WO2018188137A1 - 一种基于脊形光波导的spr生化传感器 - Google Patents

一种基于脊形光波导的spr生化传感器 Download PDF

Info

Publication number
WO2018188137A1
WO2018188137A1 PCT/CN2017/083293 CN2017083293W WO2018188137A1 WO 2018188137 A1 WO2018188137 A1 WO 2018188137A1 CN 2017083293 W CN2017083293 W CN 2017083293W WO 2018188137 A1 WO2018188137 A1 WO 2018188137A1
Authority
WO
WIPO (PCT)
Prior art keywords
spr
ridge
optical waveguide
sample
detection
Prior art date
Application number
PCT/CN2017/083293
Other languages
English (en)
French (fr)
Inventor
董瑛
王玺
王晓浩
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Publication of WO2018188137A1 publication Critical patent/WO2018188137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the invention relates to the field of optical biochemical sensing technology, in particular to a SPR (Surface Plasmon Resonance) biochemical sensor based on a ridge optical waveguide.
  • SPR Surface Plasmon Resonance
  • SPR indicates plasmon resonance, which means that when a beam of light is irradiated on the surface of a metal film, if the incident angle and wavelength of the light, the effective refractive index of the metal film satisfies certain conditions, the surface plasmon resonance phenomenon is excited, so that the reflected light intensity is obvious.
  • the attenuation of the sample can be detected by detecting the intensity of the reflected light.
  • SPR biochemical sensor has high sensitivity, real-time, unmarked and non-invasive detection characteristics, which is in line with the development of biomedical detection technology to the real-time detection mode in the field. Therefore, SPR is widely used in the field of biochemical detection.
  • Common SPR sensor configurations are as follows: (a) prism-coupled SPR; (b) waveguide evanescent field coupled SPR; (c) fiber SPR; (d) side fiber SPR; (e) grating coupled SPR; Long-range SPR and short-range SPR.
  • SPR biosensors use prism-coupled SPR and fiber-optic SPR to sense the relevant parameters of the substance being tested, with very high sensor sensitivity and resolution, and enable unmarked real-time online monitoring.
  • SPR sensors require a high-resolution tunable laser source as the input source, and an external high-resolution optical spectrum analyzer or high-precision angle measuring instrument to detect the sensor output signal. Therefore, SPR sensors tend to be large in size and difficult to use. Achieve micro-integration.
  • the prism structure is not compatible with the MEMS processing technology, which is also the reason why the prism SPR sensor is difficult to achieve micro integration.
  • the main object of the present invention is to overcome the deficiencies of the prior art and provide an SPR biochemical sensor based on a ridge optical waveguide, which can be directly and efficiently coupled with an optical fiber, is easy to process, and has high sensitivity. It is resistant to electromagnetic radiation, has strong environmental tolerance, is easy to miniaturize and integrate, and has low cost.
  • the present invention adopts the following technical solutions:
  • a SPR biochemical sensor based on a ridge optical waveguide includes an SPR detecting chip formed on the same SOI silicon wafer, a fiber holder, a plurality of polymer cavities formed by a polymer bonded to the surface of the SPR detecting chip, a microchannel system formed by a portion of the plurality of polymer cavities and a photodetector and detection circuit disposed in another portion of the plurality of polymer cavities, the SPR detection chip comprising a ridged optical waveguide a sample cell and a metal film through which the optical fiber is coupled to an end face of the input end of the ridged optical waveguide, the output end of the ridge optical waveguide being coupled to the photodetector and the detection circuit, the ridge a middle section of the shaped optical waveguide coupled to the sample cell, the microfluidic system connecting the sample cell for replacing a sample in the sample cell, the metal film being in direct contact with a sample in the sample cell, for Exciting surface plasmon resonance, light transmitted by the input end of the
  • the ridge-shaped optical waveguide branches into two light-propagating channels on a propagation path, and the two light-propagating channels are respectively coupled to the sample cells, and are coupled to respective photodetectors and detections at respective output ends.
  • the SPR detecting chip includes a first dielectric groove formed on the SOI silicon wafer, preferably an air groove, and the first dielectric groove cooperates with a branch of the ridge optical waveguide to form a beam splitter In order to divide a beam of light into two beams by total internal reflection, respectively, and respectively propagate along the two light propagation channels and complete sample detection separately.
  • the two light propagation channels are symmetrically disposed on both sides of the sample cell.
  • the ridge optical waveguide has a plurality of bent structures
  • the SPR detecting chip includes a plurality of second dielectric grooves, preferably air grooves, formed on the SOI silicon wafer, the second dielectric grooves and the The bends of the ridged optical waveguide cooperate to change the direction of propagation of light within the SPR detection chip in a predetermined path using total internal reflection to cause light to propagate according to the predetermined path to complete sample detection.
  • the metal film is disposed on a sidewall of the sample cell, and a middle portion of the ridge optical waveguide is bent to form a V-shaped structure, and the metal film is disposed opposite to a bottom end of the V-shaped structure.
  • the polymer is PDMS, preferably forming a cavity therein using an embossed micro-nano process.
  • the ridge waveguide is a single mode waveguide, and a waveguide portion of the ridge optical waveguide protrudes from a surface of the base material to have a ridge shape.
  • the fiber holder is on the same axis as the input end of the ridge waveguide, and is passed through the SOI wafer table.
