WO2018186506A1 - 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치 - Google Patents

전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치 Download PDF

Info

Publication number
WO2018186506A1
WO2018186506A1 PCT/KR2017/003694 KR2017003694W WO2018186506A1 WO 2018186506 A1 WO2018186506 A1 WO 2018186506A1 KR 2017003694 W KR2017003694 W KR 2017003694W WO 2018186506 A1 WO2018186506 A1 WO 2018186506A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
voltage
signal
electrode
phase
Prior art date
Application number
PCT/KR2017/003694
Other languages
English (en)
French (fr)
Inventor
한창희
이득기
Original Assignee
주식회사 지파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지파워 filed Critical 주식회사 지파워
Priority to PCT/KR2017/003694 priority Critical patent/WO2018186506A1/ko
Priority to US16/072,806 priority patent/US11266323B2/en
Priority to CN201780008383.9A priority patent/CN108990411B/zh
Publication of WO2018186506A1 publication Critical patent/WO2018186506A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4875Hydration status, fluid retention of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/14517Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for sweat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4261Evaluating exocrine secretion production
    • A61B5/4266Evaluating exocrine secretion production sweat secretion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/443Evaluating skin constituents, e.g. elastin, melanin, water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to a skin measuring apparatus, and in particular, by applying a sine wave voltage to a user's skin through a voltage applying electrode and detecting the amount of current from the skin through a current detecting electrode, the structure is simplified without distortion or error.
  • the present invention relates to a skin measuring device for measuring skin moisture using a voltage applying electrode and a current detecting electrode to more accurately analyze a user's skin moisture and sweat generation.
  • the skin is located on the outermost part of the human body and performs important functions such as preventing the invasion of bacteria and harmful substances from the outside, waterproofing, cold protection, and maintaining internal body temperature.
  • the most important factor in maintaining the basic function of the skin is the moisture content of the stratum corneum.
  • the moisture content of the stratum corneum should be maintained to prevent the invasion of harmful substances from the outside and to inhibit the internal evaporation of moisture to perform basic skin functions.
  • the basics of skin care start from moisturizing management and it is the most important to know and manage the amount of moisture of their skin.
  • Conventional methods for measuring skin hydration include an electrical measurement method, an optical measurement method, a method using MRI, and the like.
  • the electric method is widely used, and in particular, the three-electrode method consisting of the R electrode (Reference Electrode), the C electrode (Current Carrying Electrode), and the M electrode (Measuring Electrode) is an alternating current (AC) component of admittance.
  • the method of measuring susceptance is mainly used.
  • Republic of Korea Patent Publication No. 10-2008-0016339 (published on February 21, 2008) is applied by applying a predetermined voltage to the user's skin by the R, C, M electrode method detected by detecting a current signal flowing through the user's skin
  • a method of measuring skin water content and activity of sweat duct of a user skin using a current signal and a predetermined phase signal has been proposed.
  • the method of measuring the hydration of the skin of the R, C, M electrodes including the prior art 10-2008-0016339 has a problem that the C electrode and the R electrode must be in contact with the skin at the same time. If the R electrode first contacts the skin while the C electrode is not in contact with the skin, the sine wave applied from the C electrode to the skin may be distorted, so that the skin impedance measurement is impossible and the result is distorted. In addition, since the R, C, and M electrodes must be in stable contact with each other even during skin impedance measurement, a measurement error occurs due to the movement for each user.
  • the hydration measurement methods of the skin of the R, C, M electrode method are the phase and amplitude of the sine wave applied from the C electrode to the skin by a negative feedback structure in which the R, C, M electrode and the skin impedance are connected. Changes occur, and problems arise in that the impedance measurement is distorted by the phase and amplitude changes. Specifically, when simulating the phase and amplitude change of the sine wave applied from the C electrode to the skin by the negative feedback structure connected to the R, C, M electrode and the skin impedance, as shown in Figure 1, It can be seen that the phase and amplitude of the sinusoidal wave applied from the C electrode to the actual skin are changed (shown below in FIG. 1) compared to the above shown waveform in FIG. 1. In particular, the impedance of the skin changes in real time according to the skin structure and condition, and it is very difficult to correct the impedance measurement value because it is directly affected by the degree of change of the applied sine wave.
  • an object of the present invention for solving the above problems is to apply a sinusoidal voltage to the skin of the user through a voltage applying electrode and to detect the amount of current from the skin through the current detection electrode, thereby reducing distortion even with a simplified structure.
  • the present invention provides a skin measuring device that measures skin moisture using a voltage applying electrode and a current detecting electrode to analyze a user's skin moisture and sweat generation more accurately without errors.
  • a skin measurement device for measuring skin moisture using a voltage applying electrode and a current detection electrode applies a voltage such that the amount of current from the skin can be output through the current detection electrode.
  • An electrode driving module for applying a sine wave voltage to the user's skin through the electrode a signal detecting unit for detecting an amount of current from the skin through the current detecting electrode and calculating at least one of an impedance signal and an admittance signal, and an impedance signal and an admittance signal
  • a skin information determiner configured to analyze at least one signal of the user to calculate skin moisture and sweat generation of the user.
  • Skin measurement apparatus for measuring the skin moisture using the voltage application electrode and the current detection electrode of the present invention described above to apply a sine wave voltage to the skin of the user through the voltage application electrode and the amount of current from the skin through the current detection electrode By detecting, even a simplified structure has an effect of analyzing the user's skin moisture and sweat generation degree more accurately without distortion or error.
  • the structure using a voltage applying electrode for applying a sine wave voltage to the skin, a current detecting electrode for detecting the amount of current flowing through the skin, and only two electrodes can be utilized.
