WO2018186379A1 - Method and equipment for manufacturing flanged steel sheet piling - Google Patents

Method and equipment for manufacturing flanged steel sheet piling Download PDF

Info

Publication number
WO2018186379A1
WO2018186379A1 PCT/JP2018/014214 JP2018014214W WO2018186379A1 WO 2018186379 A1 WO2018186379 A1 WO 2018186379A1 JP 2018014214 W JP2018014214 W JP 2018014214W WO 2018186379 A1 WO2018186379 A1 WO 2018186379A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
hole
rolling
steel sheet
sheet pile
Prior art date
Application number
PCT/JP2018/014214
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 林
浩 山下
和典 関
雅典 河合
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2018554413A priority Critical patent/JP6493636B2/en
Priority to CN201880021446.9A priority patent/CN110475623A/en
Priority to EP18781109.6A priority patent/EP3603832A1/en
Priority to US16/495,033 priority patent/US20200269294A1/en
Publication of WO2018186379A1 publication Critical patent/WO2018186379A1/en
Priority to PH12019502224A priority patent/PH12019502224A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/082Piling sections having lateral edges specially adapted for interlocking with each other in order to build a wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/095U-or channel sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/14Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel in a non-continuous process, i.e. at least one reversing stand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B2001/081Roughening or texturing surfaces of structural sections, bars, rounds, wire rods
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a manufacturing method and manufacturing equipment for a steel sheet pile having a flange such as a hat-shaped steel sheet pile or a U-shaped steel sheet pile.
  • a steel sheet pile having joints at both ends has been manufactured by a perforated rolling method.
  • a perforated rolling method As a general process of the perforated rolling method, it is known that a rectangular material heated to a predetermined temperature in a heating furnace is first rolled in order by a roughing mill, an intermediate rolling mill and a finishing mill equipped with a perforated mold. It has been.
  • a perforated rolling method for example, in Patent Document 1, a plurality of perforations are arranged on a roll in rough rolling, intermediate rolling, and finish rolling, and each of these perforations is rolled one or two passes to form a hat-shaped steel sheet pile. Techniques for manufacturing are disclosed.
  • Patent Document 2 a hole mold is formed so that the stretch balance between the web and the flange is maintained in the manufacture of the U-shaped steel sheet pile, and the material to be rolled is reciprocated several times in the same hole mold for rolling. Techniques to do are disclosed. Further, for example, Patent Document 3 discloses a technique for reducing the placing resistance during the construction of the steel sheet pile, and proposes a configuration in which a gently inclined portion is provided in the flange portion.
  • Patent Document 4 discloses a Z-shaped steel including a step of forming a preform having two flange / web transition sections parallel to the rolling surface and a central section inclined with respect to the rolling surface in the vicinity of the neutral line.
  • a manufacturing technique of a sheet pile is disclosed.
  • reverse rolling in the present specification refers to a process in which rolling is repeatedly performed by reciprocating a multi-pass rolled material while gradually narrowing a roll gap in the same hole mold constituted by upper and lower hole rolls. It is.
  • Patent Document 4 is presumed to be a technique for performing one-pass one-pass rolling, so-called reverse, in which the upper and lower roll gaps are gradually narrowed with the same hole mold and multiple-pass rolling is performed. There is no description of rolling. This is because, in the technique described in Patent Document 4, when reverse rolling is performed with the same hole shape, stretching is uneven for each part in the cross section, metal flow occurs, and the filling state of the joint portion changes. In addition, it is believed that the flange / web transition section stretch is geometrically larger than the center section stretch and is more likely to twist.
  • Patent Document 4 does not mention anything about the generation of a flange wave that may occur during reverse rolling, and naturally does not mention any suppression of the flange wave.
  • an object of the present invention is to provide a steel having a flange capable of suppressing the occurrence of shape defects such as a flange wave due to reverse rolling and improving product dimensional accuracy and rolling stability.
  • the purpose is to provide sheet pile manufacturing technology.
  • a manufacturing method for forming a steel sheet pile having a flange from a material to be rolled by perforated roll rolling, and reverses the material to be rolled by the same hole die includes a step of forming a first flange portion straddling a neutral line and second and third flange portions disposed on both sides of the first flange portion.
  • the hole mold has a first flange facing portion for forming the first flange portion, a second flange facing portion for forming the second flange portion, and a third flange portion. And a third flange facing portion, wherein an inclination angle of the first flange facing portion with respect to a horizontal plane is larger than an inclination angle of the second and third flange facing portions.
  • the reverse rolling step includes a step of forming a web corresponding portion and an arm corresponding portion, and the hole mold forms a web facing portion for forming the web corresponding portion and the arm corresponding portion.
  • An arm facing portion, and the hole type includes a web side flange facing portion group including at least one second flange facing portion and an arm side flange facing portion group including at least one third flange facing portion. And a second straight line connecting a boundary portion between the web side flange facing portion group and the web facing portion and a boundary portion between the arm side flange facing portion group and the arm facing portion.
  • the flange facing portion may have a convex shape in the flange outer direction
  • the third flange facing portion may have a convex shape in the flange inner direction.
  • rolling may be performed such that the flange extension ⁇ f1 in the first flange portion is smaller than the flange extensions ⁇ f2 and ⁇ f3 in the second flange portion and the third flange portion.
  • the step of forming the first flange portion, the second flange portion, and the third flange portion may be an intermediate rolling step.
  • the hole mold may have a hole shape in which both ends in the width direction are open.
  • the bent flange-corresponding portion formed on the material to be rolled by the step of forming the first flange portion, the second flange portion, and the third flange portion is formed into a desired flat shape by rolling in the latter-stage hole mold of the step. It may be rolled and formed into a shape.
  • rolling may be performed so that the flange stretching ⁇ f1 in the first flange portion is equal to or less than the web stretching ⁇ w.
  • the steel sheet pile may be a hat-shaped steel sheet pile.
  • a rolling mill that includes a rolling mill and performs the reverse rolling includes a first flange portion straddling a neutral line, and a hole mold that forms second and third flange portions disposed on both sides of the first flange portion.
  • the hole mold includes a first flange facing portion for forming the first flange portion, a second flange facing portion for forming the second flange portion, and a third flange portion.
  • a third flange-facing portion wherein the first flange-facing portion has an inclination angle greater than the inclination angle of the second and third flange-facing portions with respect to a horizontal plane.
  • Manufacturing facility of the plate is provided.
  • the rolling mill for performing reverse rolling includes a web corresponding part and a hole mold for forming an arm corresponding part, and the hole mold forms a web facing part for forming the web corresponding part and the arm corresponding part.
  • An arm-facing portion, and the hole mold includes a web-side flange-facing portion group including at least one second flange-facing portion and an arm-side flange facing including at least one third flange-facing portion.
  • the second flange facing portion may be convex in the flange outer direction
  • the third flange facing portion may be convex in the flange inner direction
  • the flange extension ⁇ f1 in the first flange portion may be smaller than the flange extensions ⁇ f2 and ⁇ f3 in the second flange portion and the third flange portion.
  • the hole mold may be a hole mold provided in an intermediate rolling mill.
  • the hole mold may have a hole shape in which both ends in the width direction are open.
  • a mold may be provided.
  • the flange extension ⁇ f1 in the first flange portion may be equal to or less than the web extension ⁇ w.
  • the steel sheet pile may be a hat-shaped steel sheet pile.
  • the present invention it is possible to suppress the occurrence of shape defects such as flange waves due to reverse rolling, and to improve product dimensional accuracy and rolling stability.
  • the material to be rolled having a substantially hat-shaped steel sheet pile shape is described as being rolled in a posture in which the web is positioned below the flange (so-called U posture), but naturally the scope of application of the present invention is as follows. It extends to rolling in other postures (for example, reverse U posture).
  • the applicable range of this invention is a steel sheet pile product which has various flanges, such as a hat shape and U shape
  • the steel sheet pile product manufactured in this Embodiment is demonstrated as what is a hat type steel sheet pile product. .
  • the material A to be rolled described below indicates a steel material that is rolled when a hat-shaped steel sheet pile product is manufactured, and the steel material that is passed through the rolling line L is collectively referred to as the material A to be rolled.
  • the material A to be rolled in each rolling mill is described with a different name (A1 to A5 described below) as necessary.
  • the material A to be rolled has a substantially hat-shaped shape, a web-corresponding portion 3 that is substantially horizontal, flange-corresponding portions 5 and 6 that are connected to both ends of the web-corresponding portion 3 at a predetermined angle, and each flange.
  • part which comprises the to-be-rolled material A is illustrated and demonstrated with said each code
  • the rolling direction is referred to as the “longitudinal direction” of the material to be rolled
  • the direction perpendicular to the longitudinal direction and parallel to the rolling roll axis is the “width direction” of the material to be rolled.
  • the direction perpendicular to both the longitudinal direction and the width direction is referred to as the “height direction” of the material to be rolled and will be described.
  • thickness reduction of the material to be rolled refers to plate thickness reduction with respect to the thickness direction of the material to be rolled.
  • FIG. 1 is an explanatory diagram of a rolling line L for producing a hat-shaped steel sheet pile, a rolling mill provided in the rolling line L, and the like.
  • the rolling progress direction of the rolling line L is a direction indicated by an arrow, and the material A to be rolled flows in the direction, and each of the perforating rolling mills on the line (rough rolling mill and intermediate rolling described below).
  • Rolling machine, finish rolling machine), and product is formed.
  • the some conveyance roll which is not shown in figure is installed on the rolling line L, and the to-be-rolled material A is conveyed on the rolling line L by these conveyance rolls.
  • a rolling line L includes a roughing mill (BD) 17, a first intermediate rolling mill (R1) 18, a second intermediate rolling mill (R2) 19, a finish rolling mill ( F) 30 is arranged.
  • BD roughing mill
  • R1 first intermediate rolling mill
  • R2 second intermediate rolling mill
  • F finish rolling mill
  • the material A to be rolled such as slab and bloom, heated in a heating furnace (not shown) (not shown) is sequentially rolled in the roughing mill 17 to the finishing mill 30.
  • a heating furnace not shown
  • the finishing mill 30 As a result, the hat-shaped steel sheet pile as the final product is manufactured.
  • FIGS. 2 to 6 a cross section of the material A to be rolled when the reduction in each hole mold is completed is indicated by a one-dot chain line for reference.
  • FIG. 2 is a schematic cross-sectional view showing a hole shape of the first hole mold 49 (hereinafter also simply referred to as a hole mold 49).
  • the hole mold 49 includes an upper hole roll 45 and a lower hole roll 48.
  • a hole die 49 constituted by the upper hole roll 45 and the lower hole roll 48 is provided in, for example, the roughing mill 17, and thickness reduction is performed on the entire material to be rolled A by hole rolling in the hole mold 49 (that is, Rough rolling) is performed.
  • hole rolling is performed such that a slab heated to a predetermined temperature in a heating furnace approximates a hat shape, and a rough material A1 indicated by a one-dot chain line in FIG. 2 is formed.
  • the rough rolling at this time may be performed, for example, by reverse rolling in the same hole mold 49.
  • FIG. 3 is a schematic cross-sectional view showing a hole shape of a second hole mold 59 (hereinafter also simply referred to as a hole mold 59).
  • the hole mold 59 includes an upper hole roll 55 and a lower hole roll 58.
  • a hole mold 59 composed of the upper hole roll 55 and the lower hole roll 58 is provided, for example, in the first intermediate rolling mill 18, and the thickness of the whole material A to be rolled is reduced by hole rolling in the hole mold 59 ( That is, the first intermediate rolling) is performed.
  • thickness reduction is performed at the same time as the nail height of the claw portions 14 and 15 is adjusted to a desired height.
  • the rough material A1 carried out from the hole mold 49 is further shaped into a hat. Pore rolling is performed so as to approximate the shape. Thereby, 1st intermediate material A2 shown to the dashed-dotted line in FIG. 3 is modeled. Note that the rolling here is performed, for example, by reverse rolling in the same hole mold 59.
  • FIG. 4 is a schematic cross-sectional view showing a hole shape of a third hole mold 69 (hereinafter also simply referred to as a hole mold 69).
  • the hole mold 69 includes an upper hole roll 65 and a lower hole roll 68.
  • a hole die 69 constituted by the upper hole roll 65 and the lower hole roll 68 is provided, for example, in the second intermediate rolling mill 19, and thickness reduction is performed on the whole material to be rolled A by hole rolling in the hole die 69 ( That is, second intermediate rolling) is performed.
  • hole rolling is performed so that the first intermediate material A2 unloaded from the hole mold 59 is brought closer to a hat shape, and the second intermediate material A3 indicated by the one-dot chain line in FIG. 4 is formed.
  • the hole mold 69 has a shape in which both end portions in the width direction are open, the claw portions 14 and 15 of the material A to be rolled have a shape extending in the width direction due to thickness reduction. Note that the rolling here is performed, for example, by reverse rolling in the same hole mold 69.
  • FIG. 5 is a schematic sectional view showing a hole shape of a fourth hole mold 79 (hereinafter also simply referred to as a hole mold 79).
  • the hole mold 79 includes an upper hole roll 75 and a lower hole roll 78.
  • a hole die 79 constituted by the upper hole roll 75 and the lower hole roll 78 is provided in, for example, the second intermediate rolling mill 19, and the claw portions 14 and 15 of the material A to be rolled are formed by the hole die 79, for example. It is done with emphasis.
  • the second intermediate material A4 is formed by performing the reduction so that the claw heights of the claw portions 14 and 15 in the state extended by the third hole mold 69 are aligned to a desired height. . Note that the rolling here may reduce the thickness.
  • FIG. 6 is a schematic sectional view showing a hole shape of a fifth hole mold 89 (hereinafter also simply referred to as a hole mold 89).
  • the hole mold 89 includes an upper hole roll 85 and a lower hole roll 88.
  • a hole mold 89 constituted by the upper hole roll 85 and the lower hole roll 88 is provided in the finishing mill 30, for example, and the claw portions 14 and 15 are mainly bent with respect to the material A to be rolled by the hole mold 89.
  • Molding ie, finish rolling
  • the second intermediate material A4 is subjected to reduction using a finishing material A5 having a substantially hat shape (substantially hat-shaped steel sheet pile product shape). Note that finish rolling is usually not performed by reverse rolling but by rolling of only one pass.
  • the material A to be rolled is pierced and finally the finishing material A5 is formed.
  • the configurations of the first to fifth hole molds described above in the present embodiment are merely examples, and are not limited to the illustrated forms.
  • the shape of the holes and the increasing / decreasing arrangement of the modified hole types of various hole types can be changed as appropriate according to conditions such as equipment conditions and product dimensions. Further, depending on the type of material, it is conceivable to separately provide a hole mold such as a preformed hole mold used in the rough modeling process from the material.
  • the rolling is performed while maintaining the balance between the extension of the web corresponding part 3 and the flange corresponding parts 5 and 6. 3 and 4, since the upper and lower hole rolls have different upper and lower roll diameters depending on the part, the relative sliding speed between the material to be rolled A (particularly the flange-corresponding portions 5 and 6) and the roll is the part. It depends on. In the flange-corresponding portions 5 and 6, in a portion where the difference between the upper and lower roll diameters is large, the elongation of the material to be rolled is suppressed by the peripheral speed difference between the upper and lower rolls.
  • the elongation of the flange near the neutral line tends to be relatively large relative to the elongation of the web.
  • 6 is subjected to a compressive stress in the longitudinal direction from the inside of the roll bite. Further, the buckling limit stress is also reduced, and as a result, the flange wave is likely to be remarkably generated.
  • flange waves can be suppressed by designing the shape of the hole shape in consideration of flange stretching and web stretching in relation to the shape of the previous hole shape.
  • the hole mold 69 which is the latter hole mold, rolls the material to be rolled A (especially the flange-corresponding portions 5 and 6) more thinly. Form defects such as occurrence tend to be remarkable. In addition, in the process closer to finish rolling, when a shape defect occurs, it tends to be directly connected to a product shape defect. That is, from the viewpoint of product dimensional accuracy and rolling stability, it is important to solve the above-described problems particularly in the hole mold 69 which is the latter hole mold.
  • the present inventors have intensively studied the shapes of the hole molds 59 and 69 described with reference to FIGS. Invented a hole shape that satisfies the above conditions.
  • the detailed shape of the hole mold 69 ′ is described with reference to the drawings, in which the shape of the hole mold 69 is further improved so that the flange wave is not generated.
  • the hole die targeted in the present invention performs thickness reduction on the whole material A to be rolled. It is a hole type, and is not limited to the hole types 59 and 69.
  • FIG. 7 is a schematic explanatory view of a hole mold 69 ′ having an improved configuration of the third hole mold 69.
  • FIG. 7A is a schematic overall view
  • FIG. 7B is a portion facing the flange corresponding portion 6. The enlarged view of the vicinity (the part enclosed with the broken line in Fig.7 (a)) is shown.
  • FIG. 7B shows a state after rolling in the hole mold 69 ′, and the rolled material A is shown by a one-dot chain line.
  • components having the same functional configuration as the hole mold 69 described with reference to FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.
  • the facing portion 100 facing the flange-corresponding portion 6 of the material to be rolled A is different in shape from the hole mold 69, specifically, the side closer to the web. In this order, it is composed of a plurality of flange facing portions 100a, 100b, 100c having different inclinations. Regarding these flange facing portions 100a, 100b, and 100c, in this specification, the flange facing portion 100b is referred to as a “first flange facing portion”, and the flange facing portions 100a and 100c disposed on both sides thereof are referred to as “second flange facing portions”. It may be defined and referred to as “third flange facing portion”.
  • first flange part the part of the flange corresponding part 6 formed by rolling by the flange facing part 100b located at the center
  • second flange part each part of the flange corresponding part 6 disposed on both sides thereof (by the flange facing parts 100a and 100c).
  • the part to be rolled and shaped) may be defined and referred to as “second flange part” and “third flange part”.
  • second flange part and “third flange part”.
  • Fig.7 (a) about the part 101 which opposes the flange corresponding
  • the inclination angles of the flange facing portions 100a, 100b, and 100c with respect to the horizontal line are ⁇ f2, ⁇ f1, and ⁇ f3, respectively, and ⁇ f1 is larger than ⁇ f2 and ⁇ f3. Also, ⁇ f2 and ⁇ f3 may be equal angles.
  • Spaces tf2, tf1, and tf3 (also referred to as roll gaps) between the upper hole roll 65 and the lower hole roll 68 in the flange facing portions 100a, 100b, and 100c are respectively constant (upper hole roll 65 and lower hole roll 68).
  • the angles ⁇ f2, ⁇ f1, and ⁇ f3 of the upper hole roll 65 and the lower hole roll 68 are equal.
  • the angles ⁇ f2, ⁇ f1 and ⁇ f3 are the same as those of the upper hole roll 65 and lower hole roll 68. What is necessary is just to set it as the average value of the angle which a flange opposing part and a horizontal line make.
  • the inclination angles ⁇ f2, ⁇ f1, and ⁇ f3 are substantially the same even if they are defined by the angle formed by the center line S and the horizontal line in the roll gap of the upper and lower hole type rolls.
  • the flange facing portion 100b is configured at a position so as to straddle the neutral line O in the height direction.
  • the flange facing portion 100a is positioned closer to the web than the flange facing portion 100b, and is close to the arm (joint).
  • the flange facing portion 100c is located on the side. That is, the flange facing portion 100b is positioned so as to straddle the neutral line O, and the flange facing portions 100a and 100c are positioned on both sides thereof.
  • the stretching per pass is defined by the ratio of the thickness before rolling to the thickness after rolling (after 1 pass), and the thickness is represented by the roll gap in the plate thickness direction in the hole die 69 ′.
  • the amount of roll gap reduction in the vertical direction of one pass during reverse rolling is ⁇ g
  • the stretching ⁇ f1, ⁇ f2, and ⁇ f3 per pass of the flange facing portions 100b, 100a, and 100c are expressed by the following equations (1) to (3 ).
  • tf′1, tf′2, and tf′3 are roll gaps corresponding to the thickness before rolling of the flange corresponding portions 6 corresponding to the flange facing portions 100b, 100a, and 100c in the hole mold 69 ′.
  • tf1, tf2, and tf3 are roll gaps corresponding to the thicknesses of the flange corresponding portions 6 that are rolled in the flange facing portions 100b, 100a, and 100c in the hole mold 69 ′. That is, by setting ⁇ f1 to an angle larger than ⁇ f2 and ⁇ f3 based on the relationship between tf1, tf2, and tf3, the following formulas (4) and (5) are satisfied in rolling with the hole mold 69 ′. ⁇ f1 ⁇ f2 (4) ⁇ f1 ⁇ f3 (5)
  • the above formulas (1) to (3) show the stretching per one pass of rolling, but the formulas (1) to (3) also apply to the case of total stretching in reverse rolling performed in a plurality of passes.
  • the material A to be rolled formed by the hole mold 69 ′ has a bent shape having a plurality of inclination angles at the flange corresponding parts 5 and 6.
  • This shape is a hole type downstream of the hole mold 69 ′ provided in the intermediate rolling mill, for example, the fourth hole mold 79, the fifth hole mold 89 of the finishing mill 30 (finish rolling process), or those.
  • a desired flat flange shape (a flange shape of a hat-shaped steel sheet pile product) is obtained by both hole types. In such flange flattening, reverse rolling is not performed.
  • after bending back of the flange part there may be a streak-like trace in the longitudinal direction due to the difference in the scale adhesion state with the other part at the boundary part of the bent part. It does not reduce the strength of the part, and does not affect the quality of the steel sheet pile.
  • the effect of suppressing the generation of the flange wave is realized by lowering relative to the flange extension at a position distant from the neutral line O.
  • by reducing the angles ⁇ f2 and ⁇ f3 an increase in the height of the flange is suppressed, and the extension of the cross section of the flange corresponding portion 6 is maintained.
  • the flange facing portion (100a of the hole mold 69 ′) is considered.
  • the angle ⁇ f2 and ⁇ f3 should be designed so that the length of the center line S corresponding to the flange 69 of the hole mold 69 is the same as the length of the center line and the horizontal position of the joint does not change. It ’s fine. That is, when reverse rolling is performed with the improved hole mold 69 ′, the flange extension is reduced in the flange facing portion 100b as compared to the hole mold 69 shown in FIG.
  • the flange facing portions 100a and 100c are compared with the hole mold 69. Since the flange extension increases, the flange as a whole can maintain the same flange cross-section extension as the hole mold 69. In addition, if the line length of the center line S corresponding to the flange facing part (100a, 100b, 100c) of the hole mold 69 ′ is the same as the line length of the center line of the flange facing part of the hole mold 69, it means completely the same. However, it is sufficient that the error is within the same range (for example, less than ⁇ 1% with respect to the length of the center line of the flange facing portion).
  • the flange extension ⁇ f1 in the steeply inclined portion 100b and the web corresponding portion 3 are used. It is preferable to set the angle ⁇ f1 so that the relationship with the stretching ⁇ w satisfies the following formula (6). ⁇ f1 ⁇ ⁇ w (6) As a more detailed condition, it is desirable that ⁇ f1 / ⁇ w per path be within a range of 0.967 ⁇ ⁇ f1 / ⁇ w ⁇ 1.000. The reason for this numerical value will be described in an embodiment described later.
  • the extension of the flange corresponding part in the vicinity of the neutral line O is expressed in relation to the extension of the web in the technique of the present invention.
  • the extension of the arm corresponding portions 8 and 9 and the extension of the web corresponding portions 5 and 6 are substantially equal, and since the U-shaped steel sheet pile has no arm corresponding portion, the vicinity of the neutral line O
  • the extension of the flange-corresponding portion can be substantially expressed in relation to the web extension.
  • the stretching ⁇ w of the one-pass web during reverse rolling is expressed by the following formula (7).
  • tw ′ is a roll gap corresponding to the thickness before rolling of the web corresponding portion 3 in the hole mold 69 ′.
  • tw is a roll gap corresponding to the thickness of the web corresponding part 3 rolled by the hole mold 69 ′.
  • ⁇ w is an inclination angle with respect to the horizontal line of the roll gap corresponding to the web corresponding portion 3.
  • the thicknesses of the flange facing portions 100a, 100b, and 100c in the final pass are excluded in the hole die 69 ′ immediately before finish rolling, except for errors due to roll wear and the like.
  • the hole shape is designed such that the inclination angle ⁇ f1 of the flange facing portion 100b is different from the inclination angles ⁇ f2 and ⁇ f3 of the flange facing portions 100a and 100c, each thickness of the intermediate path of the hole mold 69 ′ is different. It will not be constant.
  • the inclination angle and width of the facing portion may be determined.
  • the flange extension in the vicinity of the neutral line O can be reduced, and the compressive stress generated in this portion can be reduced.
  • the hole shape of the hole mold 69 ′ provided in the second intermediate rolling mill 19 is a shape having a plurality of flange facing portions 100a, 100b, 100c having different inclination angles.
  • the flange corresponding portions in the rolling modeling with the hole 69 ' It is possible to reduce the compressive stress generated in the vicinity of the neutral line O of 6 and suppress the generation of the flange wave. Furthermore, it is possible to reduce the restoration of the flange thickness in which meat gathers in the vicinity of the neutral line of the flange-corresponding portion 6 in reverse rolling, and the generation of flange waves is further suppressed.
  • the extension of the flange that occurs in the flange facing portions 100a and 100c is relatively increased compared to the extension of the flange that occurs in the vicinity of the neutral line O (that is, the extension of the flange in the flange facing portion 100b).
  • the compressive stress which arises also increases, in addition to being away from the neutral line O, since the metal flow to the web corresponding
  • the portions corresponding to the flange facing portions 100 a and 100 c are connected to the web corresponding portion 3 and the arm corresponding portion 9 and are not easily buckled. Hard to do.
  • the hole shape of the hole mold 69 ' is a shape having a plurality of flange facing portions 100a, 100b, 100c having different inclination angles, so that the conventional hole shape (hole) shown in FIG. Compared with rolling modeling with the die 69), it is possible to suppress the flange wave generated near the neutral line O of the flange-corresponding portions 5 and 6 of the material A to be rolled, thereby improving the product dimensional accuracy and rolling stability. Is done.
  • the extension of the flange corresponding portions 5 and 6 is larger than the extension of the web corresponding portion 3, and the balance can be maintained. In some cases, the flange wave cannot be suppressed.
  • the inclination angle ⁇ f1 of the steeply inclined portion 100b is made larger than the flange inclination angle of the conventional hole shape, and the flange facing portion 100a and By making it larger than 100c, an increase in the height of the material A to be rolled during rolling modeling can be suppressed, and the flange wave can be effectively suppressed.
  • the subject to which the technique of the present invention is applied and the hole shape is improved is described as the third hole 69, and particularly regarding the rolling shaping of the flange corresponding portion 6 of the material A to be rolled, FIG.
  • the scope of application of the present invention is not limited to this. That is, in the rolling modeling with the third hole mold 69, the present invention can be applied to both the flange corresponding portions 5 and 6, and can also be applied to the rolling modeling of the second hole mold 59. That is, the same improvement can be applied to the hole mold 59 described with reference to FIG. 3 to suppress, for example, a flange wave generated in the first intermediate rolling.
  • the technique of the present invention may be applied to the hole shape of both the second hole mold 59 and the third hole mold 69.
  • the second hole mold 59 and the third hole mold 69 whose main components are thickness reduction
  • the second hole mold 59 has a hole shape in which both ends in the width direction are opened, and the third hole mold 69 is provided.
  • the same improvement can be applied to the case where the hole shape is such that the nail height is simultaneously formed.
  • the hole shape of the hole mold 69 ′ has been described as a shape having a plurality of flange facing portions 100a, 100b, and 100c having different inclination angles, but the important point of the technology of the present invention is that In the hole mold for performing intermediate rolling, the inclination angle ⁇ f1 of the flange facing portion 100b in the vicinity of the neutral line O is set to a larger angle than that of other flange facing portions, and the compressive stress acting on the material A to be rolled is reduced in the vicinity of the neutral line O. There is to make it.
  • the hole shape of the intermediate rolling mill is configured as a shape having a plurality of flange facing portions having different inclination angles
  • the three flange facing portions as shown in FIG.
  • the inclination angle ⁇ f1 of the flange facing portion 100b in the vicinity of the neutral line O is larger than that of other flange facing portions
  • any number of flange facing portions having different inclination angles may be used. That is, for example, as shown in FIG. 10, a hole mold for performing intermediate rolling may be configured to have four or more flange facing portions having different inclination angles.
  • the boundary part on the arm side (of the material to be rolled) and the web side (of the material to be rolled) With respect to the straight line connecting the boundary portion, it is convex in the flange inner side on the arm side from the flange facing portion near the neutral line O, and is convex in the flange outer direction on the web side from the flange facing portion in the vicinity of the neutral line O. May be.
  • the shapes of the flange facing portions 100a to 100c do not necessarily have to be linear. If the inclination angles of the flange facing portions 100a, 100b, and 100c are in a suitable condition as shown in the above formulas (4) to (6), for example, part or all of the flange facing portions 100a to 100c are curved. It may be constituted by.
  • the steeply inclined portion 100b is defined as a range between the intersection with the flange facing portion 100a and the intersection with the flange facing portion 100c, and the steeply inclined portion 100b is configured to straddle the neutral line O.
  • FIG. 8 is a schematic explanatory view according to a modification of the present invention, and is a schematic enlarged view showing an example of the vicinity of a portion facing the flange corresponding portion 6.
  • the flange facing portions 100a and 100c are configured in a curved shape.
  • the process of performing reverse rolling includes at least a web corresponding portion 3 connected to a flange portion (also referred to as a web side flange portion) including at least one second flange portion, and a third flange portion. It is preferable to include a step of forming an arm corresponding portion 9 connected to a flange portion (also referred to as an arm side flange portion) including one.
  • the hole mold according to the present invention preferably includes a web facing portion 100 d for forming the web corresponding portion 3 and an arm facing portion 100 e for forming the arm corresponding portion 9.
  • the hole type includes a web side flange facing portion group including at least one flange facing portion 100a (second flange facing portion) and an arm side flange including at least one flange facing portion 100c (third flange facing portion). It is preferable to provide an opposing portion group.
  • the boundary between the web side flange facing portion group and the web facing portion 100d is Pa
  • the boundary between the arm side flange facing portion group and the arm facing portion 100e is Pc. In the example shown in FIG.
  • the arm side boundary portion Pc (the boundary between the arm facing portion 100e and the flange facing portion 100c facing the arm corresponding portion 9) and the web side boundary Pa (the web corresponding portion in the hole 65).
  • the flange facing portion 100 a has a curved shape that protrudes outwardly from the flange
  • the flange facing portion 100 c has a flange shape with respect to the straight line Q connecting the web facing portion 100 d and the flange facing portion 100 a.
  • the curved shape is convex in the inner direction.
  • the steeply inclined portion 100b is illustrated as a linear shape, but the steeply inclined portion 100b may be curved.
  • the inclination angles ⁇ f2 and ⁇ f3 of the flange facing portions 100a and 100c are tangents at the center in the height direction of the flange facing portions 100a and 100c with respect to the horizontal line. What is necessary is just to determine with the inclination angle of (Qa, Qc in FIG. 8).
  • the inclination angle may be determined based on the tangent line that maximizes the angle.
  • the straight line Q and the tangent lines Qa and Qc have been described with the lower hole type roll 68, but the upper hole type 65 roll may be determined in the same manner.
  • the hole shape of the hole mold 69 ′ is described as a shape having a plurality of flange facing portions 100a, 100b, 100c having different inclination angles, and details of the portions 100a, 100b, 100c are described.
  • the shapes of the flange corresponding portions 5 and 6 may be configured by a plurality of straight lines or curves, or a combination of both, and the shapes of the portions 100a, 100b, and 100c can be arbitrarily designed according to the shapes. If a curved portion is formed in the flange corresponding portions 5 and 6, the inclination angle of the curved portion may be defined by the angle of the tangent line.
  • the flange-corresponding part has a thickness distribution in which the thickness changes in the direction along the surface of the flange-corresponding part, or a plurality of bends in which the flange-corresponding part has a large inclination angle near the neutral line. It is very effective to apply to a product having a shape having a portion, and is included in the scope of the present invention.
  • the flange-corresponding portion has a thickness distribution in the direction along the surface, it is conceivable to relatively reduce the thickness in the vicinity of the neutral line from the cross-sectional efficiency of the hat-shaped steel sheet pile product.
  • the flange-facing portion 100b has a larger inclination angle than the flange-facing portions 100a and 100c. Therefore, the flange extension at the flange-facing portion 100b is larger than that of the conventional hole shape. It is hard to become, and the effect similar to the said embodiment or more is acquired.
  • the rolling state in the bent shape shown in FIGS. 7 and 8 can be applied to the product shape. Useful for.
  • the boundary portions of the flange facing portions 100 a, 100 b, 100 c may have R.
  • the boundaries of the portions 100a, 100b, and 100c may be intermediate points of the corner R.
  • the flange wave generated in the conventional hole 69 has a peak position of the wave height in the cross section of the flange corresponding portion, and the neutral line of the hole 69 shown in FIG. It became clear that it was included in the range of 10% of the hole mold depth D in the height direction from O. Therefore, when the steeply inclined portion 100b near the neutral line O is a straight line, as shown in FIG. 11, the steeply inclined portion 100b that reduces the flange extension has a hole depth D up and down from the neutral line O in the height direction. It is desirable to include a range of 10%.
  • the hole mold depth D is defined by the vertical height of the entire flange facing portion (100a, 100b, 100c) of the pilot hole roll forming the hole mold, and as shown in FIG.
  • the upper end position of the height D is the upper end in the height direction of the boundary between the flange corresponding portion and the arm corresponding portion
  • the lower end position is the lower end in the height direction of the boundary between the flange corresponding portion and the web corresponding portion.
  • the steeply inclined portion 100b (range P1 to P2 in the figure) It is desirable to include a range of 10% of the hole depth D in the vertical direction from the neutral line O. In these cases, in the line segment corresponding to the steeply inclined portion 100b in the center line S, the above-described effect is more remarkable when the position Fd at which the angle with respect to the horizontal line is maximum coincides with the neutral line O.
  • FIG. 12 shows that in the line segment corresponding to the steeply inclined portion 100b in the center line S, the above-described effect is more remarkable when the position Fd at which the angle with respect to the horizontal line is maximum coincides with the neutral line O.
  • the effect of the present invention can be enjoyed even if the position Fd is deviated from the neutral line O in the height direction. This is also the same reason as that when the flange facing portion 100b is a straight line.
  • the inclination angle at the position of the maximum inclination angle may be ⁇ f1
  • the flange extension may be ⁇ 1. Therefore, these cases are also included in the scope of the present invention as the vicinity of the neutral line.
  • the second flange facing portion and the third flange facing portion are disposed adjacent to the first flange facing portion. However, they are not necessarily adjacent to each other. There is no need to be placed. That is, the second flange facing portion and the third flange facing portion have an inclination angle smaller than that of the first flange facing portion, and are respectively between the first flange facing portion and the web facing portion, and between the first flange facing portion and the arm facing. It can also set between parts according to a product shape.
  • the present invention is applicable to steel sheet piles having variously shaped flanges that may generate flange waves in intermediate rolling. Specifically, it can be applied to a U-shaped steel sheet pile in addition to a hat-shaped steel sheet pile.
  • Example 1 As Example 1 of the present invention, a hole mold corresponding to the improved hole mold 69 ′ described above with reference to FIG. 7 is an intermediate rolling hole mold (the second hole mold and the third hole mold in the above embodiment). And rolled molding of the material to be rolled was performed under conditions 1 to 5 shown in Table 1 below.
  • the hole-facing flange-facing portion is bent into three portions so that the first flange portion straddles the hole-type neutral line shown in Conditions 1 to 5. Here, the angle and length of each flange facing portion were adjusted.
  • the flange-corresponding portion of the material to be rolled after the rolling shaping is flattened by the subsequent hole shape (the fourth hole shape and the fifth hole shape in the above embodiment).
  • a conventional hole shape (hole shape corresponding to the hole shape 69 before improvement) is applied to the intermediate rolling hole shape, and the rolling shaping of the material to be rolled is performed under conditions 6 and 7 shown in Table 1 below. Carried out.
  • FIG. 9 is an explanatory diagram of the present embodiment, and is a schematic cross-sectional view showing the state of the final pass of the rolling shaping with the third hole mold according to the embodiment.
  • condition 6 since rolling shaping was performed without forming the steeply inclined portion in the hole mold, flange stretching ⁇ f1> web stretching ⁇ w, and the formula (6) described in the above embodiment is Since the rolling modeling was not satisfied, the generation of flange waves was confirmed.
  • condition 7 the product was rolled under the condition that the flange thickness of the product was increased to 1.2 mm and the value of ⁇ f1 / ⁇ w was 0.995 so as to satisfy the formula (6). In the same manner as in the above, the rolling shaping was performed without forming the steeply inclined portion in the hole mold, and hence the generation of the flange wave was confirmed.
  • the present invention can be applied to a manufacturing technique of a steel sheet pile having a flange such as a hat-shaped steel sheet pile or a U-shaped steel sheet pile.