  • the face is deeply etched to form a size comparable to a single mode fiber cladding; preferably, the photodetector is on the axis of the output of the ridge waveguide.
  • the microchannel system includes a liquid inlet port, a liquid inlet reservoir, a liquid outlet, and a liquid outlet reservoir, wherein the inlet port is connected to the liquid inlet reservoir, and the inlet port is stored.
  • a liquid pool connected to the liquid inlet end of the sample pool, the liquid discharge end of the sample pool is connected to the liquid discharge end liquid storage tank, and the liquid discharge end liquid storage tank is connected to the liquid outlet; preferably, The flow of liquid is achieved in a manner that creates a negative pressure within the microchannel system.
  • the SPR biochemical sensor has a plurality of sets of the SPR detection chip, the microchannel system, and the photodetector and detection circuit, forming an array to achieve simultaneous detection of different samples.
  • the invention proposes an SPR biochemical sensor based on a ridge optical waveguide, which has high detection sensitivity, strong anti-electromagnetic radiation, strong environmental tolerance, easy processing, low cost and easy miniaturization and integration.
  • the original SPR excitation condition is changed, and the output light intensity changes significantly.
  • the change of the light intensity can be detected by the sensor, and the sample change can be known. If the adjustable laser light source is used, the SPR can be retested. Excitation wavelength, quantitative analysis to obtain changes in the sample pool.
  • the invention adopts a ridge optical waveguide for the transmission of the light field.
  • the air beam-based beam splitter and the bending structure are combined to realize the beam splitting and the change of the propagation direction in the system, and the beam splitting can be performed.
  • a light source can be used as a detection source for multiple channels, and the bending structure determines the direction of the incident light, which provides favorable conditions for exciting the SPR.
  • the above structural design and processing can be on the micron level and can be mass-produced through a mature micro-nano process.
  • the sample can be detected by matching the micro flow channel bonded to the surface of the detecting chip, as well as the fiber holder and the photodetector.
  • simultaneous monitoring of different samples can be performed simultaneously, and the arrayed detection system can also realize quantitative analysis using a monochromatic light source.
  • FIG. 1 is a schematic structural view of an embodiment of a micro SPR multi-channel biochemical sensing detection system for a ridge optical waveguide according to the present invention
  • FIG. 2 is a top plan view of an embodiment of a micro SPR multi-channel biochemical sensing detection system for a ridge optical waveguide of the present invention
  • FIG. 3 is a schematic cross-sectional view of a large-section ridge optical waveguide in an embodiment of the present invention.
  • Example 4 is a schematic diagram of the SPR multi-channel biochemical sensing detection system described in Example 1.
  • Example 5 is a schematic diagram of an arrayed SPR multi-channel biochemical sensing detection system described in Example 2.
  • a SPR biochemical sensor based on a ridge optical waveguide includes an SPR detecting chip formed on the same SOI silicon wafer and a fiber holder 1 bonded to the SPR. Detecting a plurality of polymer cavities formed by the polymer 9 on the surface of the chip, a microchannel system formed by a portion of the plurality of polymer cavities, and optoelectronics disposed in another portion of the plurality of polymer cavities a detector and a detection circuit, the SPR detection chip comprising a ridge optical waveguide 2, a sample cell and a metal film 7 through which an optical fiber is coupled to an end face of an input end of the ridge optical waveguide 2, the ridge An output end of the shaped optical waveguide 2 is coupled to the photodetector and the detection circuit, a middle section of the ridge optical waveguide 2 is coupled to the sample cell, and the microfluidic system is coupled to the sample cell for replacement a sample in the sample cell, the metal film
  • the ridged optical waveguide 2 branches into two optical propagation channels on the propagation path, the two optical propagation channels being respectively coupled to the sample cell and coupled to respective outputs at respective outputs
  • the SPR detecting chip comprises a first dielectric groove 3 formed on the SOI silicon wafer, preferably an air groove, the first dielectric groove 3 and the ridge light
  • the branches of the waveguide 2 cooperate to form a beam splitter to split a beam of light into two beams by total internal reflection, respectively propagating along the two light propagation channels and performing sample detection separately.
  • the two light propagation channels are symmetrically disposed on either side of the sample cell.
  • the ridge optical waveguide 2 has a plurality of bent structures
  • the SPR detecting chip includes a plurality of second dielectric grooves 4, preferably air grooves, formed on the SOI silicon wafer.
  • the second dielectric groove 4 cooperates with a bend of the ridge optical waveguide 2 to change a propagation direction of light within the SPR detecting chip by a total path by total internal reflection to cause light to propagate according to the predetermined path. Complete sample testing.
  • the metal thin film 7 is disposed on a sidewall of the sample cell, and a middle portion of the ridge optical waveguide 2 is bent to form a V-shaped structure, the metal thin film 7 and the V-shaped structure The bottom end is relatively set.
  • the polymer is PDMS, and an embossed micro-nano processer can be used.
  • the art forms a cavity therein.
  • the ridge waveguide is a single mode waveguide.
