WO2018187488A1 - Superelastic medical instrument - Google Patents

Superelastic medical instrument Download PDF

Info

Publication number
WO2018187488A1
WO2018187488A1 PCT/US2018/026109 US2018026109W WO2018187488A1 WO 2018187488 A1 WO2018187488 A1 WO 2018187488A1 US 2018026109 W US2018026109 W US 2018026109W WO 2018187488 A1 WO2018187488 A1 WO 2018187488A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
distal end
assembly
proximal end
overlap region
Prior art date
Application number
PCT/US2018/026109
Other languages
French (fr)
Inventor
Casey Teal LANDEY
Ryan Jeffrey CONNOLLY
Original Assignee
Auris Health, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auris Health, Inc. filed Critical Auris Health, Inc.
Priority to CN201880030350.9A priority Critical patent/CN110602994B/en
Priority to KR1020197032921A priority patent/KR102636777B1/en
Priority to EP18780650.0A priority patent/EP3606439A4/en
Priority to JP2019554590A priority patent/JP7167054B2/en
Priority to AU2018248440A priority patent/AU2018248440A1/en
Publication of WO2018187488A1 publication Critical patent/WO2018187488A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0058Flexible endoscopes using shape-memory elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • A61B1/2676Bronchoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B2010/0216Sampling brushes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • A61B2010/045Needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00915Material properties transparent or translucent for radioactive radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties

Definitions

  • the present disclosure relates generally to medical devices, and more particularly to a superelastic medical instruments.
  • Endoscopy may involve accessing and visualizing the inside of a patient's luminal network for diagnostic and/or therapeutic purposes.
  • a flexible tubular tool known as an endoscope
  • the endoscope can have an interior lumen (e.g., "working channel") providing a pathway to the tissue site, and catheters and/or various medical tools can be inserted through the working channel to the tissue site.
  • a biopsy needle assembly comprising a needle formed from a superelastic alloy, the needle including a body portion extending from a distal end of the needle to a proximal end of the needle, and an inner surface of the needle forming a lumen extending through at least a portion of the body portion to an opening in the distal end, wherein the lumen and the opening are configured to acquire a tissue biopsy; an elongate shaft attached at the proximal end of the needle; and a tubular jacket including an interior channel, wherein in a first configuration, the distal end of the needle is positioned within the interior channel, and in a second configuration, in response to distal movement of the elongate shaft through the interior channel, the distal end of the needle is extended beyond a distal end of the tubular jacket.
  • the superelastic alloy comprises Nitinol.
  • the needle has a wall thickness of approximately 0.0015 inches thick.
  • Some implementations further comprise a sharpened tip at the distai end of the needle. Some implementations further comprise a radiopaque material positioned around the needle near the sharpened tip. In some implementations, the radiopaque material comprises gold. In some implementations, the radiopaque material has a thickness of at least 200 microinches.
  • the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the needle.
  • the polymer tube comprises a conical section at its distal end prior to or after being reflowed around the overlap region.
  • the polymer tube comprises a flexible thermoplastic.
  • the needle has a length of approximately 5 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 centimeters.
  • the needle has a length of approximately 4 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 centimeters.
  • the needle has a length between 1 centimeter and 6 centimeters. In some implementations, the overlap region has a length of 0.5 cm to 3 cm. In some implementations, a channel formed by an interior surface of the polymer tube is in fluid communication with the lumen to provide pressure through the opening.
  • the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the needle, and the assembly further comprises a plurality of surface features formed on the needle at the overlap region, wherein the polymer tube is reflowed around the surface features.
  • the plurality of surface features comprise a grit blasted exterior surface of the needle.
  • plurality of surface features comprise laser cut holes each extending through a wall of the needle.
  • the overlap region is located at a distal end of the tube.
  • the proximal end of the needle includes a first spiral channel or cut
  • the distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut.
  • proximal end of the needle and the distal end of the tube are secured at the overlap region by a flexible adhesive.
  • proximal end of the needle and the distal end of the tube are secured at the overlap region by screws.
  • the supereiastic alloy in its austenite phase, is in an original shape in which the body portion is straight. In some implementations, the supereiastic alloy, in its martensite phase, deforms reversibly up to 10% from the original shape.
  • Another aspect relates to a method of obtaining a tissue biopsy, the method comprising positioning a distal end of a working channel of an endoscope adjacent to a desired biopsy site; advancing a tubular jacket through the working channel, the jacket including a biopsy needle assembly positioned within the jacket, the biopsy needle assembly comprising a needle formed from a supereiastic alloy, the needle including a body portion extending from a distal end of the needle to a proximal end of the needle, and an inner surface of the needle forming a lumen extending through at least a portion of the body portion to an opening in the distal end, wherein the lumen and the opening are configured to acquire a tissue biopsy; and an elongate shaft attached at the proximal end of the needle; actuating a first linear motion of a proximal end the elongate shaft to drive extension of at least a portion of the needle out of the jacket into the biopsy site; acquiring a tissue sample from the biopsy site through the opening of the needle; and
  • Some implementations further comprise applying a pressure within the lumen to acquire the tissue biopsy.
  • the jacket has a handle coupled to a proximal end of the jacket configured to actuate the first and second linear motions of the proximal end of the elongate shaft along a longitudinal axis of the handle, the method further comprising actuating the handle to control the extension and the retraction of the needle.
  • Some implementations further comprise roboticaliy controlling actuation of the handle.
  • the elongate shaft comprises a polymer tube secured at an overlap region at the proximal end of the needle
  • the method further comprises positioning a distal end of the jacket a predetermined distance from the tissue site, the predetermined distance being less than a length of the needle extending distally beyond the overlap region; and wherein actuating the first linear motion comprises performing a first drive of the needle to extend the needle out of the jacket: determining that the distal end of the needle is positioned out of the jacket; and performing a second drive of the needle to extend the needle into the biopsy site.
  • Some implementations further comprise determining, after the first drive and before the second drive, that the overlap region is still positioned at least partly within the jacket.
  • Some implementations further comprise determining, after the first drive and before the second drive, that the overlap region is still positioned at least partly within the working channel of the endoscope.
  • performing the second drive comprises alternating extending the needle into the biopsy site and retracting the needle from the biopsy site a plurality of times.
  • Some implementations further comprise viewing the biopsy site using fluoroscopy; and determining that the distal end of the needle is positioned at the biopsy site by viewing, via the fluoroscopy, a radiopaque material positioned around the needle near the distal end.
  • advancing the tubular jacket through the working channel comprises advancing the needle through a curved portion of the working channel, and advancing the needle through the curved portion reversibly deforms the needle up to 10% from an original shape of the needle in which the body portion is straight.
  • reversibly deforming the needle comprises causing the superelastic alloy to transition from an austenite phase in which the needle is in the original shape to a martensite state.
  • driving extension of at least the portion of the needle out of the jacket into the biopsy site includes causing at least the portion of the needle to automatically transition back to the austenite phase and revert to the original shape.
  • a robotic needle biopsy system comprising a needle formed from a superelastic material, the needle including an inner surface forming a lumen extending from an opening in a proximal end of the needle through a body portion of the needle to an opening in a distal end of the needle, wherein the lumen and the opening in the distal end are configured to acquire a tissue biopsy; an elongate shaft secured at the proximal end of the needle; a tubular jacket including an interior channel positioned around at least a portion of the needle and the elongate shaft; and a control system configured to move the elongate shaft to drive the needle between a first configuration and a second configuration, wherein in the first configuration the distal end of the needle is positioned within the interior channel of the tubular jacket, and wherein in the second configuration the distal end of the needle is extended beyond a distal end of the tubular jacket.
  • the needle further comprises a sharpened tip at the distal end of the needle.
  • the needle further comprises a radiopaque material positioned around the body portion of the needle near the sharpened tip.
  • the radiopaque material comprises a gold pattern.
  • the radiopaque material has a thickness ranging from approximately 200 to approximately 1000 microinches.
  • the elongate shaft comprises a polymer tube secured around an overlap region located at the proximal end of the needle.
  • the polymer tube comprises a flexible thermoplastic reflowed around the overlap region
  • needle has a length of approximately 5 cm from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 cm.
  • robotic system is configured to advance the distal end of the needle up to 3 cm beyond the distal end of the tubular jacket in the second configuration, in some implementations, needle has a length of approximately 4 cm from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 cm.
  • robotic system is configured to advance the distal end of the needle up to2 cm beyond the distal end of the tubular jacket in the second configuration.
  • needle has a length between 1 centimeter and 6 centimeters.
  • overlap region has a length of 0.5 cm to 3 cm.
  • the robotic needle biopsy system further comprises a source of pressure coupled to a proximal end of the polymer tube, and the robotic system is configured to provide the pressure through the opening at the distal end of the needle via a channel formed by an interior surface of the polymer tube in fluid communication with the lumen of the needle.
  • the elongate shaft comprises a polymer tube secured around an overlap region located at the proximal end of the needle, and the proximal end of the needle includes a first spiral channel or cut, and a distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut.
  • the proximal end of the needle and a distal end of the tube are secured at the overlap region by a flexible adhesive instead of or in addition to mechanically mating.
  • the proximal end of the needle and a distal end of the tube are secured at the overlap region by screws in addition to mechanically mating via the spiral channels and/or being secured by adhesive.
  • the elongate shaft comprises a polymer tube secured around an overlap region located at the proximal end of the needle, and the needle further comprising a plurality of surface features formed at the overlap region, wherein the polymer tube is refiowed around the surface features.
  • the plurality of surface features comprise a grit blasted exterior surface of the needle.
  • the plurality of surface features comprise laser cut holes each extending through a wall of the needle.
  • the needle has a wall thickness of approximately 0.0015 inches thick.
  • the control system comprises a computer-readable memory storing instructions and one or more processors configured by the instructions to drive the needle between the first configuration and the second configuration.
  • Some implementations further comprise an endoscope including a working channel, wherein the jacket is positioned at least partly within the working channel.
  • the endoscope comprises at least one actuation cable
  • the control system is further configured to detect a change in tension on the at least one actuation cable; identify a deflection condition at a distal tip of the endoscope due to passage of the needle through a curved portion of the working channel near the distal tip of the endoscope; and adjust the tension on the at least one actuation cable to compensate for the deflection condition.
  • a medical instrument assembly comprising a medical instrument extending from a proximal end to a distal end and including a superelastic shaft formed from a superelastic alloy, the superelastic shaft extending from the distal end of the medical instrument at least partway to the proximal end; an elongate shaft attached at the proximal end of the medical instrument; and a tubular jacket including an interior channel, wherein in a first configuration, the distal end of the medical instrument is positioned within the interior channel, and in a second configuration, in response to distal movement of the elongate shaft through the interior channel, the distal end of the medical instrument is medical instrument beyond a distal end of the tubular jacket.
  • the superelastic material comprises Nitinol.
  • the medical instrument comprises a brush at the distal end.
  • Some implementations further comprise a radiopaque material positioned around the superelastic shaft near the distal end of the medical instrument.
  • the radiopaque material comprises a gold band.
  • the radiopaque material has a thickness of at least 200 microinches.
  • the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the superelastic shaft.
  • the polymer tube comprises a conical section at its distal end prior to or after being reflowed around the overlap region.
  • the polymer tube comprises a flexible thermoplastic.
  • the superelastic shaft has a length of approximately 5 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 centimeters.
  • the superelastic shaft has a length of approximately 4 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 centimeters. In some implementations, the superelastic shaft has a length between 1 centimeter and 6 centimeters. In some implementations, the overlap region has a length of 0.5 cm to 3 cm.
  • the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the superelastic shaft
  • the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the superelastic shaft further comprising a plurality of surface features formed on the superelastic shaft at the overlap region, wherein the polymer tube is reflowed around the surface features.
  • the plurality of surface features comprise a grit blasted exterior surface of the superelastic shaft.
  • the plurality of surface features comprise laser cut holes each extending through a wall of the superelastic shaft.
  • the superelastic shaft is tubular.
  • the elongate shaft comprises a polymer tube secured around an overlap region located at the proximal end of the superelastic shaft and a distal end of the tube.
  • the proximal end of the superelastic shaft includes a first spiral channel or cut
  • the distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut.
  • the proximal end of the superelastic shaft and the distal end of the tube are secured at the overlap region by a flexible adhesive.
  • the proximal end of the superelastic shaft and the distal end of the tube are secured at the overlap region by screws.
  • a medical device comprising a medical instrument extending from a proximal end to a distal end and including a superelastic shaft formed from a superelastic alloy, the superelastic shaft extending from the distal end of the medical instrument at least partway to the proximal end; an elongate shaft attached at the proximal end of the medical instrument; a tubular jacket including an interior channel, wherein in a first configuration, the distal end of the medical instrument is positioned within the interior channel, and in a second configuration, in response to distal movement of the elongate shaft through the interior channel, the distal end of the medical instrument is medical instrument beyond a distal end of the tubular jacket; and a handle including a distal end coupled to a proximal end of the jacket, an internal drive member coupled to a proximal end of the elongate shaft, a movable grip, and at least one motion transmitting interface configured to actuate the distal movement of the
  • the superelastic material comprises Nitinol.
  • the medical instrument comprises a brush at the distal end.
  • the medical instrument comprises a needle including an inner surface forming a lumen extending from an opening in a proximal end of the needle through a body portion of the needle to an opening in a distal end of the needle, wherein the lumen and the opening in the distal end are configured to acquire a tissue biopsy.
  • Figures 1A and IB illustrate an embodiment of a superelastic needle as described herein.
  • Figures 2A-2C illustrate various configurations of a needle assembly as described herein.
  • Figures 3A and 3B illustrate the needle assembly of Figures 2A-2C exhibiting superelastic properties in retracted and extended configurations.
  • Figure 3C depicts a cross-sectional view of the scope, jacket, tube, and needle of Figures 3 A and 3B.
  • Figure 4A illustrates an example offset angle comparison between scope axes before and after passage of a superelastic needle through the scope.
  • Figure 4B illustrates a deflection angle comparison between the disclosed superelastic needle and a conventional needle deployed out of the scope to the same distance.
  • Figure 5 illustrates an embodiment of a needle assembly as described herein including an example manipulating handle.
  • Figure 6 depicts a schematic diagram of a robotic surgical system for actuating a needle as described herein.
  • Figure 7 depicts a flowchart of an embodiment of a process for obtaining a tissue sample using a needle as described herein.
  • Medical procedures may involve manipulation of a tool positioned remotely from the operator, for example, positioned through a channel (e.g., trocars, catheters, endoscopes, etc.) inserted into the body of a patient.
  • a channel e.g., trocars, catheters, endoscopes, etc.
  • transbronchial needle aspiration can be used as a minimally invasive bronchoscopic technique for diagnosis and staging of bronchial diseases, including lung cancer.
  • a TBNA technique can involve manipulating a biopsy needle through a flexible bronchoscope.
  • a physician can use chest scans to identify the location of a mass to be biopsied and to guide positioning of the bronchoscope within the patient's airways towards that mass.
  • sample acquisition involves moving the tube backward and forward relative to the bronchoscope to repeatedly puncture the tissue site with the needle (referred to as "dithering"). After sample acquisition, the needle can be retracted back into the jacket and withdrawn through the working channel.
  • sample analysis can be performed in the same room and/or contemporaneously as the TBNA procedure, and depending upon results of the analysis further TBNA sample acquisition, other tissue sampling, and/or treatment can be performed.
  • Bronchoscopy techniques including TBNA can involve challenges accessing masses at the periphery of the lungs, particularly if such masses are relatively small, for example, around 8 mm or smaller.
  • Sampling masses at the periphery presents challenges in diagnosing and staging cancerous masses, particularly in early cancer stages, a timeframe during which such masses may be more easily treatable and may not have spread to other places in the patient's body.
  • a challenge in using a needle with a flexible bronchoscope is that the needle ought to be flexible enough to be maneuverable through the tortuous pathways of the bronchoscope to the target tissue site while also being rigid enough to deploy straight and allow penetration of the target tissue, and further that the needle preferably deploys in a straight trajectory over a distance sufficient to reach the lung periphery.
  • bronchoscopes are increasingly minimizing the bend radiuses that they can achieve to allow the bronchoscopes to navigate through patient airways.
  • rigidity a bronchial wall or tumor tissue may present significant resistance to penetration by the needle.
  • the needle limits the extent to winch the needle can be deployed straight - that is, the ability of the needle to be extended from the working channel with a proximal end still secured within the working channel. This can limit the range of the needle, preventing sampling of tissue at or near the periphery of the lungs. Further, the sheath cannot penetrate the tissue and thus causes trauma to patient tissue if it is jammed into the tissue, deflecting the tissue in order to allow for deeper penetration by the needle.
  • Embodiments of the disclosure relate to superelastic needles, and specifically to needles that are pre-formed into a shape (e.g., straight or curved), capable of bending elastically through the tortuous pathways of a bronchoscope, returning to the pre-formed shape upon deployment from the bronchoscope, and deploying along the axis of the end of the bronchoscope (within a tolerated margin) with improved reach (e.g., in some embodiments, up to distances of 2 cm or more).
  • a shape e.g., straight or curved
  • improved reach e.g., in some embodiments, up to distances of 2 cm or more.
  • the disclosed superelastic needles are configured for increased stability and accuracy during deployment by maintaining overlap between a proximal portion of the needle, a distal end of a scope used to deliver the needle, and a distal end of a jacket containing the needle within the scope.
  • the increased length of the disclosed needle allows for this overlap while still achieving the needed reach, and the disclosed superelastic alloys enable the increased needle length to pass through curvatures of the scope.
  • the disclosed needle reduces scope tip deflection at the tip of the scope during the delivery of the needle through the working channel, which provides the desired accuracy in tissue sampling.
  • the disclosed needle has aspiration/negative and/or positive pressure capabilities by having an open interior lumen.
  • the disclosed needles can provide enhanced ability to sample tissue at the periphery of the lungs, for example, smaller lesions. Beneficially, this can allow a physician to diagnose and stage small, peripheral cancerous masses in earlier stages.
  • the disclosed systems and techniques can provide advantages for bronchoscopic needle biopsies and other applications, including manipulation of other endoscopic, laparoscopic, and/or catheter-delivered tools.
  • a superelastic shaft similar to the disclosed needle can be provided for other types of medical tools, for example, augers, cytology brushes, and/or forceps.
  • augers for example, augers, cytology brushes, and/or forceps.
  • the needle dimensions described below could be similarly applicable to the dimensions of a superelastic shaft, and that the superelastic shaft may or may not be formed as a tubular shaft with an interior lumen.
  • a superelastic medical tool as described herein can be used in other types of procedures including laparoscopy, gastrointestinal endoscopy, urethroscopy, cardioscopy, and other procedures delivering tools through flexible and/or curved scopes, catheters, or tubes (collectively referred to as endoscopes, for simplicity of describing the various embodiments discussed herein).
  • the term "superelastic” generally refers to a mechanical type of shape memory in which an elastic (reversible) response to an applied stress is caused by a solid-solid phase transition.
  • superelastic effects are induced when a crystalline material in an austenite state is mechanically loaded up to a critical stress and within a specific temperature range above the martensitic transformation finishing temperature, at which point a phase transition to the martensite phase is induced.
  • a superelastic material can deform reversibly to very high strains (for example, with Nitinol up to 10%) by the creation of such a stress-induced phase.
  • Nitinol is a metal alloy of nickel and titanium that exhibits superelastic properties in a range of temperatures around room temperature.
  • superelastic materials include alloys of nickel and titanium with other elements (Ni-Ti-Fe, Ni-Ti-Cr, Ni-Ti-Cu-Cr), some poly crystalline ferrous alloys (e.g., Fe-Ni-Co-Al-Ta-B and Fe-Mn-Al-Ni), Cu-Al-Mn (CAM) alloys, and Cu-Zn-Sn alloys.
  • the disclosed superelastic materials may be discussed herein with respect to implementation as a needle that is formed in, and reverts to, a straight shape, it will be appreciated that a medical tool formed from the disclosed superelastic materials can be formed to revert to a curved, angled, or otherwise non-straight shape in other implementations.
  • strain generally refers as the amount of deformation an object experiences compared to its original size and shape and can be expressed as a percentage.
  • distal refers to the end of the scope or tool positioned closest to the patient tissue site during use
  • proximal refers to the end of the sheath or tool positioned closest to the operator (e.g., a physician or robotic control system).
  • the operator e.g., a physician or robotic control system
  • the term "dithering” refers to a back and forth motion of a medical instrument such as a biopsy needle, for example during tissue sampling.
  • the dithering movement of the needle can be independent of the movement of the needle's jacket such that the jacket of the needle remains relatively stationary during the dithering.
  • the term "approximately” refers to a range of measurements of a length, thickness, a quantity, time period, or other measurable value. Such range of measurements encompasses variations of +/ 10% or less, preferably +1-5% or less, more preferably +/-1 % or less, and still more preferably -'7-0.1% or less, of and from the specified value, in so far as such variations are appropriate in order to function in the disclosed devices, systems, and techniques.
  • Robotic surgical systems can utilize endoscopic instruments to perform minimally invasive endoscopic procedures robotically.
  • some implementations of the disclosure relate to surgical instruments and systems that include superelastic needles that can advantageously be used in robotically-guided (whether fully automated robotic systems or robotic systems that provide some level of assistance) medical procedures, and methods of performing a medical procedure under guidance of a robotic surgical system.
  • a robotic arm can be configured to control the extension, dithering, and/or retraction of needles as described herein.
  • Drive signals for such actuation can be supplied by the robotic surgical system, for example, in response to user input via an input device and/or computer-controlled surgical processes.
  • Figures LA and B illustrate an embodiment of a superelastic needle 120 as described herein.
  • Figure 1A shows the two components of the needle assembly 100, the superelastic needle 120 and an elongate shaft 1 10 coupled to the needle 20.
  • the needle 20 is formed as a thin- wall tube.
  • the needle 120 is capable, in some embodiments, of delivering negative (or positive) pressure through an interior lumen (not illustrated), the lumen extending through the body of the needle 120 from a first aperture 21 at its proximal end to a second aperture 124 at its distal end 125.
  • the needle has a wall thickness of approximately 0.0015 inches. This thin wall can add to the flexibility of the needle and also beneficially increase the interior diameter of the needle to collect greater amounts of biopsy material.
  • the outer diameter of the needle can be up to 0.023 inches in some implementations, as for larger diameters, the wall may need to be unpractically thin to maintain the desired flexibility. Smaller outer diameters can have thicker walls, however the interior lumen of such needles would be able to collect less material. It is to be appreciated that these measurements are provided to possible embodiments and do not limit the scope of other embodiments contemplated by this disclosure.
  • the needle 120 can be formed from Nitinol in some implementations, though, in other implementations, one or more other suitable superelastic materials can be used.
  • Nitinol is a nickel-titanium alloy with approximately equal parts nickel and titanium by atomic percent, for example having a nickel to titanium ratio between 0.92 and 1.06.
  • the superelastic material of the needle 120 can assume an interpenetrating simple cubic structure (referred to as the austenite phase) and can be set in this phase in the straight, tubular shape shown in Figure 1A.
  • Nitmol in the austenite phase When Nitmol in the austenite phase is subject to exterior forces in a temperature range from about -20 °C to +60 °C, the Nitinol can undergo a phase transformation to the martensite phase as well as changing shape (e.g. to bend along its longitudinal axis as it travels through a bronchoscope). In the martensite phase, the crystal structure of the Nitinol shifts to a monoclinic structure, giving it the ability to undergo twinning deformation (e.g., the rearrangement of atomic planes without causing slip, or permanent deformation) without breaking atomic bonds. The Nitmol can reversibly undergo up to 10% strain in this manner.
  • twinning deformation e.g., the rearrangement of atomic planes without causing slip, or permanent deformation
  • Nitinol Upon release of the strain, the Nitinol automatically reverts back to the austenite phase and the original shape. In superelastic Nitinol, this reversion occurs without the requirement of any temperature change, as opposed to shape memory Nitinol.
  • one or more other suitable superelastic materials capable of the austenite-martensite, solid-solid phase transformation can be used to form the needle 120.
  • such materials include other alloys of nickel and titanium with other elements (Ni-Ti-Fe, Ni ⁇ Ti-Cr, Ni-Ti-Cu-Cr), some polycrystalline ferrous alloys (e.g., Fe-Ni-Co-Al-Ta-B and Fe-Mn-Al-Ni), Cu-Al-Mn (CAM) alloys, and Cu-Zn-Sn alloys.
  • the needle 120 can be formed from superelastic materials having (1) a first solid crystal structure set to a straight, tubular shape in its austenite phase, (2) a second solid crystal structure that allows elastic deformation (e.g. bending) of the tubular shape up to a threshold strain percentage in its martensite phase, and (3) the capability to automatically revert from the martensite phase back to the austenite phase (and thus the original straight, tubular shape) upon release of the strain and without requiring any temperature change.
  • superelastic materials having (1) a first solid crystal structure set to a straight, tubular shape in its austenite phase, (2) a second solid crystal structure that allows elastic deformation (e.g. bending) of the tubular shape up to a threshold strain percentage in its martensite phase, and (3) the capability to automatically revert from the martensite phase back to the austenite phase (and thus the original straight, tubular shape) upon release of the strain and without requiring any temperature change.
  • the elongate shaft 110 can be formed as a tube having an aperture 104 at its proximal end 102 leading to an interior lumen 106 that is in fluid communication with the lumen of the needle 120. Aspiration or positive pressure can be applied through the aperture 104 and delivered through the distal aperture 124 of the needle 120.
  • the elongate shaft 110 can be a flexible thermoplastic polymer, for example a flexible polymeric single lumen extrusion formed from HDPE (high density polyethylene). Other flexible thermoplastics can be used in other embodiments, alone or in a blend or layered combination. For example, multiple polymers could be reflowed together to create a tube that is stiffer at one end and more flexible at the other end.
  • the elongate shaft 110 can be formed from braided wire with a heat shrink to provide some torqueing capability to the wire.
  • the elongate shaft 110 is secured to the needle 120 at the overlap region 130.
  • This can be a fluid-tight (e.g., air tight and liquid tight) connection in some implementations.
  • the elongate shaft 110 can be reflowed around the needle 120 at an overlap region 130.
  • a mandrel can be placed inside of the lumen of the needle 120 and the lumen 106 of the elongate shaft 110 and the elongate shaft 110 can be positioned around the needle 120 in the overlap region 130. The mandrel can help ensure that the lumen does not become occluded during the reflow process.
  • Heat shrink can be positioned around the elongate shaft 110 and needle 20 at least at the overlap region 130 and heat applied to melt the material of the elongate shaft 1 10, causing it to reflow around and bond to the exterior surface of the needle 120.
  • the exterior surface of the needle 120 may have surface features along some or all of this overlap region 130 to promote a better bond, for example a grit blasted or sanded surface, laser cut etching or through-holes, or surface etching or holes formed by other drilling and/or cutting techniques.
  • the polymer elongate shaft 110 can have a cone-shape at its distal end prior to and/or after the refl owing. The cone shape can provide a ramp up or smoothemng of the transition from needle to tube.
  • the elongate shaft 1 10 and needle 120 can be bonded in other ways alternative to or additional to the reflowing described above.
  • the wall of the needle 120 can be provided with etched, molded, or cut features (e.g., barbs, spiral channels, and the like) and the proximal end of the elongate shaft 110 can be etched, molded, or cut to have corresponding features that mate with and lock into the barbs in the needle 120.
  • the elongate shaft 110 could have additional lumens within a portion of the wall and barbs extending from the needle 120 could be positioned withm these additional lumens and secured via adhesive, mechanical mating elements, and/or reflowing.
  • mechanical fasteners e.g., pins, screws, etc.
  • flexible adhesives e.g., silicone adhesives
  • the needle 120 it is desired for the needle 120 to be able to deploy straight across a distance of at least 3 cm.
  • a scope with which the needle 120 can be used may be able to get difficult to reach nodules, as some endoscopes can reach within 3 cm of most areas of the lung.
  • the needle can have a length of at least 3 cm in some embodiments. In other embodiments, the needle can be longer, for example 5 cm to 6 cm, in order to provide an "anchor" portion that remains within the scope during extension of the distal tip 125 up to 3 cm. This can beneficially provide stability for straight deployment of the needle to the target tissue site. Accordingly, in various embodiments, the overlap region 130 can be 2-3 cm long and can form the anchor portion intended to remain within the working channel of the scope, and the portion of the needle 120 extending distally beyond the overlap region 120 can be approximately 3 cm to 4 cm long.
  • Some endoscopic procedures may involve using fluoroscopy to assist with navigation of medical instruments through patient luminal networks.
  • fluoroscopy a source of x-ray radiation is provided to pass an x-ray beam through patient tissue. This beam can be received by a screen positioned on the other side of the patient from the x-ray radiation source, and the resulting signal can be used to generate images (e.g., in grayscale or false color) to depict the internal structure of the patient.
  • Radiopacity refers to the relative inability of electromagnetic radiation, particularly X-rays, to pass through a particular material. Materials that inhibit the passage of X-ray photons are referred to as radiopaque, while those that allow radiation to pass more freely are referred to as radiolucent or radio- transparent.
  • radiopaque generally refers to the relatively opaque, white appearance of dense materials viewed in radiographic imaging, compared with the relatively darker appearance of less dense materials.
  • Nitinoi and some other superelastic materials can be radio-transparent or radiolucent, making these materials invisible or near- invisible when viewed in x-ray photographs or under fluoroscopy. This can make navigation of the needle 120 through a patient difficult when using fluoroscopy-based navigation systems.
  • the needle 120 can be provided with a radiopaque material 123 near the sharpened tip and distal end 125.