  • the sinusoidal voltage is fed back to the negative signal input terminal of the OP-AMP provided in the electrode driving module to output the sinusoidal voltage, the sinusoidal voltage is fed back to prevent distortion caused by the skin impedance, thereby measuring the accuracy of the skin impedance. Can be improved.
  • the accuracy of detecting the impedance and the admittance signal may be further improved by compensating for the phase delay occurring in the signal detector that detects the impedance and the admittance signal by sharing and using the sine wave voltage applied to the skin.
  • 1 is a simulation graph showing the degree of change in phase and amplitude of a sine wave according to the prior art.
  • 3 is a graph showing the impedance characteristics according to the frequency applied to the skin.
  • FIG. 4 is a block diagram illustrating a skin measuring apparatus for measuring skin moisture by using a voltage applying electrode and a current detecting electrode according to an exemplary embodiment of the present invention.
  • FIG. 5 is a configuration diagram illustrating in detail the configuration of the electrode driving module and the signal detector of FIG. 4.
  • FIG. 6 is a block diagram illustrating the configuration including the lock-in amplifier shown in FIG. 5 in more detail.
  • FIG. 7 is a graph illustrating a current response waveform according to a sinusoidal voltage input.
  • Figure 3 is a graph showing the impedance characteristics according to the frequency applied to the skin.
  • the conductance Gp and the capacitance Cp vary with frequency and are a factor based on the skin keratin.
  • the impedance Z ⁇ of the deep tissue containing the granular layer has a value much smaller than that of the stratum corneum in the frequency range below 10 kHz and is obtained from the estimated value of the infinite frequency f ⁇ in the impedance vector trace.
  • impedance is an element that hinders the flow of an alternating current.
  • Skin impedance is frequency dependent and disrupts the electrical flow of alternating current.
  • the impedance (Z) may be made up of the sum of the two vectors of the resistance (G) and reactance (Xc) measured at a specific frequency.
  • the low frequency current cannot pass through the cell due to the inherent capacitive properties of the skin cell membrane, and the high frequency current can penetrate the cell membrane to specify impedance as the sum of intracellular and extracellular fluid components. For this reason, currents at low frequencies below 10 kHz flow only to the skin, and the skin impedance is determined by the stratum corneum where the resistive component is dominant. For currents with frequencies above that, the skin impedance is transmitted to the living tissue below to improve the skin impedance. It will not reflect.
  • the impedance of the skin that is, the skin DC resistance and capacitance by measuring the current flowing at this time by applying an AC voltage of a sine wave to the user skin to measure the impedance of the user skin based on the skin model shown in FIG.
  • the skin condition such as skin moisture level is measured and analyzed from the measured impedance.
  • FIG. 4 is a block diagram illustrating a skin measuring apparatus for measuring skin moisture by using a voltage applying electrode and a current detecting electrode according to an exemplary embodiment of the present invention.
  • the skin measurement apparatus illustrated in FIG. 4 includes an electrode driving module 100 for applying a sine wave voltage to a user's skin through the voltage applying electrode 101, and a signal detector configured to calculate at least one of a skin impedance signal and a skin admittance signal. And a skin information determining unit 300 that calculates the skin moisture level and the sweating degree of the user.
  • the electrode driving module 100 applies a sine wave voltage to the skin of the user through the voltage applying electrode 101 so that the current amount from the skin can be output through the current detection electrode 102.
  • the electrode driving module 100 generates a sinusoidal current and amplifies it to change the voltage to the same phase or inverted phase as the sinusoidal wave, and then apply the sinusoidal voltage to the skin of the user through the voltage applying electrode 101.
  • the sinusoidal voltage may be converted and maintained as a predetermined current signal.
  • the signal detector 200 detects an amount of current from the skin through the current detection electrode 102 and calculates at least one signal of a skin impedance signal and a skin admittance signal. Specifically, the signal detector 200 detects the amount of current and the phase detected through the current detection electrode 102, converts it into a voltage signal corresponding to the amount of current and the phase, and converts the voltage signal using the sinusoidal voltage applied to the skin. Through at least one signal of the impedance signal and the admittance signal is detected and output. In addition, the signal detector 200 detects at least one of an impedance signal and an admittance signal by using a voltage signal corresponding to the amount and phase of the current detected through the current detection electrode 102 and a sine wave voltage applied to the skin. You can print it out.
  • the skin information determiner 300 analyzes at least one of the impedance signal and the admittance signal from the signal detector 200 to calculate the skin moisture and the sweat generation degree of the user.
  • FIG. 5 is a configuration diagram illustrating in detail the configuration of the electrode driving module and the signal detector of FIG. 4.
  • the electrode driving module 100 shown in FIG. 5 generates a sinusoidal waveform current using a reference voltage to generate a sinusoidal wave generator 110 generating a voltage having the same phase or inverted phase as the sinusoidal wave, and the same phase or inversion as the sinusoidal wave.
  • an operational amplifier 120 for amplifying the voltage of the phase and applying a sine wave voltage to the skin of the user through the voltage applying electrode 101.
  • the operational amplifier 120 receives a voltage of the same phase or inverted phase as the sinusoidal wave through the positive signal input terminal (+), and amplifies and amplifies the sinusoidal voltage to the voltage applying electrode 101.
  • the sinusoidal voltage output to the output terminal is fed back to the negative signal input terminal (-).
  • the operational amplifier 120 may prevent distortion due to skin impedance, thereby improving its accuracy when measuring skin impedance.
  • the signal detector 200 includes a reference voltage generator 220, a current-voltage converter 230, a phase detection compensator 210, and a lock-in amplifier 240.
  • the reference voltage generator 220 generates a reference voltage at a predetermined voltage level, and the generated reference voltages are respectively used as the sinusoidal wave generator 110 and the current-voltage converter 230 of the electrode driving module 100. Supply. Accordingly, the sinusoidal wave generator 110 generates a sinusoidal wave based on a reference voltage having a predetermined level as a reference to generate a voltage having the same phase or inverted phase as the sinusoidal wave.
