WO2018212488A1 - Polyketone alloy resin composition - Google Patents

Polyketone alloy resin composition Download PDF

Info

Publication number
WO2018212488A1
WO2018212488A1 PCT/KR2018/005083 KR2018005083W WO2018212488A1 WO 2018212488 A1 WO2018212488 A1 WO 2018212488A1 KR 2018005083 W KR2018005083 W KR 2018005083W WO 2018212488 A1 WO2018212488 A1 WO 2018212488A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyketone
bis
carbonate
alloy composition
composition
Prior art date
Application number
PCT/KR2018/005083
Other languages
French (fr)
Korean (ko)
Inventor
박선근
김홍운
정진주
김중인
오세진
윤성균
Original Assignee
효성화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성화학 주식회사 filed Critical 효성화학 주식회사
Publication of WO2018212488A1 publication Critical patent/WO2018212488A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L73/00Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyketone alloy resin composition having improved processing stability and mechanical properties, and more particularly, to improving processing stability, comprising adding polyalkylene carbonate, an amorphous polymer, to polyketone.
  • the mechanical properties also relate to improved polyketone alloy compositions.
  • Polyketone (PK) is a material that has lower raw materials and polymerization process costs than general engineering plastic materials such as polyamide, polyester, and polycarbonate. Polyketone (PK) has excellent properties such as heat resistance, chemical resistance, fuel permeability, and abrasion resistance. It is widely applied to.
  • Polyketone having the above characteristics is a catalyst based on carbon monoxide (CO) and olefins such as ethylene and propylene to form transition metal complexes such as palladium (Pd) and nickel (Ni). It is already known that carbon monoxide and olefins are obtained by alternating bonding with one another by polymerization by means of polymerization (Industrial Materials, December issue, page 5, 1997). On the other hand, there is a growing interest in a group of linear alternating polymers consisting of carbon monoxide and at least one ethylenically unsaturated hydrocarbon, known as polyketones or polyketone polymers.
  • U. S. Patent No. 4,880, 903 discloses a linear alternating polyketone terpolymer consisting of carbon monoxide and ethylene and other olefinically unsaturated hydrocarbons such as propylene.
  • the process for producing polyketone polymers is usually a compound of a Group VIII metal selected from palladium, cobalt or nickel, anions of non-hydrohalogenic acid, phosphorus and arsenic Or a catalyst composition produced from a bidentate ligand of Antimon.
  • a Group VIII metal selected from palladium, cobalt or nickel, anions of non-hydrohalogenic acid, phosphorus and arsenic Or a catalyst composition produced from a bidentate ligand of Antimon.
  • US Pat. No. 4,843,144 describes a process for preparing polymers of carbon monoxide and at least one ethylenically unsaturated hydrocarbon using a palladium compound, an anion of a nonhydrohalogenic acid having a pKa of less than 6, and a catalyst that is a bidentate ligand of phosphorus. Is starting.
  • the prior art for improving the processing stability of the polyketone there is a method using an additive such as a plasticizer or a lubricant, but this has the effect of complementing the workability in the short term, but there is a limit in improving the long-term processing stability.
  • the processing stability is improved, but the physical properties such as impact strength is very low. Accordingly, there is a need for a polyketone composition having improved long-term processing stability and a polyketone composition having improved mechanical properties while improving processing stability.
  • an object of the present invention is to add a polyalkylene carbonate (polyalkylene carbonate) to the polyketone to provide a polyketone alloy composition with improved processing stability and mechanical properties.
  • the present invention uses an alloy made by adding polyalkylene carbonate to the linear alternating polyketone consisting of carbon monoxide and at least one olefinically unsaturated hydrocarbon, in the extrusion and injection process
  • the present invention provides a polyketone alloy composition having improved long-term processing stability by delaying crosslinking and degradation that may occur during long-term operation.
  • the composition ratio of the polyalkylene carbonate to the total weight of the polyketone alloy composition is a composition ratio of 5 to 90% by weight
  • the polyalkylene carbonate is polypropylene carbonate (PPC; Polypropylene carbonate) and polyethylene carbonate (PEC; Polyethylene carbonate) and one or two selected from the group consisting of.
  • the maximum running time of the polyketone alloy composition at 220 ° C. and 100 rpm may be 300 minutes or more as a result of a long-term stay evaluation of the Hake Mixer.
  • the number average molecular weight of the polypropylene carbonate is preferably 2,000 to 100,000, and the number average molecular weight of the polyethylene carbonate is preferably 100,000 to 300,000.
  • the composition ratio of polyethylene carbonate is 1 to 20% by weight based on the total weight of the polyketone alloy composition, and the number average molecular weight of the polyethylene carbonate may be 10,000 to 300,000.
  • the polyketone alloy composition may have a maximum running time of 140 minutes or more as a result of the Hake Mixer long-term residence evaluation at 220 ° C. and 100 rpm.
  • the ligand of the catalyst composition used in the polyketone polymerization is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) Phosphine) and (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine).
  • the polyketone alloy composition of the present invention reduces the gel, carbonization, black spots, etc. generated during long-term retention due to the stagnation of the resin in the process of extrusion, injection, etc. to prevent product defects or damage to processing equipment. It can increase the production efficiency, and improve the mechanical properties such as impact strength and flexural modulus, thereby expanding the product range.
  • Example 1 is a graph showing the cross over time (COT) in Examples 1, 2 and Comparative Example 1 to confirm the effect of improving the processing stability of the present invention.
  • Figure 2 is a graph showing the Torque Haake Mixer retention evaluation results in Examples 1 and 2 and Comparative Example 1 to confirm the effect of improving the processing stability of the present invention.
  • FIG 3 is a graph showing the difference in temperature of the cylinders of Haake Mixer retention evaluation in Examples 1 and 2 and Comparative Example 1 to confirm the effect of improving the processing stability of the present invention.
  • Example 4 is a graph showing Melt viscosity (MV) of Examples 1 and 2 and Comparative Example 1 of the present invention.
  • thermogravimetric analysis TGA
  • Comparative Example 1 polyethylene carbonate (PEC) of the present invention.
  • Example 7 is a scanning electron microscope (SEM) photograph of the fracture surface of the impact specimen of Example 2 of the present invention.
  • Figure 9 is a graph showing the Torque Mixer (Haake Mixer) retention evaluation results in Examples 3, 11 to 13 and Comparative Example 2 to confirm the effect of improving the processing stability of the present invention.
  • the present invention also provides a polyketone alloy composition having improved long-term processing stability and mechanical properties by adding polyalkylene carbonate to the polyketone.
  • the polyketone resin used in the present invention is an engineering plastic and is a recently developed new resin, and is a thermoplastic synthetic resin that is usefully applied as a material for various molded products or parts due to its excellent mechanical properties and molding properties such as impact strength. to be.
  • Mechanical properties of the polyketone resin belongs to the category of high performance plastics, and is a polymer material that synthesizes carbon monoxide as a raw material.
  • Polyketone resin has low moisture absorption compared to polyamide material, so it is possible to design various products with little change in dimensions and physical properties due to moisture absorption.
  • polyketone resin has a lower density than aluminum, making it suitable for weight reduction.
  • the process for preparing polyketones is characterized by the presence of carbon monoxide in a liquid medium in the presence of an organometallic complex catalyst comprising a ligand having an element of group (a) Group 9, Group 10 or Group 11, and group (b) Group 15.
  • an organometallic complex catalyst comprising a ligand having an element of group (a) Group 9, Group 10 or Group 11, and group (b) Group 15.
  • a mixed solvent consisting of 70 to 90% by volume of acetic acid and 10 to 30% by volume of water is used as a liquid medium. It is characterized by the addition.
  • a mixed solvent consisting of acetic acid and water is used as a liquid medium, without using methanol, dichloromethane, or nitromethane, which have been mainly used in the production of polyketone.
  • a mixed solvent of acetic acid and water is used as the liquid medium in the production of the polyketone it is possible to improve the catalytic activity while reducing the production cost of the polyketone.
  • a mixed solvent of acetic acid and water when used as the liquid medium, when the concentration of water is less than 10% by volume, the catalytic activity is less affected. However, when the concentration is more than 10% by volume, the catalytic activity rapidly increases. On the other hand, when the concentration of water exceeds 30% by volume, catalytic activity tends to decrease. Therefore, it is preferable to use a mixed solvent composed of 70 to 90 vol% acetic acid and 10 to 30 vol% water as the liquid medium.
  • the catalyst is composed of a ligand having an element of (a) Group 9, Group 10 or Group 11 transition metal compound (b) Group 15 of the Periodic Table (IUPAC Inorganic Chemistry Nomenclature, 1989).
  • Examples of the Group 9 transition metal compound in the Group 9, 10 or 11 transition metal compound (a) include complexes of cobalt or ruthenium, carbonates, phosphates, carbamate salts, sulfonates, and the like. Specific examples thereof include cobalt acetate, cobalt acetylacetate, ruthenium acetate, trifluoro ruthenium acetate, ruthenium acetylacetate, and trifluoromethane sulfonate ruthenium.
  • Examples of the Group 10 transition metal compound include a complex of nickel or palladium, carbonate, phosphate, carbamate, sulfonate, and the like, and specific examples thereof include nickel acetate, nickel acetyl acetate, palladium acetate, and palladium trifluoroacetate. And palladium acetylacetate, palladium chloride, bis (N, N-diethylcarbamate) bis (diethylamine) palladium, palladium sulfate and the like.
  • Group 11 transition metal compound examples include copper or silver complexes, carbonates, phosphates, carbamates, sulfonates, and the like, and specific examples thereof include copper acetate, trifluoroacetate, copper acetylacetate, silver acetate, tri Silver fluoroacetic acid, silver acetyl acetate, silver trifluoromethane sulfonic acid, etc. are mentioned.
  • transition metal compounds (a) are nickel and copper compounds
  • preferred transition metal compounds (a) are palladium compounds in terms of yield and molecular weight of polyketones, and in terms of improving catalytic activity and intrinsic viscosity.
  • palladium acetate is used in the process.
  • Examples of the ligand (b) having a group 15 atom include 2,2'-bipyridyl, 4,4'-dimethyl-2,2'-bipyridyl, 2,2'-bi-4-picolin , Nitrogen ligands such as 2,2'-bikinolin, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) Butane, 1,3-bis [di (2-methyl) phosphino] propane, 1,3-bis [di (2-isopropyl) phosphino] propane, 1,3-bis [di (2-methoxyphenyl ) Pinospino] propane, 1,3-bis [di (2-methoxy-4-sulfonic acid-phenyl) phosphino] propane, 1,2-bis (diphenylphosphino) cyclohexane, 1,2-bis (
  • the ligand (b) having an element of Group 15 is a phosphorus ligand having an atom of Group 15, and particularly, in view of the yield of polyketone, a phosphorus ligand is preferably 1,3-bis [di (2- Methoxyphenyl) phosphino] propane, 1,2-bis [[di (2-methoxyphenyl) phosphino] methyl] benzene, and 2-hydroxy-1,3-bis [in terms of molecular weight of the polyketone.
  • Preferred ligand (b) having an atom of group 15 is 1,3-bis [di (2-methoxyphenyl) phosphino] propane or 1,3-bis (diphenylphosphino) propane, most preferably 1,3-bis [di (2-methoxyphenyl) phosphino] propane or ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2 Methoxyphenyl) phosphine).
  • the method for preparing a ligand for a polyketone polymerization catalyst is as follows. Using bis (2-methoxyphenyl) phosphine, 5,5-bis (bromomethyl) -2,2-dimethyl-1,3-dioxane and sodium hydride (NaH) ((2,2-dimethyl) ((2,2-dimethyl) ((2,2-dimethyl) ((2,2-dimethyl) Provided is a method for producing a ligand for a polyketone polymerization catalyst, characterized by obtaining -1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine). .
  • the method for preparing a ligand for a polyketone polymerization catalyst of the present invention is conventionally 3,3-bis- [bis- (2-methoxyphenyl) phosphanylmethyl] -1,5-dioxa-spiro [5,5] undecane Unlike the synthesis method of ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2- Methoxyphenyl) phosphine) can be commercially mass synthesized.
  • the method for preparing a ligand for a polyketone polymerization catalyst of the present invention is (a) adding bis (2-methoxyphenyl) phosphine and dimethylsulfoxide (DMSO) to a reaction vessel under a nitrogen atmosphere and hydrogenated at room temperature.
  • DMSO dimethylsulfoxide
  • the amount of the Group 9, Group 10 or Group 11 transition metal compound (a) to be used varies uniformly since the appropriate value varies depending on the type of the ethylenic and propylene unsaturated compounds selected or other polymerization conditions. Although not limited, it is usually 0.01-100 mmol, preferably 0.01-10 mmol, per liter of the capacity of the reaction zone.
  • the capacity of the reaction zone means the capacity of the liquid phase of the reactor.
  • the amount of the ligand (b) to be used is not particularly limited, but is usually 0.1 to 3 mol, preferably 1 to 3 mol, per mol of the transition metal compound (a).
  • the addition of benzophenone during the polymerization of polyketones is another feature.
  • the molar ratio of the (a) Group 9, Group 10 or Group 11 transition metal compound and benzophenone is 1: 5 to 100, preferably 1:40 to 60. If the molar ratio of the transition metal and benzophenone is less than 1: 5, the effect of improving the intrinsic viscosity of the polyketone produced is not satisfactory. If the molar ratio of the transition metal and benzophenone is greater than 1: 100, the polyketone catalytic activity produced is rather It is not desirable because it tends to decrease
  • Examples of ethylenically unsaturated compounds copolymerized with carbon monoxide include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 ⁇ -olefins such as hexadecene and vinylcyclohexane; Alkenyl aromatic compounds such as styrene and ⁇ -methylstyrene; Cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-ethyltetra Cyclic olefins such as cyclododecene; Vinyl halides such as vinyl
  • preferred ethylenically unsaturated compounds are ⁇ -olefins, more preferably ⁇ -olefins having 2 to 4 carbon atoms, most preferably ethylene, and 120 mol% propylene is added in the production of terpolymer copolyketones.
  • the input ratio of carbon monoxide and ethylenically unsaturated compound is 1 to 2 (molar ratio) and to adjust the propylene to 1 to 20 mol% relative to the total mixed gas.
  • polyketone it is common to set the ratio of carbon monoxide and ethylenically unsaturated compound to 1: 1, but in the present invention using a mixed solvent of acetic acid and water as a liquid medium and adding benzophenone during polymerization, carbon monoxide and ethylenic
  • the input ratio of the unsaturated compound is 1: 1 to 2 and the propylene is adjusted to 1 to 20 mol% relative to the total mixed gas, it was found that not only the workability is improved but also the catalytic activity and the intrinsic viscosity can be simultaneously achieved.
  • the input amount of propylene is less than 1 mol%, the effect of terpolymer copolymerization to lower the melting temperature cannot be obtained. If it exceeds 20 mol%, there is a problem of inhibiting the intrinsic viscosity and the improvement of catalyst activity. Therefore, the input ratio is controlled to 1 to 20 mol%. It is desirable to.
  • a mixed solvent of acetic acid and water is used as a liquid medium, benzophenone is added during polymerization, and carbon monoxide and ethylenically unsaturated compound and one or more olefinically unsaturated compounds are added to the catalytic activity and intrinsic viscosity of the polyketone.
  • the polymerization time should be at least 10 hours to improve the intrinsic viscosity, but it is possible to prepare a terpolymer copolymer polyketone having a high intrinsic viscosity even if the polymerization time is about 12 hours.
  • the catalyst is produced by contacting the two components.
  • Arbitrary methods can be employ
  • the polymerization method a solution polymerization method using a liquid medium, a suspension polymerization method, a gas phase polymerization method in which a small amount of a polymer is impregnated with a high concentration of a catalyst solution are used.
  • the polymerization may be either batchwise or continuous.
  • polymerization can use a well-known thing as it is or processing it.
  • polymerization Usually, it is normal pressure-20 MPa, Preferably it is 4-15 MPa.
  • polyketone is manufactured through a polymerization process according to the manufacturing process as described above.
  • the polyketone polymer of the present invention is a linear alternating structure, and substantially contains carbon monoxide for each molecule of unsaturated hydrocarbon.
  • Ethylenically unsaturated hydrocarbons suitable for use as precursors of polyketone polymers are ethene, ⁇ -olefins (e.g. propene, 1-butene) having up to 20 carbon atoms, preferably up to 10 carbon atoms.
  • Aliphatic hydrocarbons such as isobutene, 1-hexene and 1-octene), or arylaliphatic hydrocarbons having aryl substituents on aliphatic molecules, in particular ethylenically unsaturated carbon atoms Arylaliphatic hydrocarbon with an aryl substituent on the phase.
  • arylaliphatic hydrocarbons among the ethylenically unsaturated hydrocarbons include styrene, p-methyl styrene, p-ethyl styrene, m-isopropyl styrene, and the like.
  • Polymers preferably used in the present invention are linear terpolymers of carbon monoxide with ethene and ⁇ -olefins such as second ethylenically unsaturated hydrocarbons having at least three carbon atoms (especially propene).
  • each unit containing the second hydrocarbon moiety in the terpolymer there are at least two units containing the ethylene moiety. It is preferable that there are 10-100 units containing a 2nd hydrocarbon part.
  • the polyketone polymer may include a unit represented by the following formula (2) as a repeating unit.
  • G is an ethylenically unsaturated hydrocarbon, in particular, a part obtained from ethylenically unsaturated hydrocarbon having at least three carbon atoms, and x: y is preferably at least 1: 0.01.
  • the polyketone polymer is a copolymer composed of repeating units represented by General Formulas (1) and (2), and it is preferable that y / x is 0.03 to 0.3.
  • y / x is 0.03 to 0.3.
  • y / x is more preferably 0.03 to 0.1.
  • the preferred intrinsic viscosity (LVN) of the polyketone resin is 0.5 to 10 dl / g, more preferably 0.8 to 4 dl / g, most preferably 1 to 1.5 dl / g. If the intrinsic viscosity of the polyketone resin is less than 0.5 dl / g, the mechanical properties may be lowered. If it exceeds 10 dl / g, the workability may be reduced.
  • polyketone polymers having a number average molecular weight of 100 to 200,000, particularly 20,000 to 90,000, as measured by gel permeation chromatography.
  • the physical properties of the polymer depend on the molecular weight, on whether the polymer is a copolymer or terpolymer, and in the case of terpolymers, on the nature of the second hydrocarbon moiety present.
  • fusing point of the conversion of the polymer used by this invention is 175-300 degreeC, and is 210-270 degreeC generally.
  • the ultimate viscosity number (LVN) of the polymer measured at 60 ° C.
  • HFIP Hexafluoroisopropylalcohol
  • the molecular weight distribution of the polyketone is preferably 1.5 to 2.5, more preferably 1.8 to 2.2. If less than 1.5, the polymerization yield falls, and if it exceeds 2.5, there is a problem in that the moldability falls.
  • the polyketone composition of the present invention is composed of an alloy consisting of a polyketone and polyalkylene carbonate combination, characterized in that to improve the long-term processing stability of the polyketone and improve the mechanical properties.
  • the weight of the polyalkylene carbonate is preferably 5 to 90% by weight based on the total weight, more preferably 30 to 70% by weight, still more preferably 10 to 20% by weight.
  • the content of the polyalkylene carbonate is less than 5% by weight, it may be difficult to impart a desired level of long-term processing stability due to the relative content decrease.
  • the content of the polyalkylene carbonate exceeds 90% by weight, mechanical properties such as tensile strength and impact strength may be excessively low. do.
  • the polyalkylene carbonate is preferably one or two selected from the group consisting of polypropylene carbonate (PPC) and polyethylene carbonate (PEC), but is not limited thereto.
  • the polypropylene carbonate preferably has a number average molecular weight of 2,000 to 100,000, more preferably 2,500 to 55,000.
  • the polyethylene carbonate preferably has a number average molecular weight of 100,000 to 300,000.
  • the alloy composition obtained therefrom may exhibit long-term processing stability.
  • the polyketone alloy composition of the present invention as a result of the Hake Mixer (Haake Mixer) long-term residence evaluation at 220 °C, 100rpm condition, it is preferable that the Max running time (Max running time) 300 minutes or more. This is because the machining stability is good in the running time of this range.
  • polyethylene carbonate is an amorphous polymer included in polyalkylene carbonate, and has sticky property and biodegradability.
  • oxygen permeability is better than that of nylon 6, and compatibility with polyketone, polylactic acid (PLA), polyvinyl chloride (PVC) and the like is good.
  • the weight may be 1 to 20 wt% based on the total weight, and more preferably 10 to 20 wt% based on the total weight. If the content of polyethylene carbonate is less than 1% by weight, it may be difficult to give a desired level of long-term processing stability due to the decrease in the relative content of polyethylene carbonate, and when it exceeds 20% by weight, the impact strength is greatly reduced.
  • the polyketone alloy composition may be a maximum running time of 140 minutes or more as a result of the Hake Mixer (Lake Mixer) long-term residence evaluation at 220 °C, 100rpm conditions.
  • Hake Mixer Hake Mixer
  • a manufacturing method for producing the polyketone composition is as follows.
  • Method for producing a polyketone composition of the present invention comprises the steps of preparing a catalyst composition comprising a palladium compound, an acid having a pKa value of 6 or less, and a double ligand compound of phosphorus; Preparing a mixed solvent (polymer solvent) including an alcohol (eg, methanol) and water; Preparing a linear terpolymer of carbon monoxide, ethylene and propylene by polymerizing in the presence of the catalyst composition and the mixed solvent; Removing the remaining catalyst composition from the linear terpolymer with a solvent (eg, alcohol and acetone) to obtain a polyketone resin; And mixing the polyketone resin with polyalkylene carbonate to prepare a composition, but is not limited thereto.
  • a mixed solvent polymer solvent
  • a solvent eg, alcohol and acetone
  • Palladium acetate may be used as the palladium compound constituting the catalyst composition, and the amount of palladium acetate is preferably 10-3 to 10-1 mol, but is not limited thereto.
  • the acid having a pKa value of 6 or less constituting the catalyst composition one or more selected from the group consisting of trifluoroacetic acid, p-toluenesulfonic acid, sulfuric acid, and sulfonic acid may be used, and preferably trifluoroacetic acid is used. 6-20 (mole) equivalent weight of the compound is appropriate.
  • Examples of the ligand ligands constituting the catalyst composition include 1,3-bis [diphenylphosphino] propane (e.g., 1,3-bis [di (2-methoxyphenylphosphino) propane), 1,3- Bis [bis [anisyl] phosphinomethyl] -1,5-dioxaspiro [5,5] undecane, ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis ( 1 selected from the group consisting of methylene)) bis (bis (2-methoxyphenyl) phosphine) and (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine It is possible to use more than one species, and the amount of use thereof is 1 to 1.2 (mole) equivalents relative to the palladium compound.
  • 1,3-bis [diphenylphosphino] propane e.g.
  • the carbon monoxide, ethylene, and propylene are liquid-polymerized in a mixed solvent of alcohol (eg, methanol) and water to produce a linear terpolymer.
  • the mixed solvent may be a mixture of 100 parts by weight of methanol and 2 to 10 parts by weight of water. If the content of the water in the mixed solvent is less than 2 parts by weight of ketal may form a thermal stability during the process, if more than 10 parts by weight may lower the mechanical properties of the product.
  • the polymerization temperature is 50 ⁇ 100 °C
  • the reaction pressure is suitable for the range of 40 ⁇ 60bar.
  • the resulting polymer is recovered through polymerization and filtration and purification, and the remaining catalyst composition is removed with a solvent such as alcohol or acetone.
  • the obtained polyketone resin is mixed with polyalkylene carbonate and then extruded by an extruder to finally obtain a polyketone composition.
  • the blend may be prepared by melt kneading and extrusion into a twin screw extruder.
  • the extrusion temperature is 230 ⁇ 260 °C
  • screw rotation speed is preferably in the range of 100 ⁇ 300rpm. If the extrusion temperature is less than 230 °C kneading may not occur properly, if it exceeds 260 °C may cause problems with the heat resistance of the resin. In addition, when the screw rotational speed is less than 100rpm it may not occur smooth kneading.
  • Linear alternating polyketones consisting of carbon monoxide, ethylene and propene were produced from palladium acetate, trifluoroacetic acid and (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine
  • the content of trifluoroacetic acid to palladium is 10-fold molar ratio, and is subjected to one step of polymerization temperature of 78 ° C. and two steps of 84 ° C.
  • carbon monoxide is 50 mol.
  • the terpolymer thus prepared is named M620A.
  • Specimens were prepared in the same manner as in Example 1 except that 100 wt% polyketone was used.
  • PK Polyketone (M620A)
  • PEC Polyethylene carbonate
  • the prepared polyketone composition of Example was prepared as a specimen, and compared with the product of the comparative example, Haake Mixer retention evaluation was performed in the following manner to find work stability, and the results are shown in Table 2 and FIGS. 2 and 3.
  • Haake Mixer Long-term stay evaluation result: Introduce approximately 180g of sample while maintaining the jacket temperature of the outer chamber of the Haake mixer at 220 °C, and measure the torque and temperature inside the chamber over time while rotating two rotors at a speed of 100rpm. do.
  • PK Polyketone (M620A)
  • PEC Polyethylene carbonate
  • Comparative Example 1 is completely decomposed after 120 minutes to lose fluidity, but the decomposition time is delayed due to the addition of polyethylene carbonate (PEC), even if the addition of 20% by weight (Example 2) exceeds 180 minutes It can be seen that the long-term processing stability in the extrusion process is improved by maintaining the stability.
  • PEC polyethylene carbonate
  • the polyketone composition prepared according to the present invention has excellent long-term processing stability and is suitable for application to injection and extrusion molding processes. have.
  • the prepared polyketone composition of Example was prepared as a specimen, and then compared to the product of the comparative example, Melt viscosity was measured in the following manner to evaluate processing stability, and the results are shown in FIG. 4.
  • Shear rate 100, 176, 267, 374, 556, 866, 1062, 1786, 2345, 4095, 7205, 12271 1 / s (12 points)
  • the MV graphs of the examples and the comparative examples are almost similar, so that the melt viscosity is generally similar regardless of the amount of polyethylene carbonate added.
  • the prepared polyketone composition of the above Example was prepared as a specimen, and then compared with the product of Comparative Example, the thermal properties were evaluated in the following manner, and the results are shown in Tables 3, 4 and 5.
  • Tm and Tc are the values at the time of secondary temperature rising and falling.
  • TGA was measured in a nitrogen atmosphere at 20 ° C./min from 40 ° C. to 850 ° C.
  • Example 1 100 0 3.5 205.6 69.2 155.0 -74.0
  • Example 1 90 10 7.2 204.1 68.5 155.5 -76.8
  • Example 2 80 20 9.5 204.0 66.3 155.4 -67.9 - 0 100 10-15 - - - - -
  • HFIP Hexafluoroisopropanol
  • the prepared polyketone composition of the Example was prepared as a specimen, and then compared with the product of the comparative example, the mechanical properties were evaluated in the following manner, and the results are shown in Table 6 and FIG. 7.
  • the prepared polyketone composition of the above Example was prepared as a specimen, the color was evaluated by the following method in comparison with the product of the comparative example, the results are shown in Table 7 and FIG.
  • Linear alternating polyketones consisting of carbon monoxide, ethylene and propene were produced from palladium acetate, trifluoroacetic acid and (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine
  • the content of trifluoroacetic acid to palladium is 10-fold molar ratio, and is subjected to one step of polymerization temperature of 78 ° C. and two steps of 84 ° C.
  • carbon monoxide is 50 mol.
  • Example 3 It is the same as Example 3 except adding 30 weight% of polyketone terpolymer M330A and 70 weight% of polypropylene carbonate.
  • Example 3 Except for adding 90% by weight of polyketone terpolymer M330A, 10% by weight of polyethylene carbonate was the same as in Example 3.
  • the number average molecular weight of the used PEC is 200,000.
  • Example 13 A specimen was prepared in the same manner as in Example 13 except 100 wt% of polyketone M330A was used.
  • Example 2 100 - - - 59.1 - 14 57.1 1,465 6.6 58
  • Example 3 90 10 - - 50.2 18 45 54 1,364 6.1 57
  • Example 4 80 20 - - 44.8 17 30 45.1 1,098 4.2 62
  • Example 5 70 30 - - 36.8 16 21 35.2 842 3.1 -
  • Example 6 50 50 - - 22.7 15 24 18.6 448 3.2 109
  • Example 7 30 70 - - 13.3 5 18 4.7 115 2.1 - Example 8 20 80 - - 10.5 4 32 2.8 77 1.1 148
  • Example 9 10 90 - - 7.5 2 25 1.0 19 1.4 -
  • Example 10 95 - 5 - 46.4 14 18 61.1 1,655 8.
  • PK Polyketone (M330A, Hyosung), PPC: Polypropylene carbonate (Aldrich), PEC: Polyethylene carbonate (LG Chemical)
  • Example 2 100 - - - > 60 @ 160 minutes 175 37
  • Example 3 90 10 - - 19 @ 300 minutes > 300 12
  • Example 11 90 - 10 - 16 @ 157 minutes 195 13
  • Example 12 90 - - 10 23 @ 300 minutes > 300 24
  • Example 13 80 - - 20 15 @ 300 minutes > 300 15
  • Comparative Example 2 is completely decomposed after 175 minutes and loses fluidity, but in the case of Example 3 in which polypropylene carbonate (PPC) was added and in Examples 12 and 13 in which polyethylene carbonate (PEC) was added In this case, it can be seen that the processing stability in the extrusion process is improved by maintaining stability without losing fluidity even after 300 minutes.
  • PPC polypropylene carbonate
  • PEC polyethylene carbonate
  • the polyketone composition prepared in Examples rather than Comparative Examples was evaluated to be suitable for use as tubes, pipes, food packaging films, general injection parts, while improving mechanical stability while improving processing stability.
  • the alloy composition applied to PPC or PEC 50% or more is suitable for use as a flexible and environmentally friendly flooring sheet with a flex modulus of 500 MPa or less.