  • the waveguide portion of the ridge-shaped optical waveguide 2 protrudes from the surface of the base material to have a ridge shape as shown in FIG.
  • the fiber holder 1 is on the same axis as the input end of the ridge waveguide, and is formed by deep etching on the surface of the SOI wafer, and has a size equivalent to that of the single mode fiber cladding;
  • the photodetector is on the axis of the output of the ridge waveguide.
  • the microchannel system includes a liquid inlet port, a liquid inlet port liquid storage tank 5, a liquid outlet port, and a liquid outlet port liquid storage tank 6, and the liquid inlet port is connected to the liquid inlet port.
  • a liquid pool 5 the liquid inlet end liquid storage tank 5 is connected to the liquid inlet end of the sample tank, and the liquid discharge end of the sample pool is connected to the liquid discharge end liquid storage tank 6, the liquid discharge end liquid storage tank 6 Connect the liquid outlet.
  • the circulation of the liquid sample is achieved by creating a negative pressure within the microchannel system.
  • the SPR biosensor has a plurality of sets of the SPR detection chip, the microchannel system, and the photodetector and detection circuitry, forming an array to enable simultaneous detection of different samples.
  • the SPR biochemical sensor based on the ridge optical waveguide includes an SPR detecting chip composed of a ridge optical waveguide 2, an air groove, a metal thin film 7, a sample cell, a micro flow channel system, a fiber holder 1, and a photodetection. And detection circuit 8.
  • the SPR detecting chip and the optical fiber holder 1 are micro structures processed on a silicon (SOI) silicon wafer on the same insulating substrate; the metal film 7 in the SPR detecting chip is plated on the sidewall of the sample cell for exciting surface plasmon resonance
  • the microchannel system is in a polymer chamber bonded to the surface of the chip, and the photodetector array and the detection circuit are also in the cavity of the above polymer.
  • the biochemical detection system can convert the change of the sample concentration or composition in the sample cell into a change of the output light intensity, and the photodetector can detect the change of the light intensity, thereby obtaining the sample change in the sample cell.
  • the detection system can be directly used with a laser source with a single-mode fiber, and through arraying, simultaneous detection of different samples can be achieved, and a monochromatic source, a photodetector can be used instead of a tunable source, a spectrometer.
  • the ridge waveguides in the SPR detecting chip are all single mode waveguides.
  • the air slot structure in the SPR detecting chip realizes a beam splitter and a bent waveguide structure by using total internal reflection, and the beam splitter can split a beam of light into two beams, and the beam splitting light intensity follows the beam splitter and the ridge optical waveguide.
  • the bent waveguide structure is used to change the direction of light transmission in the chip, and the change of direction is determined by the relative angle of the axis of the waveguide and the air groove.
  • the SPR detection chip in the ridge waveguide The transmitted light is incident on the surface of the metal thin film 7 at a certain angle.
  • the fiber holder 1 and the ridge waveguide input end are on the same axis for easy alignment, and are formed by deep etching on the surface of the SOI sheet, and the size is equivalent to that of the single-mode fiber cladding, and can be packaged by the bonded assembly.
  • the polymer bonded to the surface of the SPR detecting chip is PDMS (polydimethylsiloxane), and a cavity can be formed therein by an imprinted micro-nano process, and the processed PDMS is bonded to the surface of the detecting chip.
  • the microchannel is in a polymer chamber, the microchannel has a liquid inlet and a liquid outlet, and a liquid storage tank.
  • the liquid circulation can be performed by generating a negative pressure in the flow channel, and the micro flow channel system is used for replacing the sample pool. sample.
  • the photodetector is on the axis of the ridge waveguide output and can be encapsulated by a polymer.
  • the SPR biochemical sensor can be directly used with a laser source with a single-mode fiber, and through arraying, simultaneous detection of different samples can be achieved, and a monochromatic source, a photodetector can be used instead of a tunable source, and a spectrometer.
  • the light emitted by the light source is coupled to the end face of the input end of the ridge optical waveguide 2 via the fiber at the fiber holder 1, and the light field enters the detection chip for transmission.
  • the beam is split at the air channel 3, and after the bending waveguide 4 changes the transmission direction, it is incident on the surface of the metal film 7 at an angle, and the metal film is in direct contact with the sample in the sample cell 10, and the light is reflected and then emitted along the ridge wave. Irradiation in the photodetector and detection circuit 8 completes the transition of the optical signal to the electrical signal.
  • the ridge waveguide and the air bath and sample cell structure are obtained by deep ultraviolet exposure and inductively coupled plasma dry etching.
  • the tunable laser and single-mode fiber are combined with the input end to form a real-time protein solution concentration detection system, and the sample protein concentration is tested by measuring the resonance curve of the sample.
  • the above detection system is arrayed, and has multiple SPR sensors (SPR sensor 1, SPR sensor 2, SPR sensor 3, ... SPR sensor n); a monochromatic laser can be used instead of the tunable laser, and Lights of various wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 ... ⁇ n .
  • a plurality of photodetectors PD1, PD2, PD3, ... PDn are used in combination.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)

