WO2018186619A1 - Copolymer and method for manufacturing same - Google Patents

Copolymer and method for manufacturing same Download PDF

Info

Publication number
WO2018186619A1
WO2018186619A1 PCT/KR2018/003648 KR2018003648W WO2018186619A1 WO 2018186619 A1 WO2018186619 A1 WO 2018186619A1 KR 2018003648 W KR2018003648 W KR 2018003648W WO 2018186619 A1 WO2018186619 A1 WO 2018186619A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
monomer
weight
alpha
olefin
Prior art date
Application number
PCT/KR2018/003648
Other languages
French (fr)
Korean (ko)
Inventor
박소영
수데반수지스
Original Assignee
에스케이이노베이션 주식회사
에스케이종합화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사, 에스케이종합화학 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2018186619A1 publication Critical patent/WO2018186619A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6421Titanium tetrahalides with organo-aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to copolymers and methods for their preparation, and more particularly, to quaternary copolymers comprising ethylene, alpha-olefins and dienes and methods for their preparation.
  • Ternary copolymers of ethylene, alpha-olefins and dienes have a molecular structure that does not have an unsaturated bond in the main chain, and weather resistance, chemical resistance and heat resistance, etc., are superior to common conjugated diene rubbers. Due to these characteristics, ternary elastic copolymers are widely used in various automotive parts materials, electric wire materials, construction and industrial materials such as hoses, gaskets, belts, bumpers or blends with plastics.
  • Such terpolymers have been prepared by copolymerizing three monomers using a catalyst mainly comprising a vanadium compound, for example, a vanadium-based Ziegler-Natta catalyst or a metallocene catalyst.
  • a catalyst mainly comprising a vanadium compound for example, a vanadium-based Ziegler-Natta catalyst or a metallocene catalyst.
  • EPDM ethylene-propylene-diolefin ternary copolymer
  • ternary copolymer using propylene as an alpha-olefin
  • Copolymer according to an embodiment of the present invention for achieving the above object is characterized in that it comprises ethylene, propylene, alpha-olefin having 6 or more carbons and dienes.
  • the copolymer according to the present invention and a method for producing the same have a low pattern viscosity (1 + 4 to 125 ° C.) and diene is added in a high content ratio, such as roll, calendering, and extrusion.
  • the workability is improved, which results in an increase in elongation.
  • the copolymer according to the present invention and the manufacturing method thereof can not only be excellent in workability but also can secure a high elongation. Therefore, it is easy to mold into a complicated shape, so that rubber parts such as automobiles and industrial products, wires, roofing sheets, etc. It is suitable for application to (roofing sheet).
  • Copolymer according to an embodiment of the present invention comprises 30 to 80% by weight ethylene monomer, 1 to 50% by weight propylene monomer, 1 to 40% by weight alpha-olefin monomer and 1 to 10% by weight diene monomer, alpha-olefin Includes alpha-olefins having 6 or more carbon atoms.
  • the copolymer according to the embodiment of the present invention has a weight average molecular weight of 100,000 to 300,000.
  • the copolymer according to the embodiment of the present invention may exhibit excellent mechanical properties as it has a weight average molecular weight of 100,000 to 300,000, more specifically 100,000 to 150,000.
  • Ethylene may be included in an amount ratio of 30 to 80% by weight, more specifically 45 to 70% by weight of the total weight of the copolymer, in order to impart suitable properties to the rubber parts of the complex form produced in the extrusion form. If the content of the ethylene monomer is less than 30% by weight, the strength is low, there is a problem that the extrusion processability is lowered or the physical properties such as tensile strength is weakened. On the contrary, when the content of the ethylene monomer exceeds 80% by weight, there is a problem that the generation of gel (Gel) during the polymerization is intensified.
  • Gel gel
  • Propylene lowers the pattern viscosity.
  • the propylene monomer may be included in an amount ratio of 1 to 50% by weight, more specifically 5 to 20% by weight of the total weight of the copolymer.
  • the content of the propylene monomer is less than 1% by weight, it may be difficult to properly exert the above effects.
  • the content of the propylene monomer exceeds 50% by weight, the workability is improved as the elongation is increased, but there is a problem in that physical properties such as tensile strength are lowered due to a decrease in the amount of ethylene added.
  • Alpha-olefins are added to improve the physical properties such as mechanical properties, heat resistance.
  • Such alpha-olefins may comprise alpha-olefins having 6 or more carbon atoms. More specifically, the alpha-olefin may include any one or more of alpha-olefins having 6 and 8 carbon atoms. More specifically, 1-hexene may be used as the alpha-olefin as an alpha-olefin having 6 carbon atoms, and 1-octene may be used as the alpha-olefin having 8 carbon atoms.
  • Such alpha-olefin monomer may be included in an amount ratio of 1 to 40% by weight, more specifically 15 to 35% by weight of the total weight of the copolymer.
  • content of the alpha-olefin monomer is less than 1% by weight, it may be difficult to properly exert the above effects.
  • content of the alpha-olefin monomer exceeds 40% by weight, there is a problem in that physical properties such as tensile strength are lowered due to a decrease in the amount of ethylene added.
  • the diene included in the copolymer according to the embodiment of the present invention may use a non-conjugated diene monomer.
  • the diene may be added in a content ratio of 1 to 10% by weight, more specifically 3 to 7% by weight of the total weight of the copolymer according to the embodiment of the present invention.
  • dienes include 5-1,4-hexadiene, 1,5-heptadiene, 1,6-octadiene, 1,7-nonadiene, 1,8-decadiene, 1,12-tetradeca Dienes, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4-ethyl-1,4-hexadiene, 3,3- Dimethyl-1,4-hexadiene, 5-methyl-1,4-heptadiene, 5-ethyl-1,4-heptadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5 -Heptadiene, 5-ethyl-1,5-heptadiene, 4-methyl-1,4-octadiene, 5-methyl-1,4-octadiene, 4-ethyl-1,4-octadiene, 5- Ethyl-1,4-octadiene, 5-
  • the copolymer according to the embodiment of the present invention described above has a high crystalline temperature due to the formation of ethylene blocks compared to the conventional terpolymer, and has the effect of having a high tensile strength even under the same pattern viscosity.
  • the copolymer according to the embodiment of the present invention uses an alpha-olefin having a relatively long chain compared to the conventional terpolymer, and is intentionally prepared so that a large number of C2 blocks are formed.
  • the copolymer has a higher tensile strength than the conventional terpolymer.
  • any one or more of the alpha-olefin having 6 and 8 carbon atoms can be used as the alpha-olefin.
  • the copolymer according to an embodiment of the present invention is a copolymerization of a monomer composition comprising ethylene, propylene, alpha-olefin and diene while continuously supplying a copolymer under a catalyst composition such as a Ziegler-Natta catalyst or a metallocene catalyst. It can be manufactured by.
  • the copolymer according to the embodiment of the present invention may be copolymerized in the presence of a Ziegler-Natta catalyst having a higher diene conversion rate (%) when considering the diene conversion rate (%) of evaluating the diene content of the copolymer relative to the diene injection amount.
  • a Ziegler-Natta catalyst having a higher diene conversion rate (%) when considering the diene conversion rate (%) of evaluating the diene content of the copolymer relative to the diene injection amount.
  • the present invention is not limited thereto, and other olefin polymerization catalysts such as metallocene may be used.
  • VCl 4 having a structure represented by Chemical Formula 1 may be used.
  • the catalyst composition may include a Ziegler-Natta-based catalyst as a main catalyst and further include organoaluminum as a cocatalyst.
  • the organic aluminum cocatalyst may use ethyl aluminum sesquichloride having a structure of Formula 2 below.
  • the crystallization temperature is measured in a heating-cooling-heating step at a rate of 10 ° C./min from ⁇ 100 ° C. to 200 ° C. in a nitrogen atmosphere using a differential scanning calorimeter.
  • the peak of the exothermic curve is defined as the crystallization temperature in the cooling stage where the melt is recrystallized again.
  • Conventional ternary copolymers have a crystallization temperature in a relatively low temperature range (less than 0 ° C.) to improve elasticity and flexibility.
  • the copolymer according to the embodiment of the present invention is prepared to have a low crystallization temperature (T c ) compared to the conventional terpolymer.
  • T c crystallization temperature
  • the copolymer according to the embodiment of the present invention has a low crystallization temperature (Tc) to improve oil blooming, high C. Set characteristics and roll processability.
  • Copolymers according to embodiments of the invention have a crystallization temperature of, for example, 30 to 70 ° C, more specifically 40 to 50 ° C.
  • the copolymer according to an embodiment of the present invention has a pattern viscosity (1 + 4 125 °C) of 30 to 45, it is possible to improve the processability such as roll (calendering) and extrusion (extrusion) This has the advantage of increasing elongation.
  • the copolymer according to the embodiment of the present invention has an elongation of, for example, 250% to 300%.
  • the copolymer according to the embodiment of the present invention is not only excellent in workability, but also ensures high elongation. Therefore, the copolymer is easily molded into a complicated shape, and thus rubber parts, wires, roofing sheets (such as automobiles and industrial products) It is suitable for application to roofing sheet.
  • the copolymer according to the embodiment of the present invention the molecular weight distribution of less than 2.0, ⁇ tan ⁇ of 1 or more, crosslink density of 25 lb ⁇ in or less, hardness of 75 or more (Shore A), 100% of 65 kgf / cm 2 or less It can have a modulus.