  • the radiopaque material 123 can be positioned around 3 mm from the distal tip of the needle 120.
  • radiopaque materials are opaque to x-ray radiation and thus visible in x- ray photographs and under fluoroscopy.
  • the material of the needle 120 may be radio-transparent, its navigation can be guided by observing the position of the radiopaque material 123.
  • Providing the radiopaque material 123 near the distal end 125 (or as close as possible to the distal end 125 given the tapered or sharpened tip) can beneficially provide an indication of how close the distal end 125 is to the target tissue site.
  • this radiopaque material 123 can be formed as a thin gold band and secured around the exterior surface of the needle 120.
  • elements with higher atomic numbers have higher radiopacity, and thus radiopacity of a material increases alongside an increase in the particle ratio of those materials which have an element content with a high atomic number.
  • Other implementations can use suitable radiopaque materials having high element content of elements with high atomic numbers, including tungsten, precious metals and alloys containing precious metals including chromium-nickel alloys (Cr- Ni), radiopaque ceramics, and radiopaque thermoplastics.
  • the radiopaque material 123 can be formed as a number of blades to increase flexibility.
  • the selected radiopaque material is stenlizable and non-toxic to human tissue. It will be appreciated that other shapes and positions can be used for the radiopaque material 123 besides the illustrated band, for example by providing surface etchings or holes in the needle 120 and filling such etchings or holes with the radiopaque material 123. In some embodiments the radiopaque material 123 may be secured to the interior of the needle 120.
  • the needle 120 is formed with a sharpened tip 140 at its distal end 125.
  • the sharpened tip 140 includes a lancet design where one zone 144 is ground flat at a first angle and a second zone 142 is ground flat at a different angle.
  • the second zone 142 provides a linear slope to the end of the sharpened tip 140 that meets the full diameter of the needle 120.
  • the diameter of the needle 120 increases again at the location of the radiopaque material 123.
  • Fj reflects the initial puncture force required to drive the tip of the needle 120 into the patient tissue. This force can increase along the region of the sharpened tip 140, reaching a peak puncture force F p at the full diameter of the needle 120. Another increase in puncture force to the collar passage force F c can occur when inserting the leading edge of the radiopaque material 123 into the tissue.
  • the thickness of the radiopaque material 123 has implications for both radiopacity and an increase in the puncture force required to insert the increased thickness into patient tissue.
  • the wall of the gold band can have a thickness in the range of 500 ⁇ (micro-inches) to 1000 ⁇ to achieve a desired balance between these factors.
  • Some embodiments can use a radiopaque material 123 having a thickness of at least 200 ⁇ .
  • FIGS 2A-2C illustrate various configurations of a needle assembly 200 as described herein.
  • the needle assembly 200 includes needle 220, shaft 2 0 coupled to the needle 220 at overlap region 215, and jacket 225.
  • the needle 220 and shaft 210 can be the needle 120 and elongate shaft 10 discussed above with respect to Figure I.
  • the needle 220 includes a radiopaque material 230 secured near the distal tip 240.
  • the jacket 225 can be a polymer catheter or tube in some embodiments, and in other embodiments can be a steerable channel.
  • the outer diameter of the jacket 225 can be selected to substantially match the interior diameter of the working channel of a scope for secure centering of the needle 220 relative to the working channel.
  • the jacket 225 can include a band of radiopaque material at or near its distal tip.
  • Figure 2.4 illustrates the needle assembly 200 in a retracted configuration 205 A.
  • the distal end 240 of the needle 220 is positioned at or proximally to the distal end 235 of the jacket 225 and the jacket 225 surrounds the depicted portion of the tubular shaft 210.
  • a proximal end of the shaft 210 may extend beyond a proximal end of the jacket 225 so that it can be moved relative to the jacket 225 to extend the needle 220 through the distal aperture 245 of the jacket 225 into the other configurations discussed below.
  • the lumen 205 of the shaft 210 extends through the jacket 225.
  • a fully retracted configuration can have the distal end 240 of the needle 220 positioned a certain distance within the jacket 225, for example 5 mm from the distal end 235 of the jacket 225.
  • the overlap region 215 can help position the needle 220 centered relative to the jacket 225.
  • Figure 2B illustrates the needle assembly 200 in a partially-extended configuration 205B.
  • the distal end 240 of the needle 220 is positioned distaliy beyond the distal end 235 of the jacket 225 in the partially-extended configuration 205B with the shaft 2 0 positioned within the aperture 245 of the jacket 225.
  • the needle 220 can be driven from the retracted configuration 205 A to the partially-extended configuration 205B by distal movement of the shaft 210.
  • Figure 2C illustrates the needle assembly 200 in a fully-extended configuration 205C.
  • the exposed portion 250 of the needle 220 e.g., the portion positioned distally from the overlap region 215 is positioned distally beyond the distal end 235 of the jacket 225 in the fully-extended configuration 205C with the overlap region 215 of the shaft 210 positioned at least partially within the jacket 225.
  • the exposed portion 250 of the needle 220 can be positioned flush with the jacket 225, that is, a distal edge 245 of the overlap region 215 can be positioned at the distal end 235 of the jacket 225.
  • the overlap region 215 can help the needle 220 to remain centered in the jacket 225, and thus centered and anchored in the working channel of a scope with the jacket 225 positioned within the scope, even when the full exposed length 250 of the needle is extended beyond the distal end 235 of the jacket.
  • the needle 220 can be driven from the partially-extended configuration 205B to the fully-extended configuration 205C by distal movement of the shaft 210, and can be driven from the fully-extended configuration 205C to the partially-extended configuration 205 B by proximal movement of the shaft 210.
  • the distal tip 240 of the needle 220 can extend 3 cm, or in the range of 2 cm to 4 cm, beyond the distal end 235 of the jacket 225 in the fully-extended configuration 205C.
  • the length of the needle 220 can be between 1 cm to 6 cm.
  • the overlap region 215 can overlap a distance of 0.5 cm to 3 cm from the proximal end of the needle 220.
  • One example needle has an overlap region 21 5 length of around 1 cm and an exposed needle length of around 2 cm.
  • Another example needle has an overlap region 215 length of around 2 cm and an exposed needle length of around 3 cm.
  • Another example needle has an overlap region 215 length of around 2 cm and an exposed needle length of around 4 cm.
  • Figures 3A and 3B illustrate the needle assembly 200 of Figures 2A-2C exhibiting superelastic properties in retracted and extended configurations.
  • Figure 3A illustrates the needle assembly 200 in a martensite state 300A with the needle assembly 200 positioned within the working channel 320 of a scope 315, illustrated in cross-section to reveal the needle assembly 200.
  • the needle 220 can be positioned with its distal tip 240 within the jacket 225.
  • the jacket 225 and needle 220 can be advanced together through working channel 320 of the scope 315 until the distal end 235 of the jacket 225 and the distal end 240 of the needle 220 are positioned at (or near) the distal end 325 of the scope 315.
  • the needle is able to undergo strain up to a certain threshold while deforming reversibly.
  • the needle 220 has two bends along its longitudinal axis.
  • the needle 220 can bend around a radius of curvature a while deforming reversibly in the martensite state 300A.
  • the needle 220 can be around 5 cm in length with a 0.0015 inch thick wall, and can elasticaily bend around a radius of 9-12 mm or greater.
  • Some examples of the needle 220 can deform elasticaily around 180 degree bends. This deformation can occur repeatedly as the jacket 225 containing needle 220 is inserted through the working channel of a scope.
  • FIG. 3B illustrates the needle assembly 200 in deployment 300B.
  • the assembly 200 has a portion 305 of the needle 220 still positioned within the jacket 225. Of this portion 305, a portion is still deformed around the radius of curvature a in the martensite state.
  • the assembly 200 also has a portion 310 of the needle 220 that has been "deployed," that is, extended beyond the distal end 235 of the jacket 225.
  • the deployed portion 310 is no longer subject to strain due to the bend of the jacket 225 and, as a result, has returned to the austenite phase and thus has straightened.
  • this automatic reverse deformation allows the needle 220 to traverse tight bends through a scope and still deploy substantially straight along the longitudinal axis extending out of the scope working channel. Such deployment increases accuracy with respect to sampling pre-identified target tissue regions.
  • Figure 3B depicts a specific length of overlap of the needle 220, shaft 210, and jacket 225 within the working channel 320, it will be appreciated that any overlap of these components achieves the desired stability by securely centering the needle 220 in the working channel 320.
  • Figure 3C depicts a cross-sectional view 330 of the scope 315, jacket 225, shaft 210, and needle 220 that illustrates the stability-increasing configuration along portion 305 of Figure 3B.
  • the outer surface of the jacket 225 contacts and is supported by the working channel 320 of the scope 315
  • the inner surface of the jacket 225 contacts and supports the outer surface of the shaft 210
  • the inner surface of the shaft 210 contacts and supports the outer surface of the needle 220 (e.g. at overlap region 215).
  • This arrangement centers the needle 220 relative to the working channel 320, increasing accuracy during deployment.
  • the gaps shown between the components in Figure 3C are for clarity of illustration, and the overlapping configuration can be structured without gaps in various implementations.
  • the working channel 320 can be centered relative to the scope 315 as illustrated or may not be centered in other embodiments.
  • Figure 4A illustrates an example offset angle comparison 400 between scope axes 410, 415 before and after passage of a superelastic needle 420 through the scope.
  • the needle 420 can be the needle 120, 220 described above and the jacket (not depicted) is located within the working channel of the scope 405.
  • the depiction of Figure 4A shows the distal end of a scope 405 in two positions 405A, 405B each from one of two images overlaid onto one another to produce the offset angle comparison 400.
  • the distal end of the scope 405 is in an undeflected position 405A with a portion of the scope proximal to the distal tip actuated into a curve.
  • a second image taken after deployment of the needle 420 through the scope 405B the distal end of the scope 405 is in a deflected position 405B.
  • a dashed line representing an undeflected axis 410 is depicted parallel to and extending from the distal end of the scope 405 in the undeflected position 405A
  • a dashed line representing a deflected axis 415 is depicted parallel to and extending from the distal end of the scope 405 in the deflected position 405B.
  • These axes are offset by an angle ⁇ . It is to be noted that these illustrated deflections are experienced in air but may experience less deflection in the patient site. For example, while in the body, the surrounding tissue may restrict movement of the scope or the deflection may cause the surgical site to move relative with it.
  • the "spring" force of the superelastic needle 420 attempting to revert to its straightened original shape through the curve deflects the distal end of the scope at an angle ⁇ of 5.6 degrees. In another example scope, this angle ⁇ is reduced to 2 degrees. In some implementations, an allowable deflection of the scope tip due to needle deployment can be plus or minus ten degrees and still allow accurate sampling of target tissue sites. To illustrate, consider that the working channel of the scope 405A is positioned such that the target tissue site is viewable via optics at the distal tip of the scope.
  • the angle of the needle longitudinal axis after deflecting the scope tip can be offset from the undeflected axis 410 within a certain range and the distal tip of the needle 420 will still puncture the target lesion.
  • the scope 405 is steerable, and the deflection can change the values of tension upon various pull wires or actuating cables within the scope 405.
  • a robotic control system for example as discussed in more detail below with respect to Figure 6, can sense this change in tension and use this to compensate for the deflection of the scope by applying greater tension or force to certain pull wires or actuation cables.
  • Some control system implementations may compensate for tension changes to keep the scope as close as possible to its undeflected position 405A.
  • Other control system implementations may compensate for any tension changes outside of a predetermined range corresponding to an angle of deflection ⁇ that exceeds an allowable angle for sampling the target tissue site.
  • Alternative to an automatic control approach other embodiments may correct deflection based on physician adjustments to the scope.
  • Figure 4B illustrates a deflection angle comparison 425 between the disclosed superelastic needle 420 and a conventional needle 450 deployed out of the scope 405, where both needles are deployed to the same distance 445 from the distal end of the scope.
  • the conventional needle 450 is a short (e.g., up to 7 mm) stainless steel tube secured to a conduit 455.
  • the distance 445 in the present example is 4 cm from the tip of the scope 405.
  • the deflection angle comparison 425 involved extending both needles 420, 445 from the same scope 405 having the same undeflected position, capturing an image of each extended needle, and then overlaying the images to illustrate the comparison 425.
  • a dashed line representing an axis 430 of the scope 405 is depicted parallel to and extending from the distal end of the scope 405.
  • a dashed line 435 representing an axis of the needle 420 of the present disclosure is depicted extending from the needle 420.
  • a dashed line 440 representing an axis of the conventional needle 450 is depicted extending from the needle 450.
  • the axis 440 of needle 450 is offset from the scope axis 430 by an angle ⁇
  • the axis 435 of needle 420 is offset from the scope axis 430 by an angle ⁇ .
  • the offset angle ⁇ between the axis 440 of needle 450 and the scope axis 430 is equal to 8.1 degrees and the offset angle ⁇ between the axis 435 of needle 420 and the scope axis 430 is equal to 1.8 degrees, plus or minus about 0.5 degrees.
  • the disclosed superelastic needle 420 exhibits reduced deflection compared to the conventional needle 450.
  • Figure 5 illustrates an embodiment of a needle assembly 500 as described herein coupled to an example manipulating handle 505.
  • the needle assembly 500 includes a needle 556, an elongate shaft 554 (e.g., a polymer tube) bonded or otherwise secured to needle 556, a jacket 550 positioned at least partly around the shaft 554 and needle 556, and a handle 505.
  • a portion of the handle 505 is shown cut away to reveal interior components.
  • the needle 556 can be formed from a superelastic material, for example Nitinol, and bonded to the polymer tube via refl owing over an overlap region as described above.
  • the needle 556 can be the needle 100, 220, 420, the shaft 554 can be the elongate shaft 1 10, 210, and the jacket 550 can be the jacket 225 in various embodiments.
  • the jacket 550 extends from a distal aperture 541 of the handle 505 through a strain relief, and can contain some or all of the shaft 554 and needle 556 in various configurations.
  • the shaft 554 has an interior lumen 552 that provides at least a portion of a fluid pathway between a proximal aperture of the fluid coupling 535 of the handle 505 and the distal end 559 of the needle 556.
  • the needle 556 can be a biopsy needle such as an aspiration needle configured for acquisition of tissue samples or can be configured for delivery of therapeutic agents to a tissue site, and can be provided with a band 558 of radio- opaque material near the distal end 559.
  • the handle 505 includes casing 510, actuation sleeve 520, driving member 530, and fluid fitting 535.
  • actuation sleeve 520 actuation sleeve 520
  • driving member 530 driving member 530
  • fluid fitting 535 Various examples of the handle 505 and other handles suitable for actuating movement of the disclosed superelastic medical tools are described in U.S. Application No.
  • the driving member 530 can be driven linearly along a longitudinal axis of the handle 505 by various motion modalities of the actuation sleeve 520, as described in more detail below.
  • the shaft 554 attached to needle 556 can be secured within a recess 537 of the driving member 530, for example by bonding via an adhesive.
  • linear motion of the driving member 530 can transfer to the needle 556 via the shaft 554, allowing manipulation of the handle 505 to drive extension and retraction of the needle 556 from jacket 550.
  • the recess 537 can be structured to mechanically mate with a corresponding feature on the shaft 554 to facilitate use of the handle 505 with a number of different conduits and tools.
  • the handle 505 may be sterilizable and reusable while the conduit, needle, and jacket may be disposable.
  • the entire instrument 500 may be entirely sterilizable and reusable or designed as a disposable single unit.
  • the actuation sleeve 520 can have a rotational wheel grip 524 and a plunger grip 522 to facilitate its actuation by an operator.
  • the operator can drive motion of the needle 556 relative to the jacket 550 by rotating 560 the rotational wheel grip 524, which causes rotation of the actuation shaft 520 around the longitudinal axis of the handle 505.
  • Rotation 560 in one direction can cause extension of the needle 556 from the jacket 550.
  • Rotation in the other direction can retract the needle 556 back into the jacket 550.
  • the needle can initially be positioned in a retracted configuration, for example as shown in Figures 2A and 3A, while the jacket 550 is advanced near a target tissue site.
  • the rotation 560 can be used to advance the distal end 559 of the needle out of the jacket 550 in a controlled and/or incremental manner until the distal end 559 is at or puncturing the tissue.
  • a plunging motion 565 can be driven in one direction by application of force by the operator to plunger grip 522 and driven in the opposite direction in some embodiments by a biasing element upon release of the force. Such a modality can be useful for dithering the needle 556 once extended to the desired distance, for example to acquire a tissue sample.
  • Actuation sleeve 520 can be coupled to the driving member 530, for example via a cam interface, to transfer these rotational or plunging motions of the actuation sleeve 520 to linear motion of the driving member 530 along a longitudinal axis of the handle 505. Motion of the driving member 530, in turn, is transferred to the needle 556 via the coupling between the shaft 554 and the driving member 530 and the bond between the shaft 554 and the needle 556. Beneficially, during rotation 560 and plunging 565 the fluid fitting 535 may remain stationary with respect to the casing 510 of the handle 505.
  • Fluid fitting 535 can be a threaded connector for securing to a corresponding threaded connector of an aspiration device, for example a Leur lock. Securing the fluid fitting 535 to the casing 510 can provide benefits in terms of stability of the aspiration device when secured to the fluid fitting 535. Beneficially, during rotation 560 and plunging 565 the fluid fitting 535 may remain stationary with respect to the casing 510 of the handle 505. As shown, a proximal portion 536 of the shaft 554 can comprise a length of coiled tubing in some implementations. This can allow the fluid fitting 535 to be fixed relative to the casing 510 while providing a flexible fluid path that accommodates linear motion of the proximal handle member 530.
  • the proximal portion 536 can be coiled HDPE tubing, and in some embodiments this can be a portion of the shaft 554 positioned proximally from the bonding recess 537.
  • a sleeve of polyolefin heat shrink can be used to secure the coiled tubing to the fluid fitting in some implementations.
  • the illustrated actuation sleeve 520 and grips 524, 522 represent one example structure for allowing a user to actuate both a fine-control extension and a rapid dithering of the needle 556.
  • another suitable actuation mechanism can be coupled to the driving member 530, for example a rack and pinion driven by a rotatable wheel provided on the handle 505 or a slidable tab provided on the handle 505.
  • Such alternate actuation mechanisms can be used alone or with a plunger-type dithering interface.
  • the handle 505 can be used to control other superelastic medical tools as described herein.
  • Figure 6 depicts a schematic diagram of a robotic surgical system 600 for actuating a needle assembly 605 as described herein.
  • the needle assembly includes a jacket 630, needle 635, and a tubular elongate shaft 640 connected to the needle, and can be the needle assembly 200 described above.
  • the robotic system 600 may instead interface with a handle for manipulating the shaft 640, for example a handle 505 as described with respect to Figure 5.
  • Other embodiments may interface with support members bonded to proximal ends of the shaft 640 and jacket 630.
  • the example robotic system 600 includes an articulated arm 610 configured to locate, and maintain positioning of, the needle assembly 605. At a distal end of the arm 610 are a first grip portion 625 for controlling aspiration or administering therapeutics and two additional grip portions 615, 620 that can open to receive and secure the shaft 640 and jacket 630, respectively.
  • the first grip portion 625 can include one or more actuators for gripping and controlling a pressure source 655 of negative (or positive pressure) and/or therapeutics for attaching to the proximal end of the shaft 640.
  • the first grip portion 625 can include a first actuator for attaching pressure source 655, for example a syringe, and a second actuator for robotically controlling a plunger of the syringe.
  • the second grip portion 615 may maintain stationary positioning of the jacket 630.
  • the third grip portion 620 can be configured to move the proximal end of the shaft 640 proximally and distal ly to move the needle 635 in and out of the jacket 630 and/or to effect a dithering motion as described herein.
  • Other embodiments of the third grip portion 620 can be configured to effect the rotational and/or plunging modality of the handle described herein by rotating a wheel or grip of the handle.
  • the grip portions 615, 620, 625 can be driven by one or more motors and appropriate actuation mechanisms.
  • the robotic surgical system 600 can include processor(s) 645 and memory 650.
  • the memory 650 can store instructions for operation of the various components of the robotic surgical system 600 as well as data produced and used during a surgical procedure.
  • the processor(s) 645 can execute these instructions and process such data to cause operation of the system 600.
  • One example of instructions stored in the memory of the robotic surgical system 600 is embodied in the tissue sampling method of Figure 7, discussed below.
  • the memory 650 can store data relating to the length of a needle and/ or overlap region as well as instructions relating to extending the needle from the jacket in order to position the distal end of the needle a desired distance from the distal end of the jacket while maintaining overlap between the needle 220, shaft 210, jacket 225, and working channel 320 of a scope 3 5 during deployment, for example as shown in Figures 3B and 3C.
  • the processor(s) 645 can execute these instructions to cause operation of the system 600 to extend the needle in a stable, accurate manner as described herein.
  • the processor(s) 645 can execute these instructions to cause the robotic system to monitor positioning of the overlap region between the needle and the shaft relative to one or both of the jacket and the working channel/ endoscope during or after an extending drive of the needle.
  • the instructions can prevent the robotic surgical system 600 from driving extension of the needle beyond a predetermined point that would eliminate such overlap.
  • the instructions can cause the robotic surgical system 600 to provide an alert to an operator of the robotic surgical system 600 when further extension will eliminate such overlap, but may allow the operator to continue driving extension of the needle.
  • processor(s) 645 can execute the instructions stored in memory 650 to cause the robotic surgical system 600 to automatically position the scope 315 (prior to or during insertion of a needle assembly 200 through the working channel 320) so that the needle 220 will be able to extend to a target tissue site while maintaining the overlap described herein. Additionally or alternatively, processor(s) 645 can execute the instructions stored in memory 650 to cause the robotic surgical system 600 to output a recommendation regarding such positioning for a user driving endoscope positioning using the system 600. Additionally or alternatively, processor(s) 645 can execute the instructions stored in memory 650 to cause the robotic surgical system 600 to can cause the robotic surgical system 600 to output an alert to the user when the scope has been driven to such positioning.
  • the memory can store instructions for (1) monitoring the tension on the cables to detect a scope tip deflection and for (2) determining tension values to apply to compensate for specific scope deflection conditions once detected.
  • the instructions can include monitoring the actuation cables for any change in tension, or for any change above a threshold level.
  • the instructions can further identify specific cables (e.g., cablefs) located along the scope on the inside of a radius of curvature at the scope tip curve) to monitor these specific for an increase in tension, and/or can identify specific cables (e.g., cable(s) located along the scope on the outside of the radius of curvature) to monitor these specific for a decrease in tension.
  • the instructions can also include timing parameters and/or input from a needle navigation system in order to monitor and compensate for such tension changes during a specific timeframe, for example from a time when the distal end of the needle approaches the scope tip through a time during deployment of the needle from the scope.
  • the timing parameters can further specify that the robotic surgical system 600 should not adjust the scope tip curvature to compensate for tension changes during penetration of tissue by the needle 635 in order to maintain a straight, minimally invasive path of the needle 635 into the tissue.
  • the scope deflection detection and compensation can, in some embodiments, be performed by an additional robotic system configured for controlling navigation of the scope in addition to or instead of the system 600 illustrated.
  • the robotic surgical system 600 can include other components, for example one or more input devices for receiving user input to control motion of surgical instruments (e.g., joysticks, handles, computer mice, trackpads, and gesture detection systems), instrument drivers to effect the motion of the disclosed needles, a display screen, and the like.
  • surgical instruments e.g., joysticks, handles, computer mice, trackpads, and gesture detection systems
  • instrument drivers to effect the motion of the disclosed needles
  • a display screen e.g., a display screen, and the like.
  • the robotic surgical system 600 can be used to control other superelastic medical tools, and can be used and in any type of medical procedures as described herein.
  • FIG. 7 depicts a flowchart of an embodiment of a process 700 for obtaining a tissue sample using a needle as described herein, for example, needles 120, 220, 420, 556, 635 described above.
  • the process 700 can be implemented by a human operator manually manipulating the tube secured to the needle, for example by a handle 505 as shown in Figure 5, a robotic control system operator (such as system 600 described above) mechanically manipulating the tube as directed by a human operator or autonomously, or a combination thereof.
  • a robotic control system operator such as system 600 described above
  • FIG. 7 depicts a flowchart of an embodiment of a process 700 for obtaining a tissue sample using a needle as described herein, for example, needles 120, 220, 420, 556, 635 described above.
  • the process 700 can be implemented by a human operator manually manipulating the tube secured to the needle, for example by a handle 505 as shown in Figure 5, a robotic control system operator (such as system 600 described above) mechanically manipulating the
  • the operator e.g., a human operator or autonomous surgical robot
  • the operator can position a jacket 225, 550, 630 containing a needle 120, 220, 420, 556, 635 near a tissue site of a patient e.g., positioned within the reach of a needle or other medical instrument within the jacket.
  • the needle can be positioned with its distal tip 125, 240, 559 at or near the distal end 235 of the jacket and elongate shaft 110, 210, 554, 640 can extend from the proximal end of the needle through the jacket.
  • the jacket can be inserted through the working channel of an endoscope such as a bronchoscope in some embodiments.
  • the elongate shaft can be coupled to a handle 505 in some embodiments for driving linear motion of the shaft relative to the jacket.
  • system 600 may automatically position the endoscope 315 such that, when the needle 220 is extended from the jacket 225 into a pre-identified target tissue site, a proximal portion of the needle, a distal portion of the shaft 210, and a distal portion of the jacket 225 will remain in an overlapping position 305 within the working channel 320 of the endoscope.
  • the system 600 may additionally or alternatively provide guidance for a user of the system 600 regarding maintaining such overlapping positioning.
  • the system 600 can determine that the jacket 225 is positioned within the working channel 320 of the endoscope 315 and can further determine, during or after a drive of the needle 220, that the overlap region 215 between the needle 220 and the shaft 210 is still positioned at least partly within the jacket 225.
  • the sy stem 600 can determine, during or after a drive of the needle 220, that that the overlap region 215 is still positioned at least partly within the working channel 320 of the endoscope 315. Such determinations may be made based on feedback from system 600 in some examples, for example based on robotic position data indicating the distance the needle assembly 200 is feed through the scope 210.
  • the operator can distally move the shaft 210 coupled to the needle 220 to drive the distal end of the needle 220 to advance through the jacket 225.
  • this can involve actuation of a rotational modality of the handle, for example by rotational grip 522. Actuation of such a modality can allow the operator to exert fine control over extending the distal tip of the needle out from the distal end of the jacket. In some procedures, this can involve extending the distal tip of the needle until it has pierced patient tissue.
  • the tube can be advanced by instrument drivers of a robotic surgical system 600 with or without the use of such a handle.
  • block 710 can be performed to maintain overlap between a proximal portion of the needle, a distal portion of the tube, and a distal portion of the jacket within the working channel of the endoscope. Such overlap can increase the accuracy of needle deployment by keeping the needle centered relative to the working channel.
  • Some implementations may initially perform blocks 705 and/or 710 m a "fast mode" that quickly takes the needle 220 to a predetermined distance from the distal end 325 of the scope 315, and thereafter a human operator may manually control (via a handle 505 or actuation via system 600) further extension of the needle 220.
  • Some implementations may operate in a completely autonomous mode, for example by tracking the position of the needle 220 using a position sensor (e.g., an electromagnetic (EM) sensor on the needle and/or scope disposed within an EM field generated around the tissue site) so that the system 600 can determine the relative position of the needle 220, scope 315, and the tissue site.
  • a position sensor e.g., an electromagnetic (EM) sensor on the needle and/or scope disposed within an EM field generated around the tissue site
  • the operator can determine that the distal end of the needle is positioned at the target tissue site.
  • a physician may view an image or video of the tissue site via an imaging device at the distal end of an endoscope working channel and may visually confirm that the needle is positioned at or within the target tissue site. For example, this can be accomplished via fluoroscopy and the physician may view the location of the radiopaque material 123, 230, 558 to discern the needle position.
  • the physician may view a rendering or model of the positioning of the instrument relative to the patient tissue site to make this determination, for example as output from a robotic bronchoscopy navigation system.
  • block 715 can be performed programmatically via automated image analysis and/or navigation.
  • the operator can acquire a tissue sample using the needle. As described above and shown in the example of Figure 5, this can involve a dithering motion actuated by a plunging modality, for example by plunging grip 522. Further, this can involve coupling a source of negative pressure to the proximal end of the tube, for example via fluid fitting 535. [0102] At block 725, the operator can proximally move the tube to withdraw the distal end of the needle back into the jacket, for example via the rotational motion interface, and the jacket can be withdrawn from the patient tissue site. Any obtained sample can be expelled from the instrument for the desired analysis.
  • Couple may indicate either an indirect connection or a direct connection.
  • first component may be either indirectly connected to the second component via another component or directly connected to the second component.
  • the robotic motion actuation functions described herein may be stored as one or more instructions on a processor-readable or computer-readable medium.
  • the term "computer-readable medium” refers to any available medium that can be accessed by a computer or processor.
  • a medium may comprise RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • a computer-readable medium may be tangible and non-transitory.
  • the term "code” may refer to software, instructions, code or data that is/are executable by a computing device or processor.
  • the methods disclosed herein comprise one or more steps or actions for achieving the described method.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • the term “plurality” denotes two or more. For example, a plurality of components indicates two or more components.
  • the term “determining” encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Robotics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physiology (AREA)
  • Otolaryngology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Endoscopes (AREA)
  • Surgical Instruments (AREA)