  • the current-voltage converter 230 receives a reference voltage from the reference voltage generator 220 and detects an amount of current flowing from the current detection electrode 102 to the stratum corneum of the skin. Then, it is converted into a voltage signal corresponding to the detected current amount and phase of the skin. Here, the amount and phase of the current flowing to the stratum corneum of the skin is determined by the impedance component of the contacted skin. The current-voltage converter 230 supplies the converted voltage signal to the lock-in amplifier 240.
  • the phase detection compensator 210 is connected to the sinusoidal wave generator 110 to detect the phase of the generated sinusoidal wave, and processes the signal of the current-voltage converter 230 and the lock-in amplifier 240 to the detected phase. Compensating for the phase delay occurring in the circuit, the compensated sinusoidal phase is supplied to the lock-in amplifier 240.
  • the lock-in amplifier 240 detects and outputs at least one of an impedance and an admittance from the voltage signal output from the current-voltage converter 230 based on the compensated sinusoidal phase supplied from the phase detection compensator 210. . Specifically, the lock-in amplifier 240 detects only the phase synchronized with the compensated sinusoidal phase to detect the resistance component of the skin impedance signal or the conductance component of the skin admittance signal, and detects only the phase that is turned off by 90 degrees to the skin impedance signal. The susceptance component of the capacitance or the admittance is detected.
  • FIG. 7 is a block diagram illustrating the configuration including the lock-in amplifier shown in FIG. 5 in more detail.
  • the lock-in amplifier 240 shown in FIG. 7 is supplied with the voltage signal output from the DC-voltage converter 230 and the sine wave phase compensated through the phase detection compensator 210, and output from the current-voltage converter.
  • a lock-in filter unit for selectively filtering only components synchronized with the compensated sinusoidal phase supplied from the phase detector or selectively filtering components turned off by 90 degrees, and outputting the filtered voltage components as DC voltage waveforms ( 241, and an AD converter 242 for detecting an impedance signal or an admittance signal by detecting a voltage value of the output filtered DC voltage signal.
  • the lock-in filter unit 241 selectively filters only the voltage component synchronized with the sine wave phase compensated by the phase detection compensator 210 through the voltage signal output from the DC-voltage converter 230 or is 90 degrees. Selectively filter off voltage components.
  • the filtered DC voltage waveform is supplied to the AD converter 243. Accordingly, the AD converter 243 measures and outputs the voltage value of the DC voltage waveform filtered by the lock-in filter unit.
  • the sinusoidal voltage applied to the skin of the user is proportional to the voltage magnitude (A) of Equation 2 below, and becomes a sine function obtained by multiplying the frequency (t) by each frequency ( ⁇ ).
  • Equation 3 the current response from the skin can be shown as Equation 3 below.
  • Equation 4 the impedance function Z to which Ohm's law is applied.
  • FIG. 7 is a graph illustrating a current response waveform according to a sinusoidal voltage input.
  • the current response waveform is detected in the same manner as a result of mathematically expressing the input impedance by dividing the sine function into a real part (') and an imaginary part (' ').
  • the sine function is divided into a real part (') and an imaginary part (' '), and the magnitude of the response impedance (
  • Equation 9 The magnitude of the response impedance (
  • the shifted phase angle ⁇ shown through FIG. 7 may be detected using Equation 10 below.
  • the real part Z 'of the impedance function is a response according to the in-phase
  • the imaginary part Z " is a phase according to the out-of-phase
  • the impedance function can be expressed as a real component and a imaginary component reactance. Accordingly, the lock-in amplifier 240 detects only a phase synchronized with the compensated DC voltage signal to detect a DC resistance component in the skin impedance signal, and detects only a phase turned off by 90 degrees to detect a reactance component in the skin impedance signal, respectively. can do. Since the electrical model of the skin proposed in the technique of the present invention consists of resistance and capacitor only, the measured reactance component is the same as the capacitance.
  • Skin measurement apparatus for measuring the skin moisture in accordance with the present invention is a mobile communication terminal, PDA (Personal Digital Assistant), portable game machine, MP3 player, PMP (Portable Multimedia Player), DMB (Digital Multimedia Broadcasting) terminal, portable notebook, etc. It may be implemented in any one of the terminals. That is, the skin measuring device for measuring the skin moisture level may be implemented as a part of the portable terminal. In addition, the skin measurement apparatus for measuring the skin moisture level may not be implemented as part of the portable terminal, but may be implemented as a single article having an independent configuration.
  • the skin measuring device for measuring the skin moisture level using the voltage applying electrode and the current detecting electrode of the present invention applies a sine wave voltage to the user's skin through the voltage applying electrode and from the skin through the current detecting electrode.
  • the amount of current By detecting the amount of current, the user's skin moisture and sweat can be analyzed more precisely without distortion or error even with a simplified structure.
  • the structure using a voltage applying electrode for applying a sine wave voltage to the skin, a current detecting electrode for detecting the amount of current flowing through the skin, and only two electrodes can be utilized.
  • the sinusoidal voltage is fed back to the negative signal input terminal of the operational amplifier provided at the electrode driving module to output the sinusoidal voltage, the sinusoidal voltage is fed back to prevent distortion due to the skin impedance, thereby improving the accuracy of the skin impedance measurement. It can be improved.
  • the detection accuracy of the impedance or admittance signal may be further improved by compensating for the phase delay occurring in the signal detector that detects the impedance or admittance signal by sharing and using the sine wave voltage applied to the skin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Signal Processing (AREA)
  • Physiology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Artificial Intelligence (AREA)
  • Power Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dermatology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Psychiatry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Optics & Photonics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치가 제시된다. 본 발명의 피부 수분도를 측정하는 피부 측정장치는 전류 검출 전극을 통해 피부로부터의 전류량이 출력될 수 있도록 전압 인가 전극을 통해 사용자의 피부로 정현파 전압을 인가하는 전극 구동 모듈, 전류 검출 전극을 통해 피부로부터의 전류량을 검출하여 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 산출하는 신호 검출부, 및 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 분석하여 사용자의 피부 수분도와 땀 발생 정도를 산출하는 피부 정보 판단부를 포함하는바, 더욱 간단해진 구조로도 왜곡이나 오류 없이 더욱 정확하게 사용자의 피부 수분도와 땀 발생 정도를 분석할 수 있는 효과가 있다.

