WO2018188486A1 - 推进器以及推进系统 - Google Patents

推进器以及推进系统 Download PDF

Info

Publication number
WO2018188486A1
WO2018188486A1 PCT/CN2018/080920 CN2018080920W WO2018188486A1 WO 2018188486 A1 WO2018188486 A1 WO 2018188486A1 CN 2018080920 W CN2018080920 W CN 2018080920W WO 2018188486 A1 WO2018188486 A1 WO 2018188486A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
propulsion
tail nozzle
propulsion shaft
fluid
Prior art date
Application number
PCT/CN2018/080920
Other languages
English (en)
French (fr)
Inventor
邓履明
Original Assignee
山东国润船用推进器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东国润船用推进器有限公司 filed Critical 山东国润船用推进器有限公司
Publication of WO2018188486A1 publication Critical patent/WO2018188486A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • B63H2011/081Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type with axial flow, i.e. the axis of rotation being parallel to the flow direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to the field of propulsion technology, and in particular to a propeller and a propulsion system.
  • Existing ship propellers are generally propeller propellers and pump propellers, but existing propellers have many drawbacks. Existing propellers require a large amount of energy to obtain a larger speed.
  • a propeller which improves the problem of low efficiency of the propulsion mode of the existing propeller.
  • a propulsion system which has the advantages of high propulsion efficiency and large thrust.
  • the present invention is implemented as follows:
  • a propeller includes a cylinder extending from a first end to a second end, and a fluid passage is formed in the cylinder.
  • the propeller further includes a propeller shaft rotatably disposed in the fluid passage in the axial direction, the propulsion shaft having a connecting portion for providing a fixed point to be connected to the propelled device, and a power portion provided with the vane, the power portion being connected to the connecting portion
  • the power portion is located in the fluid motion path, and the blade spirally extends from the connecting portion to the power portion continuously to the power portion, and the propulsion shaft is configured to form the injection fluid moving from the first end to the second end in the fluid motion path.
  • the pusher includes a bracket configured to support the propulsion shaft.
  • the bracket includes an inner support, an outer support, and a spoke.
  • the two ends of the spoke are respectively connected to the inner support and the outer support, the outer support is connected to the cylinder, and the propeller shaft is rotatably It is worn on the inner support.
  • the bracket includes three sub-bars, the inner support and the outer support are both annular structures, and the three sub-bars are equally spaced between adjacent two.
  • the number of brackets is two and is disposed at the first end and the second end, respectively.
  • the pusher further includes a tail nozzle that communicates with the fluid passage, the tail nozzle is coupled to the second end, and the tail nozzle is contracted from the first end to the second end. .
  • the tail nozzle has an expanded diameter state and a reduced diameter state that are optionally adjusted, and the diameter of the cross section of the tail nozzle of the expanded diameter state is larger than the diameter of the cross section of the tail nozzle of the reduced diameter state.
  • the pusher further includes a guide vane connected to the tail spout, the guide vane extending axially along the tail spout.
  • the pusher further includes a heat generating member configured to provide thermal energy to thermally expand the injected fluid within the fluidic path to increase the injection pressure.
  • a propulsion system based on the above propeller based on the above propeller.
  • the propeller of the embodiment of the present invention includes a cylinder provided with a fluid passage and a propeller shaft rotatably disposed in the cylinder.
  • the propulsion shaft is provided with a spirally extending blade in the axial direction.
  • the propeller can form a jetting fluid in the cylinder and is ejected through the end of the cylinder, thereby effectively avoiding the occurrence of cavitation and acupoints of the existing propeller, without the limitation of the highest and lowest working areas and the rotational speed. .
  • the propeller provided by the embodiment of the present invention has advantages compared with the existing marine propeller:
  • the thrust-to-weight ratio is high and the speed is increased.
  • FIG. 1 is a schematic structural view of a propeller according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a bracket provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural view showing a guide vane in an open state according to an embodiment of the present invention.
  • Figure 4 is a schematic view showing the structure of the tail nozzle in an open state matched with the guide vane shown in Figure 3;
  • FIG. 5 is a schematic structural view showing a guide vane in a contracted state according to an embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of the tail nozzle in a contracted state matched with the guide vane shown in Figure 5;
  • FIG. 7 is a schematic structural view of a cylinder provided with a heat generating component according to an embodiment of the present invention.
  • Icon 100-propeller; 101-cylinder; 102-propulsion shaft; 103-tail nozzle; 104-power section; 105-fluid passage; 201-joint; 202-blade; 203-column rod; - first end; 302 - second end; 200 - bracket; 206 - outer support; 205 - loom; 204 - inner support; 401 - guide vane; 502 - heat generating member; 501 - interlayer.