Abstract

The present invention provides a polyketone alloy composition with improved process stability and mechanical properties, the composition being characterized in that one or two polyalkylene carbonates selected from the group consisting of polypropylene carbonate (PPC) and polyethylene carbonate (PEC) are added to a linear alternative polyketone composed of carbon monoxide and at least one olefin-based unsaturated hydrocarbon.

Description

폴리케톤 얼로이 수지 조성물Polyketone Alloy Resin Composition
본 발명은 가공 안정성 및 기계적 물성이 개선된 폴리케톤 얼로이 수지 조성물에 관한 것으로, 상세하게는 폴리케톤에 비정형 고분자인 폴리알킬렌카보네이트(Polyalkylene carbonate)를 첨가하는 것을 특징으로 하는 가공 안정성을 향상시키면서 동시에 기계적 물성 또한 개선된 폴리케톤 얼로이 조성물에 관한 것이다.The present invention relates to a polyketone alloy resin composition having improved processing stability and mechanical properties, and more particularly, to improving processing stability, comprising adding polyalkylene carbonate, an amorphous polymer, to polyketone. At the same time the mechanical properties also relate to improved polyketone alloy compositions.
폴리케톤(Polyketone, PK)은 폴리아미드, 폴리에스터 및 폴리카보네이트 등의 일반 엔지니어링 플라스틱 소재 대비 원료 및 중합 공정비가 저렴한 소재인데, 내열성, 내화학성, 내연료투과성 및 내마모성 등의 물성이 우수하여 각종 산업에 폭넓게 적용되고 있다.Polyketone (PK) is a material that has lower raw materials and polymerization process costs than general engineering plastic materials such as polyamide, polyester, and polycarbonate. Polyketone (PK) has excellent properties such as heat resistance, chemical resistance, fuel permeability, and abrasion resistance. It is widely applied to.
상기와 같은 특성을 지닌 폴리케톤은 일산화탄소(CO)와 에틸렌(ethylene) 및 프로필렌(propylene)과 같은 올레핀(olefin)을 촉매로 팔라듐(Pd)이나 니켈(Ni) 등과 같은 전이 금속 착체(complex)를 이용하여 중합시킴으로써 일산화탄소와 올레핀이 서로 번갈아 결합함으로써 얻어진다는 것은 이미 공지되어 있다(공업 재료, 12월호, 5페이지, 1997년). 한편 폴리케톤 또는 폴리케톤 폴리머로 알려져 있는, 일산화탄소와 적어도 1종의 에틸렌계 불포화 탄화수소로 되는 한 무리의 선상 교대 폴리머에 대한 관심이 높아지고 있다. 미국특허 제4,880,903호는 일산화탄소와 에틸렌과 타 올레핀계 불포화 탄화수소, 예를 들면 프로필렌(propylene)으로 이루어진 선상 교대 폴리케톤 터폴리머(polyketone terpolymer)를 개시하고 있다. Polyketone having the above characteristics is a catalyst based on carbon monoxide (CO) and olefins such as ethylene and propylene to form transition metal complexes such as palladium (Pd) and nickel (Ni). It is already known that carbon monoxide and olefins are obtained by alternating bonding with one another by polymerization by means of polymerization (Industrial Materials, December issue, page 5, 1997). On the other hand, there is a growing interest in a group of linear alternating polymers consisting of carbon monoxide and at least one ethylenically unsaturated hydrocarbon, known as polyketones or polyketone polymers. U. S. Patent No. 4,880, 903 discloses a linear alternating polyketone terpolymer consisting of carbon monoxide and ethylene and other olefinically unsaturated hydrocarbons such as propylene.
폴리케톤 폴리머의 제조 방법은 통상 팔라듐(palladium), 코발트(cobalt) 또는 니켈(nikel)중으로부터 선택된 제VIII족 금속의 화합물과, 비하이드로 할로겐 강산(strongon-hydrohalogentic acid)의 음이온과, 인, 비소 또는 안티몬(Antimon)의 2좌 배위자로부터 생성되는 촉매 조성물을 사용한다. The process for producing polyketone polymers is usually a compound of a Group VIII metal selected from palladium, cobalt or nickel, anions of non-hydrohalogenic acid, phosphorus and arsenic Or a catalyst composition produced from a bidentate ligand of Antimon.
미국 특허 제4,843,144호는 팔라튬 화합물과, pKa가 6 미만의 비하이드로할로겐산의 음이온과, 인의 2좌 배위자로 되는 촉매를 사용하여 일산화탄소와 적어도 1개의 에틸렌계 불포화 탄화수소와의 폴리머를 제조하는 방법을 개시하고 있다.US Pat. No. 4,843,144 describes a process for preparing polymers of carbon monoxide and at least one ethylenically unsaturated hydrocarbon using a palladium compound, an anion of a nonhydrohalogenic acid having a pKa of less than 6, and a catalyst that is a bidentate ligand of phosphorus. Is starting.
한편, 폴리케톤의 가공안정성을 개선하기 위한 종래 기술에는 가소제나 윤활제 등의 첨가제를 사용하는 방법이 있으나, 이는 단기적으로 가공성을 보완하는 효과는 있으나 장기적인 가공안정성을 개선하는 데는 한계가 있다. 또한, 상기 첨가제를 사용하는 방법의 경우에는 가공 안정성은 개선되나, 충격 강도 등의 물성이 매우 낮아지는 단점이 있다. 이에 장기 가공안정성이 개선된 폴리케톤 조성물과 가공 안정성이 향상되면서 기계적 물성도 향상된 폴리케톤 조성물에 관한 필요성이 대두되고 있다.On the other hand, the prior art for improving the processing stability of the polyketone, there is a method using an additive such as a plasticizer or a lubricant, but this has the effect of complementing the workability in the short term, but there is a limit in improving the long-term processing stability. In addition, in the case of using the additive, the processing stability is improved, but the physical properties such as impact strength is very low. Accordingly, there is a need for a polyketone composition having improved long-term processing stability and a polyketone composition having improved mechanical properties while improving processing stability.
이에 상기한 문제점을 해결하기 위하여, 본 발명은 폴리케톤에 폴리알킬렌카보네이트(Polyalkylene carbonate)를 첨가하여 가공 안정성 및 기계적 물성이 개선된 폴리케톤 얼로이 조성물을 제공하는 것도 목적으로 한다.In order to solve the above problems, an object of the present invention is to add a polyalkylene carbonate (polyalkylene carbonate) to the polyketone to provide a polyketone alloy composition with improved processing stability and mechanical properties.
상기한 기술적 과제를 달성하고자, 본 발명은 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어진 선상 교대 폴리케톤에 폴리알킬렌카보네이트(Polyalkylene carbonate)를 첨가하여 만들어진 얼로이를 사용하여, 압출 및 사출 공정에서 장기 가동 시 발생할 수 있는 가교(crosslinking) 및 열화(degradation)을 지연시켜 장기 가공안정성이 개선된 폴리케톤 얼로이 조성물을 제공한다.In order to achieve the above technical problem, the present invention uses an alloy made by adding polyalkylene carbonate to the linear alternating polyketone consisting of carbon monoxide and at least one olefinically unsaturated hydrocarbon, in the extrusion and injection process The present invention provides a polyketone alloy composition having improved long-term processing stability by delaying crosslinking and degradation that may occur during long-term operation.
이때, 상기 폴리케톤 얼로이 조성물 전체 중량에 대하여 폴리알킬렌카보네이트의 조성비는 조성비는 5 내지 90 중량%이며, 상기 폴리알킬렌카보네이트는 폴리프로필렌카보네이트(PPC; Polypropylene carbonate) 및 폴리에틸렌카보네이트(PEC; Polyethylene carbonate)로 이루어진 군에서 선택된 1종 또는 2종인 것을 특징으로 한다.At this time, the composition ratio of the polyalkylene carbonate to the total weight of the polyketone alloy composition is a composition ratio of 5 to 90% by weight, the polyalkylene carbonate is polypropylene carbonate (PPC; Polypropylene carbonate) and polyethylene carbonate (PEC; Polyethylene carbonate) and one or two selected from the group consisting of.
여기서, 상기 폴리케톤 얼로이 조성물의 220℃, 100rpm 조건에서 하케 믹서(Haake Mixer) 장기체류평가 결과 맥스 러닝 타임(Max running time)이 300분 이상일 수 있다.Here, the maximum running time of the polyketone alloy composition at 220 ° C. and 100 rpm may be 300 minutes or more as a result of a long-term stay evaluation of the Hake Mixer.
또한, 상기 폴리프로필렌카보네이트의 수 평균 분자량은 2,000 내지 100,000인 것이 바람직하며, 상기 폴리에틸렌카보네이트의 수 평균 분자량은 100,000 내지 300,000인 것이 바람직하다. In addition, the number average molecular weight of the polypropylene carbonate is preferably 2,000 to 100,000, and the number average molecular weight of the polyethylene carbonate is preferably 100,000 to 300,000.
이때, 상기 폴리알킬렌카보네이트로 폴리에틸렌카보네이트를 사용할 경우, 폴리케톤 얼로이 조성물 전체 중량에 대하여 폴리에틸렌카보네이트의 조성비는 1 내지 20중량%이며, 상기 폴리에틸렌카보네이트의 수평균 분자량은 10,000 내지 300,000일 수 있다. 여기서, 상기 폴리케톤 얼로이 조성물은 220℃, 100rpm 조건에서 하케 믹서(Haake Mixer) 장기체류평가 결과, 맥스 러닝 타임(Max running time)이 140분 이상일 수 있다.In this case, when the polyethylene carbonate is used as the polyalkylene carbonate, the composition ratio of polyethylene carbonate is 1 to 20% by weight based on the total weight of the polyketone alloy composition, and the number average molecular weight of the polyethylene carbonate may be 10,000 to 300,000. Herein, the polyketone alloy composition may have a maximum running time of 140 minutes or more as a result of the Hake Mixer long-term residence evaluation at 220 ° C. and 100 rpm.
또한, 상기 폴리케톤 중합 시 사용되는 촉매 조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀) 및 (사이클로헥세인-1,1-디일비스(메틸렌))비스(비스(2-메톡시페닐)포스핀으로 이루어진 군에서 선택된 1종 또는 2종인 것을 특징으로 한다.In addition, the ligand of the catalyst composition used in the polyketone polymerization is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) Phosphine) and (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine).
본 발명의 폴리케톤 얼로이 조성물은 압출, 사출 등 가공 공정에서 수지의 내부 흐름 정체에 의해 장기간 체류 시 발생하는 겔(gel)이나 탄화, 흑점 등을 줄여 제품의 외관 불량이나 가공 장비의 손상을 방지할 수 있고, 생산 효율성을 높일 수 있으며, 충격강도, 굴곡 모듈러스(Modulus) 등 기계적 물성이 개선되어 제품 적용범위 확대가 가능하다.The polyketone alloy composition of the present invention reduces the gel, carbonization, black spots, etc. generated during long-term retention due to the stagnation of the resin in the process of extrusion, injection, etc. to prevent product defects or damage to processing equipment. It can increase the production efficiency, and improve the mechanical properties such as impact strength and flexural modulus, thereby expanding the product range.
도 1은 본 발명의 가공 안정성 개선 효과를 확인하기 위하여 실시예 1, 2와 비교예 1에서 Cross over time(COT)을 나타낸 그래프이다.1 is a graph showing the cross over time (COT) in Examples 1, 2 and Comparative Example 1 to confirm the effect of improving the processing stability of the present invention.
도 2는 본 발명의 가공 안정성 개선 효과를 확인하기 위하여 실시예 1, 2와 비교예 1에서 Haake Mixer 체류 평가 결과 Torque를 나타낸 그래프이다.Figure 2 is a graph showing the Torque Haake Mixer retention evaluation results in Examples 1 and 2 and Comparative Example 1 to confirm the effect of improving the processing stability of the present invention.
도 3은 본 발명의 가공 안정성 개선 효과를 확인하기 위하여 실시예 1, 2와 비교예 1에서 Haake Mixer 체류 평가 결과 실린더의 온도 차이를 나타낸 그래프이다.3 is a graph showing the difference in temperature of the cylinders of Haake Mixer retention evaluation in Examples 1 and 2 and Comparative Example 1 to confirm the effect of improving the processing stability of the present invention.
도 4는 본 발명의 실시예 1, 2와 비교예 1의 Melt viscosity(MV)를 나타낸 그래프이다.4 is a graph showing Melt viscosity (MV) of Examples 1 and 2 and Comparative Example 1 of the present invention.
도 5는 본 발명의 실시예 1, 2와 비교예 1 및 폴리에틸렌카보네이트(PEC)의 열중량 분석(TGA)을 나타낸 그래프이다.5 is a graph showing the thermogravimetric analysis (TGA) of Examples 1 and 2, Comparative Example 1 and polyethylene carbonate (PEC) of the present invention.
도 6은 본 발명의 실시예 1, 2와 비교예 1 및 폴리에틸렌카보네이트의 분자량을 나타낸 그래프이다.6 is a graph showing the molecular weight of Examples 1 and 2, Comparative Example 1 and polyethylene carbonate of the present invention.
도 7은 본 발명의 실시예 2의 충격시편의 파단면을 찍은 주사전자현미경(SEM) 사진이다.7 is a scanning electron microscope (SEM) photograph of the fracture surface of the impact specimen of Example 2 of the present invention.
도 8은 본 발명의 실시예 1, 2와 비교예 1의 색을 촬영한 사진이다.8 is a photograph of the colors of Examples 1 and 2 and Comparative Example 1 of the present invention.
도 9는 본 발명의 가공 안정성 개선 효과를 확인하기 위하여 실시예 3, 실시예 11 내지 실시예 13과 비교예 2에서 하케 믹서(Haake Mixer) 체류 평가 결과 Torque를 나타낸 그래프이다.Figure 9 is a graph showing the Torque Mixer (Haake Mixer) retention evaluation results in Examples 3, 11 to 13 and Comparative Example 2 to confirm the effect of improving the processing stability of the present invention.
도 10은 본 발명의 가공 안정성 개선 효과를 확인하기 위하여 위하여 실시예 3, 실시예 11 내지 실시예 13과 비교예 2에서 하케 믹서(Haake Mixer) 체류 평가 결과 실린더의 온도 차이를 나타낸 그래프이다.10 is a graph showing the temperature difference of the cylinders of Hake Mixer retention evaluation in Examples 3, 11 to 13 and Comparative Example 2 in order to confirm the effect of improving the processing stability of the present invention.
이하, 도면들을 참조하여 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.
본 발명은 폴리케톤에 폴리알킬렌카보네이트를 첨가함으로써 장기가공 안정성 및 기계적 물성이 향상된 폴리케톤 얼로이 조성물을 제공하는 것도 그 특징으로 하고 있다.The present invention also provides a polyketone alloy composition having improved long-term processing stability and mechanical properties by adding polyalkylene carbonate to the polyketone.
먼저, 본 발명에서 사용되는 폴리케톤(polyketone)수지는 엔지니어링 플라스틱이며 근래 개발된 새로운 수지로서, 충격강도 등과 같은 기계적 물성 및 성형특성이 탁월하여 각종 성형품이나 부품의 소재로 유용하게 적용되고 있는 열가소성합성수지이다. 폴리케톤 수지의 기계적 물성은 고성능 플라스틱의 범주에 속하며, 일산화탄소를 원료로 합성하는 고분자 물질인 바, 친환경 소재로서도 크게 주목받고 있다.First, the polyketone resin used in the present invention is an engineering plastic and is a recently developed new resin, and is a thermoplastic synthetic resin that is usefully applied as a material for various molded products or parts due to its excellent mechanical properties and molding properties such as impact strength. to be. Mechanical properties of the polyketone resin belongs to the category of high performance plastics, and is a polymer material that synthesizes carbon monoxide as a raw material.
폴리케톤 수지는 폴리아미드 재질에 비하여 수분흡습도가 낮아 수분 흡습에 따른 치수 및 물성변화가 적고 다양한 제품 설계가 가능한 소재이다. 특히 폴리케톤 수지는 알루미늄 재질에 비하여 밀도가 낮아 제품 경량화에도 매우 적합하다.Polyketone resin has low moisture absorption compared to polyamide material, so it is possible to design various products with little change in dimensions and physical properties due to moisture absorption. In particular, polyketone resin has a lower density than aluminum, making it suitable for weight reduction.
이하, 상기 폴리케톤의 제조공정을 설명한다.Hereinafter, the manufacturing process of the said polyketone is demonstrated.
폴리케톤의 제조공정은 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물, (b) 제 15족의 원소를 가지는 리간드로 이루어지는 유기금속 착체 촉매의 존재 하에, 액상 매체 중에서 일산화탄소와 에틸렌성 및 프로필렌성 불포화 화합물을 삼원공중합시켜 폴리케톤을 제조하는 방법에 있어서, 액상 매체로서 70~90용량%의 초산과 10~30용량%의 물로 이루어지는 혼합용매를 사용하고, 중합시 벤조페논을 첨가하는 것을 특징으로 한다.The process for preparing polyketones is characterized by the presence of carbon monoxide in a liquid medium in the presence of an organometallic complex catalyst comprising a ligand having an element of group (a) Group 9, Group 10 or Group 11, and group (b) Group 15. In the method for producing polyketone by terpolymerization of ethylenic and propylene unsaturated compounds, a mixed solvent consisting of 70 to 90% by volume of acetic acid and 10 to 30% by volume of water is used as a liquid medium. It is characterized by the addition.
여기서 액상 매체로서 종래 폴리케톤의 제조에 주로 사용되어 오던 메탄올, 디클로로메탄 또는 니트로메탄 등을 사용하지 않고, 초산과 물로 이루어지는 혼합용매를 사용하는 것이 특징이다. 이는 폴리케톤의 제조에 액상 매체로서 초산과 물의 혼합용매를 사용함으로써 폴리케톤의 제조비용을 절감시키면서 촉매활성도 향상시킬 수 있기 때문이다.In this case, a mixed solvent consisting of acetic acid and water is used as a liquid medium, without using methanol, dichloromethane, or nitromethane, which have been mainly used in the production of polyketone. This is because by using a mixed solvent of acetic acid and water as the liquid medium in the production of the polyketone it is possible to improve the catalytic activity while reducing the production cost of the polyketone.