Description

전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치
본 발명은 피부 측정장치에 관한 것으로, 상세하게는 전압 인가 전극을 통해 사용자의 피부로 정현파 전압을 인가하고 전류 검출 전극을 통해서는 피부로부터의 전류량을 검출함으로써, 간단해진 구조로도 왜곡이나 오류 없이 더욱 정확하게 사용자의 피부 수분도와 땀 발생 정도를 분석할 수 있도록 한 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치에 관한 것이다.
피부는 인체의 최외곽에 존재하여 외부로부터의 세균 및 유해물질 침입 방지, 방수, 방한, 내부 체온 유지 등의 중요한 기능을 수행한다. 이러한 피부의 기본 기능을 유지하는데 가장 중요한 요소는 각질층의 수분 함유량이다. 적절한 각질층의 수분 함유량이 유지되어야만 외부로부터의 유해 물질의 침입을 방지할 수 있고 내부의 수분 증발량도 억제하여 기본적인 피부의 기능을 수행할 수 있다. 이에, 피부 관리의 기초는 보습 관리로부터 시작하며 자신의 피부 수분량의 정도를 알고 이에 대한 관리를 하는 것이 가장 중요하다고 할 수 있다.
종래의 피부 수화도 측정 방법으로는 전기적 측정 방식, 광학적 측정 방식, MRI를 이용하는 방법 등이 있다. 이 중, 전기적인 방법이 널리 사용되고 있는데, 특히 R 전극(Reference Electrode), C 전극(Current Carrying Electrode), 및 M 전극(Measuring Electrode)으로 이루어진 3 전극 방식으로 어드미턴스(Admittance)의 교류(AC) 성분인 서셉턴스(Susceptance)를 측정하는 방식이 주로 사용되고 있다.
대한민국 공개특허공보 제10-2008-0016339호(2008년 2월 21일, 공개)에는 R, C, M 전극 방식으로 사용자 피부로 소정의 전압을 인가하고 사용자 피부에 흐르는 전류 신호를 검출하여 검출된 전류 신호와 선정된(predefined) 페이즈(phase) 신호를 이용하여 사용자 피부의 수화도(skin water content) 및 한선 활동도(activity of sweat duct)를 측정하는 방식이 제시되었다.
하지만, 종래의 제10-2008-0016339호 공보를 비롯한 R, C, M 전극 방식의 피부의 수화도 측정 방식들은 반드시 C 전극과 R 전극이 동시에 피부에 접촉해야 하는 문제가 있다. 만일, C 전극이 피부에 접촉하지 않은 상태에서 R 전극이 먼저 피부에 접촉되면, C 전극에서 피부로 인가되는 정현파가 왜곡될 수 있어 피부 임피던스 측정이 불가능하고 측정되더라도 그 결과는 왜곡될 수밖에 없었다. 또한, 피부 임피던스 측정 중에도 R, C, M 전극이 모두 안정적으로 접촉하고 있어야 해서 사용자별로 그 움직임에 의해 측정 오차가 발생하는 문제가 있었다.
한편으로, R, C, M 전극 방식의 피부의 수화도 측정 방식들은 R, C, M 전극과 피부 임피던스가 연결된 부궤환(Negative Feedback) 구조에 의해 C 전극에서 피부로 인가되는 정현파의 위상과 진폭 변화가 발생하고, 이러한 위상 및 진폭 변화에 의해 임피던스 측정값이 왜곡되는 문제들이 발생하였다. 구체적으로, R, C, M 전극과 피부 임피던스가 연결된 부궤환 구조에 의해 C 전극에서 피부로 인가되는 정현파의 위상과 진폭 변화를 시뮬레이션해보면, 도 1에 도시된 바와 같이, 신호를 인가시키는 정현파(도 1의 위 도시 파형) 대비, C 전극에서 실제 피부로 인가되는 정현파의 위상과 진폭이 변화됨(도 1의 아래 도시 파형)을 확인할 수 있다. 특히, 피부의 임피던스는 피부 구조와 상태에 따라 실시간으로 변화하며 인가되는 정현파의 변화 정도에 직접적으로 영향을 받기 때문에 임피던스 측정값을 보정하기가 매우 어렵다.
피부로 인가되는 전압이나 정현파의 왜곡 문제에 의해 임피던스 측정값이 왜곡되는 문제들이 커짐에 따라 이를 해결하고 보완하기 위한 연구들이 진행되고 있지만, 모두 회로 구조가 추가되어 복잡해지고 그에 따른 제조 비용이 크게 증가하여 그 효율성이 저하되고 있는 실정이다.
따라서, 상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 전압 인가 전극을 통해 사용자의 피부로 정현파 전압을 인가하고 전류 검출 전극을 통해서는 피부로부터의 전류량을 검출함으로써, 간단해진 구조로도 왜곡이나 오류 없이 더욱 정확하게 사용자의 피부 수분도와 땀 발생 정도를 분석할 수 있도록 한 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치를 제공하는 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 실시 예에 따른 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치는 전류 검출 전극을 통해 피부로부터의 전류량이 출력될 수 있도록 전압 인가 전극을 통해 사용자의 피부로 정현파 전압을 인가하는 전극 구동 모듈, 전류 검출 전극을 통해 피부로부터의 전류량을 검출하여 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 산출하는 신호 검출부, 및 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 분석하여 사용자의 피부 수분도와 땀 발생 정도를 산출하는 피부 정보 판단부를 포함한다.
상기에서 설명한 본 발명의 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치는 전압 인가 전극을 통해 사용자의 피부로 정현파 전압을 인가하고 전류 검출 전극을 통해서는 피부로부터의 전류량을 검출함으로써, 간단해진 구조로도 왜곡이나 오류 없이 더욱 정확하게 사용자의 피부 수분도와 땀 발생 정도를 분석할 수 있는 효과가 있다.
특히, 피부에 정현파 전압을 인가하는 전압 인가 전극 및 피부를 통해 흐르는 전류량을 검출하는 전류 검출 전극, 단 2개의 전극만을 이용하는 구성으로 더욱 간단해진 구조만을 활용할 수 있다.
또한, 전극 구동모듈에 구비되어 정현파 전압을 출력하는 OP-AMP의 음의 신호 입력단(negative input)에 정현파 전압이 피드백되어 입력되도록 구성됨으로써, 피부 임피던스에 따른 왜곡을 방지하여 피부 임피던스 측정시 그 정확도를 개선할 수 있다.
아울러, 피부로 인가되는 정현파 전압을 공유하고 이용해서 임피던스 및 어드미턴스 신호를 검출하는 신호 검출부에서 발생하는 위상 지연(phase delay) 정도를 보상함으로써 임피던스 및 어드미턴스 신호의 검출 정확성을 더욱 향상시킬 수 있다.
도 1은 종래 기술에 따른 정현파의 위상과 진폭 변화 정도를 나타낸 시뮬레이션 그래프이다.
도 2는 피부 구조를 전기적으로 모델링한 등가 회로도이다.
도 3은 피부에 인가된 주파수에 따른 임피던스 특성을 나타낸 그래프이다.
