WO2018186356A1 - Organic electroluminescent element, illumination device, display device, and transition metal complex - Google Patents

Organic electroluminescent element, illumination device, display device, and transition metal complex Download PDF

Info

Publication number
WO2018186356A1
WO2018186356A1 PCT/JP2018/014132 JP2018014132W WO2018186356A1 WO 2018186356 A1 WO2018186356 A1 WO 2018186356A1 JP 2018014132 W JP2018014132 W JP 2018014132W WO 2018186356 A1 WO2018186356 A1 WO 2018186356A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
transition metal
organic
represent
Prior art date
Application number
PCT/JP2018/014132
Other languages
French (fr)
Japanese (ja)
Inventor
西関 雅人
山田 哲也
康生 宮田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019511234A priority Critical patent/JPWO2018186356A1/en
Publication of WO2018186356A1 publication Critical patent/WO2018186356A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic electroluminescent element, an illumination device, a display device, a transition metal complex, an organic electroluminescent element material, and an organic electroluminescent element material composition, and more particularly, has a sufficiently short-wave emission as a blue phosphorescent element.
  • the present invention relates to an organic electroluminescence element and the like having high luminous efficiency, low driving voltage, and excellent durability.
  • ELD electroluminescence display
  • an inorganic electroluminescence element and an organic electroluminescence element (hereinafter also referred to as an organic EL element) can be given.
  • Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it is attracting attention from the viewpoints of space saving and portability.
  • Organic EL elements that use phosphorescence emission can in principle achieve light emission efficiency about 4 times that of elements that use previous fluorescence emission. Research and development of electrodes and electrodes are conducted all over the world.
  • the phosphorescence emission method is a method having a very high potential, but in an organic EL device using phosphorescence emission, a method for controlling the position of the emission center, in particular, recombination inside the emission layer, How to stably emit light and how to improve the light emitting property of the phosphorescent material itself is an important technical issue from the viewpoint of the efficiency and life of the device.
  • iridium complexes having ligands such as phenylpyrazole, imidazophenanthridine, and phenylimidazole are known. It is very difficult to satisfy all of light emission and high durability at the same time.
  • a metal complex having phenylimidazole as a ligand is a light emitting material having a relatively short emission wavelength (see, for example, Patent Document 1 and Patent Document 2).
  • the present invention has been made in view of the above-described problems and situations, and the problem to be solved is that the light emission efficiency is high, the driving voltage is low, and the durability is high, while having a sufficiently short-wave emission as a blue phosphorescent element. It is to provide an excellent organic electroluminescence device. Moreover, it is providing the illuminating device and display apparatus with which it was comprised. Furthermore, it is providing the phosphorescence-emitting transition metal complex which can make it possible, the organic electroluminescent element material containing the said phosphorescent metal complex, and organic electroluminescent element material composition.
  • the emission wavelength was shortened by introducing an electron-withdrawing substituent into the phenylimidazole skeleton of a metal complex having phenylimidazole as a ligand, but this emission wavelength was shortened.
  • the light-emitting device is energized even though the light-emitting quantum efficiency (PLQE; light-emitting efficiency by photoexcitation) of the dopant alone measured in a solution state or a solid state is good.
  • PQE light-emitting quantum efficiency by photoexcitation
  • the energy level of the molecular orbital of the metal complex was greatly reduced by the electron-withdrawing group introduced for shortening the wave length, so that the adjacent hole transport layer
  • the level difference between the highest occupied orbital (hereinafter also referred to as HOMO) of the host material in which the metal complex is dispersed in the hole transport material or the light emitting layer and the HOMO level of the metal complex is enlarged.
  • HOMO highest occupied orbital
  • the introduction of the specific hole-transporting substituent disclosed in the present invention promotes hole injection into the light-emitting dopant, and exciton generation due to charge recombination on the metal complex occurs.
  • the light emission efficiency is improved by being promoted, and at the same time, the emission lifetime of the light emitting element can be extended by suppressing the inflow of excessive holes to the adjacent layer of the light emitting layer, which causes a decrease in the light emission lifetime. .
  • the present inventors examined the expansion of applicability of the technical idea of the present invention, and not only a metal complex having phenylimidazole as a ligand, but also a transition having a partial structure represented by the following general formula (2) It has been found that the same effects can be obtained in general metal complexes, and it has been found that the above-mentioned problems can be solved by an organic electroluminescence element containing a phosphorescent transition metal complex represented by the general formula (1).
  • the present inventors have examined the expansion of applicability of the technical idea of the present invention, and are directly bonded to the transition metal as well as the transition metal complex having the partial structure represented by the general formula (2). If the aromatic ring satisfies two specific requirements, the same effect can be obtained for all phosphorescent transition metal complexes consisting of a central metal and a plurality of aromatic ring ligands directly bonded to the central metal. I found out that
  • An organic electroluminescence device containing a phosphorescent transition metal complex in at least one organic layer including a light emitting layer,
  • the transition metal complex has a ligand in which a plurality of aromatic rings are directly bonded to a transition metal as a central metal, and satisfies the following requirements (1) and (2): Electroluminescence element.
  • At least one of the plurality of aromatic rings directly bonded to the transition metal has an electron withdrawing group.
  • At least one of the plurality of aromatic rings directly bonded to the transition metal is a positive chain containing a nitrogen atom and an aromatic ring which are conjugated with the aromatic ring and are connected by a single bond. It has a pore transporting partial structure.
  • any one of the binding orbitals from the highest occupied orbital (HOMO) to the fifth lower energy level (HOMO-5) is the binding orbital.
  • the absolute value of the difference between the energy level of the highest occupied orbital and the binding orbital has an electron density distribution in which 80% or more of the upper electrons exist on the hole transporting partial structure 2.
  • the absolute value of the difference in emission maximum wavelength calculated by molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex is 10 nm or less. 3.
  • the hole transporting partial structure containing a nitrogen atom and an aromatic ring each may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxazin-10-yl group, Item 4.
  • the organic electroluminescence device according to any one of Items 1 to 3, which is selected from a phenothiazin-10-yl group, a dihydrophenazin-5-yl group, and a dihydroacridin-10-yl group. .
  • An organic luminescence device having at least one organic layer including a light emitting layer, wherein at least one of the organic layers contains a transition metal complex represented by the following general formula (1):
  • the organic electroluminescent element according to any one of items 1 to 7.
  • Ring B represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle formed with C ⁇ C.
  • Ring C represents a 5- or 6-membered aromatic heterocyclic ring formed with C ⁇ N.
  • Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
  • nb represents an integer of 0 to 3
  • nc represents an integer of 0 to 2. 1 ⁇ nb + nc ⁇ 4.
  • HTG represents a hole transporting partial structure including a nitrogen atom and an aromatic ring.
  • L represents an arylene group having 6 to 10 carbon atoms, and L is bonded to ring B or ring C, but conjugation with ring B or ring C is not continuous.
  • n1 represents 1 or 2.
  • n2 represents 1 or 2.
  • M represents a transition metal of group 8 to 10 in the periodic table.
  • Each of the hole transporting partial structures containing a nitrogen atom and an aromatic ring represented by HTG may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxazine- 9.
  • the organic electroluminescence device which is selected from a 10-yl group, a phenothiazin-10-yl group, a dihydrophenazin-5-yl group and a dihydroacridin-10-yl group.
  • the electron-withdrawing group represented by Rb and Rc is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group.
  • Item 11 The organic electroluminescence device according to any one of Items 8 to 10, wherein the aromatic heterocycle represented by the ring C represents an azole ring.
  • Item 12 The organic electroluminescent element according to any one of Items 8 to 11, wherein the aromatic heterocycle represented by the ring C represents an imidazole ring or a triazole ring.
  • Ring A represents a divalent arylene group having 6 to 10 carbon atoms.
  • Ring B represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle formed with C ⁇ C.
  • Ring C represents a 5-membered aromatic heterocycle formed with N—C ⁇ N.
  • Ra represents a substitutable substituent.
  • na represents an integer of 0 to 3.
  • Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
  • nb represents an integer of 0 to 3
  • nc represents 0 or 1. 1 ⁇ nb + nc ⁇ 4.
  • Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
  • nd and ne represent 0 or 1.
  • L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms.
  • k represents 0 or 1.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
  • L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
  • m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other.
  • x represents any of 4, 5 and 6.
  • p, q and r each represents 0 or 1; 1 ⁇ p + q + r ⁇ 2.
  • M represents a transition metal of group 8 to 10 in the periodic table.
  • R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
  • Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
  • Ring C represents a 5-membered aromatic heterocycle formed with N—C ⁇ N.
  • Ra represents a substitutable substituent
  • na represents an integer of 0 to 3.
  • Rb and Rc each represents an electron-withdrawing substituent that can be substituted for ring B and ring C.
  • nb represents an integer of 0 to 3
  • nc represents 0 or 1. 1 ⁇ nb + nc ⁇ 4.
  • Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
  • L 1 , L 2 and L 3 each represent a divalent arylene group having 6 to 10 carbon atoms.
  • k represents 0 or 1;
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 each represents an aromatic group having 6 to 10 carbon atoms.
  • L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
  • m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other.
  • x represents 4, 5, or 6.
  • X 1 and X 2 represent a carbon atom, and the other represents a nitrogen atom.
  • Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
  • Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
  • Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
  • nb represents an integer of 0 to 3
  • nc represents 0 or 1. 1 ⁇ nb + nc ⁇ 4.
  • Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
  • L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms.
  • k represents 0 or 1.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
  • L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
  • m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other.
  • x represents 4, 5, or 6.
  • Ra represents a substitutable substituent
  • na represents an integer of 0 to 3.
  • Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
  • nb represents an integer of 0 to 3
  • nc represents 0 or 1. 1 ⁇ nb + nc ⁇ 4.
  • Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
  • nd and ne represent 0 or 1.
  • L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms.
  • k represents 0 or 1.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
  • L 4 , L 5 , and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom, and a sulfur atom, and connect adjacent aromatic rings.
  • m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other.
  • x represents 4, 5, or 6.
  • R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
  • the organic electroluminescent element according to any one of items 1 to 16.
  • a display device comprising the organic electroluminescence element according to any one of items 1 to 20.
  • An organic electroluminescence device according to any one of items 1 to 20 is provided.
  • a phosphorescent transition metal complex having a ligand in which a plurality of aromatic rings are directly bonded to a transition metal as a central metal characterized by satisfying the following four requirements Complex.
  • At least one of the plurality of aromatic rings directly bonded to the transition metal has an electron withdrawing group.
  • At least one of the plurality of aromatic rings directly bonded to the transition metal is a positive chain containing a nitrogen atom and an aromatic ring which are conjugated with the aromatic ring and are connected by a single bond. It has a hole transporting partial structure.
  • one of the binding orbitals from the highest occupied orbital (HOMO) to the fifth lower energy level (HOMO-5) is an electron on the binding orbital.
  • An organic electroluminescent element material composition comprising the transition metal complex according to item 23.
  • an organic electroluminescence device having high emission efficiency, low driving voltage and excellent durability while having sufficiently short-wave light emission as a blue phosphorescent device.
  • a lighting device and a display device including the same can be provided.
  • the phosphorescent transition metal complex which can make it possible, the organic electroluminescent element material and organic electroluminescent element material composition containing the said phosphorescent metal complex can be provided.
  • the emission wavelength can be shortened.
  • a hole transporting group it is considered that the emission wavelength can be suppressed and the hole injection into the dopant can be promoted. For this reason, it is considered that the light emission efficiency can be improved, the life deterioration due to excessive inflow of holes into the adjacent layer of the light emitting layer, which causes the light emission life to be reduced, can be improved, and the driving voltage can be kept low.
  • Schematic diagram of the display unit of the display device of FIG. 1 is a circuit diagram of a pixel of the display device of FIG.