Abstract

The present invention suppresses the formation of shape defects such as flange unevenness by reverse rolling, and improves product dimensional precision and rolling stability. Provided is a manufacturing method for forming a flanged steel sheet pile from stock via grooved roll rolling, the method including a step for using the same groove to perform reverse rolling on the stock. The reverse rolling step includes a step for forming a first flange part straddling a neutral line and second and third flange parts disposed on either side of the first flange part. The groove comprises a first flange-facing section for forming the first flange part, a second flange-facing section for forming the second flange part, and a third flange-facing section for forming the third flange part. The angle of inclination of the first flange-facing section with respect to the horizontal plane is greater than the angles of inclination of the second and third flange-facing sections.

Description

フランジを有する鋼矢板の製造方法及び製造設備Manufacturing method and manufacturing equipment for steel sheet pile with flange
(関連出願の相互参照)
 本願は、2017年4月3日に日本国に出願された特願2017-073578号に基づき、優先権を主張し、その内容をここに援用する。
(Cross-reference of related applications)
This application claims priority based on Japanese Patent Application No. 2017-073578 for which it applied to Japan on April 3, 2017, and uses the content here.
 本発明は、例えばハット形鋼矢板、U形鋼矢板等のフランジを有する鋼矢板の製造方法及び製造設備に関する。 The present invention relates to a manufacturing method and manufacturing equipment for a steel sheet pile having a flange such as a hat-shaped steel sheet pile or a U-shaped steel sheet pile.
 従来より、ハット形等の両端に継手を有する鋼矢板の製造は孔型圧延法によって行われている。この孔型圧延法の一般的な工程としては、先ず加熱炉において所定の温度に加熱した矩形材を、孔型を備えた粗圧延機、中間圧延機及び仕上圧延機によって順に圧延することが知られている。孔型圧延法として例えば特許文献1には、粗圧延、中間圧延及び仕上圧延においてロールに複数の孔型を配置し、それら各孔型において1~2パスずつ圧延を行ってハット形鋼矢板を製造する技術が開示されている。 Conventionally, a steel sheet pile having joints at both ends, such as a hat shape, has been manufactured by a perforated rolling method. As a general process of the perforated rolling method, it is known that a rectangular material heated to a predetermined temperature in a heating furnace is first rolled in order by a roughing mill, an intermediate rolling mill and a finishing mill equipped with a perforated mold. It has been. As a perforated rolling method, for example, in Patent Document 1, a plurality of perforations are arranged on a roll in rough rolling, intermediate rolling, and finish rolling, and each of these perforations is rolled one or two passes to form a hat-shaped steel sheet pile. Techniques for manufacturing are disclosed.
 また、例えば特許文献2には、U形鋼矢板の製造においてウェブとフランジの延伸釣り合いが保たれるように孔型を構成し、同一孔型中で被圧延材を複数回往復させて圧延を行う技術が開示されている。また、例えば特許文献3には、鋼矢板の施工時の打設抵抗を低減させる事を目的とした技術が開示され、フランジ部に緩傾斜部を設けるような構成が提案されている。 In addition, for example, in Patent Document 2, a hole mold is formed so that the stretch balance between the web and the flange is maintained in the manufacture of the U-shaped steel sheet pile, and the material to be rolled is reciprocated several times in the same hole mold for rolling. Techniques to do are disclosed. Further, for example, Patent Document 3 discloses a technique for reducing the placing resistance during the construction of the steel sheet pile, and proposes a configuration in which a gently inclined portion is provided in the flange portion.
 また、例えば特許文献4には、圧延面に並行な2つのフランジ/ウェブ遷移セクションと、中立線近傍において圧延面に対して傾斜した中央セクションを有するプリフォームを成形する工程を備えたZ形鋼矢板(シートパイル)の製造技術が開示されている。 For example, Patent Document 4 discloses a Z-shaped steel including a step of forming a preform having two flange / web transition sections parallel to the rolling surface and a central section inclined with respect to the rolling surface in the vicinity of the neutral line. A manufacturing technique of a sheet pile is disclosed.
 このように、鋼矢板の製造方法として孔型圧延法や、同一孔型において被圧延材を複数回往復させて圧延を行う技術(いわゆる1孔型多パス圧延)が従来より創案されている。 Thus, as a method for manufacturing a steel sheet pile, a perforated rolling method and a technique (so-called single-hole multi-pass rolling) in which rolling is performed by reciprocating a material to be rolled a plurality of times in the same perforation have been devised.
特開2006-88176号公報JP 2006-88176 A 特開昭60-44101号公報JP 60-44101 A 特開2004-76580号公報JP 2004-76580 A 特開平8-224634号公報JP-A-8-224634
 しかしながら、上記特許文献1に例示される従来の孔型圧延方法では、粗圧延、中間圧延工程~仕上圧延工程にて、フランジを製品とほぼ同じ角度の直線状態として1孔型で1~2パスの圧延を行うが、特にフランジ幅が大きく板厚が薄い場合には、リバース圧延を行うと被圧延材の断面内での各部位ごとの延伸バランスが取れず、フランジ波が生じてしまう場合がある。なお、本明細書における「孔型」とは、上下孔型ロール間に形成された隙間で、被圧延材を通過させ圧延する部分を示す。以下では、上下孔型ロール間の距離が変動しても、孔型を形成するロール上の溝が同一であれば、その孔型を「同一の孔型」と称して説明する。又、本明細書における「リバース圧延」とは、上下孔型ロールにより構成される同一の孔型において、ロール隙を徐々に狭めながら複数パス被圧延材を往復させて繰り返し圧延を行う工程のことである。 However, in the conventional perforation rolling method exemplified in Patent Document 1 above, in the rough rolling, intermediate rolling process to finish rolling process, the flange is in a linear state at almost the same angle as the product, and one pass or two passes. In particular, when the flange width is large and the plate thickness is thin, when the reverse rolling is performed, the stretching balance of each part in the cross section of the material to be rolled cannot be achieved, and a flange wave may be generated. is there. In addition, the "hole type" in this specification shows the part which passes and rolls a to-be-rolled material in the clearance gap formed between the upper and lower hole type | mold rolls. Hereinafter, even if the distance between the upper and lower hole-type rolls varies, if the grooves on the roll forming the hole mold are the same, the hole type will be referred to as “the same hole type”. In addition, “reverse rolling” in the present specification refers to a process in which rolling is repeatedly performed by reciprocating a multi-pass rolled material while gradually narrowing a roll gap in the same hole mold constituted by upper and lower hole rolls. It is.
 また、上記特許文献2に記載された技術では、ハット形鋼矢板のように、特に従来に比べフランジ幅が大きくフランジ厚が薄い大型鋼矢板に対して延伸を大きくとるような圧延を実施した場合に、上記特許文献2に記載された延伸の釣り合いを保ったとしても、フランジ波等の形状不良が発生し、安定した圧延・造形が難しく、製品形状不良が発生する恐れがある。また、圧延機の制約の中ではフランジ波等の形状不良の発生を抑制するのに適正な釣り合い条件を実現できない場合がある。近年、経済性や施工性の観点から高さが大きく板厚の薄い大型断面の鋼矢板が求められており、このような大型鋼矢板の製造において更なる技術の向上が求められているのが実情である。 Moreover, in the technique described in the said patent document 2, especially when carrying out rolling which takes large extension | stretching with respect to a large steel sheet pile with a flange width large and thin flange thickness compared with the past like a hat-shaped steel sheet pile. In addition, even if the stretching balance described in Patent Document 2 is maintained, shape defects such as flange waves occur, stable rolling / modeling is difficult, and product shape defects may occur. In addition, there are cases in which an appropriate balance condition cannot be realized in order to suppress the occurrence of a shape defect such as a flange wave under the constraints of the rolling mill. In recent years, there has been a demand for steel sheet piles with large cross sections that are large in height and thin from the viewpoints of economy and workability, and further technical improvements are required in the production of such large steel sheet piles. It is a fact.
 また、上記特許文献3に記載された技術では、ウェブ部(本発明ではフランジ部と定義)の一部分(端フランジ部とウェブ部とにより形成されるコーナー部及びウェブ部の中央部の少なくとも一箇所以上)に緩傾斜部を設けることにより、打設抵抗を低減し施工性を向上させる旨の記載はあるものの、製造工程におけるフランジ波等の形状不良については何ら言及されておらず、大型鋼矢板の製造における形状不良の抑制、安定した圧延・造形等の実現に関し更なる技術の向上が求められている。 Moreover, in the technique described in the above-mentioned Patent Document 3, at least one part of a web part (defined as a flange part in the present invention) (a corner part formed by an end flange part and a web part and a central part of the web part) Although there is a description of reducing the placing resistance and improving the workability by providing a gently inclined portion in the above), there is no mention of shape defects such as flange waves in the manufacturing process, and a large steel sheet pile There is a need for further technical improvements with respect to the suppression of shape defects and the realization of stable rolling and modeling in the manufacture of steel.
 また、上記特許文献4に記載された技術は、1孔型1パス圧延を行う技術であると推察され、同一の孔型で上下ロール隙を徐々に狭めていき複数パス圧延を行う、いわゆるリバース圧延を行うとの記載は無い。これは、特許文献4に記載の技術において、同一の孔型でリバース圧延を行った場合、断面内で部位ごとに延伸が不均一となり、メタルフローが生じて継手部の充満状態が変化することに加え、フランジ/ウェブ遷移セクションの延伸が中央セクションの延伸に比べ幾何学的に大きくなり、ねじれが発生しやすくなることが理由であると考えられる。1孔型1パス圧延を行う場合には、孔型形状を1パス圧延時に最適な形状とすることができるため、孔型形状に起因した被圧延材の形状不良といった問題は起こり得ない。即ち、上記特許文献4には、リバース圧延時に発生する恐れのあるフランジ波の発生に関しては何ら言及されておらず、当然、当該フランジ波の抑制についても何ら言及されていない。 In addition, the technique described in Patent Document 4 is presumed to be a technique for performing one-pass one-pass rolling, so-called reverse, in which the upper and lower roll gaps are gradually narrowed with the same hole mold and multiple-pass rolling is performed. There is no description of rolling. This is because, in the technique described in Patent Document 4, when reverse rolling is performed with the same hole shape, stretching is uneven for each part in the cross section, metal flow occurs, and the filling state of the joint portion changes. In addition, it is believed that the flange / web transition section stretch is geometrically larger than the center section stretch and is more likely to twist. In the case of performing one-hole type one-pass rolling, the shape of the hole shape can be optimized at the time of one-pass rolling, so that a problem such as a shape defect of the material to be rolled due to the hole shape cannot occur. That is, Patent Document 4 does not mention anything about the generation of a flange wave that may occur during reverse rolling, and naturally does not mention any suppression of the flange wave.
 そこで、上記事情に鑑み、本発明の目的は、リバース圧延によるフランジ波等の形状不良が発生するのを抑制し、製品寸法精度や圧延の安定性の向上を図ることが可能なフランジを有する鋼矢板の製造技術を提供することにある。 Therefore, in view of the above circumstances, an object of the present invention is to provide a steel having a flange capable of suppressing the occurrence of shape defects such as a flange wave due to reverse rolling and improving product dimensional accuracy and rolling stability. The purpose is to provide sheet pile manufacturing technology.
 前記の目的を達成するため、本発明によれば、孔型ロール圧延によって被圧延材からフランジを有する鋼矢板を形成する製造方法であって、同一の孔型により前記被圧延材に対してリバース圧延を行う工程を具備し、前記リバース圧延を行う工程は、中立線を跨ぐ第1フランジ部と、当該第1フランジ部の両側に配置される第2及び第3フランジ部を形成する工程を含み、前記孔型は、前記第1フランジ部を形成するための第1フランジ対向部分と、前記第2フランジ部を形成するための第2フランジ対向部分と、前記第3フランジ部を形成するための第3フランジ対向部分と、を備え、水平面に対する、前記第1フランジ対向部分の傾斜角度は、前記第2及び第3フランジ対向部分の傾斜角度よりも大きいことを特徴とする、フランジを有する鋼矢板の製造方法が提供される。 In order to achieve the above object, according to the present invention, there is provided a manufacturing method for forming a steel sheet pile having a flange from a material to be rolled by perforated roll rolling, and reverses the material to be rolled by the same hole die. The step of performing reverse rolling, the step of performing reverse rolling includes a step of forming a first flange portion straddling a neutral line and second and third flange portions disposed on both sides of the first flange portion. The hole mold has a first flange facing portion for forming the first flange portion, a second flange facing portion for forming the second flange portion, and a third flange portion. And a third flange facing portion, wherein an inclination angle of the first flange facing portion with respect to a horizontal plane is larger than an inclination angle of the second and third flange facing portions. Method for producing a steel sheet pile which is provided.
 前記リバース圧延を行う工程は、ウェブ対応部と、腕対応部を形成する工程を含み、前記孔型は、前記ウェブ対応部を形成するためのウェブ対向部分と、前記腕対応部を形成するための腕対向部分と、を備え、前記孔型は、前記第2フランジ対向部分を少なくとも一つ含むウェブ側フランジ対向部分群と、前記第3フランジ対向部分を少なくとも一つ含む腕側フランジ対向部分群と、を備え、前記ウェブ側フランジ対向部分群と前記ウェブ対向部分との境界部と、前記腕側フランジ対向部分群と前記腕対向部分との境界部と、を結ぶ直線に対し、前記第2フランジ対向部分は、フランジ外側方向に凸形状であり、前記第3フランジ対向部分は、フランジ内側方向に凸形状であっても良い。 The reverse rolling step includes a step of forming a web corresponding portion and an arm corresponding portion, and the hole mold forms a web facing portion for forming the web corresponding portion and the arm corresponding portion. An arm facing portion, and the hole type includes a web side flange facing portion group including at least one second flange facing portion and an arm side flange facing portion group including at least one third flange facing portion. And a second straight line connecting a boundary portion between the web side flange facing portion group and the web facing portion and a boundary portion between the arm side flange facing portion group and the arm facing portion. The flange facing portion may have a convex shape in the flange outer direction, and the third flange facing portion may have a convex shape in the flange inner direction.
 前記孔型においては、前記第1フランジ部におけるフランジ延伸λf1が、前記第2フランジ部及び第3フランジ部におけるフランジ延伸λf2、λf3よりも小さい圧延が行われても良い。 In the hole mold, rolling may be performed such that the flange extension λf1 in the first flange portion is smaller than the flange extensions λf2 and λf3 in the second flange portion and the third flange portion.
 前記第1フランジ部、第2フランジ部、及び、第3フランジ部を形成する工程は、中間圧延工程であっても良い。 The step of forming the first flange portion, the second flange portion, and the third flange portion may be an intermediate rolling step.
 前記孔型は、幅方向の両端部が開放された孔型形状を有しても良い。 The hole mold may have a hole shape in which both ends in the width direction are open.
 前記第1フランジ部、第2フランジ部、及び、第3フランジ部を形成する工程により被圧延材に形成された屈曲形状のフランジ対応部は、当該工程の後段孔型での圧延により所望の平坦形状に圧延造形されても良い。 The bent flange-corresponding portion formed on the material to be rolled by the step of forming the first flange portion, the second flange portion, and the third flange portion is formed into a desired flat shape by rolling in the latter-stage hole mold of the step. It may be rolled and formed into a shape.
 前記孔型においては、前記第1フランジ部におけるフランジ延伸λf1が、ウェブ延伸λw以下となるように圧延が行われても良い。 In the hole mold, rolling may be performed so that the flange stretching λf1 in the first flange portion is equal to or less than the web stretching λw.
 前記鋼矢板がハット形鋼矢板であっても良い。 The steel sheet pile may be a hat-shaped steel sheet pile.
 別な観点からの本発明によれば、孔型ロール圧延によって被圧延材からフランジを有する鋼矢板を形成する製造設備であって、同一の孔型により前記被圧延材に対してリバース圧延を行う圧延機を具備し、前記リバース圧延を行う圧延機は、中立線を跨ぐ第1フランジ部と、当該第1フランジ部の両側に配置される第2及び第3フランジ部を形成する孔型を含み、当該孔型は、前記第1フランジ部を形成するための第1フランジ対向部分と、前記第2フランジ部を形成するための第2フランジ対向部分と、前記第3フランジ部を形成するための第3フランジ対向部分と、を備え、水平面に対する、前記第1フランジ対向部分の傾斜角度は、前記第2及び第3フランジ対向部分の傾斜角度よりも大きいことを特徴とする、フランジを有する鋼矢板の製造設備が提供される。 According to the present invention from another point of view, it is a production facility for forming a steel sheet pile having a flange from a material to be rolled by hole roll rolling, and reverse rolling is performed on the material to be rolled by the same hole die. A rolling mill that includes a rolling mill and performs the reverse rolling includes a first flange portion straddling a neutral line, and a hole mold that forms second and third flange portions disposed on both sides of the first flange portion. The hole mold includes a first flange facing portion for forming the first flange portion, a second flange facing portion for forming the second flange portion, and a third flange portion. And a third flange-facing portion, wherein the first flange-facing portion has an inclination angle greater than the inclination angle of the second and third flange-facing portions with respect to a horizontal plane. Manufacturing facility of the plate is provided.
 前記リバース圧延を行う圧延機は、ウェブ対応部と、腕対応部を形成する孔型を含み、前記孔型は、前記ウェブ対応部を形成するためのウェブ対向部分と、前記腕対応部を形成するための腕対向部分と、を備え、前記孔型は、前記第2フランジ対向部分を少なくとも一つ含むウェブ側フランジ対向部分群と、前記第3フランジ対向部分を少なくとも一つ含む腕側フランジ対向部分群と、を備え、前記ウェブ側フランジ対向部分群と前記ウェブ対向部分との境界部と、前記腕側フランジ対向部分群と前記腕対向部分との境界部と、を結ぶ直線に対し、前記第2フランジ対向部分は、フランジ外側方向に凸形状であり、前記第3フランジ対向部分は、フランジ内側方向に凸形状であっても良い。 The rolling mill for performing reverse rolling includes a web corresponding part and a hole mold for forming an arm corresponding part, and the hole mold forms a web facing part for forming the web corresponding part and the arm corresponding part. An arm-facing portion, and the hole mold includes a web-side flange-facing portion group including at least one second flange-facing portion and an arm-side flange facing including at least one third flange-facing portion. A portion group, and a straight line connecting a boundary portion between the web side flange facing portion group and the web facing portion, and a boundary portion between the arm side flange facing portion group and the arm facing portion, The second flange facing portion may be convex in the flange outer direction, and the third flange facing portion may be convex in the flange inner direction.
 前記孔型においては、前記第1フランジ部におけるフランジ延伸λf1が、前記第2フランジ部及び第3フランジ部におけるフランジ延伸λf2、λf3よりも小さくても良い。 In the hole mold, the flange extension λf1 in the first flange portion may be smaller than the flange extensions λf2 and λf3 in the second flange portion and the third flange portion.
 前記孔型は、中間圧延機に設けられる孔型であっても良い。 The hole mold may be a hole mold provided in an intermediate rolling mill.
