WO2018188960A1 - Faserverbundbauteil und verfahren zur herstellung - Google Patents

Faserverbundbauteil und verfahren zur herstellung Download PDF

Info

Publication number
WO2018188960A1
WO2018188960A1 PCT/EP2018/058005 EP2018058005W WO2018188960A1 WO 2018188960 A1 WO2018188960 A1 WO 2018188960A1 EP 2018058005 W EP2018058005 W EP 2018058005W WO 2018188960 A1 WO2018188960 A1 WO 2018188960A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
green body
composite component
fiber composite
matrix material
Prior art date
Application number
PCT/EP2018/058005
Other languages
English (en)
French (fr)
Inventor
Roland Weiss
Gotthard Nauditt
Thomas Wamser
Original Assignee
Schunk Kohlenstofftechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schunk Kohlenstofftechnik Gmbh filed Critical Schunk Kohlenstofftechnik Gmbh
Priority to US16/604,767 priority Critical patent/US20200102253A1/en
Priority to EP18717857.9A priority patent/EP3609857A1/de
Publication of WO2018188960A1 publication Critical patent/WO2018188960A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/106Refractories from grain sized mixtures containing zirconium oxide or zircon (ZrSiO4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties

Definitions

  • the invention relates to a fiber composite component and a method for producing a fiber composite component for high temperature applications, in particular a workpiece carrier for providing and handling workpieces in high-temperature furnaces for high temperature treatment or the like, wherein a dimensionally stable green body of the fiber composite component is formed from a fiber-reinforced matrix material, wherein the fiber composite component by means of a heat treatment of the green body is formed.
  • Fiber composite components or workpiece carriers are well known and are regularly used for receiving and transporting workpieces in the context of high temperature treatments.
  • a high-temperature treatment is here understood to mean a workpiece treatment in a high-temperature furnace at a temperature of more than 1 000 ° C.
  • a workpiece treatment in a high-temperature furnace at a temperature of more than 1 000 ° C.
  • existing workpieces are annealed as part of the high-temperature treatment, in order to achieve an improvement in the properties of the relevant workpiece.
  • workpieces to coat as part of a high-temperature treatment.
  • it is always attempted to arrange a large number of workpieces on workpiece carriers such that an interior of the high-temperature furnace is filled as densely as possible with workpieces in order to keep the costs of the treatment process low.
  • the workpieces are arranged on the workpiece carrier so that the workpieces are exposed as possible on all sides of a furnace atmosphere to achieve a homogeneous heating of j e election workpieces.
  • the known workpiece carriers are regularly formed from a plate-shaped support grid, which can also form a grid structure. Although it is also known to form the support grid made of metal, however, a metal support grid can easily warp or bend at high temperatures. Constructed from carbon fiber reinforced carbon (CFC) workpiece carrier or support grids, however, are dimensionally stable and sufficiently strong even at high temperatures.
  • CFC carbon fiber reinforced carbon
  • the workpiece carrier may have a ceramic separating layer for supporting workpieces or even be formed from ceramic materials.
  • a method for producing a fiber composite component or a workpiece carrier in which fibers are arranged according to a grid structure and sewn together at intersection points.
  • a particularly high fiber volume can be achieved at crossing points of the lattice structure.
  • the thus formed fiber composite is infiltrated with a resin as a matrix material and introduced into a mold.
  • the resin is cured, so that a dimensionally stable green body or a precursor is obtained, which finally by means of a heat treatment, in particular a pyrolysis of the resin, to the factory piece carrier is formed.
  • a structured fiber arrangement oriented in accordance with the grid structure, a stable fiber composite component can be obtained.
  • workpiece carriers are used to provide and handle a wide variety of workpieces, it may be necessary, depending on a size or shape of the workpieces, to use workpiece carriers with a wide variety of grid structures. For individual production of such workpiece carriers, however, it is always necessary to use a correspondingly adapted tool or a mold. Since with such forms, inter alia, a pressing of the fibers is carried out with the matrix material, these forms are expensive to produce. Individualization of workpiece carriers is therefore limited.
  • the present invention is therefore based on the object
  • Fiber composite component and to propose a method for its production, which allows a cost-effective production.
  • a method having the features of claim 1 and a fiber composite component with the features of claim 21 dissolved in particular a workpiece carrier for providing and handling workpieces in high-temperature furnaces for high-temperature treatment or the like, a dimensionally stable green body of the fiber composite component is formed from a fiber-reinforced matrix material, wherein the fiber composite component formed by a heat treatment of the green body is, wherein a fiber is extruded together with a slurry as a matrix material from a nozzle and spatially arranged, such that the green body is formed by means of additive manufacturing.
  • the green body can then be formed in principle formlo s by the fact that the fiber is deposited together with the slurry on the basis of a data model of a shape of the green body of the nozzle.
  • the nozzle is then moved along the shape of the green body during extrusion, so that the green body is made generative by applying the fiber to the slurry. It is then possible to form a fiber composite component or a workpiece carrier with a virtually arbitrary shape.
  • the use of a mold with which impregnated fibers could be pressed is then no longer necessary, whereby the manufacturing cost of the mold can be saved and thus the fiber composite component is overall also cheaper to produce.
  • it may be provided to arrange the fibers in a structured fiber composite. This makes it possible to achieve a significantly increased Faservo lumen of the fiber composite component, which can significantly increase a strength of the fiber composite component.
  • the fiber composite can then be aligned according to a load direction. In particular, when a grid structure is to be formed, the fiber composite can always be arranged along struts of the grid structure.
  • the slip is dimensionally stabilized after extrusion, wherein the shape stabilization can preferably be carried out by means of drying, heat treatment or curing of a binder.
  • the fiber can be coextruded with the slurry, such that the fiber adheres to a substrate together with the slurry.
  • the substrate may already be a fiber, a fiber layer or a fiber bundle which at least partially forms a shape of the fiber composite component. The slurry can then easily allow the fiber to adhere to this substrate.
  • a binder contained in the slip can also be cured by means of UV light and thus the slip can be fixed in a dimensionally stable manner.
  • the shape stabilization allows a further application of the fiber with the slurry in adjacent rows and superimposed planes or layers corresponding to the shape of the fiber composite component without the slurry being moved by its own weight or its own weight of the green body thus formed or a shape of the green body as a result of a flow of the slip is changed.
  • the green body can be aftertreated by pressing or vacuum forming in a subsequent process step.
  • this additional shaping step can be carried out.
  • a deposited and infiltrated fibrous structure can then be compacted and reshaped, in which case final final stabilization takes place.
  • the fiber is deposited freely during the extrusion.
  • the fiber can be extruded or conveyed out of the nozzle together with the slurry and applied without pressure to a substrate or an underlying fiber layer.
  • the slurry can already wet the fiber inside the nozzle so that the slurry adheres to the fiber and is deposited together with the fiber.
  • the green body can be formed by extrusion in an informal or alternatively in a shape of the green body.
  • the green body in a formlo sen training of the green body, the green body on a flat
  • Extrusion of the fiber can be formed together with the slurry.
  • Most fiber composite components, in particular workpiece carriers, can then be produced without the use of a mold. If a particularly reliable dimensional stability is to be achieved, or if the fiber composite component has a complex shape, it may be advantageous to use a mold into which the fiber is extruded, together with the slurry.