Abstract

一种基于脊形光波导的SPR生化传感器,包括在同一SOI硅片上加工形成的SPR检测芯片与光纤支架(1)、键合在芯片表面的聚合物(9)形成的多个聚合物腔体、由聚合物腔体形成的微流道系统和在聚合物腔体中设置的光电探测器及检测电路(8),SPR检测芯片包括脊形光波导(2)、样品池(10)和金属薄膜(7),光纤通过光纤支架(1)与脊形光波导(2)耦合,脊形光波导(2)耦合到光电探测器及检测电路(8),脊形光波导(2)的中段耦合到样品池(10),微流道系统连接样品池(10),金属薄膜(7)与样品池(10)内的样品直接接触,由脊形光波导(2)的输入端传输的光经过金属薄膜(7)反射后沿着脊形光波导(2)出射,通过光电探测器及检测电路(8)探测光强的变化并转换成电信号,实现对样品池(10)内的样品检测。该传感器易于加工,灵敏度高,成本低。

Description

一种基于脊形光波导的SPR生化传感器 技术领域
本发明涉及光学生化传感技术领域,特别涉及一种基于脊形光波导的SPR(Surface Plasmon Resonance,表面等离子体共振)生化传感器。
背景技术
随着科学技术的飞速发展,相关学科先进技术对生物医学领域的不断渗透,生物医学检验技术的发展出现越来越明显的两极分化现象。一方面是各类大型自动化、高性能、高效率仪器设备的相继问世,大大提高了实验室分析检测的工作效率;另一方面则是实验仪器的小型化、便携化、操作简便化、结果及时准确化,以及在此基础上产生的新的生物医学检验模式,即Point of Care Testing(POCT)。
SPR即表明等离子体共振,指当一束光照射在金属薄膜表面时,若光入射角,波长,金属薄膜有效折射率满足一定条件时会激发表面等离子体共振现象,从而使反射光强有明显的衰减,通过检测反射光强,可以检测与金属薄膜接触的样品的变化。SPR生化传感器具有高灵敏度、实时、无标记、无损伤检测特征,非常符合生物医学检测技术向现场实时检测模式发展的需求,因而SPR被大量地应用于生化检测领域。常见的SPR传感器配置结构有如下几种:(a)棱镜耦合SPR;(b)波导倏逝场耦合SPR;(c)光纤SPR;(d)侧面光纤SPR;(e)光栅耦合SPR;(f)长程SPR和短程SPR。
大多数SPR生化传感器采用棱镜耦合SPR和光纤SPR对待测物质的相关参数进行传感,具有非常高的传感器灵敏度和分辨率,而且能够实现无标记的实时在线监测。一般情况下,SPR传感器都需要以高分辨的可调谐激光器光源作为输入光源,并外接高分辨率的光谱分析仪或者高精度的角度测量仪探测传感器输出信号,因而SPR传感器往往尺寸很大,难以实现微型集成化。另外,棱镜结构不兼容MEMS加工工艺也是棱镜SPR传感器难以实现微型集成化的原因。
发明内容
本发明的主要目的在于克服现有技术的不足,提供一种基于脊形光波导的SPR生化传感器,能够与光纤直接高效耦合,易于加工,灵敏度高, 抗电磁辐射、环境耐受力强,易于微型化集成化,成本低廉。
为实现上述目的,本发明采用以下技术方案:
一种基于脊形光波导的SPR生化传感器,包括在同一SOI硅片上加工形成的SPR检测芯片与光纤支架、键合在所述SPR检测芯片表面的聚合物形成的多个聚合物腔体、由所述多个聚合物腔体的一部分形成的微流道系统和在所述多个聚合物腔体的另一部分中设置的光电探测器及检测电路,所述SPR检测芯片包括脊形光波导、样品池和金属薄膜,光纤通过所述经光纤支架与所述脊形光波导的输入端的端面耦合,所述脊形光波导的输出端耦合到所述光电探测器及检测电路,所述脊形光波导的中段耦合到所述样品池,所述微流道系统连接所述样品池,用于更换所述样品池内的样品,所述金属薄膜与所述样品池内的样品直接接触,用于激发表面等离子体共振,由所述脊形光波导的输入端传输的光经过所述金属薄膜反射后沿着所述脊形光波导从所述脊形光波导的输出端出射,由所述光电探测器及检测电路探测光强的变化并转换成电信号,实现对所述样品池内样品有关成分或浓度的检测。
进一步地:
所述脊形光波导在传播路径上分支为两个光传播通道,所述两个光传播通道分别耦合到所述样品池,并在各自的输出端耦合到各自所对应的光电探测器及检测电路,所述SPR检测芯片包括在所述SOI硅片上加工形成的第一介质槽,优选为空气槽,所述第一介质槽与所述脊形光波导的分支处相配合形成分束器,以利用全内反射将一束光分为两束,沿所述两个光传播通道分别传播并分别完成样品检测。