  • the copolymer production method comprises the step of polymerizing, in the presence of a catalyst composition, an ethylene monomer, a propylene monomer, an alpha-olefin monomer having 6 or more carbon atoms and a diene monomer.
  • the copolymer according to the embodiment of the present invention comprises 30 to 80% by weight of ethylene monomer, 1 to 50% by weight of propylene monomer, 1 to 40% by weight of alpha-olefin monomer and 1 to 10% by weight of diene monomer.
  • the alpha-olefin may include an alpha-olefin having 6 or more carbon atoms.
  • the alpha-olefin may include one or more of 1-hexene and 1-octene.
  • the copolymer according to the embodiment of the present invention has a high crystallinity temperature due to the formation of ethylene block has the effect that can have a high tensile strength even under the same pattern viscosity.
  • the copolymer of the present invention uses an alpha-olefin having a relatively long chain compared to the conventional terpolymer, and also forms a large number of C2 blocks. It has a high tensile strength.
  • the copolymer of the present invention may have a crystallization temperature (T c ) of 30 to 70 °C, more specifically 40 to 50 °C
  • the catalyst composition further comprises a Ziegler-Natta-based main catalyst and an organoaluminum promoter It may include.
  • Ziegler-Natta-based main catalyst may use a VCl 4 having the formula (1).
  • the organic aluminum promoter may use ethyl aluminum sesquechloride having the following Chemical Formula 2 structure.
  • Table 1 shows the compositions of the copolymers prepared according to Examples 1 to 3 and 1 to 2 and the composition ratios thereof.
  • composition ratios of the copolymers prepared according to Examples 1 to 3 and Comparative Examples 1 to 2 were confirmed using 1 H NMR.
  • the polymer polymerization proceeds in a 3 L reactor. 6.9 g of a solution of ethylaluminumsesquechloride in 1.3 L of normal hexane (solvent), 5,000 cc of propylene, 100 g of 1-octene (monomer) and 20 wt% dissolved in hexane 3.0 g of ethylidene-2-norbornene (monomer, diene) and 30,000 cc of ethylene (monomer) were added thereto. At this time, after the reaction temperature conditions were set to 30 °C, 2.6g of vanadium catalyst (VCl 4 ) dissolved at 5wt% concentration in hexane was added to the reactor.
  • VCl 4 vanadium catalyst
  • the polymer polymerization reaction time was performed for 20 minutes, and 12.0 g of polypropylene glycol-400 (reaction terminator) dissolved in 20% by weight of hexane was added thereto.
  • the polymerization solution after the reaction was precipitated in ethanol and dried in a vacuum oven to prepare a copolymer.
  • a copolymer was prepared in the same manner as in Example 1 except that 10,000 cc of propylene was added.
  • a copolymer was prepared in the same manner as in Example 1 except that 15,000 cc of propylene was added.
  • the polymer polymerization proceeds in a 3 L reactor. 6.9 g of a solution of ethylaluminum sesquechloride (promoter, ethylaluminumsesquechloride) dissolved in 1.3 L of normal hexane (solvent), 100 g of 1-hexene (monomer) in hexane at a concentration of 20 wt% Liden-2-norbornene (monomer, diene) and 30,000 cc of ethylene (monomer) were added. At this time, after the reaction temperature conditions were set to 30 °C, 2.6g of vanadium catalyst (VCl 4 ) dissolved at 5wt% concentration in hexane was added to the reactor.
  • VCl 4 vanadium catalyst
  • the polymer polymerization reaction time was performed for 20 minutes, and 12.0 g of polypropylene glycol-400 (reaction terminator) dissolved in 20% by weight of hexane was added thereto.
  • the polymerization solution after the reaction was precipitated in ethanol and dried in a vacuum oven to prepare a copolymer.
  • Comparative example 2 ethylene- Octene - Dien Quaternary copolymer
  • the polymer polymerization proceeds in a 3 L reactor. 6.9 g of a solution of ethylaluminum sesquechloride (ethylaluminumsesquechloride) dissolved in 1.3 L of normal hexane (solvent), 100 g of 1-octene (monomer) and 20 wt% in hexane, 3.0 g of ethyl Liden-2-norbornene (monomer, diene) and 30,000 cc of ethylene (monomer) were added. At this time, after the reaction temperature conditions were set to 30 °C, 2.6g of vanadium catalyst (VCl 4 ) dissolved at 5wt% concentration in hexane was added to the reactor.
  • VCl 4 vanadium catalyst
  • the polymer polymerization reaction time was performed for 20 minutes, and 12.0 g of polypropylene glycol-400 (reaction terminator) dissolved in 20% by weight of hexane was added thereto.
  • the polymerization solution after the reaction was precipitated in ethanol and dried in a vacuum oven to prepare a copolymer.
  • Table 2 shows the physical property evaluation results for Examples 1 to 3 and Comparative Examples 1 and 2.
  • the weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and the molecular weight distribution (MWD) was divided by the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC). was calculated.
  • the differential scanning calorimeter is used to measure the heating-cooling-heating step at a rate of 10 ° C./min from ⁇ 100 ° C. to 200 ° C. in a nitrogen atmosphere.
  • the peak of the exothermic curve is defined as the crystallization temperature in the cooling stage where the melt is recrystallized again.
  • Oscillation is applied to the sealed specimen by putting the specimen mixed in the mixing ratio (ASTM 3568) described in Table 3 below into a die of a moving die rheometer (MDR) device. Over time, the specimen is a bridge to check that the torque (Torque) increases, defines the difference value between the maximum torque (M H) and the minimum torque by the cross-linking density.
  • ⁇ tan ⁇ was measured using a Rubber Process Analyzer according to ASTM D6204-01.
  • the RPA2000 MV 2000E instrument model from Monsanto was used, and the measurement sample was prepared from a copolymer sample treated with an antioxidant (Irganox 1076) into a sheet using a press mold, which was 7% strain at 100 ° C and 0.1-210 rad.
  • tan ⁇ was measured in the frequency range of / s. At this time, ⁇ tan ⁇ represents the difference between tan delta values corresponding to the angular frequency of 104.7 and 0.2 rad / s.
  • the specimens are fabricated by pressing for 20 minutes at 160 and 250 bar to conform to the shapes specified in ASTM D412. Then, after aging in a thermo-hygrostat for 24 hours, using an Instron 3343 UTM instrument to measure the ASTM D412 test conditions to calculate the elongation through the formula below.
  • the copolymers prepared according to Examples 1 to 3 had mechanical properties (hardness, 100% modulus, tensile strength) when compared to the copolymers prepared according to Comparative Examples 1 to 2. ), The pattern viscosity (1 + 4 125 °C) shows a very low value without significant change.
  • copolymer prepared according to Examples 1 to 3 has an increased elongation as compared to the copolymer prepared according to Comparative Example 1.
  • the measured value of t90 was measured to be 6.5 to 8.2 min, indicating that the crosslinking time was significantly shortened. As a result, it was confirmed that the crosslinking speed and productivity can be improved.

Abstract

Disclosed are a copolymer and a method for manufacturing same, the copolymer improving in processability in accordance with lowered Mooney viscosity, and assuring elongation rate of 250% or greater. The copolymer according to the present invention is characterized by comprising ethylene, propylene, alpha-olefin having six or more carbons, and diene.

Description

공중합체 및 그 제조 방법Copolymer and its manufacturing method
본 발명은 공중합체 및 그 제조 방법에 관한 것으로, 보다 상세하게는 에틸렌, 알파-올레핀 및 디엔을 포함하는 4원 공중합체 및 그 제조 방법에 관한 것이다.FIELD OF THE INVENTION The present invention relates to copolymers and methods for their preparation, and more particularly, to quaternary copolymers comprising ethylene, alpha-olefins and dienes and methods for their preparation.
에틸렌, 알파-올레핀 및 디엔의 3원계 공중합체는 주쇄에 불포화 결합을 갖지 않는 분자 구조를 가지며, 내후성, 내화학성 및 내열성 등이 일반적인 공액디엔 고무보다 우수한 특성을 갖는다. 이러한 특성으로 인해, 3원계 탄성 공중합체는 각종 자동차용 부품 재료, 전선 재료, 건축 및 각종 호스, 가스킷, 벨트, 범퍼 또는 플라스틱과의 블랜드 등의 공업용 재료 등에 널리 사용되고 있다.Ternary copolymers of ethylene, alpha-olefins and dienes have a molecular structure that does not have an unsaturated bond in the main chain, and weather resistance, chemical resistance and heat resistance, etc., are superior to common conjugated diene rubbers. Due to these characteristics, ternary elastic copolymers are widely used in various automotive parts materials, electric wire materials, construction and industrial materials such as hoses, gaskets, belts, bumpers or blends with plastics.
이러한 3원계 공중합체는 주로 바나듐 화합물을 포함하는 촉매, 예를 들어, 바나듐계 지글러-나타 촉매 또는 메탈로센 촉매를 사용하여 3종의 단량체를 공중합하는 방식으로 제조되어 왔다.Such terpolymers have been prepared by copolymerizing three monomers using a catalyst mainly comprising a vanadium compound, for example, a vanadium-based Ziegler-Natta catalyst or a metallocene catalyst.