액상매체로서 초산과 물의 혼합용매를 사용 시, 물의 농도가 10용량% 미만으로 적을 때는 촉매활성에 영향을 덜 미치지만, 10용량% 이상의 농도가 되면 촉매활성이 급격히 증가한다. 반면, 물의 농도가 30용량%를 초과하면 촉매활성은 감소하는 경향을 보인다. 따라서, 액상매체로서 70~90용량%의 초산과 10~30용량%의 물로 이루어지는 혼합용매를 사용하는 것이 바람직하다.When a mixed solvent of acetic acid and water is used as the liquid medium, when the concentration of water is less than 10% by volume, the catalytic activity is less affected. However, when the concentration is more than 10% by volume, the catalytic activity rapidly increases. On the other hand, when the concentration of water exceeds 30% by volume, catalytic activity tends to decrease. Therefore, it is preferable to use a mixed solvent composed of 70 to 90 vol% acetic acid and 10 to 30 vol% water as the liquid medium.
여기서 촉매는, 주기율표(IUPAC 무기화학 명명법 개정판, 1989)의 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물, (b) 제 15족의 원소를 가지는 리간드로 이루어지는 것이다.The catalyst is composed of a ligand having an element of (a) Group 9, Group 10 or Group 11 transition metal compound (b) Group 15 of the Periodic Table (IUPAC Inorganic Chemistry Nomenclature, 1989).
제 9족, 제 10족 또는 제 11족 전이금속 화합물(a) 중 제 9족 전이금속 화합물의 예로서는, 코발트 또는 루테늄의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체예로서는 초산 코발트, 코발트 아세틸아세테이트, 초산 루테늄, 트리플루오로 초산 루테늄, 루테늄 아세틸아세테이트, 트리플루오로메탄 술폰산루테늄 등을 들 수 있다.Examples of the Group 9 transition metal compound in the Group 9, 10 or 11 transition metal compound (a) include complexes of cobalt or ruthenium, carbonates, phosphates, carbamate salts, sulfonates, and the like. Specific examples thereof include cobalt acetate, cobalt acetylacetate, ruthenium acetate, trifluoro ruthenium acetate, ruthenium acetylacetate, and trifluoromethane sulfonate ruthenium.
제 10족 전이금속 화합물의 예로서는, 니켈 또는 팔라듐의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체예로서는 초산 니켈, 니켈 아세틸아세테이트, 초산 팔라듐, 트리플루오로 초산 팔라듐, 팔라듐 아세틸아세테이트, 염화 팔라듐, 비스(N, N-디에틸카바메이트)비스(디에틸아민)팔라듐, 황산 팔라듐 등을 들 수 있다.Examples of the Group 10 transition metal compound include a complex of nickel or palladium, carbonate, phosphate, carbamate, sulfonate, and the like, and specific examples thereof include nickel acetate, nickel acetyl acetate, palladium acetate, and palladium trifluoroacetate. And palladium acetylacetate, palladium chloride, bis (N, N-diethylcarbamate) bis (diethylamine) palladium, palladium sulfate and the like.
제 11족 전이금속 화합물의 예로서는, 구리 또는 은의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들수 있고, 그 구체예로서는 초산 구리, 트리플루오로 초산 구리, 구리 아세틸아세테이트, 초산 은, 트리플루오로초산 은, 은 아세틸아세테이트, 트리플루오로메탄 술폰산 은 등을 들 수 있다.Examples of the Group 11 transition metal compound include copper or silver complexes, carbonates, phosphates, carbamates, sulfonates, and the like, and specific examples thereof include copper acetate, trifluoroacetate, copper acetylacetate, silver acetate, tri Silver fluoroacetic acid, silver acetyl acetate, silver trifluoromethane sulfonic acid, etc. are mentioned.
이들 중에서 값싸고 경제적으로 바람직한 전이금속 화합물(a)은 니켈 및 구리 화합물이고, 폴리케톤의 수득량 및 분자량의 면에서 바람직한 전이금속 화합물(a)은 팔라듐 화합물이며, 촉매활성 및 고유점도 향상의 면에서 초산 팔라듐을 사용하는 것이 가장 바람직하다.Among these, inexpensive and economically preferable transition metal compounds (a) are nickel and copper compounds, and preferred transition metal compounds (a) are palladium compounds in terms of yield and molecular weight of polyketones, and in terms of improving catalytic activity and intrinsic viscosity. Most preferably, palladium acetate is used in the process.
제 15족의 원자를 가지는 리간드(b)의 예로서는, 2,2'-비피리딜, 4,4'-디메틸-2,2'-비피리딜, 2,2'-비-4-피콜린, 2,2'-비키놀린 등의 질소 리간드, 1,2-비스(디페닐포스피노)에탄, 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄, 1,3-비스[디(2-메틸)포스피노]프로판, 1,3-비스[디(2-이소프로필)포스피노]프로판, 1,3-비스[디(2-메톡시페닐)포스피노]프로판, 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]프로판, 1,2-비스(디페닐포스피노)시클로헥산, 1,2-비스(디페닐포스피노)벤젠, 1,2-비스[(디페닐포스피노)메틸]벤젠, 1,2-비스[[디(2-메톡시페닐)포스피노]메틸]벤젠, 1,2-비스[[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]메틸]벤젠, 1,1'-비스(디페닐포스피노)페로센, 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐)포스피노]프로판 등의 인 리간드 등을 들 수 있다.Examples of the ligand (b) having a group 15 atom include 2,2'-bipyridyl, 4,4'-dimethyl-2,2'-bipyridyl, 2,2'-bi-4-picolin , Nitrogen ligands such as 2,2'-bikinolin, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) Butane, 1,3-bis [di (2-methyl) phosphino] propane, 1,3-bis [di (2-isopropyl) phosphino] propane, 1,3-bis [di (2-methoxyphenyl ) Pinospino] propane, 1,3-bis [di (2-methoxy-4-sulfonic acid-phenyl) phosphino] propane, 1,2-bis (diphenylphosphino) cyclohexane, 1,2-bis (Diphenylphosphino) benzene, 1,2-bis [(diphenylphosphino) methyl] benzene, 1,2-bis [[di (2-methoxyphenyl) phosphino] methyl] benzene, 1,2- Bis [[di (2-methoxy-4-sulfonate-phenyl) phosphino] methyl] benzene, 1,1'-bis (diphenylphosphino) ferrocene, 2-hydroxy-1,3-bis [di (2-methoxyphenyl) phosphino] propane, 2,2-dimethyl-1,3-bis [di (2-methoxyphenyl) Spinosyns; there may be mentioned a ligand, such as propane.
이들 중에서 바람직한 제 15족의 원소를 가지는 리간드(b)는, 제 15족의 원자를 가지는 인 리간드이고, 특히 폴리케톤의 수득량의 면에서 바람직한 인 리간드는 1,3-비스[디(2-메톡시페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시페닐)포스피노]메틸]벤젠이고, 폴리케톤의 분자량의 측면에서는 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐)포스피노]프로판이고, 유기용제를 필요로 하지 않고 안전하다는 면에서는 수용성의 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]메틸]벤젠이고, 합성이 용이하고 대량으로 입수가 가능하고 경제면에 있어서 바람직한 것은 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄이다. 바람직한 제 15족의 원자를 가지는 리간드(b)는 1,3-비스[디(2-메톡시페닐)포스피노]프로판 또는 1,3-비스(디페닐포스피노)프로판이고, 가장 바람직하게는 1,3-비스[디(2-메톡시페닐)포스피노]프로판 또는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)이다.Among them, the ligand (b) having an element of Group 15 is a phosphorus ligand having an atom of Group 15, and particularly, in view of the yield of polyketone, a phosphorus ligand is preferably 1,3-bis [di (2- Methoxyphenyl) phosphino] propane, 1,2-bis [[di (2-methoxyphenyl) phosphino] methyl] benzene, and 2-hydroxy-1,3-bis [in terms of molecular weight of the polyketone. Di (2-methoxyphenyl) phosphino] propane, 2,2-dimethyl-1,3-bis [di (2-methoxyphenyl) phosphino] propane, and do not require an organic solvent in terms of safety Water-soluble 1,3-bis [di (2-methoxy-4-sulfonate-phenyl) phosphino] propane, 1,2-bis [[di (2-methoxy-4-sulfonate-phenyl) phosphino ] Methyl] benzene, the synthesis | combination is easy, it is available in large quantities, and economically preferable is 1, 3-bis (diphenyl phosphino) propane and 1, 4-bis (diphenyl phosphino) butane. Preferred ligand (b) having an atom of group 15 is 1,3-bis [di (2-methoxyphenyl) phosphino] propane or 1,3-bis (diphenylphosphino) propane, most preferably 1,3-bis [di (2-methoxyphenyl) phosphino] propane or ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2 Methoxyphenyl) phosphine).
[화학식 1][Formula 1]
Figure PCTKR2018005083-appb-I000001
Figure PCTKR2018005083-appb-I000001
상기 화학식 1의 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)은 현재까지 소개된 폴리케톤 중합촉매 중 최고활성을 보이는 것으로 알려진 3,3-비스-[비스-(2-메톡시페닐)포스파닐메틸]-1,5-디옥사-스파이로[5,5]운데칸과 동등한 활성 발현을 보이되 그 구조는 더욱 단순하고 분자량 또한 더욱 낮은 물질이다. 그 결과, 본 발명은 당분야의 폴리케톤 중합촉매로서 최고활성을 확보하면서도 그 제조비용 및 원가는 더욱 절감된 신규한 폴리케톤 중합촉매를 제공할 수 있게 되었다. 폴리케톤 중합촉매용 리간드의 제조방법은 다음과 같다. 비스(2-메톡시페닐)포스핀, 5,5-비스(브로모메틸)-2,2-디메틸-1,3-디옥산 및 수소화나트륨(NaH)을 사용하여 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)을 얻는 것을 특징으로 하는 폴리케톤 중합촉매용 리간드의 제조방법이 제공된다. 본 발명의 폴리케톤 중합촉매용 리간드 제조방법은 종래 3,3-비스-[비스-(2-메톡시페닐)포스파닐메틸]-1,5-디옥사-스파이로[5,5]운데칸의 합성법과는 달리 리튬이 사용되지 않는 안전한 환경하에서 용이한 프로세스를 통해 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)을 상업적으로 대량합성할 수 있다. ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine) of Formula 1 is a polyketone introduced to date Activity equivalent to 3,3-bis- [bis- (2-methoxyphenyl) phosphanylmethyl] -1,5-dioxa-spiro [5,5] undecane, known to exhibit the highest activity in the polymerization catalyst The structure is simpler and has a lower molecular weight. As a result, the present invention is able to provide a novel polyketone polymerization catalyst, while maintaining the highest activity as a polyketone polymerization catalyst in the art while further reducing the production cost and cost. The method for preparing a ligand for a polyketone polymerization catalyst is as follows. Using bis (2-methoxyphenyl) phosphine, 5,5-bis (bromomethyl) -2,2-dimethyl-1,3-dioxane and sodium hydride (NaH) ((2,2-dimethyl Provided is a method for producing a ligand for a polyketone polymerization catalyst, characterized by obtaining -1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine). . The method for preparing a ligand for a polyketone polymerization catalyst of the present invention is conventionally 3,3-bis- [bis- (2-methoxyphenyl) phosphanylmethyl] -1,5-dioxa-spiro [5,5] undecane Unlike the synthesis method of ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2- Methoxyphenyl) phosphine) can be commercially mass synthesized.
한편, 중합촉매에 사용되는 리간드로 (사이클로헥세인-1,1-디일비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)을 사용하는 것도 바람직하다. 상기 리간드를 합성하는 방법은 다음과 같다.It is also preferable to use (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine) as the ligand used in the polymerization catalyst. The method for synthesizing the ligand is as follows.
Figure PCTKR2018005083-appb-I000002
Figure PCTKR2018005083-appb-I000002
바람직한 일 구체예에서, 본 발명의 폴리케톤 중합촉매용 리간드 제조방법은 (a) 질소 대기하에서 비스(2-메톡시페닐)포스핀 및 디메틸설폭시드(DMSO)를 반응용기에 투입하고 상온에서 수소화나트륨을 가한 뒤 교반하는 단계; (b) 얻어진 혼합액에 5,5-비스(브로모메틸)-2,2-디메틸-1,3-디옥산 및 디메틸설폭시드를 가한 뒤 교반하여 반응시키는 단계; (c) 반응 완료 후 메탄올을 투입하고 교반하는 단계;(d) 톨루엔 및 물을 투입하고 층분리 후 유층을 물로 세척한 다음 무수황산나트륨으로 건조 후 감압 여과를 하고 감압 농축하는 단계; 및 (e) 잔류물을 메탄올 하에서 재결정하여 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)를 얻는 단계를 거쳐 수행될 수 있다.In a preferred embodiment, the method for preparing a ligand for a polyketone polymerization catalyst of the present invention is (a) adding bis (2-methoxyphenyl) phosphine and dimethylsulfoxide (DMSO) to a reaction vessel under a nitrogen atmosphere and hydrogenated at room temperature. Adding sodium and stirring; (b) adding 5,5-bis (bromomethyl) -2,2-dimethyl-1,3-dioxane and dimethylsulfoxide to the obtained mixture, followed by stirring to react; (c) adding and stirring methanol after completion of the reaction; (d) adding toluene and water, washing the oil layer with water after separating the layers, drying with anhydrous sodium sulfate, filtering under reduced pressure, and concentrating under reduced pressure; And (e) the residue is recrystallized under methanol ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine) It can be carried out by obtaining a step.
제 9족, 제 10족 또는 제 11족 전이금속 화합물(a)의 사용량은, 선택되는 에틸렌성 및 프로필렌성 불포화 화합물의 종류나 다른 중합조건에 따라 그 적합한 값이 달라지기 때문에, 일률적으로 그 범위를 한정할 수는 없으나, 통상 반응대역의 용량 1리터당 0.01~100밀리몰, 바람직하게는 0.01~10밀리몰이다. 반응대역의 용량이라는 것은, 반응기의 액상의 용량을 말한다. 리간드(b)의 사용량도 특별히 제한되지는 않으나, 전이금속 화합물 (a) 1몰당, 통상 0.1~3몰, 바람직하게는 1~3몰이다.The amount of the Group 9, Group 10 or Group 11 transition metal compound (a) to be used varies uniformly since the appropriate value varies depending on the type of the ethylenic and propylene unsaturated compounds selected or other polymerization conditions. Although not limited, it is usually 0.01-100 mmol, preferably 0.01-10 mmol, per liter of the capacity of the reaction zone. The capacity of the reaction zone means the capacity of the liquid phase of the reactor. The amount of the ligand (b) to be used is not particularly limited, but is usually 0.1 to 3 mol, preferably 1 to 3 mol, per mol of the transition metal compound (a).
또한, 폴리케톤의 중합 시 벤조페논을 첨가하는 것을 또 다른 특징으로 한다. 본 발명에서는 폴리케톤의 중합시 벤조페논을 첨가함으로써 폴리케톤의 고유점도가 향상되는 효과를 달성할 수 있다. 상기 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물과 벤조페논의 몰비는 1 : 5~100, 바람직하게는 1 : 40~60 이다. 전이금속과 벤조페논의 몰비가 1 : 5 미만이면 제조되는 폴리케톤의 고유점도 향상의 효과가 만족스럽지 못하고, 전이금속과 벤조페논의 몰비가 1 : 100을 초과하면 제조되는 폴리케톤 촉매활성이 오히려 감소하는 경향이 있으므로 바람직하지 않다In addition, the addition of benzophenone during the polymerization of polyketones is another feature. In the present invention, it is possible to achieve the effect of improving the intrinsic viscosity of the polyketone by adding benzophenone during the polymerization of the polyketone. The molar ratio of the (a) Group 9, Group 10 or Group 11 transition metal compound and benzophenone is 1: 5 to 100, preferably 1:40 to 60. If the molar ratio of the transition metal and benzophenone is less than 1: 5, the effect of improving the intrinsic viscosity of the polyketone produced is not satisfactory. If the molar ratio of the transition metal and benzophenone is greater than 1: 100, the polyketone catalytic activity produced is rather It is not desirable because it tends to decrease
일산화탄소와 공중합하는 에틸렌성 불포화 화합물의 예로서는, 에틸렌, 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 비닐시클로헥산 등의 α-올레핀; 스티렌, α-메틸스티렌 등의 알케닐 방향족 화합물; 시클로펜텐, 노르보르넨, 5-메틸노르보르넨, 5-페닐노르보르넨, 테트라시클로도데센, 트리시클로도데센, 트리시클로운데센, 펜타시클로펜타데센, 펜타시클로헥사데센, 8-에틸테트라시클로도데센 등의 환상 올레핀; 염화비닐 등의 할로겐화 비닐; 에틸아크릴레이트, 메틸아크릴레이트 등의 아크릴산 에스테르 등을 들 수 있다. 이들 중에서 바람직한 에틸렌성 불포화 화합물은 α-올레핀이고, 더욱 바람직하게는 탄소수가 2~4인 α-올레핀, 가장 바람직하게는 에틸렌이며 삼원 공중합 폴리케톤 제조에 있어서는 120mol% 프로필렌을 투입하는 것이다.Examples of ethylenically unsaturated compounds copolymerized with carbon monoxide include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 Α-olefins such as hexadecene and vinylcyclohexane; Alkenyl aromatic compounds such as styrene and α-methylstyrene; Cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-ethyltetra Cyclic olefins such as cyclododecene; Vinyl halides such as vinyl chloride; Acrylic esters, such as ethyl acrylate and methyl acrylate, etc. are mentioned. Among these, preferred ethylenically unsaturated compounds are α-olefins, more preferably α-olefins having 2 to 4 carbon atoms, most preferably ethylene, and 120 mol% propylene is added in the production of terpolymer copolyketones.