  • orientations or positional relationships of the terms “center”, “upper”, “lower”, “front”, “back”, “inside”, “outside”, etc. are based on The orientation or positional relationship shown in the figures, or the orientation or positional relationship that is conventionally placed when the invention product is used, is merely for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the device or component referred to must have a specific The orientation, construction and operation in a particular orientation are not to be construed as limiting the invention. Moreover, the terms “first”, “second”, etc. are used merely to distinguish a description, and are not to be construed as indicating or implying a relative importance.
  • the terms “set”, “install”, “connected”, and “connected” are to be understood broadly, and may be fixed connections, for example, unless otherwise specifically defined and defined. It can also be a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and can be internal communication between the two elements.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the inventors found in the research that existing marine propulsion devices (such as propeller propellers and pump water propulsion propellers) have many problems, such as high consumption, low efficiency, and low speed.
  • the speed should not be too high.
  • a marine cargo ship is about 100 rpm, and a small speedboat is about 400-500 rpm, but the efficiency will be affected.
  • pump waterjets have similar problems to propellers.
  • it will cause cavitation in the water jet propulsion pump.
  • the occurrence of cavitation causes the flow of the propulsion pump, the decrease of the lift efficiency and the increase of the shaft power.
  • the working conditions of the water jet propulsion pump deteriorate and the vibration is severe, and when it is serious, it is unable to operate.
  • the inventors aimed to propose a new type of propulsion device in order to overcome some or all of the problems of existing marine propellers. For example, by proposing a new propulsion device to save energy and increase speed.
  • the present embodiment provides a propeller 100.
  • the pusher 100 includes a barrel 101 and a propulsion shaft 102.
  • the propulsion shaft 102 is rotatably disposed in the cylinder 101, and the water flow is advanced by the water inlet of the cylinder 101 by the rotation of the propeller shaft 102, and is discharged from the water discharge port of the cylinder 101.
  • the propeller 100 can form a high-speed jet to obtain the propulating power under the reaction of the reaction force.
  • the propulsion shaft 102 is rotated by an engine disposed on the propelled device (ship) to generate a jet of water.
  • the power device providing the rotation is coupled to the barrel 101, and the rotary output shaft of the power unit is coupled to the propulsion shaft 102.
  • the cylinder 101 has a substantially hollow cylindrical shape.
  • the barrel 101 can also be based on other suitable shapes for fluid dynamics, and is not limited to a cylindrical shape.
  • the cylinder 101 may be a cylinder 101 extending from the first end 301 to the second end 302.
  • a fluid passage 105 that is, a duct, is formed in the hollow cylinder 101.
  • the material of the cylinder 101 can be selected depending on the properties of the material, such as metal, various alloy steels.
  • the cylindrical body 101 is provided as an outer main structure of the pusher 100.
  • the barrel 101 defines a space that accommodates the jet stream and the propulsion shaft 102, i.e., the fluid path 105.
  • the fluid passage 105 in the cylinder 101 can serve as a movement passage for the water flow, and also serves as an accommodation space for the propulsion member (propulsion shaft 102) of the propeller 100.
  • the fluid passage 105 as the accommodation space of the propulsion shaft 102 may be partially accommodated, or the propulsion shaft 102 may be completely accommodated. In other words, part or all of the propulsion shaft 102 is located within the fluid path 105.
  • the inner wall is an entity defining a fluid passage 105 in the cylinder 101 such as a metal plate). body.
  • the fluid passage 105 in the cylinder 101 is cylindrical.
  • the fluid passage 105 may not be limited to a cylindrical shape.
  • the diameter of the fluid passage 105 gradually changes to form a circle. Table shape.
  • the fluid passage 105 is gradually changed from the inlet end to the drain end, and more specifically, from the inlet end to the drain end.
  • the flow cross section gradually decreases during the movement of the water flow from the inlet end to the drain end, and thus the flow velocity and fluid pressure (thrust) are also increased to some extent, thereby improving the propulsion.
  • the driving force of the device 100 is cylindrical.
  • the diameter of the fluid passage 105 gradually changes to form a circle. Table shape.
  • the fluid passage 105 is gradually changed from the inlet end to the drain end, and more specifically, from the inlet end to the drain end.
  • the material and structure of the outer wall of the cylinder 101 opposite to the inner wall can be improved.
  • the pusher 100 further includes a heat generating member 502 as shown in Fig. 7 configured to provide thermal energy to thermally expand the injected fluid within the fluid passage 105 to increase the injection pressure.