도 4는 본 발명의 실시 예에 따른 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치를 나타낸 구성도이다.
도 5는 도 4의 전극 구동 모듈과 신호 검출부 구성을 구체적으로 나타낸 구성도이다.
도 6은 도 5에 도시된 로크인 증폭부를 포함한 구성을 더욱 구체적으로 나타낸 구성도이다.
도 7은 정현파 전압 입력에 따른 전류응답 파형을 나타낸 그래프이다.
이하, 본 발명의 실시 예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다.
도 2는 피부 구조를 전기적으로 모델링한 등가 회로도이다. 그리고, 도 3은 피부에 인가된 주파수에 따른 임피던스 특성을 나타낸 그래프이다.
먼저, 피부 수분을 전기적으로 측정하기 위해서는 우선 피부의 생리학적인 구조를 전기적으로 모델링할 수 있어야 한다. 코올 방정식(Cole equation)의 파라미터와 관련하여 피부 구조를 전기적으로 모델링하면 도 2와 같이 나타낼 수 있다. 여기서, 컨덕턴스 Gp와 커패시턴스 Cp는 주파수에 대하여 가변하며, 피부 각질에 원리를 둔 요소이다. 과립층을 포함하고 있는 깊은 조직의 임피던스 Z는 10kHz 이하의 주파수 범위 내에서 각질의 임피던스보다 매우 작은 값을 가지며 임피던스 벡터 자취에서 무한대 주파수 f의 추정된 값으로부터 얻어진다.
도 2를 참조하면, 임피던스란 교류전류의 흐름을 방해하는 요소이다. 피부 임피던스는 주파수에 의존적이며 교류의 전기적인 흐름을 방해한다. 특히 하기의 수학식 1로 제시된 바와 같이, 임피던스(Z)는 특정 주파수에서 측정된 저항(G)과 리액턴스(Xc)의 두 벡터의 합으로 이루어질 수 있다.
Figure PCTKR2017003694-appb-M000001
저주파수의 전류는 피부 세포막의 본래 용량성 특성으로 인해 세포를 통과할 수 없으며 고주파수의 전류는 세포막을 투과하여 세포내액 성분과 세포외액 성분들의 합으로 임피던스를 특정할 수 있다. 이러한 이유로 10kHz 이하의 낮은 주파수에서의 전류는 피부로만 흐르며, 저항 성분이 지배적인 각질층에 의해 피부 임피던스가 결정되며 그 이상의 주파수를 갖는 전류에 대해서는 피부를 투과하여 아래의 생체 조직까지 전달되어 피부 임피던스를 반영하지 못하게 된다.
이에, 본 발명에서는 도 1에 도시된 피부 모델을 기반으로 사용자 피부의 임피던스를 측정하기 위해 사용자 피부에 정현파의 교류 전압을 인가하여 이때 흐르는 전류를 측정함으로써, 피부의 임피던스 즉, 피부 직류 저항과 캐패시턴스를 측정하고, 측정된 임피던스로부터 피부 수분도 등의 피부 상태를 측정 및 분석하게 된다.
도 4는 본 발명의 실시 예에 따른 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치를 나타낸 구성도이다.
도 4에 도시된 피부 측정장치는 전압 인가 전극(101)을 통해 사용자의 피부로 정현파 전압을 인가하는 전극 구동 모듈(100), 피부 임피던스 신호와 피부 어드미턴스 신호 중 적어도 하나의 신호를 산출하는 신호 검출부(200), 및 사용자의 피부 수분도와 땀 발생 정도를 산출하는 피부 정보 판단부(300)를 포함하여 구성된다.
구체적으로, 전극 구동 모듈(100)은 전류 검출 전극(102)을 통해 피부로부터의 전류량이 출력될 수 있도록 전압 인가 전극(101)을 통해 사용자의 피부로 정현파 전압을 인가한다. 전극 구동 모듈(100)은 정현파형의 전류를 발생시켜서 연산 증폭시킴으로써 정현파와 동일한 위상 또는 반전 위상의 전압으로 변화시킨 후 전압 인가 전극(101)을 통해 사용자의 피부로 정현파 전압을 인가하게 된다. 이에, 전압 인가 전극(101)을 통해 사용자의 피부로 인가된 정현파 전압은 사용자 피부 각질층의 임피던스와 반응하는 경우, 소정의 전류 신호로 변환 및 유지될 수 있다.
신호 검출부(200)는 전류 검출 전극(102)을 통해 피부로부터의 전류량을 검출하여 피부 임피던스 신호와 피부 어드미턴스 신호 중 적어도 하나의 신호를 산출한다. 구체적으로, 신호 검출부(200)는 전류 검출 전극(102)을 통해 검출된 전류량과 위상을 검출하여 전류량과 위상에 대응하는 전압 신호로 변환하고, 피부로 인가되는 정현파 전압을 이용하여 변환된 전압 신호를 통해 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 검출하여 출력하게 된다. 이와 아울러, 신호 검출부(200)는 전류 검출 전극(102)을 통해 검출된 전류량과 위상에 대응하는 전압 신호 및 피부로 인가되는 정현파 전압을 이용하여 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 검출하고 출력할 수 있게 된다.
피부 정보 판단부(300)는 신호 검출부(200)로부터의 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 분석하여 사용자의 피부 수분도와 땀 발생 정도를 산출한다.
도 5는 도 4의 전극 구동 모듈과 신호 검출부 구성을 구체적으로 나타낸 구성도이다.
도 5에 도시된 전극 구동 모듈(100)은 기준 전압을 이용하여 정현파형의 전류를 발생시켜서 정현파와 동일한 위상 또는 반전 위상의 전압을 생성하는 정현파 발생부(110), 및 정현파와 동일한 위상 또는 반전 위상의 전압을 연산 증폭시켜서 전압 인가 전극(101)을 통해 사용자의 피부로 정현파 전압을 인가하는 연산 증폭기(120)를 포함하여 구성된다.
여기서, 연산 증폭기(120)는 양의 신호 입력단(+)으로는 정현파와 동일한 위상 또는 반전 위상의 전압을 입력받아 연산 증폭시켜서 전압 인가 전극(101)으로 정현파 전압을 인가한다. 그리고, 음의 신호 입력단(-)으로는 출력단으로 출력되는 정현파 전압이 피드백되어 입력되도록 구성된다. 이러한 구성에 의해, 연산 증폭기(120)는 피부 임피던스에 따른 왜곡을 방지하여 피부 임피던스 측정시 그 정확도를 개선시킬 수 있게 된다.
신호 검출부(200)는 기준 전압 발생부(220), 전류-전압 변환기(230), 위상 검출 보상부(210), 및 로크인 증폭부(240)를 포함하여 구성된다.
구체적으로, 기준 전압 발생부(220)는 미리 설정된 전압 레벨로 기준 전압을 생성하고, 발생된 기준 전압을 전극 구동 모듈(100)의 정현파 발생부(110)와 전류-전압 변환기(230)로 각각 공급한다. 이에, 정현파 발생부(110)는 미리 설정된 레벨의 기준 전압을 기준으로 이용해 정현파를 발생시켜서 정현파와 동일한 위상 또는 반전 위상의 전압을 생성하게 된다.
전류-전압 변환기(230)는 기준 전압 발생부(220)로부터 기준 전압을 공급받고, 전류 검출 전극(102)으로부터는 피부의 각질층으로 흐르는 전류량을 검출한다. 그리고, 검출된 피부의 전류량과 위상에 대응하는 전압 신호로 변환한다. 여기서, 피부의 각질층으로 흐르는 전류량과 위상은 접촉된 피부의 임피던스 성분에 의해 결정된다. 전류-전압 변환기(230)는 변환된 전압 신호를 로크인 증폭부(240)로 공급한다.
