WO2018188186A1 - 一种切换方法及装置 - Google Patents

一种切换方法及装置 Download PDF

Info

Publication number
WO2018188186A1
WO2018188186A1 PCT/CN2017/087797 CN2017087797W WO2018188186A1 WO 2018188186 A1 WO2018188186 A1 WO 2018188186A1 CN 2017087797 W CN2017087797 W CN 2017087797W WO 2018188186 A1 WO2018188186 A1 WO 2018188186A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
terminal
network element
tft
smf network
Prior art date
Application number
PCT/CN2017/087797
Other languages
English (en)
French (fr)
Inventor
何岳
金辉
窦凤辉
杨皓睿
欧阳国威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780034572.3A priority Critical patent/CN109314893B/zh
Publication of WO2018188186A1 publication Critical patent/WO2018188186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a switching method and apparatus.
  • the cell connected to it will change.
  • the best quality cell is selected to perform the handover operation.
  • the handover in the existing LTE system includes: (1) intra-station handover: the terminal in the connected state switches from one cell of the serving base station to another cell; (2) the inter-station handover through X2: the terminal in the connected state from the one of the serving base stations The cell switches to one cell of another base station, the serving base station exists and configures an X2 interface with another base station; (3) the inter-station handover through S1: the connected state terminal switches from one cell of the serving base station to one of the other base stations The cell, the serving base station and the other base station are not configured with an X2 interface.
  • next-generation wireless communication systems such as New Radio (NR) systems
  • LTE Long Term Evolution
  • NR New Radio
  • the entity is separated, that is, the Mobility Management Entity (MME) in the LTE system is separated into an Access and Mobility Management Function (AMF) network element and a Session Management Function (SMF) network.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • the SMF network element is responsible for the Internet Protocol (IP) address allocation of the terminal. If the terminal switches from one SMF network element to another SMF network element, the newly switched SMF network element needs to reassign the IP address to the terminal. In this case, there is no clear solution to ensure the continuity of the service of the terminal during the handover process. Sex.
  • IP Internet Protocol
  • the present application provides a handover method and apparatus for solving the problem of how to ensure the continuity of the service of the terminal during the handover process when the SMF network element changes.
  • an embodiment of the present application provides a handover method, where the method includes:
  • the first SMF network element receives the first message, and allocates a first IP address to the terminal; the first message is used to indicate that the terminal needs to perform relocation of the SMF network element;
  • the first SMF network element sends the first IP address to the terminal, and the first IP address is used by the terminal to monitor the downlink data after using the first IP address, and the IP of the terminal is used.
  • the address is updated to the first IP address
  • the first SMF network element sends the first IP address to the UPF network element, and the first IP address is used by the UPF network element to update the IP address of the terminal downlink NAT mapping to the first IP address.
  • the method further includes:
  • the first SMF network element acquires a second uplink TFT and a second downlink TFT that are allocated by the second SMF network element to the terminal;
  • the second SMF network element is a source SMF network element that is switched by the terminal;
  • the first SMF network element generates a first uplink TFT for the terminal according to the second uplink TFT and the first IP address, and sends the first uplink TFT to the terminal;
  • the uplink TFT is used to update the uplink TFT of the terminal to the first uplink TFT after the terminal updates the IP address of the terminal to the first IP address;
  • the first SMF network element generates a first downlink TFT for the terminal according to the second downlink TFT and the first IP address, and sends the first downlink TFT to the UPF network element;
  • the first downlink TFT is used to update the downlink TFT of the terminal to the first downlink after the UPF network element updates the IP address of the terminal downlink NAT mapping to the first IP address. TFT.
  • the first message includes the identifier information of the second SMF network element
  • the first SMF network element acquires the second uplink TFT and the second downlink TFT that are allocated by the second SMF network element to the terminal, and includes:
  • the first SMF network element acquires the second uplink TFT and the second downlink TFT from the second SMF network element according to the identifier information of the second SMF network element.
  • the first message includes the second uplink TFT and the second downlink TFT;
  • the first SMF network element acquires the second uplink TFT and the second downlink TFT that are allocated by the second SMF network element to the terminal, and includes:
  • the first SMF network element acquires the second uplink TFT and the second downlink TFT from the first message.
  • the first SMF network element sends the first IP address to the terminal, including:
  • the first SMF network element sends the first IP address to the second SMF network element, so that the second SMF network element sends the first IP address to the terminal by using an AMF network element.
  • an embodiment of the present application provides a handover method, where the method includes:
  • the first FMF network element Receiving, by the first FMF network element, the first IP address sent by the first SMF network element; the first IP address is allocated by the first SMF network element after receiving the first message; the first message is used to indicate the location The terminal needs to perform relocation of the SMF network element;
  • the UPF network element updates the IP address of the terminal downlink NAT mapping to the first IP address
  • the UPF network element receives the uplink data sent by the terminal, and if the source IP address of the uplink data is the first IP address, the IP address of the terminal uplink NAT mapping is updated to the first IP address. address.
  • the method further includes:
  • the UPF network element After the UPF network element updates the IP address of the terminal downlink NAT mapping to the first IP address, the downlink TFT of the terminal is updated to the first downlink TFT.
  • an embodiment of the present application provides a handover method, where the method includes:
  • the terminal receives the first IP address sent by the first SMF; the first IP address is allocated to the terminal after the first SMF network element receives the first message; the first message is used to indicate that the terminal needs to perform Relocation of SMF network elements;
  • the terminal After the terminal monitors the downlink data by using the first IP address, the terminal updates the IP address of the terminal to the first IP address.
  • the method before the terminal updates the IP address of the terminal to the first IP address, the method further includes:
  • the terminal monitors downlink data by using a second IP address;
  • the second IP address is a second SMF for the terminal
  • the second SMF network element is a source SMF network element that is switched by the terminal;
  • the method further includes:
  • the terminal After the terminal updates the IP address of the terminal to the first IP address, the terminal updates the uplink TFT of the terminal to the first uplink TFT.
  • an embodiment of the present application provides an SMF network element, where the SMF network element includes: a transceiver and a processor;
  • the processor is configured to receive a first message, and allocate a first IP address to the terminal; the first message is used to indicate that the terminal needs to perform relocation of an SMF network element;
  • the transceiver is configured to send the first IP address to the terminal, where the first IP address is used by the terminal to monitor downlink data after using the first IP address, and Updating the address to the first IP address; and transmitting the first IP address to the UPF network element, where the first IP address is used by the UPF network element to update the IP address of the terminal after the downlink NAT mapping Is the first IP address.
  • the transceiver is further configured to:
  • the second SMF network element Obtaining, by the second SMF network element, a second uplink TFT and a second downlink TFT that are allocated by the terminal;
  • the second SMF network element is a source SMF network element that is switched by the terminal;
  • the processor is further configured to generate a first uplink TFT for the terminal according to the second uplink TFT and the first IP address, and send the first uplink TFT to the The first uplink TFT is used to update the uplink TFT of the terminal to the first uplink TFT after the terminal updates the IP address of the terminal to the first IP address;
  • the processor is further configured to generate a first downlink TFT for the terminal according to the second downlink TFT and the first IP address, and send the first downlink TFT to the transceiver by using the transceiver
  • the UPF network element is configured to: after the UPF network element updates the IP address of the terminal downlink NAT mapping to the first IP address, update the downlink TFT of the terminal to The first downlink TFT.
  • the first message includes the identifier information of the second SMF network element
  • the transceiver is specifically configured to:
  • the first message includes the second uplink TFT and the second downlink TFT;
  • the transceiver is specifically configured to:
  • the transceiver is specifically configured to:
  • the embodiment of the present application provides a UPF network element, where the UPF network element includes: a transceiver and a processor;
  • the transceiver is configured to receive a first IP address sent by the first SMF network element, where the first IP address is allocated by the first SMF network element after receiving the first message; the first message
  • the device is configured to indicate that the terminal needs to perform relocation of the SMF network element.
  • the processor is configured to update the IP address of the terminal downlink NAT mapping to the first IP address; and, if the source IP address of the uplink data sent by the terminal received by the transceiver is Said the first IP address, then Updating the IP address of the terminal uplink NAT mapping to the first IP address.
  • the transceiver is further configured to receive, by the first SMF network element, a first downlink TFT allocated to the terminal;
  • the processor is further configured to update the downlink TFT of the terminal to the first downlink TFT after updating the IP address of the terminal downlink NAT mapping to the first IP address.
  • an embodiment of the present application provides a terminal, where the terminal includes: a transceiver and a processor;
  • the transceiver is configured to receive a first IP address sent by the first SMF, where the first IP address is allocated by the first SMF network element after receiving the first message; the first message is used by Instructing the terminal to perform relocation of the SMF network element;
  • the processor is configured to update the IP address of the terminal to the first IP address after monitoring the downlink data by using the first IP address.
  • the processor before the processor updates the IP address of the terminal to the first IP address, the processor is further configured to:
  • the second IP address is allocated by the second SMF for the terminal; and the second SMF network element is a source SMF network element that is switched by the terminal;
  • the transceiver is further configured to receive, by the first SMF, a first uplink TFT allocated to the terminal;
  • the processor is further configured to update the uplink TFT of the terminal to the first uplink TFT after updating the IP address of the terminal to the first IP address.