  • the heat generating component 502 can provide thermal energy to heat a fluid within the fluidic path 105, such as a jet of water. Since the water flow is heated and expanded under the condition of heating, the fluid passage 105 of the cylinder 101 defines a relatively fixed space, so that the pressure generated by the fluid movement in the fluid passage 105 can be increased by the action of heating. To improve the propulsion effect.
  • the sidewall of the barrel 101 has an interlayer 501 which is constructed of a heat generating device.
  • a heat generating device for example, a high frequency ceramic heating tube, an electric heating sheet, and the like.
  • the high frequency ceramic heat pipe can be arranged annularly around the cylinder 101 and cover most or all of the exterior of the cylinder 101.
  • the thruster 100 may also be provided with a thermal insulation device to reduce the loss of thermal energy so that the flow of water within the duct (fluid passage 105) is continuously subjected to thermal energy.
  • the outer wall of the cylinder 101 is provided with a heat insulating layer made of a heat insulating material.
  • the heat insulation layer can greatly reduce the loss of thermal energy caused by heat exchange between the above thermal energy and the fluid through the outer wall.
  • the propeller 100 is rotatably provided with the propulsion shaft 102 in the axial direction.
  • the propulsion shaft 102 may be rotatably coupled to the cylinder 101 by other structures, for example, by a rotating member such as a bearing fixed to the cylinder 101.
  • the propulsion shaft 102 has a connection portion 201 that is connected to each other and a power portion 104 that is provided with a vane 202.
  • the connecting portion 201 is for providing a fixed point to be connected to the above-mentioned propelled device.
  • the rotational output shaft of the engine is coupled to the connecting portion 201, and the propulsion shaft 102 is rotated by the rotation of the output shaft.
  • the connecting portion 201 protrudes out of the cylindrical body 101 to be connected with the output shaft; in other examples, the connecting portion 201 may also be located in the cylindrical body 101, and the connecting intermediate piece is connected through an output shaft connected to the engine. (such as a stainless steel shaft) is connected to the connecting portion 201.
  • the connector 201 is connected to a cross connector for connection to other devices.
  • the power unit 104 is a main component for providing propulsion power, and the power unit 104 is located in the duct (the fluid passage 105) of the cylinder 101.
  • the power unit 104 has a cylindrical rod 203 and a blade 202 disposed on the cylindrical rod 203.
  • the propulsion shaft 102 is configured to form an injection fluid within the barrel 101 that moves from the first end 301 to the second end 302 within the fluid passage 105.
  • the blade 202 extends continuously in a spiral shape from the connecting portion 201 to the power portion 104 to the power portion 104.
  • the blade 202 may be disposed along the entire length of the cylindrical rod 203 of the power portion 104 or may be provided at a portion of the cylindrical rod 203.
  • the spiral continuous extension means that the blade is made of a continuous plate-like material and is distributed from the connecting portion 201 of the blade 202 to the power portion 104.
  • the blade 202 is a helical oblique helical leaf.
  • the blade 202 is inclined by the water inlet of the cylinder 101 toward the drain port.
  • the blade 202 has a blade root portion that is connected to the outer wall of the cylindrical rod 203 of the power portion 104 and an extension portion that protrudes in the radial direction of the cylindrical rod 203 and away from the blade root portion.
  • the root of the blade forms a projection at the cylindrical portion (projection of the root of the blade); the extended portion forms a projection at the cylindrical portion (projection of the extension).
  • the distance between the projection of the blade root and the water inlet is larger than the distance between the projection of the extension and the water inlet.
  • the pusher 100 can be provided with the heat generating member 502.
  • the propulsion shaft 102 may also be provided with a heat generating member 502 based on the demand of the heat generating member 502.
  • the propulsion shaft 102 is a hollow tubular structure. It forms the above-described connecting portion 201 and the power portion 104 that connects the blades 202.
  • the heating element in the hollow lumen of the shaft 102 is advanced, such as a high frequency ceramic heating tube, a thermal resistor, or the like.
  • the heat generating member 502 disposed in the barrel 101 and the heat generating member 502 disposed on the push shaft 102 can operate independently, that is, heat can be independently generated.
  • the heat generating element 502 provided in the cylindrical body 101 generates heat
  • the heat generating element 502 provided on the propeller shaft 102 does not operate (stops heat generation)
  • the heat generating element 502 provided in the cylindrical body 101 does not operate (stops heat generation)
  • the heat generating member 502 of the propulsion shaft 102 generates heat.
  • the heat generating member 502 disposed in the barrel 101 and the heat generating member 502 disposed on the push shaft 102 may simultaneously generate heat.
  • the pusher 100 includes a bracket 200 that is configured to support the propulsion shaft 102.
  • the bracket 200 includes an inner support 204, an outer support 206, and a spoke. Both ends of the spoke are connected to the inner support 204 and the outer support 206, respectively.
  • the outer support member 206 is coupled to the barrel body 101, and the propulsion shaft 102 is rotatably disposed through the inner support member 204.
