WO2018190171A1 - Friction material - Google Patents

Friction material Download PDF

Info

Publication number
WO2018190171A1
WO2018190171A1 PCT/JP2018/014098 JP2018014098W WO2018190171A1 WO 2018190171 A1 WO2018190171 A1 WO 2018190171A1 JP 2018014098 W JP2018014098 W JP 2018014098W WO 2018190171 A1 WO2018190171 A1 WO 2018190171A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
mass
parts
less
modified
Prior art date
Application number
PCT/JP2018/014098
Other languages
French (fr)
Japanese (ja)
Inventor
康典 大橋
霖 周
麻衣子 山本
勇希 谷口
遼太郎 高山
木村 肇
大塚 恵子
松本 明博
Original Assignee
ハリマ化成株式会社
地方独立行政法人 大阪産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社, 地方独立行政法人 大阪産業技術研究所 filed Critical ハリマ化成株式会社
Priority to JP2019512437A priority Critical patent/JPWO2018190171A1/en
Publication of WO2018190171A1 publication Critical patent/WO2018190171A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing

Definitions

  • the present invention relates to a friction material, and more particularly to a friction material used as a brake pad or the like.
  • Friction materials have been used for brake pads and clutch members of automobiles, motorcycles, trains, and the like.
  • Friction materials are usually manufactured by integrally forming reinforcing materials such as metal fibers and aramid fibers and additives such as fillers and lubricants through a binder (binder) such as phenol resin.
  • binder such as phenol resin
  • Such a friction material is required to have friction characteristics, mechanical strength, and the like, and to reduce the environmental load. Therefore, it has been proposed to use a lignin phenol resin as a binder (binder). More specifically, for example, there has been proposed a friction material containing, as a binder, a lignin phenol resin having a weight average molecular weight of 5000 or less obtained by reacting lignin, phenols and aldehydes in the presence of an acid catalyst. (See Patent Document 1).
  • the friction material is required to further improve various physical properties such as friction characteristics, wear resistance, and mechanical strength.
  • An object of the present invention is to provide a friction material having excellent friction characteristics, wear resistance and mechanical strength.
  • the present invention is a friction material containing a binder, wherein the binder contains a reaction product of a lignin having an aliphatic hydroxyl group in the molecule, a phenol, and an aldehyde, A friction material is included in which the content ratio of the aliphatic hydroxyl group is 0.5% by mass or more and 8.5% by mass or less based on the total amount of the lignin.
  • this invention [2] contains the friction material as described in said [1] whose said lignin is said lignin is a craft lignin.
  • the present invention [3] includes the friction material according to the above [1], wherein the lignin is lignin modified with acetic acid.
  • the friction material of the present invention contains a binder containing a reaction product of lignin having a predetermined content of aliphatic hydroxyl group, phenols, and aldehydes, friction characteristics, wear resistance, and mechanical strength Excellent.
  • the friction material of the present invention contains a binder (binder).
  • the binder contains a reaction product of lignin having an aliphatic hydroxyl group (described later) in the molecule, phenols, and aldehydes, preferably an aliphatic hydroxyl group (described later) in the molecule. It consists of a reaction product of a lignin having a phenol, a aldehyde.
  • Lignin is a high molecular phenolic compound having a basic skeleton such as guaiacyl lignin (G type), syringyl lignin (S type), p-hydroxyphenyl lignin (H type) and the like.
  • lignin is classified according to, for example, the type of plant used as a raw material, and specific examples include woody plant-derived lignin and herbaceous plant-derived lignin.
  • woody plant-derived lignin examples include coniferous lignin contained in conifers (eg, cedar), for example, broadleaf lignin contained in broadleaf trees. Such woody plant-derived lignin does not contain lignin having H-type basic skeleton, for example, conifer lignin has G-type basic skeleton, and hardwood lignin has G-type and S-type basic skeleton. Yes.
  • Examples of the herbaceous plant-derived lignin include, for example, rice-based lignin contained in Gramineae plants, and more specifically, wheat straw lignin contained in wheat straw, rice straw lignin contained in rice straw, and corn. Examples include corn lignin and bamboo lignin contained in bamboo. Such herbaceous plant-derived lignin has all of H-type, G-type and S-type as the basic skeleton.
  • lignins can be used alone or in combination of two or more.
  • the lignin is preferably a herbaceous plant-derived lignin, more preferably a herbaceous plant-derived lignin derived from straw, or a herbaceous plant-derived lignin derived from corn.
  • lignin from the viewpoint of reactivity, it is preferable to contain an H-type basic skeleton in a proportion of 3% by mass or more, more preferably 9% by mass or more, and still more preferably 14% by mass or more. It is done.
  • Such lignin is contained in waste liquid (black liquor) discharged when pulp is produced from a plant by a known method such as an alkali method (soda method), a sulfurous acid method, or a kraft method. More specifically, the waste liquid (black liquor) discharged in the alkali method contains alkali lignin (soda lignin), and the waste liquid (black liquor) discharged in the sulfurous acid method contains sulfite lignin. The waste liquid (black liquor) discharged in the kraft process contains craft lignin.
  • examples of lignin include acid-modified lignin obtained by modifying lignin with an acid (such as a carboxylic acid), and explosion lignin obtained by treating a plant with an explosion method.
  • an acid such as a carboxylic acid
  • explosion lignin obtained by treating a plant with an explosion method.
  • the lignin is preferably an acid-modified lignin, more preferably a carboxylic acid-modified lignin.
  • examples of the carboxylic acid include a carboxylic acid having one carboxy group (hereinafter, sometimes referred to as a monofunctional carboxylic acid).
  • Functional carboxylic acid unsaturated aliphatic monofunctional carboxylic acid, aromatic monofunctional carboxylic acid and the like can be mentioned.
  • saturated aliphatic monofunctional carboxylic acid examples include acetic acid, propionic acid, butyric acid, lauric acid and the like.
  • Examples of the unsaturated aliphatic monofunctional carboxylic acid include acrylic acid, methacrylic acid, and linoleic acid.
  • aromatic monofunctional carboxylic acid examples include benzoic acid, 2-phenoxybenzoic acid, and 4-methylbenzoic acid.
  • carboxylic acids can be used alone or in combination of two or more.
  • the carboxylic acid is preferably a saturated aliphatic monofunctional carboxylic acid, more preferably acetic acid (in other words, lignin modified with acetic acid is used as lignin). If the carboxylic acid is used, a carboxylic acid-modified lignin can be easily obtained, and the carboxylic acid-modified lignin obtained has a relatively high solubility in an organic solvent and has a melting temperature as described later. Since it is relatively low temperature (about 100 to 200 ° C.), it is excellent in handleability.
  • the carboxylic acid can be prepared as an aqueous solution.
  • the concentration of the carboxylic acid aqueous solution is not particularly limited and is set as appropriate.
  • the production method of the carboxylic acid-modified lignin is not particularly limited, and can conform to a known method.
  • a plant material for example, a conifer, a broadleaf tree, a gramineous plant, etc.
  • a carboxylic acid preferably acetic acid
  • a carboxylic acid-modified lignin can be obtained as a pulp waste liquid by modifying with a carboxylic acid.
  • the cooking method is not particularly limited.
  • a plant material that is a raw material for lignin is mixed with a carboxylic acid and an inorganic acid (for example, hydrochloric acid, sulfuric acid, etc.) and reacted.
  • an inorganic acid for example, hydrochloric acid, sulfuric acid, etc.
  • the mixing ratio of the carboxylic acid is such that the carboxylic acid (100% conversion) is, for example, 500 parts by mass or more, preferably 900 parts by mass or more, for example, 30000 with respect to 100 parts by mass of the plant material that is the raw material for lignin. It is 1 part by mass or less, preferably 15000 parts by mass or less.
  • the blending ratio of the inorganic acid is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the plant material that is the raw material for lignin. For example, it is 10 parts by mass or less, preferably 5 parts by mass or less.
  • the reaction temperature is, for example, 30 ° C. or more, preferably 50 ° C. or more, for example, 400 ° C. or less, preferably 250 ° C. or less.
  • the reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 20 hours or less, preferably 10 hours or less.
  • the pulp is separated by a known separation method such as filtration, and the filtrate (pulp waste liquid) is recovered.
  • the unreacted carboxylic acid is known using, for example, a rotary evaporator, vacuum distillation or the like. It is removed (distilled off) by the method. Thereafter, a large excess of water is added to precipitate the carboxylic acid-modified lignin, followed by filtration to recover the carboxylic acid-modified lignin as a solid content.
  • the method for obtaining the carboxylic acid-modified lignin is not limited to the above.
  • lignin not modified with carboxylic acid for example, the above alkaline lignin, the above sulfite lignin, the above kraft lignin, etc. (hereinafter referred to as unmodified lignin)
  • a carboxylic acid can be used to modify an aliphatic hydroxyl group (described later) of lignin with a carboxylic acid to obtain a carboxylic acid-modified lignin.
  • the native lignin is preferably powdered native lignin.
  • the average particle size of the powdered unmodified lignin is, for example, 0.1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the average particle diameter is a volume-based cumulative median diameter (D 50 ) determined from a particle diameter distribution measured by a laser diffraction scattering method.
  • the average particle diameter is in the above range, aggregation of the unmodified lignin can be suppressed and the unmodified lignin can be favorably dispersed in the carboxylic acid.
  • the powdered unmodified lignin can be obtained by drying and pulverizing the lump unmodified lignin by a known method, or a commercially available product can be used.
  • unmodified lignin and carboxylic acid for example, unmodified lignin, carboxylic acid and inorganic acid (for example, hydrochloric acid, sulfuric acid, etc.) are mixed and reacted.
  • unmodified lignin, carboxylic acid and inorganic acid for example, hydrochloric acid, sulfuric acid, etc.
  • the mixing ratio of the carboxylic acid is, for example, 300 parts by mass or more, preferably 500 parts by mass or more, for example, 15000 parts by mass or less, based on 100 parts by mass of the unmodified lignin. Preferably, it is 10000 parts by mass or less.
  • the blending ratio of the inorganic acid is such that the inorganic acid (100% conversion) is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the unmodified lignin. 10 parts by mass or less, preferably 5 parts by mass or less.
  • the reaction temperature is, for example, 30 ° C. or more, preferably 50 ° C. or more, for example, 400 ° C. or less, preferably 250 ° C. or less.
  • the reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 20 hours or less, preferably 10 hours or less.
  • Such carboxylic acid-modified lignin is excellent in handleability.
  • lignin that has not been modified with carboxylic acid has relatively low solubility in organic solvents and does not melt, so that it may be inferior in handleability depending on the application.
  • lignin modified with carboxylic acid as described above is an organic solvent (for example, esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone).
  • esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • aliphatic alcohols such as methanol, for example, phenols such as phenol, cresol, bisphenol A, for example, ethers such as diethyl ether, tetrahydrofuran and dioxane, such as methyl cellosolve acetate, ethyl cellosolve acetate, methylcarbyl Tall acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, 3-methyl-3-methoxybuty Glycol ether esters such as acetate and ethyl-3-ethoxypropionate, for example, nitriles such as acetonitrile, others, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexa Since it is relatively soluble in polar solvents such as methylphosphonilamide
  • the carboxylic acid-modified lignin can also be used as a solution of the above organic solvent.
  • the concentration of the carboxylic acid-modified lignin in the solution is, for example, 10% by mass or more, and preferably 30% by mass or more.
  • the average particle size of the carboxylic acid-modified lignin is, for example, 0.1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 2 cm or less, preferably 1 cm or less.
  • the carboxylic acid-modified lignin is obtained as a mixture of a component (soluble component) that can be dissolved by the organic solvent (preferably ethyl acetate) and a component that cannot be dissolved by the organic solvent (insoluble component).
  • soluble component preferably ethyl acetate
  • insoluble component a component that cannot be dissolved by the organic solvent
  • a mixture of a soluble component and an insoluble component (referred to as crude carboxylic acid-modified lignin) can be used as the carboxylic acid-modified lignin.
  • the carboxylic acid-modified lignin is preferably a soluble component.
  • the extraction conditions are appropriately set according to the organic solvent used and the physical properties of the crude carboxylic acid-modified lignin.
  • lignin (such as unmodified lignin and carboxylic acid-modified lignin) has an aliphatic hydroxyl group in the molecule.
  • An aliphatic hydroxyl group is a hydroxyl group that is not directly bonded to an aromatic ring but directly bonded to an aliphatic hydrocarbon, and is distinguished from a hydroxyl group directly bonded to an aromatic ring (aromatic hydroxyl group (phenolic hydroxyl group)).
  • the content ratio of the aliphatic hydroxyl group of lignin is 0.5% by mass or more, preferably 3.0% by mass or more, and 8.5% by mass or less, preferably 7.0% by mass with respect to the total amount of lignin. % Or less, more preferably 5.5% by mass or less.
  • the production of novolac type phenolic resin is excellent because it is excellent in reactivity between lignin and phenols and aldehydes, and it is difficult to cause gelation during the reaction.
  • the properties of the molded article using the novolac type phenol resin obtained are improved.
  • lignin containing an aliphatic hydroxyl group in the above range is preferably kraft lignin or carboxylic acid-modified lignin. More preferably, the carboxylic acid-modified lignin includes carboxylic acid-modified lignin derived from a herbaceous plant, and more preferably an acetic acid-modified lignin derived from a herbaceous plant.
  • Phenols are phenols and derivatives thereof such as phenol, and further, for example, o-cresol, p-cresol, p-ter-butylphenol, p-phenylphenol, p-cumylphenol, p-nonylphenol, Examples include 2,4- or 2,6-xylenol, m-cresol, resorcinol, 3,5-xylenol, bisphenol A, dihydroxydiphenylmethane, and the like. Further, for example, halogenated phenols substituted with halogen such as chlorine and bromine can be mentioned. These phenols can be used alone or in combination of two or more.
  • Phenols are preferably phenol.
  • aldehydes examples include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, butyraldehyde (n-butyraldehyde, isobutyraldehyde), furfural, glyoxal, benzaldehyde, trioxane, tetraoxane and the like. Moreover, a part of aldehyde may be substituted with furfuryl alcohol or the like. These aldehydes can be used alone or in combination of two or more.
  • aldehydes include formaldehyde and paraformaldehyde.
  • aldehydes can be used as an aqueous solution, for example.
  • the concentration of aldehydes is, for example, 10% by mass or more, preferably 20% by mass or more, for example, 99% by mass or less, preferably 95% by mass or less.
  • ketones can be blended with aldehydes.
  • ketones examples include acetone, methyl ethyl ketone, diethyl ketone, acetophenone, diphenyl ketone, and the like. These ketones can be used alone or in combination of two or more.
  • the blending ratio of the ketones is, for example, 0.01 parts by mass or more, preferably 1 part by mass or more with respect to 100 parts by mass of the aldehydes based on the solid content. 200 parts by mass or less, preferably 100 parts by mass or less.
  • the mixing ratio of the phenols is, for example, 30 parts by mass or more, preferably 50 parts by mass or more, more preferably 100 parts by mass or more, for example, 1000 parts by mass with respect to 100 parts by mass of lignin.
  • it is preferably 500 parts by mass or less, and more preferably 350 parts by mass or less.
  • the blending ratio of aldehydes is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, for example, 35 parts by mass or less, preferably 30 parts by mass or less, relative to 100 parts by mass of phenols. is there.
  • the blending ratio of aldehydes is, for example, 1.5 parts by mass or more, preferably 3 parts by mass or more, for example, 350 parts by mass or less, preferably 300 parts by mass or less, with respect to 100 parts by mass of lignin. It is.
  • the blending ratio of each component is within the above range, various physical properties such as friction characteristics, wear resistance, and mechanical strength can be improved.
  • the mixing ratio of phenols is preferably 200 parts by mass or more, more preferably 250 parts by mass or more, preferably 1000 parts by mass with respect to 100 parts by mass of lignin. Part or less, more preferably 500 parts by weight or less.
  • Examples of the acid catalyst include organic acids and inorganic acids.
  • organic acid examples include sulfonic acid compounds such as methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, cumenesulfonic acid, dinonylnaphthalene monosulfonic acid, dinonylnaphthalenedisulfonic acid, for example, trimethyl phosphate, Examples thereof include phosphate esters having an alkyl group having 1 to 18 carbon atoms such as triethyl phosphate, monobutyl phosphate, dibutyl phosphate, tributyl phosphate, trioctyl phosphate, and the like, for example, formic acid, acetic acid, oxalic acid and the like.
  • sulfonic acid compounds such as methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, cumenesulfonic acid, dinonylna
  • inorganic acids examples include phosphoric acid, hydrochloric acid, sulfuric acid, and nitric acid.
  • These acid catalysts can be used alone or in combination of two or more.
  • the acid catalyst is preferably an organic acid, more preferably oxalic acid.
  • the mixing ratio of the acid catalyst is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example, 10 parts by mass or less, preferably 100 parts by mass with respect to 100 parts by mass of phenols. 5 parts by mass or less.
  • the timing of addition of the acid catalyst is not particularly limited, and may be added in advance to at least one of lignin, phenols, and aldehydes, and added at the same time when lignin, phenols, and aldehydes are blended. Further, it may be added after blending lignin, phenols and aldehydes.
  • the reaction temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the reaction time is, for example, 1 hour or more, preferably 2 hours or more, for example, 20 hours or less, preferably 15 hours or less.
  • binder is obtained as a novolac type phenol resin as a reaction product of lignin, phenols and aldehydes.
  • a novolac type phenol resin is obtained by the reaction of phenols and aldehydes in the presence of an acid catalyst, and the novolac type phenol resin is modified with lignin.
  • a novolak-type phenol resin modified with lignin hereinafter sometimes referred to as a lignin-modified novolak-type phenol resin (binder) is obtained.
  • binder binder
  • the above components are preferably blended and reacted sequentially.
  • lignin and phenols are reacted to prepare a lignin-phenol composition containing a reaction product of lignin and phenols, and then the lignin-phenol composition and aldehyde React with a kind.
  • the phenols are blended in an excess equivalent amount with respect to lignin.
  • the blending ratio of phenols is, for example, 30 parts by mass or more, preferably 100 parts by mass of lignin. 50 parts by mass or more, for example, 1000 parts by mass or less, preferably 500 parts by mass or less.
  • the mixing ratio of phenols is preferably 200 parts by mass or more, more preferably 250 parts by mass or more, preferably 1000 parts by mass with respect to 100 parts by mass of lignin. Part or less, more preferably 500 parts by weight or less.
  • the mixing ratio of the acid catalyst is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example, 10 parts by mass or less, preferably 5 parts by mass with respect to 100 parts by mass of the phenols. It is as follows.
  • the timing of addition of the acid catalyst is not particularly limited, and may be added in advance to at least one of lignin and phenols, or may be added simultaneously with the blending of lignin and phenols. It may be added after blending lignin and phenols.
  • the reaction temperature is, for example, 60 ° C. or higher, preferably 80 ° C. or higher, for example, 250 ° C. or lower, preferably 200 ° C. or lower.
  • the reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 10 hours or less, preferably 5 hours or less.
  • This reaction modifies lignin with phenols. Specifically, an aliphatic hydroxyl group in the lignin molecule (when the lignin is a carboxylic acid-modified lignin, an aliphatic hydroxyl group remaining without being modified with a carboxylic acid is included), and the lignin is a carboxylic acid-modified lignin. In some cases, aliphatic hydroxyl groups (ie, esters) modified with carboxylic acids are replaced with phenols.
  • the lignin-phenol composition obtained by the above reaction contains a reaction product of lignin and phenols (lignin modified with phenols) and free phenols.
  • the lignin-phenol composition obtained as described above (that is, lignin modified with phenols and free phenols) is reacted with aldehydes.
  • the blending ratio of aldehydes is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, with respect to 100 parts by mass of phenols (phenols used as a raw material in the above reaction). , 35 parts by mass or less, preferably 30 parts by mass or less.
  • the above acid catalyst can be added at an appropriate ratio, if necessary.
  • the reaction temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the reaction time is, for example, 1 hour or more, preferably 2 hours or more, for example, 20 hours or less, preferably 15 hours or less.
  • the above lignin-phenol composition reacts with aldehydes to obtain a novolak-type phenol resin modified with lignin (lignin-modified novolak-type phenol resin).
  • a binder is obtained as a resin composition containing a novolac type phenol resin.
  • unreacted raw materials unreacted phenols, etc.
  • acid catalyst can be removed by a known method such as distillation, if necessary.
  • the binder (resin composition) can contain a phenol resin curing agent, if necessary.
  • the phenol resin curing agent is not particularly limited, and a known curing agent can be used. Specifically, for example, hexamethylenetetramine, methylolmelamine, methylolurea, phenol novolac and the like can be mentioned.
  • phenolic resin curing agents can be used alone or in combination of two or more.
  • the blending ratio of the phenol resin curing agent is appropriately set according to the purpose and application.
  • the binder can further contain an additive.
  • additives known additives added to the binder, for example, fillers (wood flour, pulp, glass fibers, etc.), colorants, plasticizers, stabilizers, mold release agents (metal soaps such as zinc stearate) Etc.).
  • additives can be used alone or in combination of two or more.
  • the content of the additive is appropriately set according to the purpose and application within a range that does not impair the excellent effects of the present invention.
  • the blending ratio is, for example, 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the reaction product. For example, it is 300 parts by mass or less, preferably 200 parts by mass or less.
  • timing of addition of the additive is not particularly limited, and is appropriately set according to the purpose and application.
  • the friction material can contain other binders (binders excluding the above reaction products) as required in addition to the above binders.
  • thermosetting resins such as melamine resins and epoxy resins.
  • binders can be used alone or in combination of two or more.
  • the blending ratio is appropriately set within a range not impairing the effects of the present invention.
  • an embodiment in which no other binder is blended that is, an embodiment in which the friction material contains only the above reaction product as a binder is included.
  • the friction material preferably contains a fiber base material and a friction modifier.
  • organic fibers such as aromatic polyamide fiber (aramid fiber) and a flame-resistant acrylic fiber
  • metal fibers such as copper fiber and a brass fiber
  • potassium titanate fiber examples thereof include inorganic fibers such as Al 2 O 3 —SiO 2 ceramic fibers, biosoluble ceramic fibers, glass fibers, and carbon fibers.
  • These fiber base materials can be used alone or in combination of two or more.
  • the fiber substrate include organic fibers and metal fibers, more preferably aromatic polyamide fibers (aramid fibers) and copper fibers, and still more preferably a combination thereof.
  • the length of the fiber base material is not particularly limited, but is, for example, 100 ⁇ m or more and 2500 ⁇ m or less. Further, the diameter of the fiber base material is not particularly limited, but is, for example, 3 ⁇ m or more and 600 ⁇ m or less.
  • the friction modifier is not particularly limited, and examples thereof include abrasives, fillers, and solid lubricants.
  • abrasive examples include known abrasives such as alumina, magnesia, and zirconia.
  • abrasives can be used alone or in combination of two or more.
  • the filler examples include inorganic fillers such as calcium carbonate, barium sulfate, calcium hydroxide, iron sulfide, copper sulfide, silicon oxide, metal powder (eg, copper, aluminum, bronze, zinc, etc.), vermiculite, etc.
  • inorganic fillers such as calcium carbonate, barium sulfate, calcium hydroxide, iron sulfide, copper sulfide, silicon oxide, metal powder (eg, copper, aluminum, bronze, zinc, etc.), vermiculite, etc.
  • organic fillers such as rubber (for example, acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), butadiene rubber (BR)) powder, cashew dust, and melamine dust.
  • NBR acrylonitrile butadiene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • fillers can be used alone or in combination of two or more.
  • the filler is preferably an inorganic filler or an organic filler, more preferably barium sulfate, rubber (especially styrene butadiene rubber (SBR)) powder, cashew dust, and more preferably, Combined use is mentioned.
  • SBR styrene butadiene rubber
  • solid lubricant examples include known solid lubricants such as graphite and molybdenum disulfide.
  • solid lubricants can be used alone or in combination of two or more.
  • graphite graphite
  • friction modifiers can be used alone or in combination of two or more.
  • the friction modifier is appropriately selected according to required friction characteristics, heat resistance, wear resistance, and mechanical strength.
  • friction modifier include fillers and solid lubricants, and more preferable combinations thereof.
  • the average particle diameter of the friction modifier is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 500 ⁇ m or less, preferably 250 ⁇ m or less.
  • the friction material is first prepared by blending and kneading the above binder, fiber base material, and friction modifier to produce a friction material molding material, and then the obtained friction material molding material is known. It can obtain by shape
  • the blending ratio of each component is such that the total amount of the fiber base material and the friction modifier is, for example, 250 parts by mass or more, preferably 400 with respect to 100 parts by mass of the binder. For example, 950 parts by mass or less, preferably 900 parts by mass or less.
  • the binder is, for example, 2 parts by mass or more, preferably 5 parts by mass or more, for example, 30 parts by mass or less, with respect to 100 parts by mass of the total amount of the binder, the fiber base material, and the friction modifier.
  • the amount is preferably 20 parts by mass or less.
  • the fiber substrate is, for example, 1 part by mass or more, preferably 5 parts by mass or more, for example, 65 parts by mass or less, preferably 100 parts by mass of the total amount of the binder, the fiber substrate, and the friction modifier. Is 30 parts by mass or less.
  • the friction modifier is, for example, 40 parts by mass or more, preferably 50 parts by mass or more, for example, 95 parts by mass or less, preferably 100 parts by mass of the total amount of the binder, the fiber base material, and the friction modifier. Is 85 parts by mass or less.
  • the blending ratio thereof is, for example, 1 part by mass or more, preferably 1 part by mass or more, preferably 100 parts by mass of the binder, the fiber base material, and the friction modifier. 2 parts by mass or more, for example, 30 parts by mass or less, preferably 25 parts by mass or less.
  • the blending ratio thereof is, for example, 30 parts by mass or more, preferably, relative to 100 parts by mass of the total amount of the binder, the fiber base material, and the friction modifier. , 35 parts by mass or more, for example, 90 parts by mass or less, preferably 85 parts by mass or less.
  • the blending ratio thereof is, for example, 1 part by mass or more with respect to 100 parts by mass of the total amount of the binder, the fiber base material, and the friction modifier. Preferably, it is 3 parts by mass or more, for example, 30 parts by mass or less, preferably 25 parts by mass or less.
  • the kneading method is not particularly limited, and for example, a known kneader such as a single-screw extruder, a multi-screw extruder, a roll kneader, a kneader, Henschel mixer, or a Banbury mixer can be used.
  • a known kneader such as a single-screw extruder, a multi-screw extruder, a roll kneader, a kneader, Henschel mixer, or a Banbury mixer can be used.
  • the kneading temperature is 80 ° C. or higher, preferably 90 ° C. or higher, more preferably 100 ° C. or higher, 180 ° C. or lower, preferably 170 ° C. or lower, more preferably 160 ° C. or lower.
  • the kneading time is, for example, 3 minutes or more, preferably 5 minutes or more, for example, 30 minutes or less, preferably 20 minutes or less.
  • Such a molding material for friction material contains the above reaction product (resin composition) as a binder, it is possible to obtain a friction material having excellent friction characteristics, wear resistance and mechanical strength.
  • the molding material for friction material is molded by a known thermosetting resin molding method such as transfer molding or compression molding.
  • the molding conditions are not particularly limited, and are appropriately set according to the purpose and application.
  • the processing conditions in the molding are not particularly limited, but the temperature conditions are, for example, 140 ° C. or higher, preferably 150 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the pressure condition is, for example, 20 MPa or more, preferably 30 MPa or more, for example, 100 MPa or less, preferably 80 MPa or less.
  • the treatment time is, for example, 2 minutes or longer, preferably 10 minutes or longer, for example, 60 minutes or shorter, preferably 30 minutes or shorter.
  • the friction material is obtained by molding the molding material for the friction material.
  • the friction material can be treated by a known method such as degreasing treatment or primer treatment, if necessary, and the molded friction material can be treated with a known method after-curing (thermosetting treatment). )can do.
  • the treatment conditions in after-curing are not particularly limited, but under normal pressure, the temperature conditions are preferably 10 to 100 ° C. higher than the temperature at the time of molding, specifically, for example, 150 ° C. or higher, preferably 160 ° C. For example, 300 ° C. or lower, preferably 200 ° C. or lower.
  • the treatment time is, for example, 1 hour or more, preferably 2 hours or more, for example, 10 hours or less, preferably 8 hours or less.
  • Such a friction material contains a binder containing a reaction product of lignin having a predetermined content of aliphatic hydroxyl group, phenols, and aldehydes, so that friction characteristics, abrasion resistance and Excellent mechanical strength. Moreover, such a friction material has excellent heat resistance.
  • the friction material is preferably used in a braking member such as a brake pad or a clutch member in a vehicle such as an automobile, a motorcycle, or a train.
  • the friction material is preferably used as a brake pad of an automobile.
  • the friction material is used as an automobile brake pad, for example, the above-mentioned friction material molding material and a known member such as a pressure plate can be integrally molded.
  • a known member such as a pressure plate and the preformed molding material for the friction material are bonded via an adhesive and fixed by thermoforming.
  • thermoforming the temperature conditions are, for example, 140 ° C. or more and 170 ° C. or less, the pressure conditions are, for example, 30 MPa or more and 80 MPa or less, and the processing time is, for example, 2 minutes or more and 10 Is less than a minute.
  • the preformed molding material for the friction material can be degreased and primed by a known method, and the thermoformed friction material can be treated by a known method. Can be after-cured and finished by the method.
  • the treatment conditions in after-curing are not particularly limited, but under normal pressure, the temperature conditions are, for example, 150 ° C. or more and 300 ° C. or less, and the treatment time is, for example, 1 hour or more and 4 hours or less.
  • the brake pad thus obtained is excellent in friction characteristics, wear resistance and mechanical strength because the friction material of the present invention is used.
  • the content of aliphatic hydroxyl groups in acetic acid-modified lignin was 5.1% by mass.
  • Soda lignin was obtained by neutralizing the straw pulp waste liquor (black liquor) and then filtering. Soda lignin and methanol were mixed and then filtered, and the filtrate was concentrated and dried to obtain a methanol-soluble component of soda lignin.
  • the content ratio of the aliphatic hydroxyl group in the methanol-soluble component of soda lignin was 8.8% by mass.
  • Synthesis Example 2 (Lignin used: Acetic acid-modified lignin (collective reaction)) Put 493.5 parts by mass of phenol in a flask and heat to about 50 ° C. to liquefy the phenol, and then add 150 parts by mass of the soluble component (soluble acetic acid-modified lignin) of acetic acid-modified lignin obtained in Preparation Example 1. Added.
  • Synthesis Example 3 (Lignin used: Acetic acid-modified lignin (sequential reaction)) A novolak type phenol resin modified with phenol-modified acetic acid lignin was obtained in the same manner as in Synthesis Example 1 except that the formulation shown in Table 1 was changed.
  • Synthesis Example 4 (Lignin used: Acetic acid-modified lignin (collective reaction)) A novolak-type phenol resin modified with lignin acetate was obtained in the same manner as in Synthesis Example 2 except that the formulation shown in Table 1 was changed.
  • Synthesis Example 5 (Lignin used: Acetic acid-modified lignin (sequential reaction)) A novolak type phenol resin modified with phenol-modified acetic acid lignin was obtained in the same manner as in Synthesis Example 1 except that the formulation shown in Table 1 was changed.
  • Synthesis Example 6 (Lignin used: Acetic acid-modified lignin (collective reaction)) A novolak-type phenol resin modified with lignin acetate was obtained in the same manner as in Synthesis Example 2 except that the formulation shown in Table 1 was changed.
  • Synthesis Example 7 (Lignin used: Kraft lignin (sequential reaction)) Instead of acetic acid-modified lignin, novolak-type phenol modified with kraft lignin modified with phenol in the same manner as in Synthesis Example 1 except that 150 parts by mass of kraft lignin of Preparation Example 2 was used. A resin was obtained.
  • Synthesis Example 8 (Lignin used: Kraft lignin (collective reaction)) A novolak-type phenol resin modified with kraft lignin was obtained in the same manner as in Synthesis Example 2, except that 150 parts by mass of kraft lignin of Preparation Example 2 was used instead of acetic acid-modified lignin.
  • Synthesis Example 9 (Lignin used: Soda lignin (sequential reaction)) Instead of acetic acid-modified lignin, soda lignin was modified with phenol in the same manner as in Synthesis Example 1 except that 150 parts by mass of the methanol-soluble component of soda lignin of Preparation Example 3 was used, and modified with the phenol-modified soda lignin. A novolac-type phenolic resin was obtained.
  • Synthesis Example 10 (Lignin used: Soda lignin (collective reaction)) A novolak-type phenol resin modified with soda lignin was obtained in the same manner as in Synthesis Example 2, except that 150 parts by mass of the methanol-soluble component of soda lignin of Preparation Example 3 was used instead of acetic acid-modified lignin.
  • Example 1 100 parts (450 g) of the novolak-type phenol resin obtained in Synthesis Example 1, 12 parts (54 g) of hexamethylenetetramine (manufactured by lignite) as a phenol resin curing agent, and zinc stearate (Wako Pure Chemical Industries) as a release agent 1 part (4.5 g) (manufactured by Kogyo) was sequentially blended and kneaded with two hot rolls at 100 ° C. for 5 minutes to obtain a resin composition.
  • the obtained molding material for friction material was compression molded at 170 ° C. for 15 minutes to obtain a disc-shaped test piece of 100 mm ⁇ as the friction material.
  • the obtained friction material was thermally cured (aftercured) at 180 ° C. for 4 hours.
  • Examples 2-8 and Comparative Examples 1-2 A friction material was obtained in the same manner as in Example 1 except that the formulation was changed to the formulation shown in Table 2. In addition, the obtained friction material was thermally cured (aftercured) at 180 ° C. for 4 hours.
  • Friction coefficient In accordance with ASTM D1894, a friction coefficient (static friction coefficient and dynamic friction coefficient) was determined using a surface property tester (Shinto Kagaku HEIDON-14S / D). Various conditions for obtaining the friction coefficient and dimensions of the test piece used are shown below.
  • Test piece Disc test piece with a diameter of 100 mm and a thickness of about 3 mm
  • Mating material 19 mm diameter cylinder
  • Mating material S45C Test speed: 100 mm / min
  • Wear test (Taber type) The amount of wear was measured in accordance with JIS-K7204 (1999 edition), and the amount of wear was calculated in mass% to indicate how much the mass was reduced from the mass of the first sample. The conditions of the wear test and the dimensions of the test piece used are shown below.
  • soda lignin indicates a methanol-soluble component of soda lignin.
  • the friction material of the present invention is suitably used in braking members such as brake pads and clutch members for vehicles such as automobiles, motorcycles, and trains.