所述两个光传播通道对称设置在所述样品池的两侧。
所述脊形光波导具有多处弯折结构,所述SPR检测芯片包括在所述SOI硅片上加工形成的多个第二介质槽,优选为空气槽,所述第二介质槽与所述脊形光波导的弯折处相配合以利用全内反射按预定路径改变光在SPR检测芯片内的传播方向,以使光按所述预定路径传播而完成样品检测。
所述金属薄膜设置在所述样品池的侧壁上,所述脊形光波导的中段弯折形成V形结构,所述金属薄膜与所述V形结构的底端相对设置。
所述聚合物为PDMS,优选采用压印的微纳加工工艺在其内形成空腔。
所述脊形波导为单模波导,所述脊形光波导的波导部分突出于基底材料的表面而呈脊形。
所述光纤支架与所述脊形波导的输入端处于同一轴线,经SOI硅片表 面深刻蚀形成,尺寸与单模光纤包层相当;优选地,所述光电探测器处于所述脊形波导的输出端的轴线上。
所述微流道系统包括进液口、进液端储液池、出液口及出液端储液池,所述进液口连接所述进液端储液池,所述进液端储液池连接所述样品池的进液端,所述样品池的出液端连接所述出液端储液池,所述出液端储液池连接所述出液口;优选地,通过在所述微流道系统内产生负压的方式实现液体的流通。
所述SPR生化传感器具有多组所述SPR检测芯片、所述微流道系统和所述光电探测器及检测电路,形成阵列化以实现不同样品的同时检测。
本发明的有益效果:
本发明提出了以一种基于脊形光波导的SPR生化传感器,该传感器检测灵敏度高,抗电磁辐射、环境耐受力强,易于加工,成本低廉,易于微型化集成化。当样品池内样品浓度或成分发生变化时,改变了原SPR激发条件,输出光强发生明显变化,通过该传感器探测光强的变化可以得知样品变化,若采用可调激光光源,可重新测试SPR激发波长,定量分析得到样品池内变化。本发明采用了脊形光波导用于光场的传输,优选地,配合基于空气槽的分束器和弯折结构,可实现系统内光强的分束以及传播方向的改变,光分束可以提高光源利用率,一个光源可以作为多个通道的检测光源,弯折结构确定了入射光的方向,为激发SPR提供了有利条件。以上结构设计和加工可以是微米级别,可通过成熟的微纳加工工艺进行批量化生产。配合键合在检测芯片表面的微流道以及光纤支架、光电探测器,可以实现样品的检测。此外,若对芯片进行阵列化,优化微流道结构,可以同时进行不同样品的同时监测,阵列化后的检测系统也可实现使用单色光源实现定量化分析。
附图说明
图1为本发明脊形光波导的微型SPR多通道生化传感检测系统一种实施例的结构示意图;
图2为本发明脊形光波导的微型SPR多通道生化传感检测系统一种实施例的俯视图;
图3为本发明一种实施例中的大截面脊形光波导截面示意图;
图4为实例1所述SPR多通道生化传感检测系统示意图。
图5为实例2所述阵列化的SPR多通道生化传感检测系统示意图。
具体实施方式
以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
参阅图1至图5,在一种实施例中,一种基于脊形光波导的SPR生化传感器,包括在同一SOI硅片上加工形成的SPR检测芯片与光纤支架1、键合在所述SPR检测芯片表面的聚合物9形成的多个聚合物腔体、由所述多个聚合物腔体的一部分形成的微流道系统和在所述多个聚合物腔体的另一部分中设置的光电探测器及检测电路,所述SPR检测芯片包括脊形光波导2、样品池和金属薄膜7,光纤通过所述经光纤支架1与所述脊形光波导2的输入端的端面耦合,所述脊形光波导2的输出端耦合到所述光电探测器及检测电路,所述脊形光波导2的中段耦合到所述样品池,所述微流道系统连接所述样品池,用于更换所述样品池内的样品,所述金属薄膜7与所述样品池内的样品直接接触,用于激发表面等离子体共振,由所述脊形光波导2的输入端传输的光经过所述金属薄膜7反射后沿着所述脊形光波导2从所述脊形光波导2的输出端出射,照射在所述光电探测器及检测电路上,通过所述光电探测器及检测电路探测光强的变化并转换成电信号,实现对所述样品池内样品有关成分或浓度的检测。
在优选的实施例中,所述脊形光波导2在传播路径上分支为两个光传播通道,所述两个光传播通道分别耦合到所述样品池,并在各自的输出端耦合到各自所对应的光电探测器及检测电路,所述SPR检测芯片包括在所述SOI硅片上加工形成的第一介质槽3,优选为空气槽,所述第一介质槽3与所述脊形光波导2的分支处相配合形成分束器,以利用全内反射将一束光分为两束,沿所述两个光传播通道分别传播并分别完成样品检测。