현재, 산업계에서는 알파-올레핀으로서 프로필렌을 이용하는 3원계 공중합체인 EPDM(에틸렌-프로필렌-디올레핀 3원 공중합체)이 주로 사용되고 있다. 다만, 최근 업계에서는 보다 우수한 기계적 물성을 가지면서 생산성 측면에서도 더욱 유리한 3원 공중합체를 이용한 고무에 대한 요구가 증가되고 있다.Currently, EPDM (ethylene-propylene-diolefin ternary copolymer), which is a ternary copolymer using propylene as an alpha-olefin, is mainly used in the industry. However, in recent years, there is an increasing demand for rubber using ternary copolymers having better mechanical properties and more advantageous in terms of productivity.
특히, 3원계 공중합체를 이용한 고무 용도의 절반을 차지하는 자동차 업계에서는 자동차의 경량화 및 고급화 추세로 인해 기계적 물성, 내열성 등에 대한 요구 물성 수준이 점점 더 높아지고 있는 실정이다.In particular, in the automotive industry, which occupies half of rubber applications using ternary copolymers, the demand for mechanical properties, heat resistance, and the like is increasing due to the weight reduction and luxury of automobiles.
관련 선행 문헌으로는 대한민국 등록특허공보 제10-1660480호(2016.09.27. 공고)가 있으며, 상기 문헌에는 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법이 기재되어 있다.Related prior art documents are Korean Patent Publication No. 10-1660480 (September 27, 2016), which discloses a ternary elastic copolymer including a diene and a method of manufacturing the same.
본 발명의 목적은 낮은 무늬점도를 가짐에 따라 가공성이 좋아지며, 우수한 신율을 확보할 수 있는 공중합체 및 그 제조 방법을 제공하는 것이다.It is an object of the present invention to provide a copolymer having a low pattern viscosity, which has good processability, and which can secure an excellent elongation and a method of producing the same.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 공중합체는 에틸렌, 프로필렌, 6개 이상의 탄소를 갖는 알파-올레핀 및 디엔을 포함하는 것을 특징으로 한다.Copolymer according to an embodiment of the present invention for achieving the above object is characterized in that it comprises ethylene, propylene, alpha-olefin having 6 or more carbons and dienes.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 공중합체 제조 방법은 촉매 조성물의 존재 하에, 에틸렌 단량체, 프로필렌 단량체, 탄소수 6개 이상인 알파-올레핀 단량체 및 디엔 단량체를 중합하는 단계를 포함하는 것을 특징으로 한다.The copolymer production method according to an embodiment of the present invention for achieving the above object comprises the step of polymerizing an ethylene monomer, a propylene monomer, an alpha-olefin monomer having 6 or more carbon atoms and a diene monomer in the presence of a catalyst composition. It is done.
본 발명에 따른 공중합체 및 그 제조 방법은 낮은 무늬점도(1+4 125℃)를 가지면서도, 디엔이 높은 함량비로 첨가됨으로써, 롤(roll), 캘린더링(calendering) 및 압출(extrusion) 등의 가공성이 좋아지며, 이 결과 신율이 증가하는 이점이 있다.The copolymer according to the present invention and a method for producing the same have a low pattern viscosity (1 + 4 to 125 ° C.) and diene is added in a high content ratio, such as roll, calendering, and extrusion. The workability is improved, which results in an increase in elongation.
이 결과, 본 발명에 따른 공중합체 및 그 제조 방법은 가공성이 우수할 뿐만 아니라 높은 신율을 확보할 수 있으므로, 복잡한 형상으로 성형하는 것이 용이하므로 자동차, 산업용품 등의 고무 부품이나, 전선, 루핑 시트(roofing sheet) 등에 적용하기에 적합하다.As a result, the copolymer according to the present invention and the manufacturing method thereof can not only be excellent in workability but also can secure a high elongation. Therefore, it is easy to mold into a complicated shape, so that rubber parts such as automobiles and industrial products, wires, roofing sheets, etc. It is suitable for application to (roofing sheet).
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully inform the person of the scope of the invention and the invention is defined only by the scope of the claims.
이하 본 발명의 실시예에 따른 공중합체 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a copolymer according to an embodiment of the present invention and a manufacturing method thereof will be described in detail.
본 발명의 실시예에 따른 공중합체는 에틸렌 단량체 30 내지 80 중량%, 프로필렌 단량체 1 내지 50 중량%, 알파-올레핀 단량체 1 내지 40 중량% 및 디엔 단량체 1 내지 10 중량%를 포함하며, 알파-올레핀은 탄소수 6개 이상의 알파-올레핀을 포함한다.Copolymer according to an embodiment of the present invention comprises 30 to 80% by weight ethylene monomer, 1 to 50% by weight propylene monomer, 1 to 40% by weight alpha-olefin monomer and 1 to 10% by weight diene monomer, alpha-olefin Includes alpha-olefins having 6 or more carbon atoms.
여기서, 본 발명의 실시예에 따른 공중합체는 100,000 내지 300,000의 중량평균분자량을 갖는다. 이와 같이, 본 발명의 실시예에 따른 공중합체는 100,000 내지 300,000, 보다 구체적으로는 100,000 내지 150,000의 중량평균분자량을 가짐에 따라 우수한 기계적 물성을 나타낼 수 있다.Here, the copolymer according to the embodiment of the present invention has a weight average molecular weight of 100,000 to 300,000. As such, the copolymer according to the embodiment of the present invention may exhibit excellent mechanical properties as it has a weight average molecular weight of 100,000 to 300,000, more specifically 100,000 to 150,000.
에틸렌은 압출 형태로 제작되는 복잡한 형태의 고무부품에 적합한 특성을 부여하기 위해, 공중합체 전체 중량의 30 내지 80 중량%, 보다 구체적으로는 45 내지 70 중량%의 함량비로 포함될 수 있다. 에틸렌 단량체의 함량이 30 중량% 미만일 경우에는 강도가 낮아 압출 가공성이 저하되거나 인장강도 등의 물성이 약화되는 문제가 있다. 반대로, 에틸렌 단량체의 함량이 80 중량%를 초과할 경우에는 중합시 겔(Gel) 발생이 심화되는 문제가 있다.Ethylene may be included in an amount ratio of 30 to 80% by weight, more specifically 45 to 70% by weight of the total weight of the copolymer, in order to impart suitable properties to the rubber parts of the complex form produced in the extrusion form. If the content of the ethylene monomer is less than 30% by weight, the strength is low, there is a problem that the extrusion processability is lowered or the physical properties such as tensile strength is weakened. On the contrary, when the content of the ethylene monomer exceeds 80% by weight, there is a problem that the generation of gel (Gel) during the polymerization is intensified.
프로필렌은 무늬점도를 낮추는 역할을 한다. 프로필렌 단량체는 공중합체 전체 중량의 1 내지 50 중량%, 보다 구체적으로는 5 내지 20 중량%의 함량비로 포함될 수 있다. 프로필렌 단량체의 함량이 1 중량% 미만일 경우에는 상기의 효과를 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 프로필렌 단량체의 함량이 50 중량%를 초과할 경우에는 신율이 증가함에 따라 가공성이 향상되나, 상대적으로 에틸렌의 첨가량이 감소하여 인장강도 등의 물성이 저하되는 문제가 있다.Propylene lowers the pattern viscosity. The propylene monomer may be included in an amount ratio of 1 to 50% by weight, more specifically 5 to 20% by weight of the total weight of the copolymer. When the content of the propylene monomer is less than 1% by weight, it may be difficult to properly exert the above effects. On the contrary, when the content of the propylene monomer exceeds 50% by weight, the workability is improved as the elongation is increased, but there is a problem in that physical properties such as tensile strength are lowered due to a decrease in the amount of ethylene added.
알파-올레핀은 기계적 특성, 내열성 등의 물성을 향상시키기 위해 첨가된다. 이러한 알파-올레핀은 탄소수 6개 이상의 알파-올레핀을 포함할 수 있다. 보다 구체적으로, 알파-올레핀은 탄소수가 6개 및 8개인 알파-올레핀 중 어느 하나 이상을 포함할 수 있다. 보다 구체적으로, 알파-올레핀으로는 탄소수가 6개인 알파-올레핀으로서 1-헥센이 사용될 수 있고, 또한 탄소수가 8개인 알파-올레핀으로서 1-옥텐이 사용될 수 있다.Alpha-olefins are added to improve the physical properties such as mechanical properties, heat resistance. Such alpha-olefins may comprise alpha-olefins having 6 or more carbon atoms. More specifically, the alpha-olefin may include any one or more of alpha-olefins having 6 and 8 carbon atoms. More specifically, 1-hexene may be used as the alpha-olefin as an alpha-olefin having 6 carbon atoms, and 1-octene may be used as the alpha-olefin having 8 carbon atoms.
이러한 알파-올레핀 단량체는 공중합체 전체 중량의 1 내지 40 중량%, 보다 구체적으로는 15 내지 35 중량%의 함량비로 포함될 수 있다. 알파-올레핀 단량체의 함량이 1 중량% 미만일 경우에는 상기의 효과를 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 알파-올레핀 단량체의 함량이 40 중량%를 초과할 경우에는 상대적으로 에틸렌의 첨가량이 감소하는데 기인하여 인장강도 등의 물성이 저하되는 문제가 있다.Such alpha-olefin monomer may be included in an amount ratio of 1 to 40% by weight, more specifically 15 to 35% by weight of the total weight of the copolymer. When the content of the alpha-olefin monomer is less than 1% by weight, it may be difficult to properly exert the above effects. On the contrary, when the content of the alpha-olefin monomer exceeds 40% by weight, there is a problem in that physical properties such as tensile strength are lowered due to a decrease in the amount of ethylene added.
