WO2018186682A1 - Biosensor substrate, method for producing same, and biosensor comprising same - Google Patents
Biosensor substrate, method for producing same, and biosensor comprising same Download PDFInfo
- Publication number
- WO2018186682A1 WO2018186682A1 PCT/KR2018/003984 KR2018003984W WO2018186682A1 WO 2018186682 A1 WO2018186682 A1 WO 2018186682A1 KR 2018003984 W KR2018003984 W KR 2018003984W WO 2018186682 A1 WO2018186682 A1 WO 2018186682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- biosensor
- norbornadiene
- bio
- compound
- Prior art date
Links
- 0 *NC(C(C1C=CC2C1)=C2C(O)=O)=O Chemical compound *NC(C(C1C=CC2C1)=C2C(O)=O)=O 0.000 description 5
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/544—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54353—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
Definitions
- the present invention relates to a biosensor substrate and a method of manufacturing the same used for manufacturing a multi-diagnosis biosensor.
- biosensors eg PCR, diagnostic kits, etc.
- biosensors eg PCR, diagnostic kits, etc.
- It is widely used for industrial purposes.
- the substrate (platform) of the biosensor is made of a material such as glass, silicon, or polymer, and the material of the substrate is determined according to the use of the biosensor.
- biosensors such as real-time PCs (RT-PCR) and biochips are made of glass or silicon substrates.
- biosensors The measurement of these biosensors is based on hydrodynamics, so the performance of the biosensors varies markedly with the surface properties of the substrate. For example, biochips have different flow rates depending on whether their surfaces are hydrophilic or hydrophobic, resulting in differences in reaction rates, which have a significant effect on the response time and sensitivity of the biosensor. Therefore, in order to improve the performance of the biosensor, it is important to consider what kind of surface treatment substrate is used.
- an object of the present invention is to provide a biosensor substrate that can efficiently provide multiple diagnostic biosensors.
- Another object of the present invention is to provide a method for manufacturing the biosensor substrate.
- Another object of the present invention is to provide a biosensor comprising the biosensor substrate.
- Another object of the present invention is to provide a method of manufacturing the biosensor.
- the present invention to solve the above problems, the substrate portion; And a modification unit coupled to the surface of the substrate unit and including a light sensitive derivative, wherein the light sensitive derivative is a norbornadiene-based derivative.
- the norbornadiene derivative may have a structure represented by Formula 1 below.
- the substrate portion is made of glass, silicon and quartz It may include one or more selected from the group consisting of.
- the modified part may be coupled to a plurality of surfaces of the substrate part.
- the present invention a) preparing a substrate portion; b) reacting the prepared substrate portion with an amine-containing alkoxysilane-based compound; And c) introducing a norbornadiene compound to a substrate portion reacted with the amine-containing alkoxysilane compound to form a modified portion.
- the amine-containing alkoxysilane compound is selected from the group consisting of (3-aminopropyl) trimethoxysilane and (3-aminopropyl) triethoxysilane ((3-Aminopropyl) triethoxysilane) It may be one or more.
- the norbornadiene-based compound may be a compound represented by Formula 2 below.
- the present invention the biosensor substrate; And a bio probe unit coupled to a reforming unit of the bio sensor substrate.
- the bioprobe unit may include a plurality, and the plurality of bioprobes may probe different target materials from each other.
- the present invention A) preparing the biosensor substrate; B) masking a portion of the biosensor substrate and irradiating light to form an activated reformed portion and an inactivated modified portion; C) binding a bioprobe to the activated reforming unit; D) activating the deactivated reformate; And E) combining the bioprobe unit that probes a different target material with the bioprobe unit coupled in step C) to the reformer activated in step D).
- the activation of the reformed portion deactivated in step D) may be performed by heat treatment or reaction with a transition metal.
- the biosensor substrate according to the present invention includes a reforming unit selectively activated or deactivated by light, the biosensor substrate may efficiently provide multiple diagnostic biosensors when the biosensor is manufactured using the biosensor substrate.
- FIG 1 and 2 are reference diagrams for explaining the biosensor substrate of the present invention.
- FIG. 3 is a reference diagram for explaining a method of manufacturing the biosensor substrate of the present invention.
- FIG. 4 is a reference diagram for explaining the biosensor of the present invention.
- FIG. 5 is a reference diagram for explaining a method of manufacturing a biosensor according to the present invention.
- FIG. 6 is a reference diagram for explaining an experimental example 1 of the present invention.
- FIG. 7 is a reference diagram for explaining an experimental example 2 of the present invention.
- the surface of the biosensor substrate which is the base substrate of the biosensor
- the conventional method for example, plasma treatment
- the surface is selectively modified so that various bio Characterized in that it can be combined with the probe, it will be described in detail with reference to the drawings as follows.
- the biosensor substrate of the present invention includes a substrate portion 10 and a reforming portion 20.
- the substrate unit 10 included in the biosensor substrate of the present invention serves as a base of the biosensor substrate, and may be made of a material known in the art. Specifically, the substrate portion 10 may be made of one or more selected from the group consisting of glass, silicon, and quartz.
- the reforming unit 20 included in the biosensor substrate of the present invention is present in combination with the surface of the substrate unit 10.
- the reforming unit 20 is formed by undergoing a surface modification process of the substrate unit 10 in the manufacturing process of the biosensor substrate, and includes a light-sensitive derivative.
- the light-sensitive derivative is a norbornadiene-based derivative, and may be a norbornadiene-based derivative including a norbornadiene group.
- the modification unit 20 may be selectively activated or deactivated when light (for example, ultraviolet rays) is irradiated by the norbornadiene-based derivative.
- the norbornadiene-based derivative is not particularly limited, but preferably has a structure represented by the following formula (1). This is because the compound represented by the following Chemical Formula 1 is excellent in reactivity with light and can easily induce activation and deactivation of the reforming unit 20 according to specific conditions.
- the norbornadiene-based derivative may be coupled to the substrate portion 10 by a linker including an amine group on one side and a hydrophilic group on the other side. That is, the reforming unit 20 is composed of a linker and a norbonadiene-based derivative, the hydrophilic group of the linker is bonded to the surface of the substrate portion 10, the norbornadiene-based derivative is bonded to the amine group side of the linker is modified The portion 20 may be fixed to the surface of the substrate portion 10.
- the linker may have a structure including a repeating unit represented by Formula 3 below.
- n is an integer of 100 to 1,000,000.
- * means a site where Formula 2 and Formula 3 are bonded to each other.
- the modifying unit 20 may be coupled to the surface of the substrate unit 10 in plurality.
- the present invention provides a method of manufacturing the above-described biosensor substrate, which will be described in detail with reference to FIG. 3 as follows.
- substrate part 10 is prepared. Preparation of the substrate portion 10 may be made by a conventionally known method.
- the prepared substrate portion 10 is reacted with an amine-containing alkoxysilane compound. Specifically, the substrate portion 10 is immersed in a solution in which an amine-containing alkoxysilane compound and an organic solvent (for example, benzene, toluene, xylene, etc.) are mixed and reacted for a predetermined time to the surface of the substrate portion 10.
- an organic solvent for example, benzene, toluene, xylene, etc.
- the amine-containing alkoxysilane-based compound is not particularly limited, (3-aminopropyl) trimethoxysilane and (3-aminopropyl) triethoxysilane ((3-Aminopropyl) triethoxysilane) It is preferably at least one compound selected from the group consisting of.
- the reaction between the substrate portion 10 and the amine-containing alkoxysilane-based compound may be performed in the presence of an inert gas (eg, nitrogen or argon), and the reaction time may be 3 to 9 hours, although not particularly limited.
- an inert gas eg, nitrogen or argon
- a norbornadiene-based compound is introduced into the substrate 10 reacted with the amine-containing alkoxysilane-based compound to form a reformed portion 20.
- the substrate portion 10 reacted with the amine-containing alkoxysilane-based compound is subjected to a norbornenadiene-based compound, which is a light-sensitive compound, and an organic solvent (for example, dimethylformamide, dimethylacetamide, tetrahydrofuran, N- Methyl-2-pyrrolidone and the like) are immersed in the mixed solution and reacted for a predetermined time to fix the derivative of the norbornadiene compound on the linker bonded to the surface of the substrate portion 10.
- an organic solvent for example, dimethylformamide, dimethylacetamide, tetrahydrofuran, N- Methyl-2-pyrrolidone and the like
- the norbornadiene-based compound may include a norbornadiene group.
- the norbornadiene-based compound is not particularly limited, but is preferably a compound represented by the following formula (2).
- the reaction time of the substrate unit 10 and the norbornadiene compound is not particularly limited, but may be 10 to 15 hours.