在优选的实施例中,所述两个光传播通道对称设置在所述样品池的两侧。
在优选的实施例中,所述脊形光波导2具有多处弯折结构,所述SPR检测芯片包括在所述SOI硅片上加工形成的多个第二介质槽4,优选为空气槽,所述第二介质槽4与所述脊形光波导2的弯折处相配合以利用全内反射按预定路径改变光在SPR检测芯片内的传播方向,以使光按所述预定路径传播而完成样品检测。
在优选的实施例中,所述金属薄膜7设置在所述样品池的侧壁上,所述脊形光波导2的中段弯折形成V形结构,所述金属薄膜7与所述V形结构的底端相对设置。
在优选的实施例中,所述聚合物为PDMS,可采用压印的微纳加工工 艺在其内形成空腔。
在优选的实施例中,所述脊形波导为单模波导。所述脊形光波导2的波导部分突出于基底材料的表面而呈脊形,如图3所示。
在优选的实施例中,所述光纤支架1与所述脊形波导的输入端处于同一轴线,经SOI硅片表面深刻蚀形成,尺寸与单模光纤包层相当;
在优选的实施例中,所述光电探测器处于所述脊形波导的输出端的轴线上。
在优选的实施例中,所述微流道系统包括进液口、进液端储液池5、出液口及出液端储液池6,所述进液口连接所述进液端储液池5,所述进液端储液池5连接所述样品池的进液端,所述样品池的出液端连接所述出液端储液池6,所述出液端储液池6连接所述出液口。
在优选的实施例中,通过在所述微流道系统内产生负压的方式实现液体样品的流通。
在优选的实施例中,所述SPR生化传感器具有多组所述SPR检测芯片、所述微流道系统和所述光电探测器及检测电路,形成阵列化以实现不同样品的同时检测。
以下结合附图进一步描述本发明的具体实施例。
参阅图1至图5,基于脊形光波导的SPR生化传感器包括由脊形光波导2、空气槽、金属薄膜7、样品池构成的SPR检测芯片、微流道系统、光纤支架1、光电探测器及检测电路8。所述SPR检测芯片、光纤支架1为在同一绝缘衬底上硅(SOI)硅片上加工出的微型结构;SPR检测芯片中金属薄膜7镀在样品池侧壁,用于激发表面等离子体共振;微流道系统在键合在芯片表面的聚合物腔体内,光电探测器阵列及检测电路同样在上述聚合物的空腔内。该生化检测系统可以将样品池内样品浓度或成分的变化转化为输出光强的变化,通过光电探测器可以探测光强的变化,进而得到样品池内样品的变化。该检测系统可直接与带单模光纤的激光光源配合使用,且通过阵列化,可以实现不同样品的同时检测,以及用单色光源、光电探测器代替可调谐光源、光谱仪。所述SPR检测芯片中脊形波导均为单模波导。所述SPR检测芯片中空气槽结构利用全内反射实现分束器和弯折波导结构,分束器可将一束光分为两束,分束后的光强随分束器与脊形光波导2相对位置变化,弯折波导结构用于改变光在芯片内的传输方向,方向的改变由波导和空气槽轴线相对角度决定。所述SPR检测芯片中脊形波导内 传输的光经一定的角度入射到金属薄膜7表面。所述光纤支架1与脊形波导输入端处于同一轴线,便于对准,经SOI片表面深刻蚀形成,尺寸与单模光纤包层相当,可用键合的集合物进行封装。
键合在SPR检测芯片表面的聚合物为PDMS(聚二甲基硅氧烷),可采用压印的微纳加工工艺在其内形成空腔,加工后的PDMS键合在检测芯片表面。所述微流道处于聚合物腔体内,微流道有进液口和出液口,以及储液池,液体的流通可以通过流道内产生负压进行,微流道系统用于更换样品池内的样品。光电探测器处于脊形波导输出端的轴线上,可通过聚合物来进行封装。
该SPR生化传感器可直接与带单模光纤的激光光源配合使用,且通过阵列化,可以实现不同样品的同时检测,以及用单色光源、光电探测器代替可调谐光源、光谱仪。
如图1和图2所示,光源发出的光经光纤支架1处光纤与脊形光波导2输入端端面耦合后,光场进入检测芯片传输。在空气槽3处分束,经弯折波导4改变传输方向后以一定角度入射到金属薄膜7表面,金属薄膜与样品池10内的样品直接接触,光经反射后沿着脊形光波导出射,照射在光电探测器及检测电路8,完成光信号到电信号的转变。
以下结合实例进一步说明:
实例1
选用顶层硅厚度为10μm,绝缘层氧化硅厚度为2μm,衬底硅厚度为475μm的绝缘体上硅(SOI)作为制造材料。通过深紫外曝光和感应耦合等离子体干法刻蚀得到脊形波导以及空气槽、样品池结构。如图4所示,配合输入端可调谐激光器、单模光纤组成实时蛋白质溶液浓度检测系统,通过测量样品共振曲线,测试样品蛋白质浓度。
实例2