아울러, 본 발명의 실시예에 따른 공중합체에 포함되는 디엔은 비공액 디엔계 단량체를 사용할 수 있다.In addition, the diene included in the copolymer according to the embodiment of the present invention may use a non-conjugated diene monomer.
여기서, 디엔은 본 발명의 실시예에 따른 공중합체 전체 중량의 1 내지 10 중량%, 보다 구체적으로는 3 내지 7 중량%의 함량비로 첨가될 수 있다.Here, the diene may be added in a content ratio of 1 to 10% by weight, more specifically 3 to 7% by weight of the total weight of the copolymer according to the embodiment of the present invention.
이러한 디엔의 구체적인 예로는, 5-1,4-헥사디엔, 1,5-헵타디엔, 1,6-옥타디엔, 1,7-노나디엔, 1,8-데카디엔, 1,12-테트라데카디엔, 3-메틸-1,4-헥사디엔, 4-메틸-1,4-헥사디엔, 5-메틸-1,4-헥사디엔, 4-에틸-1,4-헥사디엔, 3,3-다이메틸-1,4-헥사디엔, 5-메틸-1,4-헵타디엔,5-에틸-1,4-헵타디엔, 5-메틸-1,5-헵타디엔, 6-메틸-1,5-헵타디엔, 5-에틸-1,5-헵타디엔, 4-메틸-1,4-옥타디엔,5-메틸-1,4-옥타디엔,4-에틸-1,4-옥타디엔, 5-에틸-1,4-옥타디엔, 5-메틸-1,5-옥타디엔, 6-메틸-1,5-옥타디엔,5-에틸-1,5-옥타디엔, 6-에틸-1,5-옥타디엔, 6-메틸-1,6-옥타디엔, 7-메틸-1,6-옥타디엔, 6-에틸-1,6-옥타디엔,6-프로필-1,6-옥타디엔, 6-부틸-1,6-옥타디엔, 7-메틸-1,6-옥타디엔, 4-메틸-1,4-노나디엔, 에틸리덴-2-노보넨,5-메틸렌-2-노보넨, 5-(2-프로페닐)-2-노보넨, 5-(3-부테닐) -2-노보넨, 5-(1-메틸-2-프로페닐) -2-노보넨, 5-(4-펜테닐) -2-노보넨, 5-(1-메틸-3-부테닐) -2-노보넨, 5-(5-헥세닐)-2-노보넨, 5-(1-메틸-4-펜테닐) -2-노보넨, 5-(2,3-디메틸-3-부테닐)-2-노보넨, 5-(2-에틸-3-부테닐) -2-노보넨, 5-(6-헵테닐) -2-노보넨, 5-(3-메틸-헥세닐) -2-노보넨, 5-(3,4-디메틸-4-펜테닐) -2-노보넨, 5-(3-에틸-4-펜테닐) -2-노보넨, 5-(7-옥테닐) -2-노보넨, 5-(2-메틸-6-헵테닐) -2-노보넨, 5-(1,2-디메틸-5-헥세닐) -2-노보넨, 5-(5-에틸-5-헥세닐) -2-노보넨,5-(1,2,3-트리메틸-4-펜테닐) -2-노보넨, 5-프로필리덴-2-노보넨, 5-이소프로필리덴-2-노보넨, 5-부틸리덴-2-노보넨, 5-이소부틸리덴-2-노보넨, 2,3-디이소프로필리덴 -5-노보넨, 2-에틸리덴-3-이소프로필리덴-5-노보넨, 2-프로페닐-2,2-노보나디엔 등을 들 수 있고, 이들 중에 선택된 디엔을 1종 이상 사용할 수 있다.Specific examples of such dienes include 5-1,4-hexadiene, 1,5-heptadiene, 1,6-octadiene, 1,7-nonadiene, 1,8-decadiene, 1,12-tetradeca Dienes, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4-ethyl-1,4-hexadiene, 3,3- Dimethyl-1,4-hexadiene, 5-methyl-1,4-heptadiene, 5-ethyl-1,4-heptadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5 -Heptadiene, 5-ethyl-1,5-heptadiene, 4-methyl-1,4-octadiene, 5-methyl-1,4-octadiene, 4-ethyl-1,4-octadiene, 5- Ethyl-1,4-octadiene, 5-methyl-1,5-octadiene, 6-methyl-1,5-octadiene, 5-ethyl-1,5-octadiene, 6-ethyl-1,5- Octadiene, 6-methyl-1,6-octadiene, 7-methyl-1,6-octadiene, 6-ethyl-1,6-octadiene, 6-propyl-1,6-octadiene, 6-butyl -1,6-octadiene, 7-methyl-1,6-octadiene, 4-methyl-1,4-nonadiene, ethylidene-2-norbornene, 5-methylene-2-norbornene, 5- ( 2-propenyl) -2-norbornene, 5- (3-butenyl) -2-norbornene, 5- (1-methyl-2-propenyl) -2-norbornene, 5 -(4-pentenyl) -2-norbornene, 5- (1-methyl-3-butenyl) -2-norbornene, 5- (5-hexenyl) -2-norbornene, 5- (1- Methyl-4-pentenyl) -2-norbornene, 5- (2,3-dimethyl-3-butenyl) -2-norbornene, 5- (2-ethyl-3-butenyl) -2-norbornene , 5- (6-heptenyl) -2-norbornene, 5- (3-methyl-hexenyl) -2-norbornene, 5- (3,4-dimethyl-4-pentenyl) -2-norbornene , 5- (3-ethyl-4-pentenyl) -2-norbornene, 5- (7-octenyl) -2-norbornene, 5- (2-methyl-6-heptenyl) -2-norbornene , 5- (1,2-dimethyl-5-hexenyl) -2-norbornene, 5- (5-ethyl-5-hexenyl) -2-norbornene, 5- (1,2,3-trimethyl- 4-pentenyl) -2-norbornene, 5-propylidene-2-norbornene, 5-isopropylidene-2-norbornene, 5-butylidene-2-norbornene, 5-isobutylidene-2 -Norbornene, 2,3-diisopropylidene -5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,2-norbornadiene, etc. are mentioned. And the diene selected from these can be used 1 or more types.
전술한 본 발명의 실시예에 따른 공중합체는 기존의 3원계 공중합체 대비 에틸렌 블록이 형성됨으로 인해 높은 결정성 온도를 가지게 되어 동일한 무늬점도 하에서도 높은 인장강도를 가질 수 있는 효과를 나타낸다.The copolymer according to the embodiment of the present invention described above has a high crystalline temperature due to the formation of ethylene blocks compared to the conventional terpolymer, and has the effect of having a high tensile strength even under the same pattern viscosity.
이처럼 본 발명의 실시예에 따른 공중합체는 종래의 3원계 공중합체와 비교하여 상대적으로 긴 사슬을 갖는 알파-올레핀을 사용하고 또한 의도적으로 C2 블록이 다수 형성되도록 제조되기 때문에, 본 발명에 따른 공중합체는 종래의 3원계 공중합체 대비 높은 인장강도를 갖는다.As described above, the copolymer according to the embodiment of the present invention uses an alpha-olefin having a relatively long chain compared to the conventional terpolymer, and is intentionally prepared so that a large number of C2 blocks are formed. The copolymer has a higher tensile strength than the conventional terpolymer.
또한, 본 발명의 실시예에 따른 공중합체는, 상술한 바와 같이, 알파-올레핀으로는 탄소수가 6개 및 8개인 알파-올레핀 중 어느 하나 이상이 이용될 수 있다.In addition, the copolymer according to an embodiment of the present invention, as described above, any one or more of the alpha-olefin having 6 and 8 carbon atoms can be used as the alpha-olefin.
여기서, 본 발명의 실시예에 따른 공중합체는 지글러-나타 촉매 또는 메탈로센 촉매와 같은 촉매 조성물 하에서, 에틸렌, 프로필렌, 알파-올레핀 및 디엔을 포함하는 모노머 조성물을 연속적으로 반응기에 공급하면서 공중합하는 것에 의해 제조될 수 있다.Here, the copolymer according to an embodiment of the present invention is a copolymerization of a monomer composition comprising ethylene, propylene, alpha-olefin and diene while continuously supplying a copolymer under a catalyst composition such as a Ziegler-Natta catalyst or a metallocene catalyst. It can be manufactured by.
다만, 본 발명의 실시예에 따른 공중합체는 디엔 주입량 대비 공중합체의 디엔함량을 평가한 디엔전환율(%)을 고려할 때, 디엔전환율(%)이 보다 우수한 지글러-나타계 촉매 존재 하에서 공중합될 수 있다. 그러나 본 발명이 여기에 한정되는 것은 아니며, 메탈로센 등 다른 올레핀 중합촉매를 사용하는 것도 가능하다.However, the copolymer according to the embodiment of the present invention may be copolymerized in the presence of a Ziegler-Natta catalyst having a higher diene conversion rate (%) when considering the diene conversion rate (%) of evaluating the diene content of the copolymer relative to the diene injection amount. have. However, the present invention is not limited thereto, and other olefin polymerization catalysts such as metallocene may be used.
지글러-나타계 촉매는, 일례로 하기 화학식 1의 구조를 갖는 VCl4를 이용할 수 있다. As the Ziegler-Natta catalyst, for example, VCl 4 having a structure represented by Chemical Formula 1 may be used.