- the present invention provides a biosensor capable of probing (detecting) various bio target materials, which will be described in detail with reference to FIG. 4.
- the biosensor of the present invention includes a biosensor substrate 100 and a bioprobe unit 200.
- the biosensor substrate 100 included in the biosensor of the present invention serves as a base substrate of the biosensor. It is the same as that described in "Bio-Sensor Substrate” and will be omitted.
- the bioprobe 200 included in the biosensor of the present invention is to be coupled to the modified portion 20 of the biosensor substrate 100 (specifically, to the norbornadiene derivative of the modified portion 20), Probe and detect bio targets (eg, target nucleic acids, blood glucose, glycated proteins, etc.).
- the bioprobe 200 may be a functional group (eg, -S-, etc.) coupled with the reforming unit 20 of the biosensor substrate 100 and a reactor (eg, an antigen) capable of binding to a biotarget material. , Aptamer, protein, etc.) is not particularly limited.
- a plurality of bioprobes 200 included in the biosensor may also be provided.
- the plurality of bio probes may probe different bio target materials from each other, and accordingly, the present invention may provide a multi-diagnosis bio sensor.
- the present invention provides a method of manufacturing the above-described biosensor, which will be described in detail with reference to FIG. 5 as follows.
- the biosensor substrate 100 described above is prepared.
- a portion of the prepared biosensor substrate 100 is masked and irradiated with light (for example, ultraviolet rays) to form the activated reformed portion 20a and the inactivated modified portion 20b.
- light for example, ultraviolet rays
- the mask is placed on the selected region and irradiated with light, and the modified portion 20a of the selected region is maintained in an active state.
- the reformed portion 20b of the non-selected region may be placed in an inactive state by the reaction of the light-sensitive derivative with light to form the activated reformed portion 20a and the inactivated modified portion 20b.
- the bio probe 200a is coupled to the activated reforming unit 20a.
- the bio probe 200a may be combined by a conventionally known method (for example, bio-thiolation).
- the deactivated reforming unit 20b is activated.
- the method of activating the deactivated reforming unit 20b is not particularly limited, but may be performed by heat treatment or reaction with a transition metal.
- the heat treatment condition of the reforming unit 20b is not particularly limited, but may be performed at 70 to 90 ° C. for 15 to 24 hours.
- the biosensor substrate 100 is immersed in a solution containing silver (Ag), cobalt (Co), or tin (Sn) and reacted for 10 to 14 hours. It can be made to.
- the bio-probe 200b for probing different bio target materials from the bio-probe 200a coupled in the step C) is coupled to the reformed portion 20b activated through the step D).
- the reforming unit 20a to which the bio probe unit 200a is coupled, and a reforming unit to couple the new bio probe unit 200b to probe a different bio target material from the bio probe unit 200a to which the bio probe unit 200a is coupled ( 20b) masking the region and irradiating light (for example, ultraviolet rays) to deactivate the unmasked region, and then combining the new bioprobe 200b to process the bio-bonded in step C).
- the bio probe 200b may be combined with the probe 200a to probe different bio target materials.
- Combination of the bioprobe 200a and the bioprobe 200b for probing a different bio target material may be generally performed by a known method (eg, bio-thiolation).
- the present invention can produce a biosensor capable of probing and detecting various bio target materials.
- a biosensor substrate and a biosensor using a light sensitive compound capable of reversible reaction which is inactivated when irradiated with light and activated by specific conditions (eg, heat treatment, reaction with a transition metal, etc.) Since the manufacturing of the biosensor to include can increase the manufacturing efficiency of the multi-diagnostic biosensor.
- the biosensor substrate in irradiating light to a biosensor substrate including a modified portion combined with a light-sensitive derivative, the biosensor substrate is selectively activated or deactivated by irradiating light for each desired region.
- the biosensor is manufactured by combining various bioprobes in the region, multiple diagnostic biosensors may be efficiently manufactured.
- the present invention can easily induce the activation and deactivation of the biosensor substrate (region-by-region) using a mask, it is possible to easily manufacture a biosensor having a micro-miniature pattern.
- Dicyclopentadiene, 2-butynedioic acid, 1,4-dioxane, N, N'-dicyclohexylcarbodiimide (N, N ') -Dicyclohexylcarbodiimide) and 3- (aminopropyl) trimethoxysilane (97%) were each purchased from Aldrich and used without purification.
- a JEOL 3700 was used as an instrument.
- Dicyclopentadiene (7 mL, 52 mmol) was distilled off to obtain monomeric cyclopentadiene (monomeric cyclopentadiene).
- the resulting monomeric cyclopentadiene (2.0 g, 30 mmol) was mixed with 1,4-dionic acid (20 mL) and 2-butyndioic acid (3.0 g, 26.3 mmol) under an ice-water bath. To the solution. Next, the solution containing monomeric cyclopentadiene was stirred at room temperature overnight, and then hexane (5 mL) was added and collected to obtain a solid precipitate (4.18 g, yield: 88%).
- the glass substrate was immersed in a solution of toluene (20 ml) and 3- (aminopropyl) trimethoxysilane (10 ⁇ l), and shaken for 6 hours in a nitrogen atmosphere to give amine-functionalized glass. A substrate was obtained. Next, the glass substrate functionalized with amine was washed with toluene, and unreacted 3- (aminopropyl) trimethoxysilane was removed with a mixture of toluene and methanol in a volume ratio of 1: 1.
- 2.5-norbornadiene-2,3-dicarboxylic anhydride obtained in Synthesis Example 2 was dissolved in dimethylformamide. Next, the amine-functionalized glass substrate is immersed in a solution in which 2.5-norbornadiene-2,3-dicarboxylic acid anhydride is dissolved, and shaken for 12 hours to give 2.5-norbornadiene- to the amine-functionalized glass substrate. 2,3-dicarboxylic anhydride was introduced.
- the glass substrate reacted with the thiol-terminal bioprobe (thiol-terminal bioprobe) was immersed in the mixed solution of AgClO 4 and methanol and reacted for 12 hours to activate the surface of the glass substrate that was inactivated (step D).
- steps A) to D) were repeated to prepare another thiol-terminal bioprobe (thiol-terminal bioprobe) (Aptamer (HS-TATCAGTTCTTTGACCTTTGTCA-FAM-3 ', Bioneer)).
- a glass substrate having an activation region and an inactivation region was immersed in a solution in which 4-bromobenzenethiol (5 mg) was dissolved in dimethylformamide (1 mL) and reacted at room temperature for 12 hours.
- the glass substrate was washed with dimethylformamide and deionized water.
- the cleaned glass substrate was analyzed by x-ray photoelectron spectroscopy, and the results are shown in FIG. 6.
- the biosensor prepared in Preparation Example 1 was analyzed by a fluorescence microscope (EVOS® FL Cell Imaging System, ThermoFisher SCIENTIFIC). Is shown in FIG. 7.
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
The present invention relates to a biosensor substrate, a method for producing same, and a biosensor comprising same.
Description
본 발명은 다중 진단용 바이오 센서를 제조하는데 사용되는 바이오 센서 기판 및 이의 제조방법에 관한 것이다.The present invention relates to a biosensor substrate and a method of manufacturing the same used for manufacturing a multi-diagnosis biosensor.
현재까지 다양한 바이오/화학 센서가 개발되고 있고, 그 중 헬스케어 진단 산업 분야에서 위해요소(hazard)를 감지하는 바이오 센서(예를 들어, PCR, 진단 키트 등)는 정확성과 정밀성에서 우수한 결과를 보여줌으로써 산업용으로 널리 활용되고 있다.To date, various bio / chemical sensors have been developed, among which biosensors (eg PCR, diagnostic kits, etc.) that detect hazards in the healthcare diagnostic industry show excellent results in accuracy and precision. It is widely used for industrial purposes.
상기 바이오 센서의 기판(플랫폼)은 유리, 실리콘, 또는 고분자 등의 소재로 이루어져 있으며, 바이오 센서의 용도에 따라 기판의 소재가 결정되고 있다. 예를 들어 리얼타임 피씨알(RT-PCR)이나 바이오 칩과 같은 바이오 센서는 유리 또는 실리콘 소재의 기판이 사용되고 있다.The substrate (platform) of the biosensor is made of a material such as glass, silicon, or polymer, and the material of the substrate is determined according to the use of the biosensor. For example, biosensors such as real-time PCs (RT-PCR) and biochips are made of glass or silicon substrates.