  • the embodiment of the present application further provides an apparatus, where the apparatus includes various functional modules, such as a sending module, a receiving module, a processing module, and the like, for performing the above method steps.
  • the device may be a communication entity such as a terminal, an SMF network element, a UPF network element, or the like.
  • the embodiment of the present application further provides an apparatus, where the apparatus includes a processor and a memory, where the memory is used to store a software program, and the processor is configured to read a software program stored in the memory and implement any one of the above designs.
  • Communication method The device may be a communication entity such as a terminal, an SMF network element, a UPF network element, or the like.
  • the embodiment of the present application further provides a computer storage medium, where the software program stores a software program, and the software program can implement the switching method provided by any one of the above designs when being read and executed by one or more processors.
  • the embodiment of the present application further provides a computer program product comprising instructions, when executed on a computer, causing the computer to perform the switching method provided by any one of the above designs.
  • the first IP address is sent to the terminal, and the first IP address is sent to the UPF network element; thus, for the UPF network element, the receiving is performed.
  • the IP address of the terminal downlink NAT mapping may be updated to the first IP address, so that the destination IP address of the downlink data sent to the terminal is the first IP address; for the terminal, after receiving After the first IP address, the downlink data may be monitored by using the first IP address, so that the terminal can receive the downlink data after the destination IP address of the downlink data is updated to the first IP address; further, the terminal receives the destination IP address.
  • the IP address of the terminal is updated to the first IP address, and the uplink data with the source IP address being the first IP address is sent to the UPF, so that the UPF receives the uplink data and then uplinks the terminal.
  • the NAT mapped IP address is updated to the first IP address. That is, in the terminal handover process, the UPF network element first updates the IP address of the terminal downlink NAT mapping to the first IP address, and then updates the IP address of the terminal uplink NAT mapping to the first IP address, thereby being effective. On the basis of ensuring the continuity of the service, terminal switching is implemented.
  • FIG. 1 is a schematic diagram of a system architecture applicable to the present application
  • FIG. 2 is a schematic diagram of NAT mapping of uplink transmission and downlink transmission in an LTE system
  • FIG. 3 is a schematic flowchart of a handover method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of NAT mapping update during terminal handover
  • FIG. 5 is a schematic flowchart of a handover method according to Embodiment 2 of the present application.
  • FIG. 6 is a schematic flowchart of a handover method according to Embodiment 3 of the present application.
  • FIG. 7 is a schematic structural diagram of an SMF network element according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a UPF network element according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a system architecture applicable to the present application.
  • the system architecture includes an Authentication Server Function (AUSF) network element, a unified database management function (UDM), an AMF network element, an SMF network element, and a policy control function (Policy).
  • Control function PCF
  • AF application function
  • RAN radio access network
  • UPF User Plane
  • DN data network
  • the SMF network element is responsible for session management, Internet Protocol (IP) address allocation and management of the terminal, and the like.
  • the AMF network element is responsible for access and mobility management. It is the endpoint of the interface between NG2 (the interface between the AMF and the RAN device). It terminates the non-access stratum (NAS) message, completes the registration management, and manages the connection. And reachability management, mobility management, etc., and transparent routing session management (SMS) messages to SMF network elements.
  • the UPF network element is a user plane function device, which is responsible for routing and forwarding of data packets, lawful interception, and downlink data packet buffering and triggering downlink data packet notification messages.
  • the terminal may be a wireless terminal for providing voice and/or data connectivity to the user.
  • the wireless terminal can be a handheld device with wireless connectivity, or other processing device connected to a wireless modem, and a mobile terminal that communicates with one or more core networks via a wireless access network.
  • the wireless terminal can be a mobile phone, a computer, a tablet, a personal digital assistant (PDA), a mobile Internet device (MID), a wearable device, and an e-book reader (e). -book reader)etc.
  • the wireless terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the wireless terminal can be part of a mobile station, an access point, or a user equipment (UE).
  • UE user equipment
  • the terminal communicates with an external Packet Data Network (PDN) or the Internet through a Packet Data Network Gateway (PGW).
  • PGW Packet Data Network Gateway
  • the PGW maps the internal IP address to a public IP address
  • the PGW maps the public IP address to an internal IP address.
  • the internal IP address is the IP address of the terminal in the LTE system.
  • the IP address of the terminal is 192.168.0.100
  • the public IP address is 61.759.62.130.
  • FIG. 2 it is a network address translation (NAT) mapping diagram for uplink transmission and downlink transmission.
  • NAT network address translation
  • the IP address of the terminal is allocated by the PGW for the terminal, and therefore, the handover process at the terminal
  • the IP address of the terminal usually does not change.
  • the IP address of the terminal is allocated by the SMF network element for the terminal. If the terminal switches from one SMF network element to another SMF network element during the handover process, the newly switched SMF. The network element re-allocates the IP address of the terminal, which causes the IP address of the terminal to change. If the NAT mapping of the uplink transmission and the downlink transmission is not properly updated, the service of the terminal is interrupted.
  • the present application provides a handover method for effectively ensuring service continuity of a terminal during handover when a change occurs in an SMF network element.
  • FIG. 3 is a schematic flowchart diagram of a handover method according to an embodiment of the present application. The method includes:
  • Step 301 The first SMF network element receives the first message, and allocates a first IP address to the terminal.
  • the first message is used to indicate that the terminal needs to perform relocation of the SMF network element.
  • Step 302 The first SMF network element sends the first IP address to the terminal.
  • Step 303 The terminal receives the first IP address, and monitors downlink data by using the first IP address and the second IP address.
  • the second IP address is allocated by the second SMF for the terminal, and the second SMF network element is Source SMF network element for terminal handover;
  • Step 304 The first SMF network element sends the first IP address to the UPF network element.
  • Step 305 The UPF network element receives the first IP address, and updates the IP address of the terminal downlink NAT mapping to the first IP address.
  • Step 306 After monitoring the downlink data by using the first IP address, the terminal updates the IP address of the terminal to the first IP address.
  • Step 307 The UPF network element receives the uplink data sent by the terminal. If the source IP address of the uplink data is the first IP address, the IP address of the uplink NAT mapping of the terminal is updated to the first IP address. .
  • step numbers are merely exemplary representations of the execution order, and the order of execution is not specifically limited in the present application.
  • the first SMF network element may be selected according to the identifier information of the target serving base station that the terminal handover is included in the handover request after the AMF receives the handover request (Handover Request) sent by the source serving base station of the terminal handover.
  • the first message may be a Relocation Request message.
  • the first possible implementation manner is that the first message is sent by the AMF network element to the first SMF network element. Specifically, after the AMF network element selects the first SMF network element, the first message is sent to the first SMF network element. . Correspondingly, after receiving the first message, the first SMF network element allocates a first IP address to the terminal, and sends the first IP address to the terminal through the AMF network element.
  • the first message may include the identifier information of the second SMF network element.
  • the first SMF network element may obtain the second SMF network element according to the identifier information of the second SMF network element. Obtaining a second uplink TFT and a second downlink TFT, and the first SMF network element generates a first uplink TFT for the terminal according to the second uplink TFT and the first IP address, and the first uplink TFT Sending to the terminal, and generating a first downlink TFT for the terminal according to the second downlink TFT and the first IP address, and sending the first downlink TFT to the UPF network element.
  • the first uplink TFT is used to update the uplink TFT of the terminal to the first uplink TFT after the terminal updates the IP address of the terminal to the first IP address;
  • the downlink TFT is configured to: after the UPF network element updates the IP address of the terminal downlink NAT mapping to the first IP address, the downlink TFT of the terminal Updated to the first downlink TFT.
  • the first SMF network element may send the first uplink TFT and the first IP address in the response message of the first message to the AMF, and then send the AMF to the terminal; the first SMF network element may be the first The downlink TFT and the first IP address are carried in the second message and sent to the UPF.
  • the second message may be a modify session request message.
  • the second possible implementation manner is that the first message is sent by the second SMF network element to the first SMF network element, and the second SMF network element is the source SMF network element that is switched by the terminal.
  • the third message is sent to the second SMF network element, where the third message includes the identifier information of the first SMF network element, and then the second SMF network element is first.
  • the SMF network element sends the first message.
  • the first SMF network element allocates the first IP address to the terminal, and then sends the first IP address to the second SMF network element, and the second SMF network element sends the first IP address to the terminal through the AMF network element.
  • the first message may include the second uplink TFT and the second downlink TFT, so that the first SMF network element may obtain the second uplink TFT and the second downlink TFT from the first message, and then the first SMF network.
  • the first SMF network element may send the first uplink TFT and the first IP address in the response message of the first message to the second SMF network element, and then send the second SMF network element to the terminal through the AMF.
  • the first SMF network element may carry the first downlink TFT and the first IP address in the second message and send the message to the UPF.
  • the second message may be a modify session request message.
