層部分MZは消失し、液相部分LPと半凝固層部分MZは視覚的に確認することはできない。しかしながら、本実験では、製造の過程のある瞬間に特殊な処理を施して、出来上がった全体が固体としての製品(試作品)において、前記ある瞬間に、図18のように、かつて液相部分LPで有った部分、かつて半凝固層部分MZで有った部分、かつて固相部分SPで有った部分が視覚的に識別できるようにした。 In other words, in general, the finished product becomes all the solid phase part SP, the liquid phase part LP and the semi-solidified layer part MZ disappear, and the liquid phase part LP and the semi-solidified layer part MZ are visually confirmed. Can not. However, in this experiment, a special treatment was applied at a certain moment in the manufacturing process, and the finished product was a solid product (prototype). At the moment, the liquid phase portion LP was once shown in FIG. The portion that was once, the portion that was once the semi-solidified layer portion MZ, and the portion that was once the solid phase portion SP can be visually identified.
実験の詳細
(1)上記した本発明の連続鋳造装置の効果である生産性の向上を確認するために本発明者が行った、試作品(アルミニウムの円柱状インゴット(丸形インゴット))の製造実験について説明する。この製造実験においては、本発明の実施形態の連続鋳造装置と、本発明の実施形態の連続鋳造装置から溶湯攪拌装置3を取り外したもの(改良前の連続鋳造装置)と、を用いた。
Details of Experiment (1) Manufacture of Prototype (Aluminum Cylindrical Ingot (Round Ingot)) Performed by the Inventor to Confirm Productivity Improvement, which is the Effect of the Continuous Casting Device of the Present Invention The experiment will be described. In this production experiment, the continuous casting apparatus according to the embodiment of the present invention and the apparatus obtained by removing the molten metal stirring device 3 from the continuous casting apparatus according to the embodiment of the present invention (continuous casting apparatus before improvement) were used.
 つまり、本発明者は、図1の本発明の実施形態の連続鋳造装置を用いて試作品TPを製造するに当たり、図1の溶湯攪拌装置3を取り外した状態(改良前の連続鋳造装置)と、溶湯攪拌装置3をそのまま用いる状態(本発明の実施形態の連続鋳造装置)と、を切り替えて、図17に示す連続する1本の試作品TPを製造した。図17においては、理解を容易とするため試作品TPの一部を破断(切断)して示している。つまり、試作品TPの内部は、製造後に縦断することにより観察可能である。なお、図1の溶湯攪拌装置3に代えて、図4、図6、図12、図15及び図16の本発明の実施形態の連続鋳造装置を用いても、図17と同様の試作品TPを得ることができるのは明らかである。 In other words, the inventor manufactured the prototype TP using the continuous casting apparatus according to the embodiment of the present invention shown in FIG. 1, with the molten metal stirring apparatus 3 in FIG. 1 removed (continuous casting apparatus before improvement) and A continuous prototype TP shown in FIG. 17 was manufactured by switching between the state where the molten metal stirring device 3 is used as it is (continuous casting device according to the embodiment of the present invention). In FIG. 17, a part of the prototype TP is shown broken (cut) for easy understanding. That is, the inside of the prototype TP can be observed by being longitudinally cut after manufacture. In place of the molten metal stirring device 3 in FIG. 1, the same prototype TP as in FIG. 17 can be obtained by using the continuous casting device of the embodiment of the present invention in FIGS. 4, 6, 12, 15, and 16. It is clear that can be obtained.
 図17に示す試作品TPにおいて、第1の試作品部100は前記改良前の連続鋳造装置により製造した部分であり、第2の試作品部200は本発明の実施形態の連続鋳造装置で製造した部分である。さらに、前記第1の試作品部100は、矢印AR方向に、遅い引き抜き速度(鋳造速度)で引き抜いて得た遅い低速引抜部分50Aと、それよりも速い引き抜き速度(鋳造速度)で引き抜いて得た第1の高速引抜部分50Bと、を備える。これに対し、第2の試作品部200は、前記第1の高速引抜部分50Bと同じ引き抜き速度(鋳造速度)で引き抜いて得た第2の高速引抜部分60Bを有する。 In the prototype TP shown in FIG. 17, the first prototype 100 is a part manufactured by the continuous casting apparatus before the improvement, and the second prototype 200 is manufactured by the continuous casting apparatus according to the embodiment of the present invention. It is the part which did. Further, the first prototype part 100 is obtained by drawing in the direction of arrow AR at a slow low speed drawing portion 50A obtained by drawing at a slow drawing speed (casting speed) and at a drawing speed (casting speed) faster than that. And a first high-speed extraction portion 50B. On the other hand, the second prototype part 200 has a second high-speed drawing part 60B obtained by drawing at the same drawing speed (casting speed) as that of the first high-speed drawing part 50B.
 後述もするが、前記第1の高速引抜部分50Bと前記第2の高速引抜部分60Bとの比較から明らかなように、改良前の連続鋳造装置によって得た第1の高速引抜部分50BにはクラックCが存在しているが、本発明の連続鋳造装置によって得た第2の高速引抜部分60Bにはクラックの存在は認められなかった。つまり、本発明者が行った実験により、本発明の連続鋳造装置によれば、引き抜き速度(鋳造速度)を高速としても、内部にクラックの無い鋳造品を得ることができるのが確認できた。つまり、連続鋳造において生産性を向上させることができた。 As will be described later, as is apparent from the comparison between the first high-speed drawing portion 50B and the second high-speed drawing portion 60B, the first high-speed drawing portion 50B obtained by the continuous casting apparatus before improvement has cracks. Although C exists, the presence of cracks was not recognized in the second high-speed drawing portion 60B obtained by the continuous casting apparatus of the present invention. That is, according to the experiment conducted by the present inventor, it has been confirmed that according to the continuous casting apparatus of the present invention, a cast product having no cracks can be obtained even if the drawing speed (casting speed) is increased. That is, productivity could be improved in continuous casting.
(2)以下に、上記製造実験の詳細について説明する。実験として、第1の試作品部100における前記低速引抜部分50Aを得るための実験Aと、前記第1の高速引抜部分50Bを得るための実験Bと、第2の試作品部200における前記第2の高速引抜部分60Bを得るための実験Cと、の3つの実験を行った。 (2) Details of the production experiment will be described below. As an experiment, an experiment A for obtaining the low-speed extraction part 50A in the first prototype part 100, an experiment B for obtaining the first high-speed extraction part 50B, and the first in the second prototype part 200 Three experiments were conducted: Experiment C for obtaining two high-speed drawn portions 60B.