  • the mold then has an opening through which the nozzle can enter the mold or deposit the fiber within the mold.
  • a matrix material an inorganic matrix material, preferably a matrix material of alumina, mullite (MgO), zirconia, yttrium-aluminum garnet, silicon carbide and / or silicon nitride can be used.
  • the slip then essentially has one of these aforementioned substances or mixtures thereof. These substances are then in the form of a powder or particles.
  • a workpiece carrier is formed of a ceramic fiber composite material, it is due to the fiber reinforcement very stable, that is not brittle, and resistant to rapid temperature changes. In addition, contamination of workpieces by carbon of the workpiece carrier can be prevented by the fact that the workpiece carrier contains no carbon at least at possible contact surfaces to workpieces.
  • the slip may also have a dispersion medium, wherein preferably water, glycerol and / or ethano l can be used as the dispersion medium. The dispersion medium may then be mixed with particles of the matrix material in a volume ratio in which the slurry is still extrudable through the nozzle and at the same time does not tend to flow after exiting the nozzle.
  • the slurry is thixotropic.
  • the slurry can then be liquid or viscous within the nozzle and solidify after exiting the nozzle. If the slurry has a dispersion medium which can evaporate quickly, a comparatively dimensionally stable green body can already be obtained by means of direct heat treatment or drying of the slurry.
  • the slip may have additives, it being possible to use a binder and / or a defoamer as additive.
  • the defoamer can improve a processability of the slurry.
  • the binder may serve to solidify or cure the slurry after extrusion.
  • the binder may be a UV-activatable or heat-activatable binder.
  • the slip may also comprise ceramic particles, with preference being given to 20% by volume of small ceramic particles having an average particle size of 0.1 ⁇ m and 80 parts by volume. % large ceramic particles with an average particle size of 1 to 5 ⁇ can be used. With such a ratio of small ceramic particles to large ceramic particles as well as the mean particle sizes selected in each case, it becomes possible to form the slip with an at least partially dilatant or with partially thixotropic behavior during an extrusion. In addition, solidification by sintering with retention of porosity can be enabled. The maximum particle sizes can be chosen so that a complete infiltration of a fiber bundle is possible.
  • the slurry may have a solids content of 35% by volume
  • an inorganic fiber preferably a fiber of alumina, mullite, zirconia, yttrium-aluminum garnet, silicon carbide and / or silicon nitride can be used.
  • the inorganic fibers can then be combined together with an oxide ceramic matrix of a matching or of a different matrix material. It can further be provided to combine inorganic fibers of different materials with one another.
  • an organic fiber preferably a carbon fiber
  • Carbon fibers are comparatively inexpensive available and dimensionally stable and sufficiently strong even at high temperatures.
  • the carbon fibers can then also be combined with an inorganic matrix material. In such a combination thermo-mechanical and thermodynamic compatibility of the materials is to be considered.
  • the fiber may have a diameter of 5 ⁇ to 30 ⁇ , preferably of 10 ⁇ . Fibers with these diameters are particularly well suited for extrusion from the die along with the slip.
  • the fiber may be an endless fiber that can be fed continuously to the nozzle.
  • an endless fiber By using an endless fiber, it becomes possible to arrange the fiber continuously, as in winding the fiber, in a desired orientation corresponding to a shape of the fiber composite member.
  • a strength of the fiber composite component can be increased so advantageous. In principle, however, it is also possible to extrude short cut fibers together with the slurry from the nozzle.
  • a filament yarn can also be extruded from the die together with the slurry, wherein the filament yarn 1 .000 can have the (denier) to 50,000 denier, preferably 20,000 denier.
  • the filament yarn can then already impregnated or impregnated with the slurry within the nozzle.
  • a faster additive structure of the green body of the filament yarn is made possible together with the slurry.
  • the fiber composite component can advantageously with a fiber content of 10 vol.% To 60 Vo l. %, preferably up to 35 Vo l. %> are trained.
  • a high fiber content favors the strength properties of the fiber composite component.
  • the fiber composite component can be formed as a workpiece carrier, which is formed from a support grid for positioning workpieces on the workpiece carrier, wherein the support grid is then formed from a grid structure forming support struts. Because the fiber is laid by means of the nozzle, it is then also possible to form the workpiece carrier in one piece.
  • the green body then substantially corresponds to a preform which has a lattice shape.
  • crossing points or junctions of the lattice structure can be formed with the same material thickness and / or the same fiber proportion.
  • a thickness or a cross-sectional area of the support struts of the lattice structure is then always constant.
  • the fiber can be laid so that the crossing points or nodes of interconnected support struts have substantially the same Faservo lumen in relation to the cross-sectional area as the support struts.
  • it can further be provided to cure or stabilize the green body by means of a supplementary heat treatment, before the green body is fed to the final heat treatment to form the fiber composite component. In this heat treatment, sintering of the matrix material of the green body may be required.
  • the method further relates to using the nozzle to extrude the fiber together with the slurry to make the green body.
  • the fiber composite component according to the invention for high-temperature applications is formed from a dimensionally stable green body made of fiber-reinforced matrix material, wherein the fiber composite component is formed by a heat treatment of the green body, wherein the green body by means of additive manufacturing is formed by a spatial arrangement and an extrusion of a fiber together with a slurry as a matrix material from a nozzle.
  • Fig. 2 workpiece carrier in a side view
  • Fig. 4 a schematic representation of a nozzle for producing a fiber composite component.
  • FIGS. 1 to 3 shows a formed as a workpiece carrier 10 fiber composite component 1 first
  • the workpiece carrier 10 forms a support grid 12 with a grid structure 1 3, wherein the grid structure tur 13 is formed from support struts 14 which are interconnected at crossing points 1 5.
  • the support struts 14 and the crossing points 15 are formed from a structured fiber composite 16 of fibers 17, which reinforce a matrix material.
  • the fibers 17 and the matrix material 18 are made of an inorganic material such as alumina.
  • the fibers 17 were extruded together with a slurry from a nozzle and placed spatially on each other and next to each other in the arrangement shown here.
  • the slip was dimensionally stabilized after extrusion, so that this type of additive manufacturing a green body was formed.
  • the green body was formed by means of a heat treatment to the fiber composite component 1 1.
  • FIG. 4 shows a schematic representation of a nozzle 1 9, with which a fiber 20 is extruded together with a slurry 21.
  • the nozzle 19 has a channel 22 for feeding the fiber 20 and a channel 23 for supplying the slurry 21.
  • the fiber 20 emerges from the nozzle 19 together with the slurry 21 and is deposited in a structured manner in or on fiber layers 25 without pressure.
  • a form for producing the green body 26 is not required, but it is sufficient to arrange the fiber layers 25 on a flat surface 27.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Faserverbundbauteils sowie ein Faserverbundbauteil für Hochtemperaturanwendungen, insbesondere eines Werkstückträgers zum Bereitstellen und Handhaben von Werkstücken in Hochtemperaturöfen zur Hochtemperaturbehandlung oder dergleichen, wobei ein formstabiler Grünkörper (26) des Faserverbundbauteils aus einem mit Fasern verstärkten Matrixmaterial ausgebildet wird, wobei das Faserverbundbauteil mittels einer Wärmebehandlung des Grünkörpers ausgebildet wird, wobei eine Faser (20) zusammen mit einem Schlicker (21) als Matrixmaterial aus einer Düse (19) extrudiert und räumlich angeordnet wird, derart, dass der Grünkörper mittels additiver Fertigung ausgebildet wird.