  • Schematic diagram of a passive matrix display device Schematic of lighting device Cross section of the lighting device
  • the organic electroluminescence device of the present invention is an organic electroluminescence device containing a phosphorescent transition metal complex in at least one organic layer including a light emitting layer, wherein the transition metal complex is a central metal. It has a ligand in which a plurality of aromatic rings are directly bonded to the transition metal, and satisfies the requirements (1) and (2). This feature is a technical feature common to or corresponding to the claimed invention.
  • the transition metal complex has a lower energy level (HOMO-5) lower than the highest occupied orbital (HOMO) in the evaluation by molecular orbital calculation.
  • HOMO-5 lower than the highest occupied orbital (HOMO) in the evaluation by molecular orbital calculation.
  • HOMO highest occupied orbital
  • the absolute value of the difference between the energy level of the orbit and the binding orbit is preferably less than 0.7 eV.
  • the absolute value of the difference in emission maximum wavelength calculated by molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex is 10 nm. The following is preferable.
  • the hole transporting partial structure containing a nitrogen atom and an aromatic ring may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxy group, respectively. It is preferably selected from a sadin-10-yl group, a phenothiazin-10-yl group, a dihydrophenazin-5-yl group and a dihydroacridin-10-yl group.
  • the electron withdrawing group is preferably selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group.
  • At least one of the plurality of aromatic rings directly bonded to the transition metal is an azole ring.
  • At least one of the plurality of aromatic rings directly bonded to the transition metal is an imidazole ring or a triazole ring.
  • An embodiment of the present invention is an organic luminescence device having at least one organic layer including a light emitting layer, from the viewpoint of manifesting the effects of the present invention, wherein at least one of the organic layers is represented by the general formula (1). It is preferable to contain the transition metal complex represented by these.
  • the phosphorescent transition metal complex having the partial structure represented by the general formula (2) is easy to synthesize the ligand constituting the transition metal complex. From the viewpoints of the properties and ease of synthesis of the transition metal complex.
  • each of the hole transporting partial structures containing a nitrogen atom and an aromatic ring represented by HTG may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxy group. It is preferably selected from a sadin-10-yl group, a phenothiazin-10-yl group, a dihydrophenazin-5-yl group and a dihydroacridin-10-yl group.
  • the electron withdrawing group represented by Rb and Rc is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group. Is preferred.
  • ring C is a 5-membered nitrogen-containing heteroaromatic ring having 3 or less nitrogen atoms from the viewpoint of robustness of the compound. It is preferable. That is, ring C is preferably an azole ring. More preferably, it is an imidazole ring or a triazole ring.
  • the ring C is preferably an azole ring, and more specifically,
  • the phosphorescent transition metal complex represented by the formula (2) is preferably a phosphorescent transition metal complex having a partial structure represented by the general formula (3).
  • the phosphorescent transition metal complex represented by the general formula (1) is a phosphorescent transition metal complex having a partial structure represented by the general formula (3). preferable.
  • the ring B is a 6-membered aromatic from the viewpoint of luminescence and fastness of the compound. It is preferably a hydrocarbon ring or a nitrogen-containing heteroaromatic ring. That is, the phosphorescent transition metal complex having the partial structure represented by the general formula (2) or (3) is the phosphorescent transition metal complex having the partial structure represented by the general formula (4). A metal complex is preferred.
  • the phosphorescent transition metal complex represented by the general formula (1) is a phosphorescent transition metal complex having a partial structure represented by the general formula (4). preferable.
  • the phosphorescent transition metal complex having the partial structure represented by the general formula (4) is phosphorescent having the partial structure represented by either the general formula (5) or (6).
  • a luminescent transition metal complex is preferred.
  • the electron-withdrawing group represented by Rb and Rc is a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, or a fluorinated group. It is preferably selected from alkyl groups.
  • the transition metal is preferably iridium.
  • the organic layer containing the phosphorescent transition metal complex is a coating formation layer because a homogeneous film is easily obtained and pinholes are hardly generated.
  • the organic EL element of the present invention can be suitably included in a lighting device and a display device.
  • the transition metal complex of the present invention is a phosphorescent transition metal complex having a ligand in which a plurality of aromatic rings are directly bonded to a transition metal as a central metal, It is preferable to satisfy the four requirements (1) to (4).
  • the phosphorescent transition metal complex of the present invention can be preferably used as a material for an organic electroluminescence element.
  • composition containing the phosphorescent transition metal complex of the present invention can be preferably used as a material composition for an organic electroluminescence device.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the organic electroluminescence device of the present invention is an organic electroluminescence device containing a phosphorescent transition metal complex in at least one organic layer including a light emitting layer, wherein the transition metal complex is a central metal. It has a ligand in which a plurality of aromatic rings are directly bonded to a transition metal, and satisfies the following requirements (1) and (2). (1) At least one of the plurality of aromatic rings directly bonded to the transition metal has an electron withdrawing group. (2) At least one of the plurality of aromatic rings directly bonded to the transition metal is a positive chain containing a nitrogen atom and an aromatic ring which are conjugated with the aromatic ring and are connected by a single bond. It has a hole transporting partial structure.
  • the phosphorescent transition metal complex in the phosphorescent transition metal complex, at least one of a plurality of aromatic rings directly bonded to the transition metal has an electron-withdrawing group, whereby the transition metal The triplet excitation energy of the complex is expanded, and the wavelength of phosphorescence emission accompanying triplet transition is shortened.
  • the energy level of the highest occupied orbital (HOMO) of the transition metal complex is lowered, so that adjacent hole transport is performed.
  • the difference in level between the HOMO level of the host material in which the transition metal complex is dispersed in the hole transport material of the layer and the light emitting layer and the HOMO level of the transition metal complex has expanded.
  • the movement of holes from the hole transport material or the host material is inhibited, and as a result, the generation probability of excitons on the transition metal complex is significantly reduced, which may cause a decrease in luminous efficiency. It becomes a problem.
  • the essential requirement for promoting the movement of holes to the transition metal complex and restoring the light emission efficiency is that at least one of the plurality of aromatic rings directly bonded to the transition metal is the aromatic ring. And having a hole transporting partial structure containing a nitrogen atom and an aromatic ring connected by a single bond.
  • the aromatic In the state where the conjugation with the ring is broken, by connecting to the nitrogen atom by a single bond, we succeeded in minimizing the side effects caused by introducing a hole transporting partial structure.
  • the characteristics common to the transition metal complexes satisfying the constituent requirements of the present invention can be confirmed by molecular orbital calculation.
  • the following common features were confirmed by detailed analysis of the electron orbital of the transition metal complex of the present invention by molecular orbital calculation.
  • the molecular orbital calculation method used was calculated by using Gaussian09, which is molecular orbital calculation software manufactured by Gaussian, USA, and performing structural optimization using B3LYP / LANL2DZ as a keyword.
  • the molecular orbital calculation of the transition metal complex of the present invention is performed and the calculated molecular orbital is examined in detail, from the highest occupied orbital (HOMO) to the fifth lowest energy level (HOMO-5) of the transition metal complex.
  • HOMO highest occupied orbital
  • HOMO-5 the fifth lowest energy level
  • the bonding orbitals there is an orbit having an electron density distribution in which 80% or more of the electrons on the bonding orbitals exist on the hole transporting partial structure, and Looking at the absolute value of the difference between the energy level of the highest occupied orbit (HOMO-x: x is one of 1 to 5), it can be confirmed that both are less than 0.7 eV. It was.
  • transition metal complexes that have a hole transporting partial structure but do not satisfy the constituent requirements of the present invention, they are also the highest occupied orbitals of the transition metal complexes.
  • HOMO The electron density distribution in which at least 60% of the electrons on the bonding orbitals are present on the hole transporting partial structure in any one of the bonding orbitals of the lower energy level. Although there are orbits having the above, they were all 0.9 eV or more in terms of the absolute value of the difference between the energy level of the highest occupied orbit and the binding orbit.
  • the absolute value of the difference between the energy level of the highest occupied orbital and the binding orbital among the binding orbitals of the lower energy level from the highest occupied orbital (HOMO) of the transition metal complex is 0. 80% or more of the electrons in the orbit of less than 0.7 eV are distributed in the hole transporting partial structure, which promotes the movement of holes to the transition metal complex of the present invention and restores the luminous efficiency. Conceivable.
  • triplet excitation energy of the transition metal complex having the structure except for the hole transporting moiety triplet excitation energy (T 1) from the said transition metal complex of a transition metal complex of the present invention (T 1 ) Is calculated by molecular orbital calculation, and the triplet excitation energy (T 1 ) is converted into the emission maximum wavelength ( ⁇ max) and compared, the absolute value of the difference between the emission maximum wavelengths is 10 nm or less.
  • the organic layer refers to a layer containing an organic substance.
  • Hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer constituting organic electroluminescence (hereinafter also referred to as organic EL) provided between the anode and the cathode The constituent layers of the organic EL device of the present invention will be described.
  • this invention although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.
  • Anode / light emitting layer / electron transport layer / cathode ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode (vi) anode / hole transport layer / anode buffer layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (vii) anode / anode buffer Layer / hole transport layer / light emitting layer / electron transport layer /
  • an organic compound layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked.
  • the plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
  • the organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these. Each layer which comprises the organic EL element of this invention is demonstrated.
  • the light emitting layer according to the present invention is a layer that emits light when excitons generated by recombination of electrons and holes injected from the cathode or the electron transport layer or the anode or the hole transport layer are deactivated.
  • the portion to be formed may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the stability of the emission color against the driving current and preventing the application of a high voltage unnecessary during the light emission, and the film homogeneity. It is preferably adjusted in the range of 2 nm to 5 ⁇ m, more preferably adjusted in the range of 2 to 200 nm, particularly preferably in the range of 5 to 100 nm.
  • a light emitting dopant or a host material (hereinafter also referred to as a host compound) described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, Blade coating method, roll coating method, ink jet method, printing method, spray coating method, curtain coating method, LB method (Langmuir-Blodgett method and the like can be mentioned)) and the like.
  • the light emitting layer is a layer formed through a wet process. By forming the layer by a wet process, damage to the light emitting layer due to heat can be reduced as compared with the vacuum deposition method.
  • the light emitting layer of the organic EL device of the present invention contains a light emitting dopant and a host compound, and at least one light emitting dopant is a phosphorescent transition metal complex represented by the general formula (1). It is preferable that there is a phosphorescent transition metal complex having a partial structure represented by any one of the general formulas (2) to (6).
  • the light-emitting layer according to the present invention may be used in combination with compounds described in the following patent publications.
  • Luminescent dopant As the luminescent dopant, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent dopant (also referred to as a phosphorescent dopant, a phosphorescent compound, a phosphorescent compound, or the like) can be used.
  • a fluorescent dopant also referred to as a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent dopant, a phosphorescent compound, a phosphorescent compound, or the like
  • the present inventors have used a phosphorescent transition metal complex represented by the general formula (1) as a phosphorescent dopant, It has been found that a high light emission luminance, a low drive voltage, and a long light emission life can be simultaneously achieved while having a short wavelength, and the present invention has been achieved. Moreover, it turned out that the organic electroluminescent element produced using the phosphorescence dopant of this invention is improved also at the point of temporal stability.
  • M is preferably a group 8-10 transition metal in the periodic table.
  • the emission wavelength of the phosphorescent transition metal complex is adjusted to a desired region. Can be controlled.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), although the phosphorescence quantum yield is defined to be a compound of 0.01 or more at 25 ° C., the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
  • phosphorescent dopants There are two types of emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type to obtain light emission from a phosphorescent dopant. The other is a carrier trap type in which a phosphorescent dopant serves as a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • a phosphorescent transition metal complex represented by the general formula (1) described below is used as the phosphorescent dopant in the embodiment of the present invention.
  • ring B represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle formed with C ⁇ C.
  • Examples of the 6-membered aromatic hydrocarbon ring represented by ring B include a benzene ring.
  • Examples of the 5-membered or 6-membered aromatic heterocycle represented by ring B include oxazole ring, pyridine ring, and pyridazine. Ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, thiadiazole ring, and the like.