 前記実験A、実験B、実験Cによってそれぞれ得られたのが前記低速引抜部分50A、第1の高速引抜部分50B、第2の高速引抜部分60Bである。これらの低速引抜部分50A、第1の高速引抜部分50B、第2の高速引抜部分60Bはそれぞれ図18、図19、図20に拡大して示される。なお、図18、図19、図20はそれぞれ試作品(固体)TPの一部の断面図ではあるが、これらの図18、図19、図20から、連続鋳造装置による製造の過程における各ある瞬間のモールド1の内部の様子は、図21、図22、図23に、固体、半凝固層部分、液体の3つの相が併存するものとして把握される。それは、試作品(製品)TPは、製造の過程におけるある瞬間をそのまま表すものとして得られるからである。よって、以下では、図21、図22、図23を製品の製造過程におけるある瞬間のモールド内部の様子を示す説明図として用いて説明する。 The low-speed extraction portion 50A, the first high-speed extraction portion 50B, and the second high-speed extraction portion 60B were obtained by the experiment A, the experiment B, and the experiment C, respectively. The low speed drawing portion 50A, the first high speed drawing portion 50B, and the second high speed drawing portion 60B are shown enlarged in FIGS. 18, 19, and 20, respectively. 18, 19, and 20 are partial cross-sectional views of the prototype (solid) TP. From FIGS. 18, 19, and 20, there are various processes in the manufacturing process using the continuous casting apparatus. The state of the inside of the mold 1 at the moment is grasped in FIG. 21, FIG. 22, and FIG. 23 as three phases of solid, semi-solidified layer, and liquid coexist. This is because the prototype (product) TP is obtained as it represents a certain moment in the manufacturing process. Therefore, in the following, description will be given using FIGS. 21, 22 and 23 as explanatory diagrams showing the inside of the mold at a certain moment in the product manufacturing process.
(2)-1 先ず、図17に示す第1の試作品部100(50A、50B)を製造する実験A、Bについて説明する。試作品TPにおける低速引抜部分50A及び第1の高速引抜部分50Bの詳細は図18及び図19に示される。 (2) -1 First, Experiments A and B for manufacturing the first prototype 100 (50A and 50B) shown in FIG. 17 will be described. Details of the low speed drawing portion 50A and the first high speed drawing portion 50B in the prototype TP are shown in FIGS.
 図1の連続鋳造装置から溶湯攪拌装置3を取り除いた改良前の連続鋳造装置で引き抜きを行って製品(鋳造品)としての試作品部100を製造するに当たり、当初は引き抜き速度(鋳造速度)を低速とし、その後は高速に切り替えた。つまり、当初の低速の引き抜きによって、図17の低速引抜部分50Aが得られ、その後高速に切り替えることによって、第1の高速引抜部分50Bが得られた。 In producing the prototype part 100 as a product (casting product) by performing extraction with the continuous casting device before improvement by removing the molten metal stirring device 3 from the continuous casting device of FIG. The speed was changed to low speed and then switched to high speed. That is, the low-speed extraction part 50A of FIG. 17 was obtained by the initial low-speed extraction, and then the first high-speed extraction part 50B was obtained by switching to high speed.
 前記低速の引き抜き時における条件1(実験A)及び前記高速の引き抜き時における条件2(実験B)は下記の通りとした。また、製造過程のそれぞれのある瞬間を示す図21及び図22に示されるように、これらの条件1及び条件2の場合において現れるサンプ深さ(液相部分LPの最大深さ)d1,d2、半凝固層部分(Mushy Zone)MZの厚さt1,t2は、試作品TPを示す図18、図19から、下記の通りであったことが分かる。 The condition 1 (experiment A) at the time of the low speed drawing and the condition 2 (experiment B) at the time of the high speed drawing were as follows. Further, as shown in FIG. 21 and FIG. 22 showing a certain moment in the manufacturing process, the sump depths (maximum depth of the liquid phase portion LP) d1, d2, which appear in the case of these conditions 1 and 2, It can be seen from FIGS. 18 and 19 showing the prototype TP that the thicknesses t1 and t2 of the semi-solidified layer portion (Mushy 図 Zone) MZ were as follows.
(実験A)(条件1及び結果)
・ 材料:アルミニウム
・ 添加物:亜鉛
・ 丸形インゴットの直径Φ=355mm
・ 引き抜き速度(鋳造速度)v1=75mm/min
・ サンプ深さ(液相部分LPの最大深さ)(図21)d1=171.5mm
・ 半凝固層部分(Mushy Zone)の厚さ(図21)t1=4mm
(Experiment A) (Condition 1 and result)
・ Material: Aluminum ・ Additive: Zinc ・ Diameter of round ingot Φ = 355mm
・ Drawing speed (casting speed) v1 = 75mm / min
Sump depth (maximum depth of liquid phase portion LP) (FIG. 21) d1 = 171.5 mm
・ Thickness of semi-solidified layer (Mushy Zone) (Fig. 21) t1 = 4mm
 つまり、改良前の連続鋳造装置により、上記条件1で低速での引き抜きを行った。条件1での引き抜きが行われているある瞬間において、液相部分LP1に亜鉛を添加した。添加された亜鉛は液相部分LP1のアルミニウム中に瞬時に拡散し、合金を作り、造影剤的な役目を担った。前記添加後ある所定の時間だけ前記上記条件1で引き抜きを行った。この実験Aにより、図17及び図18の低速引抜部分50Aが得られた。この低速引抜部分50Aが得られるメカニズムについては追って説明する。 That is, drawing was performed at a low speed under the above condition 1 by the continuous casting apparatus before the improvement. Zinc was added to the liquid phase part LP1 at a certain moment when the extraction under the condition 1 was performed. The added zinc instantly diffused into the aluminum of the liquid phase part LP1, and formed an alloy, which served as a contrast agent. Drawing was performed under the above condition 1 for a predetermined time after the addition. By this experiment A, the low speed drawing part 50A of FIG.17 and FIG.18 was obtained. A mechanism for obtaining the low speed drawing portion 50A will be described later.
 前記条件1での実験Aにおけるモールド1の内部の状態は、図21から以下の通りであることが分かる。即ち、ある瞬間のモールド1中の製品の最上部(頂部)の縦断面を見ると図21に示されるようになる。図21中、下側には既に固化した固相部分SP1、上側にはこれから固化する液相部分LP1が現れる。さらに、前記2つの相の界面部分には、半凝固相部分(Mushy Zone)MZ1が現れる。図21に示すように、サンプ深さ(液相部分LP1の最大深さ)d1=171.5mm、半凝固相部分(Mushy Zone)MZ1の厚さt1=4mmとなる。この図21からわかるように、引き抜き速度(鋳造速度)が低速の場合には、液相部分LP1にはクラック(空洞)の発生は見られない。これに伴い、最終的に、図17に示す試作品TPから分かるように、クラックのない前記低速引抜部分50Aが形成される。 It can be seen from FIG. 21 that the internal state of the mold 1 in the experiment A under the condition 1 is as follows. That is, FIG. 21 shows a longitudinal section of the top (top) of the product in the mold 1 at a certain moment. In FIG. 21, a solid phase portion SP1 already solidified appears on the lower side, and a liquid phase portion LP1 to be solidified appears on the upper side. Further, a semi-solid phase portion (Mushy Zone) MZ1 appears at the interface portion between the two phases. As shown in FIG. 21, the sump depth (maximum depth of the liquid phase portion LP1) d1 = 171.5 mm and the thickness t1 of the semi-solid phase portion (Mushy Zone) MZ1 = 4 mm. As can be seen from FIG. 21, when the drawing speed (casting speed) is low, no cracks (cavities) are generated in the liquid phase portion LP1. Along with this, as can be seen from the prototype TP shown in FIG. 17, the low-speed extraction part 50A without cracks is finally formed.
(実験B)(条件2及び結果)
・ 材料:アルミニウム
・ 添加物:亜鉛
・ 丸形インゴットの直径Φ=355mm
・ 引き抜き速度(鋳造速度)v2=109mm/min
・ サンプ深さ(液相部分LPの最大深さ)(図22)d2=282.2mm
・ 半凝固層部分(Mushy Zone)の厚さ(図22)t2=5.5mm
(Experiment B) (Condition 2 and results)
・ Material: Aluminum ・ Additive: Zinc ・ Diameter of round ingot Φ = 355mm
・ Drawing speed (casting speed) v2 = 109mm / min
Sump depth (maximum depth of liquid phase portion LP) (FIG. 22) d2 = 282.2 mm
・ Thickness of semi-solidified layer (Mushy Zone) (Fig. 22) t2 = 5.5mm
 改良前の連続鋳造装置により行った前記条件1での引き抜きに続いて、同じく前記改良前前の連続鋳造装置により上記条件2でそれまでよりも高速で引き抜きを行った。前記と同様に、この条件2での引き抜きが行われているある瞬間において、液相部分LP2に亜鉛を添加した。前記と同様に、添加された亜鉛は液相部分LP2のアルミニウム中に高速で拡散し、合金を作り、造影剤的な役目を担う。この実験Bにより、図17及び図22の第1の高速引抜部分50Bが得られる。この第1の高速引抜部分50Bが得られるメカニズムについては追って説明する。 Following the drawing under the condition 1 performed by the continuous casting apparatus before the improvement, the drawing was performed at the higher speed than before by the continuous casting apparatus before the improvement under the condition 2 described above. Similarly to the above, zinc was added to the liquid phase portion LP2 at a certain moment when the extraction under the condition 2 was performed. Similarly to the above, the added zinc diffuses at high speed in the aluminum of the liquid phase part LP2, forms an alloy, and plays a role as a contrast agent. By this experiment B, the first high-speed drawing portion 50B of FIGS. 17 and 22 is obtained. A mechanism for obtaining the first high-speed drawing portion 50B will be described later.