Abstract

Certain aspects relate to a superelastic medical instrument that of bending elastically through the tortuous pathways of an endoscope, returning to a straight shape upon deployment form the endoscope, and deploying straight along the axis of the end of the bronchoscope (within a tolerated margin) to distances of 2 cm or more.

Description

SUPERELAST1C MEDICAL INSTRUMENT
CROSS-REFERENCE TO RELATED APPLICATION(S)
[0001] The present application claims the benefit of U.S. Provisional Patent Application No. 62/483,131 , filed on April 7, 2017, entitled "SUPERELASTIC MEDICAL INSTRUMENT," and of U.S. Non-Provisional Application No. 15/944,566, filed April 3, 2018, entitled "SUPERELASTIC MEDICAL INSTRUMENT," the contents of each of which are hereby incorporated by reference herein in their entirety.
TECHNICAL FIELD
[0002] The present disclosure relates generally to medical devices, and more particularly to a superelastic medical instruments.
BACKGROUND
[0003] Endoscopy (e.g., bronchoscopy) may involve accessing and visualizing the inside of a patient's luminal network for diagnostic and/or therapeutic purposes. During a procedure a flexible tubular tool, known as an endoscope, may be inserted into the patient's body and a tool can be passed down through the endoscope to a tissue site identified for subsequent diagnosis and/or treatment. The endoscope can have an interior lumen (e.g., "working channel") providing a pathway to the tissue site, and catheters and/or various medical tools can be inserted through the working channel to the tissue site.
SUMMARY
[0004] The systems, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
[0005] Accordingly, one aspect relates to a biopsy needle assembly, comprising a needle formed from a superelastic alloy, the needle including a body portion extending from a distal end of the needle to a proximal end of the needle, and an inner surface of the needle forming a lumen extending through at least a portion of the body portion to an opening in the distal end, wherein the lumen and the opening are configured to acquire a tissue biopsy; an elongate shaft attached at the proximal end of the needle; and a tubular jacket including an interior channel, wherein in a first configuration, the distal end of the needle is positioned within the interior channel, and in a second configuration, in response to distal movement of the elongate shaft through the interior channel, the distal end of the needle is extended beyond a distal end of the tubular jacket.
[0006] In some implementations, the superelastic alloy comprises Nitinol. In some implementations, the needle has a wall thickness of approximately 0.0015 inches thick.
[0007] Some implementations further comprise a sharpened tip at the distai end of the needle. Some implementations further comprise a radiopaque material positioned around the needle near the sharpened tip. In some implementations, the radiopaque material comprises gold. In some implementations, the radiopaque material has a thickness of at least 200 microinches.
[0008] In some implementations, the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the needle. In some implementations, the polymer tube comprises a conical section at its distal end prior to or after being reflowed around the overlap region. In some implementations, the polymer tube comprises a flexible thermoplastic. In some implementations, the needle has a length of approximately 5 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 centimeters. In some implementations, the needle has a length of approximately 4 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 centimeters. In some implementations, the needle has a length between 1 centimeter and 6 centimeters. In some implementations, the overlap region has a length of 0.5 cm to 3 cm. In some implementations, a channel formed by an interior surface of the polymer tube is in fluid communication with the lumen to provide pressure through the opening.
[0009] In some implementations, the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the needle, and the assembly further comprises a plurality of surface features formed on the needle at the overlap region, wherein the polymer tube is reflowed around the surface features. In some implementations, the plurality of surface features comprise a grit blasted exterior surface of the needle. In some implementations, plurality of surface features comprise laser cut holes each extending through a wall of the needle. In some implementations, the overlap region is located at a distal end of the tube. In some implementations, the proximal end of the needle includes a first spiral channel or cut, and the distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut. In some implementations, proximal end of the needle and the distal end of the tube are secured at the overlap region by a flexible adhesive. In some implementations, proximal end of the needle and the distal end of the tube are secured at the overlap region by screws.
[0010] In some implementations, the supereiastic alloy, in its austenite phase, is in an original shape in which the body portion is straight. In some implementations, the supereiastic alloy, in its martensite phase, deforms reversibly up to 10% from the original shape.
[0011] Another aspect relates to a method of obtaining a tissue biopsy, the method comprising positioning a distal end of a working channel of an endoscope adjacent to a desired biopsy site; advancing a tubular jacket through the working channel, the jacket including a biopsy needle assembly positioned within the jacket, the biopsy needle assembly comprising a needle formed from a supereiastic alloy, the needle including a body portion extending from a distal end of the needle to a proximal end of the needle, and an inner surface of the needle forming a lumen extending through at least a portion of the body portion to an opening in the distal end, wherein the lumen and the opening are configured to acquire a tissue biopsy; and an elongate shaft attached at the proximal end of the needle; actuating a first linear motion of a proximal end the elongate shaft to drive extension of at least a portion of the needle out of the jacket into the biopsy site; acquiring a tissue sample from the biopsy site through the opening of the needle; and actuating a second linear motion of the proximal end the elongate shaft to drive retraction of the needle out of the biopsy site.
[0012] Some implementations further comprise applying a pressure within the lumen to acquire the tissue biopsy. In some implementations, the jacket has a handle coupled to a proximal end of the jacket configured to actuate the first and second linear motions of the proximal end of the elongate shaft along a longitudinal axis of the handle, the method further comprising actuating the handle to control the extension and the retraction of the needle. Some implementations further comprise roboticaliy controlling actuation of the handle. [0013] In some implementations, the elongate shaft comprises a polymer tube secured at an overlap region at the proximal end of the needle, and the method further comprises positioning a distal end of the jacket a predetermined distance from the tissue site, the predetermined distance being less than a length of the needle extending distally beyond the overlap region; and wherein actuating the first linear motion comprises performing a first drive of the needle to extend the needle out of the jacket: determining that the distal end of the needle is positioned out of the jacket; and performing a second drive of the needle to extend the needle into the biopsy site. Some implementations further comprise determining, after the first drive and before the second drive, that the overlap region is still positioned at least partly within the jacket. Some implementations further comprise determining, after the first drive and before the second drive, that the overlap region is still positioned at least partly within the working channel of the endoscope. In some implementations, performing the second drive comprises alternating extending the needle into the biopsy site and retracting the needle from the biopsy site a plurality of times.
[0014] Some implementations further comprise viewing the biopsy site using fluoroscopy; and determining that the distal end of the needle is positioned at the biopsy site by viewing, via the fluoroscopy, a radiopaque material positioned around the needle near the distal end.
[0015] In some implementations, advancing the tubular jacket through the working channel comprises advancing the needle through a curved portion of the working channel, and advancing the needle through the curved portion reversibly deforms the needle up to 10% from an original shape of the needle in which the body portion is straight. In some implementations, reversibly deforming the needle comprises causing the superelastic alloy to transition from an austenite phase in which the needle is in the original shape to a martensite state. In some implementations, driving extension of at least the portion of the needle out of the jacket into the biopsy site includes causing at least the portion of the needle to automatically transition back to the austenite phase and revert to the original shape.
[0016] Another aspect relates to a robotic needle biopsy system, comprising a needle formed from a superelastic material, the needle including an inner surface forming a lumen extending from an opening in a proximal end of the needle through a body portion of the needle to an opening in a distal end of the needle, wherein the lumen and the opening in the distal end are configured to acquire a tissue biopsy; an elongate shaft secured at the proximal end of the needle; a tubular jacket including an interior channel positioned around at least a portion of the needle and the elongate shaft; and a control system configured to move the elongate shaft to drive the needle between a first configuration and a second configuration, wherein in the first configuration the distal end of the needle is positioned within the interior channel of the tubular jacket, and wherein in the second configuration the distal end of the needle is extended beyond a distal end of the tubular jacket.
[0017] In some implementations, the needle further comprises a sharpened tip at the distal end of the needle. In some implementations, the needle further comprises a radiopaque material positioned around the body portion of the needle near the sharpened tip. In some implementations, the radiopaque material comprises a gold pattern. In some implementations, the radiopaque material has a thickness ranging from approximately 200 to approximately 1000 microinches.
[0018] In some implementations, the elongate shaft comprises a polymer tube secured around an overlap region located at the proximal end of the needle. In some implementations, the polymer tube comprises a flexible thermoplastic reflowed around the overlap region, in some implementations, needle has a length of approximately 5 cm from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 cm. In some implementations, robotic system is configured to advance the distal end of the needle up to 3 cm beyond the distal end of the tubular jacket in the second configuration, in some implementations, needle has a length of approximately 4 cm from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 cm. In some implementations, robotic system is configured to advance the distal end of the needle up to2 cm beyond the distal end of the tubular jacket in the second configuration. In some implementations, needle has a length between 1 centimeter and 6 centimeters. In some implementations, overlap region has a length of 0.5 cm to 3 cm. In some implementations, the robotic needle biopsy system further comprises a source of pressure coupled to a proximal end of the polymer tube, and the robotic system is configured to provide the pressure through the opening at the distal end of the needle via a channel formed by an interior surface of the polymer tube in fluid communication with the lumen of the needle. [0019] In some implementations, the elongate shaft comprises a polymer tube secured around an overlap region located at the proximal end of the needle, and the proximal end of the needle includes a first spiral channel or cut, and a distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut. In some implementations, the proximal end of the needle and a distal end of the tube are secured at the overlap region by a flexible adhesive instead of or in addition to mechanically mating. In some implementations, the proximal end of the needle and a distal end of the tube are secured at the overlap region by screws in addition to mechanically mating via the spiral channels and/or being secured by adhesive.
[0020] In some implementations, the elongate shaft comprises a polymer tube secured around an overlap region located at the proximal end of the needle, and the needle further comprising a plurality of surface features formed at the overlap region, wherein the polymer tube is refiowed around the surface features. In some implementations, the plurality of surface features comprise a grit blasted exterior surface of the needle. In some implementations, the plurality of surface features comprise laser cut holes each extending through a wall of the needle.
[0021] In some implementations, the needle has a wall thickness of approximately 0.0015 inches thick. In some implementations, the control system comprises a computer-readable memory storing instructions and one or more processors configured by the instructions to drive the needle between the first configuration and the second configuration.
[0022] Some implementations further comprise an endoscope including a working channel, wherein the jacket is positioned at least partly within the working channel. In some implementations, the endoscope comprises at least one actuation cable, wherein the control system is further configured to detect a change in tension on the at least one actuation cable; identify a deflection condition at a distal tip of the endoscope due to passage of the needle through a curved portion of the working channel near the distal tip of the endoscope; and adjust the tension on the at least one actuation cable to compensate for the deflection condition.
[0023] Another aspect relates to a medical instrument assembly, comprising a medical instrument extending from a proximal end to a distal end and including a superelastic shaft formed from a superelastic alloy, the superelastic shaft extending from the distal end of the medical instrument at least partway to the proximal end; an elongate shaft attached at the proximal end of the medical instrument; and a tubular jacket including an interior channel, wherein in a first configuration, the distal end of the medical instrument is positioned within the interior channel, and in a second configuration, in response to distal movement of the elongate shaft through the interior channel, the distal end of the medical instrument is medical instrument beyond a distal end of the tubular jacket.
[0024] In some implementations, the superelastic material comprises Nitinol. In some implementations, the medical instrument comprises a brush at the distal end.
[0025] Some implementations further comprise a radiopaque material positioned around the superelastic shaft near the distal end of the medical instrument. In some implementations, the radiopaque material comprises a gold band. In some implementations, the radiopaque material has a thickness of at least 200 microinches.
[0026] In some implementations, the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the superelastic shaft. In some implementations, the polymer tube comprises a conical section at its distal end prior to or after being reflowed around the overlap region. In some implementations, the polymer tube comprises a flexible thermoplastic. In some implementations, the superelastic shaft has a length of approximately 5 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 centimeters. In some implementations, the superelastic shaft has a length of approximately 4 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 centimeters. In some implementations, the superelastic shaft has a length between 1 centimeter and 6 centimeters. In some implementations, the overlap region has a length of 0.5 cm to 3 cm.
[0027] In some implementations, the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the superelastic shaft, the In some implementations, the elongate shaft comprises a polymer tube reflowed around an overlap region located at the proximal end of the superelastic shaft further comprising a plurality of surface features formed on the superelastic shaft at the overlap region, wherein the polymer tube is reflowed around the surface features. In some implementations, the plurality of surface features comprise a grit blasted exterior surface of the superelastic shaft. In some implementations, the plurality of surface features comprise laser cut holes each extending through a wall of the superelastic shaft.
[0028] In some implementations, the superelastic shaft is tubular. In some implementations, the elongate shaft comprises a polymer tube secured around an overlap region located at the proximal end of the superelastic shaft and a distal end of the tube. In some implementations, the proximal end of the superelastic shaft includes a first spiral channel or cut, and the distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut. In some implementations, the proximal end of the superelastic shaft and the distal end of the tube are secured at the overlap region by a flexible adhesive. In some implementations, the proximal end of the superelastic shaft and the distal end of the tube are secured at the overlap region by screws.
[0029] Another aspect relates to a medical device, comprising a medical instrument extending from a proximal end to a distal end and including a superelastic shaft formed from a superelastic alloy, the superelastic shaft extending from the distal end of the medical instrument at least partway to the proximal end; an elongate shaft attached at the proximal end of the medical instrument; a tubular jacket including an interior channel, wherein in a first configuration, the distal end of the medical instrument is positioned within the interior channel, and in a second configuration, in response to distal movement of the elongate shaft through the interior channel, the distal end of the medical instrument is medical instrument beyond a distal end of the tubular jacket; and a handle including a distal end coupled to a proximal end of the jacket, an internal drive member coupled to a proximal end of the elongate shaft, a movable grip, and at least one motion transmitting interface configured to actuate the distal movement of the elongate shaft through the interior channel in response to user movement of the movable grip.
[0030] In some implementations, the superelastic material comprises Nitinol. In some implementations, the medical instrument comprises a brush at the distal end. In some implementations, the medical instrument comprises a needle including an inner surface forming a lumen extending from an opening in a proximal end of the needle through a body portion of the needle to an opening in a distal end of the needle, wherein the lumen and the opening in the distal end are configured to acquire a tissue biopsy. BRIEF DESCRIPTION OF THE DRAWINGS
[0031] The disclosed aspects will hereinafter be described in conjunction with the appended drawings and appendices, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.
[0032] Figures 1A and IB illustrate an embodiment of a superelastic needle as described herein.
[0033] Figures 2A-2C illustrate various configurations of a needle assembly as described herein.
[0034] Figures 3A and 3B illustrate the needle assembly of Figures 2A-2C exhibiting superelastic properties in retracted and extended configurations.
[0035] Figure 3C depicts a cross-sectional view of the scope, jacket, tube, and needle of Figures 3 A and 3B.
[0036] Figure 4A illustrates an example offset angle comparison between scope axes before and after passage of a superelastic needle through the scope.
[0037] Figure 4B illustrates a deflection angle comparison between the disclosed superelastic needle and a conventional needle deployed out of the scope to the same distance.
[0038] Figure 5 illustrates an embodiment of a needle assembly as described herein including an example manipulating handle.
[0039] Figure 6 depicts a schematic diagram of a robotic surgical system for actuating a needle as described herein.
[0040] Figure 7 depicts a flowchart of an embodiment of a process for obtaining a tissue sample using a needle as described herein.
DETAILED DESCRIPTION
Introduction
[0041] Medical procedures may involve manipulation of a tool positioned remotely from the operator, for example, positioned through a channel (e.g., trocars, catheters, endoscopes, etc.) inserted into the body of a patient. As one example of such a procedure, transbronchial needle aspiration (TBNA) can be used as a minimally invasive bronchoscopic technique for diagnosis and staging of bronchial diseases, including lung cancer. A TBNA technique can involve manipulating a biopsy needle through a flexible bronchoscope. For example, a physician can use chest scans to identify the location of a mass to be biopsied and to guide positioning of the bronchoscope within the patient's airways towards that mass. After the distal end of the bronchoscope working channel is positioned within the airways near the identified mass, an elongate, tubular jacket containing the biopsy needle can be advanced through the working channel to the sampling area. The target tissue can then be pierced by extending the needle out of the jacket, and aspiration can be applied to aid sample acquisition. Typically, sample acquisition involves moving the tube backward and forward relative to the bronchoscope to repeatedly puncture the tissue site with the needle (referred to as "dithering"). After sample acquisition, the needle can be retracted back into the jacket and withdrawn through the working channel. In some procedures, sample analysis can be performed in the same room and/or contemporaneously as the TBNA procedure, and depending upon results of the analysis further TBNA sample acquisition, other tissue sampling, and/or treatment can be performed.
[0042] Bronchoscopy techniques including TBNA can involve challenges accessing masses at the periphery of the lungs, particularly if such masses are relatively small, for example, around 8 mm or smaller. Sampling masses at the periphery presents challenges in diagnosing and staging cancerous masses, particularly in early cancer stages, a timeframe during which such masses may be more easily treatable and may not have spread to other places in the patient's body. For example, a challenge in using a needle with a flexible bronchoscope is that the needle ought to be flexible enough to be maneuverable through the tortuous pathways of the bronchoscope to the target tissue site while also being rigid enough to deploy straight and allow penetration of the target tissue, and further that the needle preferably deploys in a straight trajectory over a distance sufficient to reach the lung periphery.
[0043] With respect to flexibility, bronchoscopes are increasingly minimizing the bend radiuses that they can achieve to allow the bronchoscopes to navigate through patient airways. With respect to rigidity, a bronchial wall or tumor tissue may present significant resistance to penetration by the needle. Some previous approaches use a short, rigid needle at the distal end of a plastic sheath to address these requirements so that the needle does not have to bend much as it travels through the bronchoscope. One example of an existing needle is a rigid needle approximately 7 mm or less in length (see for example needle 450 in Figure 4B). However, using tins relatively short needle limits the extent to winch the needle can be deployed straight - that is, the ability of the needle to be extended from the working channel with a proximal end still secured within the working channel. This can limit the range of the needle, preventing sampling of tissue at or near the periphery of the lungs. Further, the sheath cannot penetrate the tissue and thus causes trauma to patient tissue if it is jammed into the tissue, deflecting the tissue in order to allow for deeper penetration by the needle.
[0044] The aforementioned challenges, among others, are addressed in some embodiments by the superelastic needle assemblies described herein. Embodiments of the disclosure relate to superelastic needles, and specifically to needles that are pre-formed into a shape (e.g., straight or curved), capable of bending elastically through the tortuous pathways of a bronchoscope, returning to the pre-formed shape upon deployment from the bronchoscope, and deploying along the axis of the end of the bronchoscope (within a tolerated margin) with improved reach (e.g., in some embodiments, up to distances of 2 cm or more). The disclosed superelastic needles are configured for increased stability and accuracy during deployment by maintaining overlap between a proximal portion of the needle, a distal end of a scope used to deliver the needle, and a distal end of a jacket containing the needle within the scope. The increased length of the disclosed needle allows for this overlap while still achieving the needed reach, and the disclosed superelastic alloys enable the increased needle length to pass through curvatures of the scope. Further, the disclosed needle reduces scope tip deflection at the tip of the scope during the delivery of the needle through the working channel, which provides the desired accuracy in tissue sampling. In addition, the disclosed needle has aspiration/negative and/or positive pressure capabilities by having an open interior lumen. Thus, the disclosed needles can provide enhanced ability to sample tissue at the periphery of the lungs, for example, smaller lesions. Beneficially, this can allow a physician to diagnose and stage small, peripheral cancerous masses in earlier stages.
[0045] The disclosed systems and techniques can provide advantages for bronchoscopic needle biopsies and other applications, including manipulation of other endoscopic, laparoscopic, and/or catheter-delivered tools. For example, a superelastic shaft similar to the disclosed needle can be provided for other types of medical tools, for example, augers, cytology brushes, and/or forceps. It will be appreciated that the needle dimensions described below could be similarly applicable to the dimensions of a superelastic shaft, and that the superelastic shaft may or may not be formed as a tubular shaft with an interior lumen. Thus, though the disclosed superelastic shafts are described in portions of the present disclosure below within the context of bronchoscopy biopsy needles, it should be understood that such shafts can also be used with other endoscopic tools and in other types of procedures in order to provide the disclosed benefits. For example, a superelastic medical tool as described herein can be used in other types of procedures including laparoscopy, gastrointestinal endoscopy, urethroscopy, cardioscopy, and other procedures delivering tools through flexible and/or curved scopes, catheters, or tubes (collectively referred to as endoscopes, for simplicity of describing the various embodiments discussed herein).
[0046] As used herein, the term "superelastic" generally refers to a mechanical type of shape memory in which an elastic (reversible) response to an applied stress is caused by a solid-solid phase transition. In some cases, superelastic effects are induced when a crystalline material in an austenite state is mechanically loaded up to a critical stress and within a specific temperature range above the martensitic transformation finishing temperature, at which point a phase transition to the martensite phase is induced. When so mechanically loaded, a superelastic material can deform reversibly to very high strains (for example, with Nitinol up to 10%) by the creation of such a stress-induced phase. When the load is removed, the martensite phase becomes unstable and the material undergoes the reverse deformation to regain its original shape. Further, no change in temperature is needed for the material to undergo this reverse deformation and recover this initial shape. Nitinol is a metal alloy of nickel and titanium that exhibits superelastic properties in a range of temperatures around room temperature. Other examples of superelastic materials include alloys of nickel and titanium with other elements (Ni-Ti-Fe, Ni-Ti-Cr, Ni-Ti-Cu-Cr), some poly crystalline ferrous alloys (e.g., Fe-Ni-Co-Al-Ta-B and Fe-Mn-Al-Ni), Cu-Al-Mn (CAM) alloys, and Cu-Zn-Sn alloys. It is to be appreciated that although the disclosed superelastic materials may be discussed herein with respect to implementation as a needle that is formed in, and reverts to, a straight shape, it will be appreciated that a medical tool formed from the disclosed superelastic materials can be formed to revert to a curved, angled, or otherwise non-straight shape in other implementations.
[0047] As used herein, strain generally refers as the amount of deformation an object experiences compared to its original size and shape and can be expressed as a percentage.
[0048] As used herein, "distal" refers to the end of the scope or tool positioned closest to the patient tissue site during use, and "proximal" refers to the end of the sheath or tool positioned closest to the operator (e.g., a physician or robotic control system). Stated differently, the relative positions of components of the jacket, needle, and/or the robotic system are described herein from the vantage point of the operator.
[0049] As used herein, the term "dithering" refers to a back and forth motion of a medical instrument such as a biopsy needle, for example during tissue sampling. The dithering movement of the needle can be independent of the movement of the needle's jacket such that the jacket of the needle remains relatively stationary during the dithering.
[0050] As used herein, the term "approximately" refers to a range of measurements of a length, thickness, a quantity, time period, or other measurable value. Such range of measurements encompasses variations of +/ 10% or less, preferably +1-5% or less, more preferably +/-1 % or less, and still more preferably -'7-0.1% or less, of and from the specified value, in so far as such variations are appropriate in order to function in the disclosed devices, systems, and techniques.
[0051] Robotic surgical systems can utilize endoscopic instruments to perform minimally invasive endoscopic procedures robotically. Thus, some implementations of the disclosure relate to surgical instruments and systems that include superelastic needles that can advantageously be used in robotically-guided (whether fully automated robotic systems or robotic systems that provide some level of assistance) medical procedures, and methods of performing a medical procedure under guidance of a robotic surgical system. In such systems, a robotic arm can be configured to control the extension, dithering, and/or retraction of needles as described herein. Drive signals for such actuation can be supplied by the robotic surgical system, for example, in response to user input via an input device and/or computer-controlled surgical processes. [0052] Various embodiments will be described below in conjunction with the drawings for purposes of illustration. It should be appreciated that many other implementations of the disclosed concepts are possible, and various advantages can be achieved with the disclosed implementations. Headings are included herein for reference and to aid in locating various sections. These headings are not intended to limit the scope of the concepts described with respect thereto. Such concepts may have applicability throughout the entire specification.
Overview of Example Needle Assemblies
[0053] Figures LA and B illustrate an embodiment of a superelastic needle 120 as described herein. Figure 1A shows the two components of the needle assembly 100, the superelastic needle 120 and an elongate shaft 1 10 coupled to the needle 20.
[0054] The needle 20 is formed as a thin- wall tube. The needle 120 is capable, in some embodiments, of delivering negative (or positive) pressure through an interior lumen (not illustrated), the lumen extending through the body of the needle 120 from a first aperture 21 at its proximal end to a second aperture 124 at its distal end 125. In some embodiments the needle has a wall thickness of approximately 0.0015 inches. This thin wall can add to the flexibility of the needle and also beneficially increase the interior diameter of the needle to collect greater amounts of biopsy material. The outer diameter of the needle can be up to 0.023 inches in some implementations, as for larger diameters, the wall may need to be unpractically thin to maintain the desired flexibility. Smaller outer diameters can have thicker walls, however the interior lumen of such needles would be able to collect less material. It is to be appreciated that these measurements are provided to possible embodiments and do not limit the scope of other embodiments contemplated by this disclosure.
[0055] The needle 120 can be formed from Nitinol in some implementations, though, in other implementations, one or more other suitable superelastic materials can be used. Nitinol is a nickel-titanium alloy with approximately equal parts nickel and titanium by atomic percent, for example having a nickel to titanium ratio between 0.92 and 1.06. In some embodiments formed from Nitinol, the superelastic material of the needle 120 can assume an interpenetrating simple cubic structure (referred to as the austenite phase) and can be set in this phase in the straight, tubular shape shown in Figure 1A. When Nitmol in the austenite phase is subject to exterior forces in a temperature range from about -20 °C to +60 °C, the Nitinol can undergo a phase transformation to the martensite phase as well as changing shape (e.g. to bend along its longitudinal axis as it travels through a bronchoscope). In the martensite phase, the crystal structure of the Nitinol shifts to a monoclinic structure, giving it the ability to undergo twinning deformation (e.g., the rearrangement of atomic planes without causing slip, or permanent deformation) without breaking atomic bonds. The Nitmol can reversibly undergo up to 10% strain in this manner. Upon release of the strain, the Nitinol automatically reverts back to the austenite phase and the original shape. In superelastic Nitinol, this reversion occurs without the requirement of any temperature change, as opposed to shape memory Nitinol.
[0056] In other implementations, one or more other suitable superelastic materials capable of the austenite-martensite, solid-solid phase transformation can be used to form the needle 120. As described above, such materials include other alloys of nickel and titanium with other elements (Ni-Ti-Fe, Ni~Ti-Cr, Ni-Ti-Cu-Cr), some polycrystalline ferrous alloys (e.g., Fe-Ni-Co-Al-Ta-B and Fe-Mn-Al-Ni), Cu-Al-Mn (CAM) alloys, and Cu-Zn-Sn alloys. Thus, the needle 120 can be formed from superelastic materials having (1) a first solid crystal structure set to a straight, tubular shape in its austenite phase, (2) a second solid crystal structure that allows elastic deformation (e.g. bending) of the tubular shape up to a threshold strain percentage in its martensite phase, and (3) the capability to automatically revert from the martensite phase back to the austenite phase (and thus the original straight, tubular shape) upon release of the strain and without requiring any temperature change.
[0057] The elongate shaft 110 can be formed as a tube having an aperture 104 at its proximal end 102 leading to an interior lumen 106 that is in fluid communication with the lumen of the needle 120. Aspiration or positive pressure can be applied through the aperture 104 and delivered through the distal aperture 124 of the needle 120. The elongate shaft 110 can be a flexible thermoplastic polymer, for example a flexible polymeric single lumen extrusion formed from HDPE (high density polyethylene). Other flexible thermoplastics can be used in other embodiments, alone or in a blend or layered combination. For example, multiple polymers could be reflowed together to create a tube that is stiffer at one end and more flexible at the other end. In some implementations, the elongate shaft 110 can be formed from braided wire with a heat shrink to provide some torqueing capability to the wire.
[0058] The elongate shaft 110 is secured to the needle 120 at the overlap region 130. This can be a fluid-tight (e.g., air tight and liquid tight) connection in some implementations. In order to secure the elongate shaft 110 to the needle 120, in some examples of the elongate shaft 110 can be reflowed around the needle 120 at an overlap region 130. For example, a mandrel can be placed inside of the lumen of the needle 120 and the lumen 106 of the elongate shaft 110 and the elongate shaft 110 can be positioned around the needle 120 in the overlap region 130. The mandrel can help ensure that the lumen does not become occluded during the reflow process. Heat shrink can be positioned around the elongate shaft 110 and needle 20 at least at the overlap region 130 and heat applied to melt the material of the elongate shaft 1 10, causing it to reflow around and bond to the exterior surface of the needle 120. The exterior surface of the needle 120 may have surface features along some or all of this overlap region 130 to promote a better bond, for example a grit blasted or sanded surface, laser cut etching or through-holes, or surface etching or holes formed by other drilling and/or cutting techniques. In some embodiments, the polymer elongate shaft 110 can have a cone-shape at its distal end prior to and/or after the refl owing. The cone shape can provide a ramp up or smoothemng of the transition from needle to tube.
[0059] In other embodiments, the elongate shaft 1 10 and needle 120 can be bonded in other ways alternative to or additional to the reflowing described above. For example, the wall of the needle 120 can be provided with etched, molded, or cut features (e.g., barbs, spiral channels, and the like) and the proximal end of the elongate shaft 110 can be etched, molded, or cut to have corresponding features that mate with and lock into the barbs in the needle 120. As another example, the elongate shaft 110 could have additional lumens within a portion of the wall and barbs extending from the needle 120 could be positioned withm these additional lumens and secured via adhesive, mechanical mating elements, and/or reflowing. In other examples mechanical fasteners (e.g., pins, screws, etc.) or flexible adhesives (e.g., silicone adhesives) can be used to couple the elongate shaft 110 and needle 120. Further, in some implementations the elongate shaft 110 can be connected directly to the proximal end of the needle such that no overlap region is included. Other approaches can use a die bonding where two heated plates perform the reflow. [0060] In one example design, it is desired for the needle 120 to be able to deploy straight across a distance of at least 3 cm. For example, a scope with which the needle 120 can be used may be able to get difficult to reach nodules, as some endoscopes can reach within 3 cm of most areas of the lung. Further, reach of this length gives the practitioner different options for how a scope is positioned to obtain a biopsy. Thus, the needle can have a length of at least 3 cm in some embodiments. In other embodiments, the needle can be longer, for example 5 cm to 6 cm, in order to provide an "anchor" portion that remains within the scope during extension of the distal tip 125 up to 3 cm. This can beneficially provide stability for straight deployment of the needle to the target tissue site. Accordingly, in various embodiments, the overlap region 130 can be 2-3 cm long and can form the anchor portion intended to remain within the working channel of the scope, and the portion of the needle 120 extending distally beyond the overlap region 120 can be approximately 3 cm to 4 cm long.