위상 검출 보상부(210)는 정현파 발생부(110)연결되어, 발생된 정현파의 위상을 검출하고, 이 검출된 위상에 전류-전압 변환기(230)와 로크인 증폭부(240)의 신호 처리 과정에서 발생하는 위상 지연을 보상하여, 이 보상된 정현파 위상을 로크인 증폭부(240)에 공급한다.
로크인 증폭부(240)는 위상 검출 보상부(210)에서 공급되어진 보상된 정현파 위상을 기준으로 전류-전압 변환기(230)에서 출력된 전압 신호로 부터 임피던스와 어드미턴스 중 적어도 하나를 검출하여 출력한다. 구체적으로, 로크인 증폭부(240)는 보상된 정현파 위상과 동기된 위상만을 검출하여 피부 임피던스 신호의 저항 성분 또는 피부 어드미턴스 신호의 컨덕턴스 성분을 검출하고, 90도 off된 위상만을 검출해서는 피부 임피던스 신호의 캐패시턴스 또는 어드미턴스의 서셉턴스 성분을 각각 검출한다.
도 7은 도 5에 도시된 로크인 증폭부를 포함한 구성을 더욱 구체적으로 나타낸 구성도이다.
도 7에 도시된 로크인 증폭부(240)는 직류-전압 변환기(230)로부터 출력된 전압 신호와 위상 검출 보상부(210)를 통하여 보상된 정현파 위상이 공급되어지고, 전류-전압 변환기로부터 출력된 전압 신호 중에서 위상 검출기로부터 공급되어진 보상된 정현파 위상에 동기된 성분만을 선택적으로 필터링하거나 또는 90도 off된 성분을 선택적으로 필터링하고, 필터링된 전압 성분을 직류 전압파형으로 출력하는 로크인 필터부(241), 및 출력된 필터링된 직류 전압신호의 전압 값을 검출해서는 임피던스 신호 또는 어드미턴스 신호를 각각 검출하는 AD 변환부(242)를 포함하여 구성된다.
구체적으로, 로크인 필터부(241)는 직류-전압 변환기(230)로부터 출력된 전압 신호를 위상 검출 보상부(210)를 통하여 보상된 정현파 위상에 동기된 전압 성분만을 선택적으로 필터링하거나 또는 90도 off된 전압성분을 선택적으로 필터링한다. 그리고, 필터링된 직류 전압파형을 AD 변환부(243)로 공급한다. 이에, AD 변환부(243)는 로크인필터부에서 필터링된 직류 전압파형의 전압 값을 측정하여 출력한다.
상기와 같이 구성된 로크인 증폭부(240)의 임피던스 신호와 어드미턴스 신호 검출 방법을 좀 더 구체적으로 설명하면 다음과 같다.
사용자의 피부로 인가되는 정현파 전압은 하기 수학식 2의 전압 크기(A)에 비례하며, 각 주파수(ω)에 시간(t)를 곱한 사인 함수가 된다.
Figure PCTKR2017003694-appb-M000002
이에, 피부로부터의 전류 응답은 하기의 수학식 3과 같이 도시될 수 있다.
Figure PCTKR2017003694-appb-M000003
여기서, B는 또 다른 크기이며 Ø는 이동된 위상각이다.
따라서, 옴의 법칙을 적용한 임피던스 함수(Z)는 하기 수학식 4와 같이 검출할 수 있다.
Figure PCTKR2017003694-appb-M000004
도 7은 정현파 전압 입력에 따른 전류응답 파형을 나타낸 그래프이다.
도 7과 같이, 수학적으로 사인 함수를 실수부(')와 허수부('')로 구분하여 입력한 응답 임피던스를 표현한 결과와 동일하게 전류응답 파형이 검출됨을 확인할 수 있다.
사인 함수를 실수부(')와 허수부('')로 구분하고 임피던스 함수(Z)를 통해 응답 임피던스의 크기(|Z|)를 검출하기 위해서는 하기의 수학식 5 내지 9를 이용해 검출할 수 있다.
Figure PCTKR2017003694-appb-M000005
Figure PCTKR2017003694-appb-M000006
Figure PCTKR2017003694-appb-M000007
응답 임피던스의 크기(|Z|)는 다음의 수학식 9와 같다.
Figure PCTKR2017003694-appb-M000008
도 7을 통해 도시된 이동된 위상각 Ø는 하기의 수학식 10을 이용하여 검출할 수 있다.
Figure PCTKR2017003694-appb-M000009
여기서, 임피던스 함수의 실수부(Z')는 입력 위상(in-phase)에 따른 응답이며, 허수부(Z")는 출력 위상(out-of-phase)에 따른 위상이다.
전기적인 관점에서는 임피던스 함수를 실수부인 저항 성분과 허수부인 리액턴스 성분으로 나타낼 수 있다. 이에, 로크인 증폭부(240)는 보상된 직류 전압 신호와 동기된 위상만을 검출하여 피부 임피던스 신호 중 직류 저항 성분을 검출하고, 90도 off된 위상만을 검출해서는 피부 임피던스 신호 중 리액턴스 성분을 각각 검출할 수 있다. 본 발명의 기술에서 제안된 피부의 전기적 모델은 저항과 캐패시터만으로 구성되어 있으므로, 측정된 리액턴스 성분은 곧 캐패시턴스와 동일하다.
본 발명에 따른 피부 수분도를 측정하는 피부 측정장치는 이동통신 단말기, PDA(Personal Digital Assistant), 휴대형 게임기, MP3 플레이어, PMP(Portable Multimedia Player), DMB(Digital Multimedia Broadcasting) 단말기, 및 노트북 등의 휴대 단말기 중 어느 하나로 구현될 수 있다. 즉, 피부 수분도를 측정하는 피부 측정장치는 휴대 단말기의 일부 구성으로 구현될 수 있다. 또한, 피부 수분도를 측정하는 피부 측정장치는 휴대 단말기의 일부 구성으로 구현되지 않고, 독립적인 구성을 갖는 단일 물품으로 구현될 수도 있다.
이상 상술한 바와 같이, 본 발명의 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치는 전압 인가 전극을 통해 사용자의 피부로 정현파 전압을 인가하고 전류 검출 전극을 통해서는 피부로부터의 전류량을 검출함으로써, 간단해진 구조로도 왜곡이나 오류 없이 더욱 정확하게 사용자의 피부 수분도와 땀 발생 정도를 분석할 수 있다. 특히, 피부에 정현파 전압을 인가하는 전압 인가 전극 및 피부를 통해 흐르는 전류량을 검출하는 전류 검출 전극, 단 2개의 전극만을 이용하는 구성으로 더욱 간단해진 구조만을 활용할 수 있다.
또한, 전극 구동모듈에 구비되어 정현파 전압을 출력하는 연산 증폭기의 음의 신호 입력단(negative input)에 정현파 전압이 피드백되어 입력되도록 구성됨으로써, 피부 임피던스에 따른 왜곡을 방지하여 피부 임피던스 측정시 그 정확도를 개선할 수 있다. 아울러, 피부로 인가되는 정현파 전압을 공유하고 이용해서 임피던스 또는 어드미턴스 신호를 검출하는 신호 검출부에서 발생하는 위상 지연(phase delay) 정도를 보상함으로써 임피던스 또는 어드미턴스 신호의 검출 정확성을 더욱 향상시킬 수 있다.
상기에서는 본 발명의 실시 예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (8)