  • ring B is a 6-membered aromatic hydrocarbon ring or a nitrogen-containing compound from the viewpoint of luminescence and fastness of the compound. It is preferably a heteroaromatic ring, and more preferably, ring B is a benzene ring, a pyridine ring, or a pyrimidine ring.
  • Ring C represents a 5- or 6-membered aromatic heterocycle formed with C ⁇ N.
  • Examples of the 5-membered aromatic heterocycle represented by ring C include a triazole ring, an imidazole ring, and a tetrazole.
  • Examples of the 6-membered aromatic heterocycle represented by ring C include a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, and a triazine ring.
  • the ring C is preferably a pyridine ring or an azole ring, more preferably An azole ring, more preferably an imidazole ring or a triazole ring.
  • Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
  • electron withdrawing groups include fluorine atoms, cyano groups, nitro groups, fluorinated alkyl groups such as trifluoromethyl groups, fluorinated aryl groups such as pentafluorophenyl groups, formyl groups, alkylcarbonyl groups, arylcarbonyl Group, carbamoyl group, pentafluorosulfanyl group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, alkylsulfamoyl group, arylsulfamoyl group, phospheno group, phosphine oxide group, and the like.
  • the electron withdrawing group is preferably selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group.
  • Nb represents an integer from 0 to 3
  • nc represents an integer from 0 to 2. 1 ⁇ nb + nc ⁇ 4.
  • HTG represents a hole transporting partial structure containing a nitrogen atom and an aromatic ring.
  • the aromatic ring include a benzene ring, a naphthalene ring, a furan ring, a thiophene ring, a benzofuran ring, and a benzothiophene ring.
  • HTG is preferably a structure composed of nitrogen atoms substituted by two aromatic rings, and the two aromatic rings may be bonded to each other to form a cyclic structure.
  • the connecting part of the two aromatic rings may be directly bonded by a single bond or bonded via an atom selected from an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom. May be.
  • aromatic ring may be substituted, and examples of the substituent include a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms, or a linear, branched or cyclic alkoxy group having 1 to 4 carbon atoms. preferable.
  • diarylamino group arylheteroarylamino group, bis (heteroarylamino) group, carbazol-9-yl group, phenoxazin-10-yl group, phenothiazin-10-yl group, 5,10-dihydro
  • diarylamino group arylheteroarylamino group, bis (heteroarylamino) group, carbazol-9-yl group, phenoxazin-10-yl group, phenothiazin-10-yl group, 5,10-dihydro Examples include phenazin-5-yl group and 9,10-dihydroacridin-10-yl group. These groups may be further substituted.
  • * represents a binding site with ring B or ring C, which is a ligand part of the transition metal complex, or with linking group L.
  • L represents an arylene group having 6 to 10 carbon atoms, and L is bonded to ring B or ring C, but conjugation with ring B or ring C is not continuous. In order that conjugation does not continue at the bonding part of L and ring B or ring C, the bonding part of L and ring B or ring C is a single bond, and further, L and ring B or ring sandwich this single bond.
  • the dihedral angle formed by C may be 30 ° or more.
  • a substituent may be introduced on two o-position atoms adjacent to the bonding portion between L and ring B or ring C. The dihedral angle becomes larger as the number of substituents to be introduced increases or becomes bulky.
  • an alkyl group or an alkoxy group is preferable, and an alkyl group is more preferable.
  • Examples of the arylene having 6 to 10 carbon atoms include a phenylene group and a naphthalene group which may be unsubstituted or substituted.
  • a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms, or a linear, branched or cyclic alkoxy group having 1 to 4 carbon atoms is preferable.
  • n1 represents 1 or 2.
  • n2 represents 1 or 2. When there are a plurality of L, they may be the same or different.
  • linking group L linking groups LG-1 to LG-12 are shown below.
  • * represents a bonding site with a hole transporting partial structure.
  • # represents a binding site with the ligand portion of the transition metal complex.
  • * represents a bonding site with the hole transporting partial structure HTG.
  • # represents a binding site with ring B or ring C which is a ligand part of the transition metal complex.
  • M represents a transition metal of group 8 to 10 in the periodic table.
  • the group 8-10 transition metal include iridium, rhodium, osmium, ruthenium, palladium, platinum, and the like. Iridium, palladium, and platinum are preferable, and iridium is most preferable.
  • L B and L C represent a monoanionic bidentate ligand coordinated to M.
  • Specific examples of monoanionic bidentate ligands represented by L B and L C include ligands of the following formulas.
  • X represents the atom chosen from a nitrogen atom, an oxygen atom, and a sulfur atom.
  • X A and X B represent a carbon atom or a nitrogen atom.
  • a plurality of X A and X B present in each ligand may be the same or different from each other.
  • R ′, R ′′ and R ′′ ′ each represent a hydrogen atom or a substituent.
  • R ′, R ′′ and R ′′ ′ examples include, for example, an alkyl group, an alkenyl group, an alkynyl group, Aromatic hydrocarbon ring group, cycloalkoxy group, cycloalkylthio group, non-aromatic heterocyclic group, aromatic hydrocarbon group, aromatic heterocyclic group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkoxycarbonyl group , Aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group, carbamoyl group, ureido group, sulfinyl group, alkylsulfonyl group, arylsulfonyl group or heteroarylsulfonyl group, amino group, halogen atom, fluorinated hydrocarbon Group, cyano group, nitro group, hydroxy group, mercapto group, silyl
  • a phosphorescent transition metal complex having a partial structure represented by the general formula (3) According to a preferred embodiment of the phosphorescent transition metal complex represented by the general formula (1) One is a phosphorescent transition metal complex in which the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (3).
  • Ring A represents a divalent arylene group having 6 to 10 carbon atoms.
  • Ring B represents a 6-membered aromatic hydrocarbon ring or 5-membered or 6-membered aromatic heterocycle formed with C ⁇ C.
  • Ring C represents a 5-membered aromatic heterocycle formed with N—C ⁇ N.
  • Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
  • Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
  • nb represents an integer of 0 to 3
  • nc represents 0 or 1. 1 ⁇ nb + nc ⁇ 4.
  • Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
  • nd and ne represent 0 or 1.
  • L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms.
  • k represents 0 or 1;
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each represent an aromatic group having 6 to 10 carbon atoms.
  • L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
  • m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other.
  • x represents 4, 5, or 6.
  • p, q and r represent 0 or 1; 1 ⁇ p + q + r ⁇ 2.
  • M represents a transition metal of group 8 to 10 in the periodic table.
  • R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
  • Examples of the substituent represented by Ra and R 1 and R 2 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group).
  • an alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group).
  • Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
  • Ring C represents a 5-membered aromatic heterocycle formed with N—C ⁇ N.
  • Ra represents a substitutable substituent
  • na represents an integer of 0 to 3.
  • Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
  • nb represents an integer of 0 to 3
  • nc represents 0 or 1. 1 ⁇ nb + nc ⁇ 4.
  • Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
  • L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms.
  • k represents 0 or 1;
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each represent an aromatic group having 6 to 10 carbon atoms.
  • L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
  • m, n, and o represent 0 or 1, and when it is 0, there is no corresponding Lx, and adjacent Ar rings are not connected to each other.
  • x represents any of 4, 5 and 6.
  • R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
  • Phosphorescent transition metal complex having a partial structure represented by general formula (5) Further preferred embodiment of phosphorescent transition metal complex represented by general formula (1) One of them is a phosphorescent transition metal complex in which the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (5).
  • One of X1 and X2 represents a carbon atom and the other represents a nitrogen atom.
  • Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
  • Ra represents a substitutable substituent
  • na represents an integer of 0 to 3.
  • Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
  • nb represents an integer of 0 to 3
  • nc represents 0 or 1. 1 ⁇ nb + nc ⁇ 4.
  • Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
  • L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms.
  • k represents 0 or 1;
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each represent an aromatic group having 6 to 10 carbon atoms.
  • L 4 , L 5 , and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom, and a sulfur atom, and connect adjacent aromatic rings.
  • m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other.
  • x represents 4, 5, or 6.
  • R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
  • phosphorescent transition metal complex represented by general formula (1) The other is a phosphorescent transition metal complex in which the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (6).
  • Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
  • Ra represents a substitutable substituent
  • na represents an integer of 0 to 3.
  • Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
  • nb represents an integer of 0 to 3
  • nc represents 0 or 1. 1 ⁇ nb + nc ⁇ 4.
  • Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
  • nd and ne represent 0 or 1.
  • L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms.
  • k represents 0 or 1;
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each represent an aromatic group having 6 to 10 carbon atoms.
  • L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
  • m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other.
  • x represents 4, 5, or 6.
  • R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
  • the molecular orbital calculation method to be used was calculated by using Gaussian09, a molecular orbital calculation software manufactured by Gaussian, USA, and performing structure optimization using B3LYP / LANL2DZ as a keyword.
  • the compound of Calculation Example 1-b which is a compound obtained by substituting the compound of Calculation Example 1-a with a diphenylamino group as a hole transporting partial structure, is HOMO-3 (fourth binding orbital counting from HOMO).
  • the calculation results show that molecular orbitals corresponding to) are distributed on the hole transport site (HTG).
  • the absolute value of the level difference between this orbital energy level and HOMO (hereinafter also simply referred to as level difference) was 0.23 eV.
  • the triplet excitation energy calculated by calculation of this compound is 435 nm
  • the difference from that of the compound of calculation example 1-a for comparison is 4 nm
  • the compound of Calculation Example 1-a was 465 nm and the compound of Calculation Example 1-b was 465 nm, respectively. It was confirmed that the wavelength change was smaller than the calculation result.
  • the compound of Calculation Example 1-c which is a compound obtained by substituting the compound of Calculation Example 1-a with a carbazol-9-yl group as a hole transporting partial structure, is also represented by HOMO-3 (fourth counting from HOMO). It was shown from the calculation results that molecular orbitals corresponding to (binding orbitals) are distributed on the hole transport site (HTG). The level difference between this orbital level and HOMO was 0.45 eV. In addition, the triplet excitation energy calculated by calculation of this compound is 435 nm, the difference from that of the compound of calculation example 1-a for comparison is 4 nm, and it is estimated from the calculation results that the wavelength change is small. . The results of the molecular calculations are summarized in Table I below.
  • the calculation results show that electrons exist inside the region partitioned by solid lines on each atom.
  • the dot notation and the hatched notation indicate that the phases of the molecular orbitals are different from each other.
  • the compound of Calculation Example 2-b which is a compound obtained by substituting the compound of Calculation Example 2-a with a diphenylamino group as a hole transporting partial structure, is HOMO-3 (fourth binding orbital counting from HOMO).
  • the calculation results show that molecular orbitals corresponding to) are distributed on the hole transport site (HTG).
  • the level difference between this orbital level and HOMO was 0.52 eV.
  • the triplet excitation energy calculated by calculation of this compound is 434 nm, and the difference from that of the compound of calculation example 2-a for comparison is 1 nm, and it is estimated from the calculation results that the wavelength change is small. .
  • the compound of Calculation Example 2-c which is a compound obtained by substituting the compound of Calculation Example 2-a with a carbazol-9-yl group as a hole transporting partial structure, is also represented by HOMO-3 (fourth counting from HOMO). It was shown from the calculation results that molecular orbitals corresponding to (binding orbitals) are distributed on the hole transport site (HTG). The level difference between this orbital level and HOMO was 0.63 eV. Further, the triplet excitation energy calculated by calculation of this compound is 435 nm, the difference from that of the compound of Comparative Example 2-a is 2 nm, and it is estimated from the calculation results that the wavelength change is small. . The results of molecular calculations are summarized in Table II below.
  • the compound of Calculation Example 5-b which is a compound obtained by substituting the compound of Calculation Example 5-a with a diphenylamino group as a hole transporting partial structure, has a strong electron-withdrawing substituent effect, and thus the energy level of the entire complex.