이러한 바이오 센서의 측정은 유체역학에 기반을 두고 있어, 바이오 센서의 성능은 기판의 표면 성질에 따라 확연한 차이를 나타낸다. 예를 들어, 바이오 칩은 그 표면이 친수성인지 소수성인지에 따라 유체의 흐름이 달라져 반응속도의 차이를 가져오며, 이는 바이오 센서의 반응시간과 민감도에 중요한 영향을 끼치게 된다. 따라서 바이오 센서의 성능을 향상시키기 위해서는 어떠한 표면처리를 실시하여 제조된 기판을 사용할 것인지에 대해 중요하게 고려되어야 한다.The measurement of these biosensors is based on hydrodynamics, so the performance of the biosensors varies markedly with the surface properties of the substrate. For example, biochips have different flow rates depending on whether their surfaces are hydrophilic or hydrophobic, resulting in differences in reaction rates, which have a significant effect on the response time and sensitivity of the biosensor. Therefore, in order to improve the performance of the biosensor, it is important to consider what kind of surface treatment substrate is used.
그런데 현재 바이오 센서의 기판을 제조함에 있어 기판의 선택적 표면 기능화의 기술 개발이 부족한 상태임에 따라 다중 진단용 바이오 센서를 얻는데 한계가 있다. 또한 목표 물질을 검출하기 위한 바이오 탐침(항원, 압타머, 단백질 등)을 기판에 부착하기 위해 복잡한 후처리 공정이 요구됨에 따라 바이오 센서의 제조 효율이 떨어지는 문제점도 있다.However, there is a limitation in obtaining a multi-diagnosis biosensor as the current state of the technology development of selective surface functionalization of the substrate is insufficient in manufacturing a biosensor substrate. In addition, as a complex post-treatment process is required to attach a bioprobe (antigen, aptamer, protein, etc.) for detecting a target substance to a substrate, there is a problem in that manufacturing efficiency of the biosensor is deteriorated.
본 발명은 상기한 문제점을 해결하기 위해, 다중 진단용 바이오 센서를 효율적으로 제공할 수 있는 바이오 센서 기판을 제공하는 것을 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide a biosensor substrate that can efficiently provide multiple diagnostic biosensors.
또한, 본 발명은 상기 바이오 센서 기판의 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for manufacturing the biosensor substrate.
또한, 본 발명은 상기 바이오 센서 기판을 포함하는 바이오 센서를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a biosensor comprising the biosensor substrate.
또한, 본 발명은 상기 바이오 센서의 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method of manufacturing the biosensor.
상기 과제를 해결하기 위해 본 발명은, 기판부; 및 상기 기판부의 표면에 결합되며, 빛 감응형 유도체를 포함하는 개질부;를 포함하고, 상기 빛 감응형 유도체가 노르보나디엔(Norbornadiene)계 유도체인 것인 바이오 센서 기판을 제공한다.The present invention to solve the above problems, the substrate portion; And a modification unit coupled to the surface of the substrate unit and including a light sensitive derivative, wherein the light sensitive derivative is a norbornadiene-based derivative.
상기 노르보나디엔계 유도체는 하기 화학식 1로 표시되는 구조를 가질 수 있다.The norbornadiene derivative may have a structure represented by Formula 1 below.
[화학식 1][Formula 1]
상기 기판부는 유리, 실리콘 및 석영으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.The substrate portion is made of glass, silicon and quartz It may include one or more selected from the group consisting of.
상기 개질부는 상기 기판부의 표면에 복수 개로 결합될 수 있다.The modified part may be coupled to a plurality of surfaces of the substrate part.
본 발명은, a) 기판부를 준비하는 단계; b) 상기 준비된 기판부를 아민 함유 알콕시실란계 화합물과 반응시키는 단계; 및 c) 상기 아민 함유 알콕시실란계 화합물과 반응한 기판부에 노르보나디엔(Norbornadiene)계 화합물을 도입하여 개질부를 형성하는 단계;를 포함하는 바이오 센서 기판의 제조방법을 제공한다.The present invention, a) preparing a substrate portion; b) reacting the prepared substrate portion with an amine-containing alkoxysilane-based compound; And c) introducing a norbornadiene compound to a substrate portion reacted with the amine-containing alkoxysilane compound to form a modified portion.
상기 아민 함유 알콕시실란계 화합물은 (3-아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane) 및 (3-아미노프로필)트리에톡시실란((3-Aminopropyl)triethoxysilane)으로 이루어진 군에서 선택된 1종 이상일 수 있다.The amine-containing alkoxysilane compound is selected from the group consisting of (3-aminopropyl) trimethoxysilane and (3-aminopropyl) triethoxysilane ((3-Aminopropyl) triethoxysilane) It may be one or more.
상기 노르보나디엔계 화합물은 하기 화학식 2로 표시되는 화합물일 수 있다.The norbornadiene-based compound may be a compound represented by Formula 2 below.
[화학식 2][Formula 2]
본 발명은, 상기 바이오 센서 기판; 및 상기 바이오 센서 기판의 개질부에 결합된 바이오 탐침부;를 포함하는 바이오 센서를 제공한다.The present invention, the biosensor substrate; And a bio probe unit coupled to a reforming unit of the bio sensor substrate.
상기 바이오 탐침부는 복수 개로 포함되며, 상기 복수 개의 바이오 탐침부는 서로 상이한 표적물질을 탐침할 수 있다.The bioprobe unit may include a plurality, and the plurality of bioprobes may probe different target materials from each other.
본 발명은, A) 상기 바이오 센서 기판을 준비하는 단계; B) 상기 바이오 센서 기판의 일부 영역을 마스킹(masking)하고, 빛을 조사하여 활성화된 개질부와 비활성화된 개질부를 형성하는 단계; C) 상기 활성화된 개질부에 바이오 탐침부를 결합시키는 단계; D) 상기 비활성화된 개질부를 활성화시키는 단계; 및 E) 상기 D) 단계에서 활성화된 개질부에 상기 C) 단계에서 결합된 바이오 탐침부와 상이한 표적물질을 탐침하는 바이오 탐침부를 결합시키는 단계;를 포함하는 바이오 센서의 제조방법을 제공한다.The present invention, A) preparing the biosensor substrate; B) masking a portion of the biosensor substrate and irradiating light to form an activated reformed portion and an inactivated modified portion; C) binding a bioprobe to the activated reforming unit; D) activating the deactivated reformate; And E) combining the bioprobe unit that probes a different target material with the bioprobe unit coupled in step C) to the reformer activated in step D).
상기 D) 단계에서 비활성화된 개질부의 활성화는 열처리 또는 전이금속과의 반응에 의해 이루어지는 것일 수 있다.The activation of the reformed portion deactivated in step D) may be performed by heat treatment or reaction with a transition metal.
본 발명에 따른 바이오 센서 기판은 빛에 의해 선택적으로 활성화 또는 비활성화되는 개질부를 포함하기 때문에 이를 이용하여 바이오 센서를 제조할 경우 다중 진단용 바이오 센서를 효율적으로 제공할 수 있다.Since the biosensor substrate according to the present invention includes a reforming unit selectively activated or deactivated by light, the biosensor substrate may efficiently provide multiple diagnostic biosensors when the biosensor is manufactured using the biosensor substrate.
도 1 및 도 2는 본 발명의 바이오 센서 기판을 설명하기 위한 참고도이다.1 and 2 are reference diagrams for explaining the biosensor substrate of the present invention.
도 3은 본 발명의 바이오 센서 기판의 제조방법을 설명하기 위한 참고도이다.3 is a reference diagram for explaining a method of manufacturing the biosensor substrate of the present invention.
도 4는 본 발명의 바이오 센서를 설명하기 위한 참고도이다.4 is a reference diagram for explaining the biosensor of the present invention.
도 5는 본 발명의 바이오 센서의 제조방법을 설명하기 위한 참고도이다.5 is a reference diagram for explaining a method of manufacturing a biosensor according to the present invention.
도 6은 본 발명의 실험예 1을 설명하기 위한 참고도이다.6 is a reference diagram for explaining an experimental example 1 of the present invention.
도 7은 본 발명의 실험예 2를 설명하기 위한 참고도이다.7 is a reference diagram for explaining an experimental example 2 of the present invention.
<부호의 설명><Description of the code>
10: 기판부10: substrate portion
20, 20a, 20b: 개질부20, 20a, 20b: reforming part
100: 바이오 센서 기판100: biosensor substrate
200, 200a, 200b: 바이오 탐침부200, 200a, 200b: bio probe part
이하 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 발명은 바이오 센서의 베이스 기재가 되는 바이오 센서 기판의 표면을 개질함에 있어, 표면을 전체적 또는 일괄적으로 개질하던 종래의 방법(예를 들어, 플라즈마 처리)과 달리 표면을 선택적으로 개질하여 다양한 바이오 탐침부를 결합시킬 수 있도록 한 것이 특징으로, 이에 대해 도면을 참조하여 구체적으로 설명하면 다음과 같다.In the present invention, in the modification of the surface of the biosensor substrate, which is the base substrate of the biosensor, unlike the conventional method (for example, plasma treatment) in which the surface is modified in whole or in a batch, the surface is selectively modified so that various bio Characterized in that it can be combined with the probe, it will be described in detail with reference to the drawings as follows.