Abstract

A friction material which contains a binder, wherein the binder comprises a reaction product obtained by reactions among a lignin having aliphatic hydroxy groups in the molecule, a phenol, and an aldehyde, the lignin having an aliphatic-hydroxy-group content of 0.5-8.5 mass% with respect to the overall amount of the lignin.

Description

摩擦材Friction material
 本発明は、摩擦材に関し、詳しくは、ブレーキパッドなどとして用いられる摩擦材に関する。 The present invention relates to a friction material, and more particularly to a friction material used as a brake pad or the like.
 従来、自動車、自動二輪車、電車などのブレーキパッド、クラッチ部材などには、摩擦材が用いられている。摩擦材は、通常、金属繊維やアラミド繊維などの補強材と、充填材や潤滑材などの添加材とを、フェノール樹脂などの結合剤(バインダー)を介して一体的に成形することにより、製造されている。 Conventionally, friction materials have been used for brake pads and clutch members of automobiles, motorcycles, trains, and the like. Friction materials are usually manufactured by integrally forming reinforcing materials such as metal fibers and aramid fibers and additives such as fillers and lubricants through a binder (binder) such as phenol resin. Has been.
 このような摩擦材には、摩擦特性、機械強度などが要求されており、また、環境負荷を低減することも要求されている。そこで、結合剤(バインダー)として、リグニンフェノール樹脂を用いることが提案されている。より具体的には、例えば、リグニンとフェノール類とアルデヒド類とを酸触媒の存在下で反応させて得られる重量平均分子量5000以下のリグニンフェノール樹脂を、結合剤として含有する摩擦材が、提案されている(特許文献1参照)。 Such a friction material is required to have friction characteristics, mechanical strength, and the like, and to reduce the environmental load. Therefore, it has been proposed to use a lignin phenol resin as a binder (binder). More specifically, for example, there has been proposed a friction material containing, as a binder, a lignin phenol resin having a weight average molecular weight of 5000 or less obtained by reacting lignin, phenols and aldehydes in the presence of an acid catalyst. (See Patent Document 1).
特開2013-199561号公報JP 2013-199561 A
 一方、摩擦材としては、摩擦特性、耐摩耗性、機械強度などの各種物性のさらなる向上が要求されている。 On the other hand, the friction material is required to further improve various physical properties such as friction characteristics, wear resistance, and mechanical strength.
 本発明の目的は、摩擦特性、耐摩耗性および機械強度に優れる摩擦材を提供することにある。 An object of the present invention is to provide a friction material having excellent friction characteristics, wear resistance and mechanical strength.
 本発明[1]は、バインダーを含有する摩擦材であり、前記バインダーが、分子中に脂肪族水酸基を有するリグニンと、フェノール類と、アルデヒド類との反応生成物を含有し、前記リグニンの前記脂肪族水酸基の含有割合が、前記リグニンの総量に対して、0.5質量%以上8.5質量%以下である、摩擦材を含んでいる。 The present invention [1] is a friction material containing a binder, wherein the binder contains a reaction product of a lignin having an aliphatic hydroxyl group in the molecule, a phenol, and an aldehyde, A friction material is included in which the content ratio of the aliphatic hydroxyl group is 0.5% by mass or more and 8.5% by mass or less based on the total amount of the lignin.
 また、本発明[2]は、前記リグニンが、前記リグニンが、クラフトリグニンである、上記[1]に記載の摩擦材を含んでいる。 Moreover, this invention [2] contains the friction material as described in said [1] whose said lignin is said lignin is a craft lignin.
 また、本発明[3]は、前記リグニンが、酢酸により変性されたリグニンである、上記[1]に記載の摩擦材を含んでいる。 Further, the present invention [3] includes the friction material according to the above [1], wherein the lignin is lignin modified with acetic acid.
 本発明の摩擦材は、脂肪族水酸基の含有割合が所定量であるリグニンと、フェノール類と、アルデヒド類との反応生成物を含有するバインダーを含有するため、摩擦特性、耐摩耗性および機械強度に優れる。 Since the friction material of the present invention contains a binder containing a reaction product of lignin having a predetermined content of aliphatic hydroxyl group, phenols, and aldehydes, friction characteristics, wear resistance, and mechanical strength Excellent.
 本発明の摩擦材は、バインダー(結合剤)を含有している。 The friction material of the present invention contains a binder (binder).
 バインダー(結合剤)は、分子中に脂肪族水酸基(後述)を有するリグニンと、フェノール類と、アルデヒド類との反応生成物を含有しており、好ましくは、分子中に脂肪族水酸基(後述)を有するリグニンと、フェノール類と、アルデヒド類との反応生成物からなる。 The binder (binder) contains a reaction product of lignin having an aliphatic hydroxyl group (described later) in the molecule, phenols, and aldehydes, preferably an aliphatic hydroxyl group (described later) in the molecule. It consists of a reaction product of a lignin having a phenol, a aldehyde.
 リグニンは、グアイアシルリグニン(G型)、シリンギルリグニン(S型)、p-ヒドロキシフェニルリグニン(H型)などの基本骨格からなる高分子フェノール性化合物である。 Lignin is a high molecular phenolic compound having a basic skeleton such as guaiacyl lignin (G type), syringyl lignin (S type), p-hydroxyphenyl lignin (H type) and the like.
 より具体的には、リグニンは、例えば、原料となる植物の種類によって分類され、具体的には、木本系植物由来リグニン、草本系植物由来リグニンが挙げられる。 More specifically, lignin is classified according to, for example, the type of plant used as a raw material, and specific examples include woody plant-derived lignin and herbaceous plant-derived lignin.
 木本系植物由来リグニンとしては、例えば、針葉樹(例えば、スギなど)に含まれる針葉樹系リグニン、例えば、広葉樹に含まれる広葉樹系リグニンなどが挙げられる。このような木本系植物由来リグニンは、H型を基本骨格とするリグニンを含まず、例えば、針葉樹系リグニンはG型を基本骨格とし、広葉樹系リグニンは、G型およびS型を基本骨格としている。 Examples of woody plant-derived lignin include coniferous lignin contained in conifers (eg, cedar), for example, broadleaf lignin contained in broadleaf trees. Such woody plant-derived lignin does not contain lignin having H-type basic skeleton, for example, conifer lignin has G-type basic skeleton, and hardwood lignin has G-type and S-type basic skeleton. Yes.
 また、草本系植物由来リグニンとしては、例えば、イネ科植物に含まれるイネ系リグニンなどが挙げられ、より具体的には、麦わらに含まれる麦わらリグニン、稲わらに含まれる稲わらリグニン、とうもろこしに含まれるとうもろこしリグニン、タケに含まれるタケリグニンなどが挙げられる。このような草本系植物由来リグニンは、H型、G型およびS型の全てを基本骨格としている。 Examples of the herbaceous plant-derived lignin include, for example, rice-based lignin contained in Gramineae plants, and more specifically, wheat straw lignin contained in wheat straw, rice straw lignin contained in rice straw, and corn. Examples include corn lignin and bamboo lignin contained in bamboo. Such herbaceous plant-derived lignin has all of H-type, G-type and S-type as the basic skeleton.
 これらのリグニンは、単独使用または2種類以上併用することができる。 These lignins can be used alone or in combination of two or more.
 リグニンとして、好ましくは、草本系植物由来リグニン、より好ましくは、麦わらに由来する草本系植物由来リグニン、とうもろこしに由来する草本系植物由来リグニンが挙げられる。 The lignin is preferably a herbaceous plant-derived lignin, more preferably a herbaceous plant-derived lignin derived from straw, or a herbaceous plant-derived lignin derived from corn.
 また、リグニンとして、好ましくは、反応性の観点から、H型の基本骨格を3質量%以上、より好ましくは、9質量%以上、さらに好ましくは、14質量%以上の割合で含有することが挙げられる。 Further, as lignin, from the viewpoint of reactivity, it is preferable to contain an H-type basic skeleton in a proportion of 3% by mass or more, more preferably 9% by mass or more, and still more preferably 14% by mass or more. It is done.
 このようなリグニンは、例えば、アルカリ法(ソーダ法)、亜硫酸法、クラフト法などの公知の方法によって、植物からパルプを製造する際、排出される廃液(黒液)中に含まれる。より具体的には、アルカリ法において排出される廃液(黒液)には、アルカリリグニン(ソーダリグニン)が含有され、亜硫酸法において排出される廃液(黒液)には、サルファイトリグニンが含有され、クラフト法において排出される廃液(黒液)には、クラフトリグニンが含有される。 Such lignin is contained in waste liquid (black liquor) discharged when pulp is produced from a plant by a known method such as an alkali method (soda method), a sulfurous acid method, or a kraft method. More specifically, the waste liquid (black liquor) discharged in the alkali method contains alkali lignin (soda lignin), and the waste liquid (black liquor) discharged in the sulfurous acid method contains sulfite lignin. The waste liquid (black liquor) discharged in the kraft process contains craft lignin.
 また、リグニンとしては、上記の他、リグニンを酸(カルボン酸など)で変性して得られる酸変性リグニン、植物を爆砕法で処理して得られる爆砕リグニンなども挙げられる。 In addition to the above, examples of lignin include acid-modified lignin obtained by modifying lignin with an acid (such as a carboxylic acid), and explosion lignin obtained by treating a plant with an explosion method.
 リグニンとして、好ましくは、酸変性リグニンが挙げられ、より好ましくは、カルボン酸変性リグニンが挙げられる。 The lignin is preferably an acid-modified lignin, more preferably a carboxylic acid-modified lignin.
 カルボン酸変性リグニンにおいて、カルボン酸としては、例えば、カルボキシ基を1つ有するカルボン酸(以下、単官能カルボン酸と称する場合がある。)が挙げられ、具体的には、例えば、飽和脂肪族単官能カルボン酸、不飽和脂肪族単官能カルボン酸、芳香族単官能カルボン酸などが挙げられる。 In the carboxylic acid-modified lignin, examples of the carboxylic acid include a carboxylic acid having one carboxy group (hereinafter, sometimes referred to as a monofunctional carboxylic acid). Functional carboxylic acid, unsaturated aliphatic monofunctional carboxylic acid, aromatic monofunctional carboxylic acid and the like can be mentioned.
 飽和脂肪族単官能カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、ラウリル酸などが挙げられる。 Examples of the saturated aliphatic monofunctional carboxylic acid include acetic acid, propionic acid, butyric acid, lauric acid and the like.
 不飽和脂肪族単官能カルボン酸としては、例えば、アクリル酸、メタクリル酸、リノール酸などが挙げられる。 Examples of the unsaturated aliphatic monofunctional carboxylic acid include acrylic acid, methacrylic acid, and linoleic acid.
 芳香族単官能カルボン酸としては、例えば、安息香酸、2-フェノキシ安息香酸、4-メチル安息香酸などが挙げられる。 Examples of the aromatic monofunctional carboxylic acid include benzoic acid, 2-phenoxybenzoic acid, and 4-methylbenzoic acid.
 これらカルボン酸は、単独使用または2種類以上併用することができる。 These carboxylic acids can be used alone or in combination of two or more.
 カルボン酸として、好ましくは、飽和脂肪族単官能カルボン酸、より好ましくは、酢酸が挙げられる(換言すれば、リグニンとして、酢酸により変性されたリグニンが用いられる。)。上記のカルボン酸を用いれば、カルボン酸変性リグニンを簡易に得ることができ、また、得られるカルボン酸変性リグニンは、後述するように、有機溶媒に対する溶解性が比較的高く、また、溶融温度が比較的低温(100~200℃程度)であるため、取扱性にも優れる。 The carboxylic acid is preferably a saturated aliphatic monofunctional carboxylic acid, more preferably acetic acid (in other words, lignin modified with acetic acid is used as lignin). If the carboxylic acid is used, a carboxylic acid-modified lignin can be easily obtained, and the carboxylic acid-modified lignin obtained has a relatively high solubility in an organic solvent and has a melting temperature as described later. Since it is relatively low temperature (about 100 to 200 ° C.), it is excellent in handleability.
 また、カルボン酸は、水溶液として調製することができる。そのような場合、カルボン酸水溶液の濃度は、特に制限されず、適宜設定される。 Also, the carboxylic acid can be prepared as an aqueous solution. In such a case, the concentration of the carboxylic acid aqueous solution is not particularly limited and is set as appropriate.
 カルボン酸変性リグニンの製造方法は、特に制限されず、公知の方法に準拠することができる。 The production method of the carboxylic acid-modified lignin is not particularly limited, and can conform to a known method.
 具体的には、例えば、リグニンの原料となる植物材料(例えば、針葉樹、広葉樹、イネ科植物など)を、カルボン酸(好ましくは、酢酸)を用いて蒸解することによって、リグニンの脂肪族水酸基(後述)をカルボン酸で変性し、パルプ廃液としてカルボン酸変性リグニンを得ることができる。 Specifically, for example, a plant material (for example, a conifer, a broadleaf tree, a gramineous plant, etc.) that is a raw material for lignin is digested with a carboxylic acid (preferably acetic acid). A carboxylic acid-modified lignin can be obtained as a pulp waste liquid by modifying with a carboxylic acid.
 蒸解方法としては、特に制限されないが、例えば、リグニンの原料となる植物材料と、カルボン酸および無機酸(例えば、塩酸、硫酸など)とを混合し、反応させる。 The cooking method is not particularly limited. For example, a plant material that is a raw material for lignin is mixed with a carboxylic acid and an inorganic acid (for example, hydrochloric acid, sulfuric acid, etc.) and reacted.
 カルボン酸の配合割合は、リグニンの原料となる植物材料100質量部に対して、カルボン酸(100%換算)が、例えば、500質量部以上、好ましくは、900質量部以上であり、例えば、30000質量部以下、好ましくは、15000質量部以下である。 The mixing ratio of the carboxylic acid is such that the carboxylic acid (100% conversion) is, for example, 500 parts by mass or more, preferably 900 parts by mass or more, for example, 30000 with respect to 100 parts by mass of the plant material that is the raw material for lignin. It is 1 part by mass or less, preferably 15000 parts by mass or less.
 また、無機酸の配合割合は、リグニンの原料となる植物材料100質量部に対して、無機酸(100%換算)が、例えば、0.01質量部以上、好ましくは、0.05質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。 The blending ratio of the inorganic acid is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the plant material that is the raw material for lignin. For example, it is 10 parts by mass or less, preferably 5 parts by mass or less.
 また、反応条件としては、大気圧下、反応温度が、例えば、30℃以上、好ましくは、50℃以上であり、例えば、400℃以下、好ましくは、250℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上であり、例えば、20時間以下、好ましくは、10時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 30 ° C. or more, preferably 50 ° C. or more, for example, 400 ° C. or less, preferably 250 ° C. or less. The reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 20 hours or less, preferably 10 hours or less.
 このような蒸解によって、パルプが得られるとともに、パルプ廃液としてカルボン酸変性リグニンが得られる。 By such cooking, pulp is obtained and carboxylic acid-modified lignin is obtained as a pulp waste liquid.
 次いで、この方法では、濾過などの公知の分離方法によってパルプを分離し、濾液(パルプ廃液)を回収し、必要により、未反応のカルボン酸を、例えば、ロータリーエバポレーター、減圧蒸留などを用いた公知の方法により除去(留去)する。その後、大過剰の水を添加してカルボン酸変性リグニンを沈殿させ、濾過することによって、固形分としてカルボン酸変性リグニンを回収する。 Next, in this method, the pulp is separated by a known separation method such as filtration, and the filtrate (pulp waste liquid) is recovered. If necessary, the unreacted carboxylic acid is known using, for example, a rotary evaporator, vacuum distillation or the like. It is removed (distilled off) by the method. Thereafter, a large excess of water is added to precipitate the carboxylic acid-modified lignin, followed by filtration to recover the carboxylic acid-modified lignin as a solid content.
 また、カルボン酸変性リグニンを得る方法は、上記に限定されず、例えば、カルボン酸により変性されていないリグニン(例えば、上記アルカリリグニン、上記サルファイトリグニン、上記クラフトリグニンなど(以下、未変性リグニン))とカルボン酸とを反応させることにより、リグニンの脂肪族水酸基(後述)をカルボン酸で変性し、カルボン酸変性リグニンを得ることもできる。 Further, the method for obtaining the carboxylic acid-modified lignin is not limited to the above. For example, lignin not modified with carboxylic acid (for example, the above alkaline lignin, the above sulfite lignin, the above kraft lignin, etc. (hereinafter referred to as unmodified lignin) ) And a carboxylic acid can be used to modify an aliphatic hydroxyl group (described later) of lignin with a carboxylic acid to obtain a carboxylic acid-modified lignin.
 このような方法では、未変性リグニンとして、好ましくは、粉末状の未変性リグニンが挙げられる。 In such a method, the native lignin is preferably powdered native lignin.
 粉末状の未変性リグニンの平均粒子径は、例えば、0.1μm以上、好ましくは、5μm以上であり、例えば、1000μm以下、好ましくは、500μm以下である。なお、本願明細書において平均粒子径とは、レーザー回折散乱法により測定した粒子径分布から求められる体積基準の累積中位径(D50)である。 The average particle size of the powdered unmodified lignin is, for example, 0.1 μm or more, preferably 5 μm or more, for example, 1000 μm or less, preferably 500 μm or less. In the present specification, the average particle diameter is a volume-based cumulative median diameter (D 50 ) determined from a particle diameter distribution measured by a laser diffraction scattering method.