  • the calculation results showed that molecular orbitals corresponding to HOMO (the highest level binding orbitals) were distributed on the hole transport sites (HTG) due to the lowering of the position. From the calculation, molecular orbitals corresponding to HOMO-1 (second bonding orbit counted from HOMO) and HOMO-2 (third bonding orbit counted from HOMO) are also present on the hole transport site (HTG). Distribution was shown from the calculation results.
  • the calculation results show that the orbit showing the electron distribution corresponding to HOMO in a normal transition metal complex (for example, the compound of Calculation Example 5-a) is HOMO-3.
  • the orbital level difference between the calculated HOMO and the normal HOMO-3 orbit was 0.31 eV.
  • the triplet excitation energy calculated by calculation of this compound is 427 nm
  • the difference from that of the compound of calculation example 5-a for comparison is ⁇ 1 nm
  • the compound of Calculation Example 5-c which is a compound obtained by substituting the compound of Calculation Example 5-a with a carbazol-9-yl group as a hole transporting partial structure, is also a complex due to the strong electron-withdrawing substituent.
  • the calculation results show that molecular orbitals corresponding to HOMO (bonding orbitals with the highest energy level) are distributed on the hole transport site (HTG) by lowering the overall level. From the calculation, molecular orbitals corresponding to HOMO-1 (second bonding orbit counted from HOMO) and HOMO-2 (third bonding orbit counted from HOMO) are also present on the hole transport site (HTG). Distribution was shown from the calculation results.
  • the calculation results show that the orbit showing the electron distribution corresponding to HOMO in a normal transition metal complex (for example, the compound of Calculation Example 5-a) is HOMO-3.
  • the level difference between the calculated HOMO and the normal HOMO orbital of HOMO-3 was 0.18 eV.
  • the triplet excitation energy calculated by calculation of this compound is 428 nm
  • the difference from that of the compound of Comparative Example 5-a is 0 nm
  • Table V The results of the molecular calculations are summarized in Table V below.
  • the compound of Calculation Example-Comparison 2-b which is a compound in which the compound of Comparative Example 2-a is substituted with a diphenylamino group as a hole transporting partial structure, is HOMO-3 (fourth counting from HOMO).
  • the calculation results show that molecular orbitals corresponding to the bonding orbitals of (HTG) are distributed on the hole transport site (HTG).
  • the level difference between this orbital level and HOMO is 0.92 eV. It can be seen that the level difference is large compared to the transition metal complex of the present invention.
  • the compound of Calculation Example-Comparison 2-c which is a compound obtained by substituting the compound of Calculation Example-Comparative 2-a with a carbazol-9-yl group as a hole transporting partial structure, is also represented by HOMO-3 (from HOMO).
  • the calculation results show that molecular orbitals corresponding to the fourth bonding orbital are distributed on the hole transport site (HTG), and the level difference between this orbital level and HOMO is 1 It can be seen that the level difference is larger than that of the transition metal complex of the present invention.
  • the phosphorescent transition metal complex has a ligand in which a plurality of aromatic rings are directly bonded to the transition metal as the central metal, and (1) the ligand is bonded directly to the transition metal. At least one of the plurality of aromatic rings has an electron-withdrawing group, and (2) at least one of the plurality of aromatic rings directly bonded to the transition metal is bonded to the aromatic ring.
  • the transition metal complex When having a hole transporting partial structure containing a nitrogen atom and an aromatic ring connected to each other by a single bond, the transition metal complex has the highest occupied orbital in the evaluation by molecular orbital calculation.
  • One of the bonding orbitals from (HOMO) to the fifth lower energy level (HOMO-5) is such that 80% or more of the electrons on the bonding orbital are on the hole transporting partial structure.
  • the absolute value of the difference in emission maximum wavelength calculated by the molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex It was found that the thickness was 10 nm or less as a common characteristic.
  • R 1 and R 2 are synonymous with R 1 and R 2 described in the general formulas (3) to (6), and each represents a hydrogen atom or a substituent, and at least one of R 1 and R 2 is Represents a substituent.
  • Q 101 , Q 102 , Q 103 , Q 201 , Q 202 , Q 203 , Q 301 , Q 302 , Q 401 , Q 402 , Q 403 and Q 404 each independently represent a hydrogen atom or a substituent, and are substituted
  • the groups include Ra 1 , Ra 2 , Ra 3 , Rb 1 , Rb 2 , Rb 3 , Rc 1 , Rc 2 , Rd 1 , Rd 2 , Rd 3 and the general formulas (3) to (6).
  • the substituent described in Rd 4 and the hole transporting partial structure according to the present invention are included.
  • At least one of ring B or ring C has an electron withdrawing group. At least one of ring B or ring C is bonded to any one of the hole transporting partial structures HTG-1 to HTG-15. At this time, they may be bonded via any one of the linking groups LG-1 to LG-12.
  • the hole transporting partial structures HTG-1 to HTG-15 and the linking groups LG-1 to LG-12 have the structures described above.
  • the ligands AL-1 to AL-24 in the above compound examples have the following structures.
  • * represents a binding site with a transition metal.
  • this intermediate B-1 was dissolved in 20 times the amount of methylene chloride: acetonitrile mixed solvent (1: 1), and while stirring this solution, 2.0 equivalents of potassium permanganate and the same weight Of K-10 clay, finely crushed in a mortar, was added little by little. After completion of the addition, the mixture was reacted at room temperature for 4 hours to obtain Intermediate C-1.
  • the reaction mixture was diluted with water and ethyl acetate, washed with water three times, dried over magnesium sulfate, and concentrated under reduced pressure.
  • this intermediate C-2 was dissolved in 20 times the amount of toluene, 0.5 equivalent of p-toluenesulfonic acid was added, and the mixture was reacted for 8 hours with heating under reflux.
  • the reaction solution was neutralized with sodium hydroxide, washed with water three times, and concentrated to obtain a crude product of ligand L-2.
  • Ligand L-3 is synthesized from 3-bromobenzonitrile and 2,6-diisopropylaniline via intermediates D-2 and E-2 by the same reaction as intermediates B-2 and C-2 did.
  • the isolation yield of intermediate D-2 was 80%
  • the isolation yield of intermediate E-2 was 76%
  • the isolation yield of ligand L-3 was 70%.
  • the reaction mixture was diluted with water and ethyl acetate, washed with water three times, dried over magnesium sulfate, and concentrated under reduced pressure.
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes having a high fluorescence quantum yield such as laser dyes and the like, and dyes based on dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • the light-emitting dopant according to the present invention may be used in combination with a plurality of types of compounds, a combination of phosphorescent dopants having different structures, a phosphorescent dopant and A combination of fluorescent dopants may also be used.
  • Known phosphorescent dopants and fluorescent dopants can be used.
  • the host material (also referred to as a host compound) is a compound contained in the light emitting layer, the mass ratio in the layer is 20% or more, and at room temperature (25 ° C.).
  • a phosphorescence quantum yield of phosphorescence is defined as a compound having a value of less than 0.1.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL elements can be used.
  • a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being longer, and has a high Tg (glass transition temperature) is preferable.
  • conventionally known host compounds may be used alone or in combination of two or more.
  • the host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound (polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group.
  • a low molecular compound a high molecular compound having a repeating unit
  • a low molecular compound (polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group.
  • one or a plurality of such compounds may be used.
  • host compounds include compounds described in the following documents. JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer (hole injection layer) The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
  • copper phthalocyanine is used.
  • Representative phthalocyanine buffer layer oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) )
  • Orthometalated complex layers represented by iridium complexes and the like.
  • azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole injection material.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc.
  • the buffer layer (injection layer) is preferably a very thin film, and the thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, as described in JP-A Nos. 11-204258 and 11-204359 and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)”. There is a hole blocking layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer contains the carbazole derivative, carboline derivative, or diazacarbazole derivative (shown in which any one of the carbon atoms constituting the carboline ring of the carboline derivative is replaced by a nitrogen atom). It is preferable to contain.
  • the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the ionization potential is defined by the energy required to discharge electrons in the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be determined by the following method, for example.
  • the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
  • the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
  • the thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
  • NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • cyclometalated complexes and orthometalated complexes such as copper phthalocyanine and tris (2-phenylpyridine) iridium complex can also be used as the hole transport material.
  • JP-A-11-251067 J. Org. Huang et. al.
  • a so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for the electron transport layer adjacent to the cathode side with respect to the light emitting layer was injected from the cathode.
  • Any material can be used as long as it has a function of transferring electrons to the light-emitting layer, and any material known in the art can be selected and used alone or in combination.
  • a nitro-substituted fluorene derivative Diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • anode As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not so required (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode, By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic, polyarylate, Arton (trade name, manufactured by JSR) or Appel (
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987.
  • a high barrier film having a permeability of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable. .
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • ⁇ Sealing> As a sealing means used for this invention, the method of adhere
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • Application of the adhesive to the sealing portion may be performed using a commercially available dispenser or may be printed like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light and the light, and the light is guided through the transparent electrode or the light emitting layer.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Bragg diffraction such as first-order diffraction and second-order diffraction.
  • light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode). I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate, for example, so as to provide a microlens array-like structure, or in combination with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • an anode is produced by forming a thin film made of a desired electrode material, for example, an anode material on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • organic compound thin films such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, are formed thereon.
  • each of these layers there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes.
  • film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention.
  • the organic layer containing the phosphorescent transition metal complex according to the present invention is preferably formed through a wet process for the above reason.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • a dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the organic EL element of the present invention is a white element
  • the display device of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a cast method, a spin coat method, an inkjet method, a printing method, or the like.
  • the method is not limited, but is preferably a vapor deposition method, an inkjet method, or a printing method. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.
  • a DC voltage When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. However, it is not limited to this.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • the main members of the display unit A will be described below.
  • FIG. 2 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
  • the pixel 3 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a circuit diagram of the pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10.
  • the power supply line 7 connects the organic EL element 10 to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even when the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL elements 10 of the plurality of pixels, and the organic EL elements 10 of the plurality of pixels 3 emit light. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the lighting device of the present invention will be described.
  • the illuminating device of this invention has the said organic EL element.
  • the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image ( It may be used as a display.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
  • a mask is provided only at the time of forming a light emitting layer, a hole transport layer, an electron transport layer, etc., and it is only necessary to arrange them separately by coating with the mask. Since other layers are common, patterning of the mask or the like is not necessary.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
  • CF color filter
  • the white light emitting organic EL element according to the present invention is used as a kind of lamp such as household illumination, interior lighting, and exposure light source as various light emitting light sources and lighting devices in addition to the display device and display. It is also useful for display devices such as backlights for liquid crystal display devices.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
  • a device can be formed.
  • FIG. 5 shows a schematic diagram of the lighting device. As shown in FIG. 5, the organic EL element 101 is covered with a glass cover 102.
  • the sealing operation with the glass cover 102 is preferably performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 into contact with the atmosphere.
  • FIG. 6 shows a cross-sectional view of the lighting device.
  • the lighting device mainly includes a cathode 105, an organic EL layer 106, and a glass substrate 107 with a transparent electrode, and these members are covered with a glass cover 102.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the transition metal complex of the present invention can be preferably used as a material for an organic electroluminescence element in the above-described organic electroluminescence element.
  • the composition containing the phosphorescent transition metal complex of the present invention can be preferably used as a material composition for an organic electroluminescence device.
  • Example 1 ⁇ Vapor deposition type blue light emitting organic EL element> ⁇ Production of Blue Light-Emitting Organic EL Element 1-1 >> After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate, this transparent ITO electrode was provided. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is put into another resistance heating boat made of molybdenum, 100 mg of the luminescent dopant (Comparative Compound 1) is put into another resistance heating boat made of molybdenum, and the electron transport material 1 is put into another resistance heating boat made of molybdenum. And 200 mg of the electron transport material 2 was placed in another molybdenum resistance heating boat and attached to a vacuum deposition apparatus.
  • the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing the hole injection material 1 and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
  • the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
  • the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the light-emitting dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.035 nm / second, respectively.
  • a 40 nm-thick luminescent layer was provided by co-evaporation.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
  • the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • organic EL element 1-1 lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 1-1 was produced.