  • the first IP address is sent to the terminal, and the first IP address is sent to the UPF network element; thus, for the UPF network element After receiving the first IP address, the IP address of the terminal downlink NAT mapping may be updated to the first IP address, so that the destination IP address of the downlink data sent to the terminal is the first IP address; After receiving the first IP address, the downlink data may be monitored by using the first IP address, so that after the destination IP address of the downlink data is updated to the first IP address, the terminal can receive the downlink data; further, the terminal is After receiving the downlink data whose destination IP address is the first IP address, the IP address of the terminal is updated to the first IP address, and the uplink data with the source IP address being the first IP address is sent to the UPF, so that the UPF receives the uplink data.
  • the IP address of the terminal uplink NAT mapping is updated to the first IP address. That is, in the terminal handover process, the UPF network element first updates the IP address of the terminal downlink NAT mapping to the first IP address, and then updates the IP address of the terminal uplink NAT mapping to the first IP address, thereby being effective. On the basis of ensuring the continuity of the service, terminal switching is implemented.
  • FIG. 4 is a schematic diagram of NAT mapping update during terminal handover.
  • the IP address (ie, the second IP address) before the terminal is updated is 192.168.0.100
  • the IP address (ie, the first IP address) after the terminal is updated is 192.169.2.101
  • the public IP address is 61.759.62.130.
  • the UPF network element updates the IP address of the terminal downlink NAT mapping to 61.759.62.130.
  • the IP address of the terminal uplink NAT mapping is updated to the first IP address.
  • Embodiment 2 Corresponding to the first possible implementation manner in Embodiment 1
  • FIG. 5 is a schematic flowchart of a handover method according to Embodiment 2 of the present application. As shown in FIG. 5, the method includes:
  • Step 501 The source base station initiates a handover to the target base station.
  • Step 502 The source base station sends a handover request message to the AMF to request handover, and the handover request message may include an identifier of the target base station.
  • Step 503 After determining that the SMF of the terminal needs to be changed, the AMF selects a target SWF (T-SWF) to be switched by the terminal, and sends a relocation request to the target SWF, where the relocation request includes the source SWF of the terminal handover (S- The identifier of the SWF); wherein the AMF can select the target SWF according to the identity of the target base station.
  • T-SWF target SWF
  • S- The identifier of the SWF The identifier of the SWF
  • Step 504 The target SWF sends a session management context request (SM context request) of the terminal to the source SMF.
  • SM context request session management context request
  • Step 505 the source SMF returns a session context response (SM context response) to the target SWF.
  • SM context response session context response
  • Step 506 The target SWF allocates a new IP address (ie, the first IP address) to the terminal, and acquires the second uplink TFT and the second downlink TFT allocated by the source SWF to the terminal from the source SMF, and according to the second uplink TFT and the first
  • the IP address is used to generate a first uplink TFT for the terminal, and generates a first downlink TFT for the terminal according to the second downlink TFT and the first IP address
  • the target SWF sends a relocation response to the AMF, and the relocation request response is The session management context information including the first IP address, the first uplink TFT, and the terminal.
  • step 507 the AMF sends a handover request to the target base station.
  • Step 508 The target base station sends a handover request ACK to the AMF.
  • Step 509 The AMF sends a handover command to the terminal by using the original base station, where the handover command includes the first IP address and the first downlink TFT.
  • Step 510 The terminal sends a handover confirm to the target base station, and monitors the downlink data by using the second IP address (the IP address allocated by the source SWF for the terminal) and the first IP address.
  • the terminal still uses the second IP address to send the uplink data.
  • step 511 the target base station sends a handover notify to the AMF.
  • step 512 the AMF sends a handover notify to the target SWF.
  • Step 513 The target SWF sends a modify session request to the UPF, where the change session request includes the first IP address and the first downlink TFT.
  • Step 514 The UPF updates the IP address of the terminal downlink NAT mapping to the first IP address, and updates the downlink TFT of the terminal to the first downlink TFT.
  • step 515 the UPF sends a modify session response to the target SWF.
  • the UPF sends the downlink data to the terminal using the first IP address.
  • Step 516 The terminal monitors the downlink data by using the first IP address and the second IP address, and after monitoring the downlink data whose destination IP address is the first IP address, updates the IP address of the terminal to the first IP address, and the terminal The upstream TFT is updated to the first uplink TFT.
  • the terminal sends the uplink data to the UPF using the first IP address.
  • Step 517 After receiving the uplink data sent by the terminal using the first IP address, the UPF updates the IP address of the terminal uplink NAT mapping to the first IP address.
  • Embodiment 3 Corresponding to the second possible implementation manner in Embodiment 1
  • FIG. 6 is a schematic flowchart of a handover method according to Embodiment 3 of the present application. As shown in FIG. 6, the method includes:
  • step 601 and 602 refer to the descriptions of step 501 and step 502 in the second embodiment, and details are not described herein again.
  • Step 603 After determining that the SMF of the terminal needs to be changed, the AMF selects the target SWF to be switched by the terminal, and sends a third message to the source SWF, where the third message includes the identifier of the target SWF.
  • Step 604 The source SWF sends a relocation request message to the target SWF according to the identifier of the target SWF.
  • the request message includes a second uplink TFT and a second downlink TFT allocated by the source SWF to the terminal.
  • Step 605 The target SWF allocates a first IP address to the terminal, and generates a first uplink TFT for the terminal according to the second uplink TFT and the first IP address, and generates a first downlink for the terminal according to the second downlink TFT and the first IP address.
  • the TFT is sent, and a relocation response is sent to the source SWF.
  • the relocation request response includes a first IP address and a first uplink TFT.
  • Step 606 The source SWF sends a response message of the third message to the AMF, where the response message may include the first IP address, the first uplink TFT, and the session management context information of the terminal.
  • Steps 607 to 617 are respectively referred to step 507 to step 517 in the second embodiment, and details are not described herein again.
  • the present application provides an SMF network element, a terminal, and a UPF network element.
  • SMF network element For the specific implementation of the SMF network element, the terminal, and the UPF network element, refer to the foregoing method flow.
  • FIG. 7 is a schematic structural diagram of an SMF network element according to an embodiment of the present invention.
  • the SMF network element 700 includes: a transmitter 701a, a receiver 701b, a processor 702, a memory 703, and a bus system 704;
  • the memory 703 is used to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 703 may be a random access memory (RAM) or a non-volatile memory such as at least one disk storage. Only one memory is shown in the figure, of course, the memory can also be set to a plurality as needed. Memory 703 can also be a memory in processor 702.
  • the memory 703 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 702 controls the operation of the SMF network element 700, which may also be referred to as a CPU (Central Processing Unit).
  • the components of the SMF network element 700 are coupled together by a bus system 704.
  • the bus system 704 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • various buses are labeled as bus system 704 in the figure. For ease of representation, only the schematic drawing is shown in FIG.
  • Processor 702 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 702 or an instruction in a form of software.
  • the processor 702 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 703, and processor 702 reads the information in memory 703 in conjunction with its hardware to perform the method steps performed by the above SMF network elements.
  • FIG. 8 is a schematic structural diagram of a UPF network element according to an embodiment of the present invention.
  • the UPF network element 800 includes: a transmitter 801a, a receiver 801b, a processor 802, a memory 803, and a bus system 804;
  • the memory 803 is used to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 803 may be a random access memory (RAM) or a non-volatile memory, such as at least one disk storage. Only one memory is shown in the figure, of course, the memory can also be set to a plurality as needed. Memory 803 can also be a memory in processor 802.
  • the memory 803 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 802 controls the operation of the UPF network element 800, which may also be referred to as a CPU (Central Processing Unit).
  • the components of the UPF network element 800 are coupled together by a bus system 804.
  • the bus system 804 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • various buses are labeled as bus system 804 in the figure. For ease of representation, only the schematic drawing is shown in FIG.
  • Processor 802 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 802 or an instruction in a form of software.
  • the processor 802 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 803, and the processor 802 reads the information in the memory 803 and performs the method steps performed by the above UPF network element in conjunction with its hardware.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 900 includes: a transmitter 901a, a receiver 901b, a processor 902, a memory 903, and a bus system 904;
  • the memory 903 is used to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 903 may be a random access memory (RAM) or a non-volatile memory such as at least one disk storage. Only one memory is shown in the figure, of course, the memory can also be set to a plurality as needed. Memory 903 can also be a memory in processor 902.
  • the memory 903 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 902 controls the operation of the terminal 900, which may also be referred to as a CPU (Central Processing Unit).
  • the various components of the terminal 900 are coupled together by a bus system 904.
  • the bus system 904 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • various buses are labeled as bus system 904 in the figure. For ease of representation, Only the schematic drawing is shown in FIG.
  • Processor 902 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 902 or an instruction in a form of software.
  • the processor 902 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 903, and the processor 902 reads the information in the memory 903 and executes the method steps performed by the above terminal in conjunction with its hardware.
  • the embodiment of the present application further provides a computer readable storage medium for storing computer software instructions required to execute the foregoing processor, which includes a program for executing the above-mentioned processor.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种切换方法及装置,其中方法包括:第一SMF网元为终端分配第一IP地址后,将第一IP地址发送给终端,以及将第一IP地址发送给UPF网元;如此,对于UPF网元来说,在接收到第一IP地址后,可将终端下行NAT映射后的IP地址更新为第一IP地址,从而使得发送给终端的下行数据的目的IP地址为第一IP地址;对于终端来说,在接收到第一IP地址后,可使用第一IP地址监测下行数据,从而保证在下行数据的目的IP地址更新为第一IP地址后,终端能够接收到下行数据,在有效保证业务的连续性的基础上,以实现终端切换。