 平均粒子径が上記範囲であれば、未変性リグニンの凝集を抑制して、未変性リグニンをカルボン酸に対して良好に分散することができる。 If the average particle diameter is in the above range, aggregation of the unmodified lignin can be suppressed and the unmodified lignin can be favorably dispersed in the carboxylic acid.
 なお、粉末状の未変性リグニンは、塊状の未変性リグニンを公知の方法で乾燥および粉砕することにより得ることができ、また、市販品を用いることもできる。 The powdered unmodified lignin can be obtained by drying and pulverizing the lump unmodified lignin by a known method, or a commercially available product can be used.
 未変性リグニンとカルボン酸とを反応させる方法としては、例えば、未変性リグニンと、カルボン酸および無機酸(例えば、塩酸、硫酸など)とを混合し、反応させる。 As a method of reacting unmodified lignin and carboxylic acid, for example, unmodified lignin, carboxylic acid and inorganic acid (for example, hydrochloric acid, sulfuric acid, etc.) are mixed and reacted.
 カルボン酸の配合割合は、未変性リグニン100質量部に対して、カルボン酸(100%換算)が、例えば、300質量部以上、好ましくは、500質量部以上であり、例えば、15000質量部以下、好ましくは、10000質量部以下である。 The mixing ratio of the carboxylic acid is, for example, 300 parts by mass or more, preferably 500 parts by mass or more, for example, 15000 parts by mass or less, based on 100 parts by mass of the unmodified lignin. Preferably, it is 10000 parts by mass or less.
 また、無機酸の配合割合は、未変性リグニン100質量部に対して、無機酸(100%換算)が、例えば、0.01質量部以上、好ましくは、0.05質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。 The blending ratio of the inorganic acid is such that the inorganic acid (100% conversion) is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the unmodified lignin. 10 parts by mass or less, preferably 5 parts by mass or less.
 また、反応条件としては、大気圧下、反応温度が、例えば、30℃以上、好ましくは、50℃以上であり、例えば、400℃以下、好ましくは、250℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上であり、例えば、20時間以下、好ましくは、10時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 30 ° C. or more, preferably 50 ° C. or more, for example, 400 ° C. or less, preferably 250 ° C. or less. The reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 20 hours or less, preferably 10 hours or less.
 このようなカルボン酸変性リグニンは、取扱性に優れる。 Such carboxylic acid-modified lignin is excellent in handleability.
 すなわち、カルボン酸により変性されていないリグニンは、有機溶媒に対する溶解性が比較的低く、また、溶融しないため、用途によっては、取扱性に劣る場合がある。 That is, lignin that has not been modified with carboxylic acid has relatively low solubility in organic solvents and does not melt, so that it may be inferior in handleability depending on the application.
 一方、上記のようにカルボン酸により変性されたリグニンは、有機溶媒(例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル類、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、メタノールなどの脂肪族アルコール類、例えば、フェノール、クレゾール、ビスフェノールAなどのフェノール類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、アセトニトリルなどのニトリル類、その他、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性溶媒など)に対する溶解性が比較的高く、比較的低温(100~200℃程度)において溶融可能であるため、取扱性に優れる。 On the other hand, lignin modified with carboxylic acid as described above is an organic solvent (for example, esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone). For example, aliphatic alcohols such as methanol, for example, phenols such as phenol, cresol, bisphenol A, for example, ethers such as diethyl ether, tetrahydrofuran and dioxane, such as methyl cellosolve acetate, ethyl cellosolve acetate, methylcarbyl Tall acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, 3-methyl-3-methoxybuty Glycol ether esters such as acetate and ethyl-3-ethoxypropionate, for example, nitriles such as acetonitrile, others, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexa Since it is relatively soluble in polar solvents such as methylphosphonilamide and can be melted at a relatively low temperature (about 100 to 200 ° C.), it is excellent in handling.
 そのため、カルボン酸変性リグニンは、上記の有機溶媒の溶液として用いることもできる。そのような場合、溶液におけるカルボン酸変性リグニンの濃度は、例えば、10質量%以上、好ましくは、30質量%以上である。 Therefore, the carboxylic acid-modified lignin can also be used as a solution of the above organic solvent. In such a case, the concentration of the carboxylic acid-modified lignin in the solution is, for example, 10% by mass or more, and preferably 30% by mass or more.
 また、カルボン酸変性リグニンの平均粒子径は、例えば、0.1μm以上、好ましくは、5μm以上であり、例えば、2cm以下、好ましくは、1cm以下である。 The average particle size of the carboxylic acid-modified lignin is, for example, 0.1 μm or more, preferably 5 μm or more, for example, 2 cm or less, preferably 1 cm or less.
 また、カルボン酸変性リグニンは、上記の有機溶媒(好ましくは、酢酸エチル)により溶解可能な成分(可溶成分)と、上記の有機溶媒によって溶解不能な成分(不溶成分)との混合物として得られる場合がある。 The carboxylic acid-modified lignin is obtained as a mixture of a component (soluble component) that can be dissolved by the organic solvent (preferably ethyl acetate) and a component that cannot be dissolved by the organic solvent (insoluble component). There is a case.
 このような場合、カルボン酸変性リグニンとして、可溶成分と不溶成分との混合物(粗カルボン酸変性リグニンと称する。)を用いることができる。 In such a case, a mixture of a soluble component and an insoluble component (referred to as crude carboxylic acid-modified lignin) can be used as the carboxylic acid-modified lignin.
 また、可溶成分と不溶成分とを分離して、可溶成分のみを用いることもでき、また、不溶成分のみを用いることもできる。さらには、分離された可溶成分と不溶成分とを、混合して用いることもできる。 In addition, it is possible to separate the soluble component and the insoluble component and use only the soluble component, or it is possible to use only the insoluble component. Furthermore, the separated soluble component and insoluble component can be mixed and used.
 カルボン酸変性リグニンとして、好ましくは、可溶成分が挙げられる。 The carboxylic acid-modified lignin is preferably a soluble component.
 可溶成分と不溶成分とを分離する方法としては、例えば、上記した有機溶媒による抽出法などが採用される。 As a method for separating the soluble component and the insoluble component, for example, the above-described extraction method using an organic solvent is employed.
 なお、抽出条件は、使用される有機溶媒、および、粗カルボン酸変性リグニンの物性などに応じて、適宜設定される。 The extraction conditions are appropriately set according to the organic solvent used and the physical properties of the crude carboxylic acid-modified lignin.
 また、リグニン(未変性リグニン、カルボン酸変性リグニンなど)は、分子中に脂肪族水酸基を有する。 Also, lignin (such as unmodified lignin and carboxylic acid-modified lignin) has an aliphatic hydroxyl group in the molecule.
 脂肪族水酸基とは、芳香環に直接結合せず、脂肪族炭化水素に直接結合する水酸基であって、芳香環に直接結合する水酸基(芳香族水酸基(フェノール性水酸基))とは区別される。 An aliphatic hydroxyl group is a hydroxyl group that is not directly bonded to an aromatic ring but directly bonded to an aliphatic hydrocarbon, and is distinguished from a hydroxyl group directly bonded to an aromatic ring (aromatic hydroxyl group (phenolic hydroxyl group)).
 リグニンの脂肪族水酸基の含有割合は、リグニンの総量に対して、0.5質量%以上、好ましくは、3.0質量%以上であり、8.5質量%以下、好ましくは、7.0質量%以下、より好ましくは、5.5質量%以下である。 The content ratio of the aliphatic hydroxyl group of lignin is 0.5% by mass or more, preferably 3.0% by mass or more, and 8.5% by mass or less, preferably 7.0% by mass with respect to the total amount of lignin. % Or less, more preferably 5.5% by mass or less.
 リグニンの脂肪族水酸基の含有割合が上記下限を下回っていると、リグニンと、フェノール類およびアルデヒド類との反応性に劣り、ノボラック型フェノール樹脂の生産性が低下する。 If the content ratio of the aliphatic hydroxyl group of lignin is below the lower limit, the reactivity of lignin with phenols and aldehydes is inferior, and the productivity of the novolak type phenol resin is lowered.
 また、リグニンの脂肪族水酸基の含有割合が上記上限を上回っていると、リグニン、フェノール類およびアルデヒド類の反応時にゲル化が進行しやすくなるとともに、得られるノボラック型フェノール樹脂を用いた成形品は靭性に劣る(もろくなる)という欠点がある。また、リグニンの架橋密度が低いために成形品の物性が低下する。 Further, when the content of the aliphatic hydroxyl group of lignin exceeds the above upper limit, gelation easily proceeds during the reaction of lignin, phenols and aldehydes, and the obtained molded article using the novolak type phenol resin is There is a disadvantage that it is inferior to toughness (becomes brittle). In addition, since the lignin has a low crosslinking density, the physical properties of the molded product are lowered.
 一方、リグニンの脂肪族水酸基の含有割合が上記範囲であれば、リグニンとフェノール類およびアルデヒド類との反応性に優れ、また、それらの反応時にゲル化を生じにくいため、ノボラック型フェノール樹脂の生産性も向上し、かつ、得られるノボラック型フェノール樹脂を用いた成形品の各種特性が向上する。 On the other hand, if the content ratio of the aliphatic hydroxyl group of lignin is in the above range, the production of novolac type phenolic resin is excellent because it is excellent in reactivity between lignin and phenols and aldehydes, and it is difficult to cause gelation during the reaction. In addition, the properties of the molded article using the novolac type phenol resin obtained are improved.
 なお、脂肪族水酸基の含有割合は、後述する実施例に準拠して求められる。 In addition, the content rate of an aliphatic hydroxyl group is calculated | required based on the Example mentioned later.
 また、脂肪族水酸基が上記範囲で含有されるリグニンとして、好ましくは、クラフトリグニン、カルボン酸変性リグニンが挙げられる。カルボン酸変性リグニンとして、より好ましくは、草本系植物に由来するカルボン酸変性リグニンが挙げられ、さらに好ましくは、草本系植物に由来する酢酸変性リグニンが挙げられる。 Further, lignin containing an aliphatic hydroxyl group in the above range is preferably kraft lignin or carboxylic acid-modified lignin. More preferably, the carboxylic acid-modified lignin includes carboxylic acid-modified lignin derived from a herbaceous plant, and more preferably an acetic acid-modified lignin derived from a herbaceous plant.
 フェノール類は、フェノールおよびその誘導体であって、例えば、フェノール、さらには、例えば、o-クレゾール、p-クレゾール、p-ter-ブチルフェノール、p-フェニルフェノール、p-クミルフェノール、p-ノニルフェノール、2,4-または2,6-キシレノール、m-クレゾール、レゾルシノール、3,5-キシレノール、ビスフェノールA、ジヒドロキシジフェニルメタンなどが挙げられる。また、例えば、塩素、臭素などのハロゲンにより置換されたハロゲン化フェノール類なども挙げられる。これらフェノール類は、単独使用または2種類以上併用することができる。 Phenols are phenols and derivatives thereof such as phenol, and further, for example, o-cresol, p-cresol, p-ter-butylphenol, p-phenylphenol, p-cumylphenol, p-nonylphenol, Examples include 2,4- or 2,6-xylenol, m-cresol, resorcinol, 3,5-xylenol, bisphenol A, dihydroxydiphenylmethane, and the like. Further, for example, halogenated phenols substituted with halogen such as chlorine and bromine can be mentioned. These phenols can be used alone or in combination of two or more.
 フェノール類として、好ましくは、フェノールが挙げられる。 Phenols are preferably phenol.
 アルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド(n-ブチルアルデヒド、イソブチルアルデヒド)、フルフラール、グリオキサール、ベンズアルデヒド、トリオキサン、テトラオキサンなどが挙げられる。また、アルデヒドの一部が、フルフリルアルコールなどに置換されていてもよい。これらアルデヒド類は、単独使用または2種類以上併用することができる。 Examples of aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, butyraldehyde (n-butyraldehyde, isobutyraldehyde), furfural, glyoxal, benzaldehyde, trioxane, tetraoxane and the like. Moreover, a part of aldehyde may be substituted with furfuryl alcohol or the like. These aldehydes can be used alone or in combination of two or more.
 アルデヒド類として、好ましくは、ホルムアルデヒド、パラホルムアルデヒドが挙げられる。 Preferred examples of aldehydes include formaldehyde and paraformaldehyde.
 また、アルデヒド類は、例えば、水溶液として用いることができる。そのような場合において、アルデヒド類の濃度は、例えば、10質量%以上、好ましくは、20質量%以上であり、例えば、99質量%以下、好ましくは、95質量%以下である。 Further, aldehydes can be used as an aqueous solution, for example. In such a case, the concentration of aldehydes is, for example, 10% by mass or more, preferably 20% by mass or more, for example, 99% by mass or less, preferably 95% by mass or less.
 また、アルデヒド類とともに、ケトン類を配合することもできる。 Also, ketones can be blended with aldehydes.
 ケトン類としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノン、ジフェニルケトンなどが挙げられる。これらケトン類は、単独使用または2種類以上併用することができる。 Examples of ketones include acetone, methyl ethyl ketone, diethyl ketone, acetophenone, diphenyl ketone, and the like. These ketones can be used alone or in combination of two or more.
 ケトン類が配合される場合、ケトン類の配合割合は、固形分基準で、アルデヒド類100質量部に対して、例えば、0.01質量部以上、好ましくは、1質量部以上であり、例えば、200質量部以下、好ましくは、100質量部以下である。 When the ketones are blended, the blending ratio of the ketones is, for example, 0.01 parts by mass or more, preferably 1 part by mass or more with respect to 100 parts by mass of the aldehydes based on the solid content. 200 parts by mass or less, preferably 100 parts by mass or less.
 そして、リグニン(分子中に脂肪族水酸基を有するリグニン)とフェノール類とアルデヒド類(および必要により配合されるケトン類(以下同様))とを反応させるには、上記の各成分(リグニン、フェノール類およびアルデヒド類)を配合し、加熱する。 In order to react lignin (lignin having an aliphatic hydroxyl group in the molecule) with phenols and aldehydes (and ketones blended if necessary (hereinafter the same)), the above components (lignin, phenols) And aldehydes) and heat.
 この反応において、フェノール類の配合割合は、リグニン100質量部に対して、例えば、30質量部以上、好ましくは、50質量部以上、より好ましくは、100質量部以上であり、例えば、1000質量部以下、好ましくは、500質量部以下、より好ましくは、350質量部以下である。 In this reaction, the mixing ratio of the phenols is, for example, 30 parts by mass or more, preferably 50 parts by mass or more, more preferably 100 parts by mass or more, for example, 1000 parts by mass with respect to 100 parts by mass of lignin. Hereinafter, it is preferably 500 parts by mass or less, and more preferably 350 parts by mass or less.
 また、アルデヒド類の配合割合が、フェノール類100質量部に対して、例えば、5質量部以上、好ましくは、10質量部以上であり、例えば、35質量部以下、好ましくは、30質量部以下である。また、アルデヒド類の配合割合は、リグニン100質量部に対して、例えば、1.5質量部以上、好ましくは、3質量部以上であり、例えば、350質量部以下、好ましくは、300質量部以下である。 The blending ratio of aldehydes is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, for example, 35 parts by mass or less, preferably 30 parts by mass or less, relative to 100 parts by mass of phenols. is there. The blending ratio of aldehydes is, for example, 1.5 parts by mass or more, preferably 3 parts by mass or more, for example, 350 parts by mass or less, preferably 300 parts by mass or less, with respect to 100 parts by mass of lignin. It is.
 各成分の配合割合が上記範囲であれば、摩擦特性、耐摩耗性、機械強度などの各種物性の向上を図ることができる。 If the blending ratio of each component is within the above range, various physical properties such as friction characteristics, wear resistance, and mechanical strength can be improved.
 とりわけ、摩擦特性の向上を図る観点から、フェノール類の配合割合は、リグニン100質量部に対して、好ましくは、200質量部以上、より好ましくは、250質量部以上であり、好ましくは、1000質量部以下、より好ましくは、500質量部以下である。 In particular, from the viewpoint of improving the friction characteristics, the mixing ratio of phenols is preferably 200 parts by mass or more, more preferably 250 parts by mass or more, preferably 1000 parts by mass with respect to 100 parts by mass of lignin. Part or less, more preferably 500 parts by weight or less.
 また、この反応では、酸触媒が添加される。すなわち、上記の各成分は、酸触媒下において反応する。 In this reaction, an acid catalyst is added. That is, each of the above components reacts under an acid catalyst.
 酸触媒としては、例えば、有機酸、無機酸などが挙げられる。 Examples of the acid catalyst include organic acids and inorganic acids.
