WO2018187897A1 - Combination wheel for light conversion - Google Patents

Combination wheel for light conversion Download PDF

Info

Publication number
WO2018187897A1
WO2018187897A1 PCT/CN2017/079874 CN2017079874W WO2018187897A1 WO 2018187897 A1 WO2018187897 A1 WO 2018187897A1 CN 2017079874 W CN2017079874 W CN 2017079874W WO 2018187897 A1 WO2018187897 A1 WO 2018187897A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
segment
color filter
combination wheel
Prior art date
Application number
PCT/CN2017/079874
Other languages
French (fr)
Inventor
Shengyuan BAI
James Li
David Zhang
Original Assignee
Materion Precision Optics (Shanghai) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Materion Precision Optics (Shanghai) Limited filed Critical Materion Precision Optics (Shanghai) Limited
Priority to US16/486,609 priority Critical patent/US11448950B2/en
Priority to JP2020504754A priority patent/JP6932840B2/en
Priority to PCT/CN2017/079874 priority patent/WO2018187897A1/en
Priority to EP17905688.2A priority patent/EP3610325A4/en
Priority to CN201710433243.8A priority patent/CN108693637B/en
Priority to CN201720668088.3U priority patent/CN207232511U/en
Priority to TW106122654A priority patent/TWI757307B/en
Publication of WO2018187897A1 publication Critical patent/WO2018187897A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the present disclosure relates to an optical light conversion device that integrates a color wheel and a phosphor wheel.
  • the optical light conversion device can be used in, for example, a projection display system to generate color sequential illumination by wavelength conversion.
  • Phosphor wheels are used in a variety of optical devices such as projection-based or other picture generation systems using Digital Light Processing (DLP) technology.
  • the phosphor wheel comprises a hub portion, which is a cylindrical body that acts as a rotor when coupled to a motor.
  • An optically-active radial portion is attached to or integrated with the hub portion.
  • Wavelength conversion materials (phosphors) on the optically-active radial portion generate emission light of a different wavelength from incident excitation light.
  • Solid state laser light sources solid state illuminated, or SSI
  • SSI solid state illuminated, or SSI
  • SSI solid state illuminated, or SSI
  • the emission light which may be green, yellow, or red depending on the phosphor powder.
  • the monochromatic light waves are then mixed together to produce white light.
  • the color filter is also in the form of a wheel that rotates at a synchronous speed with the phosphor wheel.
  • the optically-active portion typically includes one or more color filters for filtering incident light. These are typically planar glass segments coated with a thin film in order to reflect or transmit light in a wavelength-dependent manner. Multiple color filters may be provided in different sections of the radial optically-active portion, so that rotation of the color wheel causes incident light to be affected differently by these different portions
  • a phosphor wheel must be used together with a color wheel. It would be desirable to create an optical light conversion device that is operable with high-power sources, for example laser projectors, which overcomes the shortcomings of separate phosphor wheels and color wheels. In particular, it would be desirable to create an optical light conversion device that integrates the functions of a phosphor wheel and a color into a single structure, does not require more than current motor loading, achieves flexible color adjustment, can be made with fewer components, and uses low-cost components.
  • the present disclosure thus relates to a combination wheel, which can perform the function of both a phosphor wheel and a color wheel. Also disclosed herein are apparatuses comprising the combination wheel, a blue laser generator that produces an excitation blue light, and a series of a dichroic filters and mirrors used to tune and convert light to be collected by a subsequent optical system.
  • combination wheels comprising: a color filter, a reflective substrate with at least two phosphor segments, and a diffuser segment.
  • the color filter is segmented into at least three different colors.
  • the reflective substrate is coaxially aligned with the color filter on a first surface of the color filter.
  • the reflective substrate is in the form of a circle/cylinder with a wedge or sector removed.
  • the reflective substrate can be described as having a central angle of less than 360°.
  • a first light-emitting phosphor segment is deposited on a first sector of the reflective substrate.
  • a second light-emitting phosphor segment deposited on a second sector of the reflective substrate.
  • a diffuser segment is located adjacent the reflective substrate on the first surface of the color filter, and can be described as filling in the location where the wedge or sector was removed from the reflective substrate.
  • the first light-emitting phosphor segment includes a green light-emitting phosphor; and the second light-emitting phosphor segment includes a red or yellow light-emitting phosphor.
  • the first light-emitting phosphor segment is radially aligned with a green segment of the color filter; the second light-emitting phosphor segment is radially aligned with a red or yellow segment of the color filter, and the diffuser segment is radially aligned with a blue segment of the color filter.
  • the reflective substrate is a high-reflectivity coating on the surface of the color filter. These embodiments could be considered a “single-substrate” wheel. In other embodiments, the reflective substrate is a reflective metal, such as aluminum or an aluminum alloy. Such embodiments could be considered a “dual-substrate” wheel.
  • the color filter may comprise a glass substrate, with appropriate coatings thereon.
  • the combination wheel may further comprise a hub coupled to a motor, the color filter being coupled to the hub.
  • apparatuses comprising: a combination wheel as described herein; a blue laser generator that (A) produces an excitation blue light and (B) is aligned with the reflective substrate and the diffuser segment; a first dichroic filter located between the blue laser generator and the combination wheel, wherein blue light passes through the first dichroic filter and other-color light is reflected by the first dichroic filter; a first mirror located to redirect the other-color light from the first dichroic filter toward the color filter of the combination wheel, such that the other-color light passes through the color filter of the combination wheel and is tuned to produce tuned other-color light; and an optical system aligned to receive the tuned other-color light.
  • the apparatus may further comprise: a second dichroic filter located between the combination wheel and the optical system; and a second mirror; wherein the second dichroic filter and the second mirror are configured so that the tuned other-color light and the tuned blue light are directed toward the optical system.
  • the second dichroic filter is located between the combination wheel and the optical system, wherein the tuned other-color light passes through the second dichroic filter and blue light is reflected by the second dichroic filter; and the second mirror is located to redirect blue light that passes through the diffuser segment of the combination wheel toward the second dichroic filter, so that the blue light is again reflected by the second dichroic filter toward the optical system.
  • the second dichroic filter is located between the combination wheel and the optical system, wherein blue light passes through the second dichroic filter and other-color light is reflected by the second dichroic filter; and the second mirror is located to redirect the tuned other-color light toward the second dichroic filter, so that the tuned other-color light is again reflected by the second dichroic filter toward the optical system.
  • combination wheels comprising: a color filter segmented into at least two different colors and having a central angle of less than 360°; a reflective substrate coaxially aligned with the color filter on a first surface of the color filter; a first light-emitting phosphor segment deposited on a first sector of the reflective substrate; a second light-emitting phosphor segment deposited on a second sector of the reflective substrate; and a diffuser segment located adjacent the color filter and having a radius equal to a radius of the color filter.
  • the color filter is in the form of a circle/cylinder with a wedge or sector removed.
  • the diffuser segment can be described as filling in the location where the wedge or sector was removed from the color filter.
  • the first light-emitting phosphor segment can include a green light-emitting phosphor; and the second light-emitting phosphor segment can include a red or yellow light-emitting phosphor.
  • the first light-emitting phosphor segment may be radially aligned with a green segment of the color filter; and the second light-emitting phosphor segment may be radially aligned with a red or yellow segment of the color filter.
  • the reflective substrate may be a high-reflectivity coating.
  • the color filter can be segmented into a green segment and a red or yellow segment.
  • the color filter may comprise a glass substrate, with appropriate coatings thereon.
  • Apparatuses using this combination wheel also include a blue laser generator that (A) produces an excitation blue light and (B) is aligned with the reflective substrate and the diffuser segment; a first dichroic filter located between the blue laser generator and the combination wheel, wherein blue light passes through the first dichroic filter and other-color light is reflected by the first dichroic filter; a first mirror located to redirect the other-color light from the first dichroic filter toward the color filter of the combination wheel, such that the other-color light passes through the color filter of the combination wheel and is tuned to produce tuned other-color light; and an optical system aligned to receive the tuned other-color light.
  • the apparatus may further comprise a blue color filter for tuning the excitation blue light to produce tuned blue light.
  • the apparatus can also further comprise: a second dichroic filter located between the combination wheel and the optical system; and a second mirror; wherein the second dichroic filter and the second mirror are configured so that the tuned other-color light and the tuned blue light are directed toward the optical system.
  • a second dichroic filter located between the combination wheel and the optical system
  • a second mirror wherein the second dichroic filter and the second mirror are configured so that the tuned other-color light and the tuned blue light are directed toward the optical system.
  • FIG. 1A is a plan view of a conventional RGB color wheel.
  • FIG. 1B is a side view showing the optical path therethrough.
  • FIG. 2 shows the RGB color filter spectrum of the color wheel of FIG. 1A.
  • FIG. 3A is a plan view of a conventional reflective phosphor wheel.
  • FIG. 3B is a side view showing the optical path therethrough.
  • FIG. 4 shows the R/G/Y phosphor and blue laser color spectrum.
  • the y-axis is transmittance, and the x-axis is wavelength in nanometers.
  • FIG. 5A is a plan view of a conventional transmissive phosphor wheel.
  • FIG. 5B is a side view showing the optical path therethrough.
  • FIG. 6 shows the color spectrum of a blue dichroic filter.
  • the y-axis is transmittance, and the x-axis is wavelength in nanometers.
  • FIG. 7 shows the optical path through an applied optical system including a reflective phosphor wheel and a separate color wheel.
  • FIG. 8 shows the optical path through an applied optical system including a transmissive phosphor wheel and a separate color wheel.