 前記孔型は、幅方向の両端部が開放された孔型形状を有しても良い。 The hole mold may have a hole shape in which both ends in the width direction are open.
 前記第1フランジ部、第2フランジ部、及び、第3フランジ部を形成する孔型での圧延により被圧延材に形成された屈曲形状のフランジ対応部を所望の平坦形状に圧延造形する後段孔型を備えても良い。 Subsequent holes for rolling and shaping the bent flange-corresponding part formed on the material to be rolled into a desired flat shape by rolling with a hole mold that forms the first flange part, the second flange part, and the third flange part. A mold may be provided.
 前記孔型においては、前記第1フランジ部におけるフランジ延伸λf1が、ウェブ延伸λw以下であっても良い。 In the hole mold, the flange extension λf1 in the first flange portion may be equal to or less than the web extension λw.
 前記鋼矢板がハット形鋼矢板であっても良い。 The steel sheet pile may be a hat-shaped steel sheet pile.
 本発明によれば、リバース圧延によるフランジ波等の形状不良が発生するのを抑制し、製品寸法精度や圧延の安定性の向上を図ることが可能となる。 According to the present invention, it is possible to suppress the occurrence of shape defects such as flange waves due to reverse rolling, and to improve product dimensional accuracy and rolling stability.
圧延ラインの概略説明図である。It is a schematic explanatory drawing of a rolling line. 第1の孔型の孔型形状を示す概略断面図である。It is a schematic sectional drawing which shows the hole shape of a 1st hole type. 第2の孔型の孔型形状を示す概略断面図である。It is a schematic sectional drawing which shows the hole shape of a 2nd hole type. 第3の孔型の孔型形状を示す概略断面図である。It is a schematic sectional drawing which shows the hole shape of a 3rd hole type. 第4の孔型の孔型形状を示す概略断面図である。It is a schematic sectional drawing which shows the hole shape of a 4th hole type. 第5の孔型の孔型形状を示す概略断面図である。It is a schematic sectional drawing which shows the hole shape of a 5th hole type. 第3の孔型が改良された構成の孔型の概略説明図であり、(a)に概略全体図を示し、(b)にフランジ対応部に対向する箇所近傍の拡大図を示す。It is a schematic explanatory drawing of the hole type | mold of the structure which the 3rd hole type | mold improved, (a) shows a schematic whole figure, (b) shows the enlarged view of the location vicinity which opposes a flange corresponding | compatible part. 本発明の変形例に係る概略説明図である。It is a schematic explanatory drawing which concerns on the modification of this invention. 実施例についての説明図である。It is explanatory drawing about an Example. 本発明の変形例に係る概略説明図である。It is a schematic explanatory drawing which concerns on the modification of this invention. 本発明の変形例に係る概略説明図である。It is a schematic explanatory drawing which concerns on the modification of this invention. 本発明の変形例に係る概略説明図である。It is a schematic explanatory drawing which concerns on the modification of this invention.
 以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。なお、本実施の形態において略ハット形鋼矢板形状の被圧延材はウェブがフランジよりも下方に位置する姿勢(いわゆるU姿勢)で圧延されるものとして説明するが、当然本発明の適用範囲はその他の姿勢(例えば逆U姿勢)での圧延にも及ぶ。また、本発明の適用範囲はハット形、U形等の種々のフランジを有する鋼矢板製品であるが、本実施の形態において製造される鋼矢板製品はハット形鋼矢板製品であるものとして説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted. In the present embodiment, the material to be rolled having a substantially hat-shaped steel sheet pile shape is described as being rolled in a posture in which the web is positioned below the flange (so-called U posture), but naturally the scope of application of the present invention is as follows. It extends to rolling in other postures (for example, reverse U posture). Moreover, although the applicable range of this invention is a steel sheet pile product which has various flanges, such as a hat shape and U shape, the steel sheet pile product manufactured in this Embodiment is demonstrated as what is a hat type steel sheet pile product. .
 また、以下に記載の被圧延材Aとは、ハット形鋼矢板製品を製造する場合に圧延される鋼材を示しており、圧延ラインL上を通材される鋼材を総称して被圧延材Aと呼称し、それぞれの圧延機において圧下された状態の被圧延材Aについては必要に応じて別途異なる呼称(以下に記載のA1~A5)で記載する。この被圧延材Aは略ハット形形状であり、略水平であるウェブ対応部3と、ウェブ対応部3の両端に所定の角度でもって連結しているフランジ対応部5、6と、各フランジ対応部5、6においてウェブ対応部3との連結側と異なる端部に連結している腕対応部8、9と、腕対応部8、9の先端に連結される継手対応部10、11から構成されている。なお、継手対応部10、11の端部はそれぞれ爪部14、15と呼称される。以下では、被圧延材Aを構成する各部位については、上記各符号にて図示、説明する。
 なお、本明細書では、被圧延材Aに関し、圧延方向を被圧延材の「長手方向」と称し、当該長手方向に直交し且つ圧延ロール軸に平行な方向を被圧延材の「幅方向」と称し、長手方向及び幅方向の両方に直交する方向を被圧延材の「高さ方向」と称し説明する。また、被圧延材の「厚み圧下」とは、被圧延材の板厚方向に対する板厚圧下を示すものである。
In addition, the material A to be rolled described below indicates a steel material that is rolled when a hat-shaped steel sheet pile product is manufactured, and the steel material that is passed through the rolling line L is collectively referred to as the material A to be rolled. The material A to be rolled in each rolling mill is described with a different name (A1 to A5 described below) as necessary. The material A to be rolled has a substantially hat-shaped shape, a web-corresponding portion 3 that is substantially horizontal, flange-corresponding portions 5 and 6 that are connected to both ends of the web-corresponding portion 3 at a predetermined angle, and each flange. It is comprised from the arm corresponding | compatible parts 8 and 9 connected to the edge part different from the connection side with the web corresponding | compatible part 3 in the parts 5 and 6, and the joint corresponding | compatible parts 10 and 11 connected with the front-end | tip of the arm corresponding | compatible parts 8 and 9. Has been. The end portions of the joint corresponding portions 10 and 11 are referred to as claw portions 14 and 15, respectively. Below, each site | part which comprises the to-be-rolled material A is illustrated and demonstrated with said each code | symbol.
In this specification, regarding the material A to be rolled, the rolling direction is referred to as the “longitudinal direction” of the material to be rolled, and the direction perpendicular to the longitudinal direction and parallel to the rolling roll axis is the “width direction” of the material to be rolled. The direction perpendicular to both the longitudinal direction and the width direction is referred to as the “height direction” of the material to be rolled and will be described. Further, “thickness reduction” of the material to be rolled refers to plate thickness reduction with respect to the thickness direction of the material to be rolled.
 先ず、ハット形鋼矢板を製造する製造装置1として基本的な構成である圧延ラインLの概略について説明する。図1は、ハット形鋼矢板を製造する圧延ラインLと、圧延ラインLに備えられる圧延機等についての説明図である。図1において圧延ラインLの圧延進行方向は矢印で示されている方向であり、当該方向へ被圧延材Aが流れ、ライン上の各孔型圧延機(以下に説明する粗圧延機、中間圧延機、仕上圧延機)において圧延が行われ、製品が造形される。なお、圧延ラインL上には図示しない複数の搬送ロールが設置されており、それら搬送ロールによって被圧延材Aは圧延ラインL上を搬送される。 First, the outline of the rolling line L which is a fundamental structure as the manufacturing apparatus 1 which manufactures a hat-shaped steel sheet pile is demonstrated. FIG. 1 is an explanatory diagram of a rolling line L for producing a hat-shaped steel sheet pile, a rolling mill provided in the rolling line L, and the like. In FIG. 1, the rolling progress direction of the rolling line L is a direction indicated by an arrow, and the material A to be rolled flows in the direction, and each of the perforating rolling mills on the line (rough rolling mill and intermediate rolling described below). Rolling machine, finish rolling machine), and product is formed. In addition, the some conveyance roll which is not shown in figure is installed on the rolling line L, and the to-be-rolled material A is conveyed on the rolling line L by these conveyance rolls.
 図1に示すように、圧延ラインLには、圧延上流側から順に粗圧延機(BD)17、第1中間圧延機(R1)18、第2中間圧延機(R2)19、仕上圧延機(F)30が配置されている。 As shown in FIG. 1, a rolling line L includes a roughing mill (BD) 17, a first intermediate rolling mill (R1) 18, a second intermediate rolling mill (R2) 19, a finish rolling mill ( F) 30 is arranged.
 図1に示す圧延ラインLにおいては、図示しない加熱炉(圧延ラインL上流に位置)において加熱された例えばスラブ、ブルーム等の被圧延材Aが、粗圧延機17~仕上圧延機30において順次圧延されることで最終製品であるハット形鋼矢板が製造される。 In the rolling line L shown in FIG. 1, the material A to be rolled, such as slab and bloom, heated in a heating furnace (not shown) (not shown) is sequentially rolled in the roughing mill 17 to the finishing mill 30. As a result, the hat-shaped steel sheet pile as the final product is manufactured.
 次に、圧延ラインLに配置される粗圧延機17、第1中間圧延機18、第2中間圧延機19、仕上圧延機30のいずれかに設けられる孔型の形状について上流側から順に図面を参照して簡単に説明する。なお、以下の説明において参照する図2~6には、参考のため各孔型における圧下が完了したときの被圧延材Aの断面を一点鎖線にて図示している。 Next, the drawings of the shape of the hole shape provided in any of the rough rolling mill 17, the first intermediate rolling mill 18, the second intermediate rolling mill 19, and the finishing rolling mill 30 arranged in the rolling line L in order from the upstream side. A brief description will be given with reference. In FIGS. 2 to 6 referred to in the following description, a cross section of the material A to be rolled when the reduction in each hole mold is completed is indicated by a one-dot chain line for reference.
 図2は、第1の孔型49(以下、単に孔型49とも記載)の孔型形状を示す概略断面図である。図2に示すように、孔型49は、上孔型ロール45と、下孔型ロール48によって構成される。これら上孔型ロール45と下孔型ロール48によって構成される孔型49は例えば粗圧延機17に設けられ、孔型49における孔型圧延によって被圧延材A全体に対して厚み圧下(即ち、粗圧延)が行われる。具体的には、加熱炉において所定温度に加熱されたスラブ等を略ハット形形状に近づけるような孔型圧延が行われ、図2中の一点鎖線に示す粗形材A1が造形される。なお、この時の粗圧延は、例えば同一孔型49におけるリバース圧延によって行われても良い。 FIG. 2 is a schematic cross-sectional view showing a hole shape of the first hole mold 49 (hereinafter also simply referred to as a hole mold 49). As shown in FIG. 2, the hole mold 49 includes an upper hole roll 45 and a lower hole roll 48. A hole die 49 constituted by the upper hole roll 45 and the lower hole roll 48 is provided in, for example, the roughing mill 17, and thickness reduction is performed on the entire material to be rolled A by hole rolling in the hole mold 49 (that is, Rough rolling) is performed. Specifically, hole rolling is performed such that a slab heated to a predetermined temperature in a heating furnace approximates a hat shape, and a rough material A1 indicated by a one-dot chain line in FIG. 2 is formed. The rough rolling at this time may be performed, for example, by reverse rolling in the same hole mold 49.
 また、図3は第2の孔型59(以下、単に孔型59とも記載)の孔型形状を示す概略断面図である。図3に示すように、孔型59は、上孔型ロール55と、下孔型ロール58によって構成される。これら上孔型ロール55と下孔型ロール58によって構成される孔型59は例えば第1中間圧延機18に設けられ、孔型59における孔型圧延によって被圧延材A全体に対して厚み圧下(即ち、第1中間圧延)が行われる。孔型59では厚み圧下と同時に爪部14、15の爪高さを所望の高さに揃える圧下も行われ、具体的には、上記孔型49から搬出された粗形材A1を更にハット形形状に近づけるような孔型圧延が行われる。これにより、図3中の一点鎖線に示す第1中間材A2が造形される。なお、ここでの圧延は、例えば同一孔型59におけるリバース圧延によって行われる。 FIG. 3 is a schematic cross-sectional view showing a hole shape of a second hole mold 59 (hereinafter also simply referred to as a hole mold 59). As shown in FIG. 3, the hole mold 59 includes an upper hole roll 55 and a lower hole roll 58. A hole mold 59 composed of the upper hole roll 55 and the lower hole roll 58 is provided, for example, in the first intermediate rolling mill 18, and the thickness of the whole material A to be rolled is reduced by hole rolling in the hole mold 59 ( That is, the first intermediate rolling) is performed. In the hole mold 59, thickness reduction is performed at the same time as the nail height of the claw portions 14 and 15 is adjusted to a desired height. Specifically, the rough material A1 carried out from the hole mold 49 is further shaped into a hat. Pore rolling is performed so as to approximate the shape. Thereby, 1st intermediate material A2 shown to the dashed-dotted line in FIG. 3 is modeled. Note that the rolling here is performed, for example, by reverse rolling in the same hole mold 59.
 また、図4は第3の孔型69(以下、単に孔型69とも記載)の孔型形状を示す概略断面図である。図4に示すように、孔型69は、上孔型ロール65と、下孔型ロール68によって構成される。これら上孔型ロール65と下孔型ロール68によって構成される孔型69は例えば第2中間圧延機19に設けられ、孔型69における孔型圧延によって被圧延材A全体に対して厚み圧下(即ち、第2中間圧延)が行われる。具体的には、上記孔型59から搬出された第1中間材A2を更にハット形形状に近づけるような孔型圧延が行われ、図4中の一点鎖線に示す第2中間材A3が造形される。この孔型69は幅方向の両端部が開放された形状となっているため、厚み圧下により被圧延材Aの爪部14、15は幅方向に伸びた形状となっている。なお、ここでの圧延は、例えば同一孔型69におけるリバース圧延によって行われる。 FIG. 4 is a schematic cross-sectional view showing a hole shape of a third hole mold 69 (hereinafter also simply referred to as a hole mold 69). As shown in FIG. 4, the hole mold 69 includes an upper hole roll 65 and a lower hole roll 68. A hole die 69 constituted by the upper hole roll 65 and the lower hole roll 68 is provided, for example, in the second intermediate rolling mill 19, and thickness reduction is performed on the whole material to be rolled A by hole rolling in the hole die 69 ( That is, second intermediate rolling) is performed. Specifically, hole rolling is performed so that the first intermediate material A2 unloaded from the hole mold 59 is brought closer to a hat shape, and the second intermediate material A3 indicated by the one-dot chain line in FIG. 4 is formed. The Since the hole mold 69 has a shape in which both end portions in the width direction are open, the claw portions 14 and 15 of the material A to be rolled have a shape extending in the width direction due to thickness reduction. Note that the rolling here is performed, for example, by reverse rolling in the same hole mold 69.
 図5は第4の孔型79(以下、単に孔型79とも記載)の孔型形状を示す概略断面図である。図5に示すように、孔型79は、上孔型ロール75と、下孔型ロール78によって構成される。これら上孔型ロール75と下孔型ロール78によって構成される孔型79は例えば第2中間圧延機19に設けられ、当該孔型79によって例えば被圧延材Aの爪部14、15の成形が重点的に行われる。具体的には、第3の孔型69で伸びた状態の爪部14、15の爪高さを所望の高さに揃えて成形するような圧下が行われ第2中間材A4が造形される。なお、ここでの圧延は、厚みを圧下するものでも良い。 FIG. 5 is a schematic sectional view showing a hole shape of a fourth hole mold 79 (hereinafter also simply referred to as a hole mold 79). As shown in FIG. 5, the hole mold 79 includes an upper hole roll 75 and a lower hole roll 78. A hole die 79 constituted by the upper hole roll 75 and the lower hole roll 78 is provided in, for example, the second intermediate rolling mill 19, and the claw portions 14 and 15 of the material A to be rolled are formed by the hole die 79, for example. It is done with emphasis. Specifically, the second intermediate material A4 is formed by performing the reduction so that the claw heights of the claw portions 14 and 15 in the state extended by the third hole mold 69 are aligned to a desired height. . Note that the rolling here may reduce the thickness.
 また、図6は第5の孔型89(以下、単に孔型89とも記載)の孔型形状を示す概略断面図である。図6に示すように、孔型89は、上孔型ロール85と、下孔型ロール88によって構成される。これら上孔型ロール85と下孔型ロール88によって構成される孔型89は例えば仕上圧延機30に設けられ、当該孔型89によって被圧延材Aに対して主に爪部14、15の曲げ成形(即ち、仕上圧延)が行われる。具体的には、上記第2中間材A4を略ハット形形状(略ハット形鋼矢板製品形状)の仕上材A5とする圧下が行われる。なお、仕上圧延は通常リバース圧延では行われず、1パスのみの圧延にて行われる。 FIG. 6 is a schematic sectional view showing a hole shape of a fifth hole mold 89 (hereinafter also simply referred to as a hole mold 89). As shown in FIG. 6, the hole mold 89 includes an upper hole roll 85 and a lower hole roll 88. A hole mold 89 constituted by the upper hole roll 85 and the lower hole roll 88 is provided in the finishing mill 30, for example, and the claw portions 14 and 15 are mainly bent with respect to the material A to be rolled by the hole mold 89. Molding (ie, finish rolling) is performed. Specifically, the second intermediate material A4 is subjected to reduction using a finishing material A5 having a substantially hat shape (substantially hat-shaped steel sheet pile product shape). Note that finish rolling is usually not performed by reverse rolling but by rolling of only one pass.
 以上、図2~図6を参照して説明した各圧延において被圧延材Aが孔型圧延され、最終的に仕上材A5が造形される。 As described above, in each rolling described with reference to FIGS. 2 to 6, the material A to be rolled is pierced and finally the finishing material A5 is formed.
 なお、本実施の形態において上述してきた第1の孔型~第5の孔型の構成は、例示であり、図示の形態に限られるものではなく、例えば孔型の配置順や、各圧延機に配置する孔型形状、各種孔型の修正孔型の増減配列については設備状況や製品寸法等の条件に応じて適宜変更可能である。また、素材の種類によっては、素材からの粗造形過程に用いる予備成形孔型といった孔型を別途設けることも考えられる。 Note that the configurations of the first to fifth hole molds described above in the present embodiment are merely examples, and are not limited to the illustrated forms. For example, the arrangement order of the hole molds, each rolling mill, The shape of the holes and the increasing / decreasing arrangement of the modified hole types of various hole types can be changed as appropriate according to conditions such as equipment conditions and product dimensions. Further, depending on the type of material, it is conceivable to separately provide a hole mold such as a preformed hole mold used in the rough modeling process from the material.
 本発明者らの検討によれば、上記製造工程における孔型59や孔型69による中間圧延工程では、ウェブ対応部3とフランジ対応部5、6との延伸の釣り合いを保って圧延が行われた場合でも、図3、4に示すように、上下孔型ロールは部位によって上下のロール径が異なるため、被圧延材A(特にフランジ対応部5、6)とロールとの相対滑り速度が部位によって異なる。フランジ対応部5、6において、上下のロール径の差が大きい部位では上下ロールの周速差によって被圧延材の伸びが抑制され、一方、上下ロールの直径が等しいピッチラインに対応する位置(以下、「中立線」と記載する)では伸びが生じやすいため、ロールバイト出口の中立線近傍のフランジに長手方向に圧縮応力が発生しやすく、圧縮応力が座屈限界を超えた場合、フランジ対応部5、6にはいわゆるフランジ波と呼ばれる形状不良が発生する。 According to the study by the present inventors, in the intermediate rolling process using the hole mold 59 and the hole mold 69 in the above manufacturing process, the rolling is performed while maintaining the balance between the extension of the web corresponding part 3 and the flange corresponding parts 5 and 6. 3 and 4, since the upper and lower hole rolls have different upper and lower roll diameters depending on the part, the relative sliding speed between the material to be rolled A (particularly the flange-corresponding portions 5 and 6) and the roll is the part. It depends on. In the flange-corresponding portions 5 and 6, in a portion where the difference between the upper and lower roll diameters is large, the elongation of the material to be rolled is suppressed by the peripheral speed difference between the upper and lower rolls. , Described as “Neutral Line”), it is easy for elongation to occur. Therefore, the flange near the neutral line of the roll bite tends to generate compressive stress in the longitudinal direction. 5 and 6 have a shape defect called a so-called flange wave.