Description

Faserverbundbauteil und Verfahren zur Herstellung
Die Erfindung betrifft ein Faserverbundbauteil sowie ein Verfahren zur Herstellung eines Faserverbundbauteils für Hochtemperaturanwendungen, insbesondere eines Werkstückträgers zum Bereitstellen und Handhaben von Werkstücken in Hochtemperaturöfen zur Hochtemperaturbehandlung oder dergleichen, wobei ein formstabiler Grünkörper des Faserverbundbauteils aus einem mit Fasern verstärkten Matrixmaterial ausgebildet wird, wobei das Faserverbundbauteil mittels einer Wärmebehandlung des Grünkörpers ausgebildet wird.
Faserverbundbauteile beziehungsweise Werkstückträger sind hinreichend bekannt und werden regelmäßig zur Aufnahme und zum Transport von Werkstücken im Rahmen von Hochtemperaturbehandlungen verwandt.
Unter einer Hochtemperaturbehandlung wird hier eine Werkstückbehandlung in einem Hochtemperaturofen bei einer Temperatur von mehr als 1 .000 °C verstanden. Aus Metall, beispielsweise aus Stahl, bestehende Werkstücke werden im Rahmen der Hochtemperaturbehandlung bei- spielsweise geglüht, um eine Verbesserung der Eigenschaften des betreffenden Werkstücks zu erzielen. Auch kann es vorgesehen sein, Werkstü- cke im Rahmen einer Hochtemperaturbehandlung zu beschichten. Bei den bekannten Behandlungsverfahren wird stets versucht, eine große Anzahl von Werkstücken auf Werkstückträgern so anzuordnen, dass ein Innenraum des Hochtemperaturofens möglichst dicht mit Werkstücken ausge- füllt ist, um die Kosten des Behandlungsverfahrens gering zu halten. Dabei werden die Werkstücke auf dem Werkstückträger so angeordnet, dass die Werkstücke möglichst allseitig einer Ofenatmosphäre ausgesetzt sind, um eine homogene Erwärmung der j eweiligen Werkstücke zu erzielen. Die bekannten Werkstückträger sind regelmäßig aus einem plattenförmi- gen Tragrost gebildet, der auch eine Gitterstruktur ausbilden kann. Zwar ist es auch bekannt den Tragrost aus Metall auszubilden, j edoch kann sich ein metallener Tragrost bei hohen Temperaturen leicht verziehen oder durchbiegen. Aus kohlenstofffaserverstärkten Kohlenstoff (CFC) ausgebildete Werkstückträger beziehungsweise Tragroste sind hingegen auch bei hohen Temperaturen formstabil und ausreichend fest. Wenn bei einer Hochtemperaturbehandlung von Werkstücken der Kohlenstoff des Werkstückträgers das Material der Werkstücke nicht kontaminieren so ll, beispielsweise durch eine Aufkohlung von Stahl, kann der Werkstückträ- ger eine keramische Trennschicht zur Auflage von Werkstücken aufweisen oder selbst aus keramischen Materialien ausgebildet sein.
Aus der DE 10 957 906 A I ist ein Verfahren zur Herstellung eines Faserverbundbauteils beziehungsweise eines Werkstückträgers bekannt, bei dem Fasern entsprechend einer Gitterstruktur angeordnet und an Kreuzungspunkten miteinander vernäht werden. So kann ein besonders hohes Faservolumen an Kreuzungspunkten der Gitterstruktur erzielt werden. Der derart ausgebildete Faserverbund wird mit einem Harz als ein Matrixmaterial infiltriert und in eine Form eingebracht. Das Harz wird ausgehärtet, sodass ein formstabiler Grünkörper beziehungsweise ein Vorprodukt erhalten wird, welches abschließend mittels einer Wärmebehandlung, insbesondere einer Pyrolyse des Harzes, zu dem Werk- stückträger ausgebildet wird. Durch eine strukturierte und entsprechend der Gitterstruktur ausgerichtete Faseranordnung kann ein stabiles Faserverbundbauteil erhalten werden.
Dadurch, dass Werkstückträger zum Bereitstellen und Handhaben von unterschiedlichsten Werkstücken verwendet werden, kann es erforderlich sein, abhängig von einer Größe oder Gestalt der Werkstücke, Werkstückträger mit unterschiedlichsten Gitterstrukturen einzusetzen. Zur individuellen Herstellung derartiger Werkstückträger ist es aber stets erforderlich, ein entsprechend angepasstes Werkzeug beziehungsweise eine Form zu verwenden. Da mit derartigen Formen unter anderem auch ein Pressen der Fasern mit dem Matrixmaterial durchgeführt wird, sind diese Formen nur kostenaufwendig herzustellen. Einer Individualisierung von Werkstückträgern sind daher Grenzen gesetzt.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein
Faserverbundbauteil und ein Verfahren zu dessen Herstellung vorzuschlagen, welches eine kostengünstige Herstellung ermöglicht.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und ein Faserverbundbauteil mit den Merkmalen des Anspruchs 21 gelö st. Bei dem erfindungsgemäßen Verfahren zur Herstellung eines Faserverbundbauteils für Hochtemperaturanwendungen, insbesondere eines Werkstückträgers zum Bereitstellen und Handhaben von Werkstücken in Hochtemperaturöfen zur Hochtemperaturbehandlung oder dergleichen, wird ein formstabiler Grünkörper des Faserverbundbauteils aus einem mit Fasern verstärkten Matrixmaterial ausgebildet, wobei das Faserverbundbauteil mittels einer Wärmebehandlung des Grünkörpers ausgebildet wird, wobei eine Faser zusammen mit einem Schlicker als Matrixmaterial aus einer Düse extrudiert und räumlich angeordnet wird, derart, dass der Grünkörper mittels additiver Fertigung ausgebildet wird. Dadurch, dass die Faser