  • FIG. 9A is a plan view of a conventional sandwich-structure that combines a transmissive phosphor wheel with a color wheel.
  • FIG. 9B is a side view showing the optical path therethrough.
  • FIG. 10 shows the optical path through an applied optical system including the sandwich-structure combination wheel of FIG. 9.
  • FIG. 11A is a plan view of a first exemplary embodiment of a combination wheel of the present disclosure. This embodiment is a dual-substrate structure.
  • FIG. 11B is a side cross-sectional view of the combination wheel, and also illustrates the optical path therethrough.
  • FIG. 12A is a plan view of a second exemplary embodiment of a combination wheel of the present disclosure. This embodiment is a single-substrate structure.
  • FIG. 12B is a side cross-sectional view of the combination wheel, and also illustrates the optical path therethrough.
  • FIG. 13A is a plan view of a third exemplary embodiment of a combination wheel of the present disclosure. This embodiment has a thinner structure.
  • FIG. 13B is a side cross-sectional view of the combination wheel, and also illustrates the optical path therethrough.
  • FIG. 14 shows the optical path through an applied optical system including the dual-substrate structure of FIG. 11A.
  • FIG. 15 shows the optical path through an applied optical system including the structure of FIG. 13A.
  • the terms “comprise (s) , ” “include (s) , ” “having, ” “has, ” “can, ” “contain (s) , ” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that require the presence of the named ingredients/steps and permit the presence of other ingredients/steps.
  • such description should be construed as also describing compositions or processes as ′′consisting of′′ and ′′consisting essentially of′′ the enumerated ingredients/steps, which allows the presence of only the named ingredients/steps, along with any unavoidable impurities that might result therefrom, and excludes other ingredients/steps.
  • excitation light and “exciting light” are used to refer to input light, e.g. from a laser-based illumination source or other light source, and the terms “emission light” and “emitting light” are used herein to refer to converted reflected light from a color wheel.
  • the color red usually refers to light having a wavelength of about 780 nanometers to about 622 nanometers.
  • the color green usually refers to light having a wavelength of about 577 nanometers to about 492 nanometers.
  • the color blue usually refers to light having a wavelength of about 492 nanometers to about 455 nanometers.
  • the color yellow usually refers to light having a wavelength of about 597 nanometers to about 577 nanometers. However, this may depend on the context. For example, these colors are sometimes used to label various parts and distinguish those parts from each other.
  • a dichroic filter refers to a filter that selectively passes light of a certain wavelength range while reflecting other light.
  • the present disclosure relates to combination wheels that serve the function of both a phosphor wheel and a color wheel, but that integrate those functions into a single structure that thus only requires one motor. This may permit the overall apparatus to be smaller in size. To explain how the combination wheel functions, it may be helpful to first review how conventional phosphor wheels and color wheels operate.
  • FIG. 1A and FIG. 1B An example of a known such color wheel design is shown in FIG. 1.
  • a segment structure module 111 is separated into three (or more, if desired) segments by a dicing or scribble process.
  • the segment structure module 111 has three segments: a green segment 111a, a red segment 111b, and a blue segment 111c. This permits the color wheel to achieve the three primary (RGB) colors.
  • RGB primary
  • cyan, magenta, and yellow segments can be added, as well as a white segment to achieve a greater brightness when coordinated with a digital micromirror device (DMD) .
  • DMD digital micromirror device
  • the segment structure module 111 is bonded to a motor 112, as shown in FIG. 1B, to produce the color wheel 110.
  • incident light 113a passes through the segment structure module 111 to produce tuned light 113b.
  • the typical color filter spectrum for an RGB color wheel is shown in FIG. 2. As seen here, the transmittance over the entire spectrum is very high (close to 1.0) due to the combination of the three color segments.
  • a phosphor wheel is used to generate light of different colors sequentially.
  • Light conversion (or wavelength conversion) materials such as phosphors are used on the phosphor wheel.
  • the phosphor wheel normally has some fan segments which contain different types of phosphor to convert the excitation light to a green, yellow, or red color.
  • a blue light laser (having a wavelength of about 440 nm to about 460 nm) is used to excite the phosphor segments on the phosphor wheel.
  • the phosphor wheel can also have one or more gaps to pass the blue source light through unconverted.
  • Phosphor wheels have two basic structures: reflective and transmissive.
  • FIG. 3A and FIG. 3B show the typical structure of a reflective phosphor wheel.
  • Phosphor powder is mixed with a binder to make a phosphor mixture that is deposited on a substrate 312, which is generally a metal substrate (e.g., aluminum) coated by a highly reflective film.
  • the phosphor layer 311 is tightly bonded to the substrate.
  • the phosphor layer has three segments: a green segment 311a, a red segment 311b, and a blue segment 311c to achieve the RGB light.
  • the blue segment does not contain phosphor powder (because the excitation light is typically blue light) , but rather contains a diffuser instead. This reduces speckle.
  • the portion of the substrate 312 on which the red segment and the green segment are located is highly reflective.
  • the portion of the substrate on which the blue segment is located is either made from a different material than the rest of the substrate or includes a slot through the substrate, with the different material/slot permitting the blue light to pass through the wheel instead of being reflected. As illustrated in FIG. 3B, the substrate 312 is then mounted to the motor 313 to obtain a phosphor wheel 310.
  • excitation blue light 314a stimulates the red and green phosphors 311, and the emission light 314b is reflected by the substrate 312 and then collected by the subsequent optical system.
  • the excitation light does not pass through the substrate 312 to stimulate the phosphors to obtain the emitted light.
  • the red and green emitted light do not pass through the substrate 312.
  • the blue light does pass through the substrate (made of a different non-reflective material or contains a slot) .
  • FIG. 4 shows the typical color spectrum for R/G/Y phosphors and the blue laser. As seen here, the blue laser transmits sharply between 440 nm and 460 nm. The green (G) phosphor is on the left, then the yellow (Y) phosphor in the center, and the red (R) phosphor on the right. The Y and R phosphors have significant overlap starting at about 622 nm.
  • the second type of phosphor wheel is a transmissive phosphor wheel.
  • a transmissive phosphor wheel the excitation light passes through the substrate before stimulating the phosphors.
  • FIG. 5A and FIG. 5B show the typical transmissive phosphor wheel structure.
  • phosphor powder is mixed with a binder to make a phosphor mixture that is deposited on a substrate 512.
  • the phosphor layer 511 has three segments: a green segment 511a, a red segment 511b, and a blue segment 511c.
  • the entire substrate 512 is a transparent substrate that is coated with a blue dichroic film.
  • glass or sapphire is used as the substrate material. Blue light can pass through the substrate, while the red, green, and yellow (RGY) light emitted by the phosphor is reflected.
  • excitation blue light 514a first passes through the substrate (i.e. is transmitted from the backside of the phosphor wheel) and then stimulates the phosphors 511.
  • the emission light 514b is collected by the subsequent optical system.
  • FIG. 6 shows the typical spectrum of the substrate used in a transmissive phosphor wheel.
  • the substrate acts as a blue dichroic filter, and permits only blue light to be transmitted (i.e. to pass through) .
  • FIG. 7 shows a typical optical path that is needed when using both a reflective phosphor wheel (see FIG. 5A) and a separate color wheel.
  • a blue laser generator 730 produces blue laser light that passes through a blue dichroic filter 740.
  • the excitation blue light 790a stimulates the phosphor on the reflective phosphor wheel 720.
  • Red/green/yellow (RGY) light 790b is reflected by the reflective portion of the substrate of the reflective phosphor wheel 720 back towards blue dichroic filter 740, where it is reflected towards mirror 750.
  • Mirror 750 redirects the RGY light towards a second dichroic filter 760.
  • Dichroic filter 760 has an inverse spectrum compared with dichroic filter 740.
  • the RGY light passes through the second dichroic filter 760, as indicated by reference numeral 790d, and through a color wheel 710, which tunes the colored light.
  • the tuned color light 790e is then collected by a subsequent optical system 780.
  • the blue emission light passes through the phosphor wheel, as indicated by reference numeral 790c (because the different material or slot used for this portion of the substrate or the slot in the substrate permits the blue light to pass through) .
  • the blue light is redirected by a mirror 770 towards the second dichroic filter 760, which then reflects the blue light towards the optical system 780.
  • FIG. 8 shows the typical optical path using a transmissive phosphor wheel and a separate color wheel.
  • the blue laser generator 820 produces blue laser light 850a, which passes through the substrate of the transmissive phosphor wheel 830, thereby stimulating the phosphor powder to produce RGY emission light 850b.
  • the RGY emission light 850b then passes through color wheel 810, which tunes the light.
  • the tuned color light 850c is then collected by a subsequent optical system 840. This system is much simpler than that of FIG. 7, and does not need additional dichroic filters or mirrors.
  • FIG. 9A and FIG. 9B show a combination wheel having this sandwich structure.
  • the phosphor layer 911 is sandwiched between the substrate 912 and the color filter 915.
  • the phosphor layer is illustrated with three different color segments (R, G, B) on the perimeter of the substrate 912.
  • the color filter is made up of three different segments 915a, 915b, 915c as well, with the color filter corresponding to the phosphor color.
  • a red color filter is on top of the red phosphor segment. The color filter is then attached to the motor 913.
  • excitation blue light 914a passes through the substrate 912 to stimulate the phosphor layer 911.
  • the emission light from the phosphor then passes through the color filter 915 and is immediately tuned.
  • the tuned color light 914b can then be collected.
  • the color filter of the sandwich structure and the separate color wheel generally have the same spectrum demand. Their only difference is in the angle of incidence.
  • the AOI can be small, generally less than 30°.
  • the AOI is more than 45° and is generally designed having as AOI of 60°. This is because the emission light of phosphor has a Lambertian distribution (i.e. defined by Lambert′s cosine law) , which means that 80%of the light energy is concentrated in a +/-60° range. To collect as much emission light as much as possible, the AOI of the incident light of the color filter of the sandwich structure needs to be as large as possible (due to the smaller distance between the phosphor and the color filter) .
  • FIG. 10 shows the typical optical path using a sandwich-structure combination wheel. This optical path is very similar to that of FIG. 8, but no separate color wheel is present.
