WO2018188344A1 - 天线装置和移动设备 - Google Patents

天线装置和移动设备 Download PDF

Info

Publication number
WO2018188344A1
WO2018188344A1 PCT/CN2017/112295 CN2017112295W WO2018188344A1 WO 2018188344 A1 WO2018188344 A1 WO 2018188344A1 CN 2017112295 W CN2017112295 W CN 2017112295W WO 2018188344 A1 WO2018188344 A1 WO 2018188344A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
electrode layer
liquid crystal
substrate
crystal layer
Prior art date
Application number
PCT/CN2017/112295
Other languages
English (en)
French (fr)
Inventor
徐健
吴新银
卢永春
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/073,018 priority Critical patent/US11158930B2/en
Priority to EP17892071.6A priority patent/EP3611794A4/en
Publication of WO2018188344A1 publication Critical patent/WO2018188344A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an antenna device and a mobile device.
  • the antenna device of the mobile device generally adopts a non-directional antenna device, and the signal transmitted by the mobile device is transmitted to the periphery with equal intensity through the non-directional antenna device, which will cause the mobile device to move at a high speed (for example, the user is riding on the high-speed railway) Or when the mobile device is used in a highway driving environment, it is easy to cause a problem of communication lag due to continuing to receive and communicate with the previous cell signal.
  • an antenna device including:
  • a direction detector for detecting a moving direction of the antenna device and generating a direction signal for indicating the moving direction; a driver connected to the direction detector for generating a corresponding driving voltage signal according to the direction signal
  • An antenna element connected to the driver, wherein the antenna module includes a first liquid crystal layer, a region where the first liquid crystal layer is divided into a plurality of resonance regions, and the antenna element independently generates signals according to the driving voltage signal
  • the dielectric constant of the first liquid crystal layer in each of the resonance regions is adjusted to emit and receive electromagnetic waves in a moving direction corresponding to the driving voltage signal.
  • the antenna element further includes a driving electrode layer disposed on at least one side of the first liquid crystal layer, disposed on a side of the first liquid crystal layer, and the driving The movable electrode layer insulates the spaced antenna electrode layer.
  • the driving electrode layer is connected to the driver for generating mutually independent electric fields in respective resonance regions in the first liquid crystal layer according to the driving voltage signal to adjust respective resonance regions of the first liquid crystal layer Dielectric constant.
  • the antenna electrode layer is configured to emit electromagnetic waves under the action of an electric field of each resonance region, and to make a phase distribution of the electromagnetic waves correspond to a dielectric constant of each resonance region.
  • the driving electrode layer includes a first electrode layer and a second electrode layer respectively disposed on opposite sides of the first liquid crystal layer, the first electrode layer and the second electrode layer At least one of the plurality includes driving sub-electrodes spaced apart from each other, the driving sub-electrodes being in one-to-one correspondence with the resonance region.
  • the antenna electrode layer is disposed on a side of the first electrode layer facing away from the first liquid crystal layer, and the antenna electrode layer includes a plurality of antenna sub-electrodes spaced apart from each other, and each of the resonant regions corresponds to at least one Said antenna sub-electrode.
  • the direction detector includes a gyroscope and an accelerometer.
  • the antenna sub-electrodes are further formed with through holes, and each of the resonance regions corresponds to the plurality of rows and columns of the antenna sub-electrodes.
  • the antenna electrode layer is disposed on a side of the first electrode layer facing away from the first liquid crystal layer, and the antenna electrode layer includes a plurality of antenna sub-electrodes spaced apart from each other.
  • the driving electrode layer includes a first electrode layer and a second electrode layer respectively disposed on opposite sides of the first liquid crystal layer, at least one of the first electrode layer and the second electrode layer including each other A plurality of driving sub-electrodes spaced apart from each other, each resonant region corresponding to at least one of the plurality of driving sub-electrodes.
  • the driver also includes a transmitter for generating an amplitude control voltage signal.
  • the antenna element further includes a power distribution electrode layer disposed on a side of the second electrode layer facing away from the first liquid crystal layer, the power distribution electrode layer including a plurality of matching electrons corresponding to the resonance region in one-to-one correspondence
  • An electrode the electronically coupled electrode being coupled to the transmitter for loading the amplitude control voltage signal to adjust an amplitude of an electromagnetic wave emitted by the corresponding resonant region according to the amplitude control voltage signal.
  • An orthographic projection of each of the electronically coupled electrodes on a plane of the first substrate at least partially overlaps an orthographic projection of at least one of the antenna sub-electrodes on a plane of the first substrate.
  • one of the first electrode layer and the second electrode layer A plurality of the drive sub-electrodes are included, and the other is a single planar electrode.
  • the antenna element further includes a first substrate and a second substrate disposed opposite to each other, the first liquid crystal layer being disposed between the first substrate and the second substrate.
  • the present disclosure also provides a mobile device including the above-described antenna device provided by the present disclosure.
  • the mobile device further includes a display panel including an array substrate and a counter substrate disposed opposite to each other, and a second liquid crystal layer disposed between the array substrate and the pair of cassette substrates ,
  • the antenna element further includes a first substrate and a second substrate disposed opposite to each other, the first liquid crystal layer is disposed between the first substrate and the second substrate, the first liquid crystal layer and the The second liquid crystal layer is disposed at the same level, the first substrate and the pair of the substrate are integrated, and the second substrate and the array substrate are integrated.
  • the antenna element is disposed at an edge of the display panel.
  • the direction detector includes a gyroscope.
  • the direction signal generated by the direction detector is calibrated by data of the antenna element.
  • FIG. 1 is a schematic diagram of a relationship between a mobile device and a base station of the two cells when moving between two cells in the prior art
  • FIG. 2 is a schematic diagram showing the functional structure of an antenna device provided by the present disclosure
  • FIG. 3 is a schematic diagram of a contact relationship between a mobile device provided by the present disclosure and a base station of the two cells when moving between two cells;
  • FIG. 4 is a perspective view showing a first structure of an antenna element of an antenna device provided by the present disclosure in a plan view;
  • Figure 5 is a cross-sectional view taken along line A-A' of the antenna element of Figure 4;
  • FIG. 6 is a perspective view showing a second structure of an antenna element of an antenna device provided by the present disclosure in a plan view;
  • Figure 7 is a cross-sectional view showing the antenna element of Figure 6 taken along line B-B';
  • FIG. 8 is a front elevational view showing a first structure of a mobile device provided by the present disclosure.
  • FIG. 9 is a rear schematic view of a first structure of a mobile device provided by the present disclosure.
  • FIG. 10 is a front elevational view showing a second structure of the mobile device provided by the present disclosure.
  • FIG. 11 is a rear schematic view of a second structure of a mobile device provided by the present disclosure.
  • FIG. 12 is a schematic diagram of an antenna element integrated with a display panel in a mobile device provided by the present disclosure.