[화학식 1][Formula 1]
Figure PCTKR2018003648-appb-I000001
Figure PCTKR2018003648-appb-I000001
보다 구체적으로, 촉매 조성물은 지글러-나타계 촉매를 주촉매로 포함하고, 조촉매로 유기알루미늄을 더 포함하는 것이 이용될 수 있다. 여기서, 유기 알루미늄 조촉매는 하기 화학식 2의 구조를 갖는 에틸알루미늄 세스키크로라이드(EthylaluminiumSesquechloride)를 이용할 수 있다. More specifically, the catalyst composition may include a Ziegler-Natta-based catalyst as a main catalyst and further include organoaluminum as a cocatalyst. Here, the organic aluminum cocatalyst may use ethyl aluminum sesquichloride having a structure of Formula 2 below.
[화학식 2][Formula 2]
Figure PCTKR2018003648-appb-I000002
Figure PCTKR2018003648-appb-I000002
본 발명에서, 결정화 온도는 시차주사열량계를 사용하여 질소 분위기에서 -100℃부터 200℃까지 10℃/min의 속도로 가열 - 냉각 - 가열 단계로 측정한다. 용융체가 다시 재결정 되는 냉각 단계에서 발열 곡선의 정상점(peak)을 결정화 온도로 규정한다. 종래의 3원계 공중합체는 탄성 및 유연성 향상을 위해 비교적 낮은 온도 범위(0℃ 미만)에서 결정화온도를 갖는다.In the present invention, the crystallization temperature is measured in a heating-cooling-heating step at a rate of 10 ° C./min from −100 ° C. to 200 ° C. in a nitrogen atmosphere using a differential scanning calorimeter. The peak of the exothermic curve is defined as the crystallization temperature in the cooling stage where the melt is recrystallized again. Conventional ternary copolymers have a crystallization temperature in a relatively low temperature range (less than 0 ° C.) to improve elasticity and flexibility.
반면, 본 발명의 실시예에 따른 공중합체는 종래의 3원계 공중합체와 비교하여 낮은 결정화 온도(Tc)를 갖도록 제조된다. 이 결과, 본 발명의 실시예에 따른 공중합체는 낮은 결정화 온도(Tc)를 가짐으로써 오일 블루밍(Oil Blooming) 예방, 높은 C.Set 특성 및 롤 가공성이 향상된다. 본 발명의 실시예에 따른 공중합체는 예를 들어, 30 내지 70℃, 보다 구체적으로 40 내지 50℃의 결정화 온도를 갖는다.On the other hand, the copolymer according to the embodiment of the present invention is prepared to have a low crystallization temperature (T c ) compared to the conventional terpolymer. As a result, the copolymer according to the embodiment of the present invention has a low crystallization temperature (Tc) to improve oil blooming, high C. Set characteristics and roll processability. Copolymers according to embodiments of the invention have a crystallization temperature of, for example, 30 to 70 ° C, more specifically 40 to 50 ° C.
또한, 본 발명의 실시예에 따른 공중합체는 30 내지 45의 무늬점도(1+4 125℃)를 가짐으로써, 롤(roll), 캘린더링(calendering) 및 압출(extrusion) 등의 가공성이 좋아지며, 신율이 증가하는 이점이 있다. 본 발명의 실시예에 따른 공중합체는 예를 들어, 250% 내지 300%의 신율을 갖는다.In addition, the copolymer according to an embodiment of the present invention has a pattern viscosity (1 + 4 125 ℃) of 30 to 45, it is possible to improve the processability such as roll (calendering) and extrusion (extrusion) This has the advantage of increasing elongation. The copolymer according to the embodiment of the present invention has an elongation of, for example, 250% to 300%.
이 결과, 본 발명의 실시예에 따른 공중합체는 가공성이 우수할 뿐만 아니라 높은 신율을 확보할 수 있으므로, 복잡한 형상으로 성형하는 것이 용이하므로 자동차, 산업용품 등의 고무 부품이나, 전선, 루핑 시트(roofing sheet) 등에 적용하기에 적합하다.As a result, the copolymer according to the embodiment of the present invention is not only excellent in workability, but also ensures high elongation. Therefore, the copolymer is easily molded into a complicated shape, and thus rubber parts, wires, roofing sheets (such as automobiles and industrial products) It is suitable for application to roofing sheet.
또한, 본 발명의 실시예에 따른 공중합체는, 2.0 미만의 분자량 분포, 1 이상의 △tanδ, 25 lbㆍin 이하의 가교밀도, 75 이상의 경도(Shore A), 65 kgf/cm2 이하의 100% 모듈러스를 가질 수 있다.In addition, the copolymer according to the embodiment of the present invention, the molecular weight distribution of less than 2.0, Δtanδ of 1 or more, crosslink density of 25 lb · in or less, hardness of 75 or more (Shore A), 100% of 65 kgf / cm 2 or less It can have a modulus.
이하, 본 발명의 실시예에 따른 공중합체 제조 방법에 대하여 설명한다.Hereinafter, a copolymer production method according to an embodiment of the present invention will be described.
본 발명의 실시예에 따른 공중합체 제조 방법은 촉매 조성물의 존재 하에, 에틸렌 단량체, 프로필렌 단량체, 탄소수가 6개 이상인 알파-올레핀 단량체 및 디엔 단량체를 중합하는 단계를 포함한다. The copolymer production method according to an embodiment of the present invention comprises the step of polymerizing, in the presence of a catalyst composition, an ethylene monomer, a propylene monomer, an alpha-olefin monomer having 6 or more carbon atoms and a diene monomer.
전술한 바와 같이, 본 발명의 실시예에 따른 공중합체는 에틸렌 단량체 30 내지 80 중량%, 프로필렌 단량체 1 내지 50 중량%, 알파-올레핀 단량체 1 내지 40 중량% 및 디엔 단량체 1 내지 10 중량%를 포함하며, 알파-올레핀은 탄소수 6개 이상의 알파-올레핀을 포함할 수 있다.As described above, the copolymer according to the embodiment of the present invention comprises 30 to 80% by weight of ethylene monomer, 1 to 50% by weight of propylene monomer, 1 to 40% by weight of alpha-olefin monomer and 1 to 10% by weight of diene monomer. In addition, the alpha-olefin may include an alpha-olefin having 6 or more carbon atoms.
이때, 알파-올레핀은 1-헥센 및 1-옥텐 중 하나 이상을 포함할 수 있다.In this case, the alpha-olefin may include one or more of 1-hexene and 1-octene.
또한, 본 발명의 실시예에 따른 공중합체는 에틸렌 블록이 형성됨으로 인해 높은 결정성 온도를 가지게 되어 동일한 무늬점도 하에서도 높은 인장강도를 가질 수 있는 효과를 나타낸다.In addition, the copolymer according to the embodiment of the present invention has a high crystallinity temperature due to the formation of ethylene block has the effect that can have a high tensile strength even under the same pattern viscosity.
이처럼 본 발명의 공중합체는 종래의 3원계 공중합체와 비교하여 상대적으로 긴 사슬을 갖는 알파-올레핀을 사용하고 또한 C2 블록이 다수 형성되므로, 본 발명에 따른 공중합체는 종래의 3원계 공중합체 대비 높은 인장강도를 갖는다.As described above, the copolymer of the present invention uses an alpha-olefin having a relatively long chain compared to the conventional terpolymer, and also forms a large number of C2 blocks. It has a high tensile strength.
아울러, 본 발명의 공중합체는 30 내지 70℃, 보다 구체적으로는 40 내지 50℃의 결정화 온도(Tc)를 가질 수 있으며, 상기 촉매 조성물은 지글러-나타계 주촉매 및 유기알루미늄 조촉매를 더 포함할 수 있다.In addition, the copolymer of the present invention may have a crystallization temperature (T c ) of 30 to 70 ℃, more specifically 40 to 50 ℃, the catalyst composition further comprises a Ziegler-Natta-based main catalyst and an organoaluminum promoter It may include.
지글러-나타계 주촉매는 하기 화학식 1 구조를 갖는 VCl4를 이용할 수 있다.Ziegler-Natta-based main catalyst may use a VCl 4 having the formula (1).
[화학식 1][Formula 1]
Figure PCTKR2018003648-appb-I000003
Figure PCTKR2018003648-appb-I000003
일례로, 유기 알루미늄 조촉매는 하기 화학식 2 구조를 갖는 에틸알루미늄 세스키크로라이드(EthylaluminiumSesquechloride)를 이용할 수 있다.For example, the organic aluminum promoter may use ethyl aluminum sesquechloride having the following Chemical Formula 2 structure.
[화학식 2][Formula 2]
Figure PCTKR2018003648-appb-I000004
Figure PCTKR2018003648-appb-I000004
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
1. 공중합체 제조1. Copolymer Preparation
표 1은 실시예 1 내지 3 및 비교에 1 내지 2에 따라 제조된 공중합체의 조성 및 이의 조성비를 나타낸 것이다.Table 1 shows the compositions of the copolymers prepared according to Examples 1 to 3 and 1 to 2 and the composition ratios thereof.
여기서, 실시예 1 내지 3 및 비교예 1 내지 2에 따라 제조된 공중합체의 조성비율은 1H NMR을 이용하여 확인하였다.Here, the composition ratios of the copolymers prepared according to Examples 1 to 3 and Comparative Examples 1 to 2 were confirmed using 1 H NMR.
23mg의 시료와 0.7mL의 듀테로화된오쏘디클로로벤젠(Deuterated ortho-Diclorobenzene) 용매를 1mL 고온용 바이알(Vial)에 넣고 120℃에서 3시간 동안 용해시켜, 2.5wt% 농도의 용액을 제조한 후, 이 용액을 5mm 프로브(Probe)의 NMR 튜브(Tube)에 옮겨 담았다.23 mg of sample and 0.7 mL of deuterated ortho-Diclorobenzene solvent were added to a 1 mL high temperature vial and dissolved at 120 ° C. for 3 hours to prepare a 2.5 wt% solution. The solution was transferred to an NMR tube of a 5 mm probe.