 特に、フランジ幅/フランジ厚の比率が大きいハット形鋼矢板のような大型鋼矢板の製造においては、中立線近傍のフランジの伸びがウェブの伸びに対し相対的に大きくなりやすく、フランジ対応部5、6の中央部にはロールバイト内から長手方向の圧縮応力が作用する。また、座屈限界応力も低下するため、その結果、フランジ波が顕著に発生しやすくなる。
 同一の孔型により1パスの圧延を行う場合、直前の孔型の形状との関係によりフランジ延伸やウェブ延伸を考慮した形状の孔型を設計することで、フランジ波を抑制することができる。しかし、同一の孔型により2パス以上の圧延を行う場合、第2パス以降の圧延ではウェブ対応部とフランジ対応部及び腕対応部の各延伸が当該孔型の形状により規定されるため、従来のように孔型の形状を設計しても、リバース圧延途中におけるフランジ波の発生を抑制することはできないことが判明した。例えば、これら孔型59、69でリバース圧延が行われる場合、フランジ対応部5、6では、圧延のたびにこれらフランジ対応部5、6の中央部(中立線近傍)に肉が集まり、フランジ厚みの復元といった現象が発生しやすいことが検討の結果明らかとなった。厚みの復元が発生すると、次パスでのフランジ延伸が増大してしまい、更にフランジ波が生じやすくなり好ましくない。
In particular, in the manufacture of a large steel sheet pile such as a hat-shaped steel sheet pile with a large flange width / flange thickness ratio, the elongation of the flange near the neutral line tends to be relatively large relative to the elongation of the web. , 6 is subjected to a compressive stress in the longitudinal direction from the inside of the roll bite. Further, the buckling limit stress is also reduced, and as a result, the flange wave is likely to be remarkably generated.
When performing one pass rolling with the same hole shape, flange waves can be suppressed by designing the shape of the hole shape in consideration of flange stretching and web stretching in relation to the shape of the previous hole shape. However, when rolling with two or more passes with the same hole mold, the stretching of the web corresponding portion, the flange corresponding portion, and the arm corresponding portion is defined by the shape of the hole shape in the second and subsequent passes. Thus, it has been found that even if the hole shape is designed as described above, the generation of the flange wave during reverse rolling cannot be suppressed. For example, when reverse rolling is performed with these hole molds 59 and 69, in the flange corresponding parts 5 and 6, meat gathers at the center part (near the neutral line) of these flange corresponding parts 5 and 6 every time rolling is performed, and the flange thickness As a result of examination, it became clear that a phenomenon such as restoration of data is likely to occur. When the restoration of the thickness occurs, the flange extension in the next pass increases, and a flange wave is likely to be generated, which is not preferable.
 また、孔型59と孔型69を比較すると、後段の孔型である孔型69の方がより被圧延材A(特にフランジ対応部5、6)を薄く圧延するため、上述したフランジ波の発生といった形状不良が顕著になりやすい。また、より仕上圧延に近い工程の方が、形状不良が発生すると、製品形状不良に直結しやすい。即ち、製品寸法精度や圧延の安定性といった観点から、特に後段の孔型である孔型69での上記のような問題点を解決することが重要となる。 Further, when comparing the hole mold 59 and the hole mold 69, the hole mold 69, which is the latter hole mold, rolls the material to be rolled A (especially the flange-corresponding portions 5 and 6) more thinly. Form defects such as occurrence tend to be remarkable. In addition, in the process closer to finish rolling, when a shape defect occurs, it tends to be directly connected to a product shape defect. That is, from the viewpoint of product dimensional accuracy and rolling stability, it is important to solve the above-described problems particularly in the hole mold 69 which is the latter hole mold.
 このような問題点に鑑み、本発明者らは、図3、4を参照して説明した孔型59、69の形状について鋭意検討を行い、上記フランジ波と呼ばれる形状不良が生じないような所定の条件を満たすような孔型形状を創案するに至った。以下では、孔型69の形状に更なる改良を施し、フランジ波が生じないような構成とした孔型69’の詳細な形状について図面を参照して説明する。なお、以下では孔型69’の特にフランジ対応部6に係る圧延造形を例に挙げて図示・説明するが、本発明で対象とする孔型は被圧延材A全体に対して厚み圧下を行う孔型であり、孔型59、69に限定されるものではない。 In view of such problems, the present inventors have intensively studied the shapes of the hole molds 59 and 69 described with reference to FIGS. Invented a hole shape that satisfies the above conditions. In the following, the detailed shape of the hole mold 69 ′ is described with reference to the drawings, in which the shape of the hole mold 69 is further improved so that the flange wave is not generated. In the following, although illustrated and described by taking as an example the rolling modeling of the hole die 69 ′, particularly the flange-corresponding portion 6, the hole die targeted in the present invention performs thickness reduction on the whole material A to be rolled. It is a hole type, and is not limited to the hole types 59 and 69.
 図7は、上記第3の孔型69が改良された構成の孔型69’の概略説明図であり、(a)に概略全体図を示し、(b)にフランジ対応部6に対向する箇所近傍(図7(a)における破線で囲んだ部分)の拡大図を示す。ここで、図7(b)は孔型69’における圧延後の様子を示しており、圧延された被圧延材Aを一点鎖線で図示している。なお、図7において、上記図4を参照して説明した孔型69と同様の機能構成を有する構成要素については同一の符号を付して図示し、その説明については省略する。 FIG. 7 is a schematic explanatory view of a hole mold 69 ′ having an improved configuration of the third hole mold 69. FIG. 7A is a schematic overall view, and FIG. 7B is a portion facing the flange corresponding portion 6. The enlarged view of the vicinity (the part enclosed with the broken line in Fig.7 (a)) is shown. Here, FIG. 7B shows a state after rolling in the hole mold 69 ′, and the rolled material A is shown by a one-dot chain line. In FIG. 7, components having the same functional configuration as the hole mold 69 described with reference to FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.
 図7に示す改良された孔型69’において、被圧延材Aのフランジ対応部6に対向する対向部分100は、上記孔型69と形状が異なっており、具体的には、ウェブに近い側から順に、傾斜の異なる複数のフランジ対向部分100a、100b、100cから構成されている。これらフランジ対向部分100a、100b、100cに関し、本明細書では、フランジ対向部分100bを「第1フランジ対向部分」、その両側に配置されたフランジ対向部分100a、100cを「第2フランジ対向部分」、「第3フランジ対向部分」と規定し、呼称する場合もある。また、中央に位置するフランジ対向部分100bによって圧延造形されるフランジ対応部6の部位を「第1フランジ部」、その両側に配置されるフランジ対応部6の各部位(フランジ対向部分100a、100cによって圧延造形される部位)を「第2フランジ部」、「第3フランジ部」と規定し、呼称する場合もある。
 なお、図7(a)に示すように、被圧延材Aのフランジ対応部5に対向する部分101についても、同様にフランジ対向部分101a、101b、101cから構成されている。
In the improved hole mold 69 ′ shown in FIG. 7, the facing portion 100 facing the flange-corresponding portion 6 of the material to be rolled A is different in shape from the hole mold 69, specifically, the side closer to the web. In this order, it is composed of a plurality of flange facing portions 100a, 100b, 100c having different inclinations. Regarding these flange facing portions 100a, 100b, and 100c, in this specification, the flange facing portion 100b is referred to as a “first flange facing portion”, and the flange facing portions 100a and 100c disposed on both sides thereof are referred to as “second flange facing portions”. It may be defined and referred to as “third flange facing portion”. Moreover, the part of the flange corresponding part 6 formed by rolling by the flange facing part 100b located at the center is referred to as “first flange part”, and each part of the flange corresponding part 6 disposed on both sides thereof (by the flange facing parts 100a and 100c). The part to be rolled and shaped) may be defined and referred to as “second flange part” and “third flange part”.
In addition, as shown to Fig.7 (a), about the part 101 which opposes the flange corresponding | compatible part 5 of the to-be-rolled material A, it is similarly comprised from the flange opposing part 101a, 101b, 101c.
 フランジ対向部分100a、100b、100cの水平線に対する傾斜角度はそれぞれθf2、θf1、θf3であり、θf1はθf2ならびにθf3よりも大きい角度となっている。また、θf2とθf3は等しい角度でも良い。フランジ対向部分100a、100b、100cにおける上孔型ロール65と下孔型ロール68の間隔tf2、tf1、tf3(ロール隙とも称す)が、それぞれにおいて一定(上孔型ロール65と下孔型ロール68のフランジ対向部分100a、100b、100cが平行)の場合、上孔型ロール65と下孔型ロール68のそれぞれにおける角度θf2、θf1、θf3は等しい。一方、フランジ対向部分100a、100b、100cと水平線のなす角度が上孔型ロール65と下孔型ロール68で異なる場合、角度θf2、θf1、θf3は上孔型ロール65と下孔型ロール68のフランジ対向部分と水平線のなす角度の平均値とすれば良い。また、これら傾斜角度θf2、θf1、θf3は上下孔型ロールのロール隙における中心線Sと水平線とのなす角度で規定しても実質的に同じである。
 また、フランジ対向部分100bは、高さ方向において中立線Oを跨ぐような位置に構成され、そのフランジ対向部分100bよりもウェブに近い側にフランジ対向部分100aが位置し、腕(継手)に近い側にフランジ対向部分100cが位置している。即ち、フランジ対向部分100bは中立線Oを跨ぐように位置し、その両側にフランジ対向部分100a、100cが位置する構成となっている。
The inclination angles of the flange facing portions 100a, 100b, and 100c with respect to the horizontal line are θf2, θf1, and θf3, respectively, and θf1 is larger than θf2 and θf3. Also, θf2 and θf3 may be equal angles. Spaces tf2, tf1, and tf3 (also referred to as roll gaps) between the upper hole roll 65 and the lower hole roll 68 in the flange facing portions 100a, 100b, and 100c are respectively constant (upper hole roll 65 and lower hole roll 68). Are opposite to each other, the angles θf2, θf1, and θf3 of the upper hole roll 65 and the lower hole roll 68 are equal. On the other hand, when the angle between the flange facing portions 100a, 100b and 100c and the horizontal line is different between the upper hole roll 65 and the lower hole roll 68, the angles θf2, θf1 and θf3 are the same as those of the upper hole roll 65 and lower hole roll 68. What is necessary is just to set it as the average value of the angle which a flange opposing part and a horizontal line make. The inclination angles θf2, θf1, and θf3 are substantially the same even if they are defined by the angle formed by the center line S and the horizontal line in the roll gap of the upper and lower hole type rolls.
Further, the flange facing portion 100b is configured at a position so as to straddle the neutral line O in the height direction. The flange facing portion 100a is positioned closer to the web than the flange facing portion 100b, and is close to the arm (joint). The flange facing portion 100c is located on the side. That is, the flange facing portion 100b is positioned so as to straddle the neutral line O, and the flange facing portions 100a and 100c are positioned on both sides thereof.
 ここで、1パスあたりの延伸を圧延後(1パス後)の厚みに対する圧延前の厚みの比で定義し、厚みを孔型69’における板厚方向のロール隙で代表し、孔型69’におけるリバース圧延中の1パスの鉛直方向のロール隙圧下量をΔgとした場合、フランジ対向部分100b、100a、100cの1パスあたりの延伸λf1、λf2、λf3は以下の式(1)~(3)で表される。
 λf1=tf’1/tf1=(tf1+Δg・cosθf1)/tf1 ・・・(1)
 λf2=tf’2/tf2=(tf2+Δg・cosθf2)/tf2 ・・・(2)
 λf3=tf’3/tf3=(tf3+Δg・cosθf3)/tf3 ・・・(3)
なお、tf’1、tf’2、tf’3とは、孔型69’においてフランジ対向部分100b、100a、100cのそれぞれに対応するフランジ対応部6の圧延前の厚みに対応するロール隙である。また、tf1、tf2、tf3とは、孔型69’においてフランジ対向部分100b、100a、100cのそれぞれで圧延されたフランジ対応部6の厚みに対応するロール隙である。
 即ち、tf1、tf2、tf3の関係に基づきθf1をθf2ならびにθf3よりも大きい角度とすることで、この孔型69’での圧延においては、以下の式(4)、(5)が満たされる。
 λf1<λf2 ・・・(4)
 λf1<λf3 ・・・(5)
ここで、上記式(1)~(3)は圧延1パスあたりの延伸を示したものであるが、複数パスで行われるリバース圧延での延伸を総計した場合についても、式(1)~(3)と同様の関係性が成立する。従って、孔型69’において、θf1をθf2ならびにθf3よりも大きい角度とすることで、1パスあたりの延伸の場合だけでなく、リバース圧延時の複数パスでの延伸を総計した場合についても、上記式(4)、(5)は満たされる。
Here, the stretching per pass is defined by the ratio of the thickness before rolling to the thickness after rolling (after 1 pass), and the thickness is represented by the roll gap in the plate thickness direction in the hole die 69 ′. When the amount of roll gap reduction in the vertical direction of one pass during reverse rolling is Δg, the stretching λf1, λf2, and λf3 per pass of the flange facing portions 100b, 100a, and 100c are expressed by the following equations (1) to (3 ).
λf1 = tf′1 / tf1 = (tf1 + Δg · cos θf1) / tf1 (1)
λf2 = tf′2 / tf2 = (tf2 + Δg · cos θf2) / tf2 (2)
λf3 = tf′3 / tf3 = (tf3 + Δg · cos θf3) / tf3 (3)
Here, tf′1, tf′2, and tf′3 are roll gaps corresponding to the thickness before rolling of the flange corresponding portions 6 corresponding to the flange facing portions 100b, 100a, and 100c in the hole mold 69 ′. . Further, tf1, tf2, and tf3 are roll gaps corresponding to the thicknesses of the flange corresponding portions 6 that are rolled in the flange facing portions 100b, 100a, and 100c in the hole mold 69 ′.
That is, by setting θf1 to an angle larger than θf2 and θf3 based on the relationship between tf1, tf2, and tf3, the following formulas (4) and (5) are satisfied in rolling with the hole mold 69 ′.
λf1 <λf2 (4)
λf1 <λf3 (5)
Here, the above formulas (1) to (3) show the stretching per one pass of rolling, but the formulas (1) to (3) also apply to the case of total stretching in reverse rolling performed in a plurality of passes. The same relationship as in 3) is established. Therefore, in the hole mold 69 ′, by setting θf1 to an angle larger than θf2 and θf3, not only in the case of stretching per pass, but also in the case of total stretching in multiple passes during reverse rolling, the above Expressions (4) and (5) are satisfied.
 この孔型69’で圧延造形された被圧延材Aは、フランジ対応部5、6に複数の傾斜角度を有する屈曲形状となる。この形状は、中間圧延機に設けられた孔型69’よりも後段の孔型、例えば、第4の孔型79や仕上圧延機30(仕上圧延工程)の第5の孔型89、あるいはそれら両方の孔型などによって所望の平坦なフランジ形状(ハット形鋼矢板製品のフランジ形状)とされる。このようなフランジ平坦化では、リバース圧延は行われない。なお、フランジ部の曲げ戻し後、屈曲部の境界部分には他の部分とのスケールの付着状態等の相違による長手方向に筋状の痕跡が見られる場合があるが、このような痕跡はフランジ部の強度等を低下させるものではなく、鋼矢板としての品質に影響はない。 The material A to be rolled formed by the hole mold 69 ′ has a bent shape having a plurality of inclination angles at the flange corresponding parts 5 and 6. This shape is a hole type downstream of the hole mold 69 ′ provided in the intermediate rolling mill, for example, the fourth hole mold 79, the fifth hole mold 89 of the finishing mill 30 (finish rolling process), or those. A desired flat flange shape (a flange shape of a hat-shaped steel sheet pile product) is obtained by both hole types. In such flange flattening, reverse rolling is not performed. In addition, after bending back of the flange part, there may be a streak-like trace in the longitudinal direction due to the difference in the scale adhesion state with the other part at the boundary part of the bent part. It does not reduce the strength of the part, and does not affect the quality of the steel sheet pile.
 図7に示すような孔型構成によれば、角度θf1を大きくすることで圧縮応力が生じやすい中立線O近傍のフランジ延伸を、図4に示すようなフランジ対向部分が直線状の孔型69に対して相対的に低下させ、且つ、中立線Oより離れた位置のフランジ延伸に対して相対的に低下させ、フランジ波の発生を抑制するといった効果が実現される。一方で、角度θf2、θf3を小さくすることでフランジ高さの増加を抑え、フランジ対応部6の断面の延伸は維持される。例えば、フランジ波抑制条件として決めた角度θf1に対し、後段孔型による圧延で所望の平坦なフランジ形状に造形する際の寸法のばらつき抑制を考慮して、孔型69’のフランジ対向部分(100a、100b、100c)に対応する中心線Sの線長を孔型69のフランジ対向部分の中心線の線長と同一とし、継手の水平方向の位置が変化しないように角度θf2、θf3を設計すれば良い。即ち、改良された孔型69’でリバース圧延を行うと、フランジ対向部分100bでは図4に示す孔型69に比べてフランジ延伸が低下するものの、フランジ対向部分100a、100cでは孔型69に比べてフランジ延伸が増加するために、フランジ全体としては、孔型69と同様のフランジ断面延伸を維持できる。なお、孔型69’のフランジ対向部分(100a、100b、100c)に対応する中心線Sの線長を孔型69のフランジ対向部分の中心線の線長と同一とするとは、完全同一を意味するものではなく、誤差の範囲(例えばフランジ対向部分の中心線の線長に対して±1%未満)で同一であれば良い。 According to the hole type configuration as shown in FIG. 7, the flange extension in the vicinity of the neutral line O in which compressive stress is likely to occur by increasing the angle θf <b> 1, and the hole type 69 with the flange-facing portion as shown in FIG. The effect of suppressing the generation of the flange wave is realized by lowering relative to the flange extension at a position distant from the neutral line O. On the other hand, by reducing the angles θf2 and θf3, an increase in the height of the flange is suppressed, and the extension of the cross section of the flange corresponding portion 6 is maintained. For example, with respect to the angle θf1 determined as the flange wave suppression condition, in consideration of suppression of dimensional variations when forming a desired flat flange shape by rolling with the latter-stage hole mold, the flange facing portion (100a of the hole mold 69 ′) is considered. , 100b, 100c), the angle θf2 and θf3 should be designed so that the length of the center line S corresponding to the flange 69 of the hole mold 69 is the same as the length of the center line and the horizontal position of the joint does not change. It ’s fine. That is, when reverse rolling is performed with the improved hole mold 69 ′, the flange extension is reduced in the flange facing portion 100b as compared to the hole mold 69 shown in FIG. 4, but the flange facing portions 100a and 100c are compared with the hole mold 69. Since the flange extension increases, the flange as a whole can maintain the same flange cross-section extension as the hole mold 69. In addition, if the line length of the center line S corresponding to the flange facing part (100a, 100b, 100c) of the hole mold 69 ′ is the same as the line length of the center line of the flange facing part of the hole mold 69, it means completely the same. However, it is sufficient that the error is within the same range (for example, less than ± 1% with respect to the length of the center line of the flange facing portion).
 ここで、中立線O近傍のフランジ対向部分100b(以下、急傾斜部100bとも呼称する)でのフランジ波を抑制するためには、当該急傾斜部100bにおけるフランジの延伸λf1と、ウェブ対応部3の延伸λwとの関係が以下の式(6)を満たすように角度θf1を設定することが好ましい。
 λf1≦λw ・・・(6)
なお、より詳細な条件としては、1パスあたりのλf1/λwを0.967≦λf1/λw≦1.000の範囲内とすることが望ましい。この数値の根拠については後述する実施例にて説明する。
 フランジの延伸はウェブの延伸の影響を強く受けるため、本発明の技術でも中立線O近傍のフランジ対応部の延伸をウェブの延伸との関係で表現した。ハット形鋼矢板の場合、腕対応部8、9の延伸とウェブ対応部5、6の延伸とは実質的に等しいと考えられ、U形鋼矢板は腕対応部がないため、中立線O近傍のフランジ対応部の延伸を実質的にウェブ延伸との関係で表すことができる。リバース圧延中の1パスのウェブの延伸λwは以下の式(7)で表される。
 λw=tw’/tw=(tw+Δg・cosθw)/tw ・・・(7)
ここで、tw’とは、孔型69’でのウェブ対応部3の圧延前の厚みに対応するロール隙である。また、twは、孔型69’で圧延されたウェブ対応部3の厚みに対応するロール隙である。また、θwはウェブ対応部3に対応するロール隙の水平線に対する傾斜角度である。
Here, in order to suppress the flange wave in the flange facing portion 100b in the vicinity of the neutral line O (hereinafter also referred to as the steeply inclined portion 100b), the flange extension λf1 in the steeply inclined portion 100b and the web corresponding portion 3 are used. It is preferable to set the angle θf1 so that the relationship with the stretching λw satisfies the following formula (6).