  • the inventors have found that in the prior art, when a mobile device is in a cell where the A location is located, the mobile device has established a signal communication with the cell site where the A location is located, even when the mobile device moves rapidly from the A location to the B location.
  • the mobile device arrives at the B position, it still needs to establish contact with the signal cell where the A location is located, but at this time, the signal strength of the signal cell where the A location is located is already very weak, which is likely to cause communication delay and data loss when the mobile device is connected. Repeat this process, it is more likely that the mobile device can not establish contact with the cell where the B location is located, resulting in communication lag.
  • the present disclosure particularly proposes an antenna device and a mobile device that enable a mobile device in motion to transmit and receive signals in a moving direction, thereby making the response of the mobile device switching base station faster and the communication effect better.
  • an antenna device As shown in FIG. 2, the antenna device includes a direction detector 10, a driver 20, and an antenna element 30.
  • the direction detector 10 is configured to detect a moving direction of the antenna device and generate a direction signal for indicating the moving direction.
  • the drive 20 includes a data processor, a transmitter and a receiver (not shown), and is coupled to the direction detector 10 for direction information according to the direction detector 10. The number generates the corresponding drive voltage signal.
  • the antenna element 30 is connected to the driver 20 for transmitting and receiving electromagnetic waves. 5 and FIG. 7 are cross-sectional views showing two structures of the antenna element. As shown in FIGS.
  • the antenna element 30 includes a first liquid crystal layer 31, and a region where the first liquid crystal layer 31 is located is divided into a plurality of resonance regions.
  • the antenna element 30 independently adjusts the dielectric constant of the first liquid crystal layer 31 in each resonance region in accordance with the driving voltage signal to emit and receive electromagnetic waves in a moving direction corresponding to the driving voltage signal.
  • the "connected" in the present disclosure may be a wired signal connection or a wireless signal connection.
  • the phase of the electromagnetic wave emitted from each resonance region is adjusted by adjusting the dielectric constant of the first liquid crystal layer 31 in each resonance region according to the corresponding driving voltage signal generated by the direction signal, thereby adjusting the direction of the isophase plane
  • the direction of the electromagnetic beam emitted by the antenna is perpendicular to the isophase plane, the overall direction of the emitted electromagnetic wave beam can be adjusted.
  • the driving voltage signal generated by the signal adjusts the dielectric constant of each resonance region, so that the base station signal of the antenna element receiving the moving direction is the strongest, and the base station signal of other directions is weak or the intensity is zero, thereby implementing only receiving the Base station signal in the direction of motion.
  • the antenna element 30 Since the direction detector 10 detects the moving direction of the mobile device, the antenna element 30 transmits and receives electromagnetic waves mainly in the moving direction of the mobile device, that is, the antenna element 30 transmits the antenna signal in the moving direction and receives the base station signal in the moving direction. Therefore, when the location of the mobile device is switched between cells of two adjacent base stations (as in the case of moving from location A to location B in FIG. 3), the antenna device will give priority to the signal of the cell where the location B is located. Establishing contact with the base station of the cell where the B location is located, and rapidly switching the signal cell, thereby reducing the phenomenon of communication delay in the prior art and improving the communication effect.
  • the direction detector may specifically include a gyroscope and an accelerometer.
  • the initial motion state is detected by using an accelerometer, and the gyroscope detects the angle of the motion direction, and the moving direction of the mobile device can be accurately and quickly determined.
  • the direction detector may only include a gyroscope.
  • the gyroscope should include at least 6 axes, and simultaneously measure multiple motion directions when the mobile device has a motion offset in the horizontal and vertical directions. Angle, combined with the base station data of the base station data initially connected by the mobile device antenna element, and the next moment connection base The position where the station data is displayed, corrects the direction of motion calculated by the gyroscope, and generates a direction signal.
  • the first specific structure of the antenna element 30 may be a super material liquid crystal.
  • the antenna element 30 includes the first liquid crystal layer 31, a driving electrode layer disposed on both sides of the first liquid crystal layer 31, and is disposed at the first An antenna electrode layer 34 on one side of the liquid crystal layer 31 and insulated from the drive electrode layer.
  • the driving electrode layer is connected to the driver 20 for generating mutually independent electric fields in respective resonance regions in the first liquid crystal layer 31 in accordance with the driving voltage signal of the driver 20 to adjust the dielectric constant of each resonance region of the first liquid crystal layer 31.
  • the antenna electrode layer 34 is configured to emit and receive electromagnetic waves under the electric field of each resonance region, and to make the phase distribution of the electromagnetic waves correspond to the dielectric constant of each resonance region, so that the emission and reception directions of the electromagnetic waves are located at the same The direction of motion corresponding to the drive voltage signal.
  • the driving electrode layer includes a first electrode layer 32 and a second electrode layer 33 respectively disposed on opposite sides of the first liquid crystal layer 31, and at least one of the first electrode layer 32 and the second electrode layer 33 includes insulation from each other a plurality of driving sub-electrodes 331 are spaced apart, and a plurality of electric field regions are formed between the first electrode layer 32 and the second electrode layer 33 when the driving voltage signal is applied, wherein the electric field region is the resonant region, and the driving sub-electrode 331 is The resonance regions are in one-to-one correspondence, so that the electric fields of the respective resonance regions have little influence on each other.
  • the antenna electrode layer 34 is disposed on a side of the first electrode layer 32 facing away from the first liquid crystal layer 31, and the antenna electrode layer 34 includes a plurality of antenna sub-electrodes 341 spaced apart from each other, each of the resonance regions corresponding to at least one antenna sub-electrode 341 .
  • the antenna sub-electrode 341 may be formed into a metal block of a certain shape.
  • the antenna sub-electrode 341 is formed with a through hole 341a to emit electromagnetic waves outward.
  • Each of the resonance regions may correspond to the plurality of rows and columns of antenna sub-electrodes 341, so that the electromagnetic wave is more densely distributed, and it is more advantageous to accurately adjust the direction of the transmitted and received electromagnetic waves.
  • the first electrode layer 32 and the second electrode layer 33 may each be configured to include a plurality of driving sub-electrodes 331, and one of the first electrode layer 32 and the second electrode layer 33 is used in the present disclosure to simplify the manufacturing process. It is provided as a structure including a plurality of driving sub-electrodes 331, and the other is provided as a single continuous planar electrode, as shown in FIGS. 5 and 7, the first electrode Layer 32 is a single continuous planar electrode and second electrode layer 33 includes a plurality of drive sub-electrodes 331.
  • the antenna element 30 may further include a first substrate 35 and a second substrate 36 disposed opposite to each other.
  • the first liquid crystal layer 31 is disposed between the first substrate 35 and the second substrate 36, and the first electrode layer 32 is disposed.