Description

一种切换方法及装置
本申请要求在2017年4月14日提交中国专利局、申请号为201710245981.X、发明名称为“一种移动终端切换的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种切换方法及装置。
背景技术
当终端处于连接态的移动过程中,与其连接的小区将发生变化,为保证连续的无中断业务,会选择质量最好的小区执行切换操作。
现有LTE系统内的切换包括:(1)站内切换:连接态的终端从服务基站的一个小区切换至另一个小区;(2)通过X2的站间切换:连接态的终端从服务基站的一个小区切换至另一个基站的一个小区,服务基站与另一个基站存在并配置了X2接口;(3)通过S1的站间切换:连接态的终端从服务基站的一个小区切换至另一个基站的一个小区,服务基站与另一个基站未配置X2接口。
然而,下一代无线通信系统,例如:新无线(New Radio,NR)系统,其核心网架构与长期演进(Long Term Evolution,LTE)系统存在区别,例如,NR系统中将LTE系统中的控制面实体进行了分离,即将LTE系统中的移动性管理实体(Mobility Management Entity,MME)分离为移动性管理功能(Access and Mobility Management Function,AMF)网元和会话管理功能(Session Management Function,SMF)网元,其中,SMF网元负责终端的互联网协议(Internet Protocol,IP)地址分配。若终端从一个SMF网元切换至另一个SMF网元,则需要新切换的SMF网元为终端重新分配IP地址,此种情况下,目前尚无明确方案来保证终端在切换过程中的业务连续性。
发明内容
本申请提供一种切换方法及装置,用以解决在SMF网元发生变化时,如何保证终端在切换过程中的业务连续性的问题。
第一方面,本申请实施例提供一种切换方法,该方法包括:
第一SMF网元接收第一消息,为所述终端分配第一IP地址;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
所述第一SMF网元将所述第一IP地址发送给所述终端,所述第一IP地址用于所述终端使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址;
所述第一SMF网元将所述第一IP地址发送给UPF网元,所述第一IP地址用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址。
可选地,所述方法还包括:
所述第一SMF网元获取第二SMF网元为所述终端分配的第二上行TFT和第二下行TFT; 所述第二SMF网元为所述终端切换的源SMF网元;
所述第一SMF网元根据所述第二上行TFT和所述第一IP地址,为所述终端生成第一上行TFT,并将所述第一上行TFT发送给所述终端;所述第一上行TFT用于所述终端将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT;
所述第一SMF网元根据所述第二下行TFT和所述第一IP地址,为所述终端生成第一下行TFT,并将所述第一下行TFT发送给所述UPF网元;所述第一下行TFT用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT更新为所述第一下行TFT。
可选地,所述第一消息中包括所述第二SMF网元的标识信息;
所述第一SMF网元获取第二SMF网元为所述终端分配的第二上行TFT和第二下行TFT,包括:
所述第一SMF网元根据所述第二SMF网元的标识信息,从所述第二SMF网元获取所述第二上行TFT和所述第二下行TFT。
可选地,所述第一消息中包括所述第二上行TFT和所述第二下行TFT;
所述第一SMF网元获取第二SMF网元为所述终端分配的第二上行TFT和第二下行TFT,包括:
所述第一SMF网元从所述第一消息中获取所述第二上行TFT和所述第二下行TFT。
可选地,所述第一SMF网元将所述第一IP地址发送给所述终端,包括:
所述第一SMF网元通过AMF网元将所述第一IP地址发送给所述终端;或者,
所述第一SMF网元将所述第一IP地址发送给第二SMF网元,以使所述第二SMF网元通过AMF网元将所述第一IP地址发送给所述终端。
第二方面,本申请实施例提供一种切换方法,所述方法包括:
UPF网元接收第一SMF网元发送的第一IP地址;所述第一IP地址为所述第一SMF网元接收到第一消息后为终端分配的;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址;
所述UPF网元接收所述终端发送的上行数据,若所述上行数据的源IP地址为所述第一IP地址,则将所述终端上行NAT映射后的IP地址更新为所述第一IP地址。
可选地,所述方法还包括:
所述UPF网元接收所述第一SMF网元为所述终端分配的第一下行TFT;
所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT更新为所述第一下行TFT。
第三方面,本申请实施例提供一种切换方法,所述方法包括:
终端接收第一SMF发送的第一IP地址;所述第一IP地址为所述第一SMF网元接收到第一消息后为终端分配的;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
所述终端使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址。
可选地,所述终端将所述终端的IP地址更新为所述第一IP地址之前,还包括:
所述终端使用第二IP地址监测下行数据;所述第二IP地址为第二SMF为所述终端分 配的;所述第二SMF网元为所述终端切换的源SMF网元;
可选地,所述方法还包括:
终端接收所述第一SMF为所述终端分配的第一上行TFT;
所述终端将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT。
第四方面,本申请实施例提供一种SMF网元,所述SMF网元包括:收发器和处理器;
所述处理器,用于接收第一消息,为所述终端分配第一IP地址;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
所述收发器,用于将所述第一IP地址发送给所述终端,所述第一IP地址用于所述终端使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址;以及,将所述第一IP地址发送给UPF网元,所述第一IP地址用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址。
可选地,所述收发器还用于:
获取第二SMF网元为所述终端分配的第二上行TFT和第二下行TFT;所述第二SMF网元为所述终端切换的源SMF网元;
所述处理器,还用于根据所述第二上行TFT和所述第一IP地址,为所述终端生成第一上行TFT,并通过所述收发器将所述第一上行TFT发送给所述终端;所述第一上行TFT用于所述终端将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT;
所述处理器,还用于根据所述第二下行TFT和所述第一IP地址,为所述终端生成第一下行TFT,并通过所述收发器将所述第一下行TFT发送给所述UPF网元;所述第一下行TFT用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT更新为所述第一下行TFT。
可选地,所述第一消息中包括所述第二SMF网元的标识信息;
所述收发器具体用于:
根据所述第二SMF网元的标识信息,从所述第二SMF网元获取所述第二上行TFT和所述第二下行TFT。
可选地,所述第一消息中包括所述第二上行TFT和所述第二下行TFT;
所述收发器具体用于:
从所述第一消息中获取所述第二上行TFT和所述第二下行TFT。
可选地,所述收发器具体用于:
通过AMF网元将所述第一IP地址发送给所述终端;或者,
将所述第一IP地址发送给第二SMF网元,以使所述第二SMF网元通过AMF网元将所述第一IP地址发送给所述终端。
第五方面,本申请实施例提供一种UPF网元,所述UPF网元包括:收发器和处理器;
所述收发器,用于接收第一SMF网元发送的第一IP地址;所述第一IP地址为所述第一SMF网元接收到第一消息后为终端分配的;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
所述处理器,用于将所述终端下行NAT映射后的IP地址更新为所述第一IP地址;以及,若所述收发器接收到的所述终端发送的上行数据的源IP地址为所述第一IP地址,则 将所述终端上行NAT映射后的IP地址更新为所述第一IP地址。
可选地,所述收发器还用于接收所述第一SMF网元为所述终端分配的第一下行TFT;
所述处理器还用于将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT更新为所述第一下行TFT。
第六方面,本申请实施例提供一种终端,所述终端包括:收发器和处理器;
所述收发器,用于接收第一SMF发送的第一IP地址;所述第一IP地址为所述第一SMF网元接收到第一消息后为终端分配的;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
所述处理器,用于使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址。
可选地,所述处理器将所述终端的IP地址更新为所述第一IP地址之前,还用于:
使用第二IP地址监测下行数据;所述第二IP地址为第二SMF为所述终端分配的;所述第二SMF网元为所述终端切换的源SMF网元;
可选地,所述收发器还用于,接收所述第一SMF为所述终端分配的第一上行TFT;
所述处理器还用于,将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT。
本申请实施例还提供一种装置,该装置包括用于执行上述方法步骤的各功能模块,例如发送模块、接收模块和处理模块等。该装置可以是通信实体,例如终端、SMF网元、UPF网元等。
本申请实施例还提供一种装置,该装置包括处理器和存储器,所述存储器用于存储软件程序,所述处理器用于读取所述存储器中存储的软件程序并实现上述任意一种设计提供的通信方法。该装置可以是通信实体,例如终端、SMF网元、UPF网元等。