  • a blue laser generator 1020 produces 440 ⁇ 460nm blue laser light 1040a that passes through the sandwich-structure combination wheel 1010, stimulating the phosphor powder and passing through the color filter to tune the emitted light.
  • the tuned color light 1040b is then collected by a subsequent optical system 1030.
  • Transmissive phosphor wheels have simpler optical paths, require a smaller quantity of optical parts, and are typically producible in a smaller, lighter, and cheaper package.
  • transmissive phosphor wheels have distinct disadvantages, such as lower thermal dissipation efficiency and lower brightness (generally not more than 2000 ANSI in projector applications) .
  • transmissive phosphor wheels only have about 70-80%of the conversion efficiency of reflective phosphor wheels, making them useful only in low-end SSI projectors.
  • Reflective phosphor wheels generally adopt aluminum as the substrate material, which is coated with a high reflection film. More than 95%emission light has been reflected. Because aluminum substrates have high thermal conductivity (more than 220 W/m ⁇ k) , reflective phosphor wheels have better thermal dissipation efficiency. They are therefore suitable for high-end SSI projectors capable of achieving 10,000 ANSI. Reflective phosphor wheels, however, possess other intrinsic defects, such as complex optical path structures, which require more optical parts, and typically fit only in larger and heavier packages. A separate color wheel is also needed to achieve necessary color tuning for projector applications.
  • the present disclosure relates to combination wheels that integrate a reflective phosphor wheel and a color wheel. At least three different embodiments are contemplated, as illustrated in FIGs. 11A-13B.
  • FIG. 11A and FIG. 11B illustrate a dual-substrate structure.
  • FIG. 11A is a plan view
  • FIG. 11B is a side cross-sectional view.
  • the color filter 1115 is segmented into at least three different colors (here RGB) .
  • the three segments 1115a, 1115b, 1115c can have any central angle.
  • the G segment 1115a has a central angle of 180°
  • the R segment 1115b and the B segment 1115c each have a central angle of 90°.
  • the R segment acts as a red dichroic filter that passes red light
  • the G segment acts as a green dichroic filter that passes green light
  • the B segment acts as a blue dichroic filter that passes blue light (other colors reflected) .
  • the reflective substrate 1112 is coaxially aligned with the color filter 1115, and is located on a first surface 1116 of the color filter.
  • the reflective substrate is in the shape of a cylinder with a wedge removed, or put another way has a central angle of less than 360°. As seen in FIG. 11A, the reflective substrate 1112 has a central angle of 270°.
  • Two light-emitting phosphor segments 1111a, 1111b are present on the perimeter of the reflective substrate (which is different from the perimeter of the color filter) .
  • the G phosphor segment 1111a is radially aligned with the G color filter segment 1115a
  • the R phosphor segment 1111b is radially aligned with the R color filter segment 1115b.
  • the reflective substrate 1112 is formed from a highly reflective metal (e.g. aluminum) or a metal with a high reflection film formed thereon.
  • the reflective substrate can be made, for example, by stamping or punching.
  • the radius of the color filter 1115 is greater than the radius of the reflective substrate 1112.
  • the radius of the color filter can be about 25 millimeters (mm)
  • the radius of the reflective substrate is about 15 mm.
  • a diffuser segment 1118 is located adjacent the reflective substrate 1112 on the first surface 1116 of the color filter.
  • the diffuser segment could be described as filling the wedge that was removed from the reflective substrate.
  • the diffuser segment 1118 is radially aligned with the B color filter segment 1115c.
  • the diffuser 1118 can, for example, be made of glass or sapphire, with the diffuser pattern being achieved by etching and compression moulding.
  • the diffuser segment and the reflective substrate may be of the same thickness.
  • the color filter 1115, the reflective substrate 1112, and the diffuser segment 1118 are then mounted onto the motor 1113.
  • excitation blue light 1114a stimulates the phosphor segments 1111.
  • the emission light 1114b from the phosphors is reflected by the reflective substrate, then reflected by other optics (not shown) to pass through the color filter 1115.
  • the tuned color light 1114c is then collected by the subsequent optical system. Blue light passes through the diffuser segment 1118 and then directly through the blue color filter segment 1115c, without being reflected by other optics. It should be noted here, that the blue light is aimed at the reflective substrate in the central portion of the combination wheel, rather than at the perimeter of the phosphor wheel as in FIG. 7.
  • the embodiment of FIG. 11 uses a dual-substrate structure.
  • the two substrates are the color filter and the reflective substrate, with the reflective substrate being used to carry the phosphor powder.
  • This structure leads to a higher motor loading and more complex installation.
  • the reflective substrate is made of a different material from the color filter and the diffuser segment.
  • the reflective substrate can be made from a metal/metal alloy, but could also be a ceramic, sapphire, or similar material.
  • the diffuser and the color filter are generally a glass material, but could also be made from a ceramic, sapphire, or similar material.
  • FIG. 12A and FIG. 12B illustrate a single-substrate structure, which is relatively similar to the dual-substrate structure.
  • the color filter 1215 is segmented into at least three different colors (here RGB) .
  • the three segments 1215a, 1215b, 1215c can have any central angle.
  • the G segment 1215a has a central angle of 180°
  • the R segment 1215b and the B segment 1215c each have a central angle of 90°.
  • the central portion 1217 of the color filter acts as a color tuner for the blue light.
  • Two light-emitting phosphor segments 1211a, 1211b are then present on the central portion 1217.
  • a highly reflective material is coated on the central portion underneath the phosphor segments.
  • the G phosphor segment 1211a is radially aligned with the G color filter segment 1215a
  • the R phosphor segment 1211b is radially aligned with the R color filter segment 1215b.
  • a diffuser segment 1218 is located on the first surface 1216 of the color filter.
  • the diffuser segment 1218 is radially aligned with the B color filter segment 1215c.
  • excitation blue light 1214a stimulates the phosphor segments 1211.
  • the emission light 1214b from the phosphors is reflected by the highly reflective material, then reflected by other optics (not shown) to pass through the color filter 1215.
  • the tuned color light 1214c is then collected by the subsequent optical system. Blue light passes through the diffuser segment 1218 and then directly through the blue color filter segment 1215c, without being reflected by other optics.
  • the single-substrate embodiment of FIGs. 12A-12B can be modified, as shown in FIG. 13A and FIG. 13B.
  • the diffuser segment 1318 replaces the blue color filter segment entirely, which reduces the thickness.
  • the thinner single-substrate embodiment of FIGs. 13A-13B is otherwise identical to the single-substrate embodiment of FIG. 12.
  • the color filter 1315 is segmented into at least two different colors (here RG) .
  • the overall color filter 1315 has a central angle of less than 360° (with the remainder being filled in by the diffuser segment 1318) .
  • the G segment 1315a has a central angle of 180°
  • the R segment 1315b has a central angle of 90°.
  • the central portion 1317 of the color filter acts as a reflector.
  • Two light-emitting phosphor segments 1311a, 1311b are then present on the central portion 1317.
  • a highly reflective material is coated on the central portion underneath the phosphor segments.
  • the G phosphor segment 1311a is radially aligned with the G color filter segment 1315a
  • the R phosphor segment 1311b is radially aligned with the R color filter segment 1315b.
  • the diffuser segment 1318 is located adjacent the color filter 1315.
  • the radius of the diffuser segment is equal to the radius of the color filter 1315. The blue light will be tuned by subsequent optical parts.
  • excitation blue light 1314a stimulates the phosphor segments 1311.
  • the emission light 1314b from the phosphors is reflected by the highly reflective material located between the phosphor segments and the color filter, then reflected by other optics (not shown) to pass through the color filter 1315.
  • the tuned color light 1314c is then collected by the subsequent optical system. Blue light passes through the diffuser segment 1318 and then directly through the blue color filter segment 1315c, without being reflected by other optics.
  • FIG. 14 illustrates the optical path through an applied optical system including the dual-substrate structure of FIGs. 11A-11B.
  • a blue laser generator 1420 produces a 440 ⁇ 460nm blue laser light that passes through a first blue dichroic filter 1430.
  • the blue dichroic filter 1430 passes blue light through, and reflects other colors.
  • the blue light 1480a stimulates the phosphors on the combination wheel 1410.
  • RGY emission light 1480b is reflected by the reflective substrate of the combination phosphor/color wheel 1410 back towards the first blue dichroic filter.
  • the RGY light 1480b (i.e.
  • Dichroic filter 1450 has an inverse spectrum compared with dichroic filter 1440, or in other words passes other-color (e.g. RGY) light and reflects blue light.
  • the RGY light passes through the second dichroic filter 1450.
  • the tuned RGY light 1480d is then collected by a subsequent optical system 1470.
  • the blue light 1480c that has passed through the diffuser and the blue dichroic color filter segment of the combination wheel 1410 is redirected by a second mirror 1460 towards the second dichroic filter 1450, which reflects the blue light to the optical system 1470.
  • the optical path through an applied optical system using the combination wheels of FIGs. 12A-12B and FIGs. 13A-13B would be substantially similar to that depicted in FIG. 14.
  • the blue light could be tuned by subsequent optical parts to obtain tuned blue light, for example by a dichroic film coating.
  • the optical system 1470 is aligned with the RGY light 1480b.
  • the optical system 1470 could be aligned instead with the blue light 1480a, as illustrated in FIG. 15.
  • the combination wheel 1413 of FIG. 13A is used instead. With the combination wheel 1413, blue light 1480a passes through the diffuser segment and remains untuned.
  • the untuned blue light 1480c passes through blue color filter 1490, and the tuned blue light 1480e then passes through second blue dichroic filter 1460, which passes the tuned blue light through to optical system 1470.
  • the RGY light 1480b emitted by the phosphors is reflected by first blue dichroic filter 1430, then redirected by first mirror 1440 to pass through the color filter and become tuned other-color (e.g. RGY) light 1480d.
  • the tuned other-color light is then redirected by second mirror 1450 to second blue dichroic filter 1460 which reflects the tuned other-color light 1480d towards the optical system 1470.
  • combination phosphor/color wheels are used to convert excitation light from blue light to another color.
  • the combination phosphor/color wheels may convert blue light to yellow or green light, particularly in laser projection display systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Optical Filters (AREA)
  • Microscoopes, Condenser (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