 有機酸としては、例えば、メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、キュメンスルホン酸、ジノニルナフタレンモノスルホン酸、ジノニルナフタレンジスルホン酸などのスルホン酸化合物、例えば、リン酸トリメチル、リン酸トリエチル、リン酸モノブチル、リン酸ジブチル、リン酸トリブチル、リン酸トリオクチルなどの炭素数1~18のアルキル基を有するリン酸エステル類、例えば、ギ酸、酢酸、シュウ酸などが挙げられる。 Examples of the organic acid include sulfonic acid compounds such as methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, cumenesulfonic acid, dinonylnaphthalene monosulfonic acid, dinonylnaphthalenedisulfonic acid, for example, trimethyl phosphate, Examples thereof include phosphate esters having an alkyl group having 1 to 18 carbon atoms such as triethyl phosphate, monobutyl phosphate, dibutyl phosphate, tributyl phosphate, trioctyl phosphate, and the like, for example, formic acid, acetic acid, oxalic acid and the like.
 無機酸としては、例えば、リン酸、塩酸、硫酸、硝酸などが挙げられる。 Examples of inorganic acids include phosphoric acid, hydrochloric acid, sulfuric acid, and nitric acid.
 これら酸触媒は、単独使用または2種類以上併用することができる。 These acid catalysts can be used alone or in combination of two or more.
 酸触媒として、好ましくは、有機酸、より好ましくは、シュウ酸が挙げられる。 The acid catalyst is preferably an organic acid, more preferably oxalic acid.
 酸触媒の配合割合は、フェノール類100質量部に対して、酸触媒が、例えば、0.1質量部以上、好ましくは、0.3質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。 The mixing ratio of the acid catalyst is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example, 10 parts by mass or less, preferably 100 parts by mass with respect to 100 parts by mass of phenols. 5 parts by mass or less.
 なお、酸触媒の添加のタイミングは、特に制限されず、リグニン、フェノール類およびアルデヒド類の少なくともいずれかに予め添加されていてもよく、また、リグニン、フェノール類およびアルデヒド類の配合時に同時に添加されてもよく、さらに、リグニン、フェノール類およびアルデヒド類の配合後に添加されてもよい。 The timing of addition of the acid catalyst is not particularly limited, and may be added in advance to at least one of lignin, phenols, and aldehydes, and added at the same time when lignin, phenols, and aldehydes are blended. Further, it may be added after blending lignin, phenols and aldehydes.
 反応条件としては、大気圧下、反応温度が、例えば、50℃以上、好ましくは、80℃以上であり、例えば、200℃以下、好ましくは、180℃以下である。また、反応時間が、例えば、1時間以上、好ましくは、2時間以上であり、例えば、20時間以下、好ましくは、15時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower. The reaction time is, for example, 1 hour or more, preferably 2 hours or more, for example, 20 hours or less, preferably 15 hours or less.
 これにより、リグニン、フェノール類およびアルデヒド類の反応生成物として、ノボラック型フェノール樹脂として、バインダー(結合剤)が得られる。 Thereby, a binder (binder) is obtained as a novolac type phenol resin as a reaction product of lignin, phenols and aldehydes.
 より具体的には、酸触媒下におけるフェノール類とアルデヒド類との反応によって、ノボラック型フェノール樹脂が得られ、また、そのノボラック型フェノール樹脂がリグニンにより変性される。 More specifically, a novolac type phenol resin is obtained by the reaction of phenols and aldehydes in the presence of an acid catalyst, and the novolac type phenol resin is modified with lignin.
 すなわち、リグニンにより変性されたノボラック型フェノール樹脂(以下、リグニン変性ノボラック型フェノール樹脂と称する場合がある。)(バインダー)が得られる。 That is, a novolak-type phenol resin modified with lignin (hereinafter sometimes referred to as a lignin-modified novolak-type phenol resin) (binder) is obtained.
 このようにして得られるバインダー(結合剤)によれば、摩擦特性、耐摩耗性および機械強度に優れる摩擦材を得ることができる。 According to the binder (binder) thus obtained, it is possible to obtain a friction material having excellent friction characteristics, wear resistance and mechanical strength.
 また、リグニンとフェノール類とアルデヒド類との反応では、上記のように、上記各成分を一括配合して反応(一括反応)させることもできるが、上記各成分を順次配合して反応(順次反応)させることもできる。 In the reaction of lignin, phenols and aldehydes, as described above, the above components can be combined and reacted (collective reaction), but the above components are mixed and reacted (sequential reaction). ).
 摩擦特性、耐摩耗性、機械強度などの各種物性の向上を図る観点から、好ましくは、上記各成分を順次配合して反応させる。 From the viewpoint of improving various physical properties such as friction characteristics, wear resistance, and mechanical strength, the above components are preferably blended and reacted sequentially.
 順次反応では、具体的には、まず、リグニンとフェノール類とを反応させ、リグニンおよびフェノール類の反応生成物を含むリグニン-フェノール組成物を調製し、次いで、そのリグニン-フェノール組成物と、アルデヒド類とを反応させる。 Specifically, in the sequential reaction, first, lignin and phenols are reacted to prepare a lignin-phenol composition containing a reaction product of lignin and phenols, and then the lignin-phenol composition and aldehyde React with a kind.
 リグニンとフェノール類との反応では、リグニンに対してフェノール類は過剰当量配合され、具体的には、フェノール類の配合割合は、リグニン100質量部に対して、例えば、30質量部以上、好ましくは、50質量部以上であり、例えば、1000質量部以下、好ましくは、500質量部以下である。 In the reaction of lignin and phenols, the phenols are blended in an excess equivalent amount with respect to lignin. Specifically, the blending ratio of phenols is, for example, 30 parts by mass or more, preferably 100 parts by mass of lignin. 50 parts by mass or more, for example, 1000 parts by mass or less, preferably 500 parts by mass or less.
 とりわけ、摩擦特性の向上を図る観点から、フェノール類の配合割合は、リグニン100質量部に対して、好ましくは、200質量部以上、より好ましくは、250質量部以上であり、好ましくは、1000質量部以下、より好ましくは、500質量部以下である。 In particular, from the viewpoint of improving the friction characteristics, the mixing ratio of phenols is preferably 200 parts by mass or more, more preferably 250 parts by mass or more, preferably 1000 parts by mass with respect to 100 parts by mass of lignin. Part or less, more preferably 500 parts by weight or less.
 また、この反応では、上記の酸触媒が添加される。 In this reaction, the above acid catalyst is added.
 酸触媒の配合割合は、フェノール類100質量部に対して、例えば、0.1質量部以上、好ましくは、0.3質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。 The mixing ratio of the acid catalyst is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example, 10 parts by mass or less, preferably 5 parts by mass with respect to 100 parts by mass of the phenols. It is as follows.
 なお、酸触媒の添加のタイミングは、特に制限されず、リグニンおよびフェノール類の少なくともいずれかに予め添加されていてもよく、また、リグニンおよびフェノール類の配合時に同時に添加されてもよく、さらに、リグニンおよびフェノール類の配合後に添加されてもよい。 The timing of addition of the acid catalyst is not particularly limited, and may be added in advance to at least one of lignin and phenols, or may be added simultaneously with the blending of lignin and phenols. It may be added after blending lignin and phenols.
 反応条件としては、大気圧下、反応温度が、例えば、60℃以上、好ましくは、80℃以上であり、例えば、250℃以下、好ましくは、200℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上であり、例えば、10時間以下、好ましくは、5時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 60 ° C. or higher, preferably 80 ° C. or higher, for example, 250 ° C. or lower, preferably 200 ° C. or lower. The reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 10 hours or less, preferably 5 hours or less.
 この反応により、リグニンがフェノール類により変性される。具体的には、リグニンの分子中の脂肪族水酸基(リグニンがカルボン酸変性リグニンである場合、カルボン酸で変性されずに残存する脂肪族水酸基を含む。)、および、リグニンがカルボン酸変性リグニンである場合、カルボン酸で変性された脂肪族水酸基(すなわちエステル)が、フェノール類に置換される。 This reaction modifies lignin with phenols. Specifically, an aliphatic hydroxyl group in the lignin molecule (when the lignin is a carboxylic acid-modified lignin, an aliphatic hydroxyl group remaining without being modified with a carboxylic acid is included), and the lignin is a carboxylic acid-modified lignin. In some cases, aliphatic hydroxyl groups (ie, esters) modified with carboxylic acids are replaced with phenols.
 なお、上記の反応では、過剰のフェノール類が、未反応成分として残存する。そのため、上記の反応で得られるリグニン-フェノール組成物には、リグニンおよびフェノール類の反応生成物(フェノール類により変性されたリグニン)と、遊離のフェノール類とが含有される。 In the above reaction, excess phenols remain as unreacted components. Therefore, the lignin-phenol composition obtained by the above reaction contains a reaction product of lignin and phenols (lignin modified with phenols) and free phenols.
 次いで、この方法では、上記により得られるリグニン-フェノール組成物(すなわち、フェノール類により変性されたリグニン、および、遊離のフェノール類を含む。)と、アルデヒド類とを反応させる。 Next, in this method, the lignin-phenol composition obtained as described above (that is, lignin modified with phenols and free phenols) is reacted with aldehydes.
 この反応において、アルデヒド類の配合割合は、フェノール類(上記反応において原料として用いられたフェノール類)100質量部に対して、例えば、5質量部以上、好ましくは、10質量部以上であり、例えば、35質量部以下、好ましくは、30質量部以下である。 In this reaction, the blending ratio of aldehydes is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, with respect to 100 parts by mass of phenols (phenols used as a raw material in the above reaction). , 35 parts by mass or less, preferably 30 parts by mass or less.
 また、この反応では、必要に応じて、上記の酸触媒を適宜の割合で添加することもできる。 In this reaction, the above acid catalyst can be added at an appropriate ratio, if necessary.
 反応条件としては、大気圧下、反応温度が、例えば、50℃以上、好ましくは、80℃以上であり、例えば、200℃以下、好ましくは、180℃以下である。また、反応時間が、例えば、1時間以上、好ましくは、2時間以上であり、例えば、20時間以下、好ましくは、15時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower. The reaction time is, for example, 1 hour or more, preferably 2 hours or more, for example, 20 hours or less, preferably 15 hours or less.
 これにより、上記のリグニン-フェノール組成物と、アルデヒド類とが反応し、リグニンにより変性されたノボラック型フェノール樹脂(リグニン変性ノボラック型フェノール樹脂)が得られる。 As a result, the above lignin-phenol composition reacts with aldehydes to obtain a novolak-type phenol resin modified with lignin (lignin-modified novolak-type phenol resin).
 その結果、ノボラック型フェノール樹脂を含む樹脂組成物として、バインダーが得られる。 As a result, a binder is obtained as a resin composition containing a novolac type phenol resin.
 なお、リグニン変性ノボラック型フェノール樹脂の製造では、必要により、蒸留などの公知の方法によって、未反応原料(未反応のフェノール類など)や酸触媒を除去することができる。 In the production of a lignin-modified novolac type phenol resin, unreacted raw materials (unreacted phenols, etc.) and acid catalyst can be removed by a known method such as distillation, if necessary.
 このようにして得られるバインダーによれば、摩擦特性、耐摩耗性および機械強度に優れる摩擦材を得ることができる。 According to the binder thus obtained, a friction material having excellent friction characteristics, wear resistance and mechanical strength can be obtained.
 また、バインダー(樹脂組成物)は、必要により、フェノール樹脂硬化剤を含有することができる。 Further, the binder (resin composition) can contain a phenol resin curing agent, if necessary.
 フェノール樹脂硬化剤としては、特に制限されず、公知の硬化剤を用いることができる。具体的には、例えば、ヘキサメチレンテトラミン、メチロールメラミン、メチロール尿素、フェノールノボラックなどが挙げられる。 The phenol resin curing agent is not particularly limited, and a known curing agent can be used. Specifically, for example, hexamethylenetetramine, methylolmelamine, methylolurea, phenol novolac and the like can be mentioned.
 これらフェノール樹脂硬化剤は、単独使用または2種類以上併用することができる。 These phenolic resin curing agents can be used alone or in combination of two or more.
 フェノール樹脂硬化剤の配合割合は、目的および用途に応じて、適宜設定される。 The blending ratio of the phenol resin curing agent is appropriately set according to the purpose and application.
 また、バインダーは、さらに、添加剤を含有することができる。 In addition, the binder can further contain an additive.
 添加剤としては、バインダーに添加される公知の添加剤、例えば、充填剤(木粉、パルプ、ガラス繊維など)、着色剤、可塑剤、安定剤、離型剤(ステアリン酸亜鉛などの金属石鹸など)などが挙げられる。 As additives, known additives added to the binder, for example, fillers (wood flour, pulp, glass fibers, etc.), colorants, plasticizers, stabilizers, mold release agents (metal soaps such as zinc stearate) Etc.).
 これら添加剤は、単独使用または2種類以上併用することができる。添加剤の含有量は、本発明の優れた効果を阻害しない範囲において、目的および用途に応じて、適宜設定される。 These additives can be used alone or in combination of two or more. The content of the additive is appropriately set according to the purpose and application within a range that does not impair the excellent effects of the present invention.
 例えば、充填剤が添加される場合には、その配合割合は、上記の反応生成物100質量部に対して、充填剤が、例えば、10質量部以上、好ましくは、20質量部以上であり、例えば、300質量部以下、好ましくは、200質量部以下である。 For example, when a filler is added, the blending ratio is, for example, 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the reaction product. For example, it is 300 parts by mass or less, preferably 200 parts by mass or less.
 なお、添加剤の添加のタイミングは、特に制限されず、目的および用途に応じて、適宜設定される。 Note that the timing of addition of the additive is not particularly limited, and is appropriately set according to the purpose and application.
 また、摩擦材は、上記のバインダーのほか、必要に応じて、その他のバインダー(上記の反応生成物を除くバインダー)を含有することができる。 Further, the friction material can contain other binders (binders excluding the above reaction products) as required in addition to the above binders.
 その他のバインダーとしては、例えば、メラミン樹脂、エポキシ樹脂などの公知の熱硬化性樹脂などが挙げられる。 Examples of other binders include known thermosetting resins such as melamine resins and epoxy resins.
 その他のバインダーは、単独使用または2種類以上併用することができる。 Other binders can be used alone or in combination of two or more.
 その他のバインダーが配合される場合、その配合割合は、本発明の効果を損なわない範囲において、適宜設定される。好ましくは、その他のバインダーが配合されない態様(すなわち、摩擦材が、バインダーとして、上記の反応生成物のみを含有する態様。)が挙げられる。 When other binders are blended, the blending ratio is appropriately set within a range not impairing the effects of the present invention. Preferably, an embodiment in which no other binder is blended (that is, an embodiment in which the friction material contains only the above reaction product as a binder) is included.
 また、摩擦材は、好ましくは、繊維基材および摩擦調整材を含有する。 The friction material preferably contains a fiber base material and a friction modifier.
 繊維基材としては、特に制限されないが、例えば、芳香族ポリアミド繊維(アラミド繊維)、耐炎化アクリル繊維などの有機繊維、例えば、銅繊維、真鍮繊維などの金属繊維、例えば、チタン酸カリウム繊維、Al-SiO系セラミック繊維、生体溶解性セラミック繊維、ガラス繊維、炭素繊維などの無機繊維などが挙げられる。 Although it does not restrict | limit especially as a fiber base material, For example, organic fibers, such as aromatic polyamide fiber (aramid fiber) and a flame-resistant acrylic fiber, For example, metal fibers, such as copper fiber and a brass fiber, For example, potassium titanate fiber, Examples thereof include inorganic fibers such as Al 2 O 3 —SiO 2 ceramic fibers, biosoluble ceramic fibers, glass fibers, and carbon fibers.
 これら繊維基材は、単独使用または2種類以上併用することができる。 These fiber base materials can be used alone or in combination of two or more.
 繊維基材として、好ましくは、有機繊維、金属繊維が挙げられ、より好ましくは、芳香族ポリアミド繊維(アラミド繊維)、銅繊維が挙げられ、さらに好ましくは、それらの併用が挙げられる。 Favorable examples of the fiber substrate include organic fibers and metal fibers, more preferably aromatic polyamide fibers (aramid fibers) and copper fibers, and still more preferably a combination thereof.
 また、繊維基材の長さ(繊維長)は、特に制限されないが、例えば、100μm以上2500μm以下である。また、繊維基材の直径は、特に制限されないが、例えば、3μm以上600μm以下である。 The length of the fiber base material (fiber length) is not particularly limited, but is, for example, 100 μm or more and 2500 μm or less. Further, the diameter of the fiber base material is not particularly limited, but is, for example, 3 μm or more and 600 μm or less.
 摩擦調整材としては、特に制限されないが、例えば、研削材、充填材、固体潤滑材などが挙げられる。 The friction modifier is not particularly limited, and examples thereof include abrasives, fillers, and solid lubricants.
 研削材としては、例えば、アルミナ、マグネシア、ジルコニアなどの公知の研削材が挙げられる。 Examples of the abrasive include known abrasives such as alumina, magnesia, and zirconia.
 これら研削材は、単独使用または2種類以上併用することができる。 These abrasives can be used alone or in combination of two or more.