 前記条件2での実験Bにおいて、モールド1の最上部(頂部)の縦断面は図22に示されるようになる。図22中、下側には既に固化した固相部分SP2、上側にはこれから固化する液相部分LP2が現れる。さらに、前記2つの相の界面部分には、半凝固相部分(Mushy Zone)MZ2が現れる。図22に示すように、サンプ深さ(液相部分LPの最大深さ)d2=282.2mm、半凝固層部分(Mushy Zone)MZ2の厚さt2=5.5mmとなる。この図22からわかるように、引き抜き速度(鋳造速度)が高速の場合には、液相部分LP2にクラック(空洞)の発生が見られる。これに伴い、図17に示すクラックを含む前記第1の高速引抜部分50Bが形成される。 In the experiment B under the above condition 2, the longitudinal section of the uppermost part (top) of the mold 1 is as shown in FIG. In FIG. 22, the solid phase part SP2 already solidified appears on the lower side, and the liquid phase part LP2 to be solidified appears on the upper side. Further, a semi-solid phase portion (Mushy Zone) MZ2 appears at the interface portion between the two phases. As shown in FIG. 22, the sump depth (maximum depth of the liquid phase portion LP) d2 = 282.2 mm, and the thickness t2 of the semi-solidified layer portion (Mushy Zone) MZ2 is 5.5 mm. As can be seen from FIG. 22, when the drawing speed (casting speed) is high, generation of cracks (cavities) is observed in the liquid phase portion LP2. Accordingly, the first high-speed drawing portion 50B including the crack shown in FIG. 17 is formed.
(2)-2 次に、図17の第2の試作品部200を製造する実験Cについて説明する。
 図1の本発明の連続鋳造装置で引き抜きを行って製品(鋳造品)としての試作品200を製造するに当たっての引き抜き速度(鋳造速度)は、前記第1の試作品部100における第1の高速引抜部分50Bの製造の際と同じ高速引き抜き速度(鋳造速度)とした。これにより、図17の前記第2の高速引抜部分60Bが得られた。
(2) -2 Next, Experiment C for manufacturing the second prototype part 200 of FIG. 17 will be described.
The drawing speed (casting speed) for producing the prototype 200 as a product (casting product) by performing drawing with the continuous casting apparatus of the present invention shown in FIG. 1 is the first high speed in the first prototype part 100. The same high speed drawing speed (casting speed) as that for manufacturing the drawn portion 50B was used. As a result, the second high speed drawing portion 60B of FIG. 17 was obtained.
 前記高速引き抜き時における条件3(実験C)は下記の通りとした。また、この条件3の場合において現れるサンプ深さ(液相部分LPの最大深さ)d3、半凝固層部分(Mushy Zone)の厚さt3は下記の通りであった。 The condition 3 (experiment C) at the time of the high speed drawing was as follows. Further, the sump depth (maximum depth of the liquid phase portion LP) d3 and the thickness t3 of the semi-solidified layer portion (Mushy Zone) appearing in the case of Condition 3 were as follows.
(実験C)(条件3及び結果)
・ 材料:アルミニウム
・ 添加物:亜鉛
・ 丸形インゴットの直径Φ=355mm
・ 引き抜き速度(鋳造速度)v3=102mm/min
・ サンプ深さ(液相部分LPの最大深さ)(図23)d3=276.2mm
・ 半凝固層部分(Mushy Zone)の厚さ(図23)t3=4mm
(Experiment C) (Condition 3 and results)
・ Material: Aluminum ・ Additive: Zinc ・ Diameter of round ingot Φ = 355mm
・ Drawing speed (casting speed) v3 = 102mm / min
Sump depth (maximum depth of liquid phase portion LP) (FIG. 23) d3 = 276.2 mm
・ Thickness of semi-solidified layer (Mushy Zone) (Fig. 23) t3 = 4mm
 本発明の連続鋳造装置により前記条件3での引き抜きを行った。この条件3での引き抜きが行われているある瞬間において、前記と同様に、液相部分LP3に亜鉛を添加した。前記と同様に、添加された亜鉛は液相部分LPのアルミニウム中に高速で拡散し、ある種の合金を作り、造影剤的な役目を担った。この実験Cにより、図17及び図20の第2の高速引抜部分60Aが得られた。この第2の高速引抜部分50Bが得られるメカニズムについては追って説明する。 Drawing was performed under the condition 3 using the continuous casting apparatus of the present invention. Zinc was added to the liquid phase portion LP3 in the same manner as described above at a certain moment when the extraction under the condition 3 was performed. In the same manner as described above, the added zinc diffused at high speed in the aluminum of the liquid phase portion LP to form a kind of alloy and served as a contrast agent. By this experiment C, the second high-speed drawing portion 60A shown in FIGS. 17 and 20 was obtained. The mechanism by which the second high speed drawing portion 50B is obtained will be described later.
 前記条件3での実験Cの過程は図23に示される。図23中、下側には既に固化した固相部分SP3、上側にはこれから固化する液相部分LP3が現れた。さらに、前記2つの相の界面部分には、半凝固相部分(Mushy Zone)MZ3が現れた。図23に示すように、サンプ深さ(液相部分LP3の最大深さ)d3=276.2mm、半凝固相部分(Mushy Zone)MZ3の厚さt3=4mmとなった。且つ、図23からわかるように、引き抜き速度(鋳造速度)を高速としたにも拘わらず、液相部分LP3にはクラック(空洞)の発生は見られなかった。つまり、この条件3で製品を製造した場合には、クラックの発生していない前記条件1の場合に比して、サンプ深さは増大するものの、半凝固相部分(Mushy Zone)MZ3の厚さはほとんど増加しなかった。半凝固相部分(Mushy Zone)MZ3が厚くならないことから、本発明の装置により高速での引抜鋳造を行っても、材料における熱の移動を高速化して、結晶組織の均一化及び微細化、並びに、製品の機械的強度を維持したまま、生産性の向上を図ることが予想できる。而して、実際に、図20に示すように、クラックのない前記低速引抜部分60Aを形成することができた。 The process of experiment C under the condition 3 is shown in FIG. In FIG. 23, a solid phase portion SP3 that has already solidified appears on the lower side, and a liquid phase portion LP3 that solidifies from now on appears on the upper side. Furthermore, a semi-solid phase portion (Mushy Zone) MZ3 appeared at the interface portion between the two phases. As shown in FIG. 23, the sump depth (maximum depth of the liquid phase portion LP3) d3 = 276.2 mm, and the thickness t3 = 4 mm of the semi-solid phase portion (Mushy Zone) MZ3. As can be seen from FIG. 23, no cracks (cavities) were observed in the liquid phase portion LP3, although the drawing speed (casting speed) was increased. That is, when the product is manufactured under the condition 3, the thickness of the semi-solid phase portion (Mushy Zone) MZ3 is increased although the sump depth is increased as compared with the case of the condition 1 where no crack is generated. There was little increase. Since the semi-solid phase part (Mushy Zone) MZ3 does not become thick, even if high speed drawing casting is performed by the apparatus of the present invention, the heat transfer in the material is accelerated, the crystal structure becomes uniform and refined, and It can be expected that productivity will be improved while maintaining the mechanical strength of the product. Thus, as shown in FIG. 20, it was possible to form the low-speed drawing portion 60A without cracks.
 以上に説明したところから分かるように、先に段落〔0046〕の(9)で説明したように、本発明の連続鋳造装置によれば、改良前の連続鋳造装置に比して、約30%程度、製品の引抜速度を上げることができた。 As can be seen from the above description, as explained in paragraph (0046) (9) above, according to the continuous casting apparatus of the present invention, about 30% as compared with the continuous casting apparatus before the improvement. The pulling speed of the product could be increased.