다음으로, 500MHz 브루커(Bruker) NMR기기를 이용하여, 120℃에서 아래의 조건으로 실험을 실시하였다.Next, using a 500MHz Bruker NMR instrument, the experiment was carried out at 120 ℃ under the following conditions.
1H NMR 조건 : Pulse Program = zg301H NMR Condition: Pulse Program = zg30
Scan # = 64 scanScan # = 64 scan
d1 = 10 ~ 20secd1 = 10-20 sec
이때, 각 ppm 구간에 해당하는 피크의 넓이 값을 적분한 뒤, 계산식에 입력하여 결과를 산출하였다.At this time, after integration of the width value of the peak corresponding to each ppm section, it was input to the calculation formula to calculate the result.
[표 1]TABLE 1
Figure PCTKR2018003648-appb-I000005
Figure PCTKR2018003648-appb-I000005
실시예Example 1 One
3 L 반응기에서 고분자 중합을 진행한다. 반응기 안에 1.3 L의 노말헥산(용매), 5,000cc의 프로필렌, 100g의 1-옥텐(단량체), 헥산에 20 wt% 농도로 용해되어 있는 에틸알루미늄 세스키크로라이드(조촉매, ethylaluminumsesquechloride) 용액 6.9g, 3.0g의 에틸리덴-2-노보넨(단량체, 디엔), 30,000cc의 에틸렌(단량체)을 투입하였다. 이때, 반응 온도 조건은 30℃로 설정한 후, 헥산에 5wt% 농도로 용해되어 있는 바나듐 촉매(VCl4) 2.6g을 반응기에 투입하였다. 다음으로, 20분 동안 고분자 중합 반응시간을 진행한 후, 헥산에 20wt% 농도로 용해되어 있는 폴리프로필렌글라이콜-400(반응 정지제)를 12.0g 투입하였다. 다음으로, 반응이 종료된 중합 용액을 에탄올에 침전시킨 후 진공 오븐에서 건조시켜 공중합체를 제조하였다.The polymer polymerization proceeds in a 3 L reactor. 6.9 g of a solution of ethylaluminumsesquechloride in 1.3 L of normal hexane (solvent), 5,000 cc of propylene, 100 g of 1-octene (monomer) and 20 wt% dissolved in hexane 3.0 g of ethylidene-2-norbornene (monomer, diene) and 30,000 cc of ethylene (monomer) were added thereto. At this time, after the reaction temperature conditions were set to 30 ℃, 2.6g of vanadium catalyst (VCl 4 ) dissolved at 5wt% concentration in hexane was added to the reactor. Next, the polymer polymerization reaction time was performed for 20 minutes, and 12.0 g of polypropylene glycol-400 (reaction terminator) dissolved in 20% by weight of hexane was added thereto. Next, the polymerization solution after the reaction was precipitated in ethanol and dried in a vacuum oven to prepare a copolymer.
실시예Example 2 2
10,000cc의 프로필렌을 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 공중합체를 제조하였다.A copolymer was prepared in the same manner as in Example 1 except that 10,000 cc of propylene was added.
실시예Example 3 3
15,000cc의 프로필렌을 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 공중합체를 제조하였다.A copolymer was prepared in the same manner as in Example 1 except that 15,000 cc of propylene was added.
비교예Comparative example 1 : 에틸렌- 1: ethylene- 디엔Dien 2원 공중합체 Binary copolymer
3 L 반응기에서 고분자 중합을 진행한다. 반응기 안에 1.3 L의 노말헥산(용매), 100g의 1-헥센(단량체), 헥산에 20 wt% 농도로 용해되어 있는 에틸알루미늄 세스키크로라이드(조촉매, ethylaluminumsesquechloride) 용액 6.9g, 3.0g의 에틸리덴-2-노보넨(단량체, 디엔), 30,000cc의 에틸렌(단량체)을 투입하였다. 이때, 반응 온도 조건은 30℃로 설정한 후, 헥산에 5wt% 농도로 용해되어 있는 바나듐 촉매(VCl4) 2.6g을 반응기에 투입하였다. 다음으로, 20분 동안 고분자 중합 반응시간을 진행한 후, 헥산에 20wt% 농도로 용해되어 있는 폴리프로필렌글라이콜-400(반응 정지제)를 12.0g 투입하였다. 다음으로, 반응이 종료된 중합 용액을 에탄올에 침전시킨 후 진공 오븐에서 건조시켜 공중합체를 제조하였다.The polymer polymerization proceeds in a 3 L reactor. 6.9 g of a solution of ethylaluminum sesquechloride (promoter, ethylaluminumsesquechloride) dissolved in 1.3 L of normal hexane (solvent), 100 g of 1-hexene (monomer) in hexane at a concentration of 20 wt% Liden-2-norbornene (monomer, diene) and 30,000 cc of ethylene (monomer) were added. At this time, after the reaction temperature conditions were set to 30 ℃, 2.6g of vanadium catalyst (VCl 4 ) dissolved at 5wt% concentration in hexane was added to the reactor. Next, the polymer polymerization reaction time was performed for 20 minutes, and 12.0 g of polypropylene glycol-400 (reaction terminator) dissolved in 20% by weight of hexane was added thereto. Next, the polymerization solution after the reaction was precipitated in ethanol and dried in a vacuum oven to prepare a copolymer.
비교예Comparative example 2 : 에틸렌- 2: ethylene- 옥텐Octene -- 디엔Dien 4원 공중합체 Quaternary copolymer
3 L 반응기에서 고분자 중합을 진행한다. 반응기 안에 1.3 L의 노말헥산(용매), 100g의 1-옥텐(단량체), 헥산에 20 wt% 농도로 용해되어 있는 에틸알루미늄 세스키크로라이드(조촉매, ethylaluminumsesquechloride) 용액 6.9g, 3.0g의 에틸리덴-2-노보넨(단량체, 디엔), 30,000cc의 에틸렌(단량체)을 투입하였다. 이때, 반응 온도 조건은 30℃로 설정한 후, 헥산에 5wt% 농도로 용해되어 있는 바나듐 촉매(VCl4) 2.6g을 반응기에 투입하였다. 다음으로, 20분 동안 고분자 중합 반응시간을 진행한 후, 헥산에 20wt% 농도로 용해되어 있는 폴리프로필렌글라이콜-400(반응 정지제)를 12.0g 투입하였다. 다음으로, 반응이 종료된 중합 용액을 에탄올에 침전시킨 후 진공 오븐에서 건조시켜 공중합체를 제조하였다.The polymer polymerization proceeds in a 3 L reactor. 6.9 g of a solution of ethylaluminum sesquechloride (ethylaluminumsesquechloride) dissolved in 1.3 L of normal hexane (solvent), 100 g of 1-octene (monomer) and 20 wt% in hexane, 3.0 g of ethyl Liden-2-norbornene (monomer, diene) and 30,000 cc of ethylene (monomer) were added. At this time, after the reaction temperature conditions were set to 30 ℃, 2.6g of vanadium catalyst (VCl 4 ) dissolved at 5wt% concentration in hexane was added to the reactor. Next, the polymer polymerization reaction time was performed for 20 minutes, and 12.0 g of polypropylene glycol-400 (reaction terminator) dissolved in 20% by weight of hexane was added thereto. Next, the polymerization solution after the reaction was precipitated in ethanol and dried in a vacuum oven to prepare a copolymer.
2. 물성 평가2. Property evaluation
표 2는 실시예 1 내지 3 및 비교예 1 내지 2에 대한 물성 평가 결과를 나타낸 것이다.Table 2 shows the physical property evaluation results for Examples 1 to 3 and Comparative Examples 1 and 2.
[표 2]TABLE 2
Figure PCTKR2018003648-appb-I000006
Figure PCTKR2018003648-appb-I000006
1) 분자량 및 분자량분포1) Molecular weight and molecular weight distribution
겔 투과 크로마토그래피(GPC)를 통해 중량평균분자량(Mw)을 측정하였으며, 겔 투과 크로마토그래피(GPC)를 통해 측정된 중량평균분자량(Mw)과 수평균분자량(Mn)을 나눠 분자량분포(MWD)를 산출하였다.The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and the molecular weight distribution (MWD) was divided by the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC). Was calculated.
2) 유리전이 온도(Tg) 및 결정화 온도(Tc)2) glass transition temperature (T g ) and crystallization temperature (T c )
시차주사열량계를 사용하여 질소 분위기에서 -100℃부터 200℃까지 10℃/min의 속도로 가열 - 냉각 - 가열 단계로 측정한다. 용융체가 다시 재결정 되는 냉각 단계에서 발열 곡선의 정상점(peak)을 결정화 온도로 규정한다.The differential scanning calorimeter is used to measure the heating-cooling-heating step at a rate of 10 ° C./min from −100 ° C. to 200 ° C. in a nitrogen atmosphere. The peak of the exothermic curve is defined as the crystallization temperature in the cooling stage where the melt is recrystallized again.