  • the bracket 200 is a three-piece bearing bracket 200.
  • the bracket 200 includes three auxiliary rods, and the inner support member 204 and the outer support member 206 are both annular structures, and the three masts 205 are equally spaced between adjacent two pairs. It can be understood that the number of the horns 205 can also be appropriately increased or decreased, for example, two, four, five, and the like.
  • the bracket 200 is further independently provided at the front end (the water inlet end or the first end 301) and the rear end (the drain end or the second end 302) of the cylinder 101, respectively. That is, the pusher 100 is provided with two brackets 200.
  • the structural stability of the propeller 100 is improved, so that problems in existing ships can be avoided.
  • the existing ship uses the stern vibration, structural damage, noise, erosion caused by the excitation of the propeller, and the pumping water propeller 100 is deteriorated when the water jet propulsion pump is operating at a low speed, the vibration is severe, and even when it is severe, it cannot even operate. And other issues.
  • the pusher 100 further includes a tail nozzle 103 (tail spout) that communicates with the fluid passage 105 in the lumen.
  • the tail nozzle 103 is coupled to the second end 302 of the barrel 101, and the tail nozzle 103 is contracted from the first end 301 to the second end 302.
  • the tail nozzle 103 is set to have an adjustable pipe diameter, and specifically, the pipe diameter can be increased or the pipe diameter can be reduced according to a specific propulsion situation.
  • the tail nozzle 103 has an expanded diameter state and a reduced diameter state which are optionally adjusted, and the diameter of the cross-sectional circle of the tail pipe 103 in the expanded diameter state is larger than the diameter of the cross-sectional circle of the tail nozzle 103 in the reduced diameter state.
  • the tail spout is a vector tail spout. More specifically, the tail spout is a tail spray device that adjusts the diameter of the vector tail spout using a three-ring driven actuator.
  • the use of a vector tail nozzle can better improve the propulsion function of the propeller 100, thereby improving the maneuverability of the propelled equipment (ship).
  • the guide vanes 401 may also be disposed within the pusher 100 in conjunction with a tail spout, particularly a vector tail spout.
  • the high-pressure rotating water flow pumped by the blades 202 of the power unit 104 provided in the propulsion shaft 102 is guided by the guide vanes 401 to enhance the kinetic energy of the tail nozzle.
  • the guide vanes 401 are connected to the tail nozzle 103, and the guide vanes 401 extend axially along the tail nozzle 103.
  • the axial extension may be the length direction of the tail nozzle 103.
  • the center line passing through the upper and lower bottoms is the axial direction.
  • the axial direction is substantially the length direction thereof.
  • the tail spout is provided with a plurality of guide vanes 401, for example, three guide vanes 401.
  • the tail nozzle 103 can be expanded or reduced in diameter, and accordingly, the plurality of guide vanes 401 can also be expanded or converged.
  • the plurality of guide vanes 401a when the tail nozzle 103a is expanded in diameter, the plurality of guide vanes 401a also expand.
  • the plurality of guide vanes 401b It also shows a convergence action.
  • the propulsion system includes a host computer, that is, a power device (such as an engine, an electric motor), and a rotary power output mechanism of the upper machine is connected to the propulsion shaft 102 of the propeller 100, and drives the propulsion shaft 102 to rotate.
  • the propulsion system may further include a housing for separately accommodating the upper computer, the propeller 100, a power source, and the like.
  • the inventors have proposed an improvement in the overall structural, hydrodynamic and hydrodynamic aspects of existing propulsion devices. Further, the propulsion effect is further improved by applying the thermal expansion technique to the propeller 100. Secondly, the thrust direction change and the push-to-weight ratio adjustment with vector thrust technology can be realized on the ship. Combined with the application of all-electric propulsion technology on the new ship, the ship (front) traction force, side thrust and vector thrust can be realized. , 4 pushes, 6 pushes, or even 8 pushes above the ship.
  • the propeller 100 provided by the embodiment of the present invention is improved in terms of stability, torsional strength, stress concentration and the like than the propeller propeller and the pump water jet propeller.
  • the propeller 100 provided by the present invention is a constrained structural design. With a more compact and practical external appearance, it is relatively easy to install and disassemble, thus reducing the difficulty of use and the cost of utility.
  • the existing ship can change the original power system and the hull structure without changing the propeller 100 provided by the present invention to replace the existing propeller, and the original ship engine can be used. Increase the speed under conditions of constant power and torque.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种推进器以及推进系统,推进器(100)包括形成流体通道(105)的筒体(101)以及可旋转地设置于流体通道(105)内的推进轴(102)。推进轴(102)被配置为使流体通道(105)内形成有由第一端(301)向第二端(302)运动的喷射流体。推进轴(102)具有用于提供与被推进设备连接的固定点的连接部(201),以及设置有叶片(202)的动力部,动力部与连接部(201)连接,叶片(202)由连接部至动力部的方向呈螺旋形连续延伸。具有该推进器的推进系统具有推重比高、结构简单、运行稳定可靠以及节能高效等优点。