本申请实施例还提供一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一种设计提供的切换方法。
本申请实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任意一种设计提供的切换方法。
本申请中,第一SMF网元为终端分配第一IP地址后,将第一IP地址发送给终端,以及将第一IP地址发送给UPF网元;如此,对于UPF网元来说,在接收到第一IP地址后,可将终端下行NAT映射后的IP地址更新为第一IP地址,从而使得发送给终端的下行数据的目的IP地址为第一IP地址;对于终端来说,在接收到第一IP地址后,可使用第一IP地址监测下行数据,从而保证在下行数据的目的IP地址更新为第一IP地址后,终端能够接收到下行数据;进一步地,终端在接收到目的IP地址为第一IP地址的下行数据后,将终端的IP地址更新为第一IP地址,并向UPF发送源IP地址为第一IP地址的上行数据,以便于UPF接收到上行数据后,将终端上行NAT映射后的IP地址更新为第一IP地址。也就是说,在终端切换过程中,UPF网元先将终端下行NAT映射后的IP地址更新为第一IP地址,再将终端上行NAT映射后的IP地址更新为第一IP地址,从而在有效保证业务的连续性的基础上,实现终端切换。
附图说明
图1为本申请适用的一种系统架构示意图;
图2为LTE系统中的上行传输和下行传输的NAT映射示意图;
图3为为本申请实施例提供的一种切换方法的流程示意图;
图4为终端切换过程中的NAT映射更新示意图;
图5为本申请实施例二提供的一种切换方法的流程示意图;
图6为本申请实施例三提供的一种切换方法的流程示意图;
图7为本申请实施例提供的一种SMF网元的结构示意图;
图8为本申请实施例提供的一种UPF网元的结构示意图;
图9为本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请中的切换方法可适用于多种系统架构,图1为本申请适用的一种系统架构示意图。如图1所示,该系统架构中包括鉴权服务器功能(Authentication Server Function,AUSF)网元、统一数据库管理功能(Unified Data Management,UDM)、AMF网元、SMF网元、策略控制功能(Policy Control function,PCF)网元、应用功能(Application Function,AF)网元、无线接入网(Radio Access Network,RAN)网元(也可称为接入网网元)、用户面功能(User Plane Function,UPF)网元、数据网络(Data Network,DN)网元以及终端等。
其中,SMF网元负责会话管理、终端的互联网协议(Internet Protocol,IP)地址分配与管理等。AMF网元负责接入与移动性管理,是NG2(AMF与RAN设备之间的接口)接口的终结点,终结了非接入层(Non-access stratum,NAS)消息、完成注册管理、连接管理以及可达性管理以及移动性管理等,并且透明路由会话管理(Session Management,SM)消息到SMF网元。UPF网元是用户面功能设备,负责数据包的路由与转发、合法监听、以及下行数据包缓存并且触发下行数据包通知消息等功能。
本申请中,终端可以为无线终端,用于向用户提供语音和/或数据连通性。无线终端可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以为移动电话、计算机、平板电脑、个人数码助理(personal digital assistant,缩写:PDA)、移动互联网设备(mobile Internet device,缩写:MID)、可穿戴设备和电子书阅读器(e-book reader)等。又如,无线终端也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动设备。再如,无线终端可以为移动站(mobile station)、接入点(access point)、或用户设备(user equipment,简称UE)的一部分。
在现有的LTE系统中,终端通过分组数据网络网关(Packet Data Network Gateway,PGW)与外部的分组数据网络(Packet Data Network,PDN)或者因特网进行通信。具体来说,在进行上行传输时,PGW将内部IP地址映射为公用IP地址;在进行下行传输时,PGW将公用IP地址映射为内部IP地址。其中,内部IP地址即为LTE系统中终端的IP地址。例如,终端的IP地址为192.168.0.100,公用IP地址为61.759.62.130,如图2所示,为上行传输和下行传输的网络地址转换(Network Address Translation,NAT)映射示意图。
由于LTE系统中,终端的IP地址是由PGW为终端分配的,因此,在终端的切换过程 中,终端的IP地址通常不会发生变化。然而,在图1所示出的系统架构中,终端的IP地址是由SMF网元为终端分配的,若终端在切换过程中从一个SMF网元切换至另一个SMF网元,新切换的SMF网元为终端重新分配IP地址,从而导致终端的IP地址发生变化,若未合理地更新上行传输和下行传输的NAT映射,则会导致终端的业务出现中断现象。
基于此,本申请提供一种切换方法,用于在SMF网元发生变化时,有效保证终端在切换过程中的业务连续性。
实施例一
参见图3,为本申请实施例提供的一种切换方法的流程示意图。该方法包括:
步骤301,第一SMF网元接收第一消息,为所述终端分配第一IP地址;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
步骤302,第一SMF网元将所述第一IP地址发送给所述终端;
步骤303,终端接收第一IP地址,并使用第一IP地址和第二IP地址监测下行数据;第二IP地址为第二SMF为所述终端分配的;所述第二SMF网元为所述终端切换的源SMF网元;
步骤304,第一SMF网元将所述第一IP地址发送给UPF网元;
步骤305,UPF网元接收第一IP地址,并将所述终端下行NAT映射后的IP地址更新为所述第一IP地址;
步骤306,终端使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址;
步骤307,UPF网元接收终端发送的上行数据,若所述上行数据的源IP地址为所述第一IP地址,则将所述终端上行NAT映射后的IP地址更新为所述第一IP地址。
需要说明的是,上述步骤编号仅是一种执行顺序的示例性表示,本申请中对执行顺序不做具体限定。
本申请中,第一SMF网元可以为AMF接收到终端切换的源服务基站发送的切换请求(Handover Request)后,根据切换请求中包括的终端切换的目标服务基站的标识信息来选择的。
第一消息可以为重定位请求(Relocation Request)消息。
第一种可能的实现方式为,第一消息是由AMF网元发送给第一SMF网元,具体来说,AMF网元选择第一SMF网元后,发送第一消息给第一SMF网元。相应地,第一SMF网元接收到第一消息后,为终端分配第一IP地址,并将第一IP地址通过AMF网元发送给终端。
此种方式,第一消息中可以包括第二SMF网元的标识信息,如此,第一SMF网元接收到第一消息后,可根据第二SMF网元的标识信息,从第二SMF网元获取第二上行TFT和第二下行TFT,进而第一SMF网元根据所述第二上行TFT和所述第一IP地址,为所述终端生成第一上行TFT,并将所述第一上行TFT发送给所述终端,以及根据所述第二下行TFT和所述第一IP地址,为所述终端生成第一下行TFT,并将所述第一下行TFT发送给所述UPF网元。
其中,所述第一上行TFT用于所述终端将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT;所述第一下行TFT用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT 更新为所述第一下行TFT。
本申请中,第一SMF网元可以将第一上行TFT和第一IP地址均携带在第一消息的响应消息中发送给AMF,进而由AMF发送给终端;第一SMF网元可以将第一下行TFT和第一IP地址携带在第二消息中发送给UPF,第二消息具体可以为更改会话请求(modify session request)消息。
第二种可能的实现方式为,第一消息是由第二SMF网元发送给第一SMF网元,第二SMF网元为终端切换的源SMF网元。具体来说,AMF网元选择第一SMF网元后,向第二SMF网元发送第三消息,第三消息中包括第一SMF网元的标识信息,进而由第二SMF网元向第一SMF网元发送第一消息。相应地,第一SMF网元接收到第一消息后,为终端分配第一IP地址,便将第一IP地址发送给第二SMF网元,由第二SMF网元通过AMF网元发送给终端。
此种方式,第一消息中可以包括第二上行TFT和第二下行TFT,如此,第一SMF网元可以从第一消息中获取到第二上行TFT和第二下行TFT,进而第一SMF网元根据所述第二上行TFT和所述第一IP地址,为所述终端生成第一上行TFT,并将所述第一上行TFT发送给所述终端,以及根据所述第二下行TFT和所述第一IP地址,为所述终端生成第一下行TFT,并将所述第一下行TFT发送给所述UPF网元。
本申请中,第一SMF网元可以将第一上行TFT和第一IP地址均携带在第一消息的响应消息中发送给第二SMF网元,进而由第二SMF网元通过AMF发送给终端;第一SMF网元可以将第一下行TFT和第一IP地址携带在第二消息中发送给UPF,第二消息具体可以为更改会话请求(modify session request)消息。
根据上述内容可知,本申请中,第一SMF网元为终端分配第一IP地址后,将第一IP地址发送给终端,以及将第一IP地址发送给UPF网元;如此,对于UPF网元来说,在接收到第一IP地址后,可将终端下行NAT映射后的IP地址更新为第一IP地址,从而使得发送给终端的下行数据的目的IP地址为第一IP地址;对于终端来说,在接收到第一IP地址后,可使用第一IP地址监测下行数据,从而保证在下行数据的目的IP地址更新为第一IP地址后,终端能够接收到下行数据;进一步地,终端在接收到目的IP地址为第一IP地址的下行数据后,将终端的IP地址更新为第一IP地址,并向UPF发送源IP地址为第一IP地址的上行数据,以便于UPF接收到上行数据后,将终端上行NAT映射后的IP地址更新为第一IP地址。也就是说,在终端切换过程中,UPF网元先将终端下行NAT映射后的IP地址更新为第一IP地址,再将终端上行NAT映射后的IP地址更新为第一IP地址,从而在有效保证业务的连续性的基础上,实现终端切换。