zusammen mit dem Schlicker aus der Düse extrudiert wird, wird eine additive Fertigung des Grünkörpers erst möglich. Der Grünkörper kann dann prinzipiell formlo s dadurch ausgebildet werden, dass die Faser zusammen mit dem Schlicker auf der Basis eines Datenmodells einer Gestalt des Grünkörpers von der Düse abgelegt wird. Die Düse wird dann entlang der Gestalt des Grünkörpers während des Extrudierens bewegt, sodass der Grünkörper durch Auftragen der Faser mit dem Schlicker generativ aufgebaut wird. Es wird dann möglich ein Faserverbundbauteil beziehungsweise einen Werkstückträger mit einer nahezu beliebigen Gestalt auszubilden. Die Verwendung einer Form, mit der imprägnierte Fasern verpresst werden könnten, ist dann nicht mehr erforderlich, wodurch die Herstellungskosten der Form eingespart werden und damit das Faserverbundbauteil insgesamt auch kostengünstiger herstellbar wird. Insbesondere kann es vorgesehen sein, die Fasern in einem strukturierten Faserverbund anzuordnen. Dadurch wird es möglich ein deutlich erhöhtes Faservo lumen des Faserverbundbauteils zu erzielen, was eine Festigkeit des Faserverbundbauteils wesentlich erhöhen kann. Auch kann der Faserverbund dann entsprechend einer Lastrichtung ausgerichtet sein. Insbesondere wenn eine Gitterstruktur ausgebildet werden soll, kann der Faserverbund stets entlang von Streben der Gitterstruktur angeordnet sein.
Vorteilhaft ist es, wenn der Schlicker nach dem Extrudieren formstabilisiert wird, wobei die Formstabilisierung vorzugsweise mittels Trock- nung, Wärmebehandlung oder Aushärten eines Binders erfolgen kann. So kann die Faser zusammen mit dem Schlicker koextrudiert werden, derart, dass die Faser zusammen mit dem Schlicker auf einem Untergrund anhaftet. Der Untergrund kann bereits eine Faser, eine Faserlage oder ein Faserbündel sein, welches eine Gestalt des Faserverbundbauteils zumin- dest teilweise ausbildet. Der Schlicker kann dann ein Anhaften der Faser an diesem Untergrund einfach ermöglichen. Unmittelbar nach der Extru- sion des Schlickers mit der Faser kann eine Formstabilisierung des Schlickers vorgesehen sein, was beispielsweise mittels einer Trocknung des Schlickers, einer Wärmebehandlung, beispielsweise durch Entzug oder Teilentzug eines Dispergiermediums bei vorgegebener Temperatur und Luftfeuchte, oder auch durch das Aushärten eines Binders, welcher im Schlicker enthalten sein kann, möglich ist. Beispielsweise kann ein im Schlicker enthaltener Binder auch mittels UV-Licht ausgehärtet und damit der Schlicker formstabil fixiert werden. Wesentlich ist, dass die Formstabilisierung einen weiteren Auftrag der Faser mit dem Schlicker in benachbarten Reihen und übereinander liegenden Ebenen bzw. Lagen entsprechend der Gestalt des Faserverbundbauteils ermöglicht, ohne dass der Schlicker durch sein Eigengewicht oder ein Eigengewicht des so ausgebildeten Grünkörpers bewegt wird beziehungsweise eine Gestalt des Grünkörpers in Folge eines Fließens des Schlickers verändert wird. Optional kann der Grünkörper in einem nachfolgenden Verfahrensschritt durch Pressen oder Vakuumformen nachbehandelt werden. So kann nach einem Entzug oder Teilentzug eines Dispersionsmediums dieser zusätzliche Formgebungsschritt durchgeführt werden. Eine abgelegte und infiltrierte Faserstruktur kann dann verdichtet und umgeformt werden, wobei dann abschließend eine endgültige Formstabilisierung erfolgt.
Besonders vorteilhaft ist es, wenn bei der Extrusion die Faser frei abgelegt wird. So kann die Faser zusammen mit dem Schlicker aus der Düse extrudiert beziehungsweise gefördert und ohne Druck auf einen Untergrund beziehungsweise eine darunter liegende Faserlage appliziert werden. Der Schlicker kann dabei innerhalb der Düse bereits die Faser benetzen, sodass der Schlicker an der Faser anhaftet und zusammen mit der Faser abgelegt wird.
Prinzipiell kann der Grünkörper durch Extrusion formlos oder alternativ in einer Form des Grünkörpers ausgebildet werden. Bei einer formlo sen Ausbildung des Grünkörpers kann der Grünkörper auf einem ebenen
Formtisch oder einem anderen ebenen Untergrund durch kontinuierliche Extrusion der Faser zusammen mit dem Schlicker ausgebildet werden. Die meisten Faserverbundbauteile, insbesondere Werkstückträger, können dann ohne Verwendung einer Form hergestellt werden. Soll eine besonders verlässliche Maßhaltigkeit erzielt werden oder weist das Faserverbundbauteil eine komplexe Gestalt auf, kann es vorteilhaft sein, eine Form zu verwenden, in die die Faser zusammen mit dem Schlicker hinein extrudiert wird. Die Form weist dann eine Öffnung auf, über die die Düse in die Form hinein gelangen beziehungsweise die Faser innerhalb der Form ablegen kann. Als ein Matrixmaterial kann ein anorgani- sches Matrixmaterial, vorzugsweise ein Matrixmaterial aus Aluminiumoxid, Mullit (MgO), Zirkonoxid, Yttrium-Aluminium-Granat, Silici- umcarbid und/oder Siliziumnitrid, verwendet werden. Der Schlicker weist dann im Wesentlichen einen dieser vorgenannten Stoffe oder auch Mischungen davon auf. Diese Stoffe liegen dann in Form eines Pulvers beziehungsweise von Partikeln vor. So ist es dann auch möglich, ein keramisches Matrixmaterial beziehungsweise einen keramischen Faserverbundwerkstoff im Rahmen einer Wärmebehandlung auszubilden.