Description

推进器以及推进系统 技术领域
本发明涉及推进技术领域,具体而言,涉及一种推进器以及推进系统。
背景技术
现有的船舶推进器一般都是螺旋桨推进器和泵喷推进器,但是现有的推进器都存在诸多的缺陷。现有的推进器为获得较大的航速需要消耗较大能量。
发明内容
在本发明的第一方面,提供了一种推进器,可改善现有的推进器的推进方式效率低的问题。
在本发明的第二方面,提供了一种推进系统,其具有推进效率高,推力大的优点。
本发明是这样实现的:
一种推进器包括:由第一端至第二端延伸而成的筒体,筒体内形成流体动道。推进器还包括沿轴向可旋转地设置于流体动道内的推进轴,推进轴具有用于提供与被推进设备连接的固定点的连接部以及设置有叶片的动力部,动力部与连接部连接,动力部位于流体动道内,叶片由连接部至动力部的方向呈螺旋形连续延伸于动力部,推进轴被配置为使流体动道内形成有由第一端向第二端运动的喷射流体。
在较佳的一个示例中,推进器包括被配置为支撑推进轴的支架。
在较佳的一个示例中,支架包括内支撑件、外支撑件以及辐杆,辐杆的两端分别连接至内支撑件和外支撑件,外支撑件连接至筒体,推进轴可转动地穿设于内支撑件。
在较佳的一个示例中,支架包括三个副杆,内支撑件和外支撑件均为圆环形结构,三个副杆以相邻的两两之间等间距分布。
在较佳的一个示例中,支架的数量为两个,且分别设置于第一端和第二端。
在较佳的一个示例中,推进器还包括管腔与流体动道连通的尾喷管,尾喷管连接至第二端,且尾喷管由第一端至第二端的方向呈收缩状设置。
在较佳的一个示例中,尾喷管具有可选地被调节的扩径状态和缩径状态,且扩径状态的尾喷管的截面圆直径大于缩径状态的尾喷管的截面圆直径。
在较佳的一个示例中,推进器还包括连接至尾喷管内的导流叶,导流叶沿尾喷管轴向延伸。
在较佳的一个示例中,推进器还包括被配置为提供热能以使流体动道内的喷射流体受热膨胀而增加喷射压力的发热件。
一种基于上述推进器的推进系统。
上述方案的有益效果:本发明的实施例提供的推进器包括设置有流体动道的筒体以及可转动地设置在筒体内的推进轴。推进轴沿轴向设置有螺旋形延伸的叶片。推进器可以在筒体内形成喷射流体,并通过筒体的端部喷射出,从而可以有效地避免现有的推进器的空泡和穴噬的情况发生,无最高和最低工作区域及转速的限制。
总之,与现有的船舶推进器相比,本发明实施例提供的推进器具有优点:
1、推重比高、航速提高。
2、结构简单,功能易行。
3、运行稳定可靠、安(换)装方便。
4、节能高效、经济适用、性价比高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例提供的推进器的结构示意图;
图2示出了本发明实施例提供的支架的结构示意图;
图3示出了本发明实施例提供的导流叶呈张开状态的结构示意图;
图4示出了与图3中所示的导流叶相匹配的呈张开状态的尾喷管的结构示意图;
图5示出了本发明实施例提供的导流叶呈收缩状态的结构示意图;
图6示出了与图5中所示的导流叶相匹配的呈收缩状态的尾喷管的结构示意图;
图7示出了本发明实施例提供的设置有发热件的筒体的结构示意图。
图标:100-推进器;101-筒体;102-推进轴;103-尾喷管;104-动力部;105-流体动道;201-连接部;202-叶片;203-柱形杆;301-第一端;302-第二端;200-支架;206-外支撑件;205-幅杆;204-内支撑件;401-导流叶;502-发热件;501-夹层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例 是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“前”、“后”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,在不矛盾或冲突的情况下,本发明的所有实施例、实施方式以及特征可以相互组合。在本发明中,常规的设备、装置、部件等,既可以商购,也可以根据本发明公开的内容自制。在本发明中,为了突出本发明的重点,对一些常规的操作和设备、装置、部件进行的省略,或仅作简单描述。
发明人在研究中发现,现有的船用推进器(如螺旋桨推进器、泵喷水推进器)存在众多的问题,例如,高耗、低效、低航速。
具体地,现有的螺旋桨推进器的存在以下缺点:
①转速不宜太高。例如海洋货船100转左右/分钟,小型快艇400—500转左右/分钟,但效率将受到影响。
②螺旋桨激振会造成船尾振动、结构损坏、噪声、剥蚀。
③激振使螺旋桨负荷加重,在船后不均匀尾流中工作时容易产生局部的不稳定空泡和汽蚀,从而导致螺旋桨作用于船体的压力、振幅和相位都不断变化。
具体地,现有的泵喷水推进器存在以下的缺点:
①由于船舶在水中的颠簸,使得推进器进水口处呈现不均匀流场,造成较大的功率损失。
②由于自身的缺陷,在转弯时船的推力会消失。
③更换推进泵的叶轮较为复杂。
④喷水推进的浅吃水航行,带来了在沙砾较多水域碎石、水草、渔网和沙砾等吸入系统的风险。
⑤航速低于36km/h时,喷水推进的效率比螺旋桨低。
另外,泵喷水推进器还存在与螺旋桨类似的问题。例如,在低航速而同时喷水推进泵高转速的工况下,会导致喷水推进泵内产穴蚀。穴蚀的产生使推进泵出现流量、扬程效率下降及轴功率上升等现象,此时喷水推进泵的工况恶化、振动剧烈,严重时甚生无法运转。
⑥缺乏一套操作灵敏、水动力学性能优良的倒车系统。
基于现实的需求,发明人旨在提出一种新型的推进装置,以便能够部分或全部地克服现有的船用推进器所存在的问题。例如,通过提出新的推进装置以节能增效、提高航速。
参阅图1至图7,本实施例提供了一种推进器100。
如图1所示,推进器100包括筒体101和推进轴102。推进轴102可转动地设置在筒体101内,通过推进轴102的转动推进水流由筒体101的进水口进入,并由筒体101的排水口排出。推进器100可以形成高速的喷射流,从而在反作用力的推动下,获得前进的动力。其中推进轴102由设置在被推动设备(船舶)的发动机带动旋转,以产生喷射水流。或者在其他一些可选的示例中,提供旋转作用的动力设备连接在筒体101,动力设备的旋转输出轴与推进轴102连接。