A combination wheel is disclosed, which comprises a color filter, a reflective substrate coaxially aligned with and on a surface of the color filter, light-emitting phosphor segments of different colors on the reflective substrate, and a diffuser segment. When used with a blue laser generator and a series of a dichroic filters and mirrors, the combination wheel tunes and convert lights to be collected by a subsequent optical system.

Description

COMBINATION WHEEL FOR LIGHT CONVERSION BACKGROUND
The present disclosure relates to an optical light conversion device that integrates a color wheel and a phosphor wheel. The optical light conversion device can be used in, for example, a projection display system to generate color sequential illumination by wavelength conversion.
Phosphor wheels are used in a variety of optical devices such as projection-based or other picture generation systems using Digital Light Processing (DLP) technology. The phosphor wheel comprises a hub portion, which is a cylindrical body that acts as a rotor when coupled to a motor. An optically-active radial portion is attached to or integrated with the hub portion. Wavelength conversion materials (phosphors) on the optically-active radial portion generate emission light of a different wavelength from incident excitation light.
Current solid-state laser light sources (solid state illuminated, or SSI) use a blue laser to stimulate the phosphor wheel and generate the emission light, which may be green, yellow, or red depending on the phosphor powder. The monochromatic light waves are then mixed together to produce white light.
Although monochromatic light is produced by the phosphor wheel, phosphors usually cannot achieve the color gamut of a standard projector, i.e. the entire range of colors available on the projector. As a result, the colors must be tuned by a color filter. Generally, the color filter is also in the form of a wheel that rotates at a synchronous speed with the phosphor wheel. In a color wheel, the optically-active portion typically includes one or more color filters for filtering incident light. These are typically planar glass segments coated with a thin film in order to reflect or transmit light in a wavelength-dependent manner. Multiple color filters may be provided in different sections of the radial optically-active portion, so that rotation of the color wheel causes incident light to be affected differently by these different portions
Typically, a phosphor wheel must be used together with a color wheel. It would be desirable to create an optical light conversion device that is operable with high-power sources, for example laser projectors, which overcomes the shortcomings of  separate phosphor wheels and color wheels. In particular, it would be desirable to create an optical light conversion device that integrates the functions of a phosphor wheel and a color into a single structure, does not require more than current motor loading, achieves flexible color adjustment, can be made with fewer components, and uses low-cost components.
BRIEF DESCRIPTION
The present disclosure thus relates to a combination wheel, which can perform the function of both a phosphor wheel and a color wheel. Also disclosed herein are apparatuses comprising the combination wheel, a blue laser generator that produces an excitation blue light, and a series of a dichroic filters and mirrors used to tune and convert light to be collected by a subsequent optical system.
Disclosed in various embodiments herein are combination wheels, comprising: a color filter, a reflective substrate with at least two phosphor segments, and a diffuser segment. The color filter is segmented into at least three different colors. The reflective substrate is coaxially aligned with the color filter on a first surface of the color filter. The reflective substrate is in the form of a circle/cylinder with a wedge or sector removed. The reflective substrate can be described as having a central angle of less than 360°. A first light-emitting phosphor segment is deposited on a first sector of the reflective substrate. A second light-emitting phosphor segment deposited on a second sector of the reflective substrate. A diffuser segment is located adjacent the reflective substrate on the first surface of the color filter, and can be described as filling in the location where the wedge or sector was removed from the reflective substrate.
In particular embodiments, the first light-emitting phosphor segment includes a green light-emitting phosphor; and the second light-emitting phosphor segment includes a red or yellow light-emitting phosphor. Continuing, the first light-emitting phosphor segment is radially aligned with a green segment of the color filter; the second light-emitting phosphor segment is radially aligned with a red or yellow segment of the color filter, and the diffuser segment is radially aligned with a blue segment of the color filter.
In some embodiments, the reflective substrate is a high-reflectivity coating on the surface of the color filter. These embodiments could be considered a “single-substrate” wheel. In other embodiments, the reflective substrate is a reflective metal, such as aluminum or an aluminum alloy. Such embodiments could be considered a “dual-substrate” wheel. The color filter may comprise a glass substrate, with appropriate coatings thereon.
The combination wheel may further comprise a hub coupled to a motor, the color filter being coupled to the hub.
Also disclosed are apparatuses, comprising: a combination wheel as described herein; a blue laser generator that (A) produces an excitation blue light and (B) is aligned with the reflective substrate and the diffuser segment; a first dichroic filter located between the blue laser generator and the combination wheel, wherein blue light passes through the first dichroic filter and other-color light is reflected by the first dichroic filter; a first mirror located to redirect the other-color light from the first dichroic filter toward the color filter of the combination wheel, such that the other-color light passes through the color filter of the combination wheel and is tuned to produce tuned other-color light; and an optical system aligned to receive the tuned other-color light.
The apparatus may further comprise: a second dichroic filter located between the combination wheel and the optical system; and a second mirror; wherein the second dichroic filter and the second mirror are configured so that the tuned other-color light and the tuned blue light are directed toward the optical system.
In some embodiments, the second dichroic filter is located between the combination wheel and the optical system, wherein the tuned other-color light passes through the second dichroic filter and blue light is reflected by the second dichroic filter; and the second mirror is located to redirect blue light that passes through the diffuser segment of the combination wheel toward the second dichroic filter, so that the blue light is again reflected by the second dichroic filter toward the optical system.
In other embodiments, the second dichroic filter is located between the combination wheel and the optical system, wherein blue light passes through the second dichroic filter and other-color light is reflected by the second dichroic filter; and the second mirror is located to redirect the tuned other-color light toward the second  dichroic filter, so that the tuned other-color light is again reflected by the second dichroic filter toward the optical system.
Also disclosed are combination wheels, comprising: a color filter segmented into at least two different colors and having a central angle of less than 360°; a reflective substrate coaxially aligned with the color filter on a first surface of the color filter; a first light-emitting phosphor segment deposited on a first sector of the reflective substrate; a second light-emitting phosphor segment deposited on a second sector of the reflective substrate; and a diffuser segment located adjacent the color filter and having a radius equal to a radius of the color filter. In these embodiments, the color filter is in the form of a circle/cylinder with a wedge or sector removed. The diffuser segment can be described as filling in the location where the wedge or sector was removed from the color filter.
The first light-emitting phosphor segment can include a green light-emitting phosphor; and the second light-emitting phosphor segment can include a red or yellow light-emitting phosphor. The first light-emitting phosphor segment may be radially aligned with a green segment of the color filter; and the second light-emitting phosphor segment may be radially aligned with a red or yellow segment of the color filter.
The reflective substrate may be a high-reflectivity coating. The color filter can be segmented into a green segment and a red or yellow segment. The color filter may comprise a glass substrate, with appropriate coatings thereon.
Apparatuses using this combination wheel also include a blue laser generator that (A) produces an excitation blue light and (B) is aligned with the reflective substrate and the diffuser segment; a first dichroic filter located between the blue laser generator and the combination wheel, wherein blue light passes through the first dichroic filter and other-color light is reflected by the first dichroic filter; a first mirror located to redirect the other-color light from the first dichroic filter toward the color filter of the combination wheel, such that the other-color light passes through the color filter of the combination wheel and is tuned to produce tuned other-color light; and an optical system aligned to receive the tuned other-color light. The apparatus may further comprise a blue color filter for tuning the excitation blue light to produce tuned blue light. The apparatus can also further comprise: a second dichroic filter located between the combination wheel  and the optical system; and a second mirror; wherein the second dichroic filter and the second mirror are configured so that the tuned other-color light and the tuned blue light are directed toward the optical system. Such apparatuses are also described further above.
These and other non-limiting characteristics of the disclosure are more particularly disclosed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The following is a brief description of the drawings, which are presented for the purposes of illustrating the exemplary embodiments disclosed herein and not for the purposes of limiting the same.
FIG. 1A is a plan view of a conventional RGB color wheel. FIG. 1B is a side view showing the optical path therethrough.
FIG. 2 shows the RGB color filter spectrum of the color wheel of FIG. 1A.
FIG. 3A is a plan view of a conventional reflective phosphor wheel. FIG. 3B is a side view showing the optical path therethrough.
FIG. 4 shows the R/G/Y phosphor and blue laser color spectrum. The y-axis is transmittance, and the x-axis is wavelength in nanometers.
FIG. 5A is a plan view of a conventional transmissive phosphor wheel. FIG. 5B is a side view showing the optical path therethrough.
FIG. 6 shows the color spectrum of a blue dichroic filter. The y-axis is transmittance, and the x-axis is wavelength in nanometers.
FIG. 7 shows the optical path through an applied optical system including a reflective phosphor wheel and a separate color wheel.
FIG. 8 shows the optical path through an applied optical system including a transmissive phosphor wheel and a separate color wheel.
FIG. 9A is a plan view of a conventional sandwich-structure that combines a transmissive phosphor wheel with a color wheel. FIG. 9B is a side view showing the optical path therethrough.
FIG. 10 shows the optical path through an applied optical system including the sandwich-structure combination wheel of FIG. 9.
FIG. 11A is a plan view of a first exemplary embodiment of a combination wheel of the present disclosure. This embodiment is a dual-substrate structure. FIG. 11B is a side cross-sectional view of the combination wheel, and also illustrates the optical path therethrough.
FIG. 12A is a plan view of a second exemplary embodiment of a combination wheel of the present disclosure. This embodiment is a single-substrate structure. FIG. 12B is a side cross-sectional view of the combination wheel, and also illustrates the optical path therethrough.
FIG. 13A is a plan view of a third exemplary embodiment of a combination wheel of the present disclosure. This embodiment has a thinner structure. FIG. 13B is a side cross-sectional view of the combination wheel, and also illustrates the optical path therethrough.
FIG. 14 shows the optical path through an applied optical system including the dual-substrate structure of FIG. 11A.
FIG. 15 shows the optical path through an applied optical system including the structure of FIG. 13A.
DETAILED DESCRIPTION