1. 바이오 센서 기판1. Biosensor Substrate
도 1을 참조하면, 본 발명의 바이오 센서 기판은 기판부(10)와 개질부(20)를 포함한다.Referring to FIG. 1, the biosensor substrate of the present invention includes a substrate portion 10 and a reforming portion 20.
본 발명의 바이오 센서 기판에 포함되는 기판부(10)는 바이오 센서 기판의 베이스 역할을 하는 것으로, 당 업계에 공지된 물질로 이루어질 수 있다. 구체적으로 기판부(10)는 유리, 실리콘 및 석영으로 이루어진 군에서 선택된 1종 이상으로 이루어질 수 있다.The substrate unit 10 included in the biosensor substrate of the present invention serves as a base of the biosensor substrate, and may be made of a material known in the art. Specifically, the substrate portion 10 may be made of one or more selected from the group consisting of glass, silicon, and quartz.
본 발명의 바이오 센서 기판에 포함되는 개질부(20)는 기판부(10)의 표면에 결합되어 존재한다. 상기 개질부(20)는 바이오 센서 기판의 제조과정에서 기판부(10)의 표면개질 과정을 거침에 따라 형성되는 것으로, 빛 감응형 유도체를 포함한다.The reforming unit 20 included in the biosensor substrate of the present invention is present in combination with the surface of the substrate unit 10. The reforming unit 20 is formed by undergoing a surface modification process of the substrate unit 10 in the manufacturing process of the biosensor substrate, and includes a light-sensitive derivative.
상기 빛 감응형 유도체는 노르보나디엔(Norbornadiene)계 유도체인 것으로, 노르보나디엔기를 포함하는 노르보나디엔계 유도체일 수 있다. 상기 노르보나디엔계 유도체에 의해 개질부(20)는 빛(예를 들어, 자외선)이 조사될 경우 선택적으로 활성화 또는 비활성화될 수 있다The light-sensitive derivative is a norbornadiene-based derivative, and may be a norbornadiene-based derivative including a norbornadiene group. The modification unit 20 may be selectively activated or deactivated when light (for example, ultraviolet rays) is irradiated by the norbornadiene-based derivative.
상기 노르보나디엔계 유도체는 특별히 한정되지 않으나, 하기 화학식 1로 표시되는 구조를 갖는 것이 바람직하다. 하기 화학식 1로 표시되는 화합물은 빛에 대한 반응성이 우수하면서 특정 조건에 따라 개질부(20)의 활성화와 비활성화의 유도를 용이하게 실시할 수 있기 때문이다.The norbornadiene-based derivative is not particularly limited, but preferably has a structure represented by the following formula (1). This is because the compound represented by the following Chemical Formula 1 is excellent in reactivity with light and can easily induce activation and deactivation of the reforming unit 20 according to specific conditions.
[화학식 1][Formula 1]
이러한 노르보나디엔계 유도체는 일 측에 아민기를 포함하고 타 측에 친수성기를 포함하는 링커(linker)에 의해 기판부(10)에 결합될 수 있다. 즉, 개질부(20)는 링커와 노르보나디엔계 유도체로 이루어지며, 상기 링커의 친수성기가 기판부(10)의 표면에 결합되고, 상기 링커의 아민기측에 노르보나디엔계 유도체가 결합되어 개질부(20)가 기판부(10)의 표면에 고정될 수 있다.The norbornadiene-based derivative may be coupled to the substrate portion 10 by a linker including an amine group on one side and a hydrophilic group on the other side. That is, the reforming unit 20 is composed of a linker and a norbonadiene-based derivative, the hydrophilic group of the linker is bonded to the surface of the substrate portion 10, the norbornadiene-based derivative is bonded to the amine group side of the linker is modified The portion 20 may be fixed to the surface of the substrate portion 10.
구체적으로 상기 링커는 하기 화학식 3으로 표시되는 반복 단위를 포함하는 구조를 가질 수 있다.Specifically, the linker may have a structure including a repeating unit represented by Formula 3 below.
[화학식 3][Formula 3]
상기 화학식 3에서 n은 100 내지 1,000,000의 정수이다.In Formula 3 n is an integer of 100 to 1,000,000.
참고로, 상기 화학식 2 및 화학식 3에서 *는 화학식 2와 화학식 3이 서로 결합되는 부위를 의미한다.For reference, in Formulas 2 and 3, * means a site where Formula 2 and Formula 3 are bonded to each other.
한편 개질부(20)는 도 2에 도시된 바와 같이 복수 개로 기판부(10)의 표면에 결합될 수 있다.Meanwhile, as illustrated in FIG. 2, the modifying unit 20 may be coupled to the surface of the substrate unit 10 in plurality.
2. 바이오 센서 기판의 제조방법2. Manufacturing Method of Biosensor Substrate
본 발명은 상술한 바이오 센서 기판의 제조방법을 제공하는데, 이에 대해 도 3을 참조하여 구체적으로 설명하면 다음과 같다.The present invention provides a method of manufacturing the above-described biosensor substrate, which will be described in detail with reference to FIG. 3 as follows.
a) 기판부(10)의 준비a) Preparation of the board | substrate part 10
먼저, 기판부(10)를 준비한다. 상기 기판부(10)의 준비는 통상적으로 공지된 방법에 의해 이루어질 수 있다.First, the board | substrate part 10 is prepared. Preparation of the substrate portion 10 may be made by a conventionally known method.
b) 아민 함유 알콕시실란계 화합물과의 반응b) reaction with amine-containing alkoxysilane-based compounds
상기 준비된 기판부(10)를 아민 함유 알콕시실란계 화합물과 반응시킨다. 구체적으로, 기판부(10)를 아민 함유 알콕시실란계 화합물과 유기 용매(예를 들어, 벤젠, 톨루엔, 자일렌 등)가 혼합된 용액에 담그고 일정 시간 동안 반응시켜 기판부(10)의 표면에 빛 감응형 화합물의 유도체를 고정시킬 수 있는 링커를 결합시킨다.The prepared substrate portion 10 is reacted with an amine-containing alkoxysilane compound. Specifically, the substrate portion 10 is immersed in a solution in which an amine-containing alkoxysilane compound and an organic solvent (for example, benzene, toluene, xylene, etc.) are mixed and reacted for a predetermined time to the surface of the substrate portion 10. Linkers capable of immobilizing derivatives of light-sensitive compounds are combined.
상기 아민 함유 알콕시실란계 화합물은 특별히 한정되지 않으나, (3-아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane) 및 (3-아미노프로필)트리에톡시실란((3-Aminopropyl)triethoxysilane)으로 이루어진 군에서 선택된 1종 이상의 화합물인 것이 바람직하다.Although the amine-containing alkoxysilane-based compound is not particularly limited, (3-aminopropyl) trimethoxysilane and (3-aminopropyl) triethoxysilane ((3-Aminopropyl) triethoxysilane) It is preferably at least one compound selected from the group consisting of.
상기 기판부(10)와 아민 함유 알콕시실란계 화합물의 반응은 불활성 가스(예를 들어, 질소, 또는 아르곤) 존재 하에 이루어질 수 있고, 반응 시간은 특별히 한정되지 않으나 3 내지 9 시간일 수 있다.The reaction between the substrate portion 10 and the amine-containing alkoxysilane-based compound may be performed in the presence of an inert gas (eg, nitrogen or argon), and the reaction time may be 3 to 9 hours, although not particularly limited.
c) 개질부(20)의 형성c) formation of the reforming portion 20
상기 아민 함유 알콕시실란계 화합물과 반응한 기판부(10)에 노르보나디엔(Norbornadiene)계 화합물을 도입하여 개질부(20)를 형성한다. 구체적으로, 아민 함유 알콕시실란계 화합물과 반응한 기판부(10)를 빛 감응형 화합물인 노르보나디엔계 화합물과 유기 용매(예를 들어, 디메틸포름아미드, 디메틸아세트아미드, 테트라하이드로퓨란, N-메틸-2-피롤리돈 등)가 혼합된 용액에 담그고 일정 시간 동안 반응시켜 기판부(10)의 표면에 결합된 링커에 노르보나디엔계 화합물의 유도체를 고정시킨다.A norbornadiene-based compound is introduced into the substrate 10 reacted with the amine-containing alkoxysilane-based compound to form a reformed portion 20. Specifically, the substrate portion 10 reacted with the amine-containing alkoxysilane-based compound is subjected to a norbornenadiene-based compound, which is a light-sensitive compound, and an organic solvent (for example, dimethylformamide, dimethylacetamide, tetrahydrofuran, N- Methyl-2-pyrrolidone and the like) are immersed in the mixed solution and reacted for a predetermined time to fix the derivative of the norbornadiene compound on the linker bonded to the surface of the substrate portion 10.