如图5所示,对上述检测系统进行阵列化,具有多个SPR传感器(SPR传感器1、SPR传感器2、SPR传感器3……SPR传感器n);可采用单色激光器代替可调谐激光器,并提供多种波长的光λ1、λ2、λ3……λn。同时,配合使用多个光电探测器PD1、PD2、PD3……PDn。通过检测系统的阵列化,实现待测物共振曲线的测量,对溶液变化进行定量分析。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术 领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种基于脊形光波导的SPR生化传感器,其特征在于,包括在同一SOI硅片上加工形成的SPR检测芯片与光纤支架、键合在所述SPR检测芯片表面的聚合物形成的多个聚合物腔体、由所述多个聚合物腔体的一部分形成的微流道系统和在所述多个聚合物腔体的另一部分中设置的光电探测器及检测电路,所述SPR检测芯片包括脊形光波导、样品池和金属薄膜,光纤通过所述经光纤支架与所述脊形光波导的输入端的端面耦合,所述脊形光波导的输出端耦合到所述光电探测器及检测电路,所述脊形光波导的中段耦合到所述样品池,所述微流道系统连接所述样品池,用于更换所述样品池内的样品,所述金属薄膜与所述样品池内的样品直接接触,用于激发表面等离子体共振,由所述脊形光波导的输入端传输的光经过所述金属薄膜反射后沿着所述脊形光波导从所述脊形光波导的输出端出射,由所述光电探测器及检测电路探测光强的变化并转换成电信号,实现对所述样品池内样品有关成分或浓度的检测。
  2. 如权利要求1所述的SPR生化传感器,其特征在于,所述脊形光波导在传播路径上分支为两个光传播通道,所述两个光传播通道分别耦合到所述样品池,并在各自的输出端耦合到各自所对应的光电探测器及检测电路,所述SPR检测芯片包括在所述SOI硅片上加工形成的第一介质槽,优选为空气槽,所述第一介质槽与所述脊形光波导的分支处相配合形成分束器,以利用全内反射将一束光分为两束,沿所述两个光传播通道分别传播并分别完成样品检测。
  3. 如权利要求2所述的SPR生化传感器,其特征在于,所述两个光传播通道对称设置在所述样品池的两侧。
  4. 如权利要求1至3任一项所述的SPR生化传感器,其特征在于,所述脊形光波导具有多处弯折结构,所述SPR检测芯片包括在所述SOI硅片上加工形成的多个第二介质槽,优选为空气槽,所述第二介质槽与所述脊形光波导的弯折处相配合以利用全内反射按预定路径改变光在SPR检测芯片内的传播方向,以使光按所述预定路径传播而完成样品检测。
  5. 如权利要求1至4任一项所述的SPR生化传感器,其特征在于,所述金属薄膜设置在所述样品池的侧壁上,所述脊形光波导的中段弯折形成V形结构,所述金属薄膜与所述V形结构的底端相对设置。
  6. 如权利要求1至5任一项所述的SPR生化传感器,其特征在于,所 述聚合物为PDMS,优选采用压印的微纳加工工艺在其内形成空腔。
  7. 如权利要求1至6任一项所述的SPR生化传感器,其特征在于,所述脊形波导为单模波导,所述脊形光波导的波导部分突出于基底材料的表面而呈脊形。
  8. 如权利要求1至7任一项所述的SPR生化传感器,其特征在于,所述光纤支架与所述脊形波导的输入端处于同一轴线,经SOI硅片表面深刻蚀形成,尺寸与单模光纤包层相当;优选地,所述光电探测器处于所述脊形波导的输出端的轴线上。
  9. 如权利要求1至8任一项所述的SPR生化传感器,其特征在于,所述微流道系统包括进液口、进液端储液池、出液口及出液端储液池,所述进液口连接所述进液端储液池,所述进液端储液池连接所述样品池的进液端,所述样品池的出液端连接所述出液端储液池,所述出液端储液池连接所述出液口;优选地,通过在所述微流道系统内产生负压的方式实现液体的流通。
  10. 如权利要求1至9任一项所述的SPR生化传感器,其特征在于,具有多组所述SPR检测芯片、所述微流道系统和所述光电探测器及检测电路,形成阵列化以实现不同样品的同时检测。
PCT/CN2017/083293 2017-04-12 2017-05-05 一种基于脊形光波导的spr生化传感器 WO2018188137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710237635.7A CN106841121A (zh) 2017-04-12 2017-04-12 一种基于脊形光波导的spr生化传感器
CN201710237635.7 2017-04-12