图4为终端切换过程中的NAT映射更新示意图。其中,终端更新前的IP地址(即第二IP地址)为192.168.0.100,终端更新后的IP地址(即第一IP地址)为192.169.2.101,公用IP地址为61.759.62.130。如图4所示,UPF网元接收到第一IP地址后,将终端下行NAT映射后的IP地址更新为61.759.62.130;随后,接收到源IP地址为第一IP地址的上行数据后,将终端上行NAT映射后的IP地址更新为第一IP地址。
下面分别结合实施例二和实施例三对本申请中的切换方法进行具体描述。
实施例二:对应实施例一中的第一种可能的实现方式
图5为本申请实施例二提供的一种切换方法的流程示意图,如图5所示,该方法包括:
步骤501,源基站向目标基站发起切换。
步骤502,源基站向AMF发送切换请求(handover required)消息请求切换,切换请求消息可包含目标基站的标识。
步骤503,AMF确定需要改变终端的SMF后,选择终端切换的目标SWF(T-SWF),并向目标SWF发送重定位请求(relocation request),重定位请求中包括终端切换的源SWF(S-SWF)的标识;其中,AMF可以根据目标基站的标识来选择目标SWF。
步骤504,目标SWF向源SMF发送终端的会话管理上下文请求(SM context request);
步骤505,源SMF向目标SWF返回会话管理上下文响应(SM context response)。
步骤506,目标SWF为终端分配新的IP地址(即第一IP地址),以及从源SMF获取源SWF为终端分配的第二上行TFT和第二下行TFT,并根据第二上行TFT和第一IP地址,为终端生成第一上行TFT,根据第二下行TFT和第一IP地址,为终端生成第一下行TFT;目标SWF向AMF发送重定位请求响应(relocation response),重定位请求响应中包括第一IP地址、第一上行TFT、终端的会话管理上下文信息。
步骤507,AMF向目标基站发送切换请求(handover request)。
步骤508,目标基站向AMF发送切换请求的响应(handover request ACK)。
步骤509,AMF通过原基站向终端发送切换命令(handover command),切换命令中包括第一IP地址和第一下行TFT。
步骤510,终端向目标基站发送切换确认(handover confirm),并使用第二IP地址(源SWF为终端分配的IP地址)和第一IP地址监测下行数据。
此时,终端仍使用第二IP地址发送上行数据。
步骤511,目标基站向AMF发送切换通知(handover notify)。
步骤512,AMF向目标SWF发送切换通知(handover notify)。
步骤513,目标SWF向UPF发送更改会话请求(modify session request),更改会话请求中包括第一IP地址、第一下行TFT。
步骤514,UPF将终端下行NAT映射后的IP地址更新为所述第一IP地址,以及将所述终端的下行TFT更新为所述第一下行TFT。
步骤515,UPF向目标SWF发送更改会话响应(modify session response)。
此时,UPF使用第一IP地址向终端发送下行数据。
步骤516,终端使用第一IP地址和第二IP地址监测下行数据,并在监测到目的IP地址为第一IP地址的下行数据后,将终端的IP地址更新为第一IP地址,并将终端的上行TFT更新为第一上行TFT。
此时,终端使用第一IP地址向UPF发送上行数据。
步骤517,UPF接收到终端使用第一IP地址发送的上行数据后,将终端上行NAT映射后的IP地址更新为所述第一IP地址。
实施例三:对应实施例一中的第二种可能的实现方式
图6为本申请实施例三提供的一种切换方法的流程示意图,如图6所示,该方法包括:
步骤601和步骤602分别参见实施例二中步骤501和步骤502的描述,此处不再赘述。
步骤603,AMF确定需要改变终端的SMF后,选择终端切换的目标SWF,并向源SWF发送第三消息,第三消息中包括目标SWF的标识。
步骤604,源SWF根据目标SWF的标识,向目标SWF发送重定位请求消息,重定位请 求消息中包括源SWF为终端分配的第二上行TFT和第二下行TFT。
步骤605,目标SWF为终端分配第一IP地址,以及根据第二上行TFT和第一IP地址,为终端生成第一上行TFT,根据第二下行TFT和第一IP地址,为终端生成第一下行TFT,并向源SWF发送重定位请求响应(relocation response),重定位请求响应中包括第一IP地址、第一上行TFT。
步骤606,源SWF向AMF发送第三消息的响应消息,该响应消息中可包括第一IP地址、第一上行TFT、终端的会话管理上下文信息。
步骤607至步骤617分别参见实施例二中的步骤507至步骤517,不再赘述。
针对于上述方法流程,本申请提供一种SMF网元、终端和UPF网元,该SMF网元、终端和UPF网元的具体实现可参照上述方法流程。
图7为本发明实施例提供的一种SMF网元的结构示意图。如图7所示,该SMF网元700包括:发送器701a、接收器701b、处理器702、存储器703和总线系统704;
其中,存储器703,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器703可能为随机存取存储器(random access memory,简称RAM),也可能为非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。图中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器703也可以是处理器702中的存储器。
存储器703存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器702控制SMF网元700的操作,处理器702还可以称为CPU(Central Processing Unit,中央处理单元)。具体的应用中,SMF网元700的各个组件通过总线系统704耦合在一起,其中总线系统704除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统704。为便于表示,图7中仅是示意性画出。
上述本申请实施例揭示的方法可以应用于处理器702中,或者由处理器702实现。处理器702可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器702中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器702可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器703,处理器702读取存储器703中的信息,结合其硬件执行以上SMF网元所执行的方法步骤。
图8为本发明实施例提供的一种UPF网元的结构示意图。如图8所示,该UPF网元800包括:发送器801a、接收器801b、处理器802、存储器803和总线系统804;
其中,存储器803,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器803可能为随机存取存储器(random access memory,简称RAM),也可能为非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。图中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器803也可以是处理器802中的存储器。
存储器803存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器802控制UPF网元800的操作,处理器802还可以称为CPU(Central Processing Unit,中央处理单元)。具体的应用中,UPF网元800的各个组件通过总线系统804耦合在一起,其中总线系统804除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统804。为便于表示,图8中仅是示意性画出。
上述本申请实施例揭示的方法可以应用于处理器802中,或者由处理器802实现。处理器802可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器802中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器802可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器803,处理器802读取存储器803中的信息,结合其硬件执行以上UPF网元所执行的方法步骤。
图9为本发明实施例提供的一种终端的结构示意图。如图9所示,该终端900包括:发送器901a、接收器901b、处理器902、存储器903和总线系统904;
其中,存储器903,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器903可能为随机存取存储器(random access memory,简称RAM),也可能为非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。图中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器903也可以是处理器902中的存储器。
存储器903存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器902控制终端900的操作,处理器902还可以称为CPU(Central Processing Unit,中央处理单元)。具体的应用中,终端900的各个组件通过总线系统904耦合在一起,其中总线系统904除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统904。为便于表示, 图9中仅是示意性画出。