Wenn ein Werkstückträger aus einem keramischen Faserverbundwerkstoff ausgebildet ist, ist er aufgrund der Faserverstärkung sehr stabil, das heißt nicht spröde, und gegenüber schnellen Temperaturwechseln beständig. Darüber hinaus kann eine Kontamination von Werkstücken durch Kohlenstoff des Werkstückträgers dadurch verhindert werden, dass der Werkstückträger zumindest an möglichen Kontaktflächen zu Werkstücken keinen Kohlenstoff enthält. Der Schlicker kann auch ein Dispersionsmedium aufweisen, wobei als Dispersionsmedium vorzugsweise Wasser, Glycerin und/oder Ethano l verwendet werden kann. Das Dispersionsmedium kann dann mit Partikeln des Matrixmaterials in einem Volumenverhältnis gemischt sein, bei dem der Schlicker noch gut durch die Düse extrudierbar ist und gleichzeitig nach einem Austritt aus der Düse nicht zum Fließen neigt. So ist es besonders vorteilhaft, wenn der Schlicker thixotrop ist. Der Schlicker kann dann innerhalb der Düse flüssig beziehungsweise viskos sein und nach einem Austritt aus der Düse sich verfestigen. Wenn der Schlicker ein Dispersionsmedium aufweist, welches schnell verdampfen kann, kann mittels einer unmittelbaren Wärmebehandlung beziehungsweise Trocknung des Schlickers bereits ein vergleichsweise formstabiler Grünkörper erhalten werden.
Weiter kann der Schlicker Additive aufweisen, wobei als Additiv ein Bindemittel und/oder ein Entschäumer verwendet werden kann. Der Entschäumer kann eine Verarbeitbarkeit des Schlickers verbessern. Das Bindemittel kann dazu dienen, den Schlicker nach einer Extrusion zu verfestigen oder auch auszuhärten. Beispielsweise kann das Bindemittel ein mit UV-Licht oder Wärme aktivierbares Bindemittel sein.
Der Schlicker kann auch keramische Partikel aufweisen, wobei vorzugs- weise 20 Vol. % kleine keramische Partikel mit einer mittleren Partikelgröße von 0, 1 μιη und 80 Vo l. % große keramische Partikel mit einer mittleren Partikelgröße von 1 bis 5 μιη verwendet werden können. Bei einem derartigen Verhältnis von kleinen keramischen Partikeln zu großen keramischen Partikeln sowie den j eweils ausgewählten mittleren Parti- kelgrößen wird es möglich den Schlicker mit zumindest teilweise dila- tanten beziehungsweise mit partiell thixotropen Verhalten bei einer Extrusion auszubilden. Zudem kann eine Verfestigung durch Sintern mit einem Erhalt einer Porosität ermöglicht werden. Die maximalen Partikelgrößen können so gewählt werden, dass eine vollständige Infiltration eines Faserbündels möglich ist.
Auch kann der Schlicker einen Feststoffgehalt von 35 Vol. % bis
55 Vol. %), bevorzugt von 40 Vol. %> aufweisen. Die verbleibenden flüssigen Bestandteile des Schlickers können dann beispielsweise ein Dispersionsmedium sein. Auch wird es möglich, ein Verhalten des Schlickers bei einer Extrusion durch die Düse mit einer Auswahl eines Feststoffgehalts günstig zu beeinflussen. Als Faser kann eine anorganische Faser, vorzugsweise eine Faser aus Aluminiumoxid, Mullit, Zirkonoxid, Yttrium-Aluminium-Granat, Silici- umcarbid und/oder Siliziumnitrid verwendet werden. Die anorganischen Fasern können dann zusammen mit einer oxidkeramischen Matrix aus einem übereinstimmenden oder auch aus einem unterschiedlichen Matrixmaterial kombiniert werden. Weiter kann vorgesehen sein, anorganische Fasern aus verschiedenen Materialien miteinander zu kombinieren.
Alternativ kann als Faser eine organische Faser, vorzugsweise eine Faser aus Kohlenstoff verwendet werden. Kohlenstofffasern sind vergleichs- weise kostengünstig erhältlich und auch bei hohen Temperaturen formstabil und ausreichend fest. Beispielsweise können die Kohlenstofffasern dann auch mit einem anorganischen Matrixmaterial kombiniert werden. Bei einer derartigen Kombination ist eine thermomechanische und thermodynamische Kompatibilität der Materialien zu beachten. Die Faser kann einen Durchmesser von 5 μιη bis 30 μιη, vorzugsweise von 10 μιη aufweisen. Fasern mit diesen Durchmessern eignen sich besonders gut für eine Extrusion aus der Düse zusammen mit dem Schlicker.
Die Faser kann eine Endlosfaser sein, die der Düse kontinuierlich zuge- führt werden kann. Durch die Verwendung einer Endlosfaser wird es möglich die Faser, wie bei einem Wickeln der Faser, in einer gewünschten Orientierung, entsprechend einer Gestalt des Faserverbundbauteils, ununterbrochen anzuordnen. Eine Festigkeit des Faserverbundbauteils kann so vorteilhaft erhöht werden. Prinzipiell ist es j edoch auch möglich Kurzschnittfasern zusammen mit dem Schlicker aus der Düse zu extru- dieren.
Um den Grünkörper möglichst schnell herstellen zu können, kann auch ein Filamentgarn zusammen mit dem Schlicker aus der Düse extrudiert werden, wobei das Filamentgarn 1 .000 den (Denier) bis 50.000 den, vorzugsweise 20.000 den aufweisen kann. Das Filamentgarn kann dann auch schon mit dem Schlicker innerhalb der Düse getränkt beziehungsweise imprägniert werden. Insbesondere dadurch, dass dann auch eine große Anzahl von Fasern gleichzeitig aus der Düse extrudiert werden kann, wird ein schneller additiver Aufbau des Grünkörpers aus dem Filamentgarn zusammen mit dem Schlicker ermöglicht.