상기 노르보나디엔계 화합물은 노르보나디엔기를 포함할 수 있다.The norbornadiene-based compound may include a norbornadiene group.
상기 노르보나디엔계 화합물은 특별히 한정되지 않으나, 하기 화학식 2로 표시되는 화합물인 것이 바람직하다.The norbornadiene-based compound is not particularly limited, but is preferably a compound represented by the following formula (2).
[화학식 2][Formula 2]
상기 기판부(10)와 노르보나디엔계 화합물의 반응 시간은 특별히 한정되지 않으나, 10 내지 15 시간일 수 있다.The reaction time of the substrate unit 10 and the norbornadiene compound is not particularly limited, but may be 10 to 15 hours.
3. 바이오 센서3. biosensor
본 발명은 다양한 바이오 표적물질을 탐침(검출)할 수 있는 바이오 센서를 제공하는데, 이에 대해 도 4를 참조하여 구체적으로 설명하면 다음과 같다.The present invention provides a biosensor capable of probing (detecting) various bio target materials, which will be described in detail with reference to FIG. 4.
본 발명의 바이오 센서는 바이오 센서 기판(100)과 바이오 탐침부(200)를 포함한다.The biosensor of the present invention includes a biosensor substrate 100 and a bioprobe unit 200.
본 발명의 바이오 센서에 포함되는 바이오 센서 기판(100)은 바이오 센서의 베이스 기재 역할을 하는 것으로, 이에 대한 설명은 상기 '1. 바이오 센서 기판'에서 설명한 바와 동일하므로 생략한다.The biosensor substrate 100 included in the biosensor of the present invention serves as a base substrate of the biosensor. It is the same as that described in "Bio-Sensor Substrate" and will be omitted.
본 발명의 바이오 센서에 포함되는 바이오 탐침부(200)는 바이오 센서 기판(100)의 개질부(20)에 결합(구체적으로, 개질부(20)의 노르보나디엔계 유도체에 결합)되는 것으로, 바이오 표적물질(예를 들어, 표적 핵산, 혈당, 당화 단백질 등)을 탐침 및 검출한다. 상기 바이오 탐침부(200)는 바이오 센서 기판(100)의 개질부(20)와 결합되는 작용기(예를 들어, -S- 등)와 바이오 표적물질과 결합할 수 있는 반응기(예를 들어, 항원, 압타머, 단백질 등)를 갖는 것이라면 특별히 한정되지 않는다.The bioprobe 200 included in the biosensor of the present invention is to be coupled to the modified portion 20 of the biosensor substrate 100 (specifically, to the norbornadiene derivative of the modified portion 20), Probe and detect bio targets (eg, target nucleic acids, blood glucose, glycated proteins, etc.). The bioprobe 200 may be a functional group (eg, -S-, etc.) coupled with the reforming unit 20 of the biosensor substrate 100 and a reactor (eg, an antigen) capable of binding to a biotarget material. , Aptamer, protein, etc.) is not particularly limited.
한편 바이오 센서 기판(100)에 개질부(20)가 복수 개일 경우, 바이오 센서에 포함되는 바이오 탐침부(200)도 복수 개로 구비될 수 있다. 이때, 복수 개의 바이오 탐침부는 서로 상이한 바이오 표적물질을 탐침할 수 있는 것으로, 이로 인해 본 발명은 다중 진단용 바이오 센서를 제공할 수 있다.Meanwhile, when there are a plurality of reformers 20 on the biosensor substrate 100, a plurality of bioprobes 200 included in the biosensor may also be provided. In this case, the plurality of bio probes may probe different bio target materials from each other, and accordingly, the present invention may provide a multi-diagnosis bio sensor.
4. 바이오 센서의 제조방법4. Manufacturing method of bio sensor
본 발명은 상술한 바이오 센서의 제조방법을 제공하는데, 이에 대해 도 5를 참조하여 구체적으로 설명하면 다음과 같다.The present invention provides a method of manufacturing the above-described biosensor, which will be described in detail with reference to FIG. 5 as follows.
A) 바이오 센서 기판(100)의 준비A) Preparation of the biosensor substrate 100
먼저, 상술한 바이오 센서 기판(100)을 준비한다.First, the biosensor substrate 100 described above is prepared.
B) 활성화된 개질부(20a)와 비활성화된 개질부(20b)의 형성B) Formation of Activated Reform 20a and Deactivated Reform 20b
상기 준비된 바이오 센서 기판(100)의 일부 영역을 마스킹(masking)하고, 빛(예를 들어, 자외선)을 조사하여 활성화된 개질부(20a)와 비활성화된 개질부(20b)를 형성한다.A portion of the prepared biosensor substrate 100 is masked and irradiated with light (for example, ultraviolet rays) to form the activated reformed portion 20a and the inactivated modified portion 20b.
구체적으로, 바이오 센서 기판(100)에서 바이오 탐침부(200)를 결합시키고자 하는 영역을 선택한 후, 선택된 영역 위에 마스크를 올려놓고 빛을 조사하면 선택된 영역의 개질부(20a)는 활성화 상태를 유지하게 되고, 선택되지 않은 영역의 개질부(20b)는 빛 감응형 유도체와 빛의 반응에 의해 비활성화 상태에 놓이게 되어 활성화된 개질부(20a)와 비활성화된 개질부(20b)를 형성할 수 있다.Specifically, after selecting the region to which the bio probe unit 200 is to be coupled in the biosensor substrate 100, the mask is placed on the selected region and irradiated with light, and the modified portion 20a of the selected region is maintained in an active state. In addition, the reformed portion 20b of the non-selected region may be placed in an inactive state by the reaction of the light-sensitive derivative with light to form the activated reformed portion 20a and the inactivated modified portion 20b.
C) 바이오 탐침부(200a)의 결합C) bonding of the bioprobe unit 200a
상기 활성화된 개질부(20a)에 바이오 탐침부(200a)를 결합시킨다. 상기 바이오 탐침부(200a)의 결합은 통상적으로 공지된 방법(예를 들어, 바이오-티올레이션(bio-thiolation))에 의해 이루어질 수 있다.The bio probe 200a is coupled to the activated reforming unit 20a. The bio probe 200a may be combined by a conventionally known method (for example, bio-thiolation).
D) 비활성화된 개질부(20b)의 활성화D) Activation of the disabled reformer 20b
상기 바이오 탐침부(200a)를 결합시킨 후 비활성화된 개질부(20b)를 활성화시킨다. 상기 비활성화된 개질부(20b)를 활성화시키는 방법은 특별히 한정되지 않으나, 열처리 또는 전이금속과의 반응에 의해 이루어질 수 있다.After combining the bioprobe 200a, the deactivated reforming unit 20b is activated. The method of activating the deactivated reforming unit 20b is not particularly limited, but may be performed by heat treatment or reaction with a transition metal.
상기 개질부(20b)의 열처리 조건은 특별히 한정되지 않으나, 70 내지 90 ℃에서 15 내지 24 시간 동안 이루어질 수 있다.The heat treatment condition of the reforming unit 20b is not particularly limited, but may be performed at 70 to 90 ° C. for 15 to 24 hours.
상기 개질부(20b)와 전이금속의 반응도 특별히 한정되지 않으나, 은(Ag), 코발트(Co), 또는 주석(Sn)이 함유된 용액에 바이오 센서 기판(100)을 담그고 10 내지 14 시간 동안 반응시키는 것으로 이루어질 수 있다.Although the reaction between the modified part 20b and the transition metal is not particularly limited, the biosensor substrate 100 is immersed in a solution containing silver (Ag), cobalt (Co), or tin (Sn) and reacted for 10 to 14 hours. It can be made to.
E) 바이오 탐침부(200b)의 결합E) binding of the bioprobe unit 200b
상기 D) 단계를 통해 활성화된 개질부(20b)에 상기 C) 단계에서 결합된 바이오 탐침부(200a)와 상이한 바이오 표적물질을 탐침하는 바이오 탐침부(200b)를 결합시킨다.The bio-probe 200b for probing different bio target materials from the bio-probe 200a coupled in the step C) is coupled to the reformed portion 20b activated through the step D).