  • the organic EL element is abbreviated as EL, for example, the organic EL element 1-1 is denoted as EL1-1.
  • FIG. 5 shows a schematic diagram of the lighting device.
  • the organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover 102 is a glove box (purity of 99.999% or more in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere). In a high-purity nitrogen gas atmosphere).
  • FIG. 6 shows a cross-sectional view of the lighting device. Inside the lighting device, a glass substrate 107 with a transparent electrode as an anode, an organic EL layer 106 and a cathode 105 are laminated in this order. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • External extraction quantum efficiency Current that gives each organic EL element room temperature (25 ° C.), initial luminance 2000 cd / m 2 , and 4000 cd / m 2 (shown as luminance A and luminance B in the following tables, respectively).
  • the external extraction quantum efficiency ( ⁇ ) was calculated as an evaluation measure of the light emission efficiency by driving at a constant current and measuring the drive current [mA] immediately after the start of lighting.
  • CS-1000 manufactured by Konica Minolta Co., Ltd. was used for measurement of light emission luminance.
  • the external extraction quantum yields are all expressed as relative values with the organic EL element 1-1 at an initial luminance of 2000 cd / m 2 as a reference (100).
  • Drive voltage ⁇ (drive voltage of each element / drive voltage of the organic EL element 1-1 (initial luminance 2000 cd / m 2 )) ⁇ ⁇ 100 A smaller value indicates a lower drive voltage for comparison.
  • Drive voltage increase rate (%) ⁇ [(Drive voltage after driving 200 hours for each organic EL element / V) ⁇ (Initial drive voltage for each organic EL element / V)] / (Initial drive voltage for each organic EL element) / V) ⁇ ⁇ 100 (4)
  • Half light emission lifetime (25 ° C) The half-light emission lifetime was evaluated according to the measurement method shown below.
  • Each organic EL element is driven at a constant current in a high-temperature bath at 25 ° C. and 70 ° C. with a current that gives an initial luminance of 2000 cd / m 2 , and a time to become 1/2 (1000 cd / m 2 ) of the initial luminance is obtained. This was taken as a measure of half-life.
  • the half-light emission lifetime was expressed as a relative value set with the reference (100) as the half-light emission lifetime of the organic EL device 1-1 obtained at 25 ° C.
  • the initial deterioration was expressed as a relative value set with the reference (100) as the half-light emission lifetime of the organic EL element 1-1.
  • the initial deterioration was calculated based on the following formula.
  • Initial degradation ⁇ (90% arrival time of luminance of organic EL element 1-1 (hr)) / (90% arrival time of each organic EL element (hr)) ⁇ ⁇ 100 That is, the smaller the initial deterioration value is, the smaller the initial deterioration is.
  • the organic EL elements 1-7 to 1-75 of the present invention have higher external extraction quantum efficiency and initial luminance than the comparative organic EL elements 1-1 to 1-6. It can be seen that there is little deterioration, and accordingly, it has a long life at both room temperature and high temperature.
  • the phosphorescent transition metal complex according to the present invention is useful to use as a blue light-emitting dopant in at least improving luminous efficiency, reducing driving voltage, and improving luminous lifetime. Recognize.
  • Example 2 ⁇ Wet process type blue light emitting element> ⁇ Preparation of Blue Light-Emitting Organic EL Element 2-1 >> After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate, this transparent ITO electrode was provided.
  • the supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This substrate was transferred to a nitrogen atmosphere, and a solution obtained by dissolving 50 mg of the hole transport material 3 in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. . Furthermore, after irradiating with ultraviolet light for 180 seconds to perform photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to obtain a second hole transport layer.
  • a thin film was formed on the light emitting layer by spin coating using a solution obtained by dissolving 50 mg of the electron transport material 3 in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer about 30 nm thick.
  • HFIP hexafluoroisopropanol
  • this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed to produce an organic EL element 2-1.
  • Example 1 in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 2-1. The relative value was obtained in the same manner as described above.
  • the organic EL elements 2-7 to 2-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL elements 2-1 to 2-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
  • the organic EL elements 2-7 to 2-75 of the present invention also suppress the increase in driving voltage.
  • the phosphorescent property according to the present invention is used as a blue light emitting dopant in order to improve the light emission efficiency, reduce the driving voltage, and improve the light emission life. It can be seen that it is useful to use a transition metal complex of
  • Example 3 ⁇ Vapor deposition type white light emitting element-1> ⁇ Production of White Light-Emitting Organic EL Element 3-1 >> After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate, this transparent ITO electrode was provided.
  • the supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, In another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is added. In another molybdenum resistance heating boat, 100 mg of the luminescent dopant (Comparative Compound 1) is added.
  • the luminescent dopant (D -6) was put in 100 mg, 200 mg of the electron transport material 1 was put in another resistance heating boat made of molybdenum, and 200 mg of the electron transport material 2 was put in another resistance heating boat made of molybdenum, and attached to a vacuum deposition apparatus.
  • the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing the hole injection material 1 and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
  • the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
  • the heating boat containing the host compound (OC-11), the luminescent dopant (Comparative Compound 1) and the luminescent dopant (D-6) was energized and heated, and the deposition rate was 0.2 nm / second and 0.022 nm, respectively.
  • a light emitting layer having a thickness of 40 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
  • the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 3-1 was produced.
  • Example 1 in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 3-1. The relative value was obtained in the same manner as described above.
  • the organic EL devices 3-7 to 3-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL devices 3-1 to 3-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
  • the organic EL elements 3-7 to 3-75 of the present invention also suppress the increase in driving voltage.
  • the invention relates to the present invention as a light emitting dopant in order to improve light emission efficiency, drive voltage, and light emission life. It can be seen that it is useful to use a phosphorescent transition metal complex.
  • Example 4 ⁇ Vapor deposition type white light emitting element-2> ⁇ Preparation of white light emitting element 4-1 >> After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate, this transparent ITO electrode was provided.
  • the supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, In another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is added. In another molybdenum resistance heating boat, 100 mg of the luminescent dopant (Comparative Compound 1) is added.
  • the luminescent dopant (D -3) 100 mg, 100 mg of luminescent dopant (D-6) in another molybdenum resistance heating boat, 200 mg of electron transport material 1 in another molybdenum resistance heating boat, and another molybdenum resistance heating boat 200 mg of the electron transport material 2 was put in and attached to a vacuum deposition apparatus.
  • the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing the hole injection material 1 and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
  • the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
  • the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the light-emitting dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.035 nm / second, respectively.
  • a blue light emitting layer having a thickness of 20 nm was provided by co-evaporation.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing the host compound (OC-11), the luminescent dopant (D-3), and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.010 nm, respectively.
  • a yellow light emitting layer having a thickness of 20 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
  • the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 4-1 was produced.
  • Example 1 in each evaluation of (1) external extraction quantum efficiency, (2) drive voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 4-1. The relative value was obtained in the same manner as described above.
  • the organic EL elements 4-7 to 4-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL elements 4-1 to 4-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
  • the organic EL elements 4-7 to 4-75 of the present invention also suppress the increase in driving voltage.
  • Example 5 ⁇ Vapor deposition type white light emitting element-3> ⁇ Preparation of white light emitting element 5-1 >> After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate, this transparent ITO electrode was provided.
  • the supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, 200 mg of host compound 1 (OC-11) is put into another resistance heating boat made of molybdenum, 200 mg of host compound 2 (OC-6) is put into another resistance heating boat made of molybdenum, and the luminescent dopant is put into another resistance heating boat made of molybdenum.
  • the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing the hole injection material 1 and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
  • the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
  • the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the light-emitting dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.035 nm / second, respectively.
  • a blue light emitting layer having a thickness of 20 nm was provided by co-evaporation.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing the host compound (OC-6), the luminescent dopant (D-3) and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.010 nm, respectively.
  • a yellow light emitting layer having a thickness of 20 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
  • the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 5-1 was produced.
  • Example 1 in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 5-1. The relative value was obtained in the same manner as described above.
  • the organic EL elements 5-7 to 5-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL elements 5-1 to 5-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
  • the organic EL elements 5-7 to 5-75 of the present invention also suppress the increase in driving voltage.
  • Example 6 ⁇ Wet process type white light emitting element-1> ⁇ Production of White Light-Emitting Organic EL Element 6-1 >> After patterning a substrate (NA Techno-Glass NA-45) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode, this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • ITO indium tin oxide
  • the substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 3 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
  • a thin film was formed on the light emitting layer by spin coating using a solution obtained by dissolving 50 mg of the electron transport material 3 in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer about 30 nm thick.
  • HFIP hexafluoroisopropanol
  • this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed, and an organic EL element 6-1 was produced.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • Example 1 in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was performed with reference to the organic EL element 6-1. The relative value was obtained in the same manner as described above.
  • the organic EL elements 6-7 to 6-75 of the present invention have high external extraction quantum efficiency and initial luminance degradation. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
  • Example 7 ⁇ Wet process type white light emitting element-2> ⁇ Production of White Light-Emitting Organic EL Element 7-1 >> After patterning a substrate (NA Techno-Glass NA-45) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode, this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • ITO indium tin oxide
  • the substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 3 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
  • a thin film was formed on this light emitting layer by spin coating under a condition of 1000 rpm and 30 seconds using a solution of 50 mg of electron transport material 4 dissolved in 10 ml of methanol. After irradiating with ultraviolet light for 60 seconds to perform photopolymerization / crosslinking, it was further vacuum-dried at 60 ° C. for 1 hour to obtain an electron transport layer having a thickness of about 30 nm.
  • this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed, and an organic EL element 7-1 was produced.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • Example 1 in each evaluation of (1) external extraction quantum efficiency, (2) drive voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 7-1. The relative value was obtained in the same manner as described above.
  • the organic EL elements 7-7 to 7-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL elements 7-1 to 7-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
  • the organic EL elements 7-7 to 7-75 of the present invention also suppress the increase in driving voltage.
  • the organic electroluminescence element of the present invention has a sufficiently short wave emission as a blue phosphorescent element, has high emission efficiency, low driving voltage, and excellent durability, and is used as a display device, display, and various light emission sources. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A problem to be solved by the present invention is to provide, as a blue phosphorescence element, an organic electroluminescent element that has a high light emission efficiency, a low driving voltage, and excellent durability while having sufficiently short wave emitted light. In addition, another problem to be solved by the present invention is to provide an illumination device and a display device equipped with the organic electroluminescent element. Furthermore, another problem to be solved by the present invention is to provide a phosphorescent light-emitting transition metal complex that enables the foregoing to be realized, an organic electroluminescent element material that contains the phosphorescent light-emitting metal complex, and an organic electroluminescent element material composition. This organic electroluminescent element contains a phosphorescent light-emitting transition metal complex in at least one of organic layers including a light-emitting layer. The organic electroluminescent element is characterized in that the transition metal complex includes a ligand in which a plurality of aromatic rings are directly bonded to a transition metal serving as a center metal, and the ligand satisfies two specific requirements.

Description

有機エレクトロルミネッセンス素子、照明装置、表示装置及び遷移金属錯体Organic electroluminescence element, lighting device, display device, and transition metal complex
 本発明は、有機エレクトロルミネッセンス素子、照明装置、表示装置、遷移金属錯体、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子材料組成物に関し、更に詳しくは、青色リン光素子として十分に短波な発光を有しながら、発光効率が高く、駆動電圧が低く、耐久性に優れる有機エレクトロルミネッセンス素子等に関する。 The present invention relates to an organic electroluminescent element, an illumination device, a display device, a transition metal complex, an organic electroluminescent element material, and an organic electroluminescent element material composition, and more particularly, has a sufficiently short-wave emission as a blue phosphorescent element. However, the present invention relates to an organic electroluminescence element and the like having high luminous efficiency, low driving voltage, and excellent durability.