 さらに本発明の趣旨、概要、及び、更なる実験について、以下に説明する。 Further, the gist, outline, and further experiment of the present invention will be described below.
 一般に、丸棒状又は角柱状等の各種インゴッドの金属製品は、原材料の金属を溶解し、成分調整した後、所定の形状に凝固する工程を経て得られる。この時、最終製品の品質、例えば、機械的特性、結晶組織の均一化、微細化等は、凝固時のサンプ(連続鋳造中の製品の頂部における未凝固状態の液体部分)内の状態により決まってしまう。 Generally, various ingot metal products such as round bars or prisms are obtained through a process of solidifying a raw material metal, adjusting components, and solidifying into a predetermined shape. At this time, the quality of the final product, for example, mechanical properties, homogenization and refinement of the crystal structure, is determined by the state in the sump during solidification (the unsolidified liquid portion at the top of the product during continuous casting). End up.
 溶融金属の凝固は、熱の移動により起こるが、固体中の熱伝導は液体のそれの2倍であることから、容器あるいは連続鋳造のモールド内の溶湯は外周部から中心に向かって凝固が進行する。連続鋳造の場合には、例えば図1から分かるように、製品の頂部部分において液体と固体が共存した状態で凝固が進行する。 Solidification of the molten metal occurs due to heat transfer, but since the heat conduction in the solid is twice that of the liquid, the molten metal in the container or continuous casting mold progresses from the outer periphery to the center. To do. In the case of continuous casting, for example, as can be seen from FIG. 1, solidification proceeds in a state where a liquid and a solid coexist in the top portion of the product.
 製品の品質を向上させる重要なポイントは、例えば図1においての液体部分及び半凝固層部分をできる限り減少させることであるが、液体と固体の熱伝導率が違うことから、そのような目的を達成することは非常に難しい。 An important point for improving the quality of the product is, for example, to reduce the liquid part and the semi-solidified layer part in FIG. 1 as much as possible. It is very difficult to achieve.
 そこで、本発明者は、液体の熱伝導率が固体の熱伝導率がよりも低いことに着目し、金属の溶湯に磁場と電流を印加して攪拌することにより、引き抜き速度(鋳造速度)を上げてサンプが深くなった場合でも、クラックが生じないようにしたものである。 Therefore, the present inventor paid attention to the fact that the thermal conductivity of the liquid is lower than the thermal conductivity of the solid, and applied the magnetic field and current to the molten metal and stirred to thereby reduce the drawing speed (casting speed). Even if the sump is deepened when it is raised, cracks are prevented from occurring.
 さて、本発明により、特に冷却速度を向上させて品質向上を図る場合を、本発明を各種インゴッド(ラウンドインゴッド(丸棒状のインゴッド)又は角柱状のインゴッド等)の連続鋳造に適用した場合について説明する。 Now, when the present invention is applied to continuous casting of various ingots (such as round ingots (round bar-shaped ingots) or prismatic ingots), particularly when the cooling rate is improved by the present invention to improve quality. To do.
 連続鋳造工程においては、例えば図1から分かるように、下に凸の円錐柱状(縦断面では下に凸の放物線状)のサンプが常時現れる。 In the continuous casting process, for example, as can be seen from FIG. 1, a downwardly convex conical column-shaped sump (a downwardly convex parabolic shape in the longitudinal section) always appears.
 さて、熱の移動はニュートンの冷却の法則で説明できる。 Now, heat transfer can be explained by Newton's law of cooling.
 つまり、移動する熱量Q、時間t、表面積S、高温側温度TH、低温側温度TL、温度係数αとすれば、
      -dQ/dt=α・S(TH-TL)
となる。
That is, if the amount of heat Q to move, time t, surface area S, high temperature side temperature TH, low temperature side temperature TL, temperature coefficient α,
-DQ / dt = α · S (TH-TL)
It becomes.
 つまり、熱の移動は、高温側温度THと低温側温度TLとの差に比例する温度勾配が大きいほど、スムーズに行われる。 That is, the heat transfer is performed more smoothly as the temperature gradient proportional to the difference between the high temperature side temperature TH and the low temperature side temperature TL increases.
 ところで、熱の移動は、攪拌することにより増加するが、攪拌の有無における温度差の違いについて考える。 By the way, although the heat transfer increases by stirring, the difference in temperature difference with and without stirring is considered.
 図24は、一般的な連続鋳造におけるモールド内部の、溶湯(液体)が製品(固体)に変わる一過程におけるある時点での縦断説明図を示す。 FIG. 24 is a longitudinal explanatory view at a certain point in one process in which a molten metal (liquid) is changed into a product (solid) inside a mold in general continuous casting.
 この図24の細長い円CIRで囲まれた部分の熱の状態を図25に示す。温度を示す実線SLは攪拌しない連続鋳造の場合のものであり、破線BLは本発明の攪拌する場合のものである。繰り返して言えば、実線SLは溶湯を攪拌しない場合の温度分布を示し、破線BLは溶湯を攪拌した場合の温度分布を示す。だだし、実線SLの後述の点bよりも外側(図中右側)は、攪拌有りと無しの2つの場合に共通の温度分布を示す。また、攪拌しない場合は、半凝固層部分MZは半凝固層部分MZ1(厚さL1)となり、攪拌した場合はそれよりも厚さの薄い半凝固層部分MZ2(厚さL2=L1-L11)となる。また、図25にも示すが、後述のように、半凝固層部分MZ1の内側の点aと外側の点bとの温度差はΔTn、半凝固層部分MZ2の内側表面の点cと外側表面の点bとの温度差はΔTmとなる。 FIG. 25 shows the heat state of the portion surrounded by the elongated circle CIR in FIG. The solid line SL indicating the temperature is for continuous casting without stirring, and the broken line BL is for stirring according to the present invention. To reiterate, the solid line SL indicates the temperature distribution when the molten metal is not stirred, and the broken line BL indicates the temperature distribution when the molten metal is stirred. However, the outer side (right side in the figure) of the point b to be described later of the solid line SL shows a common temperature distribution in two cases with and without stirring. Further, when not stirred, the semi-solidified layer portion MZ becomes the semi-solidified layer portion MZ1 (thickness L1), and when stirred, the semi-solidified layer portion MZ2 (thickness L2 = L1-L11) thinner than that is thinner. It becomes. 25, as will be described later, the temperature difference between the inner point a and the outer point b of the semi-solidified layer portion MZ1 is ΔTn, the inner surface point c and the outer surface of the semi-solidified layer portion MZ2. The temperature difference from point b is ΔTm.
 つまり、攪拌しない場合は、実線SLから分かるように、中心線CLの部分が最も高い温度TH1を示し、外周に向かうにつれ徐々に低下し、液体部分LPと半凝固層部分MZ1との境界線上の点aの温度まで低下する。半凝固層部分MZの内部では、液体部分LPよりも冷却速度は速く、半凝固層部分MZ1と固体部分SPとの境界線上の点bの温度まで低下する。固体部分SPでは急激に温度が低下し、図25においては温度TLに達する。 That is, when not stirred, as can be seen from the solid line SL, the portion of the center line CL shows the highest temperature TH1, and gradually decreases toward the outer periphery, on the boundary line between the liquid portion LP and the semi-solidified layer portion MZ1. It drops to the temperature at point a. Inside the semi-solidified layer portion MZ, the cooling rate is faster than that of the liquid portion LP, and the temperature drops to the temperature at the point b on the boundary line between the semi-solidified layer portion MZ1 and the solid portion SP. In the solid portion SP, the temperature rapidly decreases and reaches the temperature TL in FIG.