A more complete understanding of the components, processes and apparatuses disclosed herein can be obtained by reference to the accompanying drawings. These figures are merely schematic representations based on convenience and the ease of demonstrating the present disclosure, and are, therefore, not intended to indicate relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments.
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
The singular forms ″a, ″ ″an, ″ and ″the″ include plural referents unless the context clearly dictates otherwise.
As used in the specification and in the claims, the terms “comprise (s) , ” “include (s) , ” “having, ” “has, ” “can, ” “contain (s) , ” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that require the presence of the named ingredients/steps and permit the presence of other ingredients/steps. However, such description should be construed as also describing compositions or processes as ″consisting of″ and ″consisting essentially of″ the enumerated ingredients/steps, which allows the presence of only the named ingredients/steps, along with any unavoidable impurities that might result therefrom, and excludes other ingredients/steps.
Numerical values in the specification and claims of this application should be understood to include numerical values which are the same when reduced to the same number of significant figures and numerical values which differ from the stated value by less than the experimental error of conventional measurement technique of the type described in the present application to determine the value.
All ranges disclosed herein are inclusive of the recited endpoint and independently combinable (for example, the range of “from 2 grams to 10 grams” is inclusive of the endpoints, 2 grams and 10 grams, and all the intermediate values) .
The terms “about” and “approximately” can be used to include any numerical value that can vary without changing the basic function of that value. When used with a range, “about” and “approximately” also disclose the range defined by the absolute values of the two endpoints, e.g. “about 2 to about 4” also discloses the range “from 2 to 4. ” Generally, the terms “about” and “approximately” may refer to plus or minus 10%of the indicated number.
As used herein, the terms “excitation light” and “exciting light” are used to refer to input light, e.g. from a laser-based illumination source or other light source, and the terms “emission light” and “emitting light” are used herein to refer to converted reflected light from a color wheel.
For reference, the color red usually refers to light having a wavelength of about 780 nanometers to about 622 nanometers. The color green usually refers to light having a wavelength of about 577 nanometers to about 492 nanometers. The color blue usually refers to light having a wavelength of about 492 nanometers to about 455  nanometers. The color yellow usually refers to light having a wavelength of about 597 nanometers to about 577 nanometers. However, this may depend on the context. For example, these colors are sometimes used to label various parts and distinguish those parts from each other.
A dichroic filter, as used herein, refers to a filter that selectively passes light of a certain wavelength range while reflecting other light.
The present disclosure relates to combination wheels that serve the function of both a phosphor wheel and a color wheel, but that integrate those functions into a single structure that thus only requires one motor. This may permit the overall apparatus to be smaller in size. To explain how the combination wheel functions, it may be helpful to first review how conventional phosphor wheels and color wheels operate.
A conventional color wheel design is shown in FIG. 1A and FIG. 1B. An example of a known such color wheel design is shown in FIG. 1. A segment structure module 111 is separated into three (or more, if desired) segments by a dicing or scribble process. Here, the segment structure module 111 has three segments: a green segment 111a, a red segment 111b, and a blue segment 111c. This permits the color wheel to achieve the three primary (RGB) colors. In order to get a richer color, cyan, magenta, and yellow segments can be added, as well as a white segment to achieve a greater brightness when coordinated with a digital micromirror device (DMD) . The segment structure module 111 is bonded to a motor 112, as shown in FIG. 1B, to produce the color wheel 110. As seen in FIG. 1B, incident light 113a passes through the segment structure module 111 to produce tuned light 113b.
The typical color filter spectrum for an RGB color wheel is shown in FIG. 2. As seen here, the transmittance over the entire spectrum is very high (close to 1.0) due to the combination of the three color segments.
A phosphor wheel is used to generate light of different colors sequentially. Light conversion (or wavelength conversion) materials such as phosphors are used on the phosphor wheel. The phosphor wheel normally has some fan segments which contain different types of phosphor to convert the excitation light to a green, yellow, or red color. Typically, a blue light laser (having a wavelength of about 440 nm to about 460 nm) is used to excite the phosphor segments on the phosphor wheel. The phosphor  wheel can also have one or more gaps to pass the blue source light through unconverted. Phosphor wheels have two basic structures: reflective and transmissive.
In a reflective phosphor wheel, the excitation light of the blue light laser does not pass through the substrate before stimulating the phosphors. FIG. 3A and FIG. 3B show the typical structure of a reflective phosphor wheel. Phosphor powder is mixed with a binder to make a phosphor mixture that is deposited on a substrate 312, which is generally a metal substrate (e.g., aluminum) coated by a highly reflective film. After curing at a specified or desired temperature, the phosphor layer 311 is tightly bonded to the substrate. As illustrated in FIG. 3A, the phosphor layer has three segments: a green segment 311a, a red segment 311b, and a blue segment 311c to achieve the RGB light. These three segments are located on the perimeter of the circular (from the plan view) substrate 312. It is noted that the blue segment does not contain phosphor powder (because the excitation light is typically blue light) , but rather contains a diffuser instead. This reduces speckle. The portion of the substrate 312 on which the red segment and the green segment are located is highly reflective. The portion of the substrate on which the blue segment is located is either made from a different material than the rest of the substrate or includes a slot through the substrate, with the different material/slot permitting the blue light to pass through the wheel instead of being reflected. As illustrated in FIG. 3B, the substrate 312 is then mounted to the motor 313 to obtain a phosphor wheel 310.
As illustrated in FIG. 3B, excitation blue light 314a stimulates the red and green phosphors 311, and the emission light 314b is reflected by the substrate 312 and then collected by the subsequent optical system. In this way, the excitation light does not pass through the substrate 312 to stimulate the phosphors to obtain the emitted light. The red and green emitted light do not pass through the substrate 312. The blue light, however, does pass through the substrate (made of a different non-reflective material or contains a slot) .
Because red phosphor has a relatively low conversion efficiency, sometimes yellow phosphor is used instead of red phosphor, and the red color is extracted from the yellow spectrum. FIG. 4 shows the typical color spectrum for R/G/Y phosphors and the blue laser. As seen here, the blue laser transmits sharply between 440 nm and 460 nm.  The green (G) phosphor is on the left, then the yellow (Y) phosphor in the center, and the red (R) phosphor on the right. The Y and R phosphors have significant overlap starting at about 622 nm.
The second type of phosphor wheel is a transmissive phosphor wheel. In a transmissive phosphor wheel, the excitation light passes through the substrate before stimulating the phosphors. FIG. 5A and FIG. 5B show the typical transmissive phosphor wheel structure. Again, phosphor powder is mixed with a binder to make a phosphor mixture that is deposited on a substrate 512. As illustrated here, the phosphor layer 511 has three segments: a green segment 511a, a red segment 511b, and a blue segment 511c. Instead of a reflective substrate, though, in a transmissive phosphor wheel the entire substrate 512 is a transparent substrate that is coated with a blue dichroic film. Generally, glass or sapphire is used as the substrate material. Blue light can pass through the substrate, while the red, green, and yellow (RGY) light emitted by the phosphor is reflected.
As illustrated in FIG. 5B, excitation blue light 514a first passes through the substrate (i.e. is transmitted from the backside of the phosphor wheel) and then stimulates the phosphors 511. The emission light 514b is collected by the subsequent optical system.
FIG. 6 shows the typical spectrum of the substrate used in a transmissive phosphor wheel. The substrate acts as a blue dichroic filter, and permits only blue light to be transmitted (i.e. to pass through) .
FIG. 7 shows a typical optical path that is needed when using both a reflective phosphor wheel (see FIG. 5A) and a separate color wheel. A blue laser generator 730 produces blue laser light that passes through a blue dichroic filter 740. The excitation blue light 790a stimulates the phosphor on the reflective phosphor wheel 720. Red/green/yellow (RGY) light 790b is reflected by the reflective portion of the substrate of the reflective phosphor wheel 720 back towards blue dichroic filter 740, where it is reflected towards mirror 750. Mirror 750 redirects the RGY light towards a second dichroic filter 760. Dichroic filter 760 has an inverse spectrum compared with dichroic filter 740. Put another way, blue light is reflected, and other colors are transmitted (i.e. pass through the filter) . The RGY light passes through the second dichroic filter 760, as  indicated by reference numeral 790d, and through a color wheel 710, which tunes the colored light. The tuned color light 790e is then collected by a subsequent optical system 780. The blue emission light passes through the phosphor wheel, as indicated by reference numeral 790c (because the different material or slot used for this portion of the substrate or the slot in the substrate permits the blue light to pass through) . The blue light is redirected by a mirror 770 towards the second dichroic filter 760, which then reflects the blue light towards the optical system 780.
FIG. 8 shows the typical optical path using a transmissive phosphor wheel and a separate color wheel. The blue laser generator 820 produces blue laser light 850a, which passes through the substrate of the transmissive phosphor wheel 830, thereby stimulating the phosphor powder to produce RGY emission light 850b. The RGY emission light 850b then passes through color wheel 810, which tunes the light. The tuned color light 850c is then collected by a subsequent optical system 840. This system is much simpler than that of FIG. 7, and does not need additional dichroic filters or mirrors.
A sandwich structure has been created to integrate a transmissive phosphor wheel and a color wheel into a single wheel. FIG. 9A and FIG. 9B show a combination wheel having this sandwich structure. In this sandwich structure, as seen in FIG. 9B, the phosphor layer 911 is sandwiched between the substrate 912 and the color filter 915. As seen in FIG. 9A, the phosphor layer is illustrated with three different color segments (R, G, B) on the perimeter of the substrate 912. The color filter is made up of three  different segments  915a, 915b, 915c as well, with the color filter corresponding to the phosphor color. Here, for example, a red color filter is on top of the red phosphor segment. The color filter is then attached to the motor 913.
Referring back to FIG. 9B, excitation blue light 914a passes through the substrate 912 to stimulate the phosphor layer 911. The emission light from the phosphor then passes through the color filter 915 and is immediately tuned. The tuned color light 914b can then be collected.
The color filter of the sandwich structure and the separate color wheel generally have the same spectrum demand. Their only difference is in the angle of incidence. For an independent color wheel, the AOI can be small, generally less than  30°. In the sandwich structure, however, the AOI is more than 45° and is generally designed having as AOI of 60°. This is because the emission light of phosphor has a Lambertian distribution (i.e. defined by Lambert′s cosine law) , which means that 80%of the light energy is concentrated in a +/-60° range. To collect as much emission light as much as possible, the AOI of the incident light of the color filter of the sandwich structure needs to be as large as possible (due to the smaller distance between the phosphor and the color filter) .