  • the second electrode layer 33 is disposed between the first liquid crystal layer 31 and the second substrate 36, and the antenna electrode layer 34 is disposed on the first electrode layer 32 and the first substrate 35.
  • An insulating layer 37 is disposed between the antenna electrode layer 34 and the first substrate 35.
  • the antenna electrode layer 34 may also be disposed on a side of the first substrate 35 that faces away from the second substrate 36.
  • the second specific structure of the antenna element 30 may be a liquid crystal phased array antenna.
  • the antenna sub-electrode 341 may be a strip electrode, and a slit is formed between adjacent antenna sub-electrodes 341.
  • the driver can also be used to control the amplitude of electromagnetic waves emitted by the antenna element, as described above, the driver includes a transmitter, wherein the transmitter is operative to generate an amplitude control voltage signal.
  • a side of the second electrode layer 33 facing away from the first liquid crystal layer 31 is further provided with a power distribution electrode layer 38, and the power distribution electrode layer 38 includes a plurality of electron-matching electrodes 381 corresponding to the resonance region.
  • the electronic electrode 381 is connected to the transmitter for loading an amplitude control voltage signal generated by the transmitter to adjust the amplitude of the electromagnetic wave emitted by the corresponding resonance region according to the amplitude control voltage signal, thereby transmitting an antenna signal of a desired intensity.
  • Each of the electronically coupled electrodes can be associated with at least one antenna sub-electrode 341.
  • the orthographic projection of each of the electronically coupled electrodes 381 on the plane of the first substrate may at least partially overlap with the orthographic projection of the at least one antenna sub-electrode 341 on the plane of the first substrate, as shown in FIG.
  • the area indicated by the hatching is the electron-donating electrode 381, and the area indicated by the shade of gray is the antenna sub-electrode 341.
  • one of the electronically coupled electrodes 381 can be associated with the two antenna sub-electrodes 341 such that the dielectric constant of the corresponding one of the resonant regions is affected by the interaction of the two antenna sub-electrodes 341 and the one of the electronically coupled electrodes 381. .
  • one of the first electrode layer 32 and the second electrode layer 33 may include a plurality of driving sub-electrodes 331, and the other may be a single continuous
  • the planar electrodes each correspond to a plurality of driving sub-electrodes 331.
  • the orthographic projection of each antenna sub-electrode 341 on the plane of the first substrate may To cover an orthographic projection of a column of driving sub-electrodes 331 on the plane of the first substrate.
  • a corresponding driving voltage signal is applied to the plurality of driving sub-electrodes 331 corresponding to each of the resonance regions by the driver, thereby generating mutually independent electric fields in the respective resonance regions to adjust the dielectric constant of each of the resonance regions, and the antenna electrode layer 34 is used for
  • the electromagnetic waves of each of the resonance regions emit and receive electromagnetic waves, and the phase distribution of the electromagnetic waves is corresponding to the dielectric constant of each of the resonance regions, so that the emission and reception directions of the electromagnetic waves are located corresponding to the driving voltage signals. In the direction.
  • the second structure of the antenna element 30 also includes a first substrate 35 and a second substrate 36.
  • the first liquid crystal layer 31 is disposed between the first substrate 35 and the second substrate 36, first The relative positions of the electrode layer 32, the second electrode layer 33, and the antenna electrode layer 34 with the first substrate 35 and the second substrate 36 may be the same as those of the first structure, and the power distribution electrode layer 38 may be disposed at the second electrode.
  • the layer 33 and the second substrate 36 may also be disposed on a side of the second substrate 36 facing away from the second electrode layer 33.
  • any two of them should be guaranteed. Insulation interval between the two.
  • the layers shown in the embodiments are merely examples, and other functional layers may be included between the layers, for example, a side of the first substrate and the second substrate facing the first liquid crystal layer 31 may be provided with a planarization layer.
  • a mobile device including the above-described antenna device provided by the present disclosure is provided.
  • the mobile device in the present disclosure may specifically be a mobile phone, and FIGS. 8 and 9 are schematic diagrams of the front and back sides of the mobile device including the antenna element of the first structure, respectively; FIGS. 10 and 11 are antennas including the second structure, respectively. Schematic of the front and back of the component's mobile device.
  • the mobile device includes a structure such as a casing 60, a display panel 40, a communication chip 70, and a power source 80.
  • the display panel 40 is disposed on the front surface of the casing 60, the communication chip 70, the power source 80, and the antenna device.
  • the direction detector 10 and the driver 20 are disposed on the back of the casing 60.
  • the driver 20 can be implemented as a general structure including a communication chip 70 and a transmitter and receiver (not shown) connected to the antenna element 30, and the antenna element 30 of the antenna device can be disposed on the back of the housing 60 (as shown in FIG. 9). It can also be placed at the front of the housing 60 near the frame of the phone housing (as shown in Figure 10). Setting At the front of the housing 60, the antenna element 30 can be integrated with the display panel 40 to simplify the overall structure.
  • 12 is a schematic diagram showing the antenna element 30 integrated with the display panel 40 by taking the second structure of the antenna element 30 as an example. As shown in FIG. 12, the display panel 40 specifically includes an array substrate 41 and a pair of oppositely disposed arrays.
  • the substrate 42 and the second liquid crystal layer 43 disposed between the array substrate 41 and the counter substrate 42 are provided.
  • the first liquid crystal layer 31 of the antenna element 30 and the second liquid crystal layer 43 of the display panel 40 are disposed in the same layer (for example, at the same level), and the liquid crystal layer formed by the first liquid crystal layer 31 and the second liquid crystal layer 43 as a whole A sealant 50 is provided.
  • the first substrate 35 and the counter substrate 42 are integrally formed, and the second substrate 36 and the array substrate 41 are integrally formed.
  • the driver connected to the antenna element 30 further includes a digital-to-analog conversion driving chip connected to the display panel.
  • connection between the respective components is not shown in FIGS. 8 to 11, the connection relationship between the respective components in FIGS. 8 to 11 is referred to as described above.
  • the connection of components not mentioned above to each other is well known to those skilled in the art and will not be described herein.
  • the antenna element is mainly in the motion of the mobile device after the direction detector of the antenna device, particularly using the gyroscope and the accelerometer, detects the moving direction of the mobile device. Transmitting and receiving electromagnetic waves in the direction, that is, the antenna element transmits the antenna signal in the moving direction and receives the base station signal in the moving direction, and therefore, when the position of the mobile device is switched from the cells of the two adjacent base stations, the antenna device receives the same The signal of the next cell will preferentially establish contact with the base station of the next cell to quickly switch the signal cell, thereby reducing the phenomenon of communication delay in the prior art and improving the communication effect.
  • the antenna elements of the antenna device can be integrated with the display panel, which simplifies the overall structure of the mobile device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供一种天线装置以及包括天线装置的移动设备,天线装置包括:方向检测器,用于检测所述天线装置所在的移动设备的移动方向并产生用于指示所述移动方向的方向信号;驱动器,与所述方向检测器相连,用于根据所述方向检测器的方向信号生成相应的驱动电压信号;天线元件,与所述驱动器相连,用于发射和接收电磁波,其中,所述天线元件包括第一液晶层,所述第一液晶层所在区域被划分为多个谐振区,所述天线元件根据所述驱动电压信号独立地调节各个谐振区内第一液晶层的介电常数,以沿与所述驱动电压信号对应的运动方向发射和接收电磁波。