 従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。 Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (ELD). As a constituent element of ELD, an inorganic electroluminescence element and an organic electroluminescence element (hereinafter also referred to as an organic EL element) can be given. Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
 一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。 On the other hand, an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it is attracting attention from the viewpoints of space saving and portability.
 実用化に向けた有機EL素子の開発としては、例えば、プリンストン大より、M.A.Baldo et al.,nature、395巻、151~154ページ(1998年)に記載のように、励起三重項からのリン光発光を用いる有機EL素子の報告がされ、以来、米国特許第6,097,147号明細書、M.A.Baldo et al.,nature、403巻、17号、750~753頁(2000年)などに記載のように、室温でリン光を示す材料の研究が活発になってきている。 Develop organic EL elements for practical use, for example, Princeton University A. Baldo et al. , Nature, 395, pages 151 to 154 (1998), an organic EL device using phosphorescence emission from an excited triplet has been reported. Since then, US Pat. No. 6,097,147 has been disclosed. , M.C. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), and the like, research on materials that exhibit phosphorescence at room temperature has become active.
 リン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。 Organic EL elements that use phosphorescence emission can in principle achieve light emission efficiency about 4 times that of elements that use previous fluorescence emission. Research and development of electrodes and electrodes are conducted all over the world.
 発光素子を構成する材料として、イリジウム錯体系等重金属錯体を中心に多くの化合物の合成検討がなされており、例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)には、それらの金属錯体を有機エレクトロルミネッセンス素子(有機EL素子ともいう)の発光層に使用することが記載されている。 As a material constituting a light-emitting element, many compounds have been studied focusing on heavy metal complexes such as iridium complexes. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001) describe that these metal complexes are used in a light-emitting layer of an organic electroluminescence element (also referred to as an organic EL element).
 このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかと共に、リン光発光性材料自身の発光性をいかに向上させるかが、素子の効率・寿命の面から、重要な技術的な課題となっている。 As described above, the phosphorescence emission method is a method having a very high potential, but in an organic EL device using phosphorescence emission, a method for controlling the position of the emission center, in particular, recombination inside the emission layer, How to stably emit light and how to improve the light emitting property of the phosphorescent material itself is an important technical issue from the viewpoint of the efficiency and life of the device.
 有機EL素子に使用される青色リン光用の発光材料として、フェニルピラゾール系、イミダゾフェナンスリジン系、フェニルイミダゾール系等の配位子を有するイリジウム錯体が知られているが、発光性、短波長発光、高耐久性の全てを同時に満足させることは非常に困難である。 As luminescent materials for blue phosphorescence used in organic EL devices, iridium complexes having ligands such as phenylpyrazole, imidazophenanthridine, and phenylimidazole are known. It is very difficult to satisfy all of light emission and high durability at the same time.
 フェニルイミダゾールを配位子とする金属錯体は発光波長が比較的短い発光材料であることが開示されている(例えば、特許文献1及び特許文献2参照)。 It has been disclosed that a metal complex having phenylimidazole as a ligand is a light emitting material having a relatively short emission wavelength (see, for example, Patent Document 1 and Patent Document 2).
 これら特許文献に記載の技術にあっては、発光性と発光寿命を同時に改善するためにイミダゾール環への置換基において、π共役系の拡張を検討しているが、十分な発光性と堅牢性を持ったドーパントが得られず、発光波長の短波化、高い発光性及び発光寿命の長寿命化を同時に達成することができていない。 In the technologies described in these patent documents, in order to improve the luminescent property and the luminescent lifetime at the same time, we are considering expanding the π-conjugated system in the substituent to the imidazole ring. Thus, it has not been possible to obtain a dopant having a short wavelength of light emission, a high emission property, and a long emission life at the same time.
米国特許出願公開第2011/0057559号明細書US Patent Application Publication No. 2011/0057559 米国特許出願公開第2011/0204333号明細書US Patent Application Publication No. 2011/0204333
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、青色リン光素子として十分に短波な発光を有しながら、発光効率が高く、駆動電圧が低く、耐久性に優れる有機エレクトロルミネッセンス素子を提供することである。またそれが具備された照明装置及び表示装置を提供することである。さらに、それを可能にすることのできるリン光発光性の遷移金属錯体、当該リン光発性の金属錯体を含有する有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子材料組成物を提供することである。 The present invention has been made in view of the above-described problems and situations, and the problem to be solved is that the light emission efficiency is high, the driving voltage is low, and the durability is high, while having a sufficiently short-wave emission as a blue phosphorescent element. It is to provide an excellent organic electroluminescence device. Moreover, it is providing the illuminating device and display apparatus with which it was comprised. Furthermore, it is providing the phosphorescence-emitting transition metal complex which can make it possible, the organic electroluminescent element material containing the said phosphorescent metal complex, and organic electroluminescent element material composition.
 フェニルイミダゾールを配位子とする金属錯体のフェニルイミダゾール骨格に電子吸引性の置換基を導入することで発光波長が短波化することはよく知られていたが、このような発光波長の短波化した金属錯体を発光ドーパントとした発光素子を作製すると、溶液状態又は固体状態で測定されるドーパント単体の発光量子効率(PLQE;光励起による発光効率)が良好であるにもかかわらず、発光素子の通電時の発光効率(EQE;外部取り出し量子効率)が期待されるほどには高くならないことが判明した。 It was well known that the emission wavelength was shortened by introducing an electron-withdrawing substituent into the phenylimidazole skeleton of a metal complex having phenylimidazole as a ligand, but this emission wavelength was shortened. When a light-emitting device using a metal complex as a light-emitting dopant is produced, the light-emitting device is energized even though the light-emitting quantum efficiency (PLQE; light-emitting efficiency by photoexcitation) of the dopant alone measured in a solution state or a solid state is good. It has been found that the luminous efficiency (EQE; external extraction quantum efficiency) is not as high as expected.
 この問題を細かく解析した結果、これは、短波化のために導入した電子吸引性基によって、金属錯体の分子軌道のエネルギー準位が全体的に大幅に低下したために、隣接する正孔輸送層の正孔輸送材料や発光層において金属錯体を分散しているホスト材料の最高被占軌道(以下HOMOともいう。)の準位と、金属錯体のHOMOの準位との準位差が拡大してしまった結果、正孔輸送材料やホスト材料からの正孔の移動が阻害され、その結果、ドーパント上での励起子の生成確率が著しく低下することで引き起こされていることが判明した。なお、本願において、エネルギー準位が低い場合準位が深いともいい、エネルギー準位が高いとき浅いともいう。 As a result of detailed analysis of this problem, it was found that the energy level of the molecular orbital of the metal complex was greatly reduced by the electron-withdrawing group introduced for shortening the wave length, so that the adjacent hole transport layer The level difference between the highest occupied orbital (hereinafter also referred to as HOMO) of the host material in which the metal complex is dispersed in the hole transport material or the light emitting layer and the HOMO level of the metal complex is enlarged. As a result, it was found that the movement of holes from the hole transporting material and the host material was hindered, and as a result, the probability of exciton generation on the dopant was significantly reduced. In the present application, when the energy level is low, the level is deep, and when the energy level is high, the level is also shallow.
 本発明者らは、フェニルイミダゾールを配位子とし、電子吸引性基を有する金属錯体のフェニルイミダゾール骨格に、共役系を連続させずに、特定の正孔輸送性の基を導入することで、発光波長を大きくは変えることなく、ドーパントへの正孔注入を促進し、発光効率を向上させるとともに、発光寿命の低下原因となる発光層の隣接層への過剰な正孔の流入による寿命劣化の改善を図るという着目点の下に種々の錯体を検討した。 By introducing a specific hole-transporting group into the phenylimidazole skeleton of a metal complex having an electron-withdrawing group, using phenylimidazole as a ligand, without continuing a conjugated system, Without greatly changing the emission wavelength, the hole injection into the dopant is promoted, the emission efficiency is improved, and the lifetime deterioration due to the inflow of excess holes to the adjacent layer of the emission layer, which causes the emission lifetime to decrease, is improved. Various complexes were examined under the focus of improvement.
 検討の結果、本発明で開示している特定の正孔輸送性の置換基の導入によって、発光ドーパントへの正孔注入が促進され、金属錯体上での電荷の再結合による励起子の生成が促進されることで発光効率が向上し、同時に、発光寿命の低下原因となる発光層の隣接層への過剰な正孔の流入を抑制することで、発光素子の発光寿命も延ばすことができた。 As a result of the study, the introduction of the specific hole-transporting substituent disclosed in the present invention promotes hole injection into the light-emitting dopant, and exciton generation due to charge recombination on the metal complex occurs. The light emission efficiency is improved by being promoted, and at the same time, the emission lifetime of the light emitting element can be extended by suppressing the inflow of excessive holes to the adjacent layer of the light emitting layer, which causes a decrease in the light emission lifetime. .
 本発明者らは、本発明の技術思想の適用可能性の拡大を検討しフェニルイミダゾールを配位子とする金属錯体のみでなく、後述する一般式(2)で表される部分構造を有する遷移金属錯体全般においても同様の効果が得られることを見いだし、一般式(1)で表されるリン光発光性の遷移金属錯体を含有した有機エレクトロルミネッセンス素子により上記課題を解決できることを見いだした。 The present inventors examined the expansion of applicability of the technical idea of the present invention, and not only a metal complex having phenylimidazole as a ligand, but also a transition having a partial structure represented by the following general formula (2) It has been found that the same effects can be obtained in general metal complexes, and it has been found that the above-mentioned problems can be solved by an organic electroluminescence element containing a phosphorescent transition metal complex represented by the general formula (1).
 さらに、本発明者らは、本発明の技術思想の適用可能性の拡大を検討し一般式(2)で表される部分構造を有する遷移金属錯体のみでなく、遷移金属に直接結合している芳香族環が、特定の2つの要件を満たせば、中心金属と中心金属に直接結合している複数の芳香族環配位子からなる、リン光発光性の遷移金属錯体全般においても同様の効果が得られることを見いだした。 Furthermore, the present inventors have examined the expansion of applicability of the technical idea of the present invention, and are directly bonded to the transition metal as well as the transition metal complex having the partial structure represented by the general formula (2). If the aromatic ring satisfies two specific requirements, the same effect can be obtained for all phosphorescent transition metal complexes consisting of a central metal and a plurality of aromatic ring ligands directly bonded to the central metal. I found out that
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.発光層を含む有機層の少なくとも1層に、リン光発光性の遷移金属錯体を含有する有機エレクトロルミネッセンス素子であって、
 前記遷移金属錯体が、中心金属としての遷移金属に複数の芳香族環が直接結合している配位子を有し、かつ下記要件(1)及び(2)を満足することを特徴とする有機エレクトロルミネッセンス素子。
(1)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、電子吸引性基を有する。
(2)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、当該芳香族環との共役が切断され、単結合によって接続された窒素原子と芳香族環とを含んだ正孔輸送性部分構造を有する。
1. An organic electroluminescence device containing a phosphorescent transition metal complex in at least one organic layer including a light emitting layer,
The transition metal complex has a ligand in which a plurality of aromatic rings are directly bonded to a transition metal as a central metal, and satisfies the following requirements (1) and (2): Electroluminescence element.
(1) At least one of the plurality of aromatic rings directly bonded to the transition metal has an electron withdrawing group.
(2) At least one of the plurality of aromatic rings directly bonded to the transition metal is a positive chain containing a nitrogen atom and an aromatic ring which are conjugated with the aromatic ring and are connected by a single bond. It has a pore transporting partial structure.
 2.前記遷移金属錯体が、分子軌道計算での評価において、最高被占軌道(HOMO)から下位のエネルギー準位5番目(HOMO-5)までの結合性軌道のいずれか1つは、当該結合性軌道上の電子の80%以上が前記正孔輸送性の部分構造上に存在する電子密度分布を有し、かつ、前記最高被占軌道と当該結合性軌道とのエネルギー準位との差の絶対値が0.7eV未満であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 2. When the transition metal complex is evaluated by molecular orbital calculation, any one of the binding orbitals from the highest occupied orbital (HOMO) to the fifth lower energy level (HOMO-5) is the binding orbital. The absolute value of the difference between the energy level of the highest occupied orbital and the binding orbital has an electron density distribution in which 80% or more of the upper electrons exist on the hole transporting partial structure 2. The organic electroluminescence device according to item 1, wherein the organic electroluminescence device is less than 0.7 eV.