FIG. 10 shows the typical optical path using a sandwich-structure combination wheel. This optical path is very similar to that of FIG. 8, but no separate color wheel is present. Here, a blue laser generator 1020 produces 440~460nm blue laser light 1040a that passes through the sandwich-structure combination wheel 1010, stimulating the phosphor powder and passing through the color filter to tune the emitted light. The tuned color light 1040b is then collected by a subsequent optical system 1030.
Transmissive phosphor wheels have simpler optical paths, require a smaller quantity of optical parts, and are typically producible in a smaller, lighter, and cheaper package. However, transmissive phosphor wheels have distinct disadvantages, such as lower thermal dissipation efficiency and lower brightness (generally not more than 2000 ANSI in projector applications) . As such, transmissive phosphor wheels only have about 70-80%of the conversion efficiency of reflective phosphor wheels, making them useful only in low-end SSI projectors.
Reflective phosphor wheels generally adopt aluminum as the substrate material, which is coated with a high reflection film. More than 95%emission light has been reflected. Because aluminum substrates have high thermal conductivity (more than 220 W/m·k) , reflective phosphor wheels have better thermal dissipation efficiency. They are therefore suitable for high-end SSI projectors capable of achieving 10,000 ANSI. Reflective phosphor wheels, however, possess other intrinsic defects, such as complex optical path structures, which require more optical parts, and typically fit only in larger and heavier packages. A separate color wheel is also needed to achieve necessary color tuning for projector applications.
The present disclosure relates to combination wheels that integrate a reflective phosphor wheel and a color wheel. At least three different embodiments are contemplated, as illustrated in FIGs. 11A-13B.
FIG. 11A and FIG. 11B illustrate a dual-substrate structure. FIG. 11A is a plan view, and FIG. 11B is a side cross-sectional view. The color filter 1115 is segmented into at least three different colors (here RGB) . As seen in FIG. 11A, the three  segments  1115a, 1115b, 1115c can have any central angle. Here, the G segment 1115a has a central angle of 180°, while the R segment 1115b and the B segment 1115c each have a central angle of 90°. The R segment acts as a red dichroic filter that passes red light, the G segment acts as a green dichroic filter that passes green light, and the B segment acts as a blue dichroic filter that passes blue light (other colors reflected) .
The reflective substrate 1112 is coaxially aligned with the color filter 1115, and is located on a first surface 1116 of the color filter. The reflective substrate is in the shape of a cylinder with a wedge removed, or put another way has a central angle of less than 360°. As seen in FIG. 11A, the reflective substrate 1112 has a central angle of 270°. Two light-emitting  phosphor segments  1111a, 1111b are present on the perimeter of the reflective substrate (which is different from the perimeter of the color filter) . The G phosphor segment 1111a is radially aligned with the G color filter segment 1115a, and the R phosphor segment 1111b is radially aligned with the R color filter segment 1115b. Here, the reflective substrate 1112 is formed from a highly reflective metal (e.g. aluminum) or a metal with a high reflection film formed thereon. The reflective substrate can be made, for example, by stamping or punching. It should be noted that the radius of the color filter 1115 is greater than the radius of the reflective substrate 1112. For example, the radius of the color filter can be about 25 millimeters (mm) , while the radius of the reflective substrate is about 15 mm.
diffuser segment 1118 is located adjacent the reflective substrate 1112 on the first surface 1116 of the color filter. The diffuser segment could be described as filling the wedge that was removed from the reflective substrate. As seen in FIG. 11A, the diffuser segment 1118 is radially aligned with the B color filter segment 1115c. The diffuser 1118 can, for example, be made of glass or sapphire, with the diffuser pattern  being achieved by etching and compression moulding. The diffuser segment and the reflective substrate may be of the same thickness. The color filter 1115, the reflective substrate 1112, and the diffuser segment 1118 are then mounted onto the motor 1113.
As illustrated in FIG. 11B, excitation blue light 1114a stimulates the phosphor segments 1111. The emission light 1114b from the phosphors is reflected by the reflective substrate, then reflected by other optics (not shown) to pass through the color filter 1115. The tuned color light 1114c is then collected by the subsequent optical system. Blue light passes through the diffuser segment 1118 and then directly through the blue color filter segment 1115c, without being reflected by other optics. It should be noted here, that the blue light is aimed at the reflective substrate in the central portion of the combination wheel, rather than at the perimeter of the phosphor wheel as in FIG. 7.
The embodiment of FIG. 11 uses a dual-substrate structure. The two substrates are the color filter and the reflective substrate, with the reflective substrate being used to carry the phosphor powder. This structure leads to a higher motor loading and more complex installation. Generally, the reflective substrate is made of a different material from the color filter and the diffuser segment. The reflective substrate can be made from a metal/metal alloy, but could also be a ceramic, sapphire, or similar material. The diffuser and the color filter are generally a glass material, but could also be made from a ceramic, sapphire, or similar material.
FIG. 12A and FIG. 12B illustrate a single-substrate structure, which is relatively similar to the dual-substrate structure. The color filter 1215 is segmented into at least three different colors (here RGB) . As seen in FIG. 12A, the three  segments  1215a, 1215b, 1215c can have any central angle. Here, the G segment 1215a has a central angle of 180°, while the R segment 1215b and the B segment 1215c each have a central angle of 90°.
In this single-substrate structure, there is no additional reflective substrate. Instead, the central portion 1217 of the color filter acts as a color tuner for the blue light. Two light-emitting  phosphor segments  1211a, 1211b are then present on the central portion 1217. A highly reflective material is coated on the central portion underneath the phosphor segments. The G phosphor segment 1211a is radially aligned with the G  color filter segment 1215a, and the R phosphor segment 1211b is radially aligned with the R color filter segment 1215b.
diffuser segment 1218 is located on the first surface 1216 of the color filter. The diffuser segment 1218 is radially aligned with the B color filter segment 1215c.
As illustrated in FIG. 12B, excitation blue light 1214a stimulates the phosphor segments 1211. The emission light 1214b from the phosphors is reflected by the highly reflective material, then reflected by other optics (not shown) to pass through the color filter 1215. The tuned color light 1214c is then collected by the subsequent optical system. Blue light passes through the diffuser segment 1218 and then directly through the blue color filter segment 1215c, without being reflected by other optics.
To further reduce the thickness, the single-substrate embodiment of FIGs. 12A-12B can be modified, as shown in FIG. 13A and FIG. 13B. Here, the diffuser segment 1318 replaces the blue color filter segment entirely, which reduces the thickness. The thinner single-substrate embodiment of FIGs. 13A-13B is otherwise identical to the single-substrate embodiment of FIG. 12.
The color filter 1315 is segmented into at least two different colors (here RG) . The overall color filter 1315 has a central angle of less than 360° (with the remainder being filled in by the diffuser segment 1318) . As seen in FIG. 13A, the G segment 1315a has a central angle of 180°, while the R segment 1315b has a central angle of 90°.
The central portion 1317 of the color filter acts as a reflector. Two light-emitting  phosphor segments  1311a, 1311b are then present on the central portion 1317. A highly reflective material is coated on the central portion underneath the phosphor segments. The G phosphor segment 1311a is radially aligned with the G color filter segment 1315a, and the R phosphor segment 1311b is radially aligned with the R color filter segment 1315b.
The diffuser segment 1318 is located adjacent the color filter 1315. The radius of the diffuser segment is equal to the radius of the color filter 1315. The blue light will be tuned by subsequent optical parts.
As illustrated in FIG. 13B, excitation blue light 1314a stimulates the phosphor segments 1311. The emission light 1314b from the phosphors is reflected by the highly  reflective material located between the phosphor segments and the color filter, then reflected by other optics (not shown) to pass through the color filter 1315. The tuned color light 1314c is then collected by the subsequent optical system. Blue light passes through the diffuser segment 1318 and then directly through the blue color filter segment 1315c, without being reflected by other optics.
FIG. 14 illustrates the optical path through an applied optical system including the dual-substrate structure of FIGs. 11A-11B. A blue laser generator 1420 produces a 440~460nm blue laser light that passes through a first blue dichroic filter 1430. The blue dichroic filter 1430 passes blue light through, and reflects other colors. After passing through the first blue dichroic filter 1430, the blue light 1480a stimulates the phosphors on the combination wheel 1410. RGY emission light 1480b is reflected by the reflective substrate of the combination phosphor/color wheel 1410 back towards the first blue dichroic filter. The RGY light 1480b (i.e. other than blue color) is reflected by the dichroic filter 1430, and redirected again by a mirror 1440 toward the color filter of the combination wheel 1410. The RGY light is tuned by the combination wheel 1410. The tuned color light then passes through a second dichroic filter 1450. Dichroic filter 1450 has an inverse spectrum compared with dichroic filter 1440, or in other words passes other-color (e.g. RGY) light and reflects blue light. The RGY light passes through the second dichroic filter 1450. The tuned RGY light 1480d is then collected by a subsequent optical system 1470. The blue light 1480c that has passed through the diffuser and the blue dichroic color filter segment of the combination wheel 1410 is redirected by a second mirror 1460 towards the second dichroic filter 1450, which reflects the blue light to the optical system 1470.
The optical path through an applied optical system using the combination wheels of FIGs. 12A-12B and FIGs. 13A-13B would be substantially similar to that depicted in FIG. 14. However, for the combination wheel of FIGs. 13A-13B, the blue light could be tuned by subsequent optical parts to obtain tuned blue light, for example by a dichroic film coating.
In FIG. 14, the optical system 1470 is aligned with the RGY light 1480b. The optical system 1470 could be aligned instead with the blue light 1480a, as illustrated in FIG. 15. Also, in FIG. 15, the combination wheel 1413 of FIG. 13A is used instead.  With the combination wheel 1413, blue light 1480a passes through the diffuser segment and remains untuned. The untuned blue light 1480c passes through blue color filter 1490, and the tuned blue light 1480e then passes through second blue dichroic filter 1460, which passes the tuned blue light through to optical system 1470. The RGY light 1480b emitted by the phosphors is reflected by first blue dichroic filter 1430, then redirected by first mirror 1440 to pass through the color filter and become tuned other-color (e.g. RGY) light 1480d. The tuned other-color light is then redirected by second mirror 1450 to second blue dichroic filter 1460 which reflects the tuned other-color light 1480d towards the optical system 1470.
These combination phosphor/color wheels are used to convert excitation light from blue light to another color. For example, the combination phosphor/color wheels may convert blue light to yellow or green light, particularly in laser projection display systems.
The present disclosure has been described with reference to preferred embodiments. Modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the present disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (20)