上述本申请实施例揭示的方法可以应用于处理器902中,或者由处理器902实现。处理器902可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器902中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器902可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器903,处理器902读取存储器903中的信息,结合其硬件执行以上终端所执行的方法步骤。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种切换方法,其特征在于,所述方法包括:
    第一SMF网元接收第一消息,为所述终端分配第一IP地址;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
    所述第一SMF网元将所述第一IP地址发送给所述终端,所述第一IP地址用于所述终端使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址;
    所述第一SMF网元将所述第一IP地址发送给UPF网元,所述第一IP地址用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一SMF网元获取第二SMF网元为所述终端分配的第二上行TFT和第二下行TFT;所述第二SMF网元为所述终端切换的源SMF网元;
    所述第一SMF网元根据所述第二上行TFT和所述第一IP地址,为所述终端生成第一上行TFT,并将所述第一上行TFT发送给所述终端;所述第一上行TFT用于所述终端将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT;
    所述第一SMF网元根据所述第二下行TFT和所述第一IP地址,为所述终端生成第一下行TFT,并将所述第一下行TFT发送给所述UPF网元;所述第一下行TFT用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT更新为所述第一下行TFT。
  3. 根据权利要求2所述的方法,其特征在于,所述第一消息中包括所述第二SMF网元的标识信息;
    所述第一SMF网元获取第二SMF网元为所述终端分配的第二上行TFT和第二下行TFT,包括:
    所述第一SMF网元根据所述第二SMF网元的标识信息,从所述第二SMF网元获取所述第二上行TFT和所述第二下行TFT。
  4. 根据权利要求2所述的方法,其特征在于,所述第一消息中包括所述第二上行TFT和所述第二下行TFT;
    所述第一SMF网元获取第二SMF网元为所述终端分配的第二上行TFT和第二下行TFT,包括:
    所述第一SMF网元从所述第一消息中获取所述第二上行TFT和所述第二下行TFT。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第一SMF网元将所述第一IP地址发送给所述终端,包括:
    所述第一SMF网元通过AMF网元将所述第一IP地址发送给所述终端;或者,
    所述第一SMF网元将所述第一IP地址发送给第二SMF网元,以使所述第二SMF网元通过AMF网元将所述第一IP地址发送给所述终端。
  6. 一种切换方法,其特征在于,所述方法包括:
    UPF网元接收第一SMF网元发送的第一IP地址;所述第一IP地址为所述第一SMF网元接收到第一消息后为终端分配的;所述第一消息用于指示所述终端需要进行SMF网元的 重定位;
    所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址;
    所述UPF网元接收所述终端发送的上行数据,若所述上行数据的源IP地址为所述第一IP地址,则将所述终端上行NAT映射后的IP地址更新为所述第一IP地址。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述UPF网元接收所述第一SMF网元为所述终端分配的第一下行TFT;
    所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT更新为所述第一下行TFT。
  8. 一种切换方法,其特征在于,所述方法包括:
    终端接收第一SMF发送的第一IP地址;所述第一IP地址为所述第一SMF网元接收到第一消息后为终端分配的;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
    所述终端使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址。
  9. 根据权利要求8所述的方法,其特征在于,所述终端将所述终端的IP地址更新为所述第一IP地址之前,还包括:
    所述终端使用第二IP地址监测下行数据;所述第二IP地址为第二SMF为所述终端分配的;所述第二SMF网元为所述终端切换的源SMF网元。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    终端接收所述第一SMF为所述终端分配的第一上行TFT;
    所述终端将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT。
  11. 一种SMF网元,其特征在于,所述SMF网元包括:收发器和处理器;
    所述处理器,用于接收第一消息,为所述终端分配第一IP地址;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
    所述收发器,用于将所述第一IP地址发送给所述终端,所述第一IP地址用于所述终端使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址;以及,将所述第一IP地址发送给UPF网元,所述第一IP地址用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址。
  12. 根据权利要求11所述的SMF网元,其特征在于,所述收发器还用于:
    获取第二SMF网元为所述终端分配的第二上行TFT和第二下行TFT;所述第二SMF网元为所述终端切换的源SMF网元;
    所述处理器,还用于根据所述第二上行TFT和所述第一IP地址,为所述终端生成第一上行TFT,并通过所述收发器将所述第一上行TFT发送给所述终端;所述第一上行TFT用于所述终端将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT;
    所述处理器,还用于根据所述第二下行TFT和所述第一IP地址,为所述终端生成第一下行TFT,并通过所述收发器将所述第一下行TFT发送给所述UPF网元;所述第一下行TFT用于所述UPF网元将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT更新为所述第一下行TFT。
  13. 根据权利要求12所述的SMF网元,其特征在于,所述第一消息中包括所述第二 SMF网元的标识信息;
    所述收发器具体用于:
    根据所述第二SMF网元的标识信息,从所述第二SMF网元获取所述第二上行TFT和所述第二下行TFT。
  14. 根据权利要求12所述的SMF网元,其特征在于,所述第一消息中包括所述第二上行TFT和所述第二下行TFT;
    所述收发器具体用于:
    从所述第一消息中获取所述第二上行TFT和所述第二下行TFT。
  15. 根据权利要求11或12所述的SMF网元,其特征在于,所述收发器具体用于:
    通过AMF网元将所述第一IP地址发送给所述终端;或者,
    将所述第一IP地址发送给第二SMF网元,以使所述第二SMF网元通过AMF网元将所述第一IP地址发送给所述终端。
  16. 一种UPF网元,其特征在于,所述UPF网元包括:收发器和处理器;
    所述收发器,用于接收第一SMF网元发送的第一IP地址;所述第一IP地址为所述第一SMF网元接收到第一消息后为终端分配的;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
    所述处理器,用于将所述终端下行NAT映射后的IP地址更新为所述第一IP地址;以及,若所述收发器接收到的所述终端发送的上行数据的源IP地址为所述第一IP地址,则将所述终端上行NAT映射后的IP地址更新为所述第一IP地址。
  17. 根据权利要求16所述的UPF网元,其特征在于,所述收发器还用于接收所述第一SMF网元为所述终端分配的第一下行TFT;
    所述处理器还用于将所述终端下行NAT映射后的IP地址更新为所述第一IP地址后,将所述终端的下行TFT更新为所述第一下行TFT。
  18. 一种终端,其特征在于,所述终端包括:收发器和处理器;
    所述收发器,用于接收第一SMF发送的第一IP地址;所述第一IP地址为所述第一SMF网元接收到第一消息后为终端分配的;所述第一消息用于指示所述终端需要进行SMF网元的重定位;
    所述处理器,用于使用所述第一IP地址监测到下行数据后,将所述终端的IP地址更新为所述第一IP地址。
  19. 根据权利要求18所述的终端,其特征在于,所述处理器将所述终端的IP地址更新为所述第一IP地址之前,还用于:
    使用第二IP地址监测下行数据;所述第二IP地址为第二SMF为所述终端分配的;所述第二SMF网元为所述终端切换的源SMF网元。
  20. 根据权利要求18或19所述的终端,其特征在于,所述收发器还用于,接收所述第一SMF为所述终端分配的第一上行TFT;
    所述处理器还用于,将所述终端的IP地址更新为所述第一IP地址后,将所述终端的上行TFT更新为所述第一上行TFT。
PCT/CN2017/087797 2017-04-14 2017-06-09 一种切换方法及装置 WO2018188186A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780034572.3A CN109314893B (zh) 2017-04-14 2017-06-09 一种切换方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710245981.X 2017-04-14
CN201710245981 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018188186A1 true WO2018188186A1 (zh) 2018-10-18