[0061] Some endoscopic procedures may involve using fluoroscopy to assist with navigation of medical instruments through patient luminal networks. In fluoroscopy, a source of x-ray radiation is provided to pass an x-ray beam through patient tissue. This beam can be received by a screen positioned on the other side of the patient from the x-ray radiation source, and the resulting signal can be used to generate images (e.g., in grayscale or false color) to depict the internal structure of the patient. Radiopacity refers to the relative inability of electromagnetic radiation, particularly X-rays, to pass through a particular material. Materials that inhibit the passage of X-ray photons are referred to as radiopaque, while those that allow radiation to pass more freely are referred to as radiolucent or radio- transparent. The term "radiopaque", as used herein, generally refers to the relatively opaque, white appearance of dense materials viewed in radiographic imaging, compared with the relatively darker appearance of less dense materials. Nitinoi and some other superelastic materials can be radio-transparent or radiolucent, making these materials invisible or near- invisible when viewed in x-ray photographs or under fluoroscopy. This can make navigation of the needle 120 through a patient difficult when using fluoroscopy-based navigation systems.
[0062] Accordingly, some embodiments of the needle 120 can be provided with a radiopaque material 123 near the sharpened tip and distal end 125. In some examples, the radiopaque material 123 can be positioned around 3 mm from the distal tip of the needle 120. As described above, radiopaque materials are opaque to x-ray radiation and thus visible in x- ray photographs and under fluoroscopy. As such, although the material of the needle 120 may be radio-transparent, its navigation can be guided by observing the position of the radiopaque material 123. Providing the radiopaque material 123 near the distal end 125 (or as close as possible to the distal end 125 given the tapered or sharpened tip) can beneficially provide an indication of how close the distal end 125 is to the target tissue site.
[0063] In one example, this radiopaque material 123 can be formed as a thin gold band and secured around the exterior surface of the needle 120. Generally, elements with higher atomic numbers have higher radiopacity, and thus radiopacity of a material increases alongside an increase in the particle ratio of those materials which have an element content with a high atomic number. Other implementations can use suitable radiopaque materials having high element content of elements with high atomic numbers, including tungsten, precious metals and alloys containing precious metals including chromium-nickel alloys (Cr- Ni), radiopaque ceramics, and radiopaque thermoplastics. In some embodiments the radiopaque material 123 can be formed as a number of blades to increase flexibility. Preferably, the selected radiopaque material is stenlizable and non-toxic to human tissue. It will be appreciated that other shapes and positions can be used for the radiopaque material 123 besides the illustrated band, for example by providing surface etchings or holes in the needle 120 and filling such etchings or holes with the radiopaque material 123. In some embodiments the radiopaque material 123 may be secured to the interior of the needle 120.
[0064] As shown in Figure IB, the needle 120 is formed with a sharpened tip 140 at its distal end 125. The sharpened tip 140 includes a lancet design where one zone 144 is ground flat at a first angle and a second zone 142 is ground flat at a different angle. The second zone 142 provides a linear slope to the end of the sharpened tip 140 that meets the full diameter of the needle 120. The diameter of the needle 120 increases again at the location of the radiopaque material 123.
[0065] As a first force, Fj, reflects the initial puncture force required to drive the tip of the needle 120 into the patient tissue. This force can increase along the region of the sharpened tip 140, reaching a peak puncture force Fp at the full diameter of the needle 120. Another increase in puncture force to the collar passage force Fc can occur when inserting the leading edge of the radiopaque material 123 into the tissue.
[0066] It will be appreciated that the thickness of the radiopaque material 123 has implications for both radiopacity and an increase in the puncture force required to insert the increased thickness into patient tissue. In various embodiments using a gold band, the wall of the gold band can have a thickness in the range of 500 μίιι (micro-inches) to 1000 μίη to achieve a desired balance between these factors. Some embodiments can use a radiopaque material 123 having a thickness of at least 200 μίη.
[0067] Figures 2A-2C illustrate various configurations of a needle assembly 200 as described herein. The needle assembly 200 includes needle 220, shaft 2 0 coupled to the needle 220 at overlap region 215, and jacket 225. The needle 220 and shaft 210 can be the needle 120 and elongate shaft 10 discussed above with respect to Figure I. As depicted, the needle 220 includes a radiopaque material 230 secured near the distal tip 240. The jacket 225 can be a polymer catheter or tube in some embodiments, and in other embodiments can be a steerable channel. The outer diameter of the jacket 225 can be selected to substantially match the interior diameter of the working channel of a scope for secure centering of the needle 220 relative to the working channel. The jacket 225 can include a band of radiopaque material at or near its distal tip.
[0068] Figure 2.4 illustrates the needle assembly 200 in a retracted configuration 205 A. In the retracted configuration 205A, the distal end 240 of the needle 220 is positioned at or proximally to the distal end 235 of the jacket 225 and the jacket 225 surrounds the depicted portion of the tubular shaft 210. However, a proximal end of the shaft 210 may extend beyond a proximal end of the jacket 225 so that it can be moved relative to the jacket 225 to extend the needle 220 through the distal aperture 245 of the jacket 225 into the other configurations discussed below. The lumen 205 of the shaft 210 extends through the jacket 225. In some embodiments, a fully retracted configuration can have the distal end 240 of the needle 220 positioned a certain distance within the jacket 225, for example 5 mm from the distal end 235 of the jacket 225. As shown in Figure 2A, the overlap region 215 can help position the needle 220 centered relative to the jacket 225.
[0069] Figure 2B illustrates the needle assembly 200 in a partially-extended configuration 205B. The distal end 240 of the needle 220 is positioned distaliy beyond the distal end 235 of the jacket 225 in the partially-extended configuration 205B with the shaft 2 0 positioned within the aperture 245 of the jacket 225. The needle 220 can be driven from the retracted configuration 205 A to the partially-extended configuration 205B by distal movement of the shaft 210.
[0070] Figure 2C illustrates the needle assembly 200 in a fully-extended configuration 205C. The exposed portion 250 of the needle 220 (e.g., the portion positioned distally from the overlap region 215 is positioned distally beyond the distal end 235 of the jacket 225 in the fully-extended configuration 205C with the overlap region 215 of the shaft 210 positioned at least partially within the jacket 225. In some embodiments, the exposed portion 250 of the needle 220 can be positioned flush with the jacket 225, that is, a distal edge 245 of the overlap region 215 can be positioned at the distal end 235 of the jacket 225. As shown in Figure 2C and as discussed in greater detail below relative to Figure 3C, the overlap region 215 can help the needle 220 to remain centered in the jacket 225, and thus centered and anchored in the working channel of a scope with the jacket 225 positioned within the scope, even when the full exposed length 250 of the needle is extended beyond the distal end 235 of the jacket. The needle 220 can be driven from the partially-extended configuration 205B to the fully-extended configuration 205C by distal movement of the shaft 210, and can be driven from the fully-extended configuration 205C to the partially-extended configuration 205 B by proximal movement of the shaft 210.
[0071] As described above, in some embodiments the distal tip 240 of the needle 220 can extend 3 cm, or in the range of 2 cm to 4 cm, beyond the distal end 235 of the jacket 225 in the fully-extended configuration 205C. The length of the needle 220 can be between 1 cm to 6 cm. The overlap region 215 can overlap a distance of 0.5 cm to 3 cm from the proximal end of the needle 220. One example needle has an overlap region 21 5 length of around 1 cm and an exposed needle length of around 2 cm. Another example needle has an overlap region 215 length of around 2 cm and an exposed needle length of around 3 cm. Another example needle has an overlap region 215 length of around 2 cm and an exposed needle length of around 4 cm. It will be appreciated that longer needles, while providing a greater ability to sample lesions further from the distal tip of a scope, may have reduced ability to traverse the tortuous passages of the scope. It is to be appreciated also that the dimensions provided above are merely exemplar}' and other dimensions may be suitable depending on application and design requirements of the needle assembly.
[0072] Figures 3A and 3B illustrate the needle assembly 200 of Figures 2A-2C exhibiting superelastic properties in retracted and extended configurations. Figure 3A illustrates the needle assembly 200 in a martensite state 300A with the needle assembly 200 positioned within the working channel 320 of a scope 315, illustrated in cross-section to reveal the needle assembly 200. The needle 220 can be positioned with its distal tip 240 within the jacket 225. The jacket 225 and needle 220 can be advanced together through working channel 320 of the scope 315 until the distal end 235 of the jacket 225 and the distal end 240 of the needle 220 are positioned at (or near) the distal end 325 of the scope 315.
[0073] As described above, in the martensite state 300A the needle is able to undergo strain up to a certain threshold while deforming reversibly. As illustrated, the needle 220 has two bends along its longitudinal axis. As an example, the needle 220 can bend around a radius of curvature a while deforming reversibly in the martensite state 300A. In one example, the needle 220 can be around 5 cm in length with a 0.0015 inch thick wall, and can elasticaily bend around a radius of 9-12 mm or greater. Some examples of the needle 220 can deform elasticaily around 180 degree bends. This deformation can occur repeatedly as the jacket 225 containing needle 220 is inserted through the working channel of a scope.
[0074] Figure 3B illustrates the needle assembly 200 in deployment 300B. As illustrated, the assembly 200 has a portion 305 of the needle 220 still positioned within the jacket 225. Of this portion 305, a portion is still deformed around the radius of curvature a in the martensite state. The assembly 200 also has a portion 310 of the needle 220 that has been "deployed," that is, extended beyond the distal end 235 of the jacket 225. The deployed portion 310 is no longer subject to strain due to the bend of the jacket 225 and, as a result, has returned to the austenite phase and thus has straightened. Beneficially, this automatic reverse deformation allows the needle 220 to traverse tight bends through a scope and still deploy substantially straight along the longitudinal axis extending out of the scope working channel. Such deployment increases accuracy with respect to sampling pre-identified target tissue regions.
[0075] Further, increased stability and accuracy during deployment of the needle as illustrated in Figure 3B can be achieved by maintaining example portion 305 of the needle 220, shaft 210, and jacket 225 within the working channel 320 of the scope 315. Though Figure 3B depicts a specific length of overlap of the needle 220, shaft 210, and jacket 225 within the working channel 320, it will be appreciated that any overlap of these components achieves the desired stability by securely centering the needle 220 in the working channel 320. For example, Figure 3C depicts a cross-sectional view 330 of the scope 315, jacket 225, shaft 210, and needle 220 that illustrates the stability-increasing configuration along portion 305 of Figure 3B. As illustrated, the outer surface of the jacket 225 contacts and is supported by the working channel 320 of the scope 315, the inner surface of the jacket 225 contacts and supports the outer surface of the shaft 210, and the inner surface of the shaft 210 contacts and supports the outer surface of the needle 220 (e.g. at overlap region 215). This arrangement centers the needle 220 relative to the working channel 320, increasing accuracy during deployment. It will be appreciated that the gaps shown between the components in Figure 3C are for clarity of illustration, and the overlapping configuration can be structured without gaps in various implementations. Further, the working channel 320 can be centered relative to the scope 315 as illustrated or may not be centered in other embodiments.
[0076] Figure 4A illustrates an example offset angle comparison 400 between scope axes 410, 415 before and after passage of a superelastic needle 420 through the scope. The needle 420 can be the needle 120, 220 described above and the jacket (not depicted) is located within the working channel of the scope 405. The depiction of Figure 4A shows the distal end of a scope 405 in two positions 405A, 405B each from one of two images overlaid onto one another to produce the offset angle comparison 400. In a first image taken before insertion of needle 420 through the scope, the distal end of the scope 405 is in an undeflected position 405A with a portion of the scope proximal to the distal tip actuated into a curve. In a second image taken after deployment of the needle 420 through the scope 405B, the distal end of the scope 405 is in a deflected position 405B. A dashed line representing an undeflected axis 410 is depicted parallel to and extending from the distal end of the scope 405 in the undeflected position 405A, and a dashed line representing a deflected axis 415 is depicted parallel to and extending from the distal end of the scope 405 in the deflected position 405B. These axes are offset by an angle Θ. It is to be noted that these illustrated deflections are experienced in air but may experience less deflection in the patient site. For example, while in the body, the surrounding tissue may restrict movement of the scope or the deflection may cause the surgical site to move relative with it.
[0077] In the example shown in Figure 4A, the "spring" force of the superelastic needle 420 attempting to revert to its straightened original shape through the curve deflects the distal end of the scope at an angle Θ of 5.6 degrees. In another example scope, this angle β is reduced to 2 degrees. In some implementations, an allowable deflection of the scope tip due to needle deployment can be plus or minus ten degrees and still allow accurate sampling of target tissue sites. To illustrate, consider that the working channel of the scope 405A is positioned such that the target tissue site is viewable via optics at the distal tip of the scope. Based on the size of the target lesion and its distance from the distal tip of the scope 405, the angle of the needle longitudinal axis after deflecting the scope tip (parallel to the deflected axis 415) can be offset from the undeflected axis 410 within a certain range and the distal tip of the needle 420 will still puncture the target lesion.
[0078] In some embodiments the scope 405 is steerable, and the deflection can change the values of tension upon various pull wires or actuating cables within the scope 405. A robotic control system, for example as discussed in more detail below with respect to Figure 6, can sense this change in tension and use this to compensate for the deflection of the scope by applying greater tension or force to certain pull wires or actuation cables. Some control system implementations may compensate for tension changes to keep the scope as close as possible to its undeflected position 405A. Other control system implementations may compensate for any tension changes outside of a predetermined range corresponding to an angle of deflection Θ that exceeds an allowable angle for sampling the target tissue site. Alternative to an automatic control approach, other embodiments may correct deflection based on physician adjustments to the scope.
[0079] Figure 4B illustrates a deflection angle comparison 425 between the disclosed superelastic needle 420 and a conventional needle 450 deployed out of the scope 405, where both needles are deployed to the same distance 445 from the distal end of the scope. The conventional needle 450 is a short (e.g., up to 7 mm) stainless steel tube secured to a conduit 455. The distance 445 in the present example is 4 cm from the tip of the scope 405. The deflection angle comparison 425 involved extending both needles 420, 445 from the same scope 405 having the same undeflected position, capturing an image of each extended needle, and then overlaying the images to illustrate the comparison 425.
[0080] A dashed line representing an axis 430 of the scope 405 is depicted parallel to and extending from the distal end of the scope 405. A dashed line 435 representing an axis of the needle 420 of the present disclosure is depicted extending from the needle 420. A dashed line 440 representing an axis of the conventional needle 450 is depicted extending from the needle 450. As illustrated, the axis 440 of needle 450 is offset from the scope axis 430 by an angle β, and the axis 435 of needle 420 is offset from the scope axis 430 by an angle γ. In the depicted example angle comparison 425, the offset angle β between the axis 440 of needle 450 and the scope axis 430 is equal to 8.1 degrees and the offset angle γ between the axis 435 of needle 420 and the scope axis 430 is equal to 1.8 degrees, plus or minus about 0.5 degrees. Thus, the disclosed superelastic needle 420 exhibits reduced deflection compared to the conventional needle 450.
[0081] Figure 5 illustrates an embodiment of a needle assembly 500 as described herein coupled to an example manipulating handle 505. The needle assembly 500 includes a needle 556, an elongate shaft 554 (e.g., a polymer tube) bonded or otherwise secured to needle 556, a jacket 550 positioned at least partly around the shaft 554 and needle 556, and a handle 505. In the view of Figure 5, a portion of the handle 505 is shown cut away to reveal interior components.
[0082] The needle 556 can be formed from a superelastic material, for example Nitinol, and bonded to the polymer tube via refl owing over an overlap region as described above. The needle 556 can be the needle 100, 220, 420, the shaft 554 can be the elongate shaft 1 10, 210, and the jacket 550 can be the jacket 225 in various embodiments. As illustrated, the jacket 550 extends from a distal aperture 541 of the handle 505 through a strain relief, and can contain some or all of the shaft 554 and needle 556 in various configurations. The shaft 554 has an interior lumen 552 that provides at least a portion of a fluid pathway between a proximal aperture of the fluid coupling 535 of the handle 505 and the distal end 559 of the needle 556. The needle 556 can be a biopsy needle such as an aspiration needle configured for acquisition of tissue samples or can be configured for delivery of therapeutic agents to a tissue site, and can be provided with a band 558 of radio- opaque material near the distal end 559. [0083] The handle 505 includes casing 510, actuation sleeve 520, driving member 530, and fluid fitting 535. Various examples of the handle 505 and other handles suitable for actuating movement of the disclosed superelastic medical tools are described in U.S. Application No. 15/937,516, entitled "SHAFT ACTUATING HANDLE," filed March 27, 2018, the disclosure of which is hereby incorporated by reference. The driving member 530 can be driven linearly along a longitudinal axis of the handle 505 by various motion modalities of the actuation sleeve 520, as described in more detail below. The shaft 554 attached to needle 556 can be secured within a recess 537 of the driving member 530, for example by bonding via an adhesive. Thus, linear motion of the driving member 530 can transfer to the needle 556 via the shaft 554, allowing manipulation of the handle 505 to drive extension and retraction of the needle 556 from jacket 550. In some embodiments the recess 537 can be structured to mechanically mate with a corresponding feature on the shaft 554 to facilitate use of the handle 505 with a number of different conduits and tools. Thus, in some embodiments the handle 505 may be sterilizable and reusable while the conduit, needle, and jacket may be disposable. In various other embodiments the entire instrument 500 may be entirely sterilizable and reusable or designed as a disposable single unit.
[0084] The actuation sleeve 520 can have a rotational wheel grip 524 and a plunger grip 522 to facilitate its actuation by an operator. The operator can drive motion of the needle 556 relative to the jacket 550 by rotating 560 the rotational wheel grip 524, which causes rotation of the actuation shaft 520 around the longitudinal axis of the handle 505. Rotation 560 in one direction can cause extension of the needle 556 from the jacket 550. Rotation in the other direction can retract the needle 556 back into the jacket 550. In some embodiments, the needle can initially be positioned in a retracted configuration, for example as shown in Figures 2A and 3A, while the jacket 550 is advanced near a target tissue site. The rotation 560 can be used to advance the distal end 559 of the needle out of the jacket 550 in a controlled and/or incremental manner until the distal end 559 is at or puncturing the tissue. A plunging motion 565 can be driven in one direction by application of force by the operator to plunger grip 522 and driven in the opposite direction in some embodiments by a biasing element upon release of the force. Such a modality can be useful for dithering the needle 556 once extended to the desired distance, for example to acquire a tissue sample. [0085] Actuation sleeve 520 can be coupled to the driving member 530, for example via a cam interface, to transfer these rotational or plunging motions of the actuation sleeve 520 to linear motion of the driving member 530 along a longitudinal axis of the handle 505. Motion of the driving member 530, in turn, is transferred to the needle 556 via the coupling between the shaft 554 and the driving member 530 and the bond between the shaft 554 and the needle 556. Beneficially, during rotation 560 and plunging 565 the fluid fitting 535 may remain stationary with respect to the casing 510 of the handle 505.
[0086] Fluid fitting 535 can be a threaded connector for securing to a corresponding threaded connector of an aspiration device, for example a Leur lock. Securing the fluid fitting 535 to the casing 510 can provide benefits in terms of stability of the aspiration device when secured to the fluid fitting 535. Beneficially, during rotation 560 and plunging 565 the fluid fitting 535 may remain stationary with respect to the casing 510 of the handle 505. As shown, a proximal portion 536 of the shaft 554 can comprise a length of coiled tubing in some implementations. This can allow the fluid fitting 535 to be fixed relative to the casing 510 while providing a flexible fluid path that accommodates linear motion of the proximal handle member 530. For example, the proximal portion 536 can be coiled HDPE tubing, and in some embodiments this can be a portion of the shaft 554 positioned proximally from the bonding recess 537. A sleeve of polyolefin heat shrink can be used to secure the coiled tubing to the fluid fitting in some implementations.
[0087] The illustrated actuation sleeve 520 and grips 524, 522 represent one example structure for allowing a user to actuate both a fine-control extension and a rapid dithering of the needle 556. In other embodiments, another suitable actuation mechanism can be coupled to the driving member 530, for example a rack and pinion driven by a rotatable wheel provided on the handle 505 or a slidable tab provided on the handle 505. Such alternate actuation mechanisms can be used alone or with a plunger-type dithering interface. Though described in the context of a superelastic needle, in other examples the handle 505 can be used to control other superelastic medical tools as described herein.
Overview of Example Robotic Surgical Systems
[0088] Figure 6 depicts a schematic diagram of a robotic surgical system 600 for actuating a needle assembly 605 as described herein. The needle assembly includes a jacket 630, needle 635, and a tubular elongate shaft 640 connected to the needle, and can be the needle assembly 200 described above. In other embodiments, the robotic system 600 may instead interface with a handle for manipulating the shaft 640, for example a handle 505 as described with respect to Figure 5. Other embodiments may interface with support members bonded to proximal ends of the shaft 640 and jacket 630.
[0089] The example robotic system 600 includes an articulated arm 610 configured to locate, and maintain positioning of, the needle assembly 605. At a distal end of the arm 610 are a first grip portion 625 for controlling aspiration or administering therapeutics and two additional grip portions 615, 620 that can open to receive and secure the shaft 640 and jacket 630, respectively. The first grip portion 625 can include one or more actuators for gripping and controlling a pressure source 655 of negative (or positive pressure) and/or therapeutics for attaching to the proximal end of the shaft 640. For example, the first grip portion 625 can include a first actuator for attaching pressure source 655, for example a syringe, and a second actuator for robotically controlling a plunger of the syringe. The second grip portion 615 may maintain stationary positioning of the jacket 630. The third grip portion 620 can be configured to move the proximal end of the shaft 640 proximally and distal ly to move the needle 635 in and out of the jacket 630 and/or to effect a dithering motion as described herein. Other embodiments of the third grip portion 620 can be configured to effect the rotational and/or plunging modality of the handle described herein by rotating a wheel or grip of the handle. The grip portions 615, 620, 625 can be driven by one or more motors and appropriate actuation mechanisms.
[0090] The robotic surgical system 600 can include processor(s) 645 and memory 650. The memory 650 can store instructions for operation of the various components of the robotic surgical system 600 as well as data produced and used during a surgical procedure. The processor(s) 645 can execute these instructions and process such data to cause operation of the system 600. One example of instructions stored in the memory of the robotic surgical system 600 is embodied in the tissue sampling method of Figure 7, discussed below.
[0091] For example, the memory 650 can store data relating to the length of a needle and/ or overlap region as well as instructions relating to extending the needle from the jacket in order to position the distal end of the needle a desired distance from the distal end of the jacket while maintaining overlap between the needle 220, shaft 210, jacket 225, and working channel 320 of a scope 3 5 during deployment, for example as shown in Figures 3B and 3C. The processor(s) 645 can execute these instructions to cause operation of the system 600 to extend the needle in a stable, accurate manner as described herein. For example, the processor(s) 645 can execute these instructions to cause the robotic system to monitor positioning of the overlap region between the needle and the shaft relative to one or both of the jacket and the working channel/ endoscope during or after an extending drive of the needle. In some embodiments, the instructions can prevent the robotic surgical system 600 from driving extension of the needle beyond a predetermined point that would eliminate such overlap. In other embodiments, the instructions can cause the robotic surgical system 600 to provide an alert to an operator of the robotic surgical system 600 when further extension will eliminate such overlap, but may allow the operator to continue driving extension of the needle.
[0092] In some embodiments, processor(s) 645 can execute the instructions stored in memory 650 to cause the robotic surgical system 600 to automatically position the scope 315 (prior to or during insertion of a needle assembly 200 through the working channel 320) so that the needle 220 will be able to extend to a target tissue site while maintaining the overlap described herein. Additionally or alternatively, processor(s) 645 can execute the instructions stored in memory 650 to cause the robotic surgical system 600 to output a recommendation regarding such positioning for a user driving endoscope positioning using the system 600. Additionally or alternatively, processor(s) 645 can execute the instructions stored in memory 650 to cause the robotic surgical system 600 to can cause the robotic surgical system 600 to output an alert to the user when the scope has been driven to such positioning.
[0093] As described above, deflection of the scope tip due to passage of the needle through a curve near the tip of the scope can be monitored and compensated for via tension on actuation cables of the scope. As such, in one embodiment the memory can store instructions for (1) monitoring the tension on the cables to detect a scope tip deflection and for (2) determining tension values to apply to compensate for specific scope deflection conditions once detected. For example, once the tip of the scope is in position, the instructions can include monitoring the actuation cables for any change in tension, or for any change above a threshold level. The instructions can further identify specific cables (e.g., cablefs) located along the scope on the inside of a radius of curvature at the scope tip curve) to monitor these specific for an increase in tension, and/or can identify specific cables (e.g., cable(s) located along the scope on the outside of the radius of curvature) to monitor these specific for a decrease in tension. The instructions can also include timing parameters and/or input from a needle navigation system in order to monitor and compensate for such tension changes during a specific timeframe, for example from a time when the distal end of the needle approaches the scope tip through a time during deployment of the needle from the scope. The timing parameters can further specify that the robotic surgical system 600 should not adjust the scope tip curvature to compensate for tension changes during penetration of tissue by the needle 635 in order to maintain a straight, minimally invasive path of the needle 635 into the tissue. The scope deflection detection and compensation can, in some embodiments, be performed by an additional robotic system configured for controlling navigation of the scope in addition to or instead of the system 600 illustrated.
[0094] Although not illustrated, the robotic surgical system 600 can include other components, for example one or more input devices for receiving user input to control motion of surgical instruments (e.g., joysticks, handles, computer mice, trackpads, and gesture detection systems), instrument drivers to effect the motion of the disclosed needles, a display screen, and the like. Though described in the context of a superelastic needle, in other examples the robotic surgical system 600 can be used to control other superelastic medical tools, and can be used and in any type of medical procedures as described herein.
O verview of Example Methods of Use
[0095] Figure 7 depicts a flowchart of an embodiment of a process 700 for obtaining a tissue sample using a needle as described herein, for example, needles 120, 220, 420, 556, 635 described above. The process 700 can be implemented by a human operator manually manipulating the tube secured to the needle, for example by a handle 505 as shown in Figure 5, a robotic control system operator (such as system 600 described above) mechanically manipulating the tube as directed by a human operator or autonomously, or a combination thereof. Although described in the example context of controlling a needle to obtain a tissue sample in bronchoscopy, it will be appreciated that variations of the process 700 can be implemented using other superelastic medical tools and in other types of medical procedures as described herein.
[0096] At block 705, the operator (e.g., a human operator or autonomous surgical robot) can position a jacket 225, 550, 630 containing a needle 120, 220, 420, 556, 635 near a tissue site of a patient e.g., positioned within the reach of a needle or other medical instrument within the jacket. As described above, the needle can be positioned with its distal tip 125, 240, 559 at or near the distal end 235 of the jacket and elongate shaft 110, 210, 554, 640 can extend from the proximal end of the needle through the jacket. The jacket can be inserted through the working channel of an endoscope such as a bronchoscope in some embodiments. The elongate shaft can be coupled to a handle 505 in some embodiments for driving linear motion of the shaft relative to the jacket.
[0097] As described above, in some implementations system 600 may automatically position the endoscope 315 such that, when the needle 220 is extended from the jacket 225 into a pre-identified target tissue site, a proximal portion of the needle, a distal portion of the shaft 210, and a distal portion of the jacket 225 will remain in an overlapping position 305 within the working channel 320 of the endoscope. In some implementations, the system 600 may additionally or alternatively provide guidance for a user of the system 600 regarding maintaining such overlapping positioning. For example, the system 600 can determine that the jacket 225 is positioned within the working channel 320 of the endoscope 315 and can further determine, during or after a drive of the needle 220, that the overlap region 215 between the needle 220 and the shaft 210 is still positioned at least partly within the jacket 225. In another implementation, the sy stem 600 can determine, during or after a drive of the needle 220, that that the overlap region 215 is still positioned at least partly within the working channel 320 of the endoscope 315. Such determinations may be made based on feedback from system 600 in some examples, for example based on robotic position data indicating the distance the needle assembly 200 is feed through the scope 210.
[0098] At block 710, the operator can distally move the shaft 210 coupled to the needle 220 to drive the distal end of the needle 220 to advance through the jacket 225. As described above and shown in the example of Figure 5, this can involve actuation of a rotational modality of the handle, for example by rotational grip 522. Actuation of such a modality can allow the operator to exert fine control over extending the distal tip of the needle out from the distal end of the jacket. In some procedures, this can involve extending the distal tip of the needle until it has pierced patient tissue. In other implementations the tube can be advanced by instrument drivers of a robotic surgical system 600 with or without the use of such a handle. As described above, block 710 can be performed to maintain overlap between a proximal portion of the needle, a distal portion of the tube, and a distal portion of the jacket within the working channel of the endoscope. Such overlap can increase the accuracy of needle deployment by keeping the needle centered relative to the working channel.
[0099] Some implementations may initially perform blocks 705 and/or 710 m a "fast mode" that quickly takes the needle 220 to a predetermined distance from the distal end 325 of the scope 315, and thereafter a human operator may manually control (via a handle 505 or actuation via system 600) further extension of the needle 220. Some implementations may operate in a completely autonomous mode, for example by tracking the position of the needle 220 using a position sensor (e.g., an electromagnetic (EM) sensor on the needle and/or scope disposed within an EM field generated around the tissue site) so that the system 600 can determine the relative position of the needle 220, scope 315, and the tissue site.
[0100] At block 715, the operator can determine that the distal end of the needle is positioned at the target tissue site. In some implementations, a physician may view an image or video of the tissue site via an imaging device at the distal end of an endoscope working channel and may visually confirm that the needle is positioned at or within the target tissue site. For example, this can be accomplished via fluoroscopy and the physician may view the location of the radiopaque material 123, 230, 558 to discern the needle position. In some implementations, the physician may view a rendering or model of the positioning of the instrument relative to the patient tissue site to make this determination, for example as output from a robotic bronchoscopy navigation system. In some embodiments block 715 can be performed programmatically via automated image analysis and/or navigation.
[0101] At block 720, the operator can acquire a tissue sample using the needle. As described above and shown in the example of Figure 5, this can involve a dithering motion actuated by a plunging modality, for example by plunging grip 522. Further, this can involve coupling a source of negative pressure to the proximal end of the tube, for example via fluid fitting 535. [0102] At block 725, the operator can proximally move the tube to withdraw the distal end of the needle back into the jacket, for example via the rotational motion interface, and the jacket can be withdrawn from the patient tissue site. Any obtained sample can be expelled from the instrument for the desired analysis.
Implementing Systems and Terminology
[0103] Implementations disclosed herein provide superelastic needle assemblies and methods of using the same.
[0104] It should be noted that the terms "couple," "coupling," "coupled" or other variations of the word couple as used herein may indicate either an indirect connection or a direct connection. For example, if a first component is "coupled" to a second component, the first component may be either indirectly connected to the second component via another component or directly connected to the second component.
[0105] The robotic motion actuation functions described herein may be stored as one or more instructions on a processor-readable or computer-readable medium. The term "computer-readable medium" refers to any available medium that can be accessed by a computer or processor. By way of example, and not limitation, such a medium may comprise RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. It should be noted that a computer-readable medium may be tangible and non-transitory. As used herein, the term "code" may refer to software, instructions, code or data that is/are executable by a computing device or processor.
[0106] The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is required for proper operation of the method that is being described, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
[0107] As used herein, the term "plurality" denotes two or more. For example, a plurality of components indicates two or more components. The term "determining" encompasses a wide variety of actions and, therefore, "determining" can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, "determining" can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, "determining" can include resolving, selecting, choosing, establishing and the like.
[0108] The phrase "based on" does not mean "based only on," unless expressly specified otherwise. In other words, the phrase "based on" describes both "based only on" and "based at least on."
[0109] The previous description of the disclosed implementations is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the scope of the invention. For example, it will be appreciated that one of ordinary skill in the art will be able to employ a number corresponding alternative and equivalent structural details, such as equivalent ways of fastening, mounting, coupling, or engaging tool components, equivalent mechanisms for producing particular actuation motions, and equivalent mechanisms for delivering electrical energy. Thus, the present invention is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims

WHAT IS CLAIMED IS:
1. A biopsy needle assembly, comprising:
a needle formed from a superelastic alloy, the needle including:
a body portion extending from a distal end of the needle to a proximal end of the needle, and
an inner surface of the needle forming a lumen extending through at least a portion of the body portion to an opening in the distal end, wherein the lumen and the opening are configured to acquire a tissue biopsy; an elongate member attached at the proximal end of the needle; and
a tubular jacket including an interior channel, wherein:
in a first configuration, the distal end of the needle is positioned within the interior channel, and
in a second configuration, in response to distal movement of the elongate member through the interior channel, the distal end of the needle is extended beyond a distal end of the tubular jacket.
2. The assembly of Claim 1, wherein the superelastic alloy comprises Nitinol.
3. The assembly of Claim 1, wherein the needle has a wall thickness of approximately 0.0015 inches thick.
4. The assembly of Claim 1 , further comprising a sharpened tip at the distal end of the needle.
5. The assembly of Claim 4, further comprising a radiopaque material positioned around the needle near the sharpened tip.
6. The assembly of Claim 5, wherein the radiopaque material comprises gold.
7. The assembly of Claim 5, wherein the radiopaque material has a thickness of at least 200 microinches.
8. The assembly of Claim 1, wherein the elongate member comprises a polymer tube reflowed around an overlap region located at the proximal end of the needle.
9. The assembly of Claim 8, wherein the polymer tube comprises a conical section at its distal end prior to or after being reflowed around the overlap region.
10. The assembly of Claim 8, wherein the polymer tube comprises a flexible thermoplastic.
11. The assembly of Claim 8, wherein the needle has a length of approximately 5 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 centimeters.
12. The assembly of Claim 8, wherein the needle has a length of approximately 4 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 centimeters.
13. The assembly of Claim 8, wherein the needle has a length between 1 centimeter and 6 centimeters.
14. The assembly of Claim 8, wherein the overlap region has a length of 0.5 cm to
3 cm.
15. The assembly of Claim 8, wherein a channel formed by an interior surface of the polymer tube is in fluid communication with the lumen to provide pressure through the opening.
16. The assembly of Claim 8, further compnsmg a plurality of surface features formed on the needle at the overlap region, wherein the polymer tube is reflowed around the surface features.
17. The assembly of Claim 16, wherein the plurality of surface features comprise a grit blasted exterior surface of the needle.
18. The assembly of Claim 16, wherein the plurality of surface features comprise laser cut holes each extending through a wall of the needle.
19. The assembly of Claim 8, wherein the overlap region is located at a distal end of the tube.
20. The assembly of Claim 19, wherein the proximal end of the needle includes a first spiral channel or cut, and the distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut.
21. The assembly of Claim 19, wherein the proximal end of the needle and the distal end of the tube are secured at the overlap region by a flexible adhesive.
22. The assembly of Claim 19, wherein the proximal end of the needle and the distal end of the tube are secured at the overlap region by screws.
23. The assembly of Claim 1, wherein the superelastic alloy, in its austenite phase, is in an original shape in which the body portion is straight.
24. The assembly of Claim 1, wherein the superelastic alloy, in its martensite phase, deforms reversibly up to 10% from the original shape.
25. A method of obtaining a tissue biopsy, the method comprising:
positioning a distal end of a working channel of an endoscope adjacent to a desired biopsy site;
advancing a tubular jacket through the working channel, the jacket including a biopsy needle assembly positioned within the jacket, the biopsy needle assembly comprising:
a needle formed from a superelastic alloy, the needle including:
a body portion extending from a distal end of the needle to a proximal end of the needle, and
an inner surface of the needle forming a lumen extending through at least a portion of the body portion to an opening in the distal end, wherein the lumen and the opening are configured to acquire a tissue biopsy; and
an elongate member attached at the proximal end of the needle;
actuating a first linear motion of a proximal end the elongate member to drive extension of at least a portion of the needle out of the jacket into the biopsy site;
acquiring a tissue sample from the biopsy site through the opening of the needle; and actuating a second linear motion of the proximal end the elongate member to drive retraction of the needle out of the biopsy site.
26. The method of Claim 25, further comprising applying a pressure within the lumen to acquire the tissue biopsy.
27. The method of Claim 25, wherein the jacket has a handle coupled to a proximal end of the jacket configured to actuate the first and second linear motions of the proximal end of the elongate member along a longitudinal axis of the handle, the method further comprising actuating the handle to control the extension and the retraction of the needle.
28. The method of Claim 27, further comprising robotically controlling actuation of the handle.
29. The method of Claim 25, wherein the elongate member comprises a polymer tube secured at an overlap region at the proximal end of the needle, the method further comprising:
positioning a distal end of the jacket a predetermined distance from the tissue site, the predetermined distance being less than a length of the needle extending distally beyond the overlap region; and
wherein actuating the first linear motion comprises:
performing a first drive of the needle to extend the needle out of the jacket;
determining that the distal end of the needle is positioned out of the jacket; and
performing a second drive of the needle to extend the needle into the biopsy site.
30. The method of Claim 29, further comprising determining, after the first drive and before the second drive, that the overlap region is still positioned at least partly within the jacket.
31. The method of Claim 29, further comprising determining, after the first drive and before the second drive, that the overlap region is still positioned at least partly within the working channel of the endoscope.
32. The method of Claim 29, wherein performing the second drive comprises alternating extending the needle into the biopsy site and retracting the needle from the biopsy site a plurality of times.
33. The method of Claim 25, further comprising:
viewing the biopsy site using fluoroscopy; and
determining that the distal end of the needle is positioned at the biopsy site by viewing, via the fluoroscopy, a radiopaque material positioned around the needle near the distal end.
34. The method of Claim 25, wherein advancing the tubular jacket through the working channel comprises advancing the needle through a curved portion of the working channel, and wherein advancing the needle through the curved portion reversiblv deforms the needle up to 10% from an original shape of the needle in which the body portion is straight.
35. The method of Claim 34, wherein reversibly deforming the needle comprises causing the superelastic alloy to transition from an austemte phase in which the needle is in the original shape to a martensite state.
36. The method of Claim 35, wherein driving extension of at least the portion of the needle out of the jacket into the biopsy site includes causing at least the portion of the needle to automatically transition back to the austenite phase and revert to the original shape.
37. A robotic needle biopsy system, comprising:
a needle formed from a superelastic material, the needle including an inner surface forming a lumen extending from an opening in a proximal end of the needle through a body portion of the needle to an opening in a distal end of the needle, wherein the lumen and the opening in the distal end are configured to acquire a tissue biopsy;
an elongate member secured at the proximal end of the needle;
a tubular jacket including an interior channel positioned around at least a portion of the needle and the elongate member; and
a control system configured to move the elongate member to drive the needle between a first configuration and a second configuration, wherein in the first configuration the distal end of the needle is positioned within the interior channel of the tubular jacket, and wherem in the second configuration the distal end of the needle is extended beyond a distal end of the tubular jacket.
38. The robotic needle biopsy system of Claim 37, the needle further comprising a sharpened tip at the distal end of the needle.
39. The robotic needle biopsy system of Claim 38, the needle further composing a radiopaque material positioned around the body portion of the needle near the sharpened tip.
40. The robotic needle biopsy system of Claim 39, wherein the radiopaque material comprises a gold pattern.
41. The robotic needle biopsy system of Claim 39, wherein the radiopaque material has a thickness ranging from approximately 200 to approximately 1000 microinches.
42. The robotic needle biopsy system of Claim 37, wherein the elongate member comprises a polymer tube secured around an overlap region located at the proximal end of the needle.
43. The robotic needle biopsy system of Claim 42, wherein the polymer tube comprises a flexible thermoplastic refiowed around the overlap region.
44. The robotic needle biopsy system of Claim 43, wherein the needle has a length of approximately 5 cm from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 cm.
45. The robotic needle biopsy system of Claim 44, wherein the robotic system is configured to advance the distal end of the needle up to 3 cm beyond the distal end of the tubular jacket in the second configuration.
46. The robotic needle biopsy system of Claim 42, wherein the needle has a length of approximately 4 cm from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 cm.
47. The robotic needle biopsy system of Claim 46, wherein the robotic system is configured to advance the distal end of the needle up to2 cm beyond the distal end of the tubular jacket in the second configuration.
48. The robotic needle biopsy system of Claim 42, wherein the needle has a length between 1 centimeter and 6 centimeters.
49. The robotic needle biopsy system of Claim 42, wherein the overlap region has a length of 0.5 cm to 3 cm.
50. The robotic needle biopsy system of Claim 42, further comprising a source of pressure coupled to a proximal end of the polymer tube, wherein the robotic system is configured to provide the pressure through the opening at the distal end of the needle via a channel formed by an interior surface of the polymer tube in fluid communication with the lumen of the needle.
51. The robotic needle biopsy system of Claim 42, wherein the proximal end of the needle includes a first spiral channel or cut, and a distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut.
52. The robotic needle biopsy system of Claim 42, wherein the proximal end of the needle and a distal end of the tube are secured at the overlap region by a flexible adhesive.
53. The robotic needle biopsy system of Claim 42, wherein the proximal end of the needle and a distal end of the tube are secured at the o verlap region by screws.
54. The robotic needle biopsy system of Claim 42, the needle further comprising a plurality of surface features formed at the overlap region, wherein the polymer tube is ref lowed around the surface features.
55. The robotic needle biopsy system of Claim 54, wherein the plurality of surface features comprise a grit blasted exterior surface of the needle.
56. The robotic needle biopsy system of Claim 54, wherein the plurality of surface features comprise laser cut holes each extending through a wall of the needle.
57. The robotic needle biopsy system of Claim 37, wherein the needle has a wall thickness of approximately 0.0015 inches thick.
58. The robotic needle biopsy system of Claim 37, wherein the control system comprises a computer- readable memory storing instructions and one or more processors configured by the instructions to drive the needle between the first configuration and the second configuration.
59. The robotic needle biopsy system of Claim 37, further comprising an endoscope including a working channel, wherein the jacket is positioned at least partly within the working channel
60. The robotic needle biopsy system of Claim 59, the endoscope comprising at least one actuation cable, wherein the control system is further configured to:
detect a change in tension on the at least one actuation cable;
identify a deflection condition at a distal tip of the endoscope due to passage of the needle through a curved portion of the working channel near the distal tip of the endoscope; and
adjust the tension on the at least one actuation cable to compensate for the deflection condition.
61. A medical instrument assembly, comprising:
a medical instrument extending from a proximal end to a distal end and including a superelastic shaft formed from a superelastic alloy, the superelastic shaft extending from the distal end of the medical instrument at least partway to the proximal end; an elongate member attached at the proximal end of the medical instrument; and a tubular jacket including an interior channel, wherein:
in a first configuration, the distal end of the medical instrument is positioned within the interior channel, and
in a second configuration, in response to distal movement of the elongate member through the interior channel, the distal end of the medical instrument is medical instrument beyond a distal end of the tubular jacket.
62. The assembly of Claim 61, wherein the superelastic material comprises
Nitinol.
63. The assembly of Claim 61, wherein the medical instrument comprises a brush at the distal end.
64. The assembly of Claim 61, further comprising a radiopaque material positioned around the superelastic shaft near the distal end of the medical instrument.
65. The assembly of Claim 64, wherein the radiopaque material comprises a gold band.
66. The assembly of Claim 64, wherein the radiopaque material has a thickness of at least 200 microinches.
67. The assembly of Claim 61, wherein the elongate member comprises a polymer tube reflowed around an o verlap region located at the proximal end of the superelastic shaft.
68. The assembly of Claim 67, wherein the polymer tube comprises a conical section at its distal end prior to or after being reflowed around the overlap region.
69. The assembly of Claim 67, wherein the polymer tube comprises a flexible thermoplastic.
70. The assembly of Claim 67, wherein the superelastic shaft has a length of approximately 5 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 2 centimeters.
71. The assembly of Claim 67, wherein the superelastic shaft has a length of approximately 4 centimeters from the distal end to the proximal end, and wherein the overlap region has a length of approximately 1 centimeters.
72. The assembly of Claim 67, wherein the superelastic shaft has a length between 1 centimeter and 6 centimeters.
73. The assembly of Claim 67, wherein the overlap region has a length of 0.5 cm to 3 cm.
74. The assembly of Claim 67, further comprising a plurality of surface features formed on the superelastic shaft at the overlap region, wherein the polymer tube is reflowed around the surface features.
75. The assembly of Claim 74, wherein the plurality of surface features comprise a grit blasted exterior surface of the superelastic shaft.
76. The assembly of Claim 74, wherein the plurality of surface features comprise laser cut holes each extending through a wall of the superelastic shaft.
77. The assembly of Claim 61, wherein the superelastic shaft is tubular.
78. The assembly of Claim 61, wherein the elongate member comprises a polymer tube secured around an overlap region located at the proximal end of the superelastic shaft and a distal end of the tube.
79. The assembly of Claim 78, wherein the proximal end of the superelastic shaft includes a first spiral channel or cut, and the distal end of the tube includes a second spiral channel or cut structured to mechanically mate with the first spiral channel or cut.
80. The assembly of Claim 78, wherein the proximal end of the superelastic shaft and the distal end of the tube are secured at the overlap region by a flexible adhesive.
81. The assembly of Claim 78, wherein the proximal end of the superelastic shaft and the distal end of the tube are secured at the overlap region by screws.
82. A medical device, comprising:
a medical instrument extending from a proximal end to a distal end and including a superelastic shaft formed from a superelastic alloy, the superelastic shaft extending from the distal end of the medical instrument at least partway to the proximal end;
an elongate member attached at the proximal end of the medical instrument;
a tubular jacket including an interior channel, wherein:
in a first configuration, the distal end of the medical instrument is positioned within the interior channel, and
in a second configuration, in response to distal movement of the elongate member through the interior channel, the distal end of the medical instrument is medical instrument beyond a distal end of the tubular jacket; and a handle including:
a distal end coupled to a proximal end of the jacket,
an internal drive member coupled to a proximal end of the elongate member,
a movable grip, and
at least one motion transmitting interface configured to actuate the distal movement of the elongate member through the interior channel in response to user movement of the movable grip.
The device of Claim 82, wherein the superelastic material comprises Nitinol.
84. The device of Claim 82, wherein the medical instrument comprises a brush at the distal end.
85. The device of Claim 82, wherein the medical instrument comprises a needle including an inner surface forming a lumen extending from an opening in a proximal end of the needle through a body portion of the needle to an opening in a distal end of the needle, wherein the lumen and the opening in the distal end are configured to acquire a tissue biopsy.
PCT/US2018/026109 2017-04-07 2018-04-04 Superelastic medical instrument WO2018187488A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880030350.9A CN110602994B (en) 2017-04-07 2018-04-04 Super-elastic medical instrument
KR1020197032921A KR102636777B1 (en) 2017-04-07 2018-04-04 SUPERELASTIC MEDICAL INSTRUMENT
EP18780650.0A EP3606439A4 (en) 2017-04-07 2018-04-04 Superelastic medical instrument
JP2019554590A JP7167054B2 (en) 2017-04-07 2018-04-04 Superelastic medical device
AU2018248440A AU2018248440A1 (en) 2017-04-07 2018-04-04 Superelastic medical instrument