Description

天线装置和移动设备
相关申请的交叉引用
本申请要求于2017年4月14日提交至中国知识产权局的中国专利申请No.2017102455753的优先权,其全部内容以引用的方式合并于此。
技术领域
本公开涉及通信技术领域,具体涉及一种天线装置和移动设备。
背景技术
移动设备在各种场合被用来通话、上网等操作。现在移动设备的天线装置一般都是采用无方向性天线装置,移动设备发射的信号通过无方向性天线装置向四周等强度地发送,将造成当移动设备高速移动时(例如使用者在乘坐高速铁路或在高速公路驾车的环境下使用该移动设备时),容易导致因延续接收前一个小区信号并与之通信而造成通信迟滞的问题。
发明内容
在一方面,本公开提供一种天线装置,包括:
方向检测器,用于检测所述天线装置的移动方向并产生用于指示所述移动方向的方向信号;驱动器,与所述方向检测器相连,用于根据所述方向信号生成相应的驱动电压信号;天线元件,与所述驱动器相连,其中,所述天线模块包括第一液晶层,所述第一液晶层所在区域被划分为多个谐振区,所述天线元件根据所述驱动电压信号独立地调节各个谐振区内第一液晶层的介电常数,以沿与所述驱动电压信号对应的移动方向发射和接收电磁波。
根据本公开的实施例,所述天线元件还包括设置在所述第一液晶层至少一侧的驱动电极层、设置在所述第一液晶层一侧且与所述驱 动电极层绝缘间隔的天线电极层。
所述驱动电极层与所述驱动器相连,用于根据所述驱动电压信号在所述第一液晶层中的各个谐振区产生相互独立的电场,以调节所述第一液晶层的各个谐振区的介电常数。
所述天线电极层用于在各谐振区的电场作用下发射电磁波,并使得所述电磁波的相位分布与各谐振区的介电常数对应。
根据本公开的实施例,所述驱动电极层包括分别设置在所述第一液晶层的相对两侧的第一电极层和第二电极层,所述第一电极层和所述第二电极层中的至少一者包括彼此绝缘间隔的多个驱动子电极,所述驱动子电极与所述谐振区一一对应。
所述天线电极层设置在所述第一电极层背离所述第一液晶层的一侧,所述天线电极层包括彼此间隔的多个天线子电极,每个所述谐振区均对应至少一个所述天线子电极。
根据本公开的实施例,所述方向检测器包括陀螺仪和加速度计。
根据本公开的实施例,所述天线子电极上还形成有通孔,每个谐振区均对应多行多列所述天线子电极。
根据本公开的实施例,所述天线电极层设置在所述第一电极层背离所述第一液晶层的一侧,所述天线电极层包括彼此间隔的多个天线子电极。所述驱动电极层包括分别设置在所述第一液晶层的相对两侧的第一电极层和第二电极层,所述第一电极层和所述第二电极层中的至少一者包括彼此绝缘间隔的多个驱动子电极,每个谐振区对应于所述多个驱动子电极中的至少一个。所述驱动器还包括发射机,所述发射机用于产生振幅控制电压信号。所述天线元件还包括设置在所述第二电极层背离所述第一液晶层的一侧的配电电极层,所述配电电极层包括与所述谐振区一一对应的多个配电子电极,所述配电子电极与所述发射机相连,用于加载所述振幅控制电压信号,以根据所述振幅控制电压信号调节相应谐振区发射的电磁波的振幅。每个所述配电子电极在所述第一基板所在平面上的正投影与至少一个所述天线子电极在所述第一基板所在平面上的正投影至少部分地重叠。
根据本公开的实施例,所述第一电极层和第二电极层中的一者 包括多个所述驱动子电极,另一者为单个面状电极。
根据本公开的实施例,所述天线元件还包括相对设置的第一基板和第二基板,所述第一液晶层设置在所述第一基板和所述第二基板之间。
在另一方面,本公开还提供一种移动设备,包括本公开提供的上述天线装置。
根据本公开的实施例,所述移动设备还包括显示面板,所述显示面板包括相对设置的阵列基板和对盒基板以及设置在所述阵列基板与所述对盒基板之间的第二液晶层,
当所述天线元件还包括相对设置的第一基板和第二基板、所述第一液晶层设置在所述第一基板和所述第二基板之间时,所述第一液晶层和所述第二液晶层设置在相同的水平高度,所述第一基板与所述对盒基板为一体结构,所述第二基板与所述阵列基板为一体结构。
根据本公开的实施例,所述天线元件设置在所述显示面板的边缘。
根据本公开的实施例,所述方向检测器包括陀螺仪。
根据本公开的实施例,所述方向检测器产生的方向信号经过所述天线元件的数据校准。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是现有技术中的移动设备在两小区中间移动时与该两个小区的基站的联络关系示意图;
图2是本公开提供的天线装置的功能性结构示意图;
图3是本公开提供的移动设备在两小区中间移动时与该两个小区的基站的联络关系示意图;
图4是示出本公开提供的天线装置的天线元件的第一种结构的俯视时的透视图;
图5是示出图4的天线元件中沿着线A-A’截取的截面图;
图6是示出本公开提供的天线装置的天线元件的第二种结构的俯视时的透视图;
图7是示出图6的天线元件中沿着线B-B’截取的截面图;
图8是本公开提供的移动设备第一种结构的正面示意图;
图9是本公开提供的移动设备的第一种结构的背面示意图;
图10是本公开提供的移动设备的第二种结构的正面示意图;
图11是本公开提供的移动设备的第二种结构的背面示意图;
图12是本公开提供的移动设备中天线元件与显示面板集成在一起的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