 一方、攪拌を行った場合は、破線BLから分かるように、液体(溶湯)内部の温度分布はほとんど均一となるため、中心線CLから半凝固層部分MZ2の内側に至るまでは温度勾配はほとんど生じない。つまり、この場合は、中心線CL部分の温度も、先の温度TH1よりも低い温度TH2となる。而して、攪拌により、前述のように、半凝固層部分MZ2の厚さL2は、厚さT1よりも厚さT11だけ薄くなる。この温度TH2は半凝固層部分MZ2の内側の点cまで続く。半凝固層部分MZ2内においては、温度は、点cから前記点bまで低下する。この後は前記無攪拌の場合と同様に温度TLとなる。 On the other hand, when stirring is performed, as can be seen from the broken line BL, the temperature distribution in the liquid (molten metal) is almost uniform, so that the temperature gradient is almost from the center line CL to the inside of the semi-solidified layer portion MZ2. Does not occur. That is, in this case, the temperature of the center line CL is also the temperature TH2 lower than the previous temperature TH1. Thus, as described above, the thickness L2 of the semi-solidified layer portion MZ2 becomes thinner by the thickness T11 than the thickness T1 by stirring. This temperature TH2 continues to a point c inside the semi-solidified layer portion MZ2. In the semi-solidified layer portion MZ2, the temperature decreases from the point c to the point b. Thereafter, the temperature becomes TL as in the case of no stirring.
 ここで半凝固層部分MZを見てみると、厚さは、攪拌無しの場合は厚さL1となり、攪拌有りの場合は厚さL2(=L1-L11)となる。つまり、厚さL1>L2となる。また、半凝固層部分MZの内側表面と外側表面の温度差は、攪拌無しの場合は温度差ΔTnであり、攪拌有りの場合は温度差ΔTmとなる。故に、攪拌無しの場合と有りの場合の温度勾配を比較すると、ΔTn/L1<ΔTm/L2 となる。これをニュートンの冷却の法則と照らし合わせると、冷却有りの場合が圧倒的に冷却速度が速いことが分かる。 Here, looking at the semi-solidified layer portion MZ, the thickness becomes the thickness L1 when there is no stirring, and the thickness L2 (= L1-L11) when there is stirring. That is, the thickness L1> L2. Further, the temperature difference between the inner surface and the outer surface of the semi-solidified layer portion MZ is the temperature difference ΔTn when there is no stirring, and the temperature difference ΔTm when there is stirring. Therefore, when comparing the temperature gradient with and without stirring, ΔTn / L1 <ΔTm / L2. When this is compared with Newton's law of cooling, it can be seen that the cooling rate is overwhelmingly faster with cooling.
 各種インゴット(丸棒状、角柱状等)の品質を考えた場合、液体部分LPの温度分布は均一であることが望ましく、且つ、冷却は一気に高速で行うのが望ましい。 Considering the quality of various ingots (round bar shape, prismatic shape, etc.), it is desirable that the temperature distribution of the liquid portion LP is uniform, and it is desirable that the cooling is performed at a high speed.
 つまり、本発明では、連続鋳造時に現れる、製品の頂部の液相部分LPを、自然冷却により冷却するのではなく、強制的に攪拌することにより、液相部分LPの中心部分と周辺部分の温度差を極力なくした状態とし、半凝固層部分MZを厚さの薄いものとして、冷却するようにしている。これにより、本発明によれば、結晶の均一化及び微細化、且つ、機械的特性の向上等を図りつつ、つまり製品の高品質化を図りつつ、大幅に生産性の向上を図ることができるのが分かった。 In other words, in the present invention, the liquid phase portion LP at the top of the product, which appears during continuous casting, is not cooled by natural cooling, but is forcibly agitated, whereby the temperatures of the central portion and the peripheral portion of the liquid phase portion LP are obtained. The difference is made as small as possible, and the semi-solidified layer portion MZ is made thin so as to be cooled. As a result, according to the present invention, it is possible to significantly improve productivity while achieving uniform and fine crystals and improving mechanical properties, that is, improving product quality. I understood that.
 さらに、連続鋳造の試作品TPとして円柱状インゴットを得るに当たり、前記サンプにケミカルトレーサとして亜鉛(Zn)を投入した。固化後にその試作品を縦割りにしたものが図26に示される。図中、前記Znを投入した時に、液体だった部分がSP(LP)、半凝固層部分だった部分がSP(MZ)、固体だった部分がSPである。 Furthermore, in order to obtain a cylindrical ingot as a prototype TP for continuous casting, zinc (Zn) was introduced into the sump as a chemical tracer. FIG. 26 shows the prototype divided vertically after solidification. In the figure, when Zn was added, the portion that was liquid was SP (LP), the portion that was a semi-solidified layer portion was SP (MZ), and the portion that was solid was SP.
 この試作品TPから、図26に位置を示す部位から、A-Eの5本の第1試験片(円柱)をくり抜いた。つまり、試作品TPから、図26の紙面に垂直方向に5本の第1試験片A-Eをくり抜いた。さらに、図27から分かるように、第1試験片A-Eのそれぞれに5つの測定点(測定点MP1乃至測定点MP5)を定め、それらの測定点から紙面に垂直にさらに5つの第2試験片をくり抜いた。つまり、第1試験片Aから5つの第2試験片A1-A5を、第1試験片Bからも5つの第2試験片B1-B5を得た。同様に、第1試験片C、D、Eからそれぞれ5つの第2試験片C1-C5,D1-D5,E1-D5を得た。これにより都合25個の第2試験片を得た。 From the prototype TP, five first specimens (cylinders) A to E were cut out from the position shown in FIG. That is, five first test pieces AE were cut out from the prototype TP in a direction perpendicular to the paper surface of FIG. Further, as can be seen from FIG. 27, five measurement points (measurement point MP1 to measurement point MP5) are defined for each of the first test pieces AE, and five second tests perpendicular to the paper surface from these measurement points. I cut out a piece. That is, five second test pieces A1-A5 were obtained from the first test piece A, and five second test pieces B1-B5 were also obtained from the first test piece B. Similarly, five second test pieces C1-C5, D1-D5, and E1-D5 were obtained from the first test pieces C, D, and E, respectively. As a result, 25 second test pieces were obtained.
 なお、図27の各第1試験片A-Eにおいて、第2試験片A1-A5、B1-B5、・・・の並ぶ中心線CA,CB,・・・の向きは、図26に示される。つまり、図26からわかるように、各中心線CA,CB,・・・はかつて半凝固層部分MZだった部分SP(MZ)の厚さ方向に沿った向きとしてある。 27, the directions of the center lines CA, CB,... In which the second test pieces A1-A5, B1-B5,... Are arranged are shown in FIG. . That is, as can be seen from FIG. 26, each center line CA, CB,... Is oriented along the thickness direction of the portion SP (MZ) that was once the semi-solidified layer portion MZ.
 前記都合25個の第2試験片A1-A5、B1-B5、・・・における、前記ケミカルトレーサとしての亜鉛の濃度を測定し、濃度CA1-CA5、CB1-CB5、・・・、CE1-CE5を得た。さらに、第1試験片A-Eにおける前記測定点MP1乃至測定点MP5における亜鉛の濃度の平均値a1,a2,・・a5を下記の式から求めた。
        a1=(CA1+CB1+CC1+CD1+CE1)/5
        a2=(CA2+CB2+CC2+CD2+CE2)/5
                  ・
                  ・
        a5=(CA5+CB5+CC5+CD5+CE5)/5
つまり、前記測定点MP1乃至測定点MP5の亜鉛の濃度の平均値a1,a2,・・・は上記の式から求められた。
The concentration of zinc as the chemical tracer in the 25 second specimens A1-A5, B1-B5,... Is measured, and the concentrations CA1-CA5, CB1-CB5,. Got. Further, average values a1, a2,... A5 of zinc concentrations at the measurement points MP1 to MP5 in the first test pieces AE were determined from the following formulae.
a1 = (CA1 + CB1 + CC1 + CD1 + CE1) / 5
a2 = (CA2 + CB2 + CC2 + CD2 + CE2) / 5