여기에서 일산화탄소와 에틸렌성 불포화 화합물의 투입비를 1 : 1~2(몰비)로 조절하고 프로필렌을 전체 혼합가스 대비 1~20mol%로 조절하는 것이 바람직하다. 폴리케톤의 제조시, 일산화탄소와 에틸렌성 불포화 화합물의 투입비를 1 : 1로 하는 것이 일반적이지만, 액상 매체로서 초산과 물의 혼합용매를 사용하고, 중합시 벤조페논을 첨가하는 본 발명에서는 일산화탄소와 에틸렌성 불포화 화합물의 투입비를 1 : 1~2로 하고 프로필렌을 전체 혼합가스 대비 1~20mol%로 조절하는 경우 가공성이 향상될 뿐 아니라 촉매활성 및 고유점도 향상을 동시에 달성할 수 있음을 발견하였다. 프로필렌의 투입량이 1mol% 미만일 경우 용융온도를 낮추고자 하는 삼원공중합의 효과를 얻을 수 없고 20mol%를 초과하는 경우에는 고유점도 및 촉매 활성 향상을 저해하는 문제점이 생기게 되므로 투입비를 1~20mol%로 조절하는 것이 바람직하다.Here, it is preferable to adjust the input ratio of carbon monoxide and ethylenically unsaturated compound to 1 to 2 (molar ratio) and to adjust the propylene to 1 to 20 mol% relative to the total mixed gas. In the production of polyketone, it is common to set the ratio of carbon monoxide and ethylenically unsaturated compound to 1: 1, but in the present invention using a mixed solvent of acetic acid and water as a liquid medium and adding benzophenone during polymerization, carbon monoxide and ethylenic When the input ratio of the unsaturated compound is 1: 1 to 2 and the propylene is adjusted to 1 to 20 mol% relative to the total mixed gas, it was found that not only the workability is improved but also the catalytic activity and the intrinsic viscosity can be simultaneously achieved. If the input amount of propylene is less than 1 mol%, the effect of terpolymer copolymerization to lower the melting temperature cannot be obtained. If it exceeds 20 mol%, there is a problem of inhibiting the intrinsic viscosity and the improvement of catalyst activity. Therefore, the input ratio is controlled to 1 to 20 mol%. It is desirable to.
또한, 공정에서는 액상 매체로서 초산과 물의 혼합용매를 사용하고, 중합시 벤조페논을 첨가하며 일산화탄소와 에틸렌성 불포화 화합물 및 하나 또는 그 이상의 올레핀성 불포화 화합물을 투입함으로써 폴리케톤의 촉매활성 및 고유점도가 향상되는 것뿐 아니라, 종래 기술에서는 고유점도 향상을 위해 중합시간을 최소한 10시간 이상으로 해야 했던 것과는 달리, 중합시간을 12시간 정도로만 해도 높은 고유점도를 가진 삼원 공중합 폴리케톤의 제조가 가능하다.In the process, a mixed solvent of acetic acid and water is used as a liquid medium, benzophenone is added during polymerization, and carbon monoxide and ethylenically unsaturated compound and one or more olefinically unsaturated compounds are added to the catalytic activity and intrinsic viscosity of the polyketone. In addition to the improvement, in the prior art, the polymerization time should be at least 10 hours to improve the intrinsic viscosity, but it is possible to prepare a terpolymer copolymer polyketone having a high intrinsic viscosity even if the polymerization time is about 12 hours.
일산화탄소와 상기 에틸렌성 불포화 화합물 및 프로필렌성 불포화 화합물 삼원 공중합은 상기 제 9족, 제 10족 또는 제 11족 전이금속 화합물(a), 제 15족의 원소를 가지는 리간드(b) 로 이루어지는 유기금속 착체 촉매에 의해 일어나는 것으로, 상기 촉매는 상기 2성분을 접촉시킴으로써 생성된다. 접촉시키는 방법으로서는 임의의 방법을 채용할 수 있다. 즉, 적당한 용매 중에서 2성분을 미리 혼합한 용액으로 만들어 사용해도 좋고, 중합계에 2성분을 각각 따로따로 공급하여 중합계 내에서 접촉시켜도 좋다.Ternary copolymerization of carbon monoxide, the ethylenically unsaturated compound and the propylene unsaturated compound is an organometallic complex comprising a Group 9, Group 10 or Group 11 transition metal compound (a) and a ligand (b) having an element of Group 15 As a result of the catalyst, the catalyst is produced by contacting the two components. Arbitrary methods can be employ | adopted as a method of making it contact. That is, you may make and use the solution which mixed two components previously in a suitable solvent, and may respectively supply two components separately to a polymerization system, and may contact them in a polymerization system.
중합법으로서는 액상 매체를 사용하는 용액중합법, 현탁중합법, 소량의 중합체에 고농도의 촉매 용액을 함침시키는 기상중합법 등이 사용된다. 중합은 배치식 또는 연속식 중 어느 것이어도 좋다. 중합에 사용하는 반응기는, 공지의 것을 그대로, 또는 가공하여 사용할 수 있다. 중합온도에 대해서는 특별히 제한은 없고, 일반적으로 40~180℃, 바람직하게는 50~120℃가 채용된다. 중합시의 압력에 대해서도 제한은 없으나, 일반적으로 상압~20MPa, 바람직하게는 4~15MPa이다.As the polymerization method, a solution polymerization method using a liquid medium, a suspension polymerization method, a gas phase polymerization method in which a small amount of a polymer is impregnated with a high concentration of a catalyst solution are used. The polymerization may be either batchwise or continuous. The reactor used for superposition | polymerization can use a well-known thing as it is or processing it. There is no restriction | limiting in particular about polymerization temperature, Generally 40-180 degreeC, Preferably 50-120 degreeC is employ | adopted. Although there is no restriction | limiting also about the pressure at the time of superposition | polymerization, Usually, it is normal pressure-20 MPa, Preferably it is 4-15 MPa.
이상, 상기와 같은 제조공정을 따라 폴리케톤이 중합공정을 거쳐 제조된다. In the above, polyketone is manufactured through a polymerization process according to the manufacturing process as described above.
한편, 본 발명의 폴리케톤 폴리머는 선상 교대 구조체이고, 또 불포화 탄화수소 1분자 마다 실질적으로 일산화탄소를 포함하고 있다. 폴리케톤 폴리머의 전구체로서 사용하는데 적당한 에틸렌계 불포화 탄화수소는 20개 이하의 탄소원자, 바람직하게는 10개 이하의 탄소원자를 지닌 에텐, α-올레핀(예컨대, 프로펜(propene), 1-부텐(butene), 아이소부텐(isobutene), 1-헥센(hexene) 및 1-옥텐(octene))과 같은 지방족 탄화수소, 또는 지방족 분자 상에 아릴(aryl) 치환기가 형성된 아릴지방족 탄화수소, 특히 에틸렌계 불포화 탄소원자 상에 아릴 치환기가 형성된 아릴지방족 탄화수소이다. 에틸렌계 불포화 탄화수소 중 아릴지방족 탄화수소로는 스티렌(styrene), p-메틸스티렌(methyl styrene), p-에틸스티렌(ethyl styrene) 및 m-이소프로필 스티렌(isopropyl styrene) 등을 들 수 있다. 본 발명에서 바람직하게 사용되는 폴리머는 일산화탄소와 에텐과 적어도 3개의 탄소원자를 가지는 제2의 에틸렌계 불포화 탄화수소(특별히, 프로펜(propene))와 같은 α-올레핀과의 선상 터폴리머(terpolymer)이다.On the other hand, the polyketone polymer of the present invention is a linear alternating structure, and substantially contains carbon monoxide for each molecule of unsaturated hydrocarbon. Ethylenically unsaturated hydrocarbons suitable for use as precursors of polyketone polymers are ethene, α-olefins (e.g. propene, 1-butene) having up to 20 carbon atoms, preferably up to 10 carbon atoms. ), Aliphatic hydrocarbons such as isobutene, 1-hexene and 1-octene), or arylaliphatic hydrocarbons having aryl substituents on aliphatic molecules, in particular ethylenically unsaturated carbon atoms Arylaliphatic hydrocarbon with an aryl substituent on the phase. Examples of the arylaliphatic hydrocarbons among the ethylenically unsaturated hydrocarbons include styrene, p-methyl styrene, p-ethyl styrene, m-isopropyl styrene, and the like. Polymers preferably used in the present invention are linear terpolymers of carbon monoxide with ethene and α-olefins such as second ethylenically unsaturated hydrocarbons having at least three carbon atoms (especially propene).
상기 폴리케톤 터폴리머를 본 발명의 블랜드의 주요 폴리머 성분으로서 사용할 때에, 터폴리머내의 제2의 탄화수소 부분을 포함하고 있는 각 단위에 대하여, 에틸렌 부분을 포함하고 있는 단위가 적어도 2개 있다. 제2의 탄화수소 부분을 포함하고 있는 단위가 10~100개 있는 것이 바람직하다.When using the polyketone terpolymer as the main polymer component of the blend of the present invention, for each unit containing the second hydrocarbon moiety in the terpolymer, there are at least two units containing the ethylene moiety. It is preferable that there are 10-100 units containing a 2nd hydrocarbon part.
일 구체예로, 상기 폴리케톤 폴리머는 하기 화학식 2로 나타낸 단위를 반복단위로 포함하는 것일 수 있다. In one embodiment, the polyketone polymer may include a unit represented by the following formula (2) as a repeating unit.
[화학식 2][Formula 2]
-[CO-(-CH2-CH2-)-]x-[CO-(G)]y--[CO-(-CH2-CH2-)-] x- [CO- (G)] y-
상기 화학식 2 중, G는 에틸렌계 불포화 탄화수소로서, 특히 적어도 3개의 탄소 원자를 가지는 에틸렌계 불포화탄화수소로부터 얻어지는 부분이고, x:y는 적어도 1:0.01인 것이 바람직하다.In the formula (2), G is an ethylenically unsaturated hydrocarbon, in particular, a part obtained from ethylenically unsaturated hydrocarbon having at least three carbon atoms, and x: y is preferably at least 1: 0.01.
다른 구체예로, 상기 폴리케톤 폴리머는 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 공중합체로서, y/x가 0.03~0.3 인 것이 바람직하다. 상기 y/x값의 수치가 0.03 미만인 경우, 용융성 및 가공성이 떨어지는 한계가 있고, 0.3을 초과하는 경우는 기계적 물성이 떨어진다. 또한, y/x는 더욱 바람직하게 0.03 내지 0.1이다.In another embodiment, the polyketone polymer is a copolymer composed of repeating units represented by General Formulas (1) and (2), and it is preferable that y / x is 0.03 to 0.3. When the value of the y / x value is less than 0.03, there is a limit inferior in meltability and workability, and when it exceeds 0.3, mechanical properties are inferior. Further, y / x is more preferably 0.03 to 0.1.
-[-CH2CH2-CO]x- (1)-[-CH2CH2-CO] x- (1)
-[-CH2-CH(CH3)-CO]y- (2)-[-CH2-CH (CH3) -CO] y- (2)
한편, 상기 폴리케톤 수지의 바람직한 고유점도(LVN)는 0.5~10 dl/g, 더욱 바람직하게는 0.8~4 dl/g, 가장 바람직하게는 1~1.5 dl/g이다. 폴리케톤 수지의 고유점도가 0.5 dl/g 미만이면 기계적 물성이 저하될 수 있으며, 10 dl/g을 초과하면 가공성이 저하될 수 있다.On the other hand, the preferred intrinsic viscosity (LVN) of the polyketone resin is 0.5 to 10 dl / g, more preferably 0.8 to 4 dl / g, most preferably 1 to 1.5 dl / g. If the intrinsic viscosity of the polyketone resin is less than 0.5 dl / g, the mechanical properties may be lowered. If it exceeds 10 dl / g, the workability may be reduced.
겔 투과 크로마토그래피(chromatography)에 의하여 측정한 수평균 분자량이 100~200,000 특별히 20,000~90,000의 폴리케톤 폴리머가 특히 바람직하다. 폴리머의 물리적 특성은 분자량에 따라서, 폴리머가 코폴리머인, 또는 터폴리머인 것에 따라서, 또 터폴리머의 경우에는 존재하는 제2의 탄화 수소부분의 성질에 따라서 정해진다. 본 발명에서 사용하는 폴리머의 통산의 융점은 175~300℃이고, 또한 일반적으로는 210~270℃이다. 표준 세관점도 측정장치를 사용하고 HFIP(Hexafluoroisopropylalcohol)로 60℃에 측정한 폴리머의 극한 점도 수(LVN)는0.5dl/g~10dl/g, 또한 바람직하게는 0.8dl/g~4dl/g이며, 더욱 바람직하게는, 1.0dl/g~2.0dl/g 이다. 이때, 극한 점도 수가 1.0dl/g 미만이면 기계적 물성이 떨어지고, 2.0dl/g을 초과하면 가공성이 떨어지는 문제점이 발생한다.Particularly preferred are polyketone polymers having a number average molecular weight of 100 to 200,000, particularly 20,000 to 90,000, as measured by gel permeation chromatography. The physical properties of the polymer depend on the molecular weight, on whether the polymer is a copolymer or terpolymer, and in the case of terpolymers, on the nature of the second hydrocarbon moiety present. Melting | fusing point of the conversion of the polymer used by this invention is 175-300 degreeC, and is 210-270 degreeC generally. The ultimate viscosity number (LVN) of the polymer measured at 60 ° C. using a standard tubular viscosity measuring device and HFIP (Hexafluoroisopropylalcohol) is 0.5 dl / g to 10 dl / g, more preferably 0.8 dl / g to 4 dl / g, More preferably, they are 1.0 dl / g-2.0 dl / g. At this time, if the limiting viscosity number is less than 1.0 dl / g mechanical properties are inferior, if exceeding 2.0 dl / g, there is a problem of poor workability.
한편, 폴리케톤의 분자량 분포는 1.5 내지 2.5인 것이 좋고, 보다 바람직하게는 1.8~2.2이 좋다. 1.5 미만은 중합수율이 떨어지며, 2.5를 초과하면 성형성이 떨어지는 문제점이 있었다. 상기 분자량 분포를 조절하기 위해서는 팔라듐 촉매의 양과 중합온도에 따라 비례하여 조절이 가능하다. 즉, 팔라듐 촉매의 양이 많아지거나, 중합온도가 100℃ 이상이면 분자량 분포가 커지는 양상을 보인다. On the other hand, the molecular weight distribution of the polyketone is preferably 1.5 to 2.5, more preferably 1.8 to 2.2. If less than 1.5, the polymerization yield falls, and if it exceeds 2.5, there is a problem in that the moldability falls. In order to control the molecular weight distribution, it is possible to adjust proportionally according to the amount of palladium catalyst and polymerization temperature. That is, when the amount of the palladium catalyst increases or the polymerization temperature is 100 ° C. or more, the molecular weight distribution is increased.
한편, 본 발명의 폴리케톤 조성물은 폴리케톤과 폴리알킬렌카보네이트 조합으로 이루어진 얼로이로 구성되는 것으로서, 폴리케톤의 장기 가공 안정성을 개선하고 기계적 물성을 개선하는 것을 특징으로 한다.On the other hand, the polyketone composition of the present invention is composed of an alloy consisting of a polyketone and polyalkylene carbonate combination, characterized in that to improve the long-term processing stability of the polyketone and improve the mechanical properties.
상기 폴리알킬렌카보네이트의 중량은 전체 중량 대비 5 내지 90 중량%인 것이 바람직하며, 보다 바람직하게는 30 내지 70 중량%, 더욱 더 바람직하게는 10 내지 20 중량%인 것이 좋다. 상기 폴리알킬렌카보네이트의 함량이 5 중량% 미만이면 상대적 함량 감소로 원하는 수준의 장기 가공안정성을 부여하기 어려울 수 있으며, 90 중량%를 초과하는 경우에는 인장강도, 충격강도 등 기계적 물성이 지나치게 낮아지게 된다. 여기서 상기 폴리알킬렌카보네이트는 폴리프로필렌카보네이트(PPC) 및 폴리에틸렌카보네이트(PEC)로 이루어지는 군에서 선택된 1종 또는 2종인 것이 바람직하나, 이에 한정되지 않는다.The weight of the polyalkylene carbonate is preferably 5 to 90% by weight based on the total weight, more preferably 30 to 70% by weight, still more preferably 10 to 20% by weight. When the content of the polyalkylene carbonate is less than 5% by weight, it may be difficult to impart a desired level of long-term processing stability due to the relative content decrease. When the content of the polyalkylene carbonate exceeds 90% by weight, mechanical properties such as tensile strength and impact strength may be excessively low. do. The polyalkylene carbonate is preferably one or two selected from the group consisting of polypropylene carbonate (PPC) and polyethylene carbonate (PEC), but is not limited thereto.
또한, 상기 폴리프로필렌카보네이트는 2,000 내지 100,000의 수 평균 분자량을 가지는 것이 바람직하며, 보다 바람직하게는 2,500 내지 55,000이다. 상기 폴리에틸렌카보네이트는 100,000 내지 300,000의 수 평균 분자량을 가지는 것이 바람직하다. 상기 폴리프로필렌카보네이트 및 폴리에틸렌카보네이트가 각각 상기 수 평균 분자량을 가짐에 따라, 이로부터 얻어지는 얼로이 조성물이 장기 가공안정성을 나타낼 수 있다. 한편, 본 발명의 폴리케톤 얼로이 조성물은 220℃, 100rpm 조건에서 하케 믹서(Haake Mixer) 장기체류평가 결과, 맥스 러닝 타임(Max running time)이 300분 이상인 것이 바람직하다. 이와 같은 범위의 러닝 타임에서 가공 안정성이 좋기 때문이다.In addition, the polypropylene carbonate preferably has a number average molecular weight of 2,000 to 100,000, more preferably 2,500 to 55,000. The polyethylene carbonate preferably has a number average molecular weight of 100,000 to 300,000. As the polypropylene carbonate and the polyethylene carbonate each have the number average molecular weight, the alloy composition obtained therefrom may exhibit long-term processing stability. On the other hand, the polyketone alloy composition of the present invention as a result of the Hake Mixer (Haake Mixer) long-term residence evaluation at 220 ℃, 100rpm condition, it is preferable that the Max running time (Max running time) 300 minutes or more. This is because the machining stability is good in the running time of this range.
한편, 폴리에틸렌카보네이트(PEC)는 폴리알킬렌카보네이트에 포함되는 비결정성의 고분자로서, 끈적거리는(sticky) 성질이 있고, 생분해성도 있다. 또한, 산소투과도가 나일론 6보다 좋고, 폴리케톤, 폴리락틱애씨드(PLA), 폴리염화비닐(PVC) 등과 상용성이 좋다.On the other hand, polyethylene carbonate (PEC) is an amorphous polymer included in polyalkylene carbonate, and has sticky property and biodegradability. In addition, oxygen permeability is better than that of nylon 6, and compatibility with polyketone, polylactic acid (PLA), polyvinyl chloride (PVC) and the like is good.
상기 폴리알킬렌카보네이트로 폴리에틸렌카보네이트를 사용할 경우에 중량은 전체중량 대비 1 내지 20 중량%일 수 있으며, 전체 중량 대비 10 내지 20 중량%인 것이 보다 바람직하다. 여기서 폴리에틸렌카보네이트의 함량이 1 중량% 미만이면 폴리에틸렌카보네이트의 상대적 함량 감소로 원하는 수준의 장기 가공안정성을 부여하기 어려울 수 있으며, 20 중량%를 초과하는 경우 충격강도가 크게 저하된다.When the polyethylene carbonate is used as the polyalkylene carbonate, the weight may be 1 to 20 wt% based on the total weight, and more preferably 10 to 20 wt% based on the total weight. If the content of polyethylene carbonate is less than 1% by weight, it may be difficult to give a desired level of long-term processing stability due to the decrease in the relative content of polyethylene carbonate, and when it exceeds 20% by weight, the impact strength is greatly reduced.