Das Faserverbundbauteil kann vorteilhaft mit einem Faseranteil von 10 Vol. % bis 60 Vo l. %, vorzugsweise von bis zu 35 Vo l. %> ausgebildet werden. Ein hoher Faseranteil begünstigt die Festigkeitseigenschaften des Faserverbundbauteils . Das Faserverbundbauteil kann als ein Werkstückträger ausgebildet werden, der aus einem Tragrost zur Positionierung von Werkstücken am Werkstückträger ausgebildet wird, wobei der Tragrost dann aus eine Gitterstruktur ausbildenden Tragstreben ausgebildet wird. Dadurch, dass die Faser mittels der Düse verlegt wird, wird es dann auch möglich den Werkstückträger einstückig auszubilden. Der Grünkörper entspricht dann im Wesentlichen einer Preform, die eine Gitterform aufweist.
Dabei können Kreuzungspunkte oder Knotenpunkte der Gitterstruktur mit gleicher Materialstärke und/oder gleichem Faseranteil ausgebildet werden. Eine Dicke beziehungsweise eine Querschnittsfläche der Trag- streben der Gitterstruktur ist dann stets gleichbleibend. Insbesondere kann die Faser so verlegt werden, dass die Kreuzungspunkte oder Knotenpunkte von miteinander verbundenen Tragstreben im Wesentlichen das gleiche Faservo lumen im Verhältnis zur Querschnittsfläche wie die Tragstreben aufweisen. Grundsätzlich kann weiter vorgesehen sein, den Grünkörper durch eine ergänzende Wärmebehandlung auszuhärten beziehungsweise zu stabilisieren, bevor der Grünkörper der abschließenden Wärmebehandlung zur Ausbildung des Faserverbundbauteils zugeführt wird. Bei dieser Wärmebehandlung kann ein Sintern des Matrixmaterials des Grünkörpers erfo lgen. Das Verfahren betrifft weiter eine Verwendung der Düse zur Extrusion der Faser zusammen mit dem Schlicker zur Herstellung des Grünkörpers .
Das erfindungsgemäße Faserverbundbauteil für Hochtemperaturanwendungen, insbesondere Werkstückträger zum Bereitstellen und Handhaben von Werkstücken in Hochtemperaturöfen zur Hochtemperaturbehandlung oder dergleichen, ist aus einem formstabilen Grünkörper aus mit Fasern verstärkten Matrixmaterial ausgebildet, wobei das Faserverbundbauteil mittels einer Wärmebehandlung des Grünkörpers ausgebildet ist, wobei der Grünkörper mittels additiver Fertigung durch eine räumliche Anord- nung und eine Extrusion einer Faser zusammen mit einem Schlicker als Matrixmaterial aus einer Düse ausgebildet ist. Hinsichtlich der vorteilhaften Wirkungen des erfindungsgemäßen Faserverbundbauteils wird auf die Vorteilsbeschreibung des erfindungsgemäßen Verfahrens verwiesen. Weitere vorteilhafte Ausführungsformen des Faserverbundbauteils ergeben sich aus den Merkmalsbeschreibungen der auf den Verfahrensanspruch 1 rückbezogenen Unteransprüche.
Nachfo lgend wird eine bevorzugte Ausführungsform der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
Es zeigen: einen Werkstückträger in einer Draufsicht;
Fig. 2 : Werkstückträger in einer Seitenansicht;
Fig. 3 : eine Teilschnittansicht des Werkstückträgers aus Fig. 1
entlang einer Linie III - III;
Fig. 4 : eine schematische Darstellung einer Düse zur Herstellung eines Faserverbundbauteils.
Eine Zusammenschau der Fig. 1 bis 3 zeigt ein als Werkstückträger 10 ausgebildetes Faserverbundbauteil 1 1 . Der Werkstückträger 10 bildet einen Tragrost 12 mit einer Gitterstruktur 1 3 aus, wobei die Gitterstruk- tur 13 aus Tragstreben 14 ausgebildet ist, die in Kreuzungspunkten 1 5 miteinander verbunden sind.
Wie die Teilschnittdarstellung in Fig. 3 zeigt, sind die Tragstreben 14 und die Kreuzungspunkte 15 aus einem strukturierten Faserverbund 16 aus Fasern 17, die ein Matrixmaterial verstärken, ausgebildet. Die Fasern 17 als auch das Matrixmaterial 1 8 bestehen aus einem anorganischen Material, wie beispielsweise Aluminiumoxid. Die Fasern 17 wurden zusammen mit einem Schlicker aus einer Düse extrudiert und räumlich in der hier dargestellten Anordnung aufeinander und nebeneinander abge- legt. Der Schlicker wurde nach dem Extrudieren formstabilisiert, sodass durch diese Art der additiven Fertigung ein Grünkörper ausgebildet wurde . Der Grünkörper wurde mittels einer Wärmebehandlung zu dem Faserverbundbauteil 1 1 ausgebildet.
Die Fig. 4 zeigt eine schematische Darstellung einer Düse 1 9, mit der eine Faser 20 zusammen mit einem Schlicker 21 extrudiert wird. Die Düse 19 weist einen Kanal 22 zur Zuführung der Faser 20 und einen Kanal 23 zur Zuführung des Schlickers 21 auf. An einem Düsenende 24 tritt die Faser 20 zusammen mit dem Schlicker 21 aus der Düse 19 aus und wird strukturiert in beziehungsweise auf Faserlagen 25 ohne Druck abgelegt. Der bei einem Austritt noch flüssige Schlicker 21 verfestigt sich beim Ablegen der Faser 20 auf der Faserlage 25 , sodass durch einen Aufbau von Faserlagen 25 ein hier zumindest teilweise dargestellter Grünkörper 26 erhalten wird. Eine Form zur Herstellung des Grünkörpers 26 ist nicht erforderlich, vielmehr ist es ausreichend die Faserlagen 25 auf einem ebenen Untergrund 27 anzuordnen.