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762483131P 2017-04-07 2017-04-07
US62/483,131 2017-04-07
US15/944,566 US10285574B2 (en) 2017-04-07 2018-04-03 Superelastic medical instrument
US15/944,566 2018-04-03

Publications (1)

Publication Number Publication Date
WO2018187488A1 true WO2018187488A1 (en) 2018-10-11

Family

ID=63710477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/026109 WO2018187488A1 (en) 2017-04-07 2018-04-04 Superelastic medical instrument

Country Status (7)

Country Link
US (3) US10285574B2 (en)
EP (1) EP3606439A4 (en)
JP (1) JP7167054B2 (en)
KR (1) KR102636777B1 (en)
CN (1) CN110602994B (en)
AU (1) AU2018248440A1 (en)
WO (1) WO2018187488A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246672B2 (en) 2019-08-15 2022-02-15 Auris Health, Inc. Axial motion drive devices, systems, and methods for a robotic medical system

Families Citing this family (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
WO2005087128A1 (en) 2004-03-05 2005-09-22 Hansen Medical, Inc. Robotic catheter system
EP1906858B1 (en) 2005-07-01 2016-11-16 Hansen Medical, Inc. Robotic catheter system
US20220096112A1 (en) 2007-01-02 2022-03-31 Aquabeam, Llc Tissue resection with pressure sensing
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
ES2769535T3 (en) 2008-03-06 2020-06-26 Aquabeam Llc Tissue ablation and cauterization with optical energy carried in a fluid stream
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US8672837B2 (en) 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US20120191107A1 (en) 2010-09-17 2012-07-26 Tanner Neal A Systems and methods for positioning an elongate member inside a body
US20120191086A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
CN104203078B (en) 2012-02-29 2018-04-20 普罗赛普特生物机器人公司 The cutting tissue of automated image guiding and processing
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
US9668814B2 (en) 2013-03-07 2017-06-06 Hansen Medical, Inc. Infinitely rotatable tool with finite rotating drive shafts
US10149720B2 (en) 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9566414B2 (en) 2013-03-13 2017-02-14 Hansen Medical, Inc. Integrated catheter and guide wire controller
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US9173713B2 (en) 2013-03-14 2015-11-03 Hansen Medical, Inc. Torque-based catheter articulation
US11213363B2 (en) 2013-03-14 2022-01-04 Auris Health, Inc. Catheter tension sensing
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US9629595B2 (en) 2013-03-15 2017-04-25 Hansen Medical, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US10849702B2 (en) 2013-03-15 2020-12-01 Auris Health, Inc. User input devices for controlling manipulation of guidewires and catheters
US9283046B2 (en) 2013-03-15 2016-03-15 Hansen Medical, Inc. User interface for active drive apparatus with finite range of motion
US10376672B2 (en) 2013-03-15 2019-08-13 Auris Health, Inc. Catheter insertion system and method of fabrication
US9452018B2 (en) 2013-03-15 2016-09-27 Hansen Medical, Inc. Rotational support for an elongate member
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US20140276647A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Vascular remote catheter manipulator
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
WO2014201165A1 (en) 2013-06-11 2014-12-18 Auris Surgical Robotics, Inc. System for robotic assisted cataract surgery
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
CN105939647B (en) 2013-10-24 2020-01-21 奥瑞斯健康公司 Robotically-assisted endoluminal surgical systems and related methods
EP3243476B1 (en) 2014-03-24 2019-11-06 Auris Health, Inc. Systems and devices for catheter driving instinctiveness
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
US10569052B2 (en) 2014-05-15 2020-02-25 Auris Health, Inc. Anti-buckling mechanisms for catheters
US9744335B2 (en) 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
JP6689832B2 (en) 2014-09-30 2020-04-28 オーリス ヘルス インコーポレイテッド Configurable robotic surgery system with provisional trajectory and flexible endoscope
US10499999B2 (en) 2014-10-09 2019-12-10 Auris Health, Inc. Systems and methods for aligning an elongate member with an access site
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
US11819636B2 (en) 2015-03-30 2023-11-21 Auris Health, Inc. Endoscope pull wire electrical circuit
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
WO2016164824A1 (en) 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
US9622827B2 (en) 2015-05-15 2017-04-18 Auris Surgical Robotics, Inc. Surgical robotics system
CN113229942A (en) 2015-09-09 2021-08-10 奥瑞斯健康公司 Surgical instrument device manipulator
AU2016323982A1 (en) 2015-09-18 2018-04-12 Auris Health, Inc. Navigation of tubular networks
US10575754B2 (en) 2015-09-23 2020-03-03 Covidien Lp Catheter having a sensor and an extended working channel
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US10932861B2 (en) 2016-01-14 2021-03-02 Auris Health, Inc. Electromagnetic tracking surgical system and method of controlling the same
US10932691B2 (en) 2016-01-26 2021-03-02 Auris Health, Inc. Surgical tools having electromagnetic tracking components
US11324554B2 (en) 2016-04-08 2022-05-10 Auris Health, Inc. Floating electromagnetic field generator system and method of controlling the same
US10454347B2 (en) 2016-04-29 2019-10-22 Auris Health, Inc. Compact height torque sensing articulation axis assembly
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
AU2016422171B2 (en) 2016-08-31 2022-01-20 Auris Health, Inc. Length conservative surgical instrument
US9931025B1 (en) * 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10136959B2 (en) 2016-12-28 2018-11-27 Auris Health, Inc. Endolumenal object sizing
US10543048B2 (en) 2016-12-28 2020-01-28 Auris Health, Inc. Flexible instrument insertion using an adaptive insertion force threshold
US11529190B2 (en) 2017-01-30 2022-12-20 Covidien Lp Enhanced ablation and visualization techniques for percutaneous surgical procedures
JP7159192B2 (en) 2017-03-28 2022-10-24 オーリス ヘルス インコーポレイテッド shaft actuation handle
AU2018243364B2 (en) 2017-03-31 2023-10-05 Auris Health, Inc. Robotic systems for navigation of luminal networks that compensate for physiological noise
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
CN110602976B (en) 2017-04-07 2022-11-15 奥瑞斯健康公司 Patient introducer alignment
CN110831498B (en) 2017-05-12 2022-08-12 奥瑞斯健康公司 Biopsy device and system
CN110769736B (en) 2017-05-17 2023-01-13 奥瑞斯健康公司 Replaceable working channel
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
EP3644886A4 (en) 2017-06-28 2021-03-24 Auris Health, Inc. Electromagnetic distortion detection
CN110809452B (en) 2017-06-28 2023-05-23 奥瑞斯健康公司 Electromagnetic field generator alignment
KR102341451B1 (en) 2017-06-28 2021-12-23 아우리스 헬스, 인코포레이티드 Robot system, method and non-trnasitory computer readable storage medium for instrument insertion compensation
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10464209B2 (en) 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
WO2019113249A1 (en) 2017-12-06 2019-06-13 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll
WO2019113391A1 (en) 2017-12-08 2019-06-13 Auris Health, Inc. System and method for medical instrument navigation and targeting
US10850013B2 (en) 2017-12-08 2020-12-01 Auris Health, Inc. Directed fluidics
EP3723655A4 (en) 2017-12-11 2021-09-08 Auris Health, Inc. Systems and methods for instrument based insertion architectures
CN110869173B (en) 2017-12-14 2023-11-17 奥瑞斯健康公司 System and method for estimating instrument positioning
US11160615B2 (en) 2017-12-18 2021-11-02 Auris Health, Inc. Methods and systems for instrument tracking and navigation within luminal networks
USD873878S1 (en) 2018-01-17 2020-01-28 Auris Health, Inc. Robotic arm
USD901694S1 (en) 2018-01-17 2020-11-10 Auris Health, Inc. Instrument handle
USD901018S1 (en) 2018-01-17 2020-11-03 Auris Health, Inc. Controller
EP3740150A4 (en) 2018-01-17 2021-11-03 Auris Health, Inc. Surgical robotics systems with improved robotic arms
USD932628S1 (en) 2018-01-17 2021-10-05 Auris Health, Inc. Instrument cart
JP6999824B2 (en) 2018-01-17 2022-01-19 オーリス ヘルス インコーポレイテッド Surgical platform with adjustable arm support
USD924410S1 (en) 2018-01-17 2021-07-06 Auris Health, Inc. Instrument tower
CN110891514B (en) 2018-02-13 2023-01-20 奥瑞斯健康公司 System and method for driving a medical instrument
EP3773135B1 (en) 2018-03-28 2024-02-14 Auris Health, Inc. Medical instruments with variable bending stiffness profiles
KR102489198B1 (en) 2018-03-28 2023-01-18 아우리스 헬스, 인코포레이티드 Systems and Methods for Matching Position Sensors
CN110913791B (en) 2018-03-28 2021-10-08 奥瑞斯健康公司 System and method for displaying estimated instrument positioning
US10872449B2 (en) 2018-05-02 2020-12-22 Covidien Lp System and method for constructing virtual radial ultrasound images from CT data and performing a surgical navigation procedure using virtual ultrasound images
EP3793465A4 (en) 2018-05-18 2022-03-02 Auris Health, Inc. Controllers for robotically-enabled teleoperated systems
JP7250824B2 (en) 2018-05-30 2023-04-03 オーリス ヘルス インコーポレイテッド Systems and methods for location sensor-based branch prediction
JP7146949B2 (en) 2018-05-31 2022-10-04 オーリス ヘルス インコーポレイテッド Image-based airway analysis and mapping
EP3801280B1 (en) 2018-05-31 2024-10-02 Auris Health, Inc. Robotic systems for navigation of luminal network that detect physiological noise
EP3801189B1 (en) 2018-05-31 2024-09-11 Auris Health, Inc. Path-based navigation of tubular networks
CN112218596A (en) 2018-06-07 2021-01-12 奥瑞斯健康公司 Robotic medical system with high-force instruments
JP7366943B2 (en) 2018-06-27 2023-10-23 オーリス ヘルス インコーポレイテッド Alignment and mounting system for medical devices
US10667875B2 (en) 2018-06-27 2020-06-02 Auris Health, Inc. Systems and techniques for providing multiple perspectives during medical procedures
JP7391886B2 (en) 2018-06-28 2023-12-05 オーリス ヘルス インコーポレイテッド Medical system incorporating pulley sharing
US11071591B2 (en) 2018-07-26 2021-07-27 Covidien Lp Modeling a collapsed lung using CT data
US10898276B2 (en) 2018-08-07 2021-01-26 Auris Health, Inc. Combining strain-based shape sensing with catheter control
WO2020036685A1 (en) 2018-08-15 2020-02-20 Auris Health, Inc. Medical instruments for tissue cauterization
EP3806758A4 (en) 2018-08-17 2022-04-06 Auris Health, Inc. Bipolar medical instrument
US10881280B2 (en) 2018-08-24 2021-01-05 Auris Health, Inc. Manually and robotically controllable medical instruments
US11197728B2 (en) 2018-09-17 2021-12-14 Auris Health, Inc. Systems and methods for concomitant medical procedures
WO2020068853A2 (en) 2018-09-26 2020-04-02 Auris Health, Inc. Articulating medical instruments
WO2020068303A1 (en) 2018-09-26 2020-04-02 Auris Health, Inc. Systems and instruments for suction and irrigation
US12076100B2 (en) 2018-09-28 2024-09-03 Auris Health, Inc. Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures
CN112770690A (en) 2018-09-28 2021-05-07 奥瑞斯健康公司 System and method for docking medical instruments
WO2020069080A1 (en) 2018-09-28 2020-04-02 Auris Health, Inc. Devices, systems, and methods for manually and robotically driving medical instruments
US11576738B2 (en) 2018-10-08 2023-02-14 Auris Health, Inc. Systems and instruments for tissue sealing
US11950863B2 (en) 2018-12-20 2024-04-09 Auris Health, Inc Shielding for wristed instruments
US11254009B2 (en) 2018-12-20 2022-02-22 Auris Health, Inc. Systems and methods for robotic arm alignment and docking
US11986257B2 (en) 2018-12-28 2024-05-21 Auris Health, Inc. Medical instrument with articulable segment
KR20210111259A (en) 2018-12-28 2021-09-10 아우리스 헬스, 인코포레이티드 Transdermal sheaths for robotic medical systems and methods
CN113347938A (en) 2019-01-25 2021-09-03 奥瑞斯健康公司 Vascular sealer with heating and cooling capabilities
WO2020163076A1 (en) 2019-02-08 2020-08-13 Auris Health, Inc. Robotically controlled clot manipulation and removal
CN113453642A (en) 2019-02-22 2021-09-28 奥瑞斯健康公司 Surgical platform having motorized arms for adjustable arm supports
US10945904B2 (en) 2019-03-08 2021-03-16 Auris Health, Inc. Tilt mechanisms for medical systems and applications
WO2020197671A1 (en) 2019-03-22 2020-10-01 Auris Health, Inc. Systems and methods for aligning inputs on medical instruments
CN113613566B (en) 2019-03-25 2024-10-11 奥瑞斯健康公司 System and method for medical suturing
US11617627B2 (en) 2019-03-29 2023-04-04 Auris Health, Inc. Systems and methods for optical strain sensing in medical instruments
KR20210149805A (en) 2019-04-08 2021-12-09 아우리스 헬스, 인코포레이티드 Systems, Methods, and Workflows for Concurrent Procedures
US11975157B2 (en) 2019-04-12 2024-05-07 Covidien Lp Method of manufacturing an elongated catheter having multiple sensors for three-dimensional location of the catheter
WO2020263520A1 (en) 2019-06-26 2020-12-30 Auris Health, Inc. Systems and methods for robotic arm alignment and docking
US11369386B2 (en) 2019-06-27 2022-06-28 Auris Health, Inc. Systems and methods for a medical clip applier
CN114040727A (en) 2019-06-28 2022-02-11 奥瑞斯健康公司 Medical instrument including a wrist with hybrid redirecting surfaces
EP3989793A4 (en) 2019-06-28 2023-07-19 Auris Health, Inc. Console overlay and methods of using same
US11717147B2 (en) 2019-08-15 2023-08-08 Auris Health, Inc. Medical device having multiple bending sections
USD978348S1 (en) 2019-08-15 2023-02-14 Auris Health, Inc. Drive device for a medical instrument
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
USD975275S1 (en) 2019-08-15 2023-01-10 Auris Health, Inc. Handle for a medical instrument
JP7451686B2 (en) 2019-08-30 2024-03-18 オーリス ヘルス インコーポレイテッド Instrument image reliability system and method
KR20220058569A (en) 2019-08-30 2022-05-09 아우리스 헬스, 인코포레이티드 System and method for weight-based registration of position sensors
JP7494290B2 (en) 2019-09-03 2024-06-03 オーリス ヘルス インコーポレイテッド Electromagnetic Distortion Detection and Compensation
EP4028221A1 (en) 2019-09-10 2022-07-20 Auris Health, Inc. Systems and methods for kinematic optimization with shared robotic degrees-of-freedom
EP4034349A1 (en) 2019-09-26 2022-08-03 Auris Health, Inc. Systems and methods for collision detection and avoidance
WO2021064536A1 (en) 2019-09-30 2021-04-08 Auris Health, Inc. Medical instrument with capstan
US10945553B1 (en) * 2019-10-04 2021-03-16 Gregory A. Fletcher, Sr. Device and method for measuring and dispensing customizable amounts of material
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
US20230225596A1 (en) * 2019-12-09 2023-07-20 Nitesh Ratnakar Shape memory endoscope insertion tube sheath
KR20220123544A (en) * 2019-12-30 2022-09-07 아우리스 헬스, 인코포레이티드 Sample Collector for Robotic Medical Systems
WO2021137081A1 (en) * 2019-12-30 2021-07-08 Auris Health, Inc. Medical instrument with shaft actuating handle configured to accept stylet
EP4084717A4 (en) 2019-12-31 2024-02-14 Auris Health, Inc. Dynamic pulley system
CN118383870A (en) 2019-12-31 2024-07-26 奥瑞斯健康公司 Alignment interface for percutaneous access
WO2021137109A1 (en) 2019-12-31 2021-07-08 Auris Health, Inc. Alignment techniques for percutaneous access
JP2023508718A (en) 2019-12-31 2023-03-03 オーリス ヘルス インコーポレイテッド Advanced basket drive mode
EP4084721A4 (en) 2019-12-31 2024-01-03 Auris Health, Inc. Anatomical feature identification and targeting
WO2021202589A1 (en) 2020-03-30 2021-10-07 Bard Access Systems, Inc. Optical and electrical diagnostic systems and methods thereof
US12064191B2 (en) 2020-06-03 2024-08-20 Covidien Lp Surgical tool navigation using sensor fusion
US11701492B2 (en) 2020-06-04 2023-07-18 Covidien Lp Active distal tip drive
WO2022003485A1 (en) 2020-06-29 2022-01-06 Auris Health, Inc. Systems and methods for detecting contact between a link and an external object
US11931901B2 (en) 2020-06-30 2024-03-19 Auris Health, Inc. Robotic medical system with collision proximity indicators
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
US11020099B1 (en) * 2020-07-01 2021-06-01 Verix Health, Inc. Lung access device
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
CN113079287B (en) * 2021-02-09 2022-08-30 中国人民解放军海军军医大学第一附属医院 Interventional medical device system
CN113440231B (en) * 2021-09-01 2021-12-21 中国医学科学院北京协和医院 Ultrasonic puncture instrument capable of rotating for sampling
US12089815B2 (en) * 2022-03-17 2024-09-17 Bard Access Systems, Inc. Fiber optic medical systems and devices with atraumatic tip