이때, 상기 폴리케톤 얼로이 조성물은 220℃, 100rpm 조건에서 하케 믹서(Haake Mixer) 장기체류평가 결과, 맥스 러닝 타임(Max running time)이 140분 이상일 수 있다.In this case, the polyketone alloy composition may be a maximum running time of 140 minutes or more as a result of the Hake Mixer (Lake Mixer) long-term residence evaluation at 220 ℃, 100rpm conditions.
이하, 상기의 폴리케톤 조성물을 제조하기 위한 제조방법은 다음과 같다. Hereinafter, a manufacturing method for producing the polyketone composition is as follows.
본 발명의 폴리케톤 조성물 제조방법은 팔라듐 화합물, pKa값이 6 이하인 산, 및 인의 2배위자 화합물을 포함하는 촉매 조성물을 준비하는 단계; 알코올(예컨대, 메탄올)과 물을 포함하는 혼합용매(중합용매)를 준비하는 단계; 상기 촉매 조성물 및 혼합용매의 존재 하에서 중합을 진행하여 일산화탄소, 에틸렌 및 프로필렌의 선상 터폴리머를 제조하는 단계; 상기 선상 터폴리머에서 남은 촉매 조성물을 용매(예컨대, 알코올 및 아세톤)로 제거하여 폴리케톤 수지를 수득하는 단계; 및 상기 폴리케톤 수지를 폴리알킬렌카보네이트와 혼합하여 조성물을 제조하는 단계를 포함할 수 있으나 이에 한정되는 것은 아니다. Method for producing a polyketone composition of the present invention comprises the steps of preparing a catalyst composition comprising a palladium compound, an acid having a pKa value of 6 or less, and a double ligand compound of phosphorus; Preparing a mixed solvent (polymer solvent) including an alcohol (eg, methanol) and water; Preparing a linear terpolymer of carbon monoxide, ethylene and propylene by polymerizing in the presence of the catalyst composition and the mixed solvent; Removing the remaining catalyst composition from the linear terpolymer with a solvent (eg, alcohol and acetone) to obtain a polyketone resin; And mixing the polyketone resin with polyalkylene carbonate to prepare a composition, but is not limited thereto.
상기 촉매 조성물을 구성하는 상기 팔라듐 화합물로는 초산 팔라듐을 사용할 수 있으며, 그 사용량은 10-3~10-1 몰이 적절하나, 이에 한정되는 것은 아니다.Palladium acetate may be used as the palladium compound constituting the catalyst composition, and the amount of palladium acetate is preferably 10-3 to 10-1 mol, but is not limited thereto.
촉매 조성물을 구성하는 상기 pKa값이 6 이하인 산으로는 트리플루오르 초산, p-톨루엔술폰산, 황산 및 술폰산으로 이루어진 군에서 선택된 1종 이상, 바람직하게는 트리플루오르 초산을 사용할 수 있으며, 그 사용량은 팔라듐 화합물 대비 6~20 (몰)당량이 적절하다.As the acid having a pKa value of 6 or less constituting the catalyst composition, one or more selected from the group consisting of trifluoroacetic acid, p-toluenesulfonic acid, sulfuric acid, and sulfonic acid may be used, and preferably trifluoroacetic acid is used. 6-20 (mole) equivalent weight of the compound is appropriate.
촉매 조성물을 구성하는 상기 인의 2배위자 화합물로는 1,3-비스[다이페닐포스피노]프로판(예컨대, 1,3-비스[다이(2-메톡시페닐포스피노)프로판), 1,3-비스[비스[아니실]포스피노메틸]-1,5-디옥사스피로[5,5]운데칸, ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀) 및 (사이클로헥세인-1,1-디일비스(메틸렌))비스(비스(2-메톡시페닐)포스핀으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으며, 그 사용량은 팔라듐 화합물 대비 1~1.2 (몰)당량이 적절하다.Examples of the ligand ligands constituting the catalyst composition include 1,3-bis [diphenylphosphino] propane (e.g., 1,3-bis [di (2-methoxyphenylphosphino) propane), 1,3- Bis [bis [anisyl] phosphinomethyl] -1,5-dioxaspiro [5,5] undecane, ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis ( 1 selected from the group consisting of methylene)) bis (bis (2-methoxyphenyl) phosphine) and (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine It is possible to use more than one species, and the amount of use thereof is 1 to 1.2 (mole) equivalents relative to the palladium compound.
상기 일산화탄소, 에틸렌 및 프로필렌은 알코올(예컨대, 메탄올)과 물의 혼합용매에서 액상 중합되어 선상 터폴리머를 생성하는데, 상기 혼합용매로는 메탄올 100 중량부 및 물 2~10 중량부의 혼합물을 사용할 수 있다. 혼합용매에서 물의 함량이 2 중량부 미만이면 케탈이 형성되어 공정 시 내열안정성이 저하될 수 있으며, 10 중량부를 초과하면 제품의 기계적 물성이 저하될 수 있다.The carbon monoxide, ethylene, and propylene are liquid-polymerized in a mixed solvent of alcohol (eg, methanol) and water to produce a linear terpolymer. The mixed solvent may be a mixture of 100 parts by weight of methanol and 2 to 10 parts by weight of water. If the content of the water in the mixed solvent is less than 2 parts by weight of ketal may form a thermal stability during the process, if more than 10 parts by weight may lower the mechanical properties of the product.
또한, 상기 중합 시 반응온도는 50~100℃, 반응압력은 40~60bar의 범위가 적절하다. 생성된 폴리머는 중합 후 여과, 정제 공정을 통해 회수하며, 남은 촉매 조성물은 알코올 또는 아세톤 등의 용매로 제거한다.In addition, the polymerization temperature is 50 ~ 100 ℃, the reaction pressure is suitable for the range of 40 ~ 60bar. The resulting polymer is recovered through polymerization and filtration and purification, and the remaining catalyst composition is removed with a solvent such as alcohol or acetone.
본 발명에서는 상기 얻어진 폴리케톤 수지를 폴리알킬렌카보네이트와 혼합한 다음 압출기로 압출하여 최종적으로 폴리케톤 조성물을 수득한다. 상기 블렌드는 2축 압출기에 투입하여 용융혼련 및 압출함으로써 제조될 수 있다.In the present invention, the obtained polyketone resin is mixed with polyalkylene carbonate and then extruded by an extruder to finally obtain a polyketone composition. The blend may be prepared by melt kneading and extrusion into a twin screw extruder.
이때, 압출온도는 230~260℃, 스크류 회전속도는 100~300rpm의 범위가 바람직하다. 압출온도가 230℃ 미만이면 혼련이 적절히 일어나지 않을 수 있으며, 260℃를 초과하면 수지의 내열성 관련 문제가 발생할 수 있다. 또한, 스크류 회전속도가 100rpm 미만이면 원활한 혼련이 일어나지 않을 수 있다.At this time, the extrusion temperature is 230 ~ 260 ℃, screw rotation speed is preferably in the range of 100 ~ 300rpm. If the extrusion temperature is less than 230 ℃ kneading may not occur properly, if it exceeds 260 ℃ may cause problems with the heat resistance of the resin. In addition, when the screw rotational speed is less than 100rpm it may not occur smooth kneading.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, these examples are only for the understanding of the present invention, and the scope of the present invention in any sense is not limited to these examples.
[실시예 1] Example 1
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤은 초산 팔라듐, 트리 플루오르 초산 및 (사이클로헥세인-1,1-디일비스(메틸렌))비스(비스(2-메톡시페닐)포스핀으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤에서 일산화탄소는 50mol%이고, 에틸렌은 44mol%이며, 프로필렌은 6mol%이었다. 또한, 상기 폴리케톤의 융점은 197℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 고유점도(LVN)는 2.2dl/g 이었다. 이렇게 제조된 터폴리머를 M620A라 명명한다.Linear alternating polyketones consisting of carbon monoxide, ethylene and propene were produced from palladium acetate, trifluoroacetic acid and (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine In the presence of the catalyst composition, the content of trifluoroacetic acid to palladium is 10-fold molar ratio, and is subjected to one step of polymerization temperature of 78 ° C. and two steps of 84 ° C. In the polyketone prepared above, carbon monoxide is 50 mol. %, Ethylene was 44 mol%, propylene was 6 mol%, and the melting point of the polyketone was 197 ° C., and the intrinsic viscosity (LVN) measured at 25 ° C. using hexa-fluoroisopropano (HFIP) was 2.2 dl / g. The terpolymer thus prepared is named M620A.
상기 제조된 폴리케톤 터폴리머 90중량% 및 폴리에틸렌카보네이트 10중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조하였다.90 wt% of the prepared polyketone terpolymer and 10 wt% of polyethylene carbonate were prepared to prepare a composition, and the prepared composition was operated on an extruder by using a biaxial screw having a diameter of 40 cm and a L / D = 32 operating at 250 rpm. To pellets.
[실시예 2] Example 2
폴리케톤 터폴리머 80 중량%, 폴리에틸렌카보네이트 20 중량%를 제외하고는 실시예 1과 동일하다. Except for 80% by weight polyketone terpolymer, 20% by weight polyethylene carbonate is the same as in Example 1.
[비교예 1] Comparative Example 1
폴리케톤 100 중량%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 시편을 제조하였다. Specimens were prepared in the same manner as in Example 1 except that 100 wt% polyketone was used.
실험예 1: 가공안정성 평가를 위한 Cross over time(COT) 측정Experimental Example 1: Cross over time (COT) measurement for processing stability evaluation
상기 실시예의 제조된 폴리케톤 조성물을 시편으로 제조한 다음, 미니 사출기로 COT 시편을 사출한 후, 레오미터{㈜Anton Paar의 Physica MCR 301}를 통해 COT(Cross Over Time, Gel point)를 측정하여 비교예의 제품과 대비하여 가공안정성을 평가하고, 그 결과를 표 1 및 도 1에 나타내었다. 겔화점(Gel point)은 G'=G″일 때의 시간(졸-겔 전이 시간; sol-gel transition time point)으로 판단한다.After preparing the prepared polyketone composition of the sample, and then injecting the COT specimen with a mini-injector, by measuring the COT (Cross Over Time, Gel point) through a rheometer {Physica MCR 301 of Anton Paar Co., Ltd. In comparison with the product of the comparative example, processing stability was evaluated, and the results are shown in Table 1 and FIG. 1. The gel point is determined by the time when G '= G ″ (sol-gel transition time point).
구분division 수지 조성Resin composition Cross over time(분)Cross over time (minutes)
비교예 1Comparative Example 1 PKPK 2525
실시예 1Example 1 PK-PEC(90:10)PK-PEC (90:10) 4949
실시예 2Example 2 PC-PEC(80:20)PC-PEC (80:20) 3737
PK: 폴리케톤(M620A), PEC: 폴리에틸렌카보네이트PK: Polyketone (M620A), PEC: Polyethylene carbonate
상기 표 1에서 보듯이, 실시예의 경우 비교예에 비하여 Cross over time(COT)이 증가하는 것으로 보아 가공안정성 향상 효과가 있다고 보인다(COT와 가공안정성의 상관관계는 명확하지 않으나, 현재 가공안정성을 대변하는 하나의 지표로 사용 중임).As shown in Table 1, in the case of the Example, the cross-over time (COT) is increased compared to the comparative example, and thus, it seems that there is an effect of improving work stability (COT and processing stability is not clear, but the present work stability is represented by As one indicator).
실험예 2: 가공안정성 평가를 위한 Haake Mixer 체류 평가Experimental Example 2: Haake Mixer Retention Evaluation for Evaluation of Work Stability
상기 실시예의 제조된 폴리케톤 조성물을 시편으로 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 Haake Mixer 체류 평가를 하여 가공안정성을 알아보고, 그 결과를 표 2 및 도 2, 3에 나타내었다.The prepared polyketone composition of Example was prepared as a specimen, and compared with the product of the comparative example, Haake Mixer retention evaluation was performed in the following manner to find work stability, and the results are shown in Table 2 and FIGS. 2 and 3.
Haake Mixer 장기체류평가 결과: Haake mixer의 챔버 외부 자켓온도를 220 ℃로 일정하게 유지한 상태에서 시료 약 180g을 투입, 두개의 Rotor를 100rpm의 속도로 회전시키면서 시간에 따른 챔버내부 Torque와 온도를 측정한다. Haake Mixer Long-term stay evaluation result: Introduce approximately 180g of sample while maintaining the jacket temperature of the outer chamber of the Haake mixer at 220 ℃, and measure the torque and temperature inside the chamber over time while rotating two rotors at a speed of 100rpm. do.
구분division 수지 조성Resin composition HaakeMax torque(Nm)HaakeMax torque (Nm) Haake Max running time(min)Haake Max running time (min) HaakeTemp difference(max-초기값220℃)(℃)HaakeTemp difference (max-default 220 ° C) (° C)
비교예 1Comparative Example 1 PKPK >60@115분> 60 @ 115 minutes 125125 4040
실시예 1Example 1 PK-PEC(90:10)PK-PEC (90:10) 33@135분33 @ 135 minutes 145145 2525
실시예 2Example 2 PK-PEC(80:20)PK-PEC (80:20) 20@45분20 @ 45 minutes >180> 180 2020
PK: 폴리케톤(M620A), PEC: 폴리에틸렌카보네이트 PK: Polyketone (M620A), PEC: Polyethylene carbonate
상기 표 2에서 보듯이, 실시예의 경우 비교예에 비하여 Max torque값이 작고, Max running time이 길며, 체류시간이 증가하여도 온도 상승이 거의 없는 것으로 보아 장기 가공안정성이 개선된 것을 알 수 있다. 다시 말하면, 비교예 1은 120분 경과 후 완전 분해되어 유동성을 잃어버리지만, 폴리에틸렌카보네이트(PEC)를 첨가함에 따라 분해시간이 지연되어 20 중량% 첨가(실시예 2)한 경우에는 180분을 넘어서도 안정성을 유지하여 압출 공정에서의 장기 가공 안정성이 개선된 것을 알 수 있다.As shown in Table 2, in the case of the embodiment, compared to the comparative example, the maximum torque value is small, the maximum running time is long, and even if the residence time is increased, it can be seen that the long-term processing stability is improved. In other words, Comparative Example 1 is completely decomposed after 120 minutes to lose fluidity, but the decomposition time is delayed due to the addition of polyethylene carbonate (PEC), even if the addition of 20% by weight (Example 2) exceeds 180 minutes It can be seen that the long-term processing stability in the extrusion process is improved by maintaining the stability.
따라서 본 발명에 따라 제조된 폴리케톤 조성물은 장기 가공안정성이 뛰어나 사출및 압출성형 공정에 적용하기에 적합하여 자동차산업소재전기전자용 사출성형부품 및 Film, Tube 등 압출성형부품을 제조하는 데 이용할 수 있다. Therefore, the polyketone composition prepared according to the present invention has excellent long-term processing stability and is suitable for application to injection and extrusion molding processes. have.
실험예 3: 가공안정성 평가를 위한 Melt viscosity(MV) 측정Experimental Example 3: Melt viscosity (MV) measurement for the evaluation of processing stability
상기 실시예의 제조된 폴리케톤 조성물을 시편으로 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 Melt viscosity를 측정하여 가공안정성을 평가하고, 그 결과를 도 4에 나타내었다.The prepared polyketone composition of Example was prepared as a specimen, and then compared to the product of the comparative example, Melt viscosity was measured in the following manner to evaluate processing stability, and the results are shown in FIG. 4.
사전건조: 80℃, vacuum, overnightPredrying: 80 ℃, vacuum, overnight
측정 온도: 230℃Measuring temperature: 230 ℃
Die geometry: 30/1 mmDie geometry: 30/1 mm
Sample melting time: 5 minSample melting time: 5 min
Shear rate: 100, 176, 267, 374, 556, 866, 1062, 1786, 2345, 4095, 7205, 12271 1/s (12 points)Shear rate: 100, 176, 267, 374, 556, 866, 1062, 1786, 2345, 4095, 7205, 12271 1 / s (12 points)
도 4에서 보듯이, 실시예와 비교예의 MV 그래프는 거의 유사하여, 폴리에틸렌카보네이트 첨가량에 관계없이 Melt viscosity는 대체로 유사함을 알 수 있다. As shown in FIG. 4, the MV graphs of the examples and the comparative examples are almost similar, so that the melt viscosity is generally similar regardless of the amount of polyethylene carbonate added.
실험예 4: 열적 물성 평가Experimental Example 4: Evaluation of Thermal Properties
상기 실시예의 제조된 폴리케톤 조성물을 시편으로 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 열적 물성을 평가하고, 그 결과를 표 3, 4 및 도 5에 나타내었다. The prepared polyketone composition of the above Example was prepared as a specimen, and then compared with the product of Comparative Example, the thermal properties were evaluated in the following manner, and the results are shown in Tables 3, 4 and 5.
- DSC는 1, 2차 승온, 강온(-40℃에서 240℃까지 20℃/min)법으로 측정하였으며, Tm및 Tc는 2차 승온, 강온 시의 값이다.-DSC was measured by the 1st, 2nd temperature rising and temperature-fall (-40 degreeC-240 degreeC from 20 degree-C / min) method, and Tm and Tc are the values at the time of secondary temperature rising and falling.
- TGA는 온도 범위를 40℃에서 850℃까지 20℃/min으로 질소 분위기에서 측정하였다.TGA was measured in a nitrogen atmosphere at 20 ° C./min from 40 ° C. to 850 ° C.
구분division 함량(%)content(%) DSC DSC
620A620A PECPEC Tg(℃)Tg (℃) Tm(℃)Tm (℃) ΔHm(J/g)ΔHm (J / g) Tc(℃)Tc (℃) ΔHc(J/g)ΔHc (J / g)
비교예 1Comparative Example 1 100100 00 3.53.5 205.6205.6 69.269.2 155.0155.0 -74.0-74.0
실시예 1Example 1 9090 1010 7.27.2 204.1204.1 68.568.5 155.5155.5 -76.8-76.8
실시예 2Example 2 8080 2020 9.59.5 204.0204.0 66.366.3 155.4155.4 -67.9-67.9
-- 00 100100 10~1510-15 -- -- -- --