λf1 ≦ λw (6)
As a more detailed condition, it is desirable that λf1 / λw per path be within a range of 0.967 ≦ λf1 / λw ≦ 1.000. The reason for this numerical value will be described in an embodiment described later.
Since the extension of the flange is strongly affected by the extension of the web, the extension of the flange corresponding part in the vicinity of the neutral line O is expressed in relation to the extension of the web in the technique of the present invention. In the case of a hat-shaped steel sheet pile, it is considered that the extension of the arm corresponding portions 8 and 9 and the extension of the web corresponding portions 5 and 6 are substantially equal, and since the U-shaped steel sheet pile has no arm corresponding portion, the vicinity of the neutral line O The extension of the flange-corresponding portion can be substantially expressed in relation to the web extension. The stretching λw of the one-pass web during reverse rolling is expressed by the following formula (7).
λw = tw ′ / tw = (tw + Δg · cos θw) / tw (7)
Here, tw ′ is a roll gap corresponding to the thickness before rolling of the web corresponding portion 3 in the hole mold 69 ′. Moreover, tw is a roll gap corresponding to the thickness of the web corresponding part 3 rolled by the hole mold 69 ′. Further, θw is an inclination angle with respect to the horizontal line of the roll gap corresponding to the web corresponding portion 3.
 また、フランジ幅方向に厚みが一定のハット形鋼矢板の場合、仕上圧延直前の孔型69’では、ロール摩耗等に伴う誤差を除き、最終パスでフランジ対向部分100a、100b、100cの各厚みが一定となるように孔型形状を設計するが、フランジ対向部分100bの傾斜角度θf1はフランジ対向部分100a、100cの傾斜角度θf2、θf3と異なるため、孔型69’の途中パスでは各厚みが一定にはならない。そのため、各フランジ対向部分の厚みと延伸、およびウェブ対応部の延伸の関係からフランジ波が最も発生しやすいパスでの延伸比λf1/λw、λf2/λw、λf3/λwを考慮して、各フランジ対向部分の傾斜角度と幅を決定してもよい。 Further, in the case of a hat-shaped steel sheet pile having a constant thickness in the flange width direction, the thicknesses of the flange facing portions 100a, 100b, and 100c in the final pass are excluded in the hole die 69 ′ immediately before finish rolling, except for errors due to roll wear and the like. Although the hole shape is designed such that the inclination angle θf1 of the flange facing portion 100b is different from the inclination angles θf2 and θf3 of the flange facing portions 100a and 100c, each thickness of the intermediate path of the hole mold 69 ′ is different. It will not be constant. Therefore, considering the stretch ratios λf1 / λw, λf2 / λw, and λf3 / λw in the path where the flange wave is most likely to occur due to the relationship between the thickness and stretch of each flange facing portion and the stretch of the web corresponding portion, The inclination angle and width of the facing portion may be determined.
 以上説明したように、急傾斜部100bの傾斜角度θf1を大きくすることで中立線O近傍のフランジ延伸を低下させ、この部分に発生する圧縮応力を低減させることができる。 As described above, by increasing the inclination angle θf1 of the steeply inclined portion 100b, the flange extension in the vicinity of the neutral line O can be reduced, and the compressive stress generated in this portion can be reduced.
 以上、図7を参照して説明したように、第2中間圧延機19に設けられる孔型69’の孔型形状を、傾斜角度の異なる複数のフランジ対向部分100a、100b、100cを有する形状とし、これらフランジ対向部分100a、100b、100cの傾斜角度を上記式(1)~(6)で示したような好適な条件に設定することで、当該孔型69’での圧延造形においてフランジ対応部6の中立線O近傍に発生する圧縮応力を低減させフランジ波の発生を抑制することが可能となる。更には、リバース圧延においてフランジ対応部6の中立線近傍に肉が集まり発生するフランジ厚みの復元についても減少させることができ、フランジ波の発生が更に抑制される。 As described above with reference to FIG. 7, the hole shape of the hole mold 69 ′ provided in the second intermediate rolling mill 19 is a shape having a plurality of flange facing portions 100a, 100b, 100c having different inclination angles. By setting the inclination angles of the flange facing portions 100a, 100b, and 100c to suitable conditions as shown in the above formulas (1) to (6), the flange corresponding portions in the rolling modeling with the hole 69 ' It is possible to reduce the compressive stress generated in the vicinity of the neutral line O of 6 and suppress the generation of the flange wave. Furthermore, it is possible to reduce the restoration of the flange thickness in which meat gathers in the vicinity of the neutral line of the flange-corresponding portion 6 in reverse rolling, and the generation of flange waves is further suppressed.
 一方で、フランジ対向部分100a及び100cにおいて発生するフランジの延伸は、中立線O近傍において発生するフランジの延伸(即ち、フランジ対向部分100bでのフランジの延伸)に比べ相対的に増加し、そこに生じる圧縮応力も増大するが、中立線Oから離れていることに加え、ウェブ対応部3や腕対応部9へのメタルフローが生じやすいために圧縮応力が過大にならない。また、フランジ対応部6において、フランジ対向部分100a及び100cに対応する部位は、ウェブ対応部3や腕対応部9に接続され座屈が生じにくいといった点から、これらの部位にはフランジ波が発生しにくい。 On the other hand, the extension of the flange that occurs in the flange facing portions 100a and 100c is relatively increased compared to the extension of the flange that occurs in the vicinity of the neutral line O (that is, the extension of the flange in the flange facing portion 100b). Although the compressive stress which arises also increases, in addition to being away from the neutral line O, since the metal flow to the web corresponding | compatible part 3 and the arm corresponding | compatible part 9 is easy to produce, compressive stress does not become excessive. Further, in the flange corresponding portion 6, the portions corresponding to the flange facing portions 100 a and 100 c are connected to the web corresponding portion 3 and the arm corresponding portion 9 and are not easily buckled. Hard to do.
 このように、孔型69’の孔型形状を、傾斜角度の異なる複数のフランジ対向部分100a、100b、100cを有する形状としたことで、図4に図示したような従来の孔型形状(孔型69)での圧延造形に比べ、被圧延材Aのフランジ対応部5、6の中立線O近傍に生じるフランジ波を抑制させることが可能となり、製品寸法精度や圧延の安定性の向上が実現される。製品形状によっては、図4に図示したような従来の孔型形状(孔型69)では、フランジ対応部5、6の延伸がウェブ対応部3の延伸よりも大きくなり、釣り合いを保つことができずにフランジ波を抑制することができない場合がある。その場合、フランジ全体の傾斜角度を変更するのでなく、図7に示すように急傾斜部100bの傾斜角度θf1を従来の孔型形状のフランジ傾斜角度よりも大きくし、且つ、フランジ対向部分100a及び100cより大きくすることで圧延造形時の被圧延材Aの高さの増加を抑制し、効果的にフランジ波を抑制できる。 In this way, the hole shape of the hole mold 69 'is a shape having a plurality of flange facing portions 100a, 100b, 100c having different inclination angles, so that the conventional hole shape (hole) shown in FIG. Compared with rolling modeling with the die 69), it is possible to suppress the flange wave generated near the neutral line O of the flange-corresponding portions 5 and 6 of the material A to be rolled, thereby improving the product dimensional accuracy and rolling stability. Is done. Depending on the product shape, in the conventional hole shape (hole shape 69) as shown in FIG. 4, the extension of the flange corresponding portions 5 and 6 is larger than the extension of the web corresponding portion 3, and the balance can be maintained. In some cases, the flange wave cannot be suppressed. In that case, instead of changing the inclination angle of the entire flange, as shown in FIG. 7, the inclination angle θf1 of the steeply inclined portion 100b is made larger than the flange inclination angle of the conventional hole shape, and the flange facing portion 100a and By making it larger than 100c, an increase in the height of the material A to be rolled during rolling modeling can be suppressed, and the flange wave can be effectively suppressed.
 以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form of illustration. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.
 例えば、上記実施の形態では、本発明技術を適用させ、孔型形状の改良を行う対象を第3の孔型69として説明し、特に被圧延材Aのフランジ対応部6の圧延造形に関して図7を参照して説明したが、本発明の適用範囲はこれに限られるものではない。即ち、第3の孔型69での圧延造形においてフランジ対応部5、6の両方に適用させることは勿論、第2の孔型59の圧延造形にも適用可能である。即ち、図3を参照して説明した孔型59に関しても同様の改良を施し、例えば第1中間圧延で発生するフランジ波の抑制を図ることも可能である。また、当然、第2の孔型59及び第3の孔型69の両方の孔型形状に対して本発明技術を適用しても良い。あるいは、厚み圧下を主体とする第2の孔型59および第3の孔型69に関して、第2の孔型59を幅方向の両端部が開放された孔型形状とし、第3の孔型69を爪高さの成形を同時に行う孔型形状とした場合についても、同様の改良を適用することが可能である。更には、粗圧延を行う第1の孔型に適用しても良い。 For example, in the above-described embodiment, the subject to which the technique of the present invention is applied and the hole shape is improved is described as the third hole 69, and particularly regarding the rolling shaping of the flange corresponding portion 6 of the material A to be rolled, FIG. However, the scope of application of the present invention is not limited to this. That is, in the rolling modeling with the third hole mold 69, the present invention can be applied to both the flange corresponding portions 5 and 6, and can also be applied to the rolling modeling of the second hole mold 59. That is, the same improvement can be applied to the hole mold 59 described with reference to FIG. 3 to suppress, for example, a flange wave generated in the first intermediate rolling. Naturally, the technique of the present invention may be applied to the hole shape of both the second hole mold 59 and the third hole mold 69. Alternatively, with respect to the second hole mold 59 and the third hole mold 69 whose main components are thickness reduction, the second hole mold 59 has a hole shape in which both ends in the width direction are opened, and the third hole mold 69 is provided. The same improvement can be applied to the case where the hole shape is such that the nail height is simultaneously formed. Furthermore, you may apply to the 1st hole type which performs rough rolling.
 また、上記実施の形態では、孔型69’の孔型形状を、傾斜角度の異なる複数のフランジ対向部分100a、100b、100cを有する形状であるとして説明したが、本発明技術の重要な点は、中間圧延を行う孔型において、中立線O近傍のフランジ対向部分100bの傾斜角度θf1を他のフランジ対向部分に比べ大きい角度とし、中立線O近傍で被圧延材Aに作用する圧縮応力を低減させることにある。このような観点から、本発明技術において、中間圧延機の孔型を傾斜角度の異なる複数のフランジ対向部分を有する形状として構成する場合に、必ずしも図7に示すような3つのフランジ対向部分とする必要は無く、中立線O近傍のフランジ対向部分100bの傾斜角度θf1が他のフランジ対向部分に比べ大きい角度となっていれば、傾斜角度の異なるフランジ対向部分はいくつであっても良い。即ち、例えば、図10に示すように、中間圧延を行う孔型が、傾斜角度の異なる4以上のフランジ対向部分を有するように構成されていても良い。 In the above embodiment, the hole shape of the hole mold 69 ′ has been described as a shape having a plurality of flange facing portions 100a, 100b, and 100c having different inclination angles, but the important point of the technology of the present invention is that In the hole mold for performing intermediate rolling, the inclination angle θf1 of the flange facing portion 100b in the vicinity of the neutral line O is set to a larger angle than that of other flange facing portions, and the compressive stress acting on the material A to be rolled is reduced in the vicinity of the neutral line O. There is to make it. From this point of view, in the technique of the present invention, when the hole shape of the intermediate rolling mill is configured as a shape having a plurality of flange facing portions having different inclination angles, the three flange facing portions as shown in FIG. There is no need, and as long as the inclination angle θf1 of the flange facing portion 100b in the vicinity of the neutral line O is larger than that of other flange facing portions, any number of flange facing portions having different inclination angles may be used. That is, for example, as shown in FIG. 10, a hole mold for performing intermediate rolling may be configured to have four or more flange facing portions having different inclination angles.
 また、被圧延材Aのフランジ対応部5、6に対向する孔型部位(即ち、フランジ対向部分100)において、(被圧延材の)腕側の境界部と(被圧延材の)ウェブ側の境界部を結ぶ直線に対して、中立線O近傍のフランジ対向部分より腕側ではフランジ内側方向に凸形状であり、中立線O近傍のフランジ対向部分よりウェブ側ではフランジ外側方向に凸形状であっても良い。 Moreover, in the hole-shaped part (namely, flange opposing part 100) facing the flange corresponding parts 5 and 6 of the material A to be rolled, the boundary part on the arm side (of the material to be rolled) and the web side (of the material to be rolled) With respect to the straight line connecting the boundary portion, it is convex in the flange inner side on the arm side from the flange facing portion near the neutral line O, and is convex in the flange outer direction on the web side from the flange facing portion in the vicinity of the neutral line O. May be.
 具体的には、上記実施の形態において説明した急傾斜部100bを設けたようなフランジ対向部分100の形状については、各フランジ対向部分100a~100cの形状を必ずしも直線形状で構成する必要は無く、フランジ対向部分100a、100b、100cの傾斜角度が上記式(4)~(6)で示したような好適な条件となっていれば、例えば各フランジ対向部分100a~100cの一部又は全部が曲線によって構成されても良い。この場合、急傾斜部100bは、フランジ対向部分100aとの交点、及び、フランジ対向部分100cとの交点で挟まれる範囲として定義され、急傾斜部100bが中立線Oを跨ぐように構成される。
 図8は、本発明の変形例に係る概略説明図であり、フランジ対応部6に対向する箇所近傍の一例を示す概略拡大図である。図8に示すように、本変形例ではフランジ対向部分100a、100cは曲線形状で構成されている。他の実施の形態を含め、リバース圧延を行う工程は、第2フランジ部を少なくとも一つ含むフランジ部(ウェブ側フランジ部とも称す)に接続されるウェブ対応部3と、第3フランジ部を少なくとも一つ含むフランジ部(腕側フランジ部とも称す)に接続される腕対応部9を形成する工程を含むことが好ましい。この場合、本発明に係る孔型は、ウェブ対応部3を形成するためのウェブ対向部分100dと、腕対応部9を形成するための腕対向部分100eとを備えることが好ましい。ここで、孔型は、フランジ対向部分100a(第2フランジ対向部分)を少なくとも一つ含むウェブ側フランジ対向部分群と、フランジ対向部分100c(第3フランジ対向部分)を少なくとも一つ含む腕側フランジ対向部分群とを備えることが好ましい。ここで、ウェブ側フランジ対向部分群とウェブ対向部分100dとの境界をPa、腕側フランジ対向部分群と腕対向部分100eとの境界をPcとする。
 図8に示す一例では、腕側の境界部Pc(腕対応部9に対向する腕対向部分100eとフランジ対向部分100cとの境界)とウェブ側の境界部Pa(孔型65において、ウェブ対応部3に対向するウェブ対向部分100dとフランジ対向部分100aとの境界)を結ぶ直線Qに対し、フランジ対向部分100aはフランジ外側方向に凸形状となるような曲線形状であり、フランジ対向部分100cはフランジ内側方向に凸形状となるような曲線形状である。また、本変形例では急傾斜部100bは直線形状として図示したが、当該急傾斜部100bを曲線形状としても良い。
Specifically, with respect to the shape of the flange facing portion 100 provided with the steeply inclined portion 100b described in the above embodiment, the shapes of the flange facing portions 100a to 100c do not necessarily have to be linear. If the inclination angles of the flange facing portions 100a, 100b, and 100c are in a suitable condition as shown in the above formulas (4) to (6), for example, part or all of the flange facing portions 100a to 100c are curved. It may be constituted by. In this case, the steeply inclined portion 100b is defined as a range between the intersection with the flange facing portion 100a and the intersection with the flange facing portion 100c, and the steeply inclined portion 100b is configured to straddle the neutral line O.
FIG. 8 is a schematic explanatory view according to a modification of the present invention, and is a schematic enlarged view showing an example of the vicinity of a portion facing the flange corresponding portion 6. As shown in FIG. 8, in this modification, the flange facing portions 100a and 100c are configured in a curved shape. The process of performing reverse rolling, including other embodiments, includes at least a web corresponding portion 3 connected to a flange portion (also referred to as a web side flange portion) including at least one second flange portion, and a third flange portion. It is preferable to include a step of forming an arm corresponding portion 9 connected to a flange portion (also referred to as an arm side flange portion) including one. In this case, the hole mold according to the present invention preferably includes a web facing portion 100 d for forming the web corresponding portion 3 and an arm facing portion 100 e for forming the arm corresponding portion 9. Here, the hole type includes a web side flange facing portion group including at least one flange facing portion 100a (second flange facing portion) and an arm side flange including at least one flange facing portion 100c (third flange facing portion). It is preferable to provide an opposing portion group. Here, the boundary between the web side flange facing portion group and the web facing portion 100d is Pa, and the boundary between the arm side flange facing portion group and the arm facing portion 100e is Pc.
In the example shown in FIG. 8, the arm side boundary portion Pc (the boundary between the arm facing portion 100e and the flange facing portion 100c facing the arm corresponding portion 9) and the web side boundary Pa (the web corresponding portion in the hole 65). 3, the flange facing portion 100 a has a curved shape that protrudes outwardly from the flange, and the flange facing portion 100 c has a flange shape with respect to the straight line Q connecting the web facing portion 100 d and the flange facing portion 100 a. The curved shape is convex in the inner direction. In the present modification, the steeply inclined portion 100b is illustrated as a linear shape, but the steeply inclined portion 100b may be curved.
 図8に示すようなフランジ対向部分100a、100cが曲線形状である場合、当該フランジ対向部分100a、100cの傾斜角度θf2、θf3は、水平線に対するフランジ対向部分100a、100cの高さ方向中央部における接線(図8中のQa、Qc)の傾斜角度により定めれば良い。急傾斜部100bが曲線形状である場合は、角度が最大となる接線に基づき傾斜角度を定めれば良い。図8では直線Qおよび接線Qa、Qcを下孔型ロール68で説明したが、上孔型65ロールでも同様に定めれば良い。その上で、フランジ対向部分100a、100b、100cと水平線のなす角度が上孔型ロール65と下孔型ロール68で異なる場合、θf2、θf1、θf3は上孔型ロール65と下孔型ロール68のフランジ対向部分と水平線のなす角度の平均値とすればよい。このように定義された各フランジ対向部分100a~100cの傾斜角度に関しても、上記実施の形態と同様に、上記式(1)~(6)で示したような好適な条件に設定することで、同様の作用効果が得られる。 When the flange facing portions 100a and 100c as shown in FIG. 8 are curved, the inclination angles θf2 and θf3 of the flange facing portions 100a and 100c are tangents at the center in the height direction of the flange facing portions 100a and 100c with respect to the horizontal line. What is necessary is just to determine with the inclination angle of (Qa, Qc in FIG. 8). When the steeply inclined portion 100b has a curved shape, the inclination angle may be determined based on the tangent line that maximizes the angle. In FIG. 8, the straight line Q and the tangent lines Qa and Qc have been described with the lower hole type roll 68, but the upper hole type 65 roll may be determined in the same manner. In addition, when the angle between the flange facing portions 100a, 100b, 100c and the horizontal line is different between the upper hole roll 65 and the lower hole roll 68, θf2, θf1, and θf3 are the upper hole roll 65 and the lower hole roll 68, respectively. What is necessary is just to set it as the average value of the angle which a flange opposing part and a horizontal line make. Regarding the inclination angles of the flange facing portions 100a to 100c defined in this way, as in the above embodiment, by setting to suitable conditions as shown in the above formulas (1) to (6), Similar effects can be obtained.