  1. 전류 검출 전극을 통해 피부로부터의 전류량이 출력될 수 있도록 전압 인가 전극을 통해 사용자의 피부로 정현파 전압을 인가하는 전극 구동 모듈;
    상기 전류 검출 전극을 통해 상기 피부로부터의 전류량을 검출하여 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 산출하는 신호 검출부; 및
    상기 임피던스 신호와 상기 어드미턴스 신호 중 적어도 하나의 신호를 분석하여 상기 사용자의 피부 수분도와 땀 발생 정도를 산출하는 피부 정보 판단부;
    를 포함하는 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치.
  2. 제 1 항에 있어서,
    상기 신호 검출부는
    상기 전류 검출 전극을 통해 전류량과 위상을 검출한 후 상기 전류량과 위상에 대응하는 전압 신호로 변환하고,
    상기 변환된 전압 신호 및 피부로 인가되는 정현파의 파형을 이용하여 상기 임피던스 신호와 상기 어드미턴스 신호 중 적어도 하나의 신호를 검출하는 것을 특징으로 하는 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치.
  3. 제 1 항에 있어서,
    상기 전극 구동 모듈은
    기준 전압을 이용하여 정현파형의 전류를 발생시켜서 정현파와 동일한 위상 또는 반전 위상의 전압을 생성하는 정현파 발생부; 및
    상기 정현파와 동일한 위상 또는 반전 위상의 전압을 연산 증폭시켜서 전압 인가 전극을 통해 사용자의 피부로 상기 정현파 전압을 인가하는 연산 증폭기;
    를 포함하는 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치.
  4. 제 3 항에 있어서,
    상기 연산 증폭기는
    양의 신호 입력단으로는 상기 정현파와 동일한 위상 또는 반전 위상의 전압을 입력받아 연산 증폭시켜서 상기 전압 인가 전극으로 상기 정현파 전압을 인가하되,
    상기 음의 신호 입력단으로는 출력단으로 출력되는 상기 정현파 전압이 피드백되어 입력되도록 구성된 것을 특징으로 하는 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치.
  5. 제 1 항에 있어서,
    상기 신호 검출부는
    미리 설정된 전압 레벨로 기준 전압을 생성하고 출력하는 기준 전압 발생부;
    상기 전류 검출 전극을 통해 피부로부터의 전류량을 검출하여 상기 검출된 전류량과 위상에 대응하는 전압 신호로 변환하는 전류-전압 변환기;
    상기 피부로 인가되는 정현파 전압의 위상을 이용하여 상기 전류-전압 변환기에서 출력된 전압신호로부터 상기 임피던스 신호와 어드미턴스 신호 중 적어도 하나의 신호를 검출하여 출력하는 로크인 증폭부; 및
    상기 피부로 인가되는 정현파의 위상을 검출하고, 이 검출된 위상에 상기 전류-전압 변환기와 상기 로크인 증폭부의 신호처리과정에서 발생하는 위상 지연을 보상하여 상기 보상된 정현파 위상을 로크인 증폭부에 공급하는 위상 검출 보상부;
    를 포함하는 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치.
  6. 제 5 항에 있어서,
    상기 로크인 증폭부는
    상기 직류-전압 변환기로부터 출력된 전압 신호와 상기 위상 검출 보상부(210)를 통하여 보상된 정현파 위상이 공급되어지고, 상기 전류-전압 변환기로부터 출력된 전압 신호 중에서 위상 검출기로부터 공급되어진 보상된 정현파 위상에 동기된 성분만을 선택적으로 필터링하거나 또는 90도 off된 성분을 선택적으로 필터링하고, 이 필터링된 전압성분을 직류 전압파형으로 출력하는 로크인 필터부; 및
    상기 출력된 필터링된 직류 전압신호의 전압 값을 검출해서는 상기 임피던스 신호 또는 어드미턴스 신호를 각각 검출하는 AD 변환부;
    를 포함하는 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치.
  7. 제 1 항에 있어서,
    상기 전극 구동 모듈을 통해서 상기 사용자의 피부로 인가되는 정현파 전압은 하기 수학식 2의 전압 크기(A)에 비례하며, 각 주파수(ω)에 시간(t)를 곱한 사인 함수가 되고,
    [수학식 2]
    Figure PCTKR2017003694-appb-I000001
    [수학식 3]
    Figure PCTKR2017003694-appb-I000002
    상기 피부로부터의 전류 응답은 하기의 상기 수학식 3과 같이 도시되며,
    여기서, B는 또 다른 크기이며 Ø는 이동된 위상 각인 것을 특징으로 하는 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치.
  8. 제 7 항에 있어서,
    상기 신호 검출부는
    옴의 법칙을 적용한 임피던스 함수(Z)를 하기 수학식 4를 통해 검출하며,
    [수학식 4]
    Figure PCTKR2017003694-appb-I000003
    사인 함수를 실수부(')와 허수부('')로 구분하고 임피던스 함수(Z)를 통해 응답 임피던스의 크기(|Z|)를 검출하기 위해서는 하기의 수학식 5 내지 9를 이용해 검출하고,
    [수학식 5]
    Figure PCTKR2017003694-appb-I000004
    [수학식 6]
    Figure PCTKR2017003694-appb-I000005
    [수학식 7]
    Figure PCTKR2017003694-appb-I000006
    [수학식 9]
    Figure PCTKR2017003694-appb-I000007
    상기 위상각 Ø는 하기의 수학식 10을 이용하여 검출하되,
    [수학식 10]
    Figure PCTKR2017003694-appb-I000008
    여기서, 임피던스 함수의 실수부(Z')는 입력 위상(in-phase)에 따른 응답이며, 허수부(Z")는 출력 위상(out-of-phase)에 따른 위상인 것을 특징으로 하는 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치.
PCT/KR2017/003694 2017-04-04 2017-04-04 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치 WO2018186506A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2017/003694 WO2018186506A1 (ko) 2017-04-04 2017-04-04 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치
US16/072,806 US11266323B2 (en) 2017-04-04 2017-04-04 Skin measuring apparatus for measuring skin moisture level using voltage application electrode and current detection electrode
CN201780008383.9A CN108990411B (zh) 2017-04-04 2017-04-04 利用电压施加电极和电流检测电极来测定皮肤含水度的皮肤测定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/003694 WO2018186506A1 (ko) 2017-04-04 2017-04-04 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치