 充填材としては、例えば、炭酸カルシウム、硫酸バリウム、水酸化カルシウム、硫化鉄、硫化銅、酸化ケイ素、金属粉末(例えば、銅、アルミニウム、青銅、亜鉛など)、バーミキュライトなどの無機充填材、例えば、ゴム(例えば、アクリルニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR))粉末、カシューダスト、メラミンダストなどの有機充填材などが挙げられる。 Examples of the filler include inorganic fillers such as calcium carbonate, barium sulfate, calcium hydroxide, iron sulfide, copper sulfide, silicon oxide, metal powder (eg, copper, aluminum, bronze, zinc, etc.), vermiculite, etc. Examples thereof include organic fillers such as rubber (for example, acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), butadiene rubber (BR)) powder, cashew dust, and melamine dust.
 これら充填材は、単独使用または2種類以上併用することができる。 These fillers can be used alone or in combination of two or more.
 充填材として、好ましくは、無機充填材、有機充填材が挙げられ、より好ましくは、硫酸バリウム、ゴム(とりわけ、スチレンブタジエンゴム(SBR))粉末、カシューダストが挙げられ、さらに好ましくは、それらの併用が挙げられる。 The filler is preferably an inorganic filler or an organic filler, more preferably barium sulfate, rubber (especially styrene butadiene rubber (SBR)) powder, cashew dust, and more preferably, Combined use is mentioned.
 固体潤滑材としては、例えば、黒鉛(グラファイト)、二硫化モリブデンなどの公知の固体潤滑材が挙げられる。 Examples of the solid lubricant include known solid lubricants such as graphite and molybdenum disulfide.
 これら固体潤滑材は、単独使用または2種類以上併用することができる。 These solid lubricants can be used alone or in combination of two or more.
 固体潤滑材として、好ましくは、黒鉛(グラファイト)が挙げられる。 As the solid lubricant, graphite (graphite) is preferable.
 これら摩擦調整材は、単独使用または2種類以上併用することができる。なお、摩擦調整材は、要求される摩擦特性、耐熱性、耐摩耗性および機械強度に応じて、適宜選択される。 These friction modifiers can be used alone or in combination of two or more. The friction modifier is appropriately selected according to required friction characteristics, heat resistance, wear resistance, and mechanical strength.
 摩擦調整材として、好ましくは、充填材、固体潤滑材が挙げられ、より好ましくは、それらの併用が挙げられる。 Favorable examples of the friction modifier include fillers and solid lubricants, and more preferable combinations thereof.
 また、摩擦調整材の平均粒子径は、例えば、1μm以上、好ましくは、5μm以上であり、例えば、500μm以下、好ましくは、250μm以下である。 Further, the average particle diameter of the friction modifier is, for example, 1 μm or more, preferably 5 μm or more, for example, 500 μm or less, preferably 250 μm or less.
 そして、摩擦材は、まず、上記のバインダーと、繊維基材と、摩擦調整材とを配合および混練し、摩擦材用成形材料を製造し、次いで、得られた摩擦材用成形材料を、公知の方法で成形することにより、得ることができる。 The friction material is first prepared by blending and kneading the above binder, fiber base material, and friction modifier to produce a friction material molding material, and then the obtained friction material molding material is known. It can obtain by shape | molding by the method of.
 摩擦材用成形材料の製造において、各成分の配合割合は、上記のバインダー100質量部に対して、繊維基材と、摩擦調整材との総量が、例えば、250質量部以上、好ましくは、400質量部以上であり、例えば、950質量部以下、好ましくは、900質量部以下である。 In the production of the molding material for friction material, the blending ratio of each component is such that the total amount of the fiber base material and the friction modifier is, for example, 250 parts by mass or more, preferably 400 with respect to 100 parts by mass of the binder. For example, 950 parts by mass or less, preferably 900 parts by mass or less.
 より具体的には、バインダー、繊維基材および摩擦調整材の総量100質量部に対して、バインダーが、例えば、2質量部以上、好ましくは、5質量部以上であり、例えば、30質量部以下、好ましくは、20質量部以下である。 More specifically, the binder is, for example, 2 parts by mass or more, preferably 5 parts by mass or more, for example, 30 parts by mass or less, with respect to 100 parts by mass of the total amount of the binder, the fiber base material, and the friction modifier. The amount is preferably 20 parts by mass or less.
 また、バインダー、繊維基材および摩擦調整材の総量100質量部に対して、繊維基材が、例えば、1質量部以上、好ましくは、5質量部以上であり、例えば、65質量部以下、好ましくは、30質量部以下である。 Further, the fiber substrate is, for example, 1 part by mass or more, preferably 5 parts by mass or more, for example, 65 parts by mass or less, preferably 100 parts by mass of the total amount of the binder, the fiber substrate, and the friction modifier. Is 30 parts by mass or less.
 また、バインダー、繊維基材および摩擦調整材の総量100質量部に対して、摩擦調整材が、例えば、40質量部以上、好ましくは、50質量部以上であり、例えば、95質量部以下、好ましくは、85質量部以下である。 The friction modifier is, for example, 40 parts by mass or more, preferably 50 parts by mass or more, for example, 95 parts by mass or less, preferably 100 parts by mass of the total amount of the binder, the fiber base material, and the friction modifier. Is 85 parts by mass or less.
 また、摩擦調整材として、研削材が用いられる場合、その配合割合は、バインダー、繊維基材および摩擦調整材の総量100質量部に対して、研削材が、例えば、1質量部以上、好ましくは、2質量部以上であり、例えば、30質量部以下、好ましくは、25質量部以下である。 Further, when a grinding material is used as the friction modifier, the blending ratio thereof is, for example, 1 part by mass or more, preferably 1 part by mass or more, preferably 100 parts by mass of the binder, the fiber base material, and the friction modifier. 2 parts by mass or more, for example, 30 parts by mass or less, preferably 25 parts by mass or less.
 また、摩擦調整材として、充填材が用いられる場合、その配合割合は、バインダー、繊維基材および摩擦調整材の総量100質量部に対して、充填材が、例えば、30質量部以上、好ましくは、35質量部以上であり、例えば、90質量部以下、好ましくは、85質量部以下である。 Further, when a filler is used as the friction modifier, the blending ratio thereof is, for example, 30 parts by mass or more, preferably, relative to 100 parts by mass of the total amount of the binder, the fiber base material, and the friction modifier. , 35 parts by mass or more, for example, 90 parts by mass or less, preferably 85 parts by mass or less.
 また、摩擦調整材として、固体潤滑材が用いられる場合、その配合割合は、バインダー、繊維基材および摩擦調整材の総量100質量部に対して、固体潤滑材が、例えば、1質量部以上、好ましくは、3質量部以上であり、例えば、30質量部以下、好ましくは、25質量部以下である。 Further, when a solid lubricant is used as the friction modifier, the blending ratio thereof is, for example, 1 part by mass or more with respect to 100 parts by mass of the total amount of the binder, the fiber base material, and the friction modifier. Preferably, it is 3 parts by mass or more, for example, 30 parts by mass or less, preferably 25 parts by mass or less.
 混練方法としては、特に制限されず、例えば、単軸押出機、多軸押出機、ロール混練機、ニーダー、ヘンシエルミキサー、バンバリーミキサーなどの公知の混練機を用いることができる。 The kneading method is not particularly limited, and for example, a known kneader such as a single-screw extruder, a multi-screw extruder, a roll kneader, a kneader, Henschel mixer, or a Banbury mixer can be used.
 混練条件としては、混練温度が、80℃以上、好ましくは、90℃以上、より好ましくは、100℃以上であり、180℃以下、好ましくは、170℃以下、より好ましくは、160℃以下である。また、混練時間が、例えば、3分以上、好ましくは、5分以上であり、例えば、30分以下、好ましくは、20分以下である。 As the kneading conditions, the kneading temperature is 80 ° C. or higher, preferably 90 ° C. or higher, more preferably 100 ° C. or higher, 180 ° C. or lower, preferably 170 ° C. or lower, more preferably 160 ° C. or lower. . The kneading time is, for example, 3 minutes or more, preferably 5 minutes or more, for example, 30 minutes or less, preferably 20 minutes or less.
 このような摩擦材用成形材料は、上記の反応生成物(樹脂組成物)をバインダーとして含有するため、摩擦特性、耐摩耗性および機械強度に優れる摩擦材を得ることができる。 Since such a molding material for friction material contains the above reaction product (resin composition) as a binder, it is possible to obtain a friction material having excellent friction characteristics, wear resistance and mechanical strength.
 そして、上記の摩擦材用成形材料を成形する方法としては、例えば、摩擦材用成形材料を、例えば、トランスファ成形、圧縮成形などの公知の熱硬化性樹脂の成形方法によって成形する。なお、成形条件は、特に制限されず、目的および用途に応じて、適宜設定される。 As a method of molding the above-mentioned molding material for friction material, for example, the molding material for friction material is molded by a known thermosetting resin molding method such as transfer molding or compression molding. The molding conditions are not particularly limited, and are appropriately set according to the purpose and application.
 例えば、成形における処理条件は、特に制限されないが、温度条件が、例えば、140℃以上、好ましくは、150℃以上であり、例えば、200℃以下、好ましくは、180℃以下である。また、圧力条件が、例えば、20MPa以上、好ましくは、30MPa以上であり、例えば、100MPa以下、好ましくは、80MPa以下である。また、処理時間が、例えば、2分以上、好ましくは、10分以上であり、例えば、60分以下、好ましくは、30分以下である。 For example, the processing conditions in the molding are not particularly limited, but the temperature conditions are, for example, 140 ° C. or higher, preferably 150 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower. The pressure condition is, for example, 20 MPa or more, preferably 30 MPa or more, for example, 100 MPa or less, preferably 80 MPa or less. The treatment time is, for example, 2 minutes or longer, preferably 10 minutes or longer, for example, 60 minutes or shorter, preferably 30 minutes or shorter.
 このようにして摩擦材用成形材料を成形することにより、摩擦材が得られる。 In this way, the friction material is obtained by molding the molding material for the friction material.
 また、摩擦材には、必要に応じて、例えば、脱脂処理、プライマー処理などの公知の方法により処理することができ、また、成形された摩擦材を、公知の方法でアフターキュア(熱硬化処理)することができる。 Further, the friction material can be treated by a known method such as degreasing treatment or primer treatment, if necessary, and the molded friction material can be treated with a known method after-curing (thermosetting treatment). )can do.
 アフターキュアにおける処理条件は、特に制限されないが、常圧下、温度条件が、好ましくは、上記の成形時における温度より10~100℃高く、具体的には、例えば、150℃以上、好ましくは、160℃以上であり、例えば、300℃以下、好ましくは、200℃以下である。また、処理時間が、例えば、1時間以上、好ましくは、2時間以上であり、例えば、10時間以下、好ましくは、8時間以下である。 The treatment conditions in after-curing are not particularly limited, but under normal pressure, the temperature conditions are preferably 10 to 100 ° C. higher than the temperature at the time of molding, specifically, for example, 150 ° C. or higher, preferably 160 ° C. For example, 300 ° C. or lower, preferably 200 ° C. or lower. The treatment time is, for example, 1 hour or more, preferably 2 hours or more, for example, 10 hours or less, preferably 8 hours or less.
 このように摩擦材をアフターキュアすることにより、摩擦特性、耐摩耗性および機械強度のさらなる向上を図ることができる。 By further curing the friction material in this way, it is possible to further improve the friction characteristics, wear resistance and mechanical strength.
 そして、このような摩擦材は、脂肪族水酸基の含有割合が所定量であるリグニンと、フェノール類と、アルデヒド類との反応生成物を含有するバインダーを含有するため、摩擦特性、耐摩耗性および機械強度に優れる。また、このような摩擦材は、優れた耐熱性を有する。 Such a friction material contains a binder containing a reaction product of lignin having a predetermined content of aliphatic hydroxyl group, phenols, and aldehydes, so that friction characteristics, abrasion resistance and Excellent mechanical strength. Moreover, such a friction material has excellent heat resistance.
 そのため、摩擦材は、例えば、自動車、自動二輪車、電車などの車両における、例えば、ブレーキパッド、クラッチ部材などの制動部材において、好適に用いられる。 Therefore, the friction material is preferably used in a braking member such as a brake pad or a clutch member in a vehicle such as an automobile, a motorcycle, or a train.
 とりわけ、摩擦材は、自動車のブレーキパッドとして、好適に用いられる。 Especially, the friction material is preferably used as a brake pad of an automobile.
 摩擦材を、自動車のブレーキパッドとして用いる場合、例えば、上記の摩擦材用成形材料と、プレッシャプレートなどの公知の部材とを、一体的に成形することもできる。 When the friction material is used as an automobile brake pad, for example, the above-mentioned friction material molding material and a known member such as a pressure plate can be integrally molded.
 より具体的には、例えば、プレッシャプレートなどの公知の部材と、予備成形された上記の摩擦材用成形材料とを、接着剤を介して接着するとともに、熱成形により固着する。 More specifically, for example, a known member such as a pressure plate and the preformed molding material for the friction material are bonded via an adhesive and fixed by thermoforming.
 熱成形における処理条件は、特に制限されないが、温度条件が、例えば、140℃以上170℃以下であり、圧力条件が、例えば、30MPa以上80MPa以下であり、処理時間が、例えば、2分以上10分以下である。 Although the processing conditions in thermoforming are not particularly limited, the temperature conditions are, for example, 140 ° C. or more and 170 ° C. or less, the pressure conditions are, for example, 30 MPa or more and 80 MPa or less, and the processing time is, for example, 2 minutes or more and 10 Is less than a minute.
 また、このような場合には、必要に応じて、予備成形された摩擦材用成形材料を公知の方法で脱脂処理およびプライマー処理することができ、また、熱成形された摩擦材を、公知の方法でアフターキュアおよび仕上げ処理することができる。 In such a case, if necessary, the preformed molding material for the friction material can be degreased and primed by a known method, and the thermoformed friction material can be treated by a known method. Can be after-cured and finished by the method.
 アフターキュアにおける処理条件は、特に制限されないが、常圧下、温度条件が、例えば、150℃以上300℃以下であり、処理時間が、例えば、1時間以上4時間以下である。 The treatment conditions in after-curing are not particularly limited, but under normal pressure, the temperature conditions are, for example, 150 ° C. or more and 300 ° C. or less, and the treatment time is, for example, 1 hour or more and 4 hours or less.
 そして、このようにして得られたブレーキパッドは、本発明の摩擦材が用いられているため、摩擦特性、耐摩耗性および機械強度に優れる。 The brake pad thus obtained is excellent in friction characteristics, wear resistance and mechanical strength because the friction material of the present invention is used.
 次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。また、以下の説明において特に言及がない限り、「部」および「%」は質量基準である。なお、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to the following examples. In the following description, “part” and “%” are based on mass unless otherwise specified. In addition, specific numerical values such as a blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and a blending ratio corresponding to them ( Substituting the upper limit value (numerical value defined as “less than” or “less than”) or the lower limit value (number defined as “greater than” or “exceeded”) such as content ratio), physical property values, parameters, etc. be able to.
 <<脂肪族水酸基の含有割合>>
 リグニンの総量に対する脂肪族水酸基の含有割合は、以下の方法で測定した。
<< Content ratio of aliphatic hydroxyl group >>
The content ratio of the aliphatic hydroxyl group to the total amount of lignin was measured by the following method.
 すなわち、まず、リグニン500mgに、ピリジンおよび無水酢酸それぞれ5mLずつを入れ、室温で24時間放置し、水酸基をアセチル化した。次いで、トルエンを添加しつつエバポレーターでピリジンおよび無水酢酸を除去した。 That is, first, 5 mL each of pyridine and acetic anhydride was added to 500 mg of lignin, and allowed to stand at room temperature for 24 hours to acetylate the hydroxyl group. Subsequently, pyridine and acetic anhydride were removed with an evaporator while adding toluene.
 その後、アセチル化されたリグニン5mgを溶媒1gに溶かし、下記の条件でプロトンNMR測定することにより、約1.9ppmに現れるアセチル基のプロトン量を定量した。一方、アセチル化されていないリグニンについても、同じ条件でプロトンNMR測定し、アセチル基のプロトン量を定量した。 Thereafter, 5 mg of acetylated lignin was dissolved in 1 g of a solvent, and proton NMR measurement was performed under the following conditions to determine the amount of protons of the acetyl group appearing at about 1.9 ppm. On the other hand, proton NMR measurement was also performed on lignin that was not acetylated under the same conditions, and the amount of protons in the acetyl group was quantified.
 そして、アセチル化されたリグニンの約1.9ppmにおけるピーク強度から、アセチル化されていないリグニンの約1.9ppmにおけるピーク強度を差し引き、アセチル化によるピーク量を求めた。これを、脂肪族水酸基量とした。