其中,筒体101大致呈中空的圆柱形。当然,筒体101也可以基于流体动力学考虑的其他合适的形状,并不以圆柱形为限。
筒体101可以是由第一端301至第二端302延伸而成的筒体101。中空的筒体101内形成流体动道105,即涵道。筒体101的材质可以根据材料的性能进行选择使用,例如金属、各种合金钢。
本发明中,筒体101是作为推进器100的外部主体结构被提供。筒体101限定一个容纳喷射流和推进轴102的空间,即流体动道105。筒体101内的流体动道105可以作 为水流的运动通道,同时也作为推进器100的推进部件(推进轴102)的容纳空间。需要说明的是,作为推进轴102的容纳空间的流体动道105可以是部分容纳,也可以是完全容纳推进轴102。换言之,推进轴102的部分或全部位于流体动道105内。
基于设计的需要,本领域的人员还可以在筒体101的内壁(内壁是限定了筒体101内的流体动道105的实体如金属板材)设置一些对水流具有导向、增速的设备或结构体。
本发明实施例中,筒体101内的流体动道105是圆柱形的,在其他一些示例中,流体动道105也可以不限定为圆柱形,例如流体动道105的直径逐渐变化,形成圆台形。进一步地,流体动道105是由进水端向排水端的方向,逐渐变化,更具而言,可以是由进水端向排水端的方向,逐渐减小。通过使流体动道105的直径逐渐减小,水流由进水端向排水端运动过程中,其流动的截面逐渐减小,因而,流速和流体压力(推力)也一定程度地增加,从而改善推进器100的推动力。
为了减小筒体101在水流中的阻力,筒体101的与内壁相对的外壁的材料和结构可以进行改进。
其次,作为一种可选的方案,推进器100还包括被配置为提供热能以使流体动道105内的喷射流体受热膨胀而增加喷射压力的如图7所示的发热件502。发热件502可以提供热能以加热在流体动道105内的流体,如喷射水流。由于水流在受热作用的条件下,发生升温和膨胀,而筒体101的流体动道105限定一个相对固定的空间,因此,通过加热的作用可以提高流体动道105内的流体运动所产生的压强,进而提高推进效果。
作为一种实现方式,筒体101的侧壁具有夹层501,该夹层501是发热器件构成。例如,高频陶瓷发热管、电发热片等。高频陶瓷发热管可以绕筒体101环形布置,并且覆盖筒体101的外部的大部分或全部。
进一步地,推进器100还可以设置隔热器件,以减少热能的损失,从而使得涵道(流体动道105)内的水流持续地受到热能作用。
作为一种实现方式,筒体101的外壁设置采用隔热材料制作而成的隔热层。隔热层可以大大减小上述热能通过外壁与流体热交换而损失热能的情况发生。
推进器100沿轴向可旋转地设置推进轴102。推进轴102可以是通过其他结构体可转动地与筒体101连接,例如,通过固定在筒体101的转动件如轴承与筒体101连接。
推进轴102具有相互连接的连接部201以及设置有叶片202的动力部104。
其中,连接部201用于提供与上述被推进设备连接的固定点。例如当推进设备连接有发动机时,发动机的转动输出轴连接至连接部201,通过上述输出轴的转动带动推进 轴102转动。本实施例中,连接部201伸出筒体101外,以便与输出轴连接;在其他一些实例中,连接部201也可以位于筒体101内,通过连接至发动机的输出轴的延长连接中间件(如不锈钢轴)与连接部201连接。在一些实例中,连接部201连接十字接头,以便与其他设备连接。
其中,动力部104是提供推进动力的一个主要部件,动力部104位于筒体101的涵道(流体动道105)内。动力部104具有一个柱形杆203以及设置在柱形杆203上的叶片202。
推进轴102被配置为使筒体101内形成有由第一端301向第二端302在流体动道105内运动的喷射流体。叶片202由连接部201至动力部104的方向呈螺旋形连续延伸于动力部104。叶片202可以沿动力部104的柱形杆203的全长设置,也可以是设置在柱形杆203的部分。其中,螺旋形连续延伸指的是,叶片是一个连续的板状材料制作而成,并且是从叶片202的连接部201向动力部104分布。
作为可选的方案,叶片202为螺旋形的斜螺旋叶。例如,叶片202由筒体101的进水口向排水口倾斜。例如,叶片202具有连接至动力部104的柱形杆203的外壁的叶根部以及沿柱形杆203的径向凸出并远离叶根部的延展部。叶根部在柱形部形成投影(叶根部投影);延展部在柱形部形成投影(延展部投影)。在筒体101的进水口向排水口的方向上,叶根部投影与进水口之间的距离,比延展部投影与进水口之间的距离大。
如前述,推进器100可以设置发热件502。基于发热件502的需求,推进轴102也可以设置发热件502。在本发明实施例中,推进轴102是一中空管状结构。其形成上述的连接部201和连接叶片202的动力部104。推进轴102的中空管腔内发热元件,例如高频陶瓷发热管、热电阻等。
应当理解的是,设置在筒体101的发热件502和设置在推进轴102的发热件502可以独立地工作,即可以独立地发热。例如,设置在筒体101的发热件502发热,设置在推进轴102的发热件502未工作(停止产热),或者设置在筒体101的发热件502未工作(停止产热),设置在推进轴102的发热件502产热。在其他一些实例中,设置在筒体101的发热件502和设置在推进轴102的发热件502也可以同时发热。
进一步地,推进器100包括被配置为支撑推进轴102的支架200。如图2所示,作为一种示例,支架200包括内支撑件204、外支撑件206以及辐杆。辐杆的两端分别连接至内支撑件204和外支撑件206。外支撑件206连接至筒体101,推进轴102可转动地穿设于内支撑件204。
更进一步地,支架200为三幅式轴承座支架200。具体地,支架200包括三个副杆,内支撑件204和外支撑件206均为圆环形结构,三个幅杆205以相邻的两两之间等间距分布。可以理解的是,幅杆205的数量也可以适当地增减,例如两个、四个、五个等等。