 3.前記遷移金属錯体と当該前記遷移金属錯体から前記正孔輸送性部分構造を除いた構造を有する遷移金属錯体のそれぞれについて分子軌道計算で算出される発光極大波長の差の絶対値が、10nm以下であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. The absolute value of the difference in emission maximum wavelength calculated by molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex is 10 nm or less. 3. The organic electroluminescence device according to item 1 or 2, characterized in that it exists.
 4.前記窒素原子と芳香族環を含んだ正孔輸送性の部分構造が、それぞれ、無置換又は置換されていてもよい、ジアリールアミノ基、カルバゾール-9-イル基、フェノキサジン-10-イル基、フェニチアジン-10-イル基、ジヒドロフェナジン-5-イル基及びジヒドロアクリジン-10-イル基から選ばれることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. The hole transporting partial structure containing a nitrogen atom and an aromatic ring each may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxazin-10-yl group, Item 4. The organic electroluminescence device according to any one of Items 1 to 3, which is selected from a phenothiazin-10-yl group, a dihydrophenazin-5-yl group, and a dihydroacridin-10-yl group. .
 5.前記電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 5. Any one of Items 1 to 4, wherein the electron-withdrawing group is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group. The organic electroluminescent element according to claim 1.
 6.前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、アゾール環であることを特徴とする第1項から第5項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 6. 6. The organic electroluminescence device according to any one of items 1 to 5, wherein at least one of the plurality of aromatic rings directly bonded to the transition metal is an azole ring.
 7.前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、イミダゾール環又はトリアゾール環であることを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 7. The organic electroluminescence according to any one of items 1 to 6, wherein at least one of the plurality of aromatic rings directly bonded to the transition metal is an imidazole ring or a triazole ring. element.
 8.発光層を含む有機層を少なくとも1層有する有機ルミネッセンス素子であって、当該有機層の少なくとも1層が、下記一般式(1)で表される遷移金属錯体を含有することを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 8. An organic luminescence device having at least one organic layer including a light emitting layer, wherein at least one of the organic layers contains a transition metal complex represented by the following general formula (1): The organic electroluminescent element according to any one of items 1 to 7.
 一般式(1)
   ML・L・(L)n
 〔式中、MLは、下記一般式(2)で表される部分構造を表し、Mは、元素周期表における8~10族の遷移金属を表す。L~Lは、各々2価の配位子を表し、L~Lは同一であっても異なっていてもよく、互いに結合していてもよい。nは、1又は0を表す。〕
Figure JPOXMLDOC01-appb-C000006
General formula (1)
ML A · L B · (L C ) n
[Wherein, ML A represents a partial structure represented by the following general formula (2), and M represents a transition metal of group 8 to 10 in the periodic table of elements. L A to L C each represents a divalent ligand, and L A to L C may be the same or different, and may be bonded to each other. n represents 1 or 0. ]
Figure JPOXMLDOC01-appb-C000006
 〔式中、
環Bは、C=Cと共に形成される6員の芳香族炭化水素環又は5員若しくは6員の芳香族複素環を表す。
環Cは、C=Nと共に形成される5員若しくは6員の芳香族複素環を表す。
Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性基を表す。
nbは、0~3の整数を表し、ncは0~2の整数を表す。1≦nb+nc≦4である。Rb、Rcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
HTGは、窒素原子と芳香族環を含んだ正孔輸送性の部分構造を表す。
Lは炭素数6~10のアリーレン基を表し、Lは環B又は環Cに結合しているが、環B又は環Cと共役は連続していない。n1は、1又は2を表す。n2は、1又は2を表す。Lが複数ある場合には、互いに同一であっても良いし異なってもよい。
Mは、元素周期表における8~10族の遷移金属を表す。〕
 9.前記HTGで表される窒素原子と芳香族環を含んだ正孔輸送性の部分構造が、それぞれ、無置換又は置換されていてもよい、ジアリールアミノ基、カルバゾール-9-イル基、フェノキサジン-10-イル基、フェニチアジン-10-イル基、ジヒドロフェナジン-5-イル基及びジヒドロアクリジン-10-イル基から選ばれることを特徴とする第8項に記載の有機エレクトロルミネッセンス素子。
[Where,
Ring B represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle formed with C═C.
Ring C represents a 5- or 6-membered aromatic heterocyclic ring formed with C═N.
Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
nb represents an integer of 0 to 3, and nc represents an integer of 0 to 2. 1 ≦ nb + nc ≦ 4. When there are a plurality of Rb and Rc, they may be the same or different from each other.
HTG represents a hole transporting partial structure including a nitrogen atom and an aromatic ring.
L represents an arylene group having 6 to 10 carbon atoms, and L is bonded to ring B or ring C, but conjugation with ring B or ring C is not continuous. n1 represents 1 or 2. n2 represents 1 or 2. When there are a plurality of L, they may be the same or different.
M represents a transition metal of group 8 to 10 in the periodic table. ]
9. Each of the hole transporting partial structures containing a nitrogen atom and an aromatic ring represented by HTG may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxazine- 9. The organic electroluminescence device according to item 8, which is selected from a 10-yl group, a phenothiazin-10-yl group, a dihydrophenazin-5-yl group and a dihydroacridin-10-yl group.
 10.前記Rb及びRcで表される電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることを特徴とする第8項又は第9項に記載の有機エレクトロルミネッセンス素子。 10. Item 8. The electron-withdrawing group represented by Rb and Rc is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group. Or the organic electroluminescent element of Claim 9.
 11.前記環Cで表される芳香族複素環が、アゾール環を表すことを特徴とする第8項から第10項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 11. Item 11. The organic electroluminescence device according to any one of Items 8 to 10, wherein the aromatic heterocycle represented by the ring C represents an azole ring.
 12.前記環Cで表される芳香族複素環が、イミダゾール環又はトリアゾール環を表すことを特徴とする第8項から第11項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 12. Item 12. The organic electroluminescent element according to any one of Items 8 to 11, wherein the aromatic heterocycle represented by the ring C represents an imidazole ring or a triazole ring.
 13.前記一般式(2)で表される部分構造が、下記一般式(3)で表される部分構造で表されることを特徴とする第8項に記載の有機エレクトロルミネッセンス素子。 13. 9. The organic electroluminescence device according to item 8, wherein the partial structure represented by the general formula (2) is represented by a partial structure represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 〔式中、
環Aは、炭素数6~10の2価のアリーレン基を表す。
環Bは、C=Cと共に形成される6員の芳香族炭化水素環又は5員若しくは6員の芳香族複素環を表す。
環Cは、N-C=Nと共に形成される5員の芳香族複素環を表す。
Raは、置換可能な置換基を表す。naは0~3の整数を表す。
Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性基を表す。
nbは、0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
Ra、Rb、Rcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
nd及びneは、0又は1を表す。
、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは、0又は1を表す。
Ar、Ar、Ar、Ar、Ar及びArは、炭素数6~10の芳香族基を表す。
、L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
m、n及びoは0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは、4,5又は6のいずれかを表す。
p、q及びrは、0又は1を表し。1≦p+q+r≦2である。
Mは、元素周期表における8~10族の遷移金属を表す。
及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。〕
 14.前記一般式(2)で表される部分構造が、下記一般式(4)で表される部分構造であることを特徴とする第8項に記載の有機エレクトロルミネッセンス素子。
[Where,
Ring A represents a divalent arylene group having 6 to 10 carbon atoms.
Ring B represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle formed with C═C.
Ring C represents a 5-membered aromatic heterocycle formed with N—C═N.
Ra represents a substitutable substituent. na represents an integer of 0 to 3.
Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
nd and ne represent 0 or 1.
L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1.
Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents any of 4, 5 and 6.
p, q and r each represents 0 or 1; 1 ≦ p + q + r ≦ 2.
M represents a transition metal of group 8 to 10 in the periodic table.
R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent. ]
14 9. The organic electroluminescent element according to item 8, wherein the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 〔式中、
及びYは炭素原子、又は窒素原子を表す。
環Cは、N-C=Nと共に形成される5員の芳香族複素環を表す。
Raは、置換可能な置換基を表し、naは0~3の整数を表す。
Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性の置換基を表す。
nbは、0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
Ra、Rb、Rcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
nd及びneは、0又は1を表す。
、L、Lは、炭素数6~10の2価のアリーレン基を表す。kは0又は1を表す。
Ar、Ar、Ar、Ar、Ar、Arは、炭素数6~10の芳香族基を表す。
、L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
m、n及びoは、0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは、4、5又は6のいずれかを表す。
p、q及びrは、0又は1を表し。1≦p+q+r≦2である。
Mは、元素周期表における8~10族の遷移金属を表す。
及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。〕
 15.前記一般式(2)で表される部分構造が、下記一般式(5)で表される部分構造で表されることを特徴とする第8項に記載の有機エレクトロルミネッセンス素子。
[Where,
Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
Ring C represents a 5-membered aromatic heterocycle formed with N—C═N.
Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
Rb and Rc each represents an electron-withdrawing substituent that can be substituted for ring B and ring C.
nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
nd and ne represent 0 or 1.
L 1 , L 2 and L 3 each represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1;
Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 each represents an aromatic group having 6 to 10 carbon atoms.
L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
p, q and r each represents 0 or 1; 1 ≦ p + q + r ≦ 2.
M represents a transition metal of group 8 to 10 in the periodic table.
R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent. ]
15. 9. The organic electroluminescent element according to item 8, wherein the partial structure represented by the general formula (2) is represented by a partial structure represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 〔式中、
及びXは、一方が炭素原子を、他方が窒素原子を表す。
及びYは、炭素原子又は窒素原子を表す。
Raは、置換可能な置換基を表し、naは、0~3の整数を表す。
Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性基を表す。
nbは、0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
Ra、Rb及びRcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
nd及びneは、0又は1を表す。
、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは、0又は1を表す。
Ar、Ar、Ar、Ar、Ar及びArは、炭素数6~10の芳香族基を表す。
、L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
m、n及びoは、0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは、4、5又は6のいずれかを表す。
p、q及びrは、0又は1を表し。1≦p+q+r≦2である。
Mは、元素周期表における8~10族の遷移金属を表す。
及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。〕
 16.前記一般式(2)で表される部分構造が、下記一般式(6)で表される部分構造で表されることを特徴とする第8項に記載の有機エレクトロルミネッセンス素子。
[Where,
One of X 1 and X 2 represents a carbon atom, and the other represents a nitrogen atom.
Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
nd and ne represent 0 or 1.
L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1.
Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
p, q and r each represents 0 or 1; 1 ≦ p + q + r ≦ 2.
M represents a transition metal of group 8 to 10 in the periodic table.
R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent. ]
16. 9. The organic electroluminescence device according to item 8, wherein the partial structure represented by the general formula (2) is represented by a partial structure represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 〔式中、
及びYは炭素原子、又は窒素原子を表す。
Raは、置換可能な置換基を表し、naは0~3の整数を表す。
Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性基を表す。
nbは、0~3の整数を表し、ncは、0又は1を表す。1≦nb+nc≦4である。
Ra、Rb及びRcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
nd及びneは、0又は1を表す。
、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは、0又は1を表す。
Ar、Ar、Ar、Ar、Ar及びArは、炭素数6~10の芳香族基を表す。
、L、Lは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
m、n及びoは、0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは、4、5又は6のいずれかを表す。
p、q及びrは、0又は1を表す。1≦p+q+r≦2である。
Mは、元素周期表における8~10族の遷移金属を表す。
及びRは、各々、水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。〕
 17.前記Rb及びRcで表される電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることを特徴とする第13項から第16項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
[Where,
Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
nd and ne represent 0 or 1.