装置:Bruker製 AscendTM 400 NMR装置
溶媒:DO37.5g+NaOD12.5g+DSS-d(3-(トリメチルシリル)-1-プロパン-1,1,2,2,3,3-d-スルホン酸ナトリウム、標準物質)25mg
測定周波数:400MHz
測定温度:25℃
スキャン回数:128回
 <<リグニンの製造>>
  準備例1(酢酸リグニン)
 コーンストーバー100質量部を、95質量%の酢酸1000質量部および硫酸3質量部と混合し、還流下において4時間反応させた。反応後、濾過してパルプを除去し、パルプ廃液を回収した。次いで、ロータリーエバポレーターを用いてパルプ廃液中の酢酸を除去し、体積が1/10になるまで濃縮した後、その濃縮液の10倍量(質量基準)の水を添加し、濾過することにより、固形分として酢酸変性リグニンを得た。
Then, from the peak intensity at about 1.9 ppm of acetylated lignin, the peak intensity at about 1.9 ppm of non-acetylated lignin was subtracted to obtain the peak amount due to acetylation. This was made into the amount of aliphatic hydroxyl groups.
Apparatus: Bruker Ltd. AscendTM 400 NMR apparatus solvent: D 2 O37.5g + NaOD12.5g + DSS -d 6 (3- ( trimethylsilyl) -1-propane -1,1,2,2,3,3-d 6 - sulfonate, sodium Standard substance) 25mg
Measurement frequency: 400MHz
Measurement temperature: 25 ° C
Number of scans: 128 <Manufacturing lignin>
Preparation Example 1 (Lignin Acetate)
100 parts by mass of corn stover was mixed with 1000 parts by mass of 95% by mass acetic acid and 3 parts by mass of sulfuric acid, and reacted for 4 hours under reflux. After the reaction, the pulp was removed by filtration, and the pulp waste liquid was recovered. Next, after removing acetic acid in the pulp waste liquid using a rotary evaporator and concentrating until the volume becomes 1/10, 10 times the amount of the concentrated liquid (mass basis) is added and filtered, Acetic acid-modified lignin was obtained as a solid content.
 酢酸変性リグニンの脂肪族水酸基含有割合は、5.1質量%であった。 The content of aliphatic hydroxyl groups in acetic acid-modified lignin was 5.1% by mass.
  準備例2(クラフトリグニン)
 クラフトリグニン(SIGMA-ALDRICH社製、木本系植物由来、脂肪族水酸基含有量4.4質量%)を用意した。
Preparation Example 2 (Craft Lignin)
Kraft lignin (manufactured by SIGMA-ALDRICH, derived from woody plant, aliphatic hydroxyl group content 4.4 mass%) was prepared.
  準備例3(ソーダリグニン)
 麦わらのアルカリ蒸解パルプ廃液(黒液)を中和した後、濾過することにより、ソーダリグニンを得た。ソーダリグニンとメタノールを混合したのちに濾過し、濾液を濃縮して乾固させることでソーダリグニンのメタノール可溶成分を得た。
Preparation Example 3 (Soda Lignin)
Soda lignin was obtained by neutralizing the straw pulp waste liquor (black liquor) and then filtering. Soda lignin and methanol were mixed and then filtered, and the filtrate was concentrated and dried to obtain a methanol-soluble component of soda lignin.
 ソーダリグニンのメタノール可溶成分における脂肪族水酸基含有割合は、8.8質量%であった。 The content ratio of the aliphatic hydroxyl group in the methanol-soluble component of soda lignin was 8.8% by mass.
  <<ノボラック型フェノール樹脂の製造>>
  合成例1(使用リグニン:酢酸変性リグニン(順次反応))
 フェノール493.5質量部をフラスコに入れ、50℃程度まで加熱してフェノールを液化させ、その後、準備例1で得られた酢酸変性リグニンの可溶成分(可溶酢酸変性リグニン)150質量部を添加した。
<< Manufacture of novolac-type phenolic resin >>
Synthesis Example 1 (Lignin used: Acetic acid-modified lignin (sequential reaction))
Put 493.5 parts by mass of phenol in a flask and heat to about 50 ° C. to liquefy the phenol, and then add 150 parts by mass of the soluble component (soluble acetic acid-modified lignin) of acetic acid-modified lignin obtained in Preparation Example 1. Added.
 次いで、シュウ酸(酸触媒)7.62質量部を添加し、その後、130℃で2.5時間反応させた。これにより、酢酸変性リグニンをフェノールにより変性させた。 Next, 7.62 parts by mass of oxalic acid (acid catalyst) was added, and then reacted at 130 ° C. for 2.5 hours. This modified the acetic acid-modified lignin with phenol.
 その後、80℃まで冷却し、パラホルムアルデヒド117.3質量部を添加し、95℃で2.5時間反応させた。次いで、0.5℃/minで110℃まで昇温し、110℃で1.5時間反応させた。次いで、0.5℃/minで120℃まで昇温し、120℃で2時間反応させた。 Then, it cooled to 80 degreeC, 117.3 mass parts of paraformaldehyde was added, and it was made to react at 95 degreeC for 2.5 hours. Next, the temperature was raised to 110 ° C. at 0.5 ° C./min and reacted at 110 ° C. for 1.5 hours. Next, the temperature was raised to 120 ° C. at 0.5 ° C./min and reacted at 120 ° C. for 2 hours.
 反応後、2300質量部の水を添加し、強く撹拌した後に静置し、デカンテーションで水を除去することによって、シュウ酸およびフェノールを除去した。さらに、適宜、水を加えつつ150℃、0.08MPaの条件で減圧蒸留し、残留フェノールを除去した。なお、減圧蒸留はフェノール残存率が1%以下になるまで繰り返した。 After the reaction, 2300 parts by mass of water was added, and after stirring vigorously, the mixture was allowed to stand, and water was removed by decantation to remove oxalic acid and phenol. Furthermore, the residual phenol was removed by distillation under reduced pressure under conditions of 150 ° C. and 0.08 MPa while adding water as appropriate. The vacuum distillation was repeated until the phenol residual ratio became 1% or less.
 これにより、フェノール変性酢酸リグニンにより変性されたノボラック型フェノール樹脂を得た。 Thereby, a novolac type phenol resin modified with phenol-modified acetic acid lignin was obtained.
  合成例2(使用リグニン:酢酸変性リグニン(一括反応))
 フェノール493.5質量部をフラスコに入れ、50℃程度まで加熱してフェノールを液化させ、その後、準備例1で得られた酢酸変性リグニンの可溶成分(可溶酢酸変性リグニン)150質量部を添加した。
Synthesis Example 2 (Lignin used: Acetic acid-modified lignin (collective reaction))
Put 493.5 parts by mass of phenol in a flask and heat to about 50 ° C. to liquefy the phenol, and then add 150 parts by mass of the soluble component (soluble acetic acid-modified lignin) of acetic acid-modified lignin obtained in Preparation Example 1. Added.
 次いで、シュウ酸(酸触媒)7.62質量部とパラホルムアルデヒド117.3質量部を添加し、95℃で2.5時間反応させた。次いで、0.5℃/minで110℃まで昇温し、110℃で1.5時間反応させた。次いで、0.5℃/minで120℃まで昇温し、120℃で2時間反応させた。 Next, 7.62 parts by mass of oxalic acid (acid catalyst) and 117.3 parts by mass of paraformaldehyde were added and reacted at 95 ° C. for 2.5 hours. Next, the temperature was raised to 110 ° C. at 0.5 ° C./min and reacted at 110 ° C. for 1.5 hours. Next, the temperature was raised to 120 ° C. at 0.5 ° C./min and reacted at 120 ° C. for 2 hours.
 反応後、2300質量部の水を添加し、強く撹拌した後に静置し、デカンテーションで水を除去することによって、シュウ酸およびフェノールを除去した。さらに、適宜、水を加えつつ150℃、0.08MPaの条件で減圧蒸留し、残留フェノールを除去した。なお、減圧蒸留はフェノール残存率が1%以下になるまで繰り返した。 After the reaction, 2300 parts by mass of water was added, and after stirring vigorously, the mixture was allowed to stand, and water was removed by decantation to remove oxalic acid and phenol. Furthermore, the residual phenol was removed by distillation under reduced pressure under conditions of 150 ° C. and 0.08 MPa while adding water as appropriate. The vacuum distillation was repeated until the phenol residual ratio became 1% or less.
 これにより、酢酸変性リグニンにより変性されたノボラック型フェノール樹脂を得た。 Thereby, a novolac type phenol resin modified with acetic acid-modified lignin was obtained.
  合成例3(使用リグニン:酢酸変性リグニン(順次反応))
 表1に示す処方に変更した以外は、合成例1と同様にして、フェノール変性酢酸リグニンにより変性されたノボラック型フェノール樹脂を得た。
Synthesis Example 3 (Lignin used: Acetic acid-modified lignin (sequential reaction))
A novolak type phenol resin modified with phenol-modified acetic acid lignin was obtained in the same manner as in Synthesis Example 1 except that the formulation shown in Table 1 was changed.
  合成例4(使用リグニン:酢酸変性リグニン(一括反応))
 表1に示す処方に変更した以外は、合成例2と同様にして、酢酸リグニンにより変性されたノボラック型フェノール樹脂を得た。
Synthesis Example 4 (Lignin used: Acetic acid-modified lignin (collective reaction))
A novolak-type phenol resin modified with lignin acetate was obtained in the same manner as in Synthesis Example 2 except that the formulation shown in Table 1 was changed.
  合成例5(使用リグニン:酢酸変性リグニン(順次反応))
 表1に示す処方に変更した以外は、合成例1と同様にして、フェノール変性酢酸リグニンにより変性されたノボラック型フェノール樹脂を得た。
Synthesis Example 5 (Lignin used: Acetic acid-modified lignin (sequential reaction))
A novolak type phenol resin modified with phenol-modified acetic acid lignin was obtained in the same manner as in Synthesis Example 1 except that the formulation shown in Table 1 was changed.
  合成例6(使用リグニン:酢酸変性リグニン(一括反応))
 表1に示す処方に変更した以外は、合成例2と同様にして、酢酸リグニンにより変性されたノボラック型フェノール樹脂を得た。
Synthesis Example 6 (Lignin used: Acetic acid-modified lignin (collective reaction))
A novolak-type phenol resin modified with lignin acetate was obtained in the same manner as in Synthesis Example 2 except that the formulation shown in Table 1 was changed.
  合成例7(使用リグニン:クラフトリグニン(順次反応))
 酢酸変性リグニンに代えて、準備例2のクラフトリグニン150質量部を用いた以外は、合成例1と同様にして、クラフトリグニンをフェノールにより変性させ、そのフェノール変性クラフトリグニンにより変性されたノボラック型フェノール樹脂を得た。
Synthesis Example 7 (Lignin used: Kraft lignin (sequential reaction))
Instead of acetic acid-modified lignin, novolak-type phenol modified with kraft lignin modified with phenol in the same manner as in Synthesis Example 1 except that 150 parts by mass of kraft lignin of Preparation Example 2 was used. A resin was obtained.
  合成例8(使用リグニン:クラフトリグニン(一括反応))
 酢酸変性リグニンに代えて、準備例2のクラフトリグニン150質量部を用いた以外は、合成例2と同様にして、クラフトリグニンにより変性されたノボラック型フェノール樹脂を得た。
Synthesis Example 8 (Lignin used: Kraft lignin (collective reaction))
A novolak-type phenol resin modified with kraft lignin was obtained in the same manner as in Synthesis Example 2, except that 150 parts by mass of kraft lignin of Preparation Example 2 was used instead of acetic acid-modified lignin.
  合成例9(使用リグニン:ソーダリグニン(順次反応))
 酢酸変性リグニンに代えて、準備例3のソーダリグニンのメタノール可溶成分150質量部を用いた以外は、合成例1と同様にして、ソーダリグニンをフェノールにより変性させ、そのフェノール変性ソーダリグニンにより変性されたノボラック型フェノール樹脂を得た。
Synthesis Example 9 (Lignin used: Soda lignin (sequential reaction))
Instead of acetic acid-modified lignin, soda lignin was modified with phenol in the same manner as in Synthesis Example 1 except that 150 parts by mass of the methanol-soluble component of soda lignin of Preparation Example 3 was used, and modified with the phenol-modified soda lignin. A novolac-type phenolic resin was obtained.
  合成例10(使用リグニン:ソーダリグニン(一括反応))
 酢酸変性リグニンに代えて、準備例3のソーダリグニンのメタノール可溶成分150質量部を用いた以外は、合成例2と同様にして、ソーダリグニンにより変性されたノボラック型フェノール樹脂を得た。
Synthesis Example 10 (Lignin used: Soda lignin (collective reaction))
A novolak-type phenol resin modified with soda lignin was obtained in the same manner as in Synthesis Example 2, except that 150 parts by mass of the methanol-soluble component of soda lignin of Preparation Example 3 was used instead of acetic acid-modified lignin.
  <<摩擦材の製造>>
 実施例1
 合成例1で得られたノボラック型フェノール樹脂100部(450g)と、フェノール樹脂硬化剤としてのヘキサメチレンテトラミン(リグナイト製)12部(54g)と、離型剤としてのステアリン酸亜鉛(和光純薬工業製)1部(4.5g)とを順次配合し、2本の熱ロールにて100℃で5分間混練して、樹脂組成物を得た。
<< Manufacture of friction materials >>
Example 1
100 parts (450 g) of the novolak-type phenol resin obtained in Synthesis Example 1, 12 parts (54 g) of hexamethylenetetramine (manufactured by lignite) as a phenol resin curing agent, and zinc stearate (Wako Pure Chemical Industries) as a release agent 1 part (4.5 g) (manufactured by Kogyo) was sequentially blended and kneaded with two hot rolls at 100 ° C. for 5 minutes to obtain a resin composition.
 次いで、得られた樹脂組成物20部とアラミド繊維(東レ・デュポン製 Kevlar(R)パルプ1F538)5部、銅繊維(日本スチールウール製 CCW-208)5部、アクリロニトリルブタジエンゴム(NBR)JSR製 PN30A)5部、カシューダスト(東北化工製 カシューパーティクル FF-1500)10部、硫酸バリウム(堺化学製 簸性硫酸バリウムBA)45部、グラファイト(SECカーボン製 SGP-100)10部をミキサーにて混合し、摩擦材用成形材料を得た。 Next, 20 parts of the obtained resin composition, 5 parts of aramid fibers (Kevlar (R) pulp 1F538, manufactured by Toray DuPont), 5 parts of copper fibers (CCW-208, manufactured by Nippon Steel Wool), acrylonitrile butadiene rubber (NBR) manufactured by JSR 5 parts of PN30A, 10 parts of cashew dust (Cashew Particles FF-1500, manufactured by Tohoku Kako), 45 parts of barium sulfate (manufactured by Sakai Chemical Co., Ltd. barium sulfate BA), and 10 parts of graphite (SGP-100, manufactured by SEC Carbon) By mixing, a molding material for friction material was obtained.
 その後、得られた摩擦材用成形材料を、170℃において15分間圧縮成形し、摩擦材として、100mmφの円盤形試験片を得た。また、得られた摩擦材を、180℃において4時間熱硬化(アフターキュア)させた。 Thereafter, the obtained molding material for friction material was compression molded at 170 ° C. for 15 minutes to obtain a disc-shaped test piece of 100 mmφ as the friction material. In addition, the obtained friction material was thermally cured (aftercured) at 180 ° C. for 4 hours.
 実施例2~8および比較例1~2
 表2に示す配合処方に変更した以外は、実施例1と同様にして、摩擦材を得た。また、得られた摩擦材を、180℃において4時間熱硬化(アフターキュア)させた。
Examples 2-8 and Comparative Examples 1-2
A friction material was obtained in the same manner as in Example 1 except that the formulation was changed to the formulation shown in Table 2. In addition, the obtained friction material was thermally cured (aftercured) at 180 ° C. for 4 hours.
  <<評価>>
 各実施例および各比較例において得られた摩擦材を、下記の方法により評価した。その結果を、表2に示す。
(1)摩擦係数
 ASTM D1894に準拠して、表面性試験機(新東科学 HEIDON-14S/D)を用いて摩擦係数(静摩擦係数および動摩擦係数)を求めた。摩擦係数を求めるための各種条件および用いた試験片の寸法を以下に示す。
試験片:直径100mm、厚さ約3mmの円板試験片
  相手材   :直径19mm円筒
  相手材の材質:S45C
  試験速度  :100mm/分
(2)摩耗試験(テーバー型)
 JIS-K7204(1999年版)に準拠して摩耗量を測定し、摩耗量を最初のサンプルの質量からどれだけ質量が減少したかを質量%で計算した。摩耗試験の条件および用いた試験片の寸法を以下に示す。
(摩耗試験条件)
  荷重   :10N
  回転速度 :60rpm
  摩耗輪  :H-18
  回転数  :1000回転
(試験片)
  直径100mm、厚さ約3mmの円板試験片
(3)曲げ強度
 JIS K6911(1995年版)に準拠して、クロスヘッド速度1.5mm/分、スパン50mmにて曲げ強度を測定した。
<< Evaluation >>
The friction materials obtained in each Example and each Comparative Example were evaluated by the following methods. The results are shown in Table 2.
(1) Friction coefficient In accordance with ASTM D1894, a friction coefficient (static friction coefficient and dynamic friction coefficient) was determined using a surface property tester (Shinto Kagaku HEIDON-14S / D). Various conditions for obtaining the friction coefficient and dimensions of the test piece used are shown below.
Test piece: Disc test piece with a diameter of 100 mm and a thickness of about 3 mm Mating material: 19 mm diameter cylinder Mating material: S45C
Test speed: 100 mm / min (2) Wear test (Taber type)
The amount of wear was measured in accordance with JIS-K7204 (1999 edition), and the amount of wear was calculated in mass% to indicate how much the mass was reduced from the mass of the first sample. The conditions of the wear test and the dimensions of the test piece used are shown below.
(Wear test conditions)
Load: 10N
Rotation speed: 60rpm
Wear wheel: H-18
Number of revolutions: 1000 revolutions (test piece)
Disc test piece having a diameter of 100 mm and a thickness of about 3 mm (3) Bending strength The bending strength was measured at a crosshead speed of 1.5 mm / min and a span of 50 mm in accordance with JIS K6911 (1995 edition).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表中において、ソーダリグニンは、ソーダリグニンのメタノール可溶成分を示す。 In the table, soda lignin indicates a methanol-soluble component of soda lignin.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 本発明の摩擦材は、自動車、自動二輪車、電車などの車両の、ブレーキパッド、クラッチ部材などの制動部材において、好適に用いられる。 The friction material of the present invention is suitably used in braking members such as brake pads and clutch members for vehicles such as automobiles, motorcycles, and trains.