a5 = (CA5 + CB5 + CC5 + CD5 + CE5) / 5
That is, the average values a1, a2,... Of zinc at the measurement points MP1 to MP5 were obtained from the above formula.
 前記亜鉛の濃度の平均値a1,a2,・・a5は図28にプロットされる。この図28から、半凝固層部分MZの厚さは約2mmであることが分かった。 The average values a1, a2,... A5 of the zinc concentration are plotted in FIG. From FIG. 28, it was found that the thickness of the semi-solidified layer portion MZ was about 2 mm.
 このような実験を繰り返して、前記図28に対応するグラフを複数作成した。つまり、連続鋳造において引き抜き速度(鋳造速度)をいろいろ変え、その際に得た試作品TPから前記図28に対応するグラフを複数得た。これらのグラフはほとんど図28に示すものと同様のものとして得られた。つまり、本発明の実施形態により溶湯を攪拌しながら製品を得た場合には、半凝固層部分MZの厚さが厚くなることはなかった。つまり、本発明の実施形態の装置によれば製品の引き抜き速度(鋳造速度)を上げても製品の品質が低下することはなかった。 Such an experiment was repeated to create a plurality of graphs corresponding to FIG. That is, in the continuous casting, the drawing speed (casting speed) was changed variously, and a plurality of graphs corresponding to FIG. 28 were obtained from the prototype TP obtained at that time. These graphs were obtained almost as shown in FIG. That is, when the product was obtained while stirring the molten metal according to the embodiment of the present invention, the thickness of the semi-solidified layer portion MZ did not increase. That is, according to the apparatus of the embodiment of the present invention, the quality of the product is not deteriorated even if the drawing speed (casting speed) of the product is increased.
 また、図26に示す切り出した試作品TPの端面SUF1よりDEP(7インチ)だけ下がった端面をCMPを行って得た観察端面SUF2をSEMにより観察した。この観察を前記引き抜き速度(鋳造速度)を種々変えて得た試作品TPについて行った。この結果、本発明の実施形態の装置により溶湯を攪拌して得た試作品TPには、引き抜き速度(鋳造速度)を上げても、結晶組織が粗くなることはないのが観察された。 In addition, an observation end surface SUF2 obtained by performing CMP on the end surface that was lowered by DEP (7 inches) from the end surface SUF1 of the cut-out prototype TP shown in FIG. 26 was observed by SEM. This observation was made on a prototype TP obtained by varying the drawing speed (casting speed). As a result, it was observed that in the prototype TP obtained by stirring the molten metal with the apparatus of the embodiment of the present invention, the crystal structure does not become rough even if the drawing speed (casting speed) is increased.