Claims

Patentansprüche
Verfahren zur Herstellung eines Faserverbundbauteils (11) für Hochtemperaturanwendungen, insbesondere eines Werkstückträgers (10) zum Bereitstellen und Handhaben von Werkstücken in Hochtemperaturöfen zur Hochtemperaturbehandlung oder dergleichen, wobei ein formstabiler Grünkörper (26) des Faserverbundbauteils aus einem mit Fasern (17, 20) verstärkten Matrixmaterial (18) ausgebildet wird, wobei das Faserverbundbauteil mittels einer Wärmebehandlung des Grünkörpers ausgebildet wird,
dadurch g e k e nn z e i c hn e t ,
dass eine Faser zusammen mit einem Schlicker (21) als Matrixmate rial aus einer Düse (19) extrudiert und räumlich angeordnet wird, derart, dass der Grünkörper mittels additiver Fertigung ausgebildet wird.
Verfahren nach Anspruch 1,
dadurch g e k e nn z e i c hn e t ,
dass die Fasern (17, 20) in einem strukturierten Faserverbund (16) angeordnet werden.
3. Verfahren nach Anspruch 1 oder 2,
dadurch g e k e nn z e i c hn e t ,
dass der Schlicker (21) nach dem Extrudieren formstabilisiert wird, wobei die Formstabilisierung vorzugsweise mittels Trocknung, Wärmebehandlung oder Aushärten eines Binders erfolgt.
4. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass bei der Extrusion die Faser (17, 20) frei abgelegt wird.
5. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass der Grünkörper (26) in einem nachfolgenden Verfahrensschritt durch Pressen oder Vakuumformen nachbehandelt wird.
6. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass der Grünkörper (26) durch Extrusion formlos oder in einer Form des Grünkörpers ausgebildet wird.
7. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass als Matrixmaterial (18) ein anorganisches Matrixmaterial, vorzugsweise ein Matrixmaterial aus Aluminiumoxid, Mullit, Zirkon- oxid, Yttrium-Aluminium-Granat, Siliciumcarbid und/oder Siliziumnitrid, verwendet wird.
8. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass der Schlicker (21) ein Dispersionsmedium aufweist, wobei als Dispersionsmedium vorzugsweise Wasser, Glycerin und/oder Ethanol verwendet wird.
9. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass der Schlicker (21) thixotrop ist.
10. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g ek e nn z e i c hn e t ,
dass der Schlicker (21) Additive aufweist, wobei als Additiv ein Bindemittel und/oder ein Entschäumer verwendet werden.
11. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass der Schlicker (21) keramische Partikel aufweist, wobei vorzugsweise 20 Vol.% kleine keramische Partikel mit einer mittleren Partikelgröße von 0,1 μιη und 80 Vol.% große keramische Partikel mit einer mittleren Partikelgröße von 1 bis 5 μιη verwendet werden.
12. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass der Schlicker (21) einen Feststoffgehalt von 35 Vol.% bis 55 Vol.%), vorzugsweise von 40 Vol.%> aufweist.
13. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass als Faser (17, 20) eine anorganische Faser, vorzugsweise eine Faser aus Aluminiumoxid, Mullit, Zirkonoxid, Yttrium-Aluminium- Granat, Siliciumcarbid und/oder Siliziumnitrid, verwendet wird.
14. Verfahren nach einem der Ansprüche 1 bis 12,
dadurch g e k e nn z e i c hn e t ,
dass als Faser (17, 20) eine organische Faser, vorzugsweise eine Faser aus Kohlenstoff verwendet wird.
15. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass die Faser (17, 20) einen Durchmesser von 5 μιη bis 30 μιη, vorzugsweise von 10 μιη aufweist.
16. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass die Faser (17, 20) eine Endlosfaser ist, die der Düse (19) kontinuierlich zugeführt wird.
17. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass ein Filamentgarn zusammen mit dem Schlicker (21) aus der Düse (19) extrudiert wird, wobei das Filamentgarn 1.000 den bis
50.000 den, vorzugsweise 20.000 den aufweist.
18. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass das Faserverbundbauteil (11) mit einem Faseranteil von
10 Vol.% bis 60 Vol.%, vorzugsweise von bis zu 35 Vol.%>, ausgebildet wird.
19. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t ,
dass das Faserverbundbauteil (11) als ein Werkstückträger (10) ausgebildet wird, der aus einem Tragrost (12) zur Positionierung von Werkstücken am Werkstückträger ausgebildet wird, wobei der
Tragrost aus eine Gitterstruktur (13) ausbildenden Tragstreben (14) ausgebildet wird.
Verfahren nach Anspruch 19,
dadurch g e k e nn z e i c hn e t ,
dass Kreuzungspunkte (15) oder Knotenpunkte der Gitterstruktur (13) mit gleicher Materialstärke und/oder gleichem Faseranteil ausgebildet werden. Faserverbundbauteil (11) für Hochtemperaturanwendungen, insbesondere Werkstückträger (10) zum Bereitstellen und Handhaben von Werkstücken in Hochtemperaturöfen zur Hochtemperaturbehandlung oder dergleichen, wobei das Faserverbundbauteil aus einem formstabilen Grünkörper (26) aus mit Fasern (17, 20) verstärkten Matrixmaterial (18) ausgebildet ist, wobei das Faserverbundbauteil mittels einer Wärmebehandlung des Grünkörpers ausgebildet ist,
dadurch g e k e nn z e i c hn e t ,
dass der Grünkörper mittels additiver Fertigung durch eine räumliche Anordnung und eine Extrusion einer Faser zusammen mit einem Schlicker (21) als Matrixmaterial aus einer Düse (19) ausgebildet ist.
PCT/EP2018/058005 2017-04-13 2018-03-28 Faserverbundbauteil und verfahren zur herstellung WO2018188960A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/604,767 US20200102253A1 (en) 2017-04-13 2018-03-28 Fiber composite component and production method
EP18717857.9A EP3609857A1 (de) 2017-04-13 2018-03-28 Faserverbundbauteil und verfahren zur herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017206452.8A DE102017206452B3 (de) 2017-04-13 2017-04-13 Verfahren zur Herstellung eines Faserverbundbauteils
DE102017206452.8 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018188960A1 true WO2018188960A1 (de) 2018-10-18

Family

ID=61972496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/058005 WO2018188960A1 (de) 2017-04-13 2018-03-28 Faserverbundbauteil und verfahren zur herstellung

Country Status (4)