通过在推进器100的筒体101设置支架200,进一步地分别在筒体101的前端(进水口端或第一端301)和后端(排水口端或第二端302)独立地设置支架200,即推进器100设置两个支架200。通过设置支架200,推进器100的结构稳定性提高,从而可以避免现有船舶中的问题。例如,现有的船舶使用螺旋桨因激振造成的船尾振动、结构损坏、噪声、剥蚀,以及泵喷水推进器100在低航速时喷水推进泵工况恶化,振动剧烈,严重时甚至无法运转等问题。
作为可选的方案,推进器100还包括管腔与流体动道105连通的尾喷管103(尾喷口)。尾喷管103连接至筒体101的第二端302,且尾喷管103由第一端301至第二端302的方向呈收缩状设置。
进一步地,尾喷管103被设置为管径可调,具体地可以根据具体的推进情况,增加管径或者减小管径。换言之,尾喷管103具有可选地被调节的扩径状态和缩径状态,且扩径状态的尾喷管103的截面圆直径大于缩径状态的尾喷管103的截面圆直径。
作为优选的方案,尾喷口是矢量尾喷口。更具体地,尾喷口是利用三环传动的作动筒调整矢量尾喷口的口径的尾喷装置。采用矢量尾喷口可以更好地改善推进器100的推进功能,从而提高被推进设备(船舶)的机动性。
在其他一些实例中,还可以结合尾喷口,尤其是矢量尾喷口在推进器100内设置导流叶401。通过设置导流叶401对设置在推进轴102的动力部104的叶片202泵出的高压旋转水流进行导流,以增强尾喷口动能。
导流叶401连接至尾喷管103内,且导流叶401沿尾喷管103轴向延伸。轴向延伸可以是尾喷管103的长度方向。当尾喷管103为圆台状管时,通过其上底和下底的中心线即是所述的轴向。当尾喷管103为其他非规则形状管时,轴向大致为其长度方向。
作为一种优选的方案,尾喷口设置有多个导流叶401,例如,三幅导流叶401。在一些实例中,尾喷管103可扩径或缩径动作,因此,相应地,上述多个导流叶401也可以呈扩张或收敛动作。如图3、图4、图5、图6所示,尾喷管103a扩径动作时,多个导流叶401a也呈扩展动作;尾喷管103b缩径动作时,多个导流叶401b也呈收敛动作。
本实施例还提供了一种基于上述推进器100的推进系统。推进系统包括上位机,即动力器件(如发动机,电动机),上位机的旋转动力输出机构与推进器100的推进轴102连接,并驱动推进轴102转动。进一步地,推进系统还可以包括用于分别独立地容纳上位机、推进器100的壳体以及电力源等等。
发明人提出了一种针对现有推进装置综合整体结构、水动力学和流体力学方面进行改进。进一步地,通过将热膨胀技术运用到推进器100上,使得推进效果得到进一步提高。其次,具有矢量推力技术特征的推力方向的改变和推重比大小调节得以在舰船上实现,再结合全电推进技术在新船上的运用,可以实现舰船(前)牵引力、侧推力、矢量推力、4推、6推甚至8推以上的舰船推动。
本发明实施例提供的推进器100在稳定性、扭转强度、应力集中等方面都比螺旋桨推进器和泵喷水推进器有所提升。
本发明提供的推进器100是一种约束式结构设计。具有更加简洁和实用的外部形貌,其安装和拆卸都相对比较容易实现,因而可以减小使用难度和实用成本。通过约束式设计,现有的船舶可以在不改变原有动力系统和船体受力结构的其前提下,只需直接采用本发明提供的推进器100换掉现有的螺旋桨,就能在原船发动机功率和扭矩不变的条件下提高航速。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种推进器,用于向被推进设备提供发动力,其特征在于,包括:
    由第一端至第二端延伸而成的筒体,所述筒体内形成流体动道;
    沿轴向可旋转地设置于所述流体动道内的推进轴,所述推进轴具有用于提供与所述被推进设备连接的固定点的连接部以及设置有叶片的动力部,所述动力部与所述连接部连接,所述动力部位于所述流体动道内,所述叶片由所述连接部至所述动力部的方向呈螺旋形连续延伸于所述动力部,所述推进轴被配置为使所述流体动道内形成有由所述第一端向所述第二端运动的喷射流体。
  2. 根据权利要求1所述的推进器,其特征在于,所述推进器包括被配置为支撑所述推进轴的支架。
  3. 根据权利要求2所述的推进器,其特征在于,所述支架包括内支撑件、外支撑件以及辐杆,所述辐杆的两端分别连接至所述内支撑件和所述外支撑件,所述外支撑件连接至所述筒体,所述推进轴可转动地穿设于所述内支撑件。
  4. 根据权利要求3所述的推进器,其特征在于,所述支架包括三个副杆,所述内支撑件和所述外支撑件均为圆环形结构,所述三个副杆以相邻的两两之间等间距分布。
  5. 根据权利要求2至4中任一项所述的推进器,其特征在于,所述支架的数量为两个,且分别设置于所述第一端和所述第二端。
  6. 根据权利要求1所述的推进器,其特征在于,所述推进器还包括管腔与所述流体动道连通的尾喷管,所述尾喷管连接至所述第二端,且所述尾喷管由所述第一端至第二端的方向呈收缩状设置。
  7. 根据权利要求6所述的推进器,其特征在于,所述尾喷管具有可选地被调节的扩径状态和缩径状态,且扩径状态的所述尾喷管的截面圆直径大于缩径状态的所述尾喷管的截面圆直径。
  8. 根据权利要求6或7所述的推进器,其特征在于,所述推进器还包括连接至所述尾喷管内的导流叶,所述导流叶沿所述尾喷管轴向延伸。
  9. 根据权利要求1所述的推进器,其特征在于,所述推进器还包括被配置为提供热能以使所述流体动道内的喷射流体受热膨胀而增加喷射压力的发热件。
  10. 一种推进系统,其特征在于,包括如权利要求1至9中任一项所述的推进器。
PCT/CN2018/080920 2017-04-12 2018-03-28 推进器以及推进系统 WO2018188486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710243293.XA CN106892077A (zh) 2017-04-12 2017-04-12 推进器以及推进系统
CN201710243293.X 2017-04-12