Publications (1)

Publication Number Publication Date
WO2018186506A1 true WO2018186506A1 (ko) 2018-10-11

Family

ID=63712287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003694 WO2018186506A1 (ko) 2017-04-04 2017-04-04 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치

Country Status (3)

Country Link
US (1) US11266323B2 (ko)
CN (1) CN108990411B (ko)
WO (1) WO2018186506A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115764B2 (en) 2019-09-30 2021-09-07 Sonova Ag Hearing systems, sensor systems, and methods for detecting a physiological attribute of a user

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488361B1 (en) * 2019-02-15 2022-11-01 Meta Platforms Technologies, Llc Systems and methods for calibrating wearables based on impedance levels of users' skin surfaces
US11896358B2 (en) * 2020-05-11 2024-02-13 Wellness Allied Inc Device and method for dynamic skin impedance measurement and correction
CN113144420B (zh) * 2021-02-23 2023-08-29 添可智能科技有限公司 护理设备及检测方法
CN114190915A (zh) * 2021-12-09 2022-03-18 上海凌泽信息科技有限公司 一种皮肤水分的检测系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334415A (ja) * 2005-06-04 2006-12-14 Samsung Electronics Co Ltd 皮膚水和度の測定装置、皮膚水和度の測定装置の制御方法及び皮膚水和度の測定プログラムを記録した記録媒体
KR20080016339A (ko) * 2006-08-18 2008-02-21 삼성전자주식회사 피부 수화도 측정 장치 및 그 방법
JP2010172543A (ja) * 2009-01-30 2010-08-12 Alcare Co Ltd 経皮水分蒸散量を推定する方法及び皮膚バリア機能評価装置
KR20110085066A (ko) * 2010-01-19 2011-07-27 박성준 휴대용 피부 수분 자동 측정 장치 그 방법
KR20140076852A (ko) * 2012-12-13 2014-06-23 주식회사 아롱엘텍 스마트폰을 이용한 터치 스크린 피부 상태 측정장치 및 피부 상태 측정장치의 인터페이스 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527801A1 (de) * 1985-08-02 1987-02-12 Frako Kondensator Apparate Verfahren und schaltungsanordnung zur messung des wirkstroms und des blindstroms in einem elektrischen wechselstromnetz
US5680108A (en) * 1996-04-08 1997-10-21 Daniell; Anthony L. Apparatus and method for monitoring a steeping beverage and for indicating when a desired beverage strength is attained
US20040126814A1 (en) * 2000-08-21 2004-07-01 Singh Waheguru Pal Sensor having molecularly imprinted polymers
US7581434B1 (en) * 2003-09-25 2009-09-01 Rockwell Automation Technologies, Inc. Intelligent fluid sensor for machinery diagnostics, prognostics, and control
US8388534B2 (en) * 2006-10-11 2013-03-05 Samsung Electronics Co., Ltd. Apparatus for providing skin care information by measuring skin moisture content and method and medium for the same
US8565850B2 (en) * 2007-07-02 2013-10-22 Universitetet I Oslo Method and kit for sweat activity measurement
NO329287B1 (no) * 2008-03-17 2010-09-27 Med Storm Innovation As Fremgangsmate og apparat for a overvake det autonome nervesystemet til en sedert pasient
WO2011016407A1 (ja) 2009-08-03 2011-02-10 日本電気株式会社 生体情報検知器、生体情報検知方法および携帯端末
CN101708122A (zh) * 2009-11-12 2010-05-19 北京信息科技大学 基于脑电的人体感知电流阈值测试系统及测试方法
CN101940469B (zh) * 2010-06-29 2012-09-05 广州安德生物科技有限公司 一种便携式膀胱尿量检测装置
CN104083169B (zh) * 2014-08-01 2019-03-05 思澜科技(成都)有限公司 基于均匀阻抗模型的bis系统验证方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334415A (ja) * 2005-06-04 2006-12-14 Samsung Electronics Co Ltd 皮膚水和度の測定装置、皮膚水和度の測定装置の制御方法及び皮膚水和度の測定プログラムを記録した記録媒体
KR20080016339A (ko) * 2006-08-18 2008-02-21 삼성전자주식회사 피부 수화도 측정 장치 및 그 방법
JP2010172543A (ja) * 2009-01-30 2010-08-12 Alcare Co Ltd 経皮水分蒸散量を推定する方法及び皮膚バリア機能評価装置
KR20110085066A (ko) * 2010-01-19 2011-07-27 박성준 휴대용 피부 수분 자동 측정 장치 그 방법
KR20140076852A (ko) * 2012-12-13 2014-06-23 주식회사 아롱엘텍 스마트폰을 이용한 터치 스크린 피부 상태 측정장치 및 피부 상태 측정장치의 인터페이스 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115764B2 (en) 2019-09-30 2021-09-07 Sonova Ag Hearing systems, sensor systems, and methods for detecting a physiological attribute of a user
US12003926B2 (en) 2019-09-30 2024-06-04 Sonova Ag Hearing assist systems and methods for detecting a physiological attribute of a user

Also Published As

Publication number Publication date
CN108990411B (zh) 2021-04-20
CN108990411A (zh) 2018-12-11
US20210169364A1 (en) 2021-06-10
US11266323B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2018186506A1 (ko) 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치
KR100423677B1 (ko) 생체의 생체전기 임피던스를 측정하는 장치
Hua et al. Using compound electrodes in electrical impedance tomography
DK1567057T3 (da) Detektering af levende finger ved hjælp af firepunktsmåling af kompleks impedans
JP5755234B2 (ja) 患者−電極間測定のための装置およびシステム
CN101489476B (zh) 皮肤导电测量装置
CA2704061A1 (en) Impedance determination
CN101467031A (zh) 电位测量探头的测量方法和装置
US20040092840A1 (en) Muscle fatigue level measuring device
US11058318B2 (en) Fluid level determination
Degen et al. Continuous Monitoring of Electrode--Skin Impedance Mismatch During Bioelectric Recordings
JPH1170090A (ja) 生体電気インピーダンス測定装置
Yamamoto et al. Measurement of electrical bio-impedance and its applications
CN111248910B (zh) 一种基于多通道的皮肤电阻测量方法
CN106137192A (zh) 一种人体阻抗测量装置及其人体成分分析仪
KR101809481B1 (ko) 전압 인가 전극과 전류 검출 전극을 이용하여 피부 수분도를 측정하는 피부 측정장치
CN103584866B (zh) 一种基于双通道的生物电阻抗的潮气量监测方法及装置
CN105193395B (zh) 一种基于生物阻抗的腕带式脉搏波检测系统及其检测方法
ATE236408T1 (de) Messverfahren für kapazitives messsystem
CN204839508U (zh) 体脂肪测量装置
Callaghan et al. Positive phase error from parallel conductance in tetrapolar bio-impedance measurements and its compensation
CN206183266U (zh) 一种人体阻抗测量装置及其人体成分分析仪
Hoja et al. An analysis of a measurement probe for a high impedance spectroscopy analyzer
CN107550492A (zh) 一种测量人体阻抗的方法及系统
KR102131217B1 (ko) Daq 보드 기반의 세포 임피던스 측정 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904872

Country of ref document: EP

Kind code of ref document: A1