3) 가교 밀도(lbㆍin)3) Crosslinking density (lb · in)
아래 표 3에 기재된 배합비(ASTM 3568)로 혼합한 시편을 MDR(Moving Die Rheometer) 기기의 다이(Die)에 넣어 밀폐시킨 시편에 진동(Oscillation)을 준다. 시간이 지남에 따라 시편은 가교가 되어 토크(Torque)가 상승하는 것을 확인할 수 있으며, 최대 토크(MH)와 최저 토크의 차이 값을 가교 밀도로 규정한다.Oscillation is applied to the sealed specimen by putting the specimen mixed in the mixing ratio (ASTM 3568) described in Table 3 below into a die of a moving die rheometer (MDR) device. Over time, the specimen is a bridge to check that the torque (Torque) increases, defines the difference value between the maximum torque (M H) and the minimum torque by the cross-linking density.
[표 3]TABLE 3
Figure PCTKR2018003648-appb-I000007
Figure PCTKR2018003648-appb-I000007
4) 무늬점도(1+4 125℃)4) Pattern viscosity (1 + 4 125 ℃)
무늬점도(Mooney Viscosity) 기기의 챔버(Chamber) 안을 시편으로 채운 후 로터(Rotor)를 회전시키면서 토크를 측정한다. 챔버(Chamber) 안의 시편을 1 분간 125℃에서 예열을 한 후, 4분 동안 2rpm의 속도로 로터를 회전시킨 후의 토크값을 변환하여 무늬점도로 규정하였다.Fill the chamber of the Monet Viscosity instrument with the specimen and measure the torque while rotating the rotor. After preheating the specimen in the chamber at 125 ° C. for 1 minute, the torque value after the rotor was rotated at a speed of 2 rpm for 4 minutes was converted to define a pattern viscosity.
5) 인장강도(kgf/cm2)5) Tensile strength (kgf / cm 2 )
표 3의 배합비(ASTM 3568)로 혼합된 혼합물을 160℃에서 30분 동안 가교시킨 후, ASTM D412 시험법에 따라 시편을 커팅한 후, UTM 기기를 통해 인장강도를 측정하였다. 이때, 시편이 끊어지는 시점에서의 강도를 인장강도라 규정하였다.After mixing the mixture in the mixing ratio of Table 3 (ASTM 3568) for 30 minutes at 160 ℃, after cutting the specimen according to the ASTM D412 test method, the tensile strength was measured through a UTM machine. At this time, the strength at the time of breaking the specimen was defined as tensile strength.
6) Δtanδ6) Δtanδ
Δtanδ는 ASTM D6204-01에 따라 고무가공처리분석기(Rubber ProcessAnalyzer)를 사용하여 측정하였다. Monsanto 사의 RPA2000 MV 2000E 장비모델을 사용하였고, 측정 샘플은 산화방지제(Irganox 1076)로 처리한 공중합체 샘플을 프레스 몰드를 이용해 시트로 제작하고 이를 100℃에서 7% 변형(strain) 및 0.1-210 rad/s의 주파수범위에서 tanδ를 측정하였다. 이때, Δtanδ는 각진동수 104.7 과 0.2 rad/s에 해당하는 tanδ 값의 차이를 나타낸다.Δtanδ was measured using a Rubber Process Analyzer according to ASTM D6204-01. The RPA2000 MV 2000E instrument model from Monsanto was used, and the measurement sample was prepared from a copolymer sample treated with an antioxidant (Irganox 1076) into a sheet using a press mold, which was 7% strain at 100 ° C and 0.1-210 rad. tan δ was measured in the frequency range of / s. At this time, Δtanδ represents the difference between tan delta values corresponding to the angular frequency of 104.7 and 0.2 rad / s.
7) 신율7) elongation
ASTM D412에 명시된 모양에 맞게 160 및 250bar 조건으로 20분 동안 프레스하여 시편을 제작한다. 이후, 24시간 동안 항온항습기에서 숙성시킨 후, Instron 3343 UTM 기기를 이용하여 ASTM D412 시험 조건에 맞게 측정하여 아래의 계산식을 통해 신율을 산출한다.The specimens are fabricated by pressing for 20 minutes at 160 and 250 bar to conform to the shapes specified in ASTM D412. Then, after aging in a thermo-hygrostat for 24 hours, using an Instron 3343 UTM instrument to measure the ASTM D412 test conditions to calculate the elongation through the formula below.
L0 : 제작된 시편의 길이(측정 전 처음 시편 길이)L 0 : Length of fabricated specimen (length of first specimen before measurement)
Lb : 측정 중 시편 절단 길이L b : specimen cutting length during measurement
신율(%) = {(Lb - L0) / L0} × 100Elongation (%) = {(L b -L 0 ) / L 0 } × 100
8) t90의 정의 및 측정방법8) Definition and measurement method of t90
MDR(Moving Disk Rheometer) 기기를 사용하여 160℃에서 30분 동안 측정하면, 시간에 따른 토크 커브(Torque Curve)를 갖게 되며, t90은 최적 가황 시간으로 최대 토크(Torque) 값의 90%에 해당되는 시간이며, 가교 속도 및 생산성을 나타낸다.When measured for 30 minutes at 160 ° C using an MDR (Moving Disk Rheometer) instrument, it will have a torque curve over time and t90 corresponds to 90% of the maximum torque value at the optimum vulcanization time. It is time and shows the crosslinking speed and productivity.
표 1 내지 표 3에 도시된 바와 같이, 실시예 1 내지 3에 따라 제조된 공중합체는 비교예 1 내지 2에 따라 제조된 공중합체와 비교해 볼 때, 기계적 물성(경도, 100% 모듈러스, 인장강도)에는 큰 변화가 없으면서 무늬점도(1+4 125℃)가 상당히 낮은 값을 나타내는 것을 알 수 있다.As shown in Tables 1 to 3, the copolymers prepared according to Examples 1 to 3 had mechanical properties (hardness, 100% modulus, tensile strength) when compared to the copolymers prepared according to Comparative Examples 1 to 2. ), The pattern viscosity (1 + 4 125 ℃) shows a very low value without significant change.
또한, 실시예 1 내지 3에 따라 제조된 공중합체는 비교예 1에 따라 제조된 공중합체에 비하여 신율이 증가한 것을 확인할 수 있다.In addition, it can be seen that the copolymer prepared according to Examples 1 to 3 has an increased elongation as compared to the copolymer prepared according to Comparative Example 1.
위의 실험 결과를 토대로, 실시예 1 내지 3에 따라 제조된 공중합체의 경우, 36.4 내지 43.3의 낮은 무늬점도를 가짐에 따라 롤(roll), 캘린더링(calendering) 및 압출(extrusion) 등의 가공성이 좋아지며, 이 결과 신율이 증가하는 경향을 나타내는 것을 확인하였다.Based on the above experimental results, in the case of the copolymer prepared according to Examples 1 to 3, it has a low pattern viscosity of 36.4 to 43.3, and thus workability such as roll, calendering, and extrusion It was confirmed that the elongation tends to increase as a result.
또한, 실시예 1 내지 3에 따라 제조된 공중합체의 경우, 에틸렌의 첨가량이 감소할수록 낮은 결정화 온도에 따라 오일 블루밍 예방 효과가 있으며, 롤 가공성이 좋아지는 것을 확인하였다.In addition, in the case of the copolymer prepared according to Examples 1 to 3, as the addition amount of ethylene decreases according to the low crystallization temperature has an oil blooming prevention effect, it was confirmed that the roll processability is improved.
또한, 실시예 1 내지 3에 따라 제조된 공중합체의 경우, 디엔의 함량이 증가할수록 가교속도가 증가하는 경향을 나타내어 생산성을 향상시킬 수 있다는 것을 확인하였다.In addition, in the case of the copolymer prepared according to Examples 1 to 3, it was confirmed that the crosslinking rate increases as the diene content increases, thereby improving productivity.
또한, 실시예 1 ~ 3에 따라 제조된 공중합체의 경우, 비교예 1 ~ 2에 따라 제조된 공중합체에 비하여, t90 측정 값이 6.5 ~ 8.2min으로 측정되어 가교 시간이 상당히 단축된 것을 알 수 있으며, 이 결과 가교 속도 및 생산성을 향상시킬 수 있다는 것을 확인하였다.In addition, in the case of the copolymers prepared according to Examples 1 to 3, compared to the copolymers prepared according to Comparative Examples 1 to 2, the measured value of t90 was measured to be 6.5 to 8.2 min, indicating that the crosslinking time was significantly shortened. As a result, it was confirmed that the crosslinking speed and productivity can be improved.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above has been described with reference to the embodiments of the present invention, various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the technical idea provided by the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (20)

  1. 에틸렌, 프로필렌, 6개 이상의 탄소를 갖는 알파-올레핀 및 디엔을 포함하는 공중합체.Copolymers comprising ethylene, propylene, alpha-olefins with 6 or more carbons and dienes.
  2. 제1항에 있어서,The method of claim 1,
    상기 알파-올레핀은The alpha-olefin is
    1-헥센 및 1-옥텐 중 하나 이상을 포함하는 공중합체.A copolymer comprising at least one of 1-hexene and 1-octene.
  3. 제2항에 있어서,The method of claim 2,
    상기 에틸렌 단량체 30 내지 80 중량%, 프로필렌 단량체 1 내지 50 중량%, 알파-올레핀 단량체 1 내지 40 중량% 및 디엔 단량체 1 내지 10 중량%를 포함하는 공중합체.Copolymer comprising 30 to 80% by weight of the ethylene monomer, 1 to 50% by weight of propylene monomer, 1 to 40% by weight of alpha-olefin monomer and 1 to 10% by weight of diene monomer.