Publications (1)

Publication Number Publication Date
WO2018188486A1 true WO2018188486A1 (zh) 2018-10-18

Family

ID=59196763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080920 WO2018188486A1 (zh) 2017-04-12 2018-03-28 推进器以及推进系统

Country Status (2)

Country Link
CN (1) CN106892077A (zh)
WO (1) WO2018188486A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106892077A (zh) * 2017-04-12 2017-06-27 邓履明 推进器以及推进系统
CN112278214A (zh) * 2019-07-24 2021-01-29 陈旭 离心式流体推进器
CN113525649A (zh) * 2020-03-29 2021-10-22 苏州市臻湖流体技术有限公司 一种a2b2c型无轴泵喷推进器流体模组涵道结构技术
CN114313180B (zh) * 2021-11-30 2023-04-18 交通运输部天津水运工程科学研究所 一种阿基米德环状推进器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816697A (en) * 1987-02-05 1989-03-28 Nalbandyan Nikolaes A Portable hydroelectric power unit
JP3698294B2 (ja) * 1999-05-24 2005-09-21 株式会社石垣 ウォータージェット推進装置
CN201074024Y (zh) * 2007-07-11 2008-06-18 李曜辰 一种涵道推进器
US8388391B1 (en) * 2011-01-13 2013-03-05 Vladimir Vorobyev Screw conveyor shape propeller
CN106114800A (zh) * 2016-08-04 2016-11-16 大连海事大学 一种气动注水喷射推进的三体式绿色游艇
CN106892077A (zh) * 2017-04-12 2017-06-27 邓履明 推进器以及推进系统
CN206954479U (zh) * 2017-04-12 2018-02-02 山东国润船用推进器有限公司 推进器以及推进系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000168683A (ja) * 1998-11-30 2000-06-20 Homare Shoji:Kk 超高速船

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816697A (en) * 1987-02-05 1989-03-28 Nalbandyan Nikolaes A Portable hydroelectric power unit
JP3698294B2 (ja) * 1999-05-24 2005-09-21 株式会社石垣 ウォータージェット推進装置
CN201074024Y (zh) * 2007-07-11 2008-06-18 李曜辰 一种涵道推进器
US8388391B1 (en) * 2011-01-13 2013-03-05 Vladimir Vorobyev Screw conveyor shape propeller
CN106114800A (zh) * 2016-08-04 2016-11-16 大连海事大学 一种气动注水喷射推进的三体式绿色游艇
CN106892077A (zh) * 2017-04-12 2017-06-27 邓履明 推进器以及推进系统
CN206954479U (zh) * 2017-04-12 2018-02-02 山东国润船用推进器有限公司 推进器以及推进系统

Also Published As

Publication number Publication date
CN106892077A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2018188486A1 (zh) 推进器以及推进系统
US8435089B2 (en) Marine engine assembly including a pod mountable under a ship's hull
US6692318B2 (en) Mixed flow pump
US7824237B2 (en) Impeller drive for a water jet propulsion unit
US6379113B1 (en) Propeller apparatus
US3328961A (en) Multiple stage, hydraulic jet propulsion apparatus for water craft
CN107972837A (zh) 组合式泵喷推进器
JP2007198373A (ja) 流体噴射ノズル
JP6493826B2 (ja) 流体機械及び推進装置、流体機械のウォータージェット推進機。
US20040203298A1 (en) Ship pod-mounted hydrojet propeller unit driven by a hollow electric motor
WO2003037712A1 (fr) Dispositif de propulsion par jet d'eau utilise dans un bateau
CN206954479U (zh) 推进器以及推进系统
KR101035142B1 (ko) 방향성이 다른 이중 물 회오리 발생 스크류
US20230040177A1 (en) Hybrid Propulsor for Watercraft
CN106762804A (zh) 一种叶轮轮缘开孔的高抗汽蚀喷水推进泵
CN103010440A (zh) 一种船用自吸泵喷水推进舷外机
GB2466957A (en) Fluid drive system comprising impeller vanes mounted within a longitudinal structure
CN205533431U (zh) 一种喷水推进泵装置的直线渐缩过渡圆喷口
JP6057798B2 (ja) ポンプ、及びウォータージェット推進装置
GB2419861A (en) Shrouded vane marine propeller
CN105545818B (zh) 一种喷水推进泵装置的倒角方形喷口
US6991499B2 (en) Waterjet propulsion apparatus
CN105545817B (zh) 一种喷水推进泵装置的椭圆形喷口
CN205533433U (zh) 一种新型喷水推进泵装置的倒角方形喷口
KR102117384B1 (ko) 선박용 덕트의 지지구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205ADATED 24/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18784226

Country of ref document: EP

Kind code of ref document: A1