 即ち、上記実施の形態では、孔型69’の孔型形状を、傾斜角度の異なる複数のフランジ対向部分100a、100b、100cを有する形状であるとして説明し、各部分100a、100b、100cの詳細な形状については言及していない。フランジ対応部5、6の形状は複数の直線又は曲線、あるいはその両方の組み合わせによって構成されれば良く、それに合わせて各部分100a、100b、100cの形状は任意に設計可能である。仮にフランジ対応部5、6に曲線部分が構成されるような場合には、当該曲線部分の傾斜角度はその接線の角度で定義すればよい。 That is, in the above embodiment, the hole shape of the hole mold 69 ′ is described as a shape having a plurality of flange facing portions 100a, 100b, 100c having different inclination angles, and details of the portions 100a, 100b, 100c are described. There is no mention of any special shapes. The shapes of the flange corresponding portions 5 and 6 may be configured by a plurality of straight lines or curves, or a combination of both, and the shapes of the portions 100a, 100b, and 100c can be arbitrarily designed according to the shapes. If a curved portion is formed in the flange corresponding portions 5 and 6, the inclination angle of the curved portion may be defined by the angle of the tangent line.
 また、フランジ対応部が、当該フランジ対応部の表面に沿った方向において厚みが変化するといった厚み分布を有するような製品や、フランジ対応部が中立線近傍において傾斜角度が大きくなるような複数の屈曲部を有する形状からなる製品に対して適用することも非常に有効であり、本発明の範囲に含まれる。フランジ対応部がその表面に沿った方向に厚みの分布を有する場合、ハット形鋼矢板製品の断面効率から、中立線近傍の厚みを相対的に小さくすることが考えられる。このような場合に本発明技術を適用すると、フランジ対向部分100aや100cに比べ、フランジ対向部分100bの傾斜角度が大きいため、フランジ対向部分100bにおけるフランジの延伸が、従来の孔型形状よりも大きくなりにくく、上記実施の形態と同様もしくはそれ以上の作用効果が得られる。また、製品形状においてフランジが中立線近傍において傾斜角度が大きくなるように屈曲している鋼矢板製品についても、図7や図8に示す屈曲形状での圧延状態を製品形状に適用できるため、非常に有用である。 In addition, the flange-corresponding part has a thickness distribution in which the thickness changes in the direction along the surface of the flange-corresponding part, or a plurality of bends in which the flange-corresponding part has a large inclination angle near the neutral line. It is very effective to apply to a product having a shape having a portion, and is included in the scope of the present invention. When the flange-corresponding portion has a thickness distribution in the direction along the surface, it is conceivable to relatively reduce the thickness in the vicinity of the neutral line from the cross-sectional efficiency of the hat-shaped steel sheet pile product. When the technique of the present invention is applied in such a case, the flange-facing portion 100b has a larger inclination angle than the flange-facing portions 100a and 100c. Therefore, the flange extension at the flange-facing portion 100b is larger than that of the conventional hole shape. It is hard to become, and the effect similar to the said embodiment or more is acquired. In addition, for steel sheet pile products in which the flange is bent so that the inclination angle increases in the vicinity of the neutral line in the product shape, the rolling state in the bent shape shown in FIGS. 7 and 8 can be applied to the product shape. Useful for.
 また、孔型69’の孔型形状において、それぞれのフランジ対向部分100a、100b、100cの境界部は、Rを有しても良い。その場合、各部分100a、100b、100cそれぞれの境界はコーナーRの中間点とすれば良い。 Further, in the hole shape of the hole mold 69 ′, the boundary portions of the flange facing portions 100 a, 100 b, 100 c may have R. In that case, the boundaries of the portions 100a, 100b, and 100c may be intermediate points of the corner R.
 さらには、本発明者らの詳細な検討の結果、従来の孔型69で発生したフランジ波は、フランジ対応部の断面内における波高さのピーク位置が、図4に示す孔型69の中立線Oから高さ方向に孔型深さDの10%の範囲内に含まれていることが明らかとなった。その為、中立線O近傍の急傾斜部100bが直線の場合、図11に示すように、フランジ延伸を低減させる急傾斜部100bは、中立線Oから高さ方向上下に孔型深さDの10%の範囲を含んでいることが望ましい。また、中心線Sのうち、急傾斜部100bにおける線分の中点位置Fcが中立線Oと一致した場合に、上記実施の形態で説明した作用効果が顕著に得られる。なお、孔型深さDとは、孔型を形成する下孔型ロールのフランジ対向部分(100a、100b、100c)全体の鉛直方向高さで定義され、図11に示すように、孔型深さDの上端位置はフランジ対応部と腕対応部との境界の高さ方向上端、下端位置はフランジ対応部とウェブ対応部との境界の高さ方向下端である。 Further, as a result of detailed studies by the present inventors, the flange wave generated in the conventional hole 69 has a peak position of the wave height in the cross section of the flange corresponding portion, and the neutral line of the hole 69 shown in FIG. It became clear that it was included in the range of 10% of the hole mold depth D in the height direction from O. Therefore, when the steeply inclined portion 100b near the neutral line O is a straight line, as shown in FIG. 11, the steeply inclined portion 100b that reduces the flange extension has a hole depth D up and down from the neutral line O in the height direction. It is desirable to include a range of 10%. In addition, when the midpoint position Fc of the line segment in the steeply inclined portion 100b of the center line S coincides with the neutral line O, the functions and effects described in the above embodiment are remarkably obtained. The hole mold depth D is defined by the vertical height of the entire flange facing portion (100a, 100b, 100c) of the pilot hole roll forming the hole mold, and as shown in FIG. The upper end position of the height D is the upper end in the height direction of the boundary between the flange corresponding portion and the arm corresponding portion, and the lower end position is the lower end in the height direction of the boundary between the flange corresponding portion and the web corresponding portion.
 また、中立線O近傍のフランジ対向部分100bが曲線の場合や複数の線分の組みあわせの場合においても、図12に示すように、急傾斜部100b(図中のP1~P2の範囲)は、中立線Oから高さ方向上下において、孔型深さDの10%の範囲を含んでいることが望ましい。これらの場合には、中心線Sのうち、急傾斜部100bに対応する線分において、水平線に対する角度が最大となる位置Fdが中立線Oに一致した場合に前述した効果がさらに顕著である。但し、図12に示すように、位置Fdが、孔型深さDの10%の範囲であれば中立線Oから高さ方向にずれていても本発明の効果が享受できる。これもフランジ対向部分100bが直線の場合と同じ理由である。この場合、最大の傾斜角度の位置における傾斜角度をθf1、フランジ延伸をλ1とすればよい。したがって、これらの場合についても中立線近傍として本発明の範囲に含まれる。 Further, even when the flange facing portion 100b near the neutral line O is a curve or a combination of a plurality of line segments, as shown in FIG. 12, the steeply inclined portion 100b (range P1 to P2 in the figure) It is desirable to include a range of 10% of the hole depth D in the vertical direction from the neutral line O. In these cases, in the line segment corresponding to the steeply inclined portion 100b in the center line S, the above-described effect is more remarkable when the position Fd at which the angle with respect to the horizontal line is maximum coincides with the neutral line O. However, as shown in FIG. 12, if the position Fd is in the range of 10% of the hole depth D, the effect of the present invention can be enjoyed even if the position Fd is deviated from the neutral line O in the height direction. This is also the same reason as that when the flange facing portion 100b is a straight line. In this case, the inclination angle at the position of the maximum inclination angle may be θf1, and the flange extension may be λ1. Therefore, these cases are also included in the scope of the present invention as the vicinity of the neutral line.
 なお、上記実施の形態及び他の実施の形態では、第2フランジ対向部分及び第3フランジ対向部分が第1フランジ対向部分に隣接して配置される場合について説明したが、必ずしもこれらは隣接して配置される必要はない。即ち、第2フランジ対向部分及び第3フランジ対向部分は、第1フランジ対向部分よりも傾斜角度の小さく、それぞれ、第1フランジ対向部分とウェブ対向部分との間、第1フランジ対向部分と腕対向部分との間で、製品形状に応じて設定することもできる。 In the above embodiment and other embodiments, the case where the second flange facing portion and the third flange facing portion are disposed adjacent to the first flange facing portion has been described. However, they are not necessarily adjacent to each other. There is no need to be placed. That is, the second flange facing portion and the third flange facing portion have an inclination angle smaller than that of the first flange facing portion, and are respectively between the first flange facing portion and the web facing portion, and between the first flange facing portion and the arm facing. It can also set between parts according to a product shape.
 また、上記実施の形態及び他の実施の形態では、ハット形鋼矢板を圧延する場合を例に挙げて図示・説明したが、本発明の適用範囲はこれに限られるものではない。即ち、中間圧延においてフランジ波が発生する恐れがある種々の形状のフランジを有する鋼矢板に対して本発明は適用可能である。具体的には、ハット形鋼矢板に加え、U形鋼矢板にも適用することができる。 In the above-described embodiment and other embodiments, the case where the hat-shaped steel sheet pile is rolled is illustrated and described as an example, but the scope of application of the present invention is not limited to this. That is, the present invention is applicable to steel sheet piles having variously shaped flanges that may generate flange waves in intermediate rolling. Specifically, it can be applied to a U-shaped steel sheet pile in addition to a hat-shaped steel sheet pile.
 (実施例1)
 本発明の実施例1として、図7を参照して上記説明した改良孔型69’に相当する孔型を中間圧延孔型(上記実施の形態における第2の孔型及び第3の孔型)に適用し、以下の表1に示す条件1~5で被圧延材の圧延造形を実施した。
 条件1~5に示す孔型の中立線を第1フランジ部が跨ぐように、孔型のフランジ対向部分を3つの部分に屈曲させた構成とした。ここでは、各フランジ対向部分の角度と長さをそれぞれ調整した。また、圧延造形した後の被圧延材のフランジ対応部は、その後段の孔型(上記実施の形態における第4の孔型及び第5の孔型)で平坦化することとした。
Example 1
As Example 1 of the present invention, a hole mold corresponding to the improved hole mold 69 ′ described above with reference to FIG. 7 is an intermediate rolling hole mold (the second hole mold and the third hole mold in the above embodiment). And rolled molding of the material to be rolled was performed under conditions 1 to 5 shown in Table 1 below.
The hole-facing flange-facing portion is bent into three portions so that the first flange portion straddles the hole-type neutral line shown in Conditions 1 to 5. Here, the angle and length of each flange facing portion were adjusted. In addition, the flange-corresponding portion of the material to be rolled after the rolling shaping is flattened by the subsequent hole shape (the fourth hole shape and the fifth hole shape in the above embodiment).
 また、比較例としては、従来の孔型(改良前の孔型69に相当する孔型)を中間圧延孔型に適用し、以下の表1に示す条件6、7で被圧延材の圧延造形を実施した。 Further, as a comparative example, a conventional hole shape (hole shape corresponding to the hole shape 69 before improvement) is applied to the intermediate rolling hole shape, and the rolling shaping of the material to be rolled is performed under conditions 6 and 7 shown in Table 1 below. Carried out.
 条件1~7のそれぞれに示した条件の孔型での圧延造形は複数パスで行い、表1に示すフランジ/ウェブ延伸比λf1/λw、λf2/λw、λf3/λwは複数パスでの圧延造形の1パスあたりの延伸比である。なお、実施例及び比較例において、製造する最終製品としてのハット形鋼矢板製品のフランジ角度θfは48°とした。図9は、本実施例についての説明図であり、実施例に係る第3の孔型での圧延造形の最終パスの様子を示す概略断面図である。なお、図9には、最終製品と同様のフランジ角度θf=48°を有するフランジ対向部分の形状を破線で図示している。表1に示す各符号θf1、θf2、θf3等の値は、図9に示した箇所の値である。 Roll forming with a hole mold under the conditions shown in each of the conditions 1 to 7 is performed by a plurality of passes, and the flange / web stretch ratios λf1 / λw, λf2 / λw, and λf3 / λw shown in Table 1 are formed by a plurality of passes. Is the stretch ratio per pass. In the examples and comparative examples, the flange angle θf of the hat-shaped steel sheet pile product as the final product to be manufactured was set to 48 °. FIG. 9 is an explanatory diagram of the present embodiment, and is a schematic cross-sectional view showing the state of the final pass of the rolling shaping with the third hole mold according to the embodiment. In FIG. 9, the shape of the flange facing portion having the same flange angle θf = 48 ° as that of the final product is shown by a broken line. The values such as the symbols θf1, θf2, and θf3 shown in Table 1 are the values shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各条件1~5においては、孔型に急傾斜部を形成させるに際し、角度θf1、θf2、θf3の値を表1のように変更し、各条件で中間圧延を行った。そして、その後、各条件で圧延造形された被圧延材のフランジ対応部を後段の圧延機にて直線状(平坦形状)に整形し、フランジ波の発生の有無等の形状不良を確認した。 As shown in Table 1, in each of the conditions 1 to 5, when forming the steeply inclined portion in the hole mold, the values of the angles θf1, θf2, and θf3 are changed as shown in Table 1, and intermediate rolling is performed under each condition. It was. And after that, the flange corresponding | compatible part of the to-be-rolled material roll-modeled on each condition was shape | molded in the linear form (flat shape) with the subsequent rolling mill, and shape defects, such as the presence or absence of generation | occurrence | production of a flange wave, were confirmed.
 条件1~5においては、孔型にθf1>θf2、θf1>θf3となる急傾斜部を形成させたため、λf1<λf2、λf1<λf3であり、λf1/λwの値は0.967~1.004となっている。このような条件下では、急傾斜部におけるフランジ延伸が低下しフランジ波の発生が抑制された。条件1~4については、上記式(6)を満たすようにλf1/λwの値は0.967~1.000となっており、中間圧延時からフランジ波の発生は無いことが確認された。また、条件5に関しては、上記式(6)の範囲からは少しはずれたため、中間圧延時に一部のパスで軽微なフランジ波が確認されたものの、後段圧延等を経た製品ではフランジ波は確認されず十分な効果が確認された。 Under conditions 1 to 5, since the steeply inclined portions satisfying θf1> θf2 and θf1> θf3 are formed in the hole mold, λf1 <λf2, λf1 <λf3, and the value of λf1 / λw is 0.967 to 1.004. It has become. Under such conditions, the flange stretching at the steeply inclined portion was reduced and the generation of the flange wave was suppressed. For conditions 1 to 4, the value of λf1 / λw was 0.967 to 1.000 so as to satisfy the above formula (6), and it was confirmed that no flange wave was generated from the time of intermediate rolling. In addition, with respect to the condition 5, since it slightly deviated from the range of the above formula (6), a slight flange wave was confirmed in some passes during the intermediate rolling, but a flange wave was confirmed in the product after the subsequent rolling. Sufficient effects were confirmed.
 一方、条件6(比較例)においては、孔型に急傾斜部を形成させずに圧延造形を行ったため、フランジ延伸λf1>ウェブ延伸λwであり、上記実施の形態で説明した式(6)を満たさないような圧延造形であるため、フランジ波の発生が確認された。
 また、条件7(比較例)では、製品のフランジ厚を1.2mm厚くして、式(6)を満たすようにλf1/λwの値が0.995の条件で圧延を行ったが、条件6と同様に孔型に急傾斜部を形成させずに圧延造形を行ったため、フランジ波の発生が確認された。
 即ち、条件6、7の比較例では、孔型に急傾斜部を形成させず、フランジ部の傾斜角度がどの位置でも一定であるような条件下で圧延造形を行ったため、フランジ部の位置(部位)によって延伸が異なり、フランジ波が発生していた。
 以上のことから、孔型のフランジ対向部分を3つの部分に屈曲させることでフランジ波の抑制を抑え、フランジ厚が薄いサイズの製造が可能となることがわかる。
On the other hand, in condition 6 (comparative example), since rolling shaping was performed without forming the steeply inclined portion in the hole mold, flange stretching λf1> web stretching λw, and the formula (6) described in the above embodiment is Since the rolling modeling was not satisfied, the generation of flange waves was confirmed.
Further, in condition 7 (comparative example), the product was rolled under the condition that the flange thickness of the product was increased to 1.2 mm and the value of λf1 / λw was 0.995 so as to satisfy the formula (6). In the same manner as in the above, the rolling shaping was performed without forming the steeply inclined portion in the hole mold, and hence the generation of the flange wave was confirmed.
That is, in the comparative examples of conditions 6 and 7, since the rolling shaping was performed under the condition that the inclination angle of the flange portion was constant at any position without forming the steeply inclined portion in the hole mold, the position of the flange portion ( The stretch was different depending on the part), and a flange wave was generated.
From the above, it can be seen that bending the hole-facing flange-facing portion into three portions suppresses the suppression of the flange wave and enables the manufacture of a size with a thin flange thickness.
 本発明は、例えばハット形鋼矢板、U形鋼矢板等のフランジを有する鋼矢板の製造技術に適用できる。 The present invention can be applied to a manufacturing technique of a steel sheet pile having a flange such as a hat-shaped steel sheet pile or a U-shaped steel sheet pile.
  1…圧延設備
  3…ウェブ対応部
  5、6…フランジ対応部
  8、9…腕対応部
  10、11…継手対応部
  14、15…爪部
  17…粗圧延機
  18…第1中間圧延機
  19…第2中間圧延機
  30…仕上圧延機
  45…(第1の孔型の)上孔型ロール
  48…(第1の孔型の)下孔型ロール
  49…第1の孔型
  55…(第2の孔型の)上孔型ロール
  58…(第2の孔型の)下孔型ロール
  59…第2の孔型
  65…(第3の孔型の)上孔型ロール
  68…(第3の孔型の)下孔型ロール
  69…第3の孔型
  69’…改良された第3の孔型
  75…(第4の孔型の)上孔型ロール
  78…(第4の孔型の)下孔型ロール
  79…第4の孔型
  85…(第5の孔型の)上孔型ロール
  88…(第5の孔型の)下孔型ロール
  89…第5の孔型
  100…対向部分
  100a~100c…フランジ対向部分
  101a~101c…フランジ対向部分
  A(A1~A5)…被圧延材
  L…圧延ライン
  O…中立線
DESCRIPTION OF SYMBOLS 1 ... Rolling equipment 3 ... Web corresponding part 5, 6 ... Flange corresponding part 8, 9 ... Arm corresponding part 10, 11 ... Joint corresponding part 14, 15 ... Claw part 17 ... Rough rolling mill 18 ... 1st intermediate rolling mill 19 ... Second intermediate rolling mill 30 ... Finishing rolling mill 45 ... (first hole type) upper hole type roll 48 ... (first hole type) lower hole type roll 49 ... first hole type 55 ... (second Upper hole type roll 58 ... (Second hole type) Lower hole type roll 59 ... Second hole type 65 ... (Third hole type) Upper hole type roll 68 ... (Third hole type) Lower hole type roll 69 ... third hole type 69 '... improved third hole type 75 ... (fourth hole type) upper hole type roll 78 ... (fourth hole type) Lower hole type roll 79 ... Fourth hole type 85 ... (Fifth hole type) upper hole type roll 88 ... (Fifth hole type) lower hole type roll 89 ... Fifth hole type 100 ... Pair Portions 100a ~ 100c ... flange facing portion 101a ~ 101c ... flange facing portion A (A1 ~ A5) ... the rolled material L ... rolling line O ... neutral line