如图1所示,发明人发现在现有技术中,移动设备在A位置所在的小区时已经与A位置所在小区基站建立了信号联络,当移动设备由A位置向B位置快速移动时,即使移动设备到达了B位置,仍然期望与A位置所在信号小区建立联络,但此时A位置所在信号小区的信号强度已经非常微弱,这就容易导致移动设备连接时的通信延时和数据丢失,若反复此过程,则更容易造成移动设备无法与B位置所在小区建立联络,造成通信迟滞。
因此,本公开特别提出了一种天线装置和移动设备,使处于运动中的移动设备在运动方向收发信号,从而使移动设备切换基站的响应更快速,通信效果更好。
作为本公开的一方面,提供一种天线装置,如图2所示,所述天线装置包括方向检测器10、驱动器20和天线元件30。其中,方向检测器10用于检测所述天线装置的移动方向并产生用于指示所述移动方向的方向信号。驱动器20包括数据处理器、发射机和接收机(未示出),并与方向检测器10相连,用于根据方向检测器10的方向信 号生成相应的驱动电压信号。天线元件30与驱动器20相连,用于发射和接收电磁波。图5和图7为天线元件的两种结构的截面图,如图5和图7所示,天线元件30包括第一液晶层31,第一液晶层31所在区域被划分为多个谐振区,天线元件30根据所述驱动电压信号独立地调节各个谐振区内的第一液晶层31的介电常数,以沿与所述驱动电压信号对应的运动方向发射和接收电磁波。应当理解的是,本公开中的“相连”可以为有线信号连接,也可以为无线信号连接。
在发射天线信号时,通过根据方向信号所生成的相应驱动电压信号调节各谐振区内第一液晶层31的介电常数,来调节从各谐振区发射的电磁波的相位,从而调节等相面方向,而由于天线发射出的电磁波束的方向与等相面垂直,因此可以调节发射的电磁波波束的整体方向。同样地,在接收基站信号时,当各谐振区的介电常数的分布情况不同时,天线元件30接收到的各个方向的信号强弱不同,因此,接收基站信号时,根据针对运动方向的方向信号生成的驱动电压信号来调节各谐振区的介电常数,从而使得天线元件接收到所述运动方向的基站信号最强,其他方向的基站信号较弱或强度为零,进而实现仅接收所述运动方向上的基站信号。
由于方向检测器10检测出移动设备的运动方向后,天线元件30主要在移动设备的运动方向上发送和接收电磁波,即,天线元件30在运动方向上发送天线信号以及接收运动方向上的基站信号,因此,移动设备的位置从相邻两个基站的小区之间切换时(如图3中从位置A移动到位置B时),天线装置一旦接收到位置B所在小区的信号,则是会优先与B位置所在小区的基站建立联络,快速切换信号小区,从而减少了现有技术中的通信延迟的现象,改善了通信效果。
其中,方向检测器具体可以包括陀螺仪和加速度计,通过使用加速度计检测初始运动状态,陀螺仪检测运动方向的角度,可准确快速的判断移动设备的移动方向。另外,可选的,方向检测器可只包括陀螺仪,此时,陀螺仪应至少是包含6轴的,可在移动设备在水平和垂直方向有运动偏移量时,同时测量多个运动方向的角度,结合移动设备天线元件初始连接的基站数据显示的基站位置和下一时刻连接基 站数据显示的位置,修正陀螺仪计算的运动方向,产生方向信号。
下面结合图4至图7对天线元件的两种具体结构进行介绍。天线元件30的第一种具体结构可以采用超材料液晶,如图5所示,天线元件30包括上述第一液晶层31、设置在第一液晶层31两侧的驱动电极层、设置在第一液晶层31一侧且与驱动电极层绝缘间隔的天线电极层34。驱动电极层与驱动器20相连,用于根据驱动器20的驱动电压信号在第一液晶层31中的各个谐振区产生相互独立的电场,以调节第一液晶层31的各个谐振区的介电常数。需要说明的是,驱动器20产生的驱动电压信号并不是一个具体的值,而是提供给各个谐振区的电压信号的总称。天线电极层34用于在各谐振区的电场作用下发射和接收电磁波,并使得所述电磁波的相位分布与各谐振区的介电常数对应,从而使所述电磁波的发射和接收方向位于与所述驱动电压信号对应的运动方向上。
所述驱动电极层包括分别设置在第一液晶层31的相对两侧的第一电极层32和第二电极层33,第一电极层32和第二电极层33中的至少一者包括彼此绝缘间隔的多个驱动子电极331,在加载驱动电压信号时,第一电极层32与第二电极层33间形成多个电场区域,所述电场区域即为所述谐振区,驱动子电极331与谐振区一一对应,从而可以使得各个谐振区的电场互相影响很小。天线电极层34设置在第一电极层32背离第一液晶层31的一侧,天线电极层34包括彼此间隔的多个天线子电极341,每个所述谐振区均对应至少一个天线子电极341。
其中,天线子电极341可以形成为一定形状的金属块,例如,如图4所示,天线子电极341上形成有通孔341a,以向外发射电磁波。每个谐振区均可以对应多行多列天线子电极341,以使得电磁波的分布更密集,更有利于精准地调节发送和接收的电磁波的方向。
其中,可以将第一电极层32和第二电极层33均设置为包括多个驱动子电极331的结构,本公开为了简化制作工艺,第一电极层32和第二电极层33中的一者设置为包括多个驱动子电极331的结构,另一者设置为单个连续的面状电极,如图5和图7中,第一电极 层32为单个连续的面状电极,第二电极层33包括多个驱动子电极331。
如图5所示,天线元件30还可以包括相对设置的第一基板35和第二基板36,第一液晶层31设置在第一基板35和第二基板36之间,第一电极层32设置在第一基板35与第一液晶层31之间,第二电极层33设置在第一液晶层31与第二基板36之间,天线电极层34设置在第一电极层32与第一基板35之间,且天线电极层34与第一基板35之间设置有绝缘层37。当然,也可以将天线电极层34设置在第一基板35的背离第二基板36的一侧。