Claims (14)

  1.  導電性金属の溶湯をモールドに流入させて製品を連続的に成形する連続鋳造装置における前記モールドに流入させる溶湯又は前記モールド中の溶湯を攪拌するための溶湯攪拌装置であって、
     溶湯中に浸漬させる上方が開放した筒状のケースと、前記ケースに収納されるパイプと、を備え、
     前記ケースは外筒と前記外筒に収納される内筒とを有し、前記外筒と前記内筒との間には冷却用の空気を流通させる隙間が形成されており、前記内筒には前記内筒の内部と前記隙間とを連通する通気孔が穿けられて、前記内筒から前記通気孔を介して前記隙間にいたる冷却空気路が構成されており、
     前記内筒の内部には、前記パイプが被挿された状態の磁場装置が収納され、前記磁場装置は、前記磁場装置からの磁力線が前記内筒及び前記外筒を貫通して溶湯に至り、又は、溶湯中を走る磁力線が前記内筒及び前記外筒を貫通して前記磁場装置に至る、強度に磁化されており、
     さらに、前記内筒及び前記外筒を貫通し、一端が前記内筒内に露呈し、他端が前記外筒外に露呈して溶湯と接することが可能な、第1の電極を有し、前記第1の電極の前記一端は前記パイプ内を走る引出線体に電気的に導通状態に接続され、
     さらに、前記外筒に取り付けられた第2の電極を備え、前記第2の電極の前記外筒への取り付け位置は、前記第2の電極と前記第1の電極との間に溶湯を介して流れる電流が前記磁力線と交叉して溶湯を縦軸の回りに回転駆動するローレンツ力を発生させる位置に設定してある、
     ことを特徴とする溶湯攪拌装置。
    A molten metal stirring device for stirring molten metal in the mold or molten metal in the mold in a continuous casting apparatus for continuously forming a product by flowing a molten metal of conductive metal into the mold,
    A cylindrical case with an open top that is immersed in the molten metal, and a pipe stored in the case,
    The case has an outer cylinder and an inner cylinder accommodated in the outer cylinder, and a gap for flowing cooling air is formed between the outer cylinder and the inner cylinder. Has a vent hole communicating the inside of the inner cylinder and the gap, and constitutes a cooling air passage from the inner cylinder to the gap via the vent hole,
    Inside the inner cylinder, a magnetic field device in which the pipe is inserted is housed, and the magnetic field device has a magnetic field line from the magnetic field device passing through the inner cylinder and the outer cylinder to the molten metal, Or, the magnetic lines of force that run in the molten metal penetrate through the inner cylinder and the outer cylinder and reach the magnetic field device, and are magnetized with strength.
    Furthermore, the first electrode, penetrating the inner cylinder and the outer cylinder, one end is exposed in the inner cylinder, the other end is exposed outside the outer cylinder and can contact the molten metal, The one end of the first electrode is electrically connected to a lead wire body running in the pipe;
    Furthermore, it has the 2nd electrode attached to the said outer cylinder, and the attachment position to the said outer cylinder of the said 2nd electrode is via a molten metal between the said 2nd electrode and the said 1st electrode. It is set at a position where a flowing current crosses the magnetic field lines and generates a Lorentz force that rotationally drives the molten metal around the vertical axis.
    A melt agitator characterized by that.
  2.  前記第1の電極は、前記内筒の底板と前記外筒の底板を貫通した状態で前記ケースに取り付けられており、前記第2の電極は前記外筒の外周面における前記磁場装置よりも高い位置に取り付けられている、ことを特徴とする請求項1に記載の溶湯攪拌装置。 The first electrode is attached to the case through the bottom plate of the inner cylinder and the bottom plate of the outer cylinder, and the second electrode is higher than the magnetic field device on the outer peripheral surface of the outer cylinder The molten metal stirring apparatus according to claim 1, wherein the molten metal stirring apparatus is attached to a position.
  3.  前記磁場装置は、横向きの線に沿って、又は、下向きの線に沿って、磁力線を出し又は受けるように磁化されていることを特徴とする請求項1又は2に記載の溶湯攪拌装置。 3. The molten metal stirring device according to claim 1, wherein the magnetic field device is magnetized so as to emit or receive a magnetic field line along a horizontal line or a downward line.
  4.  前記磁場装置は横向きの線に沿って及び下向きの線に沿って磁力線を出し又は受けるように磁化されていることを特徴とする請求項1又は2に記載の溶湯攪拌装置。 The melt stirrer according to claim 1 or 2, wherein the magnetic field device is magnetized so as to emit or receive a magnetic force line along a horizontal line and a downward line.
  5.  前記磁場装置は、横向きの線に沿って磁力線を出し又は受けるように磁化された磁石と、
     下向きの線に沿って磁力線を出し又は受けるように磁化された磁石と、を上下に積層したものとして構成されていることを特徴とする請求項4記載の溶湯攪拌装置。
    The magnetic field device includes a magnet magnetized to emit or receive lines of magnetic force along a transverse line;
    The molten metal stirring apparatus according to claim 4, wherein the molten metal stirring apparatus is configured by vertically laminating magnets magnetized so as to emit or receive lines of magnetic force along a downward line.
  6.  前記外筒は、通電により発熱する導電性材料により構成されている、ことを特徴とする請求項1乃至5に記載の溶湯攪拌装置。 The molten metal stirring apparatus according to any one of claims 1 to 5, wherein the outer cylinder is made of a conductive material that generates heat when energized.
  7.  導電性金属の溶湯をモールドに流入させて製品を連続的に成形する連続鋳造装置における前記モールドに流入させる溶湯又は前記モールド中の溶湯を攪拌するための溶湯攪拌装置であって、
     溶湯中に浸漬させる上方が開放した筒状のケースと、前記ケースに収納されるパイプと、を備え、前記パイプの下端と前記ケースの底面の内側との間に連通用の連通隙間を形成し、この連通隙間を介して前記パイプの内部と前記ケースの内部とが連通して冷却空気路が形成されており、
     前記ケースの内部には、前記パイプが被挿された状態の磁場装置が収納され、前記磁場装置は、前記磁場装置からの磁力線が前記ケースを貫通して溶湯に至り、又は、溶湯中を走る磁力線が前記ケースを貫通して前記磁場装置に至る、強度に磁化されており、
     さらに、前記ケースを貫通し、一端が前記ケースに露呈し、他端が前記ケース外に露呈して溶湯と接することが可能な、第1の電極を有し、前記第1の電極の前記一端は前記パイプ内を走る引出線体に電気的に導通状態に接続され、
     さらに、前記ケースに取り付けられた第2の電極を備え、前記第2の電極の前記ケースへの取り付け位置は、前記第2の電極と前記第1の電極との間に溶湯を介して流れる電流が前記磁力線と交叉して溶湯を縦軸の回りに回転駆動するローレンツ力を発生させる位置に設定してある、
     ことを特徴とする溶湯攪拌装置。
    A molten metal stirring device for stirring molten metal in the mold or molten metal in the mold in a continuous casting apparatus for continuously forming a product by flowing a molten metal of conductive metal into the mold,
    A cylindrical case with an open top that is immersed in the molten metal; and a pipe that is accommodated in the case, and a communication gap is formed between the lower end of the pipe and the inside of the bottom surface of the case. The interior of the pipe communicates with the interior of the case through the communication gap to form a cooling air passage.
    The magnetic field device in which the pipe is inserted is accommodated in the case, and the magnetic field device passes through the case to reach the molten metal or runs in the molten metal. Magnetic field lines penetrate through the case and reach the magnetic field device, and are magnetized in strength.
    Further, the first electrode has a first electrode that penetrates the case, one end is exposed to the case, and the other end is exposed to the outside of the case and can be in contact with the molten metal, and the one end of the first electrode Is electrically connected to the lead wire running through the pipe,
    Furthermore, it has the 2nd electrode attached to the said case, The attachment position to the said case of the said 2nd electrode is the electric current which flows through a molten metal between the said 2nd electrode and the said 1st electrode. Is set at a position to generate Lorentz force that crosses the magnetic field lines and drives the molten metal to rotate about the vertical axis.
    A melt agitator characterized by that.
  8.  前記第1の電極は、前記ケースの底板を貫通した状態で前記ケースに取り付けられており、前記第2の電極は前記ケースの外周面における前記磁場装置よりも高い位置に取り付けられている、ことを特徴とする請求項7に記載の溶湯攪拌装置。 The first electrode is attached to the case in a state of passing through the bottom plate of the case, and the second electrode is attached to a position higher than the magnetic field device on the outer peripheral surface of the case. The molten metal stirrer according to claim 7.
  9.  前記磁場装置は、横向きの線に沿って、又は、下向きの線に沿って、磁力線を出し又は受けるように磁化されていることを特徴とする請求項7又は8に記載の溶湯攪拌装置。 The melt stirrer according to claim 7 or 8, wherein the magnetic field device is magnetized so as to emit or receive a magnetic field line along a horizontal line or a downward line.
  10.  前記磁場装置は横向きの線に沿って及び下向きの線に沿って磁力線を出し又は受けるように磁化されていることを特徴とする請求項7又は8に記載の溶湯攪拌装置。 The melt stirrer according to claim 7 or 8, wherein the magnetic field device is magnetized so as to generate or receive a magnetic force line along a horizontal line and a downward line.
  11.  前記磁場装置は、横向きの線に沿って磁力線を出し又は受けるように磁化された磁石と、
     下向きの線に沿って磁力線を出し又は受けるように磁化された磁石と、を上下に積層したものとして構成されていることを特徴とする請求項10記載の溶湯攪拌装置。
    The magnetic field device includes a magnet magnetized to emit or receive lines of magnetic force along a transverse line;
    The molten metal stirring apparatus according to claim 10, wherein the molten metal stirring apparatus is configured by vertically stacking magnets magnetized so as to emit or receive lines of magnetic force along a downward line.
  12.  前記ケースは、通電により発熱する導電性材料により構成された外筒を有している、ことを特徴とする請求項7乃至11に記載の溶湯攪拌装置。 The molten metal stirrer according to any one of claims 7 to 11, wherein the case has an outer cylinder made of a conductive material that generates heat when energized.
  13.  請求項1乃至12のいずれか1つに記載の溶湯攪拌装置と、溶解炉から溶湯を導く樋と、前記樋の底面に溶湯流入口が連通した状態に取り付けられたモールドと、を備え、前記溶湯攪拌装置はその下端側が前記樋における溶湯導出路内に挿入された状態に組み込まれていることを特徴とする連続鋳造装置システム。 A molten metal stirrer according to any one of claims 1 to 12, a gutter that guides the molten metal from a melting furnace, and a mold that is attached in a state where a molten metal inlet is in communication with the bottom surface of the gutter, The continuous casting apparatus system is characterized in that the molten metal stirring device is incorporated in a state where the lower end side is inserted into the molten metal lead-out path in the bowl.
  14.  前記溶湯攪拌装置は、前記樋に対し、前記溶湯攪拌装置の下端部分の前記樋の前記溶湯導出路への挿入量を調節可能に保持されていることを特徴とする請求項13に記載の連続鋳造装置システム。 The said molten metal stirring apparatus is hold | maintained with respect to the said soot so that the insertion amount to the said molten metal lead-out path of the said hot metal at the lower end part of the said molten metal stirring apparatus can be adjusted. Casting equipment system.
PCT/JP2018/015286 2017-04-13 2018-04-11 Molten metal agitating device and continuous casting device system provided with same WO2018190387A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201890000712.5U CN211614249U (en) 2017-04-13 2018-04-11 Molten liquid stirring device and continuous casting device system with same
KR1020197033319A KR102260278B1 (en) 2017-04-13 2018-04-11 Molten metal stirring device and continuous casting device system having the same
NZ757587A NZ757587B2 (en) 2017-04-13 2018-04-11 Molten metal stirring device and continuous casting device system provided with same
EP18784252.1A EP3610968B1 (en) 2017-04-13 2018-04-11 Molten metal agitating device and continuous casting device system provided with same
US16/604,049 US10814379B2 (en) 2017-04-13 2018-04-11 Molten metal stirring device and continuous casting device system provided with same
CA3057130A CA3057130C (en) 2017-04-13 2018-04-11 Molten metal stirring device and continuous casting device system provided with same
AU2018252827A AU2018252827B2 (en) 2017-04-13 2018-04-11 Molten metal agitating device and continuous casting device system provided with same
US17/027,749 US11161171B2 (en) 2017-04-13 2020-09-22 Molten metal stirring device and continuous casting device system provided with same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-080057 2017-04-13
JP2017080057 2017-04-13
JP2018072699A JP6445201B2 (en) 2017-04-13 2018-04-04 Molten metal stirrer and continuous casting system provided with the same
JP2018-072699 2018-04-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/604,049 A-371-Of-International US10814379B2 (en) 2017-04-13 2018-04-11 Molten metal stirring device and continuous casting device system provided with same
US17/027,749 Continuation US11161171B2 (en) 2017-04-13 2020-09-22 Molten metal stirring device and continuous casting device system provided with same