Family

ID=63792902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087797 WO2018188186A1 (zh) 2017-04-14 2017-06-09 一种切换方法及装置

Country Status (2)

Country Link
CN (1) CN109314893B (zh)
WO (1) WO2018188186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143508A1 (zh) * 2022-01-28 2023-08-03 维沃移动通信有限公司 Ip地址确定方法及装置、标识确定方法及装置、及网元

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901446B (zh) * 2019-05-05 2022-04-29 华为技术有限公司 分配、获取ip地址的方法及设备
CN113473508B (zh) * 2020-03-30 2023-09-08 华为技术有限公司 一种通信方法和通信装置
CN114599027B (zh) * 2020-12-04 2024-04-26 展讯通信(上海)有限公司 Ip地址分配方法及装置、计算机可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045643A1 (en) * 2015-09-18 2017-03-23 Huawei Technologies Co., Ltd. System and methods for reliable communication with mobility along a predictable route

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122640A (ja) * 2013-12-24 2015-07-02 日立金属株式会社 中継システムおよびスイッチ装置
CN105813153B (zh) * 2014-12-31 2019-11-15 中国电信股份有限公司 跨网络切换方法、网元以及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045643A1 (en) * 2015-09-18 2017-03-23 Huawei Technologies Co., Ltd. System and methods for reliable communication with mobility along a predictable route

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Handover consideration for 5G", SA WG2 MEETING #119, S 2-171048, vol. SA WG2, 17 February 2017 (2017-02-17), XP051217170 *
ERICSSON: "23.501: UPF and SMF Service Areas", SA WG2 MEETING #120, S 2-171750, vol. SA WG2, 31 March 2017 (2017-03-31), XP051247490 *
HUAWEI: "Interim agreement on HO and TAU principles", SA WG2 MEETING #118, S 2-166674, vol. SA WG2, 18 November 2016 (2016-11-18), XP051185230 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143508A1 (zh) * 2022-01-28 2023-08-03 维沃移动通信有限公司 Ip地址确定方法及装置、标识确定方法及装置、及网元

Also Published As

Publication number Publication date
CN109314893B (zh) 2020-09-29
CN109314893A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
US10462828B2 (en) Policy and billing services in a cloud-based access solution for enterprise deployments
US11134410B2 (en) Quality of service (QoS) control in mobile edge computing (MEC)
US20200015131A1 (en) Communication method and communications device
EP3691206B1 (en) Policy update method and apparatus
US10536213B2 (en) Establishment of packet data network connection via relay user equipment
CN109600802B (zh) 数据传输方法、相关设备及系统
US20200383035A1 (en) Communications method and apparatus
CN110324246B (zh) 一种通信方法及装置
US20220182804A1 (en) Communication processing method, and communication processing apparatus and system
KR102469973B1 (ko) 통신 방법 및 장치
WO2018195907A1 (zh) 无线通信的方法、网络设备和终端设备
CN110072297B (zh) 一种信息交互方法、装置及计算机可读存储介质
EP4024956A1 (en) Communication method, apparatus, and system
WO2014117376A1 (zh) 可定制的移动宽带网络系统和定制移动宽带网络的方法
US11419027B2 (en) User plane link establishment method, base station, and mobility management device
US10075414B2 (en) Method and apparatus for providng push service in communication system
WO2018188186A1 (zh) 一种切换方法及装置
US11082893B2 (en) Session migration method and device applied to a UE tracking area update
WO2019149177A1 (zh) 一种业务分流的方法和装置
WO2021063298A1 (zh) 实现外部认证的方法、通信装置及通信系统
US20220263879A1 (en) Multicast session establishment method and network device
WO2018018469A1 (zh) 用户设备上下文管理方法、装置和设备
WO2019020037A1 (zh) 一种注册区列表确定方法及装置
JP7414796B2 (ja) 情報送信方法、鍵生成方法、及び機器
CN112291845B (zh) 一种寻呼方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905801

Country of ref document: EP

Kind code of ref document: A1