天线元件30的第二种具体结构可以采用液晶相控阵天线,如图6和图7所示,天线子电极341可以为条状电极,相邻的天线子电极341之间形成有狭缝,以发射电磁波。所述驱动器还可以用于控制天线元件发射的电磁波的振幅,如上所述,所述驱动器包括发射机,其中,发射机用于产生振幅控制电压信号。如图6所示,第二电极层33背离第一液晶层31的一侧还设置有配电电极层38,配电电极层38包括与谐振区一一对应的多个配电子电极381,所述配电子电极381与发射机相连,用于加载发射机产生的振幅控制电压信号,以根据该振幅控制电压信号调节相应谐振区发射的电磁波的振幅,从而发射所需强度的天线信号。每个配电子电极可与至少一个天线子电极341相关联。例如,每个配电子电极381在第一基板所在平面上的正投影可与至少一个天线子电极341在第一基板所在平面上的正投影至少部分地重叠,如图6所示,其中斜线阴影表示的区域为配电子电极381,灰色阴影表示的区域为天线子电极341。在该示例中,一个配电子电极381可与两个天线子电极341相关联,以使得相应的一个谐振区的介电常数受到这两个天线子电极341和这一个配电子电极381的共同影响。
和第一种结构相同,在天线元件30的第二种结构中,第一电极层32和第二电极层33中的一者可以包括多个驱动子电极331,另一者可以为单个连续的面状电极,每个谐振区对应多个驱动子电极331。例如,每个天线子电极341在第一基板所在平面上的正投影可 以覆盖一列驱动子电极331在第一基板所在平面上的正投影。利用驱动器对每个谐振区对应的多个驱动子电极331施加相应的驱动电压信号,进而在各个谐振区产生相互独立的电场,以调节各个谐振区的介电常数,天线电极层34用于在各谐振区的电场作用下发射和接收电磁波,并使得所述电磁波的相位分布与各谐振区的介电常数对应,从而使所述电磁波的发射和接收方向位于与所述驱动电压信号对应的运动方向上。
另外,天线元件30的第二种结构中也包括第一基板35和第二基板36,如图6所示,第一液晶层31设置在第一基板35和第二基板36之间,第一电极层32、第二电极层33和天线电极层34与第一基板35、第二基板36的相对位置均可以与第一种结构中结构相同,配电电极层38既可以设置在第二电极层33与第二基板36之间,也可以设置在第二基板36背离第二电极层33的一侧。应当理解的是,在上述两种结构的天线元件30中,无论第一电极层32、第二电极层33、天线电极层34、配电电极层38采用哪种设置方式,均应当保证任意二者之间绝缘间隔。且实施例中所示的各层仅为示例,在各层间还可包括其它功能层,例如第一基板和第二基板面向第一液晶层31的一侧可设置平坦化层。
作为本公开的另一方面,提供一种移动设备,包括本公开提供的上述天线装置。
本公开中的移动设备具体可以为手机,图8和图9分别为包括第一种结构的天线元件的移动设备的正面和背面的示意图;图10和图11分别是包括第二种结构的天线元件的移动设备的正面和背面的示意图。如图8至图11所示,移动设备包括壳体60、显示面板40、通信芯片70和电源80等结构,显示面板40设置在壳体60正面,通信芯片70、电源80以及上述天线装置的方向检测器10、驱动器20设置在壳体60背面。驱动器20可实现为包含了通信芯片70和与天线元件30连接的发射机和接收机(未示出)的总体结构,而天线装置的天线元件30可以设置在壳体60背面(如图9所示),也可以设置在壳体60正面靠近手机外壳的边框的位置(如图10所示)。设置 在壳体60正面时,可以将天线元件30与显示面板40集成在一起,以简化整体结构。图12是以上述天线元件30的第二种结构为例示出了天线元件30与显示面板40集成在一起的示意图,如图12所示,显示面板40具体包括相对设置的阵列基板41和对盒基板42以及设置在阵列基板41与对盒基板42之间的第二液晶层43。天线元件30的第一液晶层31和显示面板40的第二液晶层43同层设置(例如,设置在相同的水平高度),第一液晶层31和第二液晶层43形成的液晶层整体周围设置有封框胶50。第一基板35与对盒基板42为一体结构,第二基板36与阵列基板41为一体结构。此时,与天线元件30连接的驱动器还包括与显示面板连接的数模转换驱动芯片。
虽然图8至图11中未示出各个部件之间的连接,但是图8至图11中各个部件之间的连接关系参照如上所述。上文未提到的部件彼此的连接是本领域的技术人员所熟知的,在此不再赘述。
上述为对本公开提供的天线装置和移动设备的描述,可以看出,由于天线装置的方向检测器,尤其使用陀螺仪和加速度计检测出移动设备的移动方向后,天线元件主要在移动设备的运动方向上发送和接收电磁波,即,天线元件在运动方向上发送天线信号以及接收运动方向上的基站信号,因此,移动设备的位置从相邻两个基站的小区之间切换时,天线装置一旦接收下一小区的信号,则是会优先与下一小区的基站建立联络,快速切换信号小区,从而减少了现有技术中的通信延迟的现象,改善了通信效果。在移动设备中,天线装置的天线元件可以与显示面板集成在一起,更简化了移动设备的整体结构。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (13)