Claims (3)

  1.  バインダーを含有する摩擦材であり、
     前記バインダーが、
     分子中に脂肪族水酸基を有するリグニンと、
     フェノール類と、
     アルデヒド類と
    の反応生成物を含有し、
     前記リグニンの前記脂肪族水酸基の含有割合が、前記リグニンの総量に対して、0.5
    質量%以上8.5質量%以下である
    ことを特徴とする、摩擦材。
    A friction material containing a binder,
    The binder is
    Lignin having an aliphatic hydroxyl group in the molecule;
    Phenols,
    Contains reaction products with aldehydes,
    The content of the aliphatic hydroxyl group in the lignin is 0.5% relative to the total amount of the lignin.
    A friction material, wherein the friction material is not less than mass% and not more than 8.5 mass%.
  2.  前記リグニンが、クラフトリグニンである、請求項1に記載の摩擦材。 The friction material according to claim 1, wherein the lignin is craft lignin.
  3.  前記リグニンが、酢酸により変性されたリグニンである、請求項1に記載の摩擦材。 The friction material according to claim 1, wherein the lignin is lignin modified with acetic acid.
PCT/JP2018/014098 2017-04-14 2018-04-02 Friction material WO2018190171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019512437A JPWO2018190171A1 (en) 2017-04-14 2018-04-02 Friction material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017080240 2017-04-14
JP2017-080240 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018190171A1 true WO2018190171A1 (en) 2018-10-18