  1. A combination wheel, comprising:
    a color filter segmented into at least three different colors;
    a reflective substrate coaxially aligned with the color filter on a first surface of the color filter and having a central angle of less than 360°;
    a first light-emitting phosphor segment deposited on a first sector of the reflective substrate;
    a second light-emitting phosphor segment deposited on a second sector of the reflective substrate; and
    a diffuser segment located adjacent the reflective substrate on the first surface of the color filter.
  2. The combination wheel of claim 1, wherein the first light-emitting phosphor segment includes a green light-emitting phosphor; and the second light-emitting phosphor segment includes a red or yellow light-emitting phosphor.
  3. The combination wheel of claim 2, wherein the first light-emitting phosphor segment is radially aligned with a green segment of the color filter; the second light-emitting phosphor segment is radially aligned with a red or yellow segment of the color filter, and the diffuser segment is radially aligned with a blue segment of the color filter.
  4. The combination wheel of claim 1, wherein the reflective substrate is a high-reflectivity coating.
  5. The combination wheel of claim 1, wherein the reflective substrate is a reflective metal.
  6. The combination wheel of claim 5, wherein the reflective substrate is composed of aluminum or an aluminum alloy.
  7. The combination wheel of claim 1, wherein the color filter comprises a glass substrate.
  8. The combination wheel of claim 1, further comprising a hub coupled to a motor, the color filter being coupled to the hub.
  9. An apparatus, comprising:
    the combination wheel of claim 1;
    a blue laser generator that (A) produces an excitation blue light and (B) is aligned with the reflective substrate and the diffuser segment;
    a first dichroic filter located between the blue laser generator and the combination wheel, wherein blue light passes through the first dichroic filter and other-color light is reflected by the first dichroic filter;
    a first mirror located to redirect the other-color light from the first dichroic filter toward the color filter of the combination wheel, such that the other-color light passes through the color filter of the combination wheel and is tuned to produce tuned other-color light; and
    an optical system aligned to receive the tuned other-color light.
  10. The apparatus of claim 9, further comprising:
    a second dichroic filter located between the combination wheel and the optical system, wherein the tuned other-color light passes through the second dichroic filter and blue light is reflected by the second dichroic filter; and
    a second mirror located to redirect blue light that passes through the diffuser segment of the combination wheel toward the second dichroic filter, so that the blue light is again reflected by the second dichroic filter toward the optical system.
  11. The apparatus of claim 9, further comprising:
    a second dichroic filter located between the combination wheel and the optical system, wherein blue light passes through the second dichroic filter and other-color light is reflected by the second dichroic filter; and
    a second mirror located to redirect the tuned other-color light toward the second dichroic filter, so that the tuned other-color light is again reflected by the second dichroic filter toward the optical system.
  12. A combination wheel, comprising:
    a color filter segmented into at least two different colorsand having a central angle of less than 360°;
    a reflective substrate coaxially aligned with the color filter on a first surface of the color filter;
    a first light-emitting phosphor segment deposited on a first sector of the reflective substrate;
    a second light-emitting phosphor segment deposited on a second sector of the reflective substrate; and
    a diffuser segment located adjacent the color filter and having a radius equal to a radius of the color filter.
  13. The combination wheel of claim 12, wherein the first light-emitting phosphor segment includes a green light-emitting phosphor; and the second light-emitting phosphor segment includes a red or yellow light-emitting phosphor.
  14. The combination wheel of claim 13, wherein the first light-emitting phosphor segment is radially aligned with a green segment of the color filter; and the second light-emitting phosphor segment is radially aligned with a red or yellow segment of the color filter.
  15. The combination wheel of claim 12, wherein the reflective substrate is a high-reflectivity coating.
  16. The combination wheel of claim 12, wherein the color filter is segmented into a green segment and a red or yellow segment.
  17. The combination wheel of claim 12, wherein the color filter comprises a glass substrate.
  18. An apparatus, comprising:
    the combination wheel of claim 12;
    a blue laser generator that (A) produces an excitation blue light and (B) is aligned with the reflective substrate and the diffuser segment;
    a first dichroic filter located between the blue laser generator and the combination wheel, wherein blue light passes through the first dichroic filter and other-color light is reflected by the first dichroic filter;
    a first mirror located to redirect the other-color light from the first dichroic filter toward the color filter of the combination wheel, such that the other-color light passes through the color filter of the combination wheel and is tuned to produce tuned other-color light; and
    an optical system aligned to receive the tuned other-color light.
  19. The apparatus of claim 18, further comprising a blue color filter for tuning the excitation blue light to produce tuned blue light.
  20. The apparatus of claim 19, further comprising:
    a second dichroic filter located between the combination wheel and the optical system; and
    a second mirror;
    wherein the second dichroic filter and the second mirror are configured so that the tuned other-color light and the tuned blue light are directed toward the optical system.
PCT/CN2017/079874 2017-04-10 2017-04-10 Combination wheel for light conversion WO2018187897A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/486,609 US11448950B2 (en) 2017-04-10 2017-04-10 Combination wheel for light conversion including both phosphor segments and color filters
JP2020504754A JP6932840B2 (en) 2017-04-10 2017-04-10 Combination wheel for light conversion
PCT/CN2017/079874 WO2018187897A1 (en) 2017-04-10 2017-04-10 Combination wheel for light conversion
EP17905688.2A EP3610325A4 (en) 2017-04-10 2017-04-10 Combination wheel for light conversion
CN201710433243.8A CN108693637B (en) 2017-04-10 2017-06-09 Combined wheel for light conversion
CN201720668088.3U CN207232511U (en) 2017-04-10 2017-06-09 Combination wheel and the device including combination wheel
TW106122654A TWI757307B (en) 2017-04-10 2017-07-06 Combination wheel for light conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079874 WO2018187897A1 (en) 2017-04-10 2017-04-10 Combination wheel for light conversion