  1. 一种天线装置,包括:
    方向检测器,用于检测所述天线装置的移动方向并产生用于指示所述移动方向的方向信号;
    驱动器,与所述方向检测器相连,用于根据所述方向信号生成相应的驱动电压信号;
    天线元件,与所述驱动器相连,其中,所述天线模块包括第一液晶层,所述第一液晶层所在区域被划分为多个谐振区,所述天线元件根据所述驱动电压信号独立地调节各个谐振区内第一液晶层的介电常数,以沿所述驱动电压信号对应的移动方向发射和接收电磁波。
  2. 根据权利要求1所述的天线装置,其中,所述天线元件还包括设置在所述第一液晶层至少一侧的驱动电极层、设置在所述第一液晶层一侧且与所述驱动电极层绝缘间隔的天线电极层,
    所述驱动电极层与所述驱动器相连,用于根据所述驱动电压信号在所述第一液晶层的各个谐振区产生相互独立的电场,以调节所述第一液晶层的各个谐振区的介电常数;
    所述天线电极层用于在各谐振区的电场作用下发射和接收电磁波,并使得所述电磁波的相位分布与所述各谐振区的介电常数对应。
  3. 根据权利要求2所述的天线装置,其中,所述驱动电极层包括分别设置在所述第一液晶层的相对两侧的第一电极层和第二电极层,所述第一电极层和所述第二电极层中的至少一者包括彼此绝缘间隔的多个驱动子电极,所述驱动子电极与所述谐振区一一对应;
    所述天线电极层设置在所述第一电极层背离所述第一液晶层的一侧,所述天线电极层包括彼此间隔的多个天线子电极,每个所述谐振区均对应至少一个所述天线子电极。
  4. 根据权利要求1至3中任意一项所述的天线装置,其中,所 述方向检测器包括陀螺仪和加速度计。
  5. 根据权利要求3所述的天线装置,其中,所述天线子电极上还形成有通孔,每个所述谐振区均对应多行多列所述天线子电极。
  6. 根据权利要求2所述的天线装置,其中,
    所述天线电极层设置在所述第一电极层背离所述第一液晶层的一侧,所述天线电极层包括彼此间隔的多个天线子电极;
    所述驱动电极层包括分别设置在所述第一液晶层的相对两侧的第一电极层和第二电极层,所述第一电极层和所述第二电极层中的至少一者包括彼此绝缘间隔的多个驱动子电极,每个谐振区对应于所述多个驱动子电极中的至少一个;
    所述驱动器还包括发射机,所述发射机用于产生振幅控制电压信号;
    所述天线元件还包括设置在所述第二电极层背离所述第一液晶层的一侧的配电电极层,所述配电电极层包括与所述谐振区一一对应的多个配电子电极,所述配电子电极与所述发射机相连,用于加载所述振幅控制电压信号,以根据所述振幅控制电压信号调节相应谐振区发射的电磁波的振幅;
    其中,每个所述配电子电极在所述第一基板所在平面上的正投影与至少一个所述天线子电极在所述第一基板所在平面上的正投影至少部分地重叠。
  7. 根据权利要求5或6所述的天线装置,其中,所述第一电极层和第二电极层中的一者包括多个所述驱动子电极,另一者为单个面状电极。
  8. 根据权利要求5或6所述的天线装置,其中,所述天线元件还包括相对设置的第一基板和第二基板,所述第一液晶层设置在所述第一基板和所述第二基板之间。
  9. 一种移动设备,包括权利要求1至8中任意一项所述的天线装置。
  10. 根据权利要求9所述的移动设备,其中,所述移动设备还包括显示面板,所述显示面板包括相对设置的阵列基板和对盒基板以及设置在所述阵列基板与所述对盒基板之间的第二液晶层,
    当所述天线元件还包括相对设置的第一基板和第二基板、所述第一液晶层设置在所述第一基板和所述第二基板之间时,所述第一液晶层和所述第二液晶层同层设置,所述第一基板与所述对盒基板为一体结构,所述第二基板与所述阵列基板为一体结构。
  11. 根据权利要求10所述的移动设备,其中,所述天线元件设置在所述显示面板的边缘。
  12. 根据权利要求1至3中任意一项所述的天线装置,其中,所述方向检测器包括陀螺仪。
  13. 根据权利要求12所述的天线装置,其中,所述方向检测器产生的方向信号经过所述天线元件的数据校准。
PCT/CN2017/112295 2017-04-14 2017-11-22 天线装置和移动设备 WO2018188344A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/073,018 US11158930B2 (en) 2017-04-14 2017-11-22 Antenna device and mobile apparatus
EP17892071.6A EP3611794A4 (en) 2017-04-14 2017-11-22 ANTENNA DEVICE AND MOBILE DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710245575.3A CN108736135B (zh) 2017-04-14 2017-04-14 天线系统和移动设备
CN201710245575.3 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018188344A1 true WO2018188344A1 (zh) 2018-10-18