Family

ID=63793331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014098 WO2018190171A1 (en) 2017-04-14 2018-04-02 Friction material

Country Status (2)

Country Link
JP (1) JPWO2018190171A1 (en)
WO (1) WO2018190171A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728053A (en) * 2018-12-27 2021-11-30 苏扎诺有限公司 Novolac-type phenol resin, method for synthesizing same, and use thereof
WO2022215554A1 (en) * 2021-04-06 2022-10-13 住友ベークライト株式会社 Heat-curable resin composition for friction material, and friction material
JP7459564B2 (en) 2020-03-03 2024-04-02 住友ベークライト株式会社 Method for producing lignin-modified novolac phenolic resin and method for producing crosslinked resin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129451A (en) * 1975-04-21 1976-11-11 Bendix Corp Organic abrasive
US5260405A (en) * 1991-11-07 1993-11-09 Rutgerswerke Aktiengesellschaft Ag Lignin modified binding agents
JP2011141490A (en) * 2010-01-08 2011-07-21 Sharp Corp Production method of toner, and toner
JP2014502500A (en) * 2010-12-22 2014-02-03 ネステ オイル オサケ ユキチュア ユルキネン Integrated process system
JP2017505287A (en) * 2013-11-26 2017-02-16 ユー ピー エム キュンメネ コーポレーション Method for treating lignin and producing a binder composition
JP2017179260A (en) * 2016-03-31 2017-10-05 ハリマ化成株式会社 Friction material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406866B (en) * 2015-03-24 2021-11-09 东丽株式会社 Method for producing sugar solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129451A (en) * 1975-04-21 1976-11-11 Bendix Corp Organic abrasive
US5260405A (en) * 1991-11-07 1993-11-09 Rutgerswerke Aktiengesellschaft Ag Lignin modified binding agents
JP2011141490A (en) * 2010-01-08 2011-07-21 Sharp Corp Production method of toner, and toner
JP2014502500A (en) * 2010-12-22 2014-02-03 ネステ オイル オサケ ユキチュア ユルキネン Integrated process system
JP2017505287A (en) * 2013-11-26 2017-02-16 ユー ピー エム キュンメネ コーポレーション Method for treating lignin and producing a binder composition
JP2017179260A (en) * 2016-03-31 2017-10-05 ハリマ化成株式会社 Friction material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728053A (en) * 2018-12-27 2021-11-30 苏扎诺有限公司 Novolac-type phenol resin, method for synthesizing same, and use thereof
EP3904459A4 (en) * 2018-12-27 2022-09-07 Suzano S.A. Novolac phenolic resins, process of synthesis of said phenolic resins and use thereof
JP7459564B2 (en) 2020-03-03 2024-04-02 住友ベークライト株式会社 Method for producing lignin-modified novolac phenolic resin and method for producing crosslinked resin
WO2022215554A1 (en) * 2021-04-06 2022-10-13 住友ベークライト株式会社 Heat-curable resin composition for friction material, and friction material
JP7197064B1 (en) * 2021-04-06 2022-12-27 住友ベークライト株式会社 Thermosetting resin composition for friction material and friction material

Also Published As

Publication number Publication date
JPWO2018190171A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP5918585B2 (en) Friction material manufacturing method
US9534650B2 (en) Friction material
JP5898525B2 (en) Method for producing resin composition for friction material
WO2018190171A1 (en) Friction material
JP6825925B2 (en) Resin coated sand and its manufacturing method
JPWO2016159218A1 (en) Resol-type modified phenolic resin composition, production method thereof and adhesive
JP7215046B2 (en) Method for producing resin material containing phenol-modified lignin resin, and method for producing structure using the same
JP2020050814A (en) Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
US20140296374A1 (en) Resin composition for wet friction material, phenolic resin for wet friction material and wet friction material
WO2018139074A1 (en) Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin
JP2016190968A (en) Resol type phenolic resin for friction material and method for producing the same, adhesive for friction material and wet type friction plate
JP2017179260A (en) Friction material
JP6009871B2 (en) Friction material manufacturing method
WO2018030162A1 (en) Resin composition for friction materials and wet paper friction material
WO2018179820A1 (en) Sliding material
JP2008189749A (en) Phenolic resin for wet type paper friction material, and wet type paper friction material
JP2023070569A (en) friction material
JP2023070570A (en) friction material
JP2021138806A (en) Method for producing lignin-modified novolac phenolic resin, and method for producing crosslinked body
JP2007246689A (en) Phenolic resin composition for friction material, and friction material
WO2018179821A1 (en) Sliding material
JP7197064B1 (en) Thermosetting resin composition for friction material and friction material
JP2020169245A (en) Heat-curable resin composition for friction material, and friction material
JP2022106051A (en) Slide material
JP2022106052A (en) Slide material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783625

Country of ref document: EP

Kind code of ref document: A1