  4. 제3항에 있어서,The method of claim 3,
    상기 에틸렌 단량체 45 내지 70 중량%, 프로필렌 단량체 5 내지 20 중량%, 알파-올레핀 단량체 15 내지 35 중량% 및 디엔 단량체 3 내지 7 중량%를 포함하는 공중합체.Copolymer comprising 45 to 70% by weight of the ethylene monomer, 5 to 20% by weight propylene monomer, 15 to 35% by weight alpha-olefin monomer and 3 to 7% by weight diene monomer.
  5. 제1항에 있어서,The method of claim 1,
    30 내지 45의 무늬점도(1+4 125℃)를 갖는 공중합체.Copolymer having a pattern viscosity of 30 to 45 (1 + 4 125 ℃).
  6. 제1항에 있어서,The method of claim 1,
    30 내지 70℃의 결정화 온도(Tc)를 갖는 공중합체.Copolymer having a crystallization temperature (T c ) of 30 to 70 ° C.
  7. 제1항에 있어서,The method of claim 1,
    40 내지 50℃의 결정화 온도(Tc)를 갖는 공중합체.Copolymer having a crystallization temperature (T c ) of 40 to 50 ℃.
  8. 제1항에 있어서,The method of claim 1,
    2.0 미만의 분자량 분포를 갖는 공중합체.Copolymers having a molecular weight distribution of less than 2.0.
  9. 제1항에 있어서,The method of claim 1,
    1 이상의 △tanδ를 갖는 공중합체.Copolymers having at least one Δtanδ.
  10. 제1항에 있어서,The method of claim 1,
    25 lbㆍin 이하의 가교밀도를 갖는 공중합체.A copolymer having a crosslinking density of 25 lb · in or less.
  11. 제1항에 있어서,The method of claim 1,
    75 이상의 경도(Shore A)를 갖는 공중합체.Copolymer having a hardness of at least 75 (Shore A).
  12. 제1항에 있어서,The method of claim 1,
    65 kgf/cm2 이하의 100% 모듈러스를 갖는 공중합체.Copolymers having a 100% modulus of 65 kgf / cm 2 or less.
  13. 제1항에 있어서,The method of claim 1,
    250% 내지 300%의 신율을 갖는 공중합체.Copolymers having an elongation of 250% to 300%.
  14. 제1항에 있어서,The method of claim 1,
    100,000 내지 300,000의 중량평균분자량(Mw)을 갖는 공중합체.Copolymer having a weight average molecular weight (Mw) of 100,000 to 300,000.
  15. 촉매 조성물의 존재 하에, 에틸렌 단량체, 프로필렌 단량체, 탄소수 6개 이상인 알파-올레핀 단량체 및 디엔 단량체를 중합하는 단계를 포함하는 공중합체 제조 방법.A method of producing a copolymer comprising polymerizing an ethylene monomer, a propylene monomer, an alpha-olefin monomer having 6 or more carbon atoms and a diene monomer in the presence of a catalyst composition.
  16. 제15항에 있어서,The method of claim 15,
    상기 촉매 조성물은 The catalyst composition is
    지글러-나타계 주촉매를 포함하는 공중합체 제조 방법.Method for producing a copolymer comprising a Ziegler-Natta-based main catalyst.
  17. 제16항에 있어서,The method of claim 16,
    상기 촉매 조성물은 The catalyst composition is
    유기알루미늄 조촉매를 더 포함하는 공중합체 제조 방법.A method for producing a copolymer further comprising an organoaluminum promoter.
  18. 제15항에 있어서,The method of claim 15,
    상기 공중합체는 The copolymer
    상기 에틸렌 단량체 30 내지 80 중량%, 프로필렌 단량체 1 내지 50 중량%, 알파-올레핀 단량체 1 내지 40 중량% 및 디엔 단량체 1 내지 10 중량%를 포함하며, 30 to 80% by weight of the ethylene monomer, 1 to 50% by weight of propylene monomer, 1 to 40% by weight of alpha-olefin monomer and 1 to 10% by weight of diene monomer,
    상기 알파-올레핀은 탄소수 6개 이상의 알파-올레핀을 포함하는 공중합체 제조 방법.The alpha-olefin is a copolymer manufacturing method comprising an alpha-olefin having 6 or more carbon atoms.
  19. 제18항에 있어서,The method of claim 18,
    상기 알파-올레핀은 The alpha-olefin is
    1-헥센 및 1-옥텐 중 하나 이상을 포함하는 공중합체 제조 방법.A method for producing a copolymer comprising at least one of 1-hexene and 1-octene.
  20. 제18항에 있어서,The method of claim 18,
    상기 공중합체는 The copolymer
    상기 에틸렌 단량체 45 내지 70 중량%, 프로필렌 단량체 5 내지 20 중량%, 알파-올레핀 단량체 15 내지 35 중량% 및 디엔 단량체 3 내지 7 중량%를 포함하는 공중합체 제조 방법.45 to 70 wt% of the ethylene monomer, 5 to 20 wt% of the propylene monomer, 15 to 35 wt% of the alpha-olefin monomer and 3 to 7 wt% of the diene monomer.
PCT/KR2018/003648 2017-04-06 2018-03-28 Copolymer and method for manufacturing same WO2018186619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170044537A KR102282288B1 (en) 2017-04-06 2017-04-06 Copolymer and method of manufacturing the same
KR10-2017-0044537 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186619A1 true WO2018186619A1 (en) 2018-10-11

Family

ID=63712260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003648 WO2018186619A1 (en) 2017-04-06 2018-03-28 Copolymer and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102282288B1 (en)
WO (1) WO2018186619A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050110036A (en) * 2003-04-02 2005-11-22 바셀 폴리올레핀 이탈리아 에스.알.엘 Polyolefin masterbatch and composition suitable for injection molding
KR20070117609A (en) * 2005-03-23 2007-12-12 바젤 폴리올레핀 게엠베하 Process for the polymerization of olefins
KR101501853B1 (en) * 2013-11-29 2015-03-12 롯데케미칼 주식회사 Process for preparing ethylene-propylene-diene terpolymer using transition metal compound comprising thiophene-fused cyclopentadienyl ligand
KR20160057528A (en) * 2014-11-13 2016-05-24 현대모비스 주식회사 Polyolefin elastomer composition
KR101706073B1 (en) * 2016-04-27 2017-02-13 한화케미칼 주식회사 High density ethylene polymer with excellent processability using supported hybrid metallocene catalyst and methods for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050110036A (en) * 2003-04-02 2005-11-22 바셀 폴리올레핀 이탈리아 에스.알.엘 Polyolefin masterbatch and composition suitable for injection molding
KR20070117609A (en) * 2005-03-23 2007-12-12 바젤 폴리올레핀 게엠베하 Process for the polymerization of olefins
KR101501853B1 (en) * 2013-11-29 2015-03-12 롯데케미칼 주식회사 Process for preparing ethylene-propylene-diene terpolymer using transition metal compound comprising thiophene-fused cyclopentadienyl ligand
KR20160057528A (en) * 2014-11-13 2016-05-24 현대모비스 주식회사 Polyolefin elastomer composition
KR101706073B1 (en) * 2016-04-27 2017-02-13 한화케미칼 주식회사 High density ethylene polymer with excellent processability using supported hybrid metallocene catalyst and methods for producing the same

Also Published As

Publication number Publication date
KR102282288B1 (en) 2021-07-26
KR20180113248A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
KR101161887B1 (en) Thermoplastic olefinic compositions
JP3334052B2 (en) Compounded ethylene / α-olefin elastomer compound
US7619165B2 (en) Cable with thermoplastic insulation
WO2010128826A2 (en) Olefin polymer and fiber including same
WO2010110559A2 (en) Uncrosslinked polyethylene composition for power cable
JP2019070128A (en) Elastomer-based polymeric compositions having amorphous silica fillers
JP6936795B2 (en) Crosslinkable polymer compositions for flexible crosslinked cable insulators, and methods for making flexible crosslinked cable insulators.
US20020107328A1 (en) Soft touch TPO compositions comprising polypropylene and low crystalline ethylene copolymers
WO2020080745A1 (en) Catalyst for olefin polymerization
JP6804519B6 (en) Flexible cross-linked cable insulators, and methods for making flexible cross-linked cable insulators.
KR102047152B1 (en) Polymeric coatings for coated conductors
JP6868007B2 (en) Flexible cross-linked cable insulators, and methods for making flexible cross-linked cable insulators.
EP3607566B1 (en) Cable jacket composition
WO2019143007A1 (en) Polyolefin resin composition for electric wire insulation
KR20000029579A (en) Polyolefin mixture containing poly(1-butene)
WO2020080744A1 (en) Olefinic polymer
WO2013147466A1 (en) Non-crosslinked polyethylene composition for power cable
WO2018186619A1 (en) Copolymer and method for manufacturing same
WO2018203600A2 (en) Copolymer composition
WO2018212488A1 (en) Polyketone alloy resin composition
CN111108002A (en) Polyolefin composition for enhanced laser printing
KR20170023990A (en) Insitu compatibilization of silicone rubberpolyolefin elastomer blends by forming ionomers for cold shrink splice and preparation method thereof
KR20170023988A (en) Flexible elastic rubber compounds with improved dielectric and tear strength for cold shrink splices and preparation method thereof
WO2019066516A1 (en) Method for predicting long-term durability of pipe resin composition and olefin-based polymer used for pipe resin
EP3385958B1 (en) Cable jacket composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780298

Country of ref document: EP

Kind code of ref document: A1