Family

ID=63792310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112295 WO2018188344A1 (zh) 2017-04-14 2017-11-22 天线装置和移动设备

Country Status (4)

Country Link
US (1) US11158930B2 (zh)
EP (1) EP3611794A4 (zh)
CN (1) CN108736135B (zh)
WO (1) WO2018188344A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151954A (zh) * 2019-06-26 2020-12-29 Oppo广东移动通信有限公司 壳体组件、电子设备及壳体组件的介电常数调节方法
CN112909554A (zh) * 2021-02-22 2021-06-04 成都天马微电子有限公司 一种天线及其制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921190B (zh) * 2019-02-25 2020-06-30 北京京东方传感技术有限公司 信号调节器、天线装置和制造方法
TWI696869B (zh) * 2019-06-21 2020-06-21 友達光電股份有限公司 顯示裝置
US11990680B2 (en) * 2021-03-18 2024-05-21 Seoul National University R&Db Foundation Array antenna system capable of beam steering and impedance control using active radiation layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959261A (zh) * 2009-07-20 2011-01-26 中国移动通信集团公司 高速移动场景下的信号选择方法和设备
CN102142596A (zh) * 2009-12-09 2011-08-03 Tdk株式会社 天线装置
WO2012066838A1 (ja) * 2010-11-18 2012-05-24 株式会社村田製作所 アンテナ装置
CN106159461A (zh) * 2015-04-01 2016-11-23 酷派软件技术(深圳)有限公司 天线阵列系统及控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9147935B2 (en) 2011-08-10 2015-09-29 Qualcomm Incorporated Maintenance of mobile device RF beam
EP2575211B1 (en) * 2011-09-27 2014-11-05 Technische Universität Darmstadt Electronically steerable planar phased array antenna
US20160218429A1 (en) 2015-01-23 2016-07-28 Huawei Technologies Canada Co., Ltd. Phase control for antenna array
US10462732B2 (en) * 2015-05-13 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Beamforming
WO2017061527A1 (ja) 2015-10-09 2017-04-13 シャープ株式会社 Tft基板、それを用いた走査アンテナ、およびtft基板の製造方法
CN105589269B (zh) 2016-03-18 2018-12-21 京东方科技集团股份有限公司 显示面板和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959261A (zh) * 2009-07-20 2011-01-26 中国移动通信集团公司 高速移动场景下的信号选择方法和设备
CN102142596A (zh) * 2009-12-09 2011-08-03 Tdk株式会社 天线装置
WO2012066838A1 (ja) * 2010-11-18 2012-05-24 株式会社村田製作所 アンテナ装置
CN106159461A (zh) * 2015-04-01 2016-11-23 酷派软件技术(深圳)有限公司 天线阵列系统及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151954A (zh) * 2019-06-26 2020-12-29 Oppo广东移动通信有限公司 壳体组件、电子设备及壳体组件的介电常数调节方法
CN112151954B (zh) * 2019-06-26 2023-07-28 Oppo广东移动通信有限公司 壳体组件、电子设备及壳体组件的介电常数调节方法
CN112909554A (zh) * 2021-02-22 2021-06-04 成都天马微电子有限公司 一种天线及其制作方法

Also Published As

Publication number Publication date
US20210167486A1 (en) 2021-06-03
EP3611794A1 (en) 2020-02-19
US11158930B2 (en) 2021-10-26
EP3611794A4 (en) 2021-01-20
CN108736135A (zh) 2018-11-02
CN108736135B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2018188344A1 (zh) 天线装置和移动设备
US11735821B2 (en) Electronic devices with probe-fed dielectric resonator antennas
US10608344B2 (en) Electronic device antenna arrays mounted against a dielectric layer
JP3212787U (ja) 積層プリント回路上のミリ波アンテナを有する電子デバイス
US20210210868A1 (en) Electronic Device Having Dual-Band Antennas Mounted Against a Dielectric Layer
US11728569B2 (en) Electronic devices with dielectric resonator antennas
EP3507856B1 (en) Software controlled antenna
US10686257B2 (en) Method of manufacturing software controlled antenna
KR20190118962A (ko) 유전체 층에 대해 장착된 전자 디바이스 안테나 어레이들
WO2018137339A1 (zh) 移相单元、天线阵、显示面板和显示装置
US20190027838A1 (en) Millimeter Wave Antennas Having Dual Patch Resonating Elements
CN208723092U (zh) 液晶天线单元和液晶相控阵天线
KR20230169040A (ko) 기생 패치들을 구비한 유전체 공진기 안테나들을 갖는 전자 디바이스들
US11916311B2 (en) Electronic devices having folded antenna modules
JP7386920B2 (ja) 双方向誘電体共振器アンテナを有する電子デバイス
JP2008022123A (ja) アンテナ装置
US11967781B2 (en) Electronic devices having compact dielectric resonator antennas
US11824257B2 (en) Electronic devices with dielectric resonator antennas having conductive walls
US20240113436A1 (en) Electronic Devices with Dielectric Resonator Antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017892071

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017892071

Country of ref document: EP

Effective date: 20191114