Publications (1)

Publication Number Publication Date
WO2018190387A1 true WO2018190387A1 (en) 2018-10-18

Family

ID=63793405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015286 WO2018190387A1 (en) 2017-04-13 2018-04-11 Molten metal agitating device and continuous casting device system provided with same

Country Status (2)

Country Link
CA (1) CA3057130C (en)
WO (1) WO2018190387A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153387A (en) * 2019-06-20 2019-08-23 西安建筑科技大学 A kind of rotational symmetry vibrating machine agitating device being used to prepare semi-solid blank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189229A (en) * 2005-01-07 2006-07-20 Kenzo Takahashi Stirring device and melting furnace with stirring device
JP2011237056A (en) * 2010-05-06 2011-11-24 Sanken Sangyo Co Ltd Melting furnace for nonferrous metal and method for melting nonferrous metal
JP2014035131A (en) * 2012-08-08 2014-02-24 Kenzo Takahashi Permanent magnet type cylindrical molten metal agitator and melting furnace with permanent magnet type pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189229A (en) * 2005-01-07 2006-07-20 Kenzo Takahashi Stirring device and melting furnace with stirring device
JP2011237056A (en) * 2010-05-06 2011-11-24 Sanken Sangyo Co Ltd Melting furnace for nonferrous metal and method for melting nonferrous metal
JP2014035131A (en) * 2012-08-08 2014-02-24 Kenzo Takahashi Permanent magnet type cylindrical molten metal agitator and melting furnace with permanent magnet type pump

Also Published As

Publication number Publication date
CA3057130A1 (en) 2018-10-18
CA3057130C (en) 2021-12-28

Similar Documents

Publication Publication Date Title
EP0071822B1 (en) Mold for use in metal or metal alloy casting systems and process for mixing a molten metal or metal alloy
CN102990027B (en) Low-energy-consumption electromagnetic stirring method for continuous casting and metal continuous casting device
CN111394601B (en) Casting method of large-size lead-free-cutting aluminum alloy cast rod
JP6445201B2 (en) Molten metal stirrer and continuous casting system provided with the same
CN103600045A (en) Continuous steel casting process and device with function of electromagnetic excitation compound mechanical stirring
CN108085546A (en) A kind of 2024 aluminium alloy smelting casting methods
GB2042386A (en) Casting thixotropic metals
CN203639530U (en) Composite electroslag casting device for optimizing metal solidification structure by using steady-state magnetic field
CN106756203B (en) A kind of preparation method of fine grain chromium-bronze
CN102601330A (en) Method for refining crystalline grains by Alfven wave for upward continuous casting
JP7178353B2 (en) System for Metal Casting Including Ultrasonic Grain Refining and Degassing Procedures and Enhanced Vibration Coupling
WO2018190387A1 (en) Molten metal agitating device and continuous casting device system provided with same
CN112301240A (en) Method for preparing Al-Si-Mg alloy by utilizing electromagnetic energy
CN204413085U (en) Electromagnetism crystallization agitator
CN214601809U (en) Serial-connection type aluminum alloy electromagnetic energy grain refining launder device
NZ757587B2 (en) Molten metal stirring device and continuous casting device system provided with same
JP3828664B2 (en) Stirring continuous casting of Al alloy
Zhu et al. Effect of Combined Electromagnetic Fields on the As-Casting Structure and Mechanical Property of HDC Casting 7075 Al Alloy Ingot
Shin et al. A study on Surface Oxidation Coating Characteristic of Al-Si Casting Alloys
JPS63149056A (en) Continuous casting method for non-ferrous metal
Le et al. Investigation on low-frequency electromagnetic DC casting of AZ91 magnesium alloy
JP2016123996A (en) Manufacturing method of conductive metal sheet and manufacturing device of conductive metal sheet
Zuo et al. Grain refinement of direct chill cast 7050 aluminium alloy with low frequency electromagnetic field
JP2021176983A (en) WIRE ROD OF Cu-Zn-Si ALLOY OBTAINED BY UP-DRAWING CONTINUOUS CASTING
Zhu et al. Effect of low-frequency electromagnetic field on the as-casting microstructures and mechanical properties of HDC 2024 aluminum alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3057130

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018252827

Country of ref document: AU

Date of ref document: 20180411

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197033319

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018784252

Country of ref document: EP

Effective date: 20191113