Claims (16)

  1. 孔型ロール圧延によって被圧延材からフランジを有する鋼矢板を形成する製造方法であって、
    同一の孔型により前記被圧延材に対してリバース圧延を行う工程を具備し、
    前記リバース圧延を行う工程は、中立線を跨ぐ第1フランジ部と、当該第1フランジ部の両側に配置される第2及び第3フランジ部を形成する工程を含み、
     前記孔型は、前記第1フランジ部を形成するための第1フランジ対向部分と、前記第2フランジ部を形成するための第2フランジ対向部分と、前記第3フランジ部を形成するための第3フランジ対向部分と、を備え、
    水平面に対する、前記第1フランジ対向部分の傾斜角度は、前記第2及び第3フランジ対向部分の傾斜角度よりも大きいことを特徴とする、フランジを有する鋼矢板の製造方法。
    A manufacturing method for forming a steel sheet pile having a flange from a material to be rolled by perforated roll rolling,
    Comprising the step of performing reverse rolling on the material to be rolled with the same hole mold,
    The step of performing the reverse rolling includes a step of forming a first flange portion straddling a neutral line and second and third flange portions disposed on both sides of the first flange portion,
    The hole mold includes a first flange facing portion for forming the first flange portion, a second flange facing portion for forming the second flange portion, and a first flange for forming the third flange portion. 3 flange facing parts,
    The method of manufacturing a steel sheet pile having a flange, wherein an inclination angle of the first flange facing portion with respect to a horizontal plane is larger than an inclination angle of the second and third flange facing portions.
  2. 前記リバース圧延を行う工程は、ウェブ対応部と、腕対応部を形成する工程を含み、
    前記孔型は、前記ウェブ対応部を形成するためのウェブ対向部分と、前記腕対応部を形成するための腕対向部分と、を備え、
    前記孔型は、前記第2フランジ対向部分を少なくとも一つ含むウェブ側フランジ対向部分群と、前記第3フランジ対向部分を少なくとも一つ含む腕側フランジ対向部分群と、を備え、
    前記ウェブ側フランジ対向部分群と前記ウェブ対向部分との境界部と、前記腕側フランジ対向部分群と前記腕対向部分との境界部と、を結ぶ直線に対し、
    前記第2フランジ対向部分は、フランジ外側方向に凸形状であり、
    前記第3フランジ対向部分は、フランジ内側方向に凸形状であることを特徴とする、請求項1に記載のフランジを有する鋼矢板の製造方法。
    The step of performing the reverse rolling includes a step of forming a web corresponding part and an arm corresponding part,
    The hole mold includes a web-facing portion for forming the web-corresponding portion and an arm-facing portion for forming the arm-corresponding portion,
    The hole type includes a web side flange facing portion group including at least one second flange facing portion, and an arm side flange facing portion group including at least one third flange facing portion.
    For a straight line connecting a boundary portion between the web side flange facing portion group and the web facing portion, and a boundary portion between the arm side flange facing portion group and the arm facing portion,
    The second flange facing portion is convex in the flange outer direction,
    The method for manufacturing a steel sheet pile having a flange according to claim 1, wherein the third flange facing portion has a convex shape in a flange inner direction.
  3. 前記孔型においては、前記第1フランジ部におけるフランジ延伸λf1が、前記第2フランジ部及び第3フランジ部におけるフランジ延伸λf2、λf3よりも小さい圧延が行われることを特徴とする、請求項1又は2に記載のフランジを有する鋼矢板の製造方法。 In the hole type, rolling is performed such that the flange extension λf1 in the first flange portion is smaller than the flange extensions λf2 and λf3 in the second flange portion and the third flange portion. A method for producing a steel sheet pile having the flange according to 2.
  4. 前記第1フランジ部、第2フランジ部、及び、第3フランジ部を形成する工程は、中間圧延工程であることを特徴とする、請求項1~3のいずれか一項に記載のフランジを有する鋼矢板の製造方法。 The flange according to any one of claims 1 to 3, wherein the step of forming the first flange portion, the second flange portion, and the third flange portion is an intermediate rolling step. Manufacturing method of steel sheet pile.
  5. 前記孔型は、幅方向の両端部が開放された孔型形状を有することを特徴とする、請求項4に記載のフランジを有する鋼矢板の製造方法。 The method of manufacturing a steel sheet pile having a flange according to claim 4, wherein the hole mold has a hole shape in which both end portions in the width direction are opened.
  6. 前記第1フランジ部、第2フランジ部、及び、第3フランジ部を形成する工程により被圧延材に形成された屈曲形状のフランジ対応部は、当該工程の後段孔型での圧延により所望の平坦形状に圧延造形されることを特徴とする、請求項1~5のいずれか一項に記載のフランジを有する鋼矢板の製造方法。 The bent flange-corresponding portion formed on the material to be rolled by the step of forming the first flange portion, the second flange portion, and the third flange portion is formed into a desired flat shape by rolling in the latter-stage hole mold of the step. The method for producing a steel sheet pile having a flange according to any one of claims 1 to 5, wherein the steel sheet pile is formed into a shape by rolling.
  7. 前記孔型においては、前記第1フランジ部におけるフランジ延伸λf1が、ウェブ延伸λw以下となるように圧延が行われることを特徴とする、請求項1~6のいずれか一項に記載のフランジを有する鋼矢板の製造方法。 The flange according to any one of claims 1 to 6, wherein in the hole mold, rolling is performed so that a flange stretch λf1 in the first flange portion is equal to or less than a web stretch λw. The manufacturing method of the steel sheet pile which has.
  8. 前記鋼矢板がハット形鋼矢板であることを特徴とする、請求項1~7のいずれか一項に記載のフランジを有する鋼矢板の製造方法。 The method for producing a steel sheet pile having a flange according to any one of claims 1 to 7, wherein the steel sheet pile is a hat-shaped steel sheet pile.
  9. 孔型ロール圧延によって被圧延材からフランジを有する鋼矢板を形成する製造設備であって、
    同一の孔型により前記被圧延材に対してリバース圧延を行う圧延機を具備し、
    前記リバース圧延を行う圧延機は、中立線を跨ぐ第1フランジ部と、当該第1フランジ部の両側に配置される第2及び第3フランジ部を形成する孔型を含み、
    当該孔型は、前記第1フランジ部を形成するための第1フランジ対向部分と、前記第2フランジ部を形成するための第2フランジ対向部分と、前記第3フランジ部を形成するための第3フランジ対向部分と、を備え、
    水平面に対する、前記第1フランジ対向部分の傾斜角度は、前記第2及び第3フランジ対向部分の傾斜角度よりも大きいことを特徴とする、フランジを有する鋼矢板の製造設備。
    A manufacturing facility for forming a steel sheet pile having a flange from a material to be rolled by perforated roll rolling,
    It comprises a rolling mill that performs reverse rolling on the material to be rolled with the same hole shape,
    The rolling mill that performs the reverse rolling includes a first flange portion that straddles a neutral line, and a hole mold that forms second and third flange portions disposed on both sides of the first flange portion,
    The hole mold includes a first flange facing portion for forming the first flange portion, a second flange facing portion for forming the second flange portion, and a first flange for forming the third flange portion. 3 flange facing parts,
    The equipment for manufacturing a steel sheet pile having a flange, wherein an inclination angle of the first flange facing portion with respect to a horizontal plane is larger than an inclination angle of the second and third flange facing portions.
  10. 前記リバース圧延を行う圧延機は、ウェブ対応部と、腕対応部を形成する孔型を含み、
    前記孔型は、前記ウェブ対応部を形成するためのウェブ対向部分と、前記腕対応部を形成するための腕対向部分と、を備え、
    前記孔型は、前記第2フランジ対向部分を少なくとも一つ含むウェブ側フランジ対向部分群と、前記第3フランジ対向部分を少なくとも一つ含む腕側フランジ対向部分群と、を備え、
    前記ウェブ側フランジ対向部分群と前記ウェブ対向部分との境界部と、前記腕側フランジ対向部分群と前記腕対向部分との境界部と、を結ぶ直線に対し、
    前記第2フランジ対向部分は、フランジ外側方向に凸形状であり、
    前記第3フランジ対向部分は、フランジ内側方向に凸形状であることを特徴とする、請求項9に記載のフランジを有する鋼矢板の製造設備。
    The rolling mill that performs the reverse rolling includes a web-corresponding part and a hole mold that forms an arm-corresponding part,
    The hole mold includes a web-facing portion for forming the web-corresponding portion and an arm-facing portion for forming the arm-corresponding portion,
    The hole type includes a web side flange facing portion group including at least one second flange facing portion, and an arm side flange facing portion group including at least one third flange facing portion.
    For a straight line connecting a boundary portion between the web side flange facing portion group and the web facing portion, and a boundary portion between the arm side flange facing portion group and the arm facing portion,
    The second flange facing portion is convex in the flange outer direction,
    The equipment for manufacturing a steel sheet pile having a flange according to claim 9, wherein the third flange facing portion has a convex shape in the flange inner direction.
  11. 前記孔型においては、前記第1フランジ部におけるフランジ延伸λf1が、前記第2フランジ部及び第3フランジ部におけるフランジ延伸λf2、λf3よりも小さいことを特徴とする、請求項9又は10に記載のフランジを有する鋼矢板の製造設備。 The flange type λf1 in the first flange portion is smaller than the flange extensions λf2 and λf3 in the second flange portion and the third flange portion in the hole mold, respectively. Equipment for manufacturing steel sheet piles with flanges.
  12. 前記孔型は、中間圧延機に設けられる孔型であることを特徴とする、請求項9~11のいずれか一項に記載のフランジを有する鋼矢板の製造設備。 The steel sheet pile manufacturing equipment having a flange according to any one of claims 9 to 11, wherein the hole mold is a hole mold provided in an intermediate rolling mill.
  13. 前記孔型は、幅方向の両端部が開放された孔型形状を有することを特徴とする、請求項12に記載のフランジを有する鋼矢板の製造設備。 13. The steel sheet pile manufacturing equipment having a flange according to claim 12, wherein the hole mold has a hole shape in which both end portions in the width direction are opened.
  14. 前記第1フランジ部、第2フランジ部、及び、第3フランジ部を形成する孔型での圧延により被圧延材に形成された屈曲形状のフランジ対応部を所望の平坦形状に圧延造形する後段孔型を備えることを特徴とする、請求項9~13のいずれか一項に記載のフランジを有する鋼矢板の製造設備。 Subsequent holes for rolling and shaping the bent flange-corresponding part formed on the material to be rolled into a desired flat shape by rolling with a hole mold that forms the first flange part, the second flange part, and the third flange part. The steel sheet pile manufacturing equipment having a flange according to any one of claims 9 to 13, further comprising a mold.
  15. 前記孔型においては、前記第1フランジ部におけるフランジ延伸λf1が、ウェブ延伸λw以下であることを特徴とする、請求項9~14のいずれか一項に記載のフランジを有する鋼矢板の製造設備。 The equipment for producing a steel sheet pile having a flange according to any one of claims 9 to 14, wherein in the hole mold, a flange extension λf1 in the first flange portion is a web extension λw or less. .
  16. 前記鋼矢板がハット形鋼矢板であることを特徴とする、請求項9~15のいずれか一項に記載のフランジを有する鋼矢板の製造設備。 The steel sheet pile manufacturing equipment having a flange according to any one of claims 9 to 15, wherein the steel sheet pile is a hat-shaped steel sheet pile.
PCT/JP2018/014214 2017-04-03 2018-04-03 Method and equipment for manufacturing flanged steel sheet piling WO2018186379A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018554413A JP6493636B2 (en) 2017-04-03 2018-04-03 Manufacturing method and manufacturing equipment for steel sheet pile with flange
CN201880021446.9A CN110475623A (en) 2017-04-03 2018-04-03 The manufacturing method and manufacturing equipment of steel sheet pile with flange
EP18781109.6A EP3603832A1 (en) 2017-04-03 2018-04-03 Method and equipment for manufacturing flanged steel sheet piling
US16/495,033 US20200269294A1 (en) 2017-04-03 2018-04-03 Production method and production facility for steel sheet pile with flanges
PH12019502224A PH12019502224A1 (en) 2017-04-03 2019-09-26 Production method and production facility for steel sheet pile with flanges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073578 2017-04-03
JP2017-073578 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018186379A1 true WO2018186379A1 (en) 2018-10-11