Publications (1)

Publication Number Publication Date
WO2018187897A1 true WO2018187897A1 (en) 2018-10-18

Family

ID=61851777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079874 WO2018187897A1 (en) 2017-04-10 2017-04-10 Combination wheel for light conversion

Country Status (6)

Country Link
US (1) US11448950B2 (en)
EP (1) EP3610325A4 (en)
JP (1) JP6932840B2 (en)
CN (2) CN207232511U (en)
TW (1) TWI757307B (en)
WO (1) WO2018187897A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187897A1 (en) * 2017-04-10 2018-10-18 Materion Precision Optics (Shanghai) Limited Combination wheel for light conversion
CN110389487A (en) * 2018-04-17 2019-10-29 深圳光峰科技股份有限公司 Light supply apparatus and display equipment
US11422448B2 (en) 2018-04-28 2022-08-23 Materion Precision Optics (Shanghai) Limited High efficiency and uniformity white light generator stimulated by laser
CN111198410B (en) * 2018-11-19 2022-08-12 深圳光峰科技股份有限公司 Scattering element, light source system and display device
CN111308841A (en) * 2018-12-11 2020-06-19 深圳光峰科技股份有限公司 Wavelength conversion device and light source system
JP2022151496A (en) * 2021-03-23 2022-10-07 カシオ計算機株式会社 Light source device, projection device, and color wheel device
US11874591B2 (en) * 2021-03-23 2024-01-16 Casio Computer Co., Ltd. Light source apparatus, projection apparatus and color wheel device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052070A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Color wheel, visible light source, and projection image display device and method
CN102566230A (en) * 2010-12-08 2012-07-11 绎立锐光科技开发(深圳)有限公司 Projection system, light source system and light source component
CN204759006U (en) * 2015-06-08 2015-11-11 深圳市绎立锐光科技开发有限公司 Projecting system , light source system and light source subassembly
CN105045025A (en) * 2015-09-02 2015-11-11 纳晶科技股份有限公司 Projection light source equipment and projection device with projection light source equipment and light spot movement control method
CN105353578A (en) * 2015-12-07 2016-02-24 杨阳 Light source system and application thereof
CN205608228U (en) * 2016-01-05 2016-09-28 深圳市光峰光电技术有限公司 Light source device

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474837B1 (en) 2000-11-20 2002-11-05 Richard S. Belliveau Lighting device with beam altering mechanism incorporating a plurality of light souces
CN2566230Y (en) 2002-09-10 2003-08-13 徐泽山 Flowmeter
JP4711154B2 (en) 2009-06-30 2011-06-29 カシオ計算機株式会社 Light source device and projector
CN202109406U (en) 2010-12-08 2012-01-11 绎立锐光科技开发(深圳)有限公司 Light wavelength conversion wheel assembly and light source with the same
EP3447362B1 (en) * 2010-12-08 2020-03-25 Appotronics Corporation Limited Light source
JP5842162B2 (en) * 2011-03-23 2016-01-13 パナソニックIpマネジメント株式会社 Light source device and image display device using the same
US9075299B2 (en) * 2011-08-27 2015-07-07 Appotronics Corporation Limited Light source with wavelength conversion device and filter plate
US9866807B2 (en) * 2011-10-03 2018-01-09 Appotronics Corporation Limited Light source system and image projection system
JP5979365B2 (en) * 2011-10-06 2016-08-24 パナソニックIpマネジメント株式会社 Light source device and image display device
CN102508401B (en) * 2011-10-25 2014-02-12 海信集团有限公司 Light source device and projector using same
TWI489855B (en) * 2012-05-23 2015-06-21 Delta Electronics Inc Light source system for stereoscopic projection
CN103792635B (en) * 2012-10-29 2016-02-17 中强光电股份有限公司 Wavelength convert wheel module and illuminator
DE102012223925B4 (en) * 2012-12-20 2024-03-21 Coretronic Corporation Illumination device with pump light source, phosphor arrangement and filter arrangement
JP2014160227A (en) * 2013-01-28 2014-09-04 Panasonic Corp Illumination device and video display apparatus
US9618737B2 (en) * 2013-01-29 2017-04-11 Texas Instruments Incorporated Color sequence illumination system with phosphor light filter
JP2014229503A (en) * 2013-05-23 2014-12-08 パナソニック株式会社 Light-emitting device, method for manufacturing the same, and projector
DE102013222431A1 (en) * 2013-11-05 2015-05-07 Osram Gmbh Light module for generating wavelength-converted light
WO2015072319A1 (en) * 2013-11-13 2015-05-21 日本電気硝子株式会社 Fluorescent wheel for projectors and light-emitting device for projectors
CN106164770B (en) * 2014-03-31 2017-10-03 Nec显示器解决方案株式会社 Light source and projecting apparatus
TWI530749B (en) * 2014-06-06 2016-04-21 台達電子工業股份有限公司 Illumination module and manufacturing method of color wheel
CN105222001B (en) 2014-06-06 2018-07-20 台达电子工业股份有限公司 The production method of light source module and colour wheel
KR20160019177A (en) * 2014-08-11 2016-02-19 엘지전자 주식회사 Projector with phosphor wheel and color wheel in one module
CA2963163A1 (en) 2014-09-30 2016-04-07 Koninklijke Philips N.V. Autostereoscopic display device and driving method
TWI533031B (en) * 2014-10-09 2016-05-11 佳世達科技股份有限公司 Projector and method for mixing light by a projector
CN104298059A (en) * 2014-10-20 2015-01-21 海信集团有限公司 Laser light source and projection display device
CN204420882U (en) * 2015-02-09 2015-06-24 深圳市绎立锐光科技开发有限公司 Heat radiating type repaiies look colour wheel
JP2016177272A (en) * 2015-03-19 2016-10-06 パナソニックIpマネジメント株式会社 Light source and projection type display device
US20160274446A1 (en) * 2015-03-19 2016-09-22 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
TWI574098B (en) * 2015-08-14 2017-03-11 台達電子工業股份有限公司 Laser light source for projector
JP6658074B2 (en) * 2016-02-24 2020-03-04 セイコーエプソン株式会社 Wavelength conversion element, light source device and projector
CN105762239B (en) 2016-04-12 2018-11-06 杨阳 Light conversion device and its preparation method and application
CN109976078B (en) * 2016-08-04 2022-01-11 深圳光峰科技股份有限公司 Light emitting device and projection system
CN106353959B (en) * 2016-11-24 2018-04-24 广景视睿科技(深圳)有限公司 A kind of colour wheel and its laser source system
CN108227355B (en) * 2016-12-15 2019-10-25 深圳光峰科技股份有限公司 Light-source system and projection arrangement
CN108267913B (en) * 2016-12-30 2021-06-08 中强光电股份有限公司 Light source module and projection device
WO2018187897A1 (en) * 2017-04-10 2018-10-18 Materion Precision Optics (Shanghai) Limited Combination wheel for light conversion
CN110278423B (en) * 2018-03-16 2021-10-12 深圳光峰科技股份有限公司 Display device
WO2020004505A1 (en) * 2018-06-29 2020-01-02 パナソニックIpマネジメント株式会社 Phosphor wheel device
CN111323901B (en) * 2018-12-17 2022-02-08 深圳光峰科技股份有限公司 Color wheel, light source system and display device
KR102655480B1 (en) * 2019-01-22 2024-04-08 엘지전자 주식회사 Projector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052070A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Color wheel, visible light source, and projection image display device and method
CN102566230A (en) * 2010-12-08 2012-07-11 绎立锐光科技开发(深圳)有限公司 Projection system, light source system and light source component
CN204759006U (en) * 2015-06-08 2015-11-11 深圳市绎立锐光科技开发有限公司 Projecting system , light source system and light source subassembly
CN105045025A (en) * 2015-09-02 2015-11-11 纳晶科技股份有限公司 Projection light source equipment and projection device with projection light source equipment and light spot movement control method
CN105353578A (en) * 2015-12-07 2016-02-24 杨阳 Light source system and application thereof
CN205608228U (en) * 2016-01-05 2016-09-28 深圳市光峰光电技术有限公司 Light source device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3610325A4 *

Also Published As

Publication number Publication date
EP3610325A4 (en) 2021-02-17
US20190369472A1 (en) 2019-12-05
CN207232511U (en) 2018-04-13
EP3610325A1 (en) 2020-02-19
TW201837591A (en) 2018-10-16
CN108693637A (en) 2018-10-23
JP2020516958A (en) 2020-06-11
JP6932840B2 (en) 2021-09-08
US11448950B2 (en) 2022-09-20
TWI757307B (en) 2022-03-11
CN108693637B (en) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2018187897A1 (en) Combination wheel for light conversion
TWI494604B (en) Wavelength conversion and filtering module and light source system
CN104698729B (en) Projection arrangement, the optical module of DLP projector
JP6968744B2 (en) Wavelength conversion filter module and lighting system
EP1605199B1 (en) Remote wavelength conversion in an illumination device
US9863604B2 (en) Phosphor wheel, light source device, and projection image display apparatus
CN107660275B (en) Polarization wavelength conversion wheel
CN110133951B (en) Phosphor wheel, light source device, and projection type image display device
JP2019035981A (en) Phosphor wheel, light source device, projection type video display device, and manufacturing method of phosphor wheel
WO2016185850A1 (en) Optical conversion device, light source device, and projector
US10976651B2 (en) Image display apparatus and light source apparatus
JP2019074677A (en) Wavelength conversion element, wavelength conversion device, light source device, and projector
CN111566558B (en) Light source device and projection display device
JP2019139205A (en) Phosphor wheel, light source device, and projection type video display device
JP2004347711A (en) Projector apparatus
US11269247B2 (en) Light source module and projection device using the same
US20230314920A1 (en) Phosphor wheel and projection image display device
WO2023276502A1 (en) Fluorescent light-emitting module, projector, and phosphor wheel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017905688

Country of ref document: EP

Effective date: 20191111