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040681A1 (en) * 1999-03-09 2003-02-27 Advance Sentry Corporation Biopsy apparatus and method of obtaining biopsy sample
US20060189891A1 (en) 2004-12-15 2006-08-24 Irving Waxman Flexible elongate surgical needle device having a tissue engaging section being of greater flexibility than an intermediate section, and methods of using the device
US20100081965A1 (en) 2008-10-01 2010-04-01 John Mugan Needle biopsy device
US20130225997A1 (en) * 2012-02-28 2013-08-29 Spiration, Inc. Lung biopsy needle
US20150201917A1 (en) * 2014-01-17 2015-07-23 Merit Medical Systems, Inc. Flush cut biopsy needle assembly and method of use
WO2015153174A1 (en) 2014-04-02 2015-10-08 Intuitive Surgical Operations, Inc. Devices, systems, and methods using a steerable stylet and flexible needle
US9345456B2 (en) * 2004-03-24 2016-05-24 Devicor Medical Products, Inc. Biopsy device
US20170071584A1 (en) 2014-06-04 2017-03-16 Olympus Corporation Joining structure and biopsy needle

Family Cites Families (345)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763860A (en) 1971-08-26 1973-10-09 H Clarke Laparoscopy instruments and method for suturing and ligation
US4040413A (en) 1974-07-18 1977-08-09 Fuji Photo Optical Co. Ltd. Endoscope
JPS5394515A (en) 1977-01-31 1978-08-18 Kubota Ltd Method of producing glass fiber reinforced cement plate
US4470407A (en) 1982-03-11 1984-09-11 Laserscope, Inc. Endoscopic device
US4532935A (en) 1982-11-01 1985-08-06 Wang Ko P Bronchoscopic needle assembly
US4685458A (en) 1984-03-01 1987-08-11 Vaser, Inc. Angioplasty catheter and method for use thereof
US4747405A (en) 1984-03-01 1988-05-31 Vaser, Inc. Angioplasty catheter
DE3715418A1 (en) 1986-05-08 1987-11-12 Olympus Optical Co LITHOTOM
US5029574A (en) 1988-04-14 1991-07-09 Okamoto Industries, Inc. Endoscopic balloon with a protective film thereon
DE68917895T2 (en) 1988-06-06 1995-02-02 Sumitomo Electric Industries CATHETER.
US5344395A (en) 1989-11-13 1994-09-06 Scimed Life Systems, Inc. Apparatus for intravascular cavitation or delivery of low frequency mechanical energy
US4983165A (en) 1990-01-23 1991-01-08 Loiterman David A Guidance system for vascular catheter or the like
DE9001262U1 (en) 1990-02-05 1990-08-09 Martin, Werner, 7207 Rietheim-Weilheim Surgical needle holder for an endo-suture, endo-ligature or similar.
US5345927A (en) 1990-03-02 1994-09-13 Bonutti Peter M Arthroscopic retractors
CA2048120A1 (en) 1990-08-06 1992-02-07 William J. Drasler Thrombectomy method and device
US5496267A (en) 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
US5085659A (en) 1990-11-21 1992-02-04 Everest Medical Corporation Biopsy device with bipolar coagulation capability
JPH05208014A (en) 1991-04-10 1993-08-20 Olympus Optical Co Ltd Treating tool
WO1992021292A2 (en) 1991-05-29 1992-12-10 Origin Medsystems, Inc. Retraction apparatus and methods for endoscopic surgery
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5269797A (en) 1991-09-12 1993-12-14 Meditron Devices, Inc. Cervical discectomy instruments
US5449356A (en) 1991-10-18 1995-09-12 Birtcher Medical Systems, Inc. Multifunctional probe for minimally invasive surgery
US5217001A (en) 1991-12-09 1993-06-08 Nakao Naomi L Endoscope sheath and related method
US5217465A (en) 1992-02-28 1993-06-08 Alcon Surgical, Inc. Flexible and steerable aspiration tip for microsurgery
US5318589A (en) 1992-04-15 1994-06-07 Microsurge, Inc. Surgical instrument for endoscopic surgery
US5325848A (en) 1992-09-10 1994-07-05 Ethicon, Inc. Endoscopic tissue manipulator with expandable frame
US5545170A (en) 1992-10-09 1996-08-13 Innovasive Devices, Inc. Surgical instrument
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
DE69434185T2 (en) 1993-06-10 2005-06-02 Imran, Mir A., Los Altos Hills URETHRAL DEVICE FOR ABLATION BY HIGH FREQUENCY
US5792165A (en) 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
US5431649A (en) 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US5645083A (en) 1994-02-10 1997-07-08 Essig; Mitchell N. Peritoneal surgical method
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5441485A (en) 1994-02-24 1995-08-15 Peters; Michael J. Bladder catheter
US5501667A (en) 1994-03-15 1996-03-26 Cordis Corporation Perfusion balloon and method of use and manufacture
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5573535A (en) 1994-09-23 1996-11-12 United States Surgical Corporation Bipolar surgical instrument for coagulation and cutting
US5613973A (en) 1995-03-10 1997-03-25 Wilson Greatbatch Ltd. Laraposcopic surgical grasper having an attachable strap
US5562648A (en) 1995-03-31 1996-10-08 E. I. Du Pont De Nemours And Company Adult incontinent absorbent undergarment
US5697949A (en) 1995-05-18 1997-12-16 Symbiosis Corporation Small diameter endoscopic instruments
US5562678A (en) 1995-06-02 1996-10-08 Cook Pacemaker Corporation Needle's eye snare
US5710870A (en) 1995-09-07 1998-01-20 California Institute Of Technology Decoupled six degree-of-freedom robot manipulator
US5989230A (en) 1996-01-11 1999-11-23 Essex Technology, Inc. Rotate to advance catheterization system
US5624398A (en) 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
EP0848598B1 (en) 1996-05-10 2005-02-23 Emmanuil Giannadakis System of laparoscopic-endoscopic surgery
US5797900A (en) 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5658311A (en) 1996-07-05 1997-08-19 Schneider (Usa) Inc. High pressure expander bundle for large diameter stent deployment
US5788667A (en) 1996-07-19 1998-08-04 Stoller; Glenn Fluid jet vitrectomy device and method for use
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US5810770A (en) 1996-12-13 1998-09-22 Stryker Corporation Fluid management pump system for surgical procedures
US5893869A (en) 1997-02-19 1999-04-13 University Of Iowa Research Foundation Retrievable inferior vena cava filter system and method for use thereof
US5924175A (en) 1997-04-29 1999-07-20 Lippitt; Robert G. Annularly expanding and retracting gripping and releasing mechanism
US6156030A (en) 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
US6174318B1 (en) 1998-04-23 2001-01-16 Scimed Life Systems, Inc. Basket with one or more moveable legs
US6071281A (en) 1998-05-05 2000-06-06 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US6093157A (en) * 1997-10-22 2000-07-25 Scimed Life Systems, Inc. Radiopaque guide wire
US6120476A (en) 1997-12-01 2000-09-19 Cordis Webster, Inc. Irrigated tip catheter
RU2130762C1 (en) 1997-12-10 1999-05-27 Федоров Святослав Николаевич Device for performing ophthalmosurgical operations
US6120498A (en) 1998-03-05 2000-09-19 Jani; Mahendra G. Aspirating handpieces for laser surgical operations
FR2779934B1 (en) 1998-06-17 2001-01-05 Saphir Medical Sa PNEUMATICALLY CONTROLLED HANDPIECE FOR SURGICAL AND MEDICAL APPLICATIONS
US6398726B1 (en) 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6522906B1 (en) 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
DE19859434C2 (en) 1998-12-22 2001-03-08 Bruker Optik Gmbh IR spectroscopic endoscope with inflatable balloon
US6405078B1 (en) 1999-01-15 2002-06-11 Biosense Webster, Inc. Porous irrigated tip electrode catheter
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6183435B1 (en) 1999-03-22 2001-02-06 Cordis Webster, Inc. Multi-directional steerable catheters and control handles
US6911026B1 (en) 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US6375635B1 (en) 1999-05-18 2002-04-23 Hydrocision, Inc. Fluid jet surgical instruments
US6206903B1 (en) 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US6491691B1 (en) 1999-10-08 2002-12-10 Intuitive Surgical, Inc. Minimally invasive surgical hook apparatus and method for using same
US6440061B1 (en) 2000-03-24 2002-08-27 Donald E. Wenner Laparoscopic instrument system for real-time biliary exploration and stone removal
ES2365208T3 (en) 2000-07-24 2011-09-26 Jeffrey Grayzel CATHETER WITH RIGIDIZED BALLOON FOR DILATATION AND IMPLEMENTATION OF ENDOVASCULAR PROSTHESIS.
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
US20030158545A1 (en) 2000-09-28 2003-08-21 Arthrocare Corporation Methods and apparatus for treating back pain
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
WO2002056805A2 (en) 2001-01-18 2002-07-25 The Regents Of The University Of California Minimally invasive glaucoma surgical instrument and method
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
JP4588906B2 (en) 2001-03-13 2010-12-01 オリンパス株式会社 Endoscope collection tool
US20030004455A1 (en) 2001-06-28 2003-01-02 Kadziauskas Kenneth E. Bi-manual phaco needle
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US7208005B2 (en) 2001-08-06 2007-04-24 The Penn State Research Foundation Multifunctional tool and method for minimally invasive surgery
US20030208189A1 (en) 2001-10-19 2003-11-06 Payman Gholam A. Integrated system for correction of vision of the human eye
US6676668B2 (en) 2001-12-12 2004-01-13 C.R. Baed Articulating stone basket
US6652537B2 (en) 2001-12-12 2003-11-25 C. R. Bard, Inc. Articulating stone basket
CA2479349C (en) 2002-03-19 2012-07-03 Bard Dublin Itc Limited Biopsy device and biopsy needle module that can be inserted into the biopsy device
US20040158261A1 (en) 2002-05-15 2004-08-12 Vu Dinh Q. Endoscopic device for spill-proof laparoscopic ovarian cystectomy
US8956280B2 (en) 2002-05-30 2015-02-17 Intuitive Surgical Operations, Inc. Apparatus and methods for placing leads using direct visualization
EP1531749A2 (en) 2002-08-13 2005-05-25 Microbotics Corporation Microsurgical robot system
US20040176751A1 (en) 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
US20040186349A1 (en) 2002-12-24 2004-09-23 Usgi Medical Corp. Apparatus and methods for achieving endoluminal access
US6984232B2 (en) 2003-01-17 2006-01-10 St. Jude Medical, Daig Division, Inc. Ablation catheter assembly having a virtual electrode comprising portholes
US20040153093A1 (en) 2003-01-31 2004-08-05 Advanced Medical Optics, Inc. Bi-manual phacoemulsification apparatus and method
US7559934B2 (en) 2003-04-07 2009-07-14 Scimed Life Systems, Inc. Beaded basket retrieval device
US7122003B2 (en) 2003-04-16 2006-10-17 Granit Medical Innovations, Llc Endoscopic retractor instrument and associated method
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US8403828B2 (en) 2003-07-21 2013-03-26 Vanderbilt University Ophthalmic orbital surgery apparatus and method and image-guide navigation system
US20050159645A1 (en) 2003-11-12 2005-07-21 Bertolero Arthur A. Balloon catheter sheath
ITPI20030107A1 (en) 2003-11-14 2005-05-15 Massimo Bergamasco DEVICE FOR PERFORMING OPERATIONS
CA2555314C (en) 2004-02-09 2016-02-02 Smart Medical Systems Ltd. Endoscope assembly
WO2005086874A2 (en) 2004-03-11 2005-09-22 Medrad, Inc. Energy assisted medical devices, systems and methods
JP4638683B2 (en) 2004-03-25 2011-02-23 テルモ株式会社 Intravascular foreign body removal aspiration catheter
US20050261705A1 (en) 2004-05-21 2005-11-24 Gist Christopher W Device to remove kidney stones
DE102004040959B4 (en) 2004-08-24 2008-12-24 Erbe Elektromedizin Gmbh Surgical instrument
US20060135963A1 (en) 2004-09-09 2006-06-22 Kick George F Expandable gastrointestinal sheath
US7824415B2 (en) 2004-09-15 2010-11-02 Boston Scientific Scimed, Inc. Atraumatic medical device
US10646292B2 (en) 2004-09-30 2020-05-12 Intuitive Surgical Operations, Inc. Electro-mechanical strap stack in robotic arms
WO2006060658A2 (en) 2004-12-01 2006-06-08 Ethicon Endo-Surgery, Inc. Apparatus and method for stone capture and removal
US20060156875A1 (en) 2005-01-19 2006-07-20 Depuy Mitek, Inc. Fluid cutting device and method of use
US8375808B2 (en) 2005-12-30 2013-02-19 Intuitive Surgical Operations, Inc. Force sensing for surgical instruments
US7465288B2 (en) 2005-06-28 2008-12-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Actuation handle for a catheter
US20070027443A1 (en) 2005-06-29 2007-02-01 Ondine International, Ltd. Hand piece for the delivery of light and system employing the hand piece
EP1906858B1 (en) 2005-07-01 2016-11-16 Hansen Medical, Inc. Robotic catheter system
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
JP2009507617A (en) 2005-09-14 2009-02-26 ネオガイド システムズ, インコーポレイテッド Method and apparatus for performing transluminal and other operations
CA2626867C (en) 2005-11-03 2015-08-11 Vance Products Incorporated, D/B/A Cook Urological Incorporated Articulating basket with simultaneous basket extension or basket retraction
JP4981680B2 (en) 2005-11-04 2012-07-25 オリンパスメディカルシステムズ株式会社 Endoscope system, endoscope, support member
US20070135603A1 (en) 2005-12-09 2007-06-14 Fujifilm Corporation Film, film forming composition and electronic device having the film
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
WO2007098494A1 (en) 2006-02-22 2007-08-30 Hansen Medical, Inc. System and apparatus for measuring distal forces on a working instrument
US20070208375A1 (en) 2006-02-23 2007-09-06 Kouji Nishizawa Surgical device
WO2007103995A2 (en) 2006-03-07 2007-09-13 Vance Products Incorporated, D/B/A Cook Urological Incorporated Foot operated irrigation control apparatus for medical procedures
US8211114B2 (en) 2006-04-24 2012-07-03 Ethicon Endo-Surgery, Inc. Medical instrument having a medical snare
US7927327B2 (en) 2006-04-25 2011-04-19 Ethicon Endo-Surgery, Inc. Medical instrument having an articulatable end effector
WO2007136591A1 (en) 2006-05-15 2007-11-29 Baystate Health, Inc. Balloon endoscope device
US8092470B2 (en) 2006-06-08 2012-01-10 Olympus Medical Systems Corp. Calculus crushing apparatus and medical procedure using endoscope
JP2009539509A (en) 2006-06-14 2009-11-19 マクドナルド デットワイラー アンド アソシエイツ インコーポレーテッド Surgical manipulator with right angle pulley drive mechanism
US9585714B2 (en) 2006-07-13 2017-03-07 Bovie Medical Corporation Surgical sealing and cutting apparatus
US8652086B2 (en) 2006-09-08 2014-02-18 Abbott Medical Optics Inc. Systems and methods for power and flow rate control
CA2663797A1 (en) 2006-09-19 2008-03-27 The Trustees Of Columbia University In The City Of New York Systems, devices, and methods for surgery on a hollow anatomically suspended organ
US7535991B2 (en) 2006-10-16 2009-05-19 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US20090131885A1 (en) 2006-11-08 2009-05-21 Takayuki Akahoshi Curved Irrigation/Aspiration Needle
US7935130B2 (en) 2006-11-16 2011-05-03 Intuitive Surgical Operations, Inc. Two-piece end-effectors for robotic surgical tools
US8480595B2 (en) 2006-12-13 2013-07-09 Devicor Medical Products, Inc. Biopsy device with motorized needle cocking
WO2008097853A2 (en) 2007-02-02 2008-08-14 Hansen Medical, Inc. Mounting support assembly for suspending a medical instrument driver above an operating table
WO2008101206A2 (en) * 2007-02-15 2008-08-21 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter and method of manufacture
AU2008226826A1 (en) 2007-03-13 2008-09-18 Optimedica Corporation Apparatus for creating ocular surgical and relaxing incisions
US7987046B1 (en) 2007-04-04 2011-07-26 Garmin Switzerland Gmbh Navigation device with improved user interface and mounting features
US20090030446A1 (en) * 2007-07-25 2009-01-29 Measamer John P Tissue Manipulator
JP5296351B2 (en) 2007-08-28 2013-09-25 オリンパスメディカルシステムズ株式会社 Endoscope insertion device
US20090082634A1 (en) 2007-09-25 2009-03-26 Biten Kishore Kathrani Surgical method
US8224484B2 (en) 2007-09-30 2012-07-17 Intuitive Surgical Operations, Inc. Methods of user interface with alternate tool mode for robotic surgical tools
US8328819B2 (en) 2007-10-22 2012-12-11 Boston Scientific Scimed, Inc. Steerable stone basket
US20140058365A1 (en) 2007-12-17 2014-02-27 Josef F. Bille System and Method for Using Compensating Incisions in Intrastromal Refractive Surgery
US20090299352A1 (en) 2007-12-21 2009-12-03 Boston Scientific Scimed, Inc. Steerable laser-energy delivery device
EP2231277B1 (en) 2007-12-23 2017-08-30 Carl Zeiss Meditec, Inc. Devices for detecting, controlling, and predicting radiation delivery
KR20100120183A (en) 2008-01-30 2010-11-12 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 Systems, devices, and methods for robot-assisted micro-surgical stenting
ES2769535T3 (en) 2008-03-06 2020-06-26 Aquabeam Llc Tissue ablation and cauterization with optical energy carried in a fluid stream
US20090254083A1 (en) 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US8048024B2 (en) 2008-03-17 2011-11-01 Boston Scientific Scimed, Inc. Steering mechanism
US10368838B2 (en) 2008-03-31 2019-08-06 Intuitive Surgical Operations, Inc. Surgical tools for laser marking and laser cutting
WO2009131928A1 (en) 2008-04-21 2009-10-29 Electromedical Associates Llc Devices and methods for ablating and removing a tissue mass
US8864681B2 (en) 2008-04-23 2014-10-21 Devicor Medical Products, Inc. Biopsy devices
US9539381B2 (en) 2008-05-12 2017-01-10 Humparkull, Llc Hemostatic devices and methods for use thereof
US8641604B2 (en) 2008-05-13 2014-02-04 Boston Scientific Scimed, Inc. Steering system with locking mechanism
WO2009140688A2 (en) 2008-05-16 2009-11-19 The Johns Hopkins University System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye
KR101016102B1 (en) 2008-05-30 2011-02-17 정창욱 Tool for Minimally Invasive Surgery
US20100004642A1 (en) 2008-07-02 2010-01-07 Lumpkin Christopher F Selectively bendable laser fiber for surgical laser probe
US8540748B2 (en) 2008-07-07 2013-09-24 Intuitive Surgical Operations, Inc. Surgical instrument wrist
US8821480B2 (en) 2008-07-16 2014-09-02 Intuitive Surgical Operations, Inc. Four-cable wrist with solid surface cable channels
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
US20100082017A1 (en) 2008-09-26 2010-04-01 Advanced Medical Optics, Inc. Laser modification of intraocular lens
ES2561777T3 (en) 2008-12-02 2016-02-29 Biolitec Unternehmensbeteilligung Ll Ag Laser-induced steam / plasma mediated medical device
US20100179632A1 (en) 2009-01-12 2010-07-15 Medtronic Vascular, Inc. Robotic Fenestration Device Having Impedance Measurement
ITBO20090004U1 (en) 2009-02-11 2010-08-12 Tre Esse Progettazione Biomedica S R L ROBOTIC MANIPULATOR FOR DISTANCE MANEUVERING OF STEERABLE CATHETERS IN THE HUMAN CARDIOVASCULAR SYSTEM.
US20100204556A1 (en) * 2009-02-12 2010-08-12 Keimar, Inc. Physiological parameter sensors
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
US8945163B2 (en) 2009-04-01 2015-02-03 Ethicon Endo-Surgery, Inc. Methods and devices for cutting and fastening tissue
US8517955B2 (en) 2009-05-08 2013-08-27 Broncus Medical Inc. Tissue sampling devices, systems and methods
BRPI1007726A2 (en) 2009-05-18 2017-01-31 Koninl Philips Electronics Nv Image-to-image registration method, Image-to-image registration system, Guided endoscopy camera position calibration method and Guided endoscopy camera calibration system
JP5827219B2 (en) 2009-05-29 2015-12-02 ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University Robot system for flexible endoscopy
WO2011003044A1 (en) 2009-07-01 2011-01-06 Conocophillips Company - Ip Services Group Selective olefin dimerization with supported metal complexes activated by alkylaluminum compounds or ionic liquids
US20110015483A1 (en) 2009-07-16 2011-01-20 Federico Barbagli Endoscopic robotic catheter system
US8608687B2 (en) * 2009-07-31 2013-12-17 Medivity, LLC Multi-lumen endoscopic accessory and system
US8888789B2 (en) 2009-09-23 2014-11-18 Intuitive Surgical Operations, Inc. Curved cannula surgical system control
US20110071541A1 (en) 2009-09-23 2011-03-24 Intuitive Surgical, Inc. Curved cannula
US8721631B2 (en) 2009-09-24 2014-05-13 Biolite Pharma Marketing Ltd Twister fiber optic systems and their use in medical applications
US20120232342A1 (en) 2009-10-15 2012-09-13 Boris Reydel Disposable and reusable comlex shaped see-through endoscope
ES2388867B1 (en) 2009-10-27 2013-09-18 Universitat Politècnica De Catalunya MINIMALLY INVASIVE LAPAROSCOPIC SURGERY CLAMPS.
US20110152880A1 (en) 2009-12-23 2011-06-23 Hansen Medical, Inc. Flexible and steerable elongate instruments with torsion control
US20130096422A1 (en) 2010-02-15 2013-04-18 The University Of Texas At Austin Interventional photoacoustic imaging system
US8292889B2 (en) 2010-02-26 2012-10-23 Tyco Healthcare Group Lp Drive mechanism for articulation of a surgical instrument
GB201006079D0 (en) 2010-04-13 2010-05-26 Central Manchester University Surgical device and methods
US20110257641A1 (en) 2010-04-14 2011-10-20 Roger Hastings Phototherapy for renal denervation
US8394120B2 (en) 2010-05-04 2013-03-12 Jacek Krzyzanowski End effector assembly with increased clamping force for a surgical instrument
CN103068419A (en) 2010-06-13 2013-04-24 模托斯Gi医疗技术有限公司 Systems and methods for cleaning body cavities
US20110313343A1 (en) 2010-06-18 2011-12-22 Alcon Research, Ltd. Phacoemulsification Fluidics System Having a Single Pump Head
WO2011160686A1 (en) 2010-06-23 2011-12-29 Renzo Marco Giovanni Brun Del Re Biopsy alignment guide
WO2017066518A1 (en) 2010-06-29 2017-04-20 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
EP2593171B1 (en) 2010-07-13 2019-08-28 Loma Vista Medical, Inc. Inflatable medical devices
DE11826290T1 (en) 2010-09-25 2019-10-10 Ipg Photonics (Canada) Inc. PROCESSES AND SYSTEMS FOR COHERENT IMAGING AND FEEDBACK CONTROL FOR MODIFYING MATERIALS
DE102011086032A1 (en) 2010-11-16 2012-05-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Liquid jet scalpel for use with medical robot for performing minimally invasive surgery on thorax of patient in surgical site, has nozzle for outputting liquid jet, and functional end effector for manipulating tissue in surgical site
US20130066136A1 (en) 2010-11-24 2013-03-14 Mount Sinai School Of Medicine Magnetic based device for retrieving a misplaced article
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US20120191086A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
DE102011011497A1 (en) 2011-02-17 2012-08-23 Kuka Roboter Gmbh Surgical instrument
US10716706B2 (en) 2011-04-07 2020-07-21 Bausch & Lomb Incorporated System and method for performing lens fragmentation
EP3381421B1 (en) 2011-05-12 2019-10-16 Carl Zeiss Meditec AG Laser instrument for eye therapy
US9301876B2 (en) 2011-05-16 2016-04-05 Wavelight Gmbh System and process for surgical treatment of an eye as well as process for calibrating a system of such a type
WO2013003088A1 (en) * 2011-06-28 2013-01-03 Cook Medical Technologies, LLC Biopsy needle with flexible length
WO2013003087A1 (en) * 2011-06-28 2013-01-03 Cook Medical Technologies Llc Flexible biopsy needle
US20130035537A1 (en) 2011-08-05 2013-02-07 Wallace Daniel T Robotic systems and methods for treating tissue
US8821377B2 (en) 2011-09-07 2014-09-02 Justin Collins Laparoscopic surgery
US9597152B2 (en) 2011-09-10 2017-03-21 Cook Medical Technologies Llc Control handles for medical devices
US9918681B2 (en) 2011-09-16 2018-03-20 Auris Surgical Robotics, Inc. System and method for virtually tracking a surgical tool on a movable display
CA2850495A1 (en) 2011-10-03 2013-04-11 Biolase, Inc. Surgical laser cutting device
US9060794B2 (en) 2011-10-18 2015-06-23 Mako Surgical Corp. System and method for robotic surgery
EP2773257B1 (en) 2011-10-31 2018-12-19 Boston Scientific Scimed, Inc. An endoscopic instrument having a deflectable distal tool
WO2013063675A1 (en) 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
US10213260B2 (en) 2011-12-01 2019-02-26 Joe Denton Brown End fire fiber arrangements with improved erosion resistance
US9179927B2 (en) 2011-12-02 2015-11-10 Ethicon Endo-Surgery, Inc. Surgical methods using a surgical device having a fixed angular orientation
US9131987B2 (en) 2011-12-02 2015-09-15 Ethicon Endo-Surgery, Inc. Elbow assembly for surgical devices
US20140135745A1 (en) 2011-12-15 2014-05-15 Imricor Medical Systems, Inc. Mri compatible handle and steerable sheath
US9504604B2 (en) 2011-12-16 2016-11-29 Auris Surgical Robotics, Inc. Lithotripsy eye treatment
JP6039692B2 (en) 2012-01-18 2016-12-07 バーフェリヒト ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser energy adjustment according to optical density
WO2013126659A1 (en) * 2012-02-22 2013-08-29 Veran Medical Technologies, Inc. Systems, methods, and devices for four dimensional soft tissue navigation
EP2816965B1 (en) 2012-02-25 2020-08-26 Thrufocus Optics, Inc. Devices for improving vision using laser photomiosis
CN104203078B (en) 2012-02-29 2018-04-20 普罗赛普特生物机器人公司 The cutting tissue of automated image guiding and processing
WO2013149034A2 (en) 2012-03-28 2013-10-03 Cibiem, Inc. Carotid body modulation planning and assessment
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US20140142591A1 (en) 2012-04-24 2014-05-22 Auris Surgical Robotics, Inc. Method, apparatus and a system for robotic assisted surgery
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
DE102012212510B4 (en) 2012-07-17 2014-02-13 Richard Wolf Gmbh Endoscopic instrument
US20140051985A1 (en) 2012-08-17 2014-02-20 Tailin Fan Percutaneous nephrolithotomy target finding system
JP6420764B2 (en) 2012-08-27 2018-11-07 ファセット テクノロジーズ エルエルシーFacet Technologies, LLC Twist loading mechanism of puncture device
JP2015535702A (en) * 2012-09-19 2015-12-17 ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University Flexible master-slave robot endoscope system
US9375235B2 (en) 2012-12-12 2016-06-28 Boston Scientific Scimed, Inc. Method and system for transhiatal esophagectomy
WO2014110043A1 (en) 2013-01-08 2014-07-17 Boston Scientific Scimed, Inc. Low profile medical device and related methods of use
US20140194859A1 (en) 2013-01-10 2014-07-10 Pravoslava IANCHULEV System and method of performing femtosecond laser accomodative capsulotomy
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
EA033708B1 (en) 2013-02-26 2019-11-19 Ahmet Sinan Kabakci Robotic manipulator system
WO2014136579A1 (en) 2013-03-06 2014-09-12 オリンパスメディカルシステムズ株式会社 Endoscope system and endoscope system operation method
US10080576B2 (en) 2013-03-08 2018-09-25 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US10149720B2 (en) 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9867635B2 (en) 2013-03-08 2018-01-16 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US9737300B2 (en) 2013-03-13 2017-08-22 Ethicon Llc Electrosurgical device with disposable shaft having rack and pinion drive
WO2014158880A1 (en) 2013-03-14 2014-10-02 Brigham And Women's Hospital, Inc. System and method for a laparoscopic morcellator
WO2014143388A1 (en) 2013-03-14 2014-09-18 Gyrus Acmi, Inc. (D.B.A Olympus Surgical Technologies America) Surgical positioning circuit
US9232956B2 (en) 2013-04-16 2016-01-12 Calcula Technologies, Inc. Device for removing kidney stones
US10076231B2 (en) 2013-04-22 2018-09-18 Gyrus Acmi, Inc. Surgeon controlled endoscope device and method
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
WO2014201165A1 (en) 2013-06-11 2014-12-18 Auris Surgical Robotics, Inc. System for robotic assisted cataract surgery
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
KR102356881B1 (en) 2013-08-15 2022-02-03 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Graphical user interface for catheter positioning and insertion
US9119939B2 (en) * 2013-09-12 2015-09-01 Michael J. Botich Rotatable hypodermic needle and method of use
US9993313B2 (en) 2013-10-24 2018-06-12 Auris Health, Inc. Instrument device manipulator with roll mechanism
CN105939647B (en) 2013-10-24 2020-01-21 奥瑞斯健康公司 Robotically-assisted endoluminal surgical systems and related methods
US10575851B2 (en) 2013-10-26 2020-03-03 The United States of America, as Represented by the the Secretary, Department of Health and Human Services Atrial appendage ligation
EP3079608B8 (en) 2013-12-11 2020-04-01 Covidien LP Wrist and jaw assemblies for robotic surgical systems
US9808269B2 (en) 2013-12-12 2017-11-07 Boston Scientific Scimed, Inc. Adjustable medical retrieval devices and related methods of use
EP3079597B1 (en) * 2013-12-13 2023-07-26 Intuitive Surgical Operations, Inc. Telescoping biopsy needle
JP6431678B2 (en) 2014-03-20 2018-11-28 オリンパス株式会社 Insertion shape detection device
US20150314110A1 (en) 2014-05-05 2015-11-05 Hansen Medical, Inc. Balloon visualization for traversing a vessel
JP6336620B2 (en) 2014-05-06 2018-06-06 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Electrode support structure assembly
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
US9744335B2 (en) 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
US20160270865A1 (en) 2014-07-01 2016-09-22 Auris Surgical Robotics, Inc. Reusable catheter with disposable balloon attachment and tapered tip
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
US20170007337A1 (en) 2014-07-01 2017-01-12 Auris Surgical Robotics, Inc. Driver-mounted torque sensing mechanism
US10159533B2 (en) 2014-07-01 2018-12-25 Auris Health, Inc. Surgical system with configurable rail-mounted mechanical arms
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
WO2016015011A1 (en) 2014-07-24 2016-01-28 Lim Innovations, Inc. A sequential series of orthopedic devices that include incremental changes in form
US10828051B2 (en) 2014-07-28 2020-11-10 Shaw P. Wan Suction evacuation device
US10085759B2 (en) 2014-08-14 2018-10-02 Boston Scientific Scimed, Inc. Kidney stone suction device
CN107072681B (en) 2014-09-08 2020-12-04 波士顿科学国际有限公司 Retrieval device and related method of use
JP6689832B2 (en) 2014-09-30 2020-04-28 オーリス ヘルス インコーポレイテッド Configurable robotic surgery system with provisional trajectory and flexible endoscope
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
EP4218882A3 (en) * 2014-11-05 2023-08-16 Clph, Llc Catheter devices and methods for making them
DE102014226240A1 (en) 2014-12-17 2016-06-23 Kuka Roboter Gmbh System for robot-assisted medical treatment
JP6342794B2 (en) 2014-12-25 2018-06-13 新光電気工業株式会社 Wiring board and method of manufacturing wiring board
DE102015200428B3 (en) 2015-01-14 2016-03-17 Kuka Roboter Gmbh Method for aligning a multi-axis manipulator with an input device
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
WO2016164824A1 (en) 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
EP3282997B1 (en) * 2015-04-15 2021-06-16 Mobius Imaging, LLC Integrated medical imaging and surgical robotic system
WO2016176403A1 (en) * 2015-04-28 2016-11-03 Nosler Michael Stylet and needle combinations used to collect tissue samples during endoscopic procedures
US9622827B2 (en) 2015-05-15 2017-04-18 Auris Surgical Robotics, Inc. Surgical robotics system
US10610254B2 (en) 2015-08-20 2020-04-07 Boston Scientific Scimed, Inc. Medical device and related methods
CN113229942A (en) 2015-09-09 2021-08-10 奥瑞斯健康公司 Surgical instrument device manipulator
AU2016323982A1 (en) 2015-09-18 2018-04-12 Auris Health, Inc. Navigation of tubular networks
US10052164B2 (en) 2015-10-02 2018-08-21 Ethicon Llc System and method of converting user input into motion of a surgical instrument via a robotic surgical system
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US20170151416A1 (en) 2015-12-01 2017-06-01 Invivo Therapeutics Corporation Methods and Systems for Delivery of a Trail of a Therapeutic Substance into an Anatomical Space
GB201521804D0 (en) 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Pulley arrangement for articulating a surgical instrument
EP3397184A1 (en) 2015-12-29 2018-11-07 Koninklijke Philips N.V. System, control unit and method for control of a surgical robot
US10932861B2 (en) 2016-01-14 2021-03-02 Auris Health, Inc. Electromagnetic tracking surgical system and method of controlling the same
US10932691B2 (en) 2016-01-26 2021-03-02 Auris Health, Inc. Surgical tools having electromagnetic tracking components
US11324554B2 (en) 2016-04-08 2022-05-10 Auris Health, Inc. Floating electromagnetic field generator system and method of controlling the same
US10470847B2 (en) 2016-06-17 2019-11-12 Align Technology, Inc. Intraoral appliances with sensing
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US10687904B2 (en) 2016-08-16 2020-06-23 Ethicon Llc Robotics tool exchange
AU2016422171B2 (en) 2016-08-31 2022-01-20 Auris Health, Inc. Length conservative surgical instrument
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
GB2554915B (en) 2016-10-14 2022-03-02 Cmr Surgical Ltd Driving arrangement for articulating a surgical instrument
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10543048B2 (en) 2016-12-28 2020-01-28 Auris Health, Inc. Flexible instrument insertion using an adaptive insertion force threshold
US10136959B2 (en) 2016-12-28 2018-11-27 Auris Health, Inc. Endolumenal object sizing
US10987120B2 (en) 2017-01-10 2021-04-27 New Wave Endo-Surgery Inc. Multifunction surgical instrument for use in laparoscopic surgery
JP7159192B2 (en) 2017-03-28 2022-10-24 オーリス ヘルス インコーポレイテッド shaft actuation handle
AU2018243364B2 (en) 2017-03-31 2023-10-05 Auris Health, Inc. Robotic systems for navigation of luminal networks that compensate for physiological noise
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
CN110602976B (en) 2017-04-07 2022-11-15 奥瑞斯健康公司 Patient introducer alignment
CN110831498B (en) 2017-05-12 2022-08-12 奥瑞斯健康公司 Biopsy device and system
CN110769736B (en) 2017-05-17 2023-01-13 奥瑞斯健康公司 Replaceable working channel
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
CN110809452B (en) 2017-06-28 2023-05-23 奥瑞斯健康公司 Electromagnetic field generator alignment
KR102341451B1 (en) 2017-06-28 2021-12-23 아우리스 헬스, 인코포레이티드 Robot system, method and non-trnasitory computer readable storage medium for instrument insertion compensation
EP3644886A4 (en) 2017-06-28 2021-03-24 Auris Health, Inc. Electromagnetic distortion detection
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10973600B2 (en) 2017-09-29 2021-04-13 Ethicon Llc Power axle wrist for robotic surgical tool
US10464209B2 (en) 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
WO2019113249A1 (en) 2017-12-06 2019-06-13 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll
WO2019113391A1 (en) 2017-12-08 2019-06-13 Auris Health, Inc. System and method for medical instrument navigation and targeting
US10850013B2 (en) 2017-12-08 2020-12-01 Auris Health, Inc. Directed fluidics
EP3723655A4 (en) 2017-12-11 2021-09-08 Auris Health, Inc. Systems and methods for instrument based insertion architectures
CN110869173B (en) 2017-12-14 2023-11-17 奥瑞斯健康公司 System and method for estimating instrument positioning
US11160615B2 (en) 2017-12-18 2021-11-02 Auris Health, Inc. Methods and systems for instrument tracking and navigation within luminal networks
JP6999824B2 (en) 2018-01-17 2022-01-19 オーリス ヘルス インコーポレイテッド Surgical platform with adjustable arm support
EP3740150A4 (en) 2018-01-17 2021-11-03 Auris Health, Inc. Surgical robotics systems with improved robotic arms
US10779839B2 (en) 2018-02-08 2020-09-22 Ethicon Llc Surgical clip applier with parallel closure jaws
CN110891514B (en) 2018-02-13 2023-01-20 奥瑞斯健康公司 System and method for driving a medical instrument
MX2020009075A (en) 2018-03-01 2021-03-25 Auris Health Inc Methods and systems for mapping and navigation.
KR102489198B1 (en) 2018-03-28 2023-01-18 아우리스 헬스, 인코포레이티드 Systems and Methods for Matching Position Sensors
EP3773135B1 (en) 2018-03-28 2024-02-14 Auris Health, Inc. Medical instruments with variable bending stiffness profiles
CN110913791B (en) 2018-03-28 2021-10-08 奥瑞斯健康公司 System and method for displaying estimated instrument positioning
EP3773242A4 (en) 2018-03-29 2021-12-22 Auris Health, Inc. Robotically-enabled medical systems with multifunction end effectors having rotational offsets
JP7250824B2 (en) 2018-05-30 2023-04-03 オーリス ヘルス インコーポレイテッド Systems and methods for location sensor-based branch prediction
EP3801280B1 (en) 2018-05-31 2024-10-02 Auris Health, Inc. Robotic systems for navigation of luminal network that detect physiological noise
EP3801189B1 (en) 2018-05-31 2024-09-11 Auris Health, Inc. Path-based navigation of tubular networks
JP7146949B2 (en) 2018-05-31 2022-10-04 オーリス ヘルス インコーポレイテッド Image-based airway analysis and mapping
US10744981B2 (en) 2018-06-06 2020-08-18 Sensata Technologies, Inc. Electromechanical braking connector
CN112218596A (en) 2018-06-07 2021-01-12 奥瑞斯健康公司 Robotic medical system with high-force instruments
US10667875B2 (en) 2018-06-27 2020-06-02 Auris Health, Inc. Systems and techniques for providing multiple perspectives during medical procedures
JP7391886B2 (en) 2018-06-28 2023-12-05 オーリス ヘルス インコーポレイテッド Medical system incorporating pulley sharing
US10898276B2 (en) 2018-08-07 2021-01-26 Auris Health, Inc. Combining strain-based shape sensing with catheter control
WO2020036685A1 (en) 2018-08-15 2020-02-20 Auris Health, Inc. Medical instruments for tissue cauterization
EP3806758A4 (en) 2018-08-17 2022-04-06 Auris Health, Inc. Bipolar medical instrument
US10881280B2 (en) 2018-08-24 2021-01-05 Auris Health, Inc. Manually and robotically controllable medical instruments

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040681A1 (en) * 1999-03-09 2003-02-27 Advance Sentry Corporation Biopsy apparatus and method of obtaining biopsy sample
US9345456B2 (en) * 2004-03-24 2016-05-24 Devicor Medical Products, Inc. Biopsy device
US20060189891A1 (en) 2004-12-15 2006-08-24 Irving Waxman Flexible elongate surgical needle device having a tissue engaging section being of greater flexibility than an intermediate section, and methods of using the device
US20100081965A1 (en) 2008-10-01 2010-04-01 John Mugan Needle biopsy device
US20130225997A1 (en) * 2012-02-28 2013-08-29 Spiration, Inc. Lung biopsy needle
US20150201917A1 (en) * 2014-01-17 2015-07-23 Merit Medical Systems, Inc. Flush cut biopsy needle assembly and method of use
WO2015153174A1 (en) 2014-04-02 2015-10-08 Intuitive Surgical Operations, Inc. Devices, systems, and methods using a steerable stylet and flexible needle
US20170095234A1 (en) * 2014-04-02 2017-04-06 Intuitive Surgical Operations, Inc. Devices, Systems, and Methods Using a Steerable Stylet and Flexible Needle
US20170071584A1 (en) 2014-06-04 2017-03-16 Olympus Corporation Joining structure and biopsy needle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606439A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246672B2 (en) 2019-08-15 2022-02-15 Auris Health, Inc. Axial motion drive devices, systems, and methods for a robotic medical system
US11272995B2 (en) 2019-08-15 2022-03-15 Auris Health, Inc. Axial motion drive devices, systems, and methods for a robotic medical system

Also Published As

Publication number Publication date
US10743751B2 (en) 2020-08-18
JP2020516342A (en) 2020-06-11
EP3606439A4 (en) 2020-11-18
US20190328213A1 (en) 2019-10-31
EP3606439A1 (en) 2020-02-12
KR20190138306A (en) 2019-12-12
CN110602994A (en) 2019-12-20
JP7167054B2 (en) 2022-11-08
US10285574B2 (en) 2019-05-14
KR102636777B1 (en) 2024-02-16
CN110602994B (en) 2022-11-22
AU2018248440A1 (en) 2019-10-31
US20180289243A1 (en) 2018-10-11
US20200367726A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
US10743751B2 (en) Superelastic medical instrument
US11992183B2 (en) Shaft actuating handle
US20210268235A1 (en) Devices, systems, and methods for anchoring actuation wires to a steerable instrument
US9820724B2 (en) Endoscope puncture needle and biopsy system
CN110833382B (en) Devices, systems, and methods using steerable stylet and flexible needle
CN108135583B (en) Compliant biopsy needle system
JP5249472B2 (en) Biopsy treatment tool
US20210196251A1 (en) Medical instrument with shaft actuating handle configured to accept stylet
US11957308B2 (en) Medical appliance for controlling medical device through catheter sheath based on pneumatic action
CN118251184A (en) Biopsy tool
JP5985131B1 (en) Endoscopic puncture needle and biopsy system
JP7387271B2 (en) Catheter assembly with offset device for tissue sampling
US10912542B2 (en) Catheter assembly with offset device for tissue sampling
JP2011177418A (en) Guide device, guide wire indwelling catheter, and guide wire catheter system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018248440

Country of ref document: AU

Date of ref document: 20180404

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197032921

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018780650

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018780650

Country of ref document: EP

Effective date: 20191107