구체적으로, 바이오 탐침부(200a)가 결합된 개질부(20a) 영역과, 이미 결합된 바이오 탐침부(200a)와 상이한 바이오 표적물질을 탐침하는 새로운 바이오 탐침부(200b)를 결합시킬 개질부(20b) 영역을 마스킹(masking)하고 빛(예를 들어, 자외선)을 조사하여 마스킹되지 않은 영역을 비활성화시킨 후, 새로운 바이오 탐침부(200b)를 결합시키는 과정을 거쳐 상기 C) 단계에서 결합된 바이오 탐침부(200a)와 상이한 바이오 표적물질을 탐침하는 바이오 탐침부(200b)를 결합시킬 수 있다.Specifically, the reforming unit 20a to which the bio probe unit 200a is coupled, and a reforming unit to couple the new bio probe unit 200b to probe a different bio target material from the bio probe unit 200a to which the bio probe unit 200a is coupled ( 20b) masking the region and irradiating light (for example, ultraviolet rays) to deactivate the unmasked region, and then combining the new bioprobe 200b to process the bio-bonded in step C). The bio probe 200b may be combined with the probe 200a to probe different bio target materials.
상기 바이오 탐침부(200a)와 상이한 바이오 표적물질을 탐침하는 바이오 탐침부(200b)의 결합은 통상적으로 공지된 방법(예를 들어, 바이오-티올레이션(bio-thiolation))에 의해 이루어질 수 있다.Combination of the bioprobe 200a and the bioprobe 200b for probing a different bio target material may be generally performed by a known method (eg, bio-thiolation).
이와 같은 E) 단계를 반복 실시함에 따라 본 발명은 다양한 바이오 표적물질을 탐침 및 검출할 수 있는 바이오 센서를 제조할 수 있다.By repeating the above step E), the present invention can produce a biosensor capable of probing and detecting various bio target materials.
이상에 따른 본 발명은 빛이 조사될 경우 비활성화되었다가 특정 조건(예를 들어, 열처리, 전이금속과의 반응 등)에 의해 활성화되는 가역 반응이 가능한 빛 감응형 화합물을 이용하여 바이오 센서 기판 및 이를 포함하는 바이오 센서를 제조하기 때문에 다중 진단용 바이오 센서의 제조 효율을 높일 수 있다.According to the present invention, a biosensor substrate and a biosensor using a light sensitive compound capable of reversible reaction which is inactivated when irradiated with light and activated by specific conditions (eg, heat treatment, reaction with a transition metal, etc.) Since the manufacturing of the biosensor to include can increase the manufacturing efficiency of the multi-diagnostic biosensor.
구체적으로 본 발명은 빛 감응형 유도체가 결합된 개질부를 포함하는 바이오 센서 기판에 빛을 조사함에 있어, 원하는 영역별로 빛을 조사하여 바이오 센서 기판을 선택적으로(영역별로) 활성화 또는 비활성화시키고, 활성화된 영역에 다양한 바이오 탐침부를 결합시켜 바이오 센서를 제조함에 따라 다중 진단용 바이오 센서를 효율적으로 제조할 수 있다.Specifically, in the present invention, in irradiating light to a biosensor substrate including a modified portion combined with a light-sensitive derivative, the biosensor substrate is selectively activated or deactivated by irradiating light for each desired region. As the biosensor is manufactured by combining various bioprobes in the region, multiple diagnostic biosensors may be efficiently manufactured.
또한 본 발명은 마스크를 사용하여 바이오 센서 기판의 활성화와 비활성화를 선택적으로(영역별로) 유도할 수 있기 때문에 초소형이면서 마이크로 패턴을 갖는 바이오 센서를 용이하게 제조할 수 있다.In addition, the present invention can easily induce the activation and deactivation of the biosensor substrate (region-by-region) using a mask, it is possible to easily manufacture a biosensor having a micro-miniature pattern.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following Examples are merely to illustrate the present invention, the present invention is not limited by the following Examples.
[원료 물질 및 기기][Raw materials and devices]
디시클로펜타디엔(dicyclopentadiene), 2-부틴디오익산(2-butynedioic acid), 1,4-디옥산(1,4-dioxane), N,N'-디시클로헥실카르보디이미드(N,N'-Dicyclohexylcarbodiimide), 3-(아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane)(97 %)을 각각 알드리치(Aldrich)사로부터 구입하여 정제없이 사용하였다. 측정 기기(Instrumentation)로는 A JEOL 3700를 사용하였다.Dicyclopentadiene, 2-butynedioic acid, 1,4-dioxane, N, N'-dicyclohexylcarbodiimide (N, N ') -Dicyclohexylcarbodiimide) and 3- (aminopropyl) trimethoxysilane (97%) were each purchased from Aldrich and used without purification. A JEOL 3700 was used as an instrument.
[합성예 1] 노르보나디엔-2,3-디카르복시산(Norbornadiene-2,3-dicarboxylic acid)의 합성Synthesis Example 1 Synthesis of Norbornadiene-2,3-dicarboxylic Acid
디시클로펜타디엔(7 ㎖, 52 mmol)을 증류하여 모노머릭 시클로펜타디엔(monomeric cyclopentadiene)을 얻었다. 얻어진 모노머릭 시클로펜타디엔(2.0 g, 30 mmol)을 쿨링 시스템(ice-water bath) 하의 1,4-디오닉산(20 ㎖) 및 2-부틴디오익산(3.0 g, 26.3 mmol)이 혼합된 용액에 첨가하였다. 다음, 모노머릭 시클로펜타디엔이 첨가된 용액을 상온에서 밤새도록 저어준 후 헥산(5 ㎖)을 첨가하고 수집하는 과정을 거쳐 고체 침전물(4.18 g, 수율: 88 %)을 얻었다.Dicyclopentadiene (7 mL, 52 mmol) was distilled off to obtain monomeric cyclopentadiene (monomeric cyclopentadiene). The resulting monomeric cyclopentadiene (2.0 g, 30 mmol) was mixed with 1,4-dionic acid (20 mL) and 2-butyndioic acid (3.0 g, 26.3 mmol) under an ice-water bath. To the solution. Next, the solution containing monomeric cyclopentadiene was stirred at room temperature overnight, and then hexane (5 mL) was added and collected to obtain a solid precipitate (4.18 g, yield: 88%).
[합성예 2] 2.5-노르보나디엔-2,3-디카르복시산 무수물(2,5-Norbornadiene-2,3-dicarboxylic acid anhydride)의 합성Synthesis Example 2 Synthesis of 2.5-norbornadiene-2,3-dicarboxylic acid anhydride (2,5-Norbornadiene-2,3-dicarboxylic acid anhydride)
합성예 1에서 합성된 노르보나디엔-2,3-디카르복시산(500 mg, 2.78 mmol, 1.0 eq)과 아세톤(28 ㎖)이 혼합된 혼합물을 N,N'-디시클로헥실카르보디이미드(573 mg, 2.78 mmol, 1.0 eq) 용액에 첨가하였다. 다음, 혼합물이 첨가된 용액을 상온에서 밤새도록 저어준 후 여과 및 증발 과정(evaporating process)을 거쳐 생성물을 수득하였다. 수득된 생성물을 숏 컬럼 크로마토그래피(short column chromatography)를 통해 정제하여 정제된 생성물(215 mg, 수율: 43 %)을 얻었다.The mixture of norbornadiene-2,3-dicarboxylic acid (500 mg, 2.78 mmol, 1.0 eq) and acetone (28 mL) synthesized in Synthesis Example 1 was mixed with N, N'-dicyclohexylcarbodiimide (573). mg, 2.78 mmol, 1.0 eq) was added to the solution. Then, the solution to which the mixture was added was stirred at room temperature overnight, and then, the product was obtained by filtration and evaporating process. The obtained product was purified by short column chromatography to give the purified product (215 mg, yield: 43%).
1H-NMR (CDCl3): d 2.71 (s, 2H), 3.99 (s, 2H), 6.98 (s, 2H). 1 H-NMR (CDCl 3 ): d 2.71 (s, 2H), 3.99 (s, 2H), 6.98 (s, 2H).
[실시예 1]Example 1
유리기판(glass substrate)을 톨루엔(20 ㎖)과 3-(아미노프로필)트리메톡시실란(10 ㎕)이 혼합된 용액에 담그고, 질소 분위기 하에 6 시간 동안 흔들어 주는 과정을 거쳐 아민-기능화된 유리기판을 얻었다. 다음, 아민으로 기능화된 유리기판을 톨루엔으로 세정하고, 톨루엔과 메탄올이 1:1의 부피비로 혼합된 혼합물로 미반응된 3-(아미노프로필)트리메톡시실란을 제거하였다.The glass substrate was immersed in a solution of toluene (20 ml) and 3- (aminopropyl) trimethoxysilane (10 µl), and shaken for 6 hours in a nitrogen atmosphere to give amine-functionalized glass. A substrate was obtained. Next, the glass substrate functionalized with amine was washed with toluene, and unreacted 3- (aminopropyl) trimethoxysilane was removed with a mixture of toluene and methanol in a volume ratio of 1: 1.