Family

ID=63712442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014214 WO2018186379A1 (en) 2017-04-03 2018-04-03 Method and equipment for manufacturing flanged steel sheet piling

Country Status (6)

Country Link
US (1) US20200269294A1 (en)
EP (1) EP3603832A1 (en)
JP (1) JP6493636B2 (en)
CN (1) CN110475623A (en)
PH (1) PH12019502224A1 (en)
WO (1) WO2018186379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140728A1 (en) * 2020-01-10 2021-07-15 Jfeスチール株式会社 Method of producing steel sheet pile, and rolling equipment line for producing steel sheet pile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210008A (en) * 2020-03-10 2022-10-18 日本制铁株式会社 Manufacturing method of hat-shaped steel sheet pile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044101U (en) 1983-08-30 1985-03-28 三菱電機株式会社 Servo system protection circuit
JPH08224634A (en) 1994-12-07 1996-09-03 Profilarbed Sa Method of rolling z-section sheet pile
JP2004076580A (en) 2003-08-27 2004-03-11 Nippon Steel Corp Rolled steel sheet-pile
JP2006088176A (en) 2004-09-22 2006-04-06 Jfe Steel Kk Method for manufacturing hat shape steel sheet pile
JP2016203219A (en) * 2015-04-24 2016-12-08 新日鐵住金株式会社 Manufacturing method of hat-shaped steel sheet pile, and rough rolling roll
JP2017073578A (en) 2014-01-10 2017-04-13 株式会社日立製作所 Management apparatus, network system, and communication control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322317B1 (en) * 1995-09-29 2002-06-24 고지마 마따오 Asymmetrical steel pile plate and its manufacturing method
CN102240891A (en) * 2011-05-23 2011-11-16 武汉钢铁(集团)公司 Method for producing hot-rolling U-shaped steel sheet pile with residual stress less than 100 MPa
PL2753410T3 (en) * 2011-09-07 2017-01-31 Kompoferm Gmbh Method for improving flame resistance in filter systems
JP6225516B2 (en) * 2013-07-08 2017-11-08 新日鐵住金株式会社 Rolling method and rolling machine for rolled material having asymmetric shape
JP6044558B2 (en) * 2014-01-31 2016-12-14 Jfeスチール株式会社 U-shaped steel sheet pile rough rolling shaping mold and U-shaped steel sheet pile rolling method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044101U (en) 1983-08-30 1985-03-28 三菱電機株式会社 Servo system protection circuit
JPH08224634A (en) 1994-12-07 1996-09-03 Profilarbed Sa Method of rolling z-section sheet pile
JP2004076580A (en) 2003-08-27 2004-03-11 Nippon Steel Corp Rolled steel sheet-pile
JP2006088176A (en) 2004-09-22 2006-04-06 Jfe Steel Kk Method for manufacturing hat shape steel sheet pile
JP2017073578A (en) 2014-01-10 2017-04-13 株式会社日立製作所 Management apparatus, network system, and communication control method
JP2016203219A (en) * 2015-04-24 2016-12-08 新日鐵住金株式会社 Manufacturing method of hat-shaped steel sheet pile, and rough rolling roll

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140728A1 (en) * 2020-01-10 2021-07-15 Jfeスチール株式会社 Method of producing steel sheet pile, and rolling equipment line for producing steel sheet pile
JPWO2021140728A1 (en) * 2020-01-10 2021-07-15
JP2022031515A (en) * 2020-01-10 2022-02-18 Jfeスチール株式会社 Manufacturing method for steel sheet pile and rolling equipment line for manufacturing steel sheet pile
JP7031788B2 (en) 2020-01-10 2022-03-08 Jfeスチール株式会社 Steel sheet pile manufacturing method and rolling equipment line for steel sheet pile manufacturing
JP7127729B2 (en) 2020-01-10 2022-08-30 Jfeスチール株式会社 Steel sheet pile manufacturing method and rolling equipment train for steel sheet pile manufacturing

Also Published As

Publication number Publication date
EP3603832A1 (en) 2020-02-05
JPWO2018186379A1 (en) 2019-04-11
PH12019502224A1 (en) 2020-06-29
US20200269294A1 (en) 2020-08-27
JP6493636B2 (en) 2019-04-03
CN110475623A (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP4453771B2 (en) T-section steel manufacturing method and rolling equipment line
JP6493636B2 (en) Manufacturing method and manufacturing equipment for steel sheet pile with flange
JP2019111584A (en) Rolled H-shaped steel
JP6434461B2 (en) Manufacturing method of H-section steel
JP6874597B2 (en) Manufacturing method of steel sheet pile with flange
JP6536415B2 (en) H-shaped steel manufacturing method
JP6724672B2 (en) Method for manufacturing H-section steel
JP6686809B2 (en) Method for manufacturing H-section steel
JP6638506B2 (en) Manufacturing method of molding die and H-section steel
JP6565691B2 (en) H-section steel manufacturing method and H-section steel products
JP6614339B2 (en) Manufacturing method of H-section steel
JP6855885B2 (en) H-section steel manufacturing method and H-section steel products
WO2019088225A1 (en) H-shaped steel manufacturing method
JP6973146B2 (en) Manufacturing method of H-section steel
JP6501047B1 (en) H-shaped steel manufacturing method
JP6816483B2 (en) Manufacturing method of H-section steel
JP6531653B2 (en) H-shaped steel manufacturing method
JP6699415B2 (en) Method for manufacturing H-section steel
JP2017205785A (en) H-shaped steel manufacturing method
JP6703306B2 (en) Method for manufacturing H-section steel
JP6447285B2 (en) Manufacturing method of H-section steel
JP5929542B2 (en) Rolling method and rolling equipment for channel steel
JP2023113156A (en) Method for manufacturing hat-shaped steel sheet pile
JP2017121655A (en) Method for manufacturing h-section steel and h-section steel product
JPWO2019156078A1 (en) Manufacturing method of H-section steel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018554413

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018781109

Country of ref document: EP

Effective date: 20191025