L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1.
Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
L 4 , L 5 , and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom, and a sulfur atom, and connect adjacent aromatic rings.
m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
p, q and r each represents 0 or 1; 1 ≦ p + q + r ≦ 2.
M represents a transition metal of group 8 to 10 in the periodic table.
R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent. ]
17. Item 13 wherein the electron withdrawing group represented by Rb and Rc is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group. The organic electroluminescent element according to any one of items 1 to 16.
 18.前記遷移金属が、イリジウムであることを特徴とする第1項から第17項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 18. 18. The organic electroluminescence element according to any one of items 1 to 17, wherein the transition metal is iridium.
 19.前記発光層が、フルオレン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、又は、これらの縮環化合物誘導体を構成する炭化水素環の炭素原子の少なくとも1つが窒素原子で置換されているもの、及び、これらの組合せ、をホスト材料として含有することを特徴とする第1項から第18項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 19. In the light emitting layer, a fluorene derivative, a dibenzofuran derivative, a dibenzothiophene derivative, a carbazole derivative, or a compound in which at least one carbon atom of a hydrocarbon ring constituting these condensed ring compound derivatives is substituted with a nitrogen atom, and The organic electroluminescence device according to any one of items 1 to 18, wherein a combination thereof is contained as a host material.
 20.前記リン光発光性の遷移金属錯体を含有した有機層が、塗布形成層であることを特徴とする第1項から第19項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 20. 20. The organic electroluminescence device according to any one of items 1 to 19, wherein the organic layer containing the phosphorescent transition metal complex is a coating formation layer.
 21.第1項から第20項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が備えられていることを特徴とする表示装置。 21. 21. A display device comprising the organic electroluminescence element according to any one of items 1 to 20.
 22.第1項から第20項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が備えられていることを特徴とする照明装置。 22. An organic electroluminescence device according to any one of items 1 to 20 is provided.
 23.中心金属としての遷移金属に複数の芳香族環が直接結合している配位子を有するリン光発光性の遷移金属錯体であって、以下の4要件を満足することを特徴とするとする遷移金属錯体。
(1)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、電子吸引性基を有する。
(2)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、当該芳香族環との共役が切断され、単結合によって接続された窒素原子と芳香族環とを含んだ正孔輸送性の部分構造を有する。
(3)分子軌道計算での評価において、最高被占軌道(HOMO)から下位のエネルギー準位5番目(HOMO-5)までの結合性軌道のいずれか1つは、当該結合性軌道上の電子の80%以上が前記正孔輸送性の部分構造上に存在する電子密度分布を有し、かつ、前記最高被占軌道と当該結合性軌道とのエネルギー準位との差の絶対値が0.7eV未満であること
(4)前記遷移金属錯体と当該前記遷移金属錯体から前記正孔輸送性部分構造を除いた構造を有する遷移金属錯体のそれぞれについて分子軌道計算で算出される発光極大波長の差の絶対値が、10nm以下である
 24.第23項に記載の遷移金属錯体を含有することを特徴とする、有機エレクトロルミネッセンス素子材料。
23. A phosphorescent transition metal complex having a ligand in which a plurality of aromatic rings are directly bonded to a transition metal as a central metal, characterized by satisfying the following four requirements Complex.
(1) At least one of the plurality of aromatic rings directly bonded to the transition metal has an electron withdrawing group.
(2) At least one of the plurality of aromatic rings directly bonded to the transition metal is a positive chain containing a nitrogen atom and an aromatic ring which are conjugated with the aromatic ring and are connected by a single bond. It has a hole transporting partial structure.
(3) In the evaluation by molecular orbital calculation, one of the binding orbitals from the highest occupied orbital (HOMO) to the fifth lower energy level (HOMO-5) is an electron on the binding orbital. 80% or more has an electron density distribution existing on the hole transporting partial structure, and the absolute value of the difference between the energy level of the highest occupied orbital and the binding orbital is 0. (4) Difference in emission maximum wavelength calculated by molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex The absolute value of is 10 nm or less 24. An organic electroluminescent element material comprising the transition metal complex according to item 23.
 25.第23項に記載の遷移金属錯体を含有することを特徴とする、有機エレクトロルミネッセンス素子材料組成物。 25. An organic electroluminescent element material composition comprising the transition metal complex according to item 23.
 本発明の上記手段により、青色リン光素子として十分に短波な発光を有しながら、発光効率が高く、駆動電圧が低く、耐久性に優れる有機エレクトロルミネッセンス素子を提供することができる。またそれが具備された照明装置及び表示装置を提供することができる。さらに、それを可能にすることのできるリン光発光性の遷移金属錯体、当該リン光発性の金属錯体を含有する有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子材料組成物を提供することができる。 By the above means of the present invention, it is possible to provide an organic electroluminescence device having high emission efficiency, low driving voltage and excellent durability while having sufficiently short-wave light emission as a blue phosphorescent device. In addition, a lighting device and a display device including the same can be provided. Furthermore, the phosphorescent transition metal complex which can make it possible, the organic electroluminescent element material and organic electroluminescent element material composition containing the said phosphorescent metal complex can be provided.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 金属錯体の中心金属に直接結合する芳香族環に、電子吸引性基を導入することにより、発光波長を短波化することができ、さらに、当初着目したように、共役系を連続させないで特定の正孔輸送性の基を導入することにより、発光波長の長波化を抑制するとともに、ドーパントへの正孔注入を促進することができるものと考えられる。このため、発光効率を向上させ、発光寿命の低下原因となる発光層の隣接層への過剰な正孔の流入による寿命劣化が改善され、かつ駆動電圧を低く抑えることができものと考えられる。 By introducing an electron-withdrawing group into the aromatic ring directly bonded to the central metal of the metal complex, the emission wavelength can be shortened. By introducing a hole transporting group, it is considered that the emission wavelength can be suppressed and the hole injection into the dopant can be promoted. For this reason, it is considered that the light emission efficiency can be improved, the life deterioration due to excessive inflow of holes into the adjacent layer of the light emitting layer, which causes the light emission life to be reduced, can be improved, and the driving voltage can be kept low.
有機EL素子から構成される表示装置の一例を示した模式図Schematic diagram showing an example of a display device composed of organic EL elements 図1の表示装置の表示部の模式図Schematic diagram of the display unit of the display device of FIG. 図1の表示装置の画素の回路図1 is a circuit diagram of a pixel of the display device of FIG. パッシブマトリクス方式による表示装置の模式図Schematic diagram of a passive matrix display device 照明装置の概略図Schematic of lighting device 照明装置の断面図Cross section of the lighting device
 本発明の有機エレクトロルミネッセンス素子は、発光層を含む有機層の少なくとも1層に、リン光発光性の遷移金属錯体を含有する有機エレクトロルミネッセンス素子であって、前記遷移金属錯体が、中心金属としての遷移金属に複数の芳香族環が直接結合している配位子を有し、かつ前記要件(1)及び(2)を満足する。この特徴は、各請求項に係る発明に共通する又は対応する技術的特徴である。 The organic electroluminescence device of the present invention is an organic electroluminescence device containing a phosphorescent transition metal complex in at least one organic layer including a light emitting layer, wherein the transition metal complex is a central metal. It has a ligand in which a plurality of aromatic rings are directly bonded to the transition metal, and satisfies the requirements (1) and (2). This feature is a technical feature common to or corresponding to the claimed invention.
 本発明の実施態様としては、本発明の効果発現の観点から、前記遷移金属錯体が、分子軌道計算での評価において、最高被占軌道(HOMO)から下位のエネルギー準位5番目(HOMO-5)までの結合性軌道のいずれか1つは、当該結合性軌道上の電子の80%以上が前記正孔輸送性の部分構造上に存在する電子密度分布を有し、かつ、前記最高被占軌道と当該結合性軌道とのエネルギー準位との差の絶対値が0.7eV未満であることが好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effect of the present invention, the transition metal complex has a lower energy level (HOMO-5) lower than the highest occupied orbital (HOMO) in the evaluation by molecular orbital calculation. ) Have an electron density distribution in which 80% or more of the electrons on the bonding orbital exist on the hole transporting partial structure, and the highest occupied space The absolute value of the difference between the energy level of the orbit and the binding orbit is preferably less than 0.7 eV.
 また、前記遷移金属錯体と当該前記遷移金属錯体から前記正孔輸送性部分構造を除いた構造を有する遷移金属錯体のそれぞれについて分子軌道計算で算出される発光極大波長の差の絶対値が、10nm以下であることが好ましい。 In addition, the absolute value of the difference in emission maximum wavelength calculated by molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex is 10 nm. The following is preferable.
 さらに、本発明においては、前記窒素原子と芳香族環を含んだ正孔輸送性の部分構造が、それぞれ、無置換又は置換されていてもよい、ジアリールアミノ基、カルバゾール-9-イル基、フェノキサジン-10-イル基、フェニチアジン-10-イル基、ジヒドロフェナジン-5-イル基及びジヒドロアクリジン-10-イル基から選ばれることが好ましい。 Further, in the present invention, the hole transporting partial structure containing a nitrogen atom and an aromatic ring may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxy group, respectively. It is preferably selected from a sadin-10-yl group, a phenothiazin-10-yl group, a dihydrophenazin-5-yl group and a dihydroacridin-10-yl group.
 また、前記電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることが好ましい。 In addition, the electron withdrawing group is preferably selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group.
 また、前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、アゾール環であることが好ましい。 In addition, it is preferable that at least one of the plurality of aromatic rings directly bonded to the transition metal is an azole ring.
 さらに、本発明においては、前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、イミダゾール環又はトリアゾール環であることが好ましい。 Furthermore, in the present invention, it is preferable that at least one of the plurality of aromatic rings directly bonded to the transition metal is an imidazole ring or a triazole ring.
 本発明の実施態様としては、本発明の効果発現の観点から、発光層を含む有機層を少なくとも1層有する有機ルミネッセンス素子であって、当該有機層の少なくとも1層が、前記一般式(1)で表される遷移金属錯体を含有することが好ましい。 An embodiment of the present invention is an organic luminescence device having at least one organic layer including a light emitting layer, from the viewpoint of manifesting the effects of the present invention, wherein at least one of the organic layers is represented by the general formula (1). It is preferable to contain the transition metal complex represented by these.
 すなわち、本発明の要件を満たす遷移金属錯体の中でも、一般式(2)で表される部分構造を有するリン光発光性の遷移金属錯体は、当該遷移金属錯体を構成する配位子の合成容易性及び遷移金属錯体の合成容易性などの点で好ましい。 That is, among the transition metal complexes satisfying the requirements of the present invention, the phosphorescent transition metal complex having the partial structure represented by the general formula (2) is easy to synthesize the ligand constituting the transition metal complex. From the viewpoints of the properties and ease of synthesis of the transition metal complex.
 また、前記HTGで表される窒素原子と芳香族環を含んだ正孔輸送性の部分構造が、それぞれ、無置換又は置換されていてもよい、ジアリールアミノ基、カルバゾール-9-イル基、フェノキサジン-10-イル基、フェニチアジン-10-イル基、ジヒドロフェナジン-5-イル基及びジヒドロアクリジン-10-イル基から選ばれることが好ましい。 In addition, each of the hole transporting partial structures containing a nitrogen atom and an aromatic ring represented by HTG may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxy group. It is preferably selected from a sadin-10-yl group, a phenothiazin-10-yl group, a dihydrophenazin-5-yl group and a dihydroacridin-10-yl group.
 また、本発明においては、前記Rb及びRcで表される電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることが好ましい。 In the present invention, the electron withdrawing group represented by Rb and Rc is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group. Is preferred.
 前記一般式(2)で表される部分構造を有するリン光発光性の遷移金属錯体において化合物の堅牢性の点から、環Cは窒素数3以下の5員の含窒素複素芳香族環であることが好ましい。すなわち、環Cはアゾール環であることが好ましい。より好ましくは、イミダゾール環又はトリアゾール環であることが好ましい。