합성예 2에서 얻어진 2.5-노르보나디엔-2,3-디카르복시산 무수물을 디메틸포름아미드(dimethylformamide)에 용해시켰다. 다음, 2.5-노르보나디엔-2,3-디카르복시산 무수물이 용해된 용액에 아민-기능화된 유리기판을 담그고, 12 시간 동안 흔들어 주는 과정을 거쳐 아민-기능화된 유리기판에 2.5-노르보나디엔-2,3-디카르복시산 무수물을 도입하였다.2.5-norbornadiene-2,3-dicarboxylic anhydride obtained in Synthesis Example 2 was dissolved in dimethylformamide. Next, the amine-functionalized glass substrate is immersed in a solution in which 2.5-norbornadiene-2,3-dicarboxylic acid anhydride is dissolved, and shaken for 12 hours to give 2.5-norbornadiene- to the amine-functionalized glass substrate. 2,3-dicarboxylic anhydride was introduced.
[제조예 1][Production Example 1]
2.5-노르보나디엔-2,3-디카르복시산 무수물이 도입된 실시예 1의 유리기판의 일부 표면을 마스크(hand-made mask)로 커버하였다. 다음, 유리기판의 표면에 자외선(=300 ㎚)을 조사하여 마스크로 커버되지 않은 유리기판의 표면을 비활성화시켜(quadricyclane form) 티올레이션(thiolation) 반응이 일어나지 않도록 하였다(A) 및 B) 단계).Part of the surface of the glass substrate of Example 1 into which 2.5-norbornadiene-2,3-dicarboxylic anhydride was introduced was covered with a hand-made mask. Next, the surface of the glass substrate was irradiated with ultraviolet rays (= 300 nm) to inactivate the surface of the glass substrate not covered with a mask (quadricyclane form) so that a thiolation reaction did not occur (steps A and B)). .
그 다음, 형광 라벨(fluorescence label)된 티올-말단 바이오프로브(thiol-terminal bioprobe)(펩타이드(HS-CDMSPPWHK-K-FITC, Lusen Sci.,))가 함유된 10 ㎕의 용액과 1 ㎖의 디메틸포름아미드가 혼합된 용액에 일부 표면만이 활성화된 유리기판을 담그고 12 시간 동안 반응시킨 후, 디메틸포름아미드 및 탈이온수로 세정하였다(C) 단계).Next, 10 μl of solution containing fluorescence labeled thiol-terminal bioprobe (peptide (HS-CDMSPPWHK-K-FITC, Lusen Sci.,)) And 1 ml of dimethyl After immersing the glass substrate on which only part of the surface was activated in the mixed solution of formamide and reacting for 12 hours, the mixture was washed with dimethylformamide and deionized water (C).
다음, 티올-말단 바이오프로브(thiol-terminal bioprobe)와 반응한 유리 기판을 AgClO4와 메탄올이 혼합된 용액에 담그고 12 시간 동안 반응시켜 비활성화되었던 유리기판의 표면을 활성화시켰다(D) 단계).Next, the glass substrate reacted with the thiol-terminal bioprobe (thiol-terminal bioprobe) was immersed in the mixed solution of AgClO 4 and methanol and reacted for 12 hours to activate the surface of the glass substrate that was inactivated (step D).
이후, 상기 A) 내지 D) 단계를 반복하여 다른 티올-말단 바이오프로브(thiol-terminal bioprobe)(압타머(HS-TATCAGTTCTTTGACCTTTGTCA-FAM-3', Bioneer))가 결합된 바이오 센서를 제조하였다.Thereafter, steps A) to D) were repeated to prepare another thiol-terminal bioprobe (thiol-terminal bioprobe) (Aptamer (HS-TATCAGTTCTTTGACCTTTGTCA-FAM-3 ', Bioneer)).
[실험예 1] 기판의 활성화와 비활성화 여부 검증Experimental Example 1 Verification of Activation and Deactivation of Substrate
2.5-노르보나디엔-2,3-디카르복시산 무수물이 도입된 실시예 1의 유리기판의 일부 표면을 마스크(hand-made mask)로 커버하였다. 다음, 유리기판의 표면에 자외선(=300 ㎚)을 조사하여 마스크로 커버되지 않은 유리기판의 표면을 비활성화시켜(quadricyclane form) 티올레이션(thiolation) 반응이 일어나지 않도록 하였다.Part of the surface of the glass substrate of Example 1 into which 2.5-norbornadiene-2,3-dicarboxylic anhydride was introduced was covered with a hand-made mask. Next, the surface of the glass substrate was irradiated with ultraviolet light (= 300 nm) to inactivate the surface of the glass substrate not covered with a mask (quadricyclane form) so that a thiolation reaction did not occur.
다음, 활성화 영역과 비활성화 영역을 갖는 유리기판을, 디메틸포름아미드(1 mL)에 4-브로모벤젠사이올(4-Bromobenzenethiol, 5 mg)이 용해된 용액에 담그고 상온에서 12시간 동안 반응 후, 디메틸포름아미드 및 탈이온수로 유리기판을 세정하였다.Next, a glass substrate having an activation region and an inactivation region was immersed in a solution in which 4-bromobenzenethiol (5 mg) was dissolved in dimethylformamide (1 mL) and reacted at room temperature for 12 hours. The glass substrate was washed with dimethylformamide and deionized water.
세정이 완료된 유리기판을 x-ray 광전자분광법으로 분석하였으며, 그 결과를 도 6에 나타내었다.The cleaned glass substrate was analyzed by x-ray photoelectron spectroscopy, and the results are shown in FIG. 6.
도 6을 참조하면, 마스크로 커버되어 활성화 상태가 유지된 영역은 비활성화된 영역에 비해 약 6배 이상의 브롬이 존재하는 것을 확인할 수 있다. 이러한 점은 빛 감응형 화합물인 2,5-노르보나디엔-2,3-디카르복시산 무수물을 유리기판에 도입함에 따라 활성화 영역과 비활성화 영역이 형성된다는 점을 뒷받침하는 것이다.Referring to FIG. 6, it can be seen that in the region covered with the mask and maintained in the activated state, about 6 times more bromine is present than the inactivated region. This point is supported by the introduction of the light-sensitive compound 2,5-norbornadiene-2,3-dicarboxylic acid anhydride into the glass substrate to form an activation region and an inactivation region.
[실험예 2]Experimental Example 2
서로 다른 종류의 티올-말단 바이오프로브(thiol-terminal bioprobe)가 결합되었는지를 확인하기 위해 제조예 1에서 제조된 바이오 센서를 형광현미경(EVOS® FL Cell Imaging System, ThermoFisher SCIENTIFIC)으로 분석하였으며, 그 결과를 도 7에 나타내었다.In order to confirm that different types of thiol-terminal bioprobes were combined, the biosensor prepared in Preparation Example 1 was analyzed by a fluorescence microscope (EVOS® FL Cell Imaging System, ThermoFisher SCIENTIFIC). Is shown in FIG. 7.
도 7을 참조하면, 서로 다른 종류의 티올-말단 바이오프로브(thiol-terminal bioprobe)가 결합된 것을 확인할 수 있다.Referring to Figure 7, it can be seen that different types of thiol-terminal bioprobe (thiol-terminal bioprobe) is combined.
Claims (11)
- 기판부; 및A substrate portion; And상기 기판부의 표면에 결합되며, 빛 감응형 유도체를 포함하는 개질부;를 포함하고,It is coupled to the surface of the substrate portion, including a modified portion containing a light-sensitive derivative;상기 빛 감응형 유도체가 노르보나디엔(Norbornadiene)계 유도체인 것인 바이오 센서 기판.The light-sensitive derivative is a biosensor substrate that is a norbornadiene (Norbornadiene) derivative.
- 청구항 1에 있어서,The method according to claim 1,상기 기판부가 유리, 실리콘 및 석영으로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 바이오 센서 기판.The substrate portion is made of glass, silicon and quartz Biosensor substrate comprising one or more selected from the group consisting of.
- 청구항 1에 있어서,The method according to claim 1,상기 개질부가 상기 기판부의 표면에 복수 개로 결합된 것인 바이오 센서 기판.The biosensor substrate is coupled to a plurality of the modified portion on the surface of the substrate portion.