Td(℃, @5% 분해)Td (℃, @ 5% decomposition)
구분division 함량(%)content(%) Td(℃)Td (℃)
620A620A PECPEC
비교예 1Comparative Example 1 100100 00 351351
실시예 1Example 1 9090 1010 338338
실시예 2Example 2 8080 2020 332332
-- 00 100100 234234
실험예 5: 분자량Experimental Example 5: Molecular Weight
상기 실시예의 제조된 폴리케톤 조성물을 시편으로 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 분자량을 측정하고, 그 결과를 표 5 및 도 6에 나타내었다.After preparing the prepared polyketone composition of the sample to the specimen, the molecular weight was measured by the following method compared with the product of the comparative example, the results are shown in Table 5 and FIG.
- 분자량은 Hexafluoroisopropanol(HFIP) 용매에 녹이고, Gel Permeation Chromatography(GPC)으로 측정한다.Molecular weight is dissolved in Hexafluoroisopropanol (HFIP) solvent and measured by Gel Permeation Chromatography (GPC).
구분division SampleSample MnMn MwMw MzMz pdi pdi
비교예 1Comparative Example 1 PK(M620A) 100%PK (M620A) 100% 86,773 86,773 247,393 247,393 967,583 967,583 2.85 2.85
실시예 1Example 1 PK/PEC(90:10)PK / PEC (90:10) 73,242 73,242 220,851 220,851 855,184 855,184 3.02 3.02
실시예 2Example 2 PK/PEC(80:20)PK / PEC (80:20) 72,433 72,433 211,128 211,128 859,790 859,790 2.91 2.91
-- PEC 100% PEC 100% 71,782 71,782 156,423 156,423 295,724 295,724 2.18 2.18
실험예 6: 기계적 물성 평가Experimental Example 6: Evaluation of Mechanical Properties
상기 실시예의 제조된 폴리케톤 조성물을 시편으로 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 기계적 물성을 평가하고, 그 결과를 표 6 및 도 7에 나타내었다.The prepared polyketone composition of the Example was prepared as a specimen, and then compared with the product of the comparative example, the mechanical properties were evaluated in the following manner, and the results are shown in Table 6 and FIG. 7.
1. Compounding센터 40mm 압출기로 압출하였다.1. Extruded with 40mm extruder compounding center.
2. 인장강도: ASTM D638에 의거하여 실시하였다. 2. Tensile strength: It was performed according to ASTM D638.
3. 충격강도: ASTM D256에 의거하여 상온 [24]℃의 조건에서 실시하였다.3. Impact strength: It was carried out under the conditions of room temperature [24] ℃ according to ASTM D256.
4. 용융지수(Melt Index): ASTM D1238에 따라 240℃에서 2.16kg 하중으로 측정하며, 10분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.4. Melt Index: Measured by 2.16 kg load at 240 ° C. according to ASTM D1238, expressed as weight (g) of polymer melted for 10 minutes.
5. 신율: 인장강도와 같은 ASTM D638에 의거하여 실시하였다.5. Elongation: It was performed according to ASTM D638 as tensile strength.
6. 굴곡탄성률 및 굴곡강도: ASTM D790에 의거하여 실시하였다.6. Flexural modulus and flexural strength: Performed according to ASTM D790.
구분division 함량(%)content(%) 인장강도(MPa)Tensile Strength (MPa) 신율(%)% Elongation 굴곡탄성률(Mpa)Flexural modulus (Mpa) 굴곡강도(Mpa)Flexural Strength (Mpa) 충격강도(kJ/m2)Impact strength (kJ / m2) MI(g/10min)MI (g / 10min)
620A620A PECPEC
비교예 1Comparative Example 1 100100 00 61 61 648648 10961096 4949 14.2(14.9/14.0/13.6)14.2 (14.9 / 14.0 / 13.6) 5.25.2
실시예 1Example 1 9090 1010 58 58 637637 938938 4242 11.5(12.3/3.7/9.1/14.6/13.0)**11.5 (12.3 / 3.7 / 9.1 / 14.6 / 13.0) ** 5.65.6
실시예 2Example 2 8080 2020 53 53 626626 772772 3535 3.6(6.2/3.6/3.7/3.6/3.5)3.6 (6.2 / 3.6 / 3.7 / 3.6 / 3.5) 6.36.3
상기 표 6에서 보듯이, PEC를 첨가함에 따라 용융지수(MI)가 증가하고, 인장강도, 굴곡탄성률 및 충격강도는 저하된다. 특히 PEC 20 중량% 첨가시 충격 저하가 크므로, PEC를 20 중량% 초과하여 첨가하는 것은 충격 면에서 유리하지 않다고 보인다.As shown in Table 6, as the PEC is added, the melt index (MI) increases, and the tensile strength, the flexural modulus, and the impact strength decrease. In particular, since the impact drop is large when 20 wt% of PEC is added, it is not advantageous to add more than 20 wt% of PEC in terms of impact.
실험예 7: 색Experimental Example 7: Color
상기 실시예의 제조된 폴리케톤 조성물을 시편으로 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 색을 평가하고, 그 결과를 표 7 및 도 8에 나타내었다.The prepared polyketone composition of the above Example was prepared as a specimen, the color was evaluated by the following method in comparison with the product of the comparative example, the results are shown in Table 7 and FIG.
- 색차는 Yellow Index(YI)는 ASTM E313-00법으로, L, a, b 값은 CIE L*a*b(CIELAB)법으로 측정하였다.-The color difference was measured by ASTM E313-00 method for Yellow Index (YI) and L, a, b values by CIE L * a * b (CIELAB) method.
구분division 조성 (%)Furtherance (%) 색차 Color difference
620A620A PECPEC YIYI LL aa bb
비교예 1Comparative Example 1 100100 00 23 23 55.0 55.0 -1.6 -1.6 8.9 8.9
실시예 1Example 1 9090 1010 21 21 72.7 72.7 -0.9 -0.9 9.4 9.4
실시예 2Example 2 8080 2020 17 17 76.6 76.6 -0.3 -0.3 8.0 8.0
상기 표 7에서 보듯이, PEC 첨가에 따라 YI값이 소폭 개선되고, 특히 L값이 크게 증가함을 알 수 있다.As shown in Table 7, it can be seen that the YI value is slightly improved according to the addition of PEC, and in particular, the L value is greatly increased.
[실시예 3]Example 3
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤은 초산 팔라듐, 트리 플루오르 초산 및 (사이클로헥세인-1,1-디일비스(메틸렌))비스(비스(2-메톡시페닐)포스핀으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤에서 일산화탄소는 50mol%이고, 에틸렌은 46mol%이며, 프로필렌은 4mol%이었다. 또한, 상기 폴리케톤의 융점은 220℃이고, GPC (Gel Permeation Chromatography)로 측정한 분자량은 Mn = 52,500, Mw =141,400, 분자량 분산도 PDI = 2.69 이었다. 이렇게 제조된 터폴리머를 M330A라 명명한다. Linear alternating polyketones consisting of carbon monoxide, ethylene and propene were produced from palladium acetate, trifluoroacetic acid and (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine In the presence of the catalyst composition, the content of trifluoroacetic acid to palladium is 10-fold molar ratio, and is subjected to one step of polymerization temperature of 78 ° C. and two steps of 84 ° C. In the polyketone prepared above, carbon monoxide is 50 mol. %, Ethylene is 46 mol%, propylene is 4 mol% The melting point of the polyketone is 220 ° C., the molecular weight measured by GPC (Gel Permeation Chromatography) is Mn = 52,500, Mw = 141,400, molecular weight dispersion PDI = 2.69 The terpolymer thus prepared is named M330A.
상기 제조된 폴리케톤 터폴리머 (M330A) 90 중량% 및 폴리프로필렌카보네이트(PPC, Aldrich社 제품) 10 중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조하였다. 사용한 PPC의 분자량은 Mn=51,000, Mw=149,000 이고, PDI=2.9이다.90 wt% of the prepared polyketone terpolymer (M330A) and 10 wt% of polypropylene carbonate (PPC, manufactured by Aldrich Co., Ltd.) were prepared to prepare a composition, and the prepared composition was 40 cm in diameter operating at 250 rpm, and L / D. The pellets were prepared on an extruder using a biaxial screw of = 32. The molecular weight of PPC used was Mn = 51,000, Mw = 149,000 and PDI = 2.9.
[실시예 4]Example 4
폴리케톤 터폴리머 M330A 80 중량%, 폴리프로필렌카보네이트 20 중량%를 투입한 것을 제외하고는 실시예 3과 동일하다.Except that 80% by weight of polyketone terpolymer M330A, 20% by weight of polypropylene carbonate was the same as in Example 3.
[실시예 5]Example 5
폴리케톤 터폴리머 M330A 70 중량%, 폴리프로필렌카보네이트 30 중량%를 투입한 것을 제외하고는 실시예 3과 동일하다.Except for adding 70% by weight of polyketone terpolymer M330A, 30% by weight of polypropylene carbonate was the same as in Example 3.
[실시예 6]Example 6
폴리케톤 터폴리머 M330A 50 중량%, 폴리프로필렌카보네이트 50 중량%를 투입한 것을 제외하고는 실시예 3과 동일하다.Except that 50% by weight of polyketone terpolymer M330A, 50% by weight of polypropylene carbonate was the same as in Example 3.
[실시예 7]Example 7
폴리케톤 터폴리머 M330A 30 중량%, 폴리프로필렌카보네이트 70 중량%를 투입한 것을 제외하고는 실시예 3과 동일하다.It is the same as Example 3 except adding 30 weight% of polyketone terpolymer M330A and 70 weight% of polypropylene carbonate.
[실시예 8]Example 8
폴리케톤 터폴리머 M330A 20 중량%, 폴리프로필렌카보네이트 80 중량%를 투입한 것을 제외하고는 실시예 3과 동일하다.Except that 20% by weight of polyketone terpolymer M330A, 80% by weight of polypropylene carbonate was the same as in Example 3.
[실시예 9]Example 9
폴리케톤 터폴리머 M330A 10 중량%, 폴리프로필렌카보네이트 90 중량%를 투입한 것을 제외하고는 실시예 3과 동일하다.Except that 10% by weight of polyketone terpolymer M330A, 90% by weight of polypropylene carbonate was the same as in Example 3.
[실시예 10]Example 10
폴리케톤 터폴리머 M330A 95 중량%, 폴리프로필렌카보네이트 5 중량%를 투입하고, 사용한 PPC의 분자량이 Mn=2,900, Mw=5,500, PDI=1.9인 것을 사용한 것을 제외하고는 실시예 3과 동일하다.95% by weight of polyketone terpolymer M330A and 5% by weight of polypropylene carbonate were added thereto, and the same procedure as in Example 3 was carried out except that the molecular weight of the used PPC was Mn = 2,900, Mw = 5,500 and PDI = 1.9.
[실시예 11]Example 11
폴리케톤 터폴리머 M330A 90 중량%, 폴리프로필렌카보네이트 10 중량%를 투입한 것을 제외하고는 실시예 10과 동일하다. Except for adding 90% by weight of polyketone terpolymer M330A, 10% by weight of polypropylene carbonate was the same as in Example 10.
[실시예 12]Example 12
폴리케톤 터폴리머 M330A 90 중량%, 폴리에틸렌카보네이트 10 중량%를 투입한 것을 제외하고는 실시예 3과 동일하다. 사용한 PEC의 수 평균 분자량은 200,000이다.Except for adding 90% by weight of polyketone terpolymer M330A, 10% by weight of polyethylene carbonate was the same as in Example 3. The number average molecular weight of the used PEC is 200,000.
[실시예 13]Example 13
폴리케톤 터폴리머 M330A 80 중량%, 폴리에틸렌카보네이트 20 중량%를 투입한 것을 제외하고는 실시예 3과 동일하다. 사용한 PEC의 수 평균 분자량은 200,000이다.Except that 80% by weight of polyketone terpolymer M330A, 20% by weight of polyethylene carbonate was the same as in Example 3. The number average molecular weight of the used PEC is 200,000.
[비교예 2] Comparative Example 2
폴리케톤 M330A 100 중량%를 사용한 것을 제외하고는 실시예 13 동일한 방법으로 시편을 제조하였다.Example 13 A specimen was prepared in the same manner as in Example 13 except 100 wt% of polyketone M330A was used.
물성평가Property evaluation
상기 실시예 3 내지 13 및 비교예 2에서 각각 제조된 시편의 물성을 평가하였으며, 그 결과는 하기 표 8, 9에 나타내었다.The physical properties of the specimens prepared in Examples 3 to 13 and Comparative Example 2 were evaluated, and the results are shown in Tables 8 and 9 below.
구분division 330A330A PPCPPC PECPEC 인장강도(MPa)Tensile Strength (MPa) 신율(%)% Elongation 굴곡 강도(MPa)Flexural Strength (MPa) 굴곡 Modulus(MPa)Flexural Modulus (MPa) Charpy 충격강도(kJ/m2)Charpy Impact Strength (kJ / m2) MI(g/10min)MI (g / 10min)
Mn 51000Mn 51000 Mn 2900Mn 2900 항복surrender 파단Breaking
비교예2Comparative Example 2 100100 -- -- -- 59.159.1 -- 1414 57.157.1 1,4651,465 6.66.6 5858
실시예3Example 3 9090 1010 -- -- 50.250.2 1818 4545 5454 1,3641,364 6.16.1 5757
실시예4Example 4 8080 2020 -- -- 44.844.8 1717 3030 45.145.1 1,0981,098 4.24.2 6262
실시예5Example 5 7070 3030 -- -- 36.836.8 1616 2121 35.235.2 842842 3.13.1 --
실시예6Example 6 5050 5050 -- -- 22.722.7 1515 2424 18.618.6 448448 3.23.2 109109
실시예7Example 7 3030 7070 -- -- 13.313.3 55 1818 4.74.7 115115 2.12.1 --
실시예8Example 8 2020 8080 -- -- 10.510.5 44 3232 2.82.8 7777 1.11.1 148148
실시예9Example 9 1010 9090 -- -- 7.57.5 22 2525 1.01.0 1919 1.41.4 --
실시예10Example 10 9595 -- 55 -- 46.446.4 1414 1818 61.161.1 1,6551,655 8.48.4 --
실시예11Example 11 9090 -- 1010 -- 41.141.1 -- 1212 48.248.2 1,1871,187 9.29.2 253253
실시예 12Example 12 9090 -- -- 1010 49.849.8 2020 4040 48.548.5 1,1801,180 5.35.3 5656
실시예 13Example 13 8080 -- -- 2020 42.042.0 2020 7676 41.541.5 980980 3.63.6 6363
PK: 폴리케톤(M330A, ㈜효성), PPC: 폴리프로필렌카보네이트(Aldrich社), PEC: 폴리에틸렌카보네이트(LG화학)PK: Polyketone (M330A, Hyosung), PPC: Polypropylene carbonate (Aldrich), PEC: Polyethylene carbonate (LG Chemical)
상기 표 8에서 보듯이, 실시예 3에서 9의 경우 비교예에 비하여 굴곡 Modulus가 감소하여 유연성(flexibility)을 개선하고, 수 평균 분자량이 큰 PPC의 경우 함량이 증가함에 따라 MI값이 증가하여 유동성이 향상된 것으로 평가되었다. 또한, 실시예 10과 11의 경우 PPC의 수 평균 분자량이 작은 경우에 충격강도가 향상되는 것으로 평가되었으며, 첨가되는 PPC의 분자량 조절에 따라 기계적 물성을 조절할 수 있다. 그리고, 실시예 12와 13의 경우 PEC 함량이 증가함에 따라 굴곡 modulus가 감소하고, 유동성도 향상되되며, 충격강도는 감소함을 알 수 있다.As shown in Table 8, in the case of Examples 3 to 9, the flexural modulus is reduced compared to the comparative example to improve flexibility, and in the case of PPC having a large number average molecular weight, the MI value increases as the content is increased and the fluidity is increased. This was evaluated as an improvement. In addition, in the case of Examples 10 and 11 was evaluated that the impact strength is improved when the number average molecular weight of the PPC is small, the mechanical properties can be adjusted according to the molecular weight control of the added PPC. In addition, in Examples 12 and 13, as the PEC content is increased, the bending modulus decreases, the fluidity is improved, and the impact strength decreases.
구분division 330A330A PPC(Mn 51000)PPC (Mn 51000) PPC(Mn 2900)PPC (Mn 2900) PECPEC HaakeMax torque(Nm)HaakeMax torque (Nm) HaakeMax running time(min)HaakeMax running time (min) Haake Temp difference(℃)(max-초기값220℃)Haake Temp difference (℃) (max- initial value 220 ℃)
비교예2Comparative Example 2 100100 -- -- -- >60@160분> 60 @ 160 minutes 175175 3737
실시예3Example 3 9090 1010 -- -- 19@300분19 @ 300 minutes >300> 300 1212
실시예11Example 11 9090 -- 1010 -- 16@157분16 @ 157 minutes 195195 1313
실시예12Example 12 9090 -- -- 1010 23@300분23 @ 300 minutes >300> 300 2424
실시예13Example 13 8080 -- -- 2020 15@300분15 @ 300 minutes >300> 300 1515
상기 표 9에서 보듯이, 실시예 3, 실시예 12와 실시예 13의 경우 비교예에 비하여 Max torque값이 작고, Max running time이 길며, 체류시간이 증가하여도 온도 변화가 적은 것으로 보아 가공 안정성이 개선된 것으로 평가되었다. 다시 말하면, 비교예 2는 175분 경과 후 완전 분해되어 유동성을 잃어버리지만, 폴리프로필렌카보네이트(PPC)를 첨가한 실시예 3의 경우와 폴리에틸렌카보네이트(PEC) 첨가한 실시예 12와 실시예 13의 경우 300분 후에도 유동성을 잃어버리지 않고 안정성을 유지하여 압출 공정에서의 가공 안정성이 개선된 것을 알 수 있다. As shown in Table 9, in the case of Examples 3, 12 and 13, the maximum torque value is smaller, the Max running time is longer than the comparative example, and the temperature change is small even if the residence time is increased. This was evaluated to be improved. In other words, Comparative Example 2 is completely decomposed after 175 minutes and loses fluidity, but in the case of Example 3 in which polypropylene carbonate (PPC) was added and in Examples 12 and 13 in which polyethylene carbonate (PEC) was added In this case, it can be seen that the processing stability in the extrusion process is improved by maintaining stability without losing fluidity even after 300 minutes.
따라서, 비교예보다는 실시예를 통해 제조된 폴리케톤 조성물이 가공 안정성이 개선되면서도 기계적 물성 또한 동시에 향상되어 튜브, 파이프, 식품 포장용 필름, 일반 사출 부품으로 사용되기에 적합한 것으로 평가되었다. 특히 PPC 또는 PEC 50% 이상 적용된 얼로이 조성물은 굴곡 modulus가 500MPa 이하로서 flexible하고 친환경적인 바닥재 sheet 등으로 사용하기에 적합하다. Therefore, the polyketone composition prepared in Examples rather than Comparative Examples was evaluated to be suitable for use as tubes, pipes, food packaging films, general injection parts, while improving mechanical stability while improving processing stability. In particular, the alloy composition applied to PPC or PEC 50% or more is suitable for use as a flexible and environmentally friendly flooring sheet with a flex modulus of 500 MPa or less.