Country Link
US (1) US20200102253A1 (de)
EP (1) EP3609857A1 (de)
DE (1) DE102017206452B3 (de)
WO (1) WO2018188960A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019116844A1 (de) * 2019-06-21 2020-12-24 Schunk Kohlenstofftechnik Gmbh Einrichtung zur Entnahme und Abgabe einer Schmelze sowie Verfahren zum Herstellen der Einrichtung
CN111113889B (zh) * 2019-12-22 2021-06-04 同济大学 一种使用带芯线材的熔融沉积成型方法
DE102020206245A1 (de) 2020-05-18 2021-11-18 Sgl Carbon Se Vorrichtung zur Hochtemperaturbehandlung
WO2021239258A1 (de) 2020-05-29 2021-12-02 Schunk Kohlenstofftechnik Gmbh Imprägniervorrichtung und verfahren zur herstellung eines faserverbundbauteils

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957906A1 (de) 1999-12-01 2001-06-28 Schunk Kohlenstofftechnik Gmbh Verfahren zur Herstellung eines Faserverbund-Bauteils sowie Vorrichtung zur Herstellung eines solchen
US20070111878A1 (en) * 2005-11-16 2007-05-17 Bilal Zuberi Extrudable mixture for forming a porous block
US20160332372A1 (en) * 2015-05-13 2016-11-17 Honeywell International Inc. Carbon fiber preforms
US20160332881A1 (en) * 2015-05-13 2016-11-17 Honeywell International Inc. Carbon fiber preforms
DE102016113056A1 (de) * 2015-07-28 2017-02-02 General Electric Company Lage, Verfahren zur Herstellung einer Lage und Verfahren zur Herstellung eines Gegenstands mit einer Lage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100211732B1 (ko) * 1996-12-23 1999-08-02 추호석 섬유 보강복합재 격자구조물의 제조방법
US8562901B1 (en) * 2008-08-25 2013-10-22 The United States Of America As Represented By The Secretary Of The Air Force Method of making crack-free ceramic matrix composites
DE102010055221B4 (de) 2010-12-20 2016-08-25 Airbus Defence and Space GmbH Verfahren zur Herstellung eines Bauteils aus faserverstärktem Verbundwerkstoff
JP2017535459A (ja) * 2014-11-27 2017-11-30 ジョージア − パシフィック ケミカルズ エルエルシー 付加製造における材料押出法で使用するためのチキソトロピー性の熱硬化性の樹脂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957906A1 (de) 1999-12-01 2001-06-28 Schunk Kohlenstofftechnik Gmbh Verfahren zur Herstellung eines Faserverbund-Bauteils sowie Vorrichtung zur Herstellung eines solchen
US20070111878A1 (en) * 2005-11-16 2007-05-17 Bilal Zuberi Extrudable mixture for forming a porous block
US20160332372A1 (en) * 2015-05-13 2016-11-17 Honeywell International Inc. Carbon fiber preforms
US20160332881A1 (en) * 2015-05-13 2016-11-17 Honeywell International Inc. Carbon fiber preforms
DE102016113056A1 (de) * 2015-07-28 2017-02-02 General Electric Company Lage, Verfahren zur Herstellung einer Lage und Verfahren zur Herstellung eines Gegenstands mit einer Lage

Also Published As

Publication number Publication date
US20200102253A1 (en) 2020-04-02
EP3609857A1 (de) 2020-02-19
DE102017206452B3 (de) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2018188960A1 (de) Faserverbundbauteil und verfahren zur herstellung
DE3827126A1 (de) Hohler verbundkoerper mit einer symmetrieachse, sowie herstellungsverfahren hierfuer
DE102004009264B4 (de) Herstellung eines Vorformlings durch Verstärken einer faserartigen Struktur und/oder Verbinden von faserartigen Strukturen untereinander und Anwendung bei der Herstellung von Teilen aus Verbundwerkstoff
DE60130688T2 (de) Verfahren zur herstellung von mit sic-fasern verstärktem sic-verbundwerkstoff mit hilfe einer heisspresse
DE102004009262B4 (de) Verfahren zur Herstellung eines mehrfach perforierten Teils aus einem Verbundwerkstoff mit Keramikmatrize
DE69828168T2 (de) Kohlenstoffverbundwerkstoffe
EP1106334A1 (de) Verfahren zur Herstellung eines Faserverbund-Bauteils sowie Vorrichtung zur Herstellung eines solchen
CH653955A5 (de) Verfahren zur herstellung eines geformten verbundgegenstandes aus einer glasmatrix bzw. glaskeramikmatrix mit faserverstaerkung.
EP3800169A1 (de) Verfahren zum herstellen von formkörpern aus reaktionsgebundenem, mit silicium infiltriertem siliciumcarbid und/oder borcarbid
EP1636391A2 (de) Träger für bauteile sowie verfahren zum herstellen eines solchen
CH653953A5 (de) Verfahren zur herstellung von geformten verbundgegenstaenden.
DE102010055248B4 (de) Verfahren und Vorrichtung zur Herstellung eines Keramik-Verbundwerkstoffes
DE102015207815A1 (de) Kohlefaser-Metall-Verbundwerkstoff
EP1876158B1 (de) Verfahren zur Herstellung von Carbidkeramik-Bauteilen
EP1845075B1 (de) Formkörper aus carbonfaserverstärktem Kohlenstoff und ein Verfahren zur deren Herstellung
DE3611271C2 (de)
DE102013012762A1 (de) Verfahren zur Herstellung von Faserverbundbauteilen mit integrierter Isolation
EP0111080B1 (de) Verfahren zur Herstellung eines faserverstärkten keramischen Verbundwerkstoffes
EP2357070A1 (de) Spritzgießverfahren für Kondensationsharze und Vorrichtung für das Verfahren
DE4331307C2 (de) Herstellung eines mit Kohlenstoffasern verstärkten Verbundwerkstoffs und dessen Verwendung
EP3105197B1 (de) Verfahren zum herstellen eines modularen isolationselementes
DE10348123C5 (de) Verfahren zur Herstellung eines Bauteils aus Siliziumcarbid-Keramik
DE4301396C2 (de) Verfahren zur Herstellung von porösen Faserbauteilen
DE102019207617A1 (de) Verfahren zur herstellung eines bauteils aus einem keramischen faserverbundwerkstoff
DE102015226599A1 (de) Verfahren zur Herstellung eines Verbundwerkstoffs sowie ein nach dem Verfahren hergestellter Verbundwerkstoff

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18717857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018717857

Country of ref document: EP

Effective date: 20191113