- a) 기판부를 준비하는 단계;a) preparing a substrate portion;b) 상기 준비된 기판부를 아민 함유 알콕시실란계 화합물과 반응시키는 단계; 및b) reacting the prepared substrate portion with an amine-containing alkoxysilane-based compound; Andc) 상기 아민 함유 알콕시실란계 화합물과 반응한 기판부에 노르보나디엔(Norbornadiene)계 화합물을 도입하여 개질부를 형성하는 단계;를 포함하는 바이오 센서 기판의 제조방법.c) introducing a norbornadiene compound to a substrate portion reacted with the amine-containing alkoxysilane-based compound to form a reformed portion.
- 청구항 5에 있어서,The method according to claim 5,상기 아민 함유 알콕시실란계 화합물이 (3-아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane) 및 (3-아미노프로필)트리에톡시실란((3-Aminopropyl)triethoxysilane)으로 이루어진 군에서 선택된 1종 이상인 것인 바이오 센서 기판의 제조방법.The amine-containing alkoxysilane compound is selected from the group consisting of (3-aminopropyl) trimethoxysilane and (3-aminopropyl) triethoxysilane ((3-Aminopropyl) triethoxysilane) The manufacturing method of the biosensor substrate which is 1 or more types.
- 청구항 1 내지 청구항 4 중 어느 한 항에 따른 바이오 센서 기판; 및A biosensor substrate according to any one of claims 1 to 4; And상기 바이오 센서 기판의 개질부에 결합된 바이오 탐침부;를 포함하는 바이오 센서.And a bioprobe unit coupled to the reforming unit of the biosensor substrate.
- 청구항 8에 있어서,The method according to claim 8,상기 바이오 탐침부가 복수 개로 포함되며,It includes a plurality of bio probes,상기 복수 개의 바이오 탐침부는 서로 상이한 표적물질을 탐침하는 것인 바이오 센서.The plurality of bio probes will probe different target materials from each other.
- A) 청구항 1 내지 청구항 4 중 어느 한 항에 따른 바이오 센서 기판을 준비하는 단계;A) preparing a biosensor substrate according to any one of claims 1 to 4;B) 상기 바이오 센서 기판의 일부 영역을 마스킹(masking)하고, 빛을 조사하여 활성화된 개질부와 비활성화된 개질부를 형성하는 단계;B) masking a portion of the biosensor substrate and irradiating light to form an activated reformed portion and an inactivated modified portion;C) 상기 활성화된 개질부에 바이오 탐침부를 결합시키는 단계;C) binding a bioprobe to the activated reforming unit;D) 상기 비활성화된 개질부를 활성화시키는 단계; 및D) activating the deactivated reformate; AndE) 상기 D) 단계에서 활성화된 개질부에 상기 C) 단계에서 결합된 바이오 탐침부와 상이한 표적물질을 탐침하는 바이오 탐침부를 결합시키는 단계;를 포함하는 바이오 센서의 제조방법.E) combining the bio-probe to probe the target material different from the bio-probe unit coupled in the step C) to the reformer activated in the step D).
- 청구항 10에 있어서,The method according to claim 10,상기 D) 단계에서 비활성화된 개질부의 활성화는 열처리 또는 전이금속과의 반응에 의해 이루어지는 것인 바이오 센서의 제조방법.Activation of the reformed portion deactivated in the step D) is a method of manufacturing a biosensor made by a heat treatment or a reaction with a transition metal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0043730 | 2017-04-04 | ||
KR1020170043730A KR101875470B1 (en) | 2017-04-04 | 2017-04-04 | Substrate for biosensor, method for preparing the same, and biosensor comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186682A1 true WO2018186682A1 (en) | 2018-10-11 |
Family
ID=62920974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/003984 WO2018186682A1 (en) | 2017-04-04 | 2018-04-04 | Biosensor substrate, method for producing same, and biosensor comprising same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101875470B1 (en) |
WO (1) | WO2018186682A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101875471B1 (en) * | 2017-04-04 | 2018-07-06 | 한국생명공학연구원 | Substrate for biosensor, method for preparing the same, and biosensor comprising the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050014409A (en) * | 2003-07-31 | 2005-02-07 | 삼성에스디아이 주식회사 | Substrate for immobilizing physiological material, and a method of preparing the same |
US20080161200A1 (en) * | 2006-12-05 | 2008-07-03 | The Board Of Trustees Of The Leland Stanford Junior University | Biomolecule Immobilization on Biosensors |
KR20090119476A (en) * | 2008-05-16 | 2009-11-19 | 한국전자통신연구원 | A method for fabricating patterned biosensor substrate and a biosensor using the same |
US20130261211A1 (en) * | 2010-10-19 | 2013-10-03 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Process for the modification of polymers, in particular polymer nanoparticles |
KR20150123391A (en) * | 2014-04-24 | 2015-11-04 | 한국과학기술원 | A surface treatment method for bio-material deposition and an immunoassay chip using the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05311579A (en) * | 1992-05-01 | 1993-11-22 | Hiroshi Kiyokawa | Sunlight absorbing and thermal energy storage textile material and its production |
-
2017
- 2017-04-04 KR KR1020170043730A patent/KR101875470B1/en active IP Right Grant
-
2018
- 2018-04-04 WO PCT/KR2018/003984 patent/WO2018186682A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050014409A (en) * | 2003-07-31 | 2005-02-07 | 삼성에스디아이 주식회사 | Substrate for immobilizing physiological material, and a method of preparing the same |
US20080161200A1 (en) * | 2006-12-05 | 2008-07-03 | The Board Of Trustees Of The Leland Stanford Junior University | Biomolecule Immobilization on Biosensors |
KR20090119476A (en) * | 2008-05-16 | 2009-11-19 | 한국전자통신연구원 | A method for fabricating patterned biosensor substrate and a biosensor using the same |
US20130261211A1 (en) * | 2010-10-19 | 2013-10-03 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Process for the modification of polymers, in particular polymer nanoparticles |
KR20150123391A (en) * | 2014-04-24 | 2015-11-04 | 한국과학기술원 | A surface treatment method for bio-material deposition and an immunoassay chip using the same |
Also Published As
Publication number | Publication date |
---|---|
KR101875470B1 (en) | 2018-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1144677B1 (en) | Immobilization of molecules on surfaces via polymer brushes | |
US6022597A (en) | Chemical functionalization of surfaces | |
WO2009136741A1 (en) | Novel au / ag core-shell composite useful for biosensor | |
CA1338597C (en) | Reagents for the preparation of 5'-tagged oligonucleotides | |
JP4510381B2 (en) | Detection of negatively charged polymers using water-soluble and cationic polythiophene derivatives | |
WO2018186683A1 (en) | Biosensor substrate, method for producing same, and biosensor comprising same | |
WO2019203493A1 (en) | Multiwell electrode-based biosensor | |
WO2018186682A1 (en) | Biosensor substrate, method for producing same, and biosensor comprising same | |
CN115850203B (en) | Cysteine selective probe and preparation method thereof | |
WO2009119972A2 (en) | Highly sensitive bio-sensor, biochip including same and method for manufacturing same | |
Gobbo et al. | Synthesis of a toolbox of clickable rhodamine B derivatives | |
WO2013141465A1 (en) | Two-photon fluorescent probe, the color of which is variable, for detecting peroxide activity in mitochondria, method for producing same, and method for imaging peroxide activity in mitochondria using same | |
JP2003335846A (en) | Novel conductive polymer and sensor and method of detecting target substance using the polymer | |
WO2019059663A1 (en) | Composite particles having nanogap, and preparation method therefor | |
WO1997020203A1 (en) | Novel membranes and membrane dna/rna sensors | |
WO2016190475A1 (en) | Thiochromene type compound and use thereof | |
US7833406B2 (en) | Gene detection method, and intercalator | |
WO2012102584A9 (en) | Sensor for detecting target virus, and method for screening target virus and analyzing mutation location using same | |
JP4873463B2 (en) | Detection element having nanogap electrode and detection method using the same | |
WO2014035039A1 (en) | Gene transcription analysis method using surface plasmon resonance sensor | |
US20030152958A1 (en) | Nucleic acid fragment-fixed electrode and its use | |
KR100381457B1 (en) | Intercalator compound useful in electrochemical detection of double stranded dna, process for preparation thereof and intermediate used in said process | |
WO2012081856A2 (en) | Method for preparing nucleic acid probe-coated porous solid support strip | |
JP2017043562A (en) | Photocleaving fluorescence labeled probe | |
KR100601999B1 (en) | A method for detecting a target molecule using a novel electrically conductive polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18781462 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18781462 Country of ref document: EP Kind code of ref document: A1 |