Claims (8)

  1. 하기 화학식 (1)과 (2)로 표시되는 반복 단위로 이루어진 폴리케톤 공중합체로서, y/x가 0.03 내지 0.3인 선상 교대 폴리케톤과 폴리알킬렌카보네이트(Polyalkylene carbonate)를 포함하는 것을 특징으로 하는 폴리케톤 얼로이 조성물.A polyketone copolymer composed of repeating units represented by the following formulas (1) and (2), characterized in that it comprises a linear alternating polyketone and polyalkylene carbonate having y / x of 0.03 to 0.3 Polyketone Alloy Composition.
    -[-CH2CH2-CO]x- (1)-[-CH2CH2-CO] x- (1)
    -[-CH2-CH(CH3)-CO]y- (2)-[-CH2-CH (CH3) -CO] y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2)의 각각의 몰%를 나타낸다)(x, y represents the mole% of each of the general formulas (1) and (2) in the polymer)
  2. 제 1항에 있어서,The method of claim 1,
    상기 폴리알킬렌카보네이트(Polyalkylene carbonate)는 폴리프로필렌카보네이트(PPC; Polypropylene carbonate) 및 폴리에틸렌카보네이트(PEC; Polyethylene carbonate)로 이루어진 군에서 선택된 1종 또는 2종인 것을 특징으로 하는 폴리케톤 얼로이 조성물.The polyalkylene carbonate is a polyketone alloy composition, characterized in that one or two selected from the group consisting of polypropylene carbonate (PPC; Polypropylene carbonate) and polyethylene carbonate (PEC; Polyethylene carbonate).
  3. 제 2항에 있어서,The method of claim 2,
    상기 폴리프로필렌카보네이트의 수 평균 분자량은 2,000 내지 100,000이고, 상기 폴리에틸렌카보네이트의 수 평균 분자량은 100,000 내지 300,000인 것을 특징으로 하는 폴리케톤 얼로이 조성물.The number average molecular weight of the polypropylene carbonate is 2,000 to 100,000, the polyketone alloy composition, characterized in that the number average molecular weight of the polyethylene carbonate is 100,000 to 300,000.
  4. 제 1항에 있어서,The method of claim 1,
    상기 폴리알킬렌카보네이트의 조성비는 전체 폴리케톤 얼로이 조성물에 대하여 5 내지 90중량%인 것을 특징으로 하는 폴리케톤 얼로이 조성물.The composition ratio of the polyalkylene carbonate is a polyketone alloy composition, characterized in that 5 to 90% by weight relative to the total polyketone alloy composition.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 폴리케톤 얼로이 조성물의 220℃, 100rpm 조건에서 하케 믹서(Haake Mixer) 장기체류평가 결과 맥스 러닝 타임(max running time)이 300분 이상인 것을 특징으로 하는 폴리케톤 얼로이 조성물. Polyketone alloy composition, characterized in that the maximum running time (max running time) of 300 minutes or more as a result of the Hake Mixer (Haake Mixer) long term evaluation at 220 ℃, 100rpm conditions of the polyketone alloy composition.
  6. 제 1항에 있어서,The method of claim 1,
    상기 폴리알킬렌카보네이트는 폴리에틸렌카보네이트이며, 상기 폴리케톤 얼로이 조성물 전체 중량에 대하여 상기 폴리에틸렌카보네이트의 조성비는 1 내지 20중량%인 것을 특징으로 하는 폴리케톤 얼로이 조성물.The polyalkylene carbonate is polyethylene carbonate, the composition ratio of the polyethylene carbonate relative to the total weight of the polyketone alloy composition is 1 to 20% by weight polyketone alloy composition.
  7. 제 6항에 있어서,The method of claim 6,
    상기 폴리케톤 얼로이 조성물의 220℃, 100rpm 조건에서 하케 믹서(Haake Mixer) 장기체류평가 결과, 맥스 러닝 타임(max running time)이 140분 이상인 것을 특징으로 하는 폴리케톤 조성물.The polyketone composition, characterized in that the maximum running time (max running time) of 140 minutes or more as a result of the Hake Mixer (Haake Mixer) long term evaluation at 220 ℃, 100rpm conditions of the polyketone alloy composition.
  8. 제 1항에 있어서,The method of claim 1,
    상기 폴리케톤 중합 시 사용되는 촉매 조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀) 및 (사이클로헥세인-1,1-디일비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로 이루어진 군에서 선택된 1종 또는 2종인 것을 특징으로 하는 폴리케톤 얼로이 조성물.The ligand of the catalyst composition used in the polyketone polymerization is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine And (cyclohexane-1,1-diylbis (methylene)) bis (bis (2-methoxyphenyl) phosphine). The polyketone alloy composition according to claim 1, wherein the polyketone alloy composition is one or two selected from the group consisting of
PCT/KR2018/005083 2017-05-17 2018-05-02 Polyketone alloy resin composition WO2018212488A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0061116 2017-05-17
KR20170061116 2017-05-17
KR10-2017-0091100 2017-07-18
KR20170091100 2017-07-18