Publications (1)

Publication Number Publication Date
WO2018188137A1 true WO2018188137A1 (zh) 2018-10-18

Family

ID=59147554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083293 WO2018188137A1 (zh) 2017-04-12 2017-05-05 一种基于脊形光波导的spr生化传感器

Country Status (2)

Country Link
CN (1) CN106841121A (zh)
WO (1) WO2018188137A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015182A (zh) * 2022-07-07 2022-09-06 合肥工业大学 一种基于平面光波导的集成型spr传感器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478607A (zh) * 2017-07-27 2017-12-15 清华大学深圳研究生院 一种基于脊形光波导的集成生化传感器
CN107478613A (zh) * 2017-08-02 2017-12-15 杭州晶百检测技术有限公司 一种基于spr的多种毒品检测芯片的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061619B2 (en) * 2003-05-27 2006-06-13 Hitachi, Ltd. Chemical substance measuring apparatus using optical waveguides
KR20080044939A (ko) * 2006-11-17 2008-05-22 중앙대학교 산학협력단 전반사미러의 표면 플라즈몬 공명을 이용한 마이크로공진기 센서
US7483140B1 (en) * 2004-12-10 2009-01-27 University Of Central Florida Research Foundation, Inc. Micro integrated planar optical waveguide type SPR sensor
KR20100081828A (ko) * 2009-01-07 2010-07-15 중앙대학교 산학협력단 자기참조 광도파로 센서 시스템
CN102519911A (zh) * 2011-11-11 2012-06-27 浙江大学 一种基于表面等离子体共振的光波导传感器
CN105823759A (zh) * 2016-06-15 2016-08-03 中国工程物理研究院材料研究所 一种基于绝缘体上硅光波导的表面等离子体共振传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061619B2 (en) * 2003-05-27 2006-06-13 Hitachi, Ltd. Chemical substance measuring apparatus using optical waveguides
US7483140B1 (en) * 2004-12-10 2009-01-27 University Of Central Florida Research Foundation, Inc. Micro integrated planar optical waveguide type SPR sensor
KR20080044939A (ko) * 2006-11-17 2008-05-22 중앙대학교 산학협력단 전반사미러의 표면 플라즈몬 공명을 이용한 마이크로공진기 센서
KR20100081828A (ko) * 2009-01-07 2010-07-15 중앙대학교 산학협력단 자기참조 광도파로 센서 시스템
CN102519911A (zh) * 2011-11-11 2012-06-27 浙江大学 一种基于表面等离子体共振的光波导传感器
CN105823759A (zh) * 2016-06-15 2016-08-03 中国工程物理研究院材料研究所 一种基于绝缘体上硅光波导的表面等离子体共振传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN, D.P. ET AL.: "Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array", SENSORS, vol. 15, 16 July 2015 (2015-07-16), XP055542438, ISSN: 1424-8220 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015182A (zh) * 2022-07-07 2022-09-06 合肥工业大学 一种基于平面光波导的集成型spr传感器
CN115015182B (zh) * 2022-07-07 2024-05-14 合肥工业大学 一种基于平面光波导的集成型spr传感器

Also Published As

Publication number Publication date
CN106841121A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2019019241A1 (zh) 一种基于脊形光波导的集成生化传感器
Carlborg et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips
JP3816072B2 (ja) 光導波路型センサおよびそれを用いた測定装置
CN106596474B (zh) 一种基于七芯光纤的三通道spr传感器
JP6659173B2 (ja) マイクロ流体チップ上の蛍光検出アッセイ
US7483140B1 (en) Micro integrated planar optical waveguide type SPR sensor
Barat et al. Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer
JP2003279471A (ja) マイクロ化学システム用チップ及びマイクロ化学システム
CN109856087B (zh) 传感芯片及其制备方法、检测系统、检测方法
WO2018188137A1 (zh) 一种基于脊形光波导的spr生化传感器
US20060146332A1 (en) Linear wave guide type surface plasmon resonance microsensor
Hanada et al. Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating
Grego et al. A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler
CN103645158A (zh) 一种三环型无热化生物传感器
JP2013250185A (ja) Sprセンサセルおよびsprセンサ
JP2004163257A (ja) 光導波路への光導入方法及びそれを用いた光導波路分光測定装置
CN103616348B (zh) 一种光子晶体三谐振腔无热化生物传感器
CN1987425A (zh) 表面电浆共振感测系统及方法
US10678187B2 (en) Large area lens-free imaging device
CN211603214U (zh) 光栅波导微流体检测系统
Zhang et al. Optofluidic refractive index sensor based on partial reflection
US20050259259A1 (en) Photothermal conversion spectroscopic analysis method and microchemical system for implementing the method
CN101620063A (zh) 串联分布式棱镜spr传感器系统
CN115201132B (zh) 一种基于c形波导的倏逝波核酸浓度检测芯片
US20240044789A1 (en) Planar waveguide-based optofluidic sensor and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905070

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17905070

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 17905070

Country of ref document: EP

Kind code of ref document: A1