Publications (1)

Publication Number Publication Date
WO2018212488A1 true WO2018212488A1 (en) 2018-11-22

Family

ID=64274042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005083 WO2018212488A1 (en) 2017-05-17 2018-05-02 Polyketone alloy resin composition

Country Status (1)

Country Link
WO (1) WO2018212488A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200056003A1 (en) * 2016-12-27 2020-02-20 Lg Chem, Ltd. Polyalkylene carbonate-based resin film
CN114163474A (en) * 2021-12-14 2022-03-11 黄河三角洲京博化工研究院有限公司 Polyketone catalyst ligand and synthesis method thereof
US11384199B2 (en) * 2017-03-29 2022-07-12 Sk Innovation Co., Ltd. Polymer composition containing polyalkylene carbonate resin and film using the same
CN114163474B (en) * 2021-12-14 2024-04-16 黄河三角洲京博化工研究院有限公司 Polyketone catalyst ligand and synthesis method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775708A (en) * 1987-09-29 1988-10-04 Shell Oil Company Linear alternating polymer of carbon monoxide and olefin plasticized with alkylene carbonate
KR100768628B1 (en) * 2000-08-02 2007-10-18 미쯔이카가쿠 가부시기가이샤 Resin composition and use thereof
KR20130028560A (en) * 2011-09-09 2013-03-19 현대자동차주식회사 Polyketone composition with improved impact strength and flexibility
KR20160057689A (en) * 2014-11-14 2016-05-24 주식회사 효성 Polyketone multifilament
KR20160059900A (en) * 2014-11-19 2016-05-27 주식회사 효성 Polyketone composition comprising polycarbonate
KR20170062561A (en) * 2015-11-27 2017-06-08 (주)휴이노베이션 Flame Retardant Composition Having Eco-friendly and Excellent Low-smoke Characteristics and Comprising Polyketone Resin and Polyalkylene-carbonate Resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775708A (en) * 1987-09-29 1988-10-04 Shell Oil Company Linear alternating polymer of carbon monoxide and olefin plasticized with alkylene carbonate
KR100768628B1 (en) * 2000-08-02 2007-10-18 미쯔이카가쿠 가부시기가이샤 Resin composition and use thereof
KR20130028560A (en) * 2011-09-09 2013-03-19 현대자동차주식회사 Polyketone composition with improved impact strength and flexibility
KR20160057689A (en) * 2014-11-14 2016-05-24 주식회사 효성 Polyketone multifilament
KR20160059900A (en) * 2014-11-19 2016-05-27 주식회사 효성 Polyketone composition comprising polycarbonate
KR20170062561A (en) * 2015-11-27 2017-06-08 (주)휴이노베이션 Flame Retardant Composition Having Eco-friendly and Excellent Low-smoke Characteristics and Comprising Polyketone Resin and Polyalkylene-carbonate Resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200056003A1 (en) * 2016-12-27 2020-02-20 Lg Chem, Ltd. Polyalkylene carbonate-based resin film
US10941261B2 (en) * 2016-12-27 2021-03-09 Lg Chem, Ltd. Polyalkylene carbonate-based resin film
US11384199B2 (en) * 2017-03-29 2022-07-12 Sk Innovation Co., Ltd. Polymer composition containing polyalkylene carbonate resin and film using the same
CN114163474A (en) * 2021-12-14 2022-03-11 黄河三角洲京博化工研究院有限公司 Polyketone catalyst ligand and synthesis method thereof
CN114163474B (en) * 2021-12-14 2024-04-16 黄河三角洲京博化工研究院有限公司 Polyketone catalyst ligand and synthesis method thereof

Similar Documents

Publication Publication Date Title
WO2016072637A2 (en) Polyketone resin composition having excellent gas barrier properties
WO2016010407A2 (en) Polyketone resin composition having excellent oil resistance
WO2018212488A1 (en) Polyketone alloy resin composition
KR102291063B1 (en) Polyketone composition and polyketone film comprising the same
KR101746631B1 (en) Polyketone cable gland
WO2018124576A1 (en) Water ball valve and pipe cap which comprise polyketone composition
WO2016060511A2 (en) Polyketone resin composition having excellent conductivity
WO2018124540A1 (en) Method for preparing epoxy group-grafted polyketone compatibilizer and for producing polyketone alloy resin having improved heat resistance using same
KR102387201B1 (en) Polyketone composition improved flame retardant and economy
WO2020190018A1 (en) Multi-layered tube comprising polyketone and polyolefin
KR102156201B1 (en) Adhesive compisition and adhesive sheet comprising the same
WO2018182328A1 (en) Polymer composition and film using same
KR101888071B1 (en) Polyketone resin composition having improved processing stability and mechanical properties
KR20180085847A (en) Polyketone composition comprising thermoplastic elastomer(TPE) and polyester resin
KR101956626B1 (en) Glass Fiber reinforced Polyketone resin composition having improved surface appearance
WO2018026047A1 (en) Polyketone with improved color, and method for producing same
KR102020482B1 (en) Polyketone alloy composition containing polyethylene carbonate and ethylene carbonate
KR102021787B1 (en) Highly heat-resistant polyketone composition with improved color
KR101898521B1 (en) Polyketone/Polyethylene carbonate alloy resin composition having improved impact strength
KR920000010B1 (en) Combustion retardant ring olefine polymer composition
KR101849198B1 (en) Cross linked polyketone composition containing silicone oil with improved long-term heat resistance
KR102021793B1 (en) Composition of polyketone resin having flame retardant, and preparation method thereof
WO2023106887A1 (en) Resin composition and biodegradable resin molded product comprising same
KR101878794B1 (en) Polyketone Alloy resin formulation having improved heat resistance
WO2017213402A1 (en) Thermoplastic resin blend composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801667

Country of ref document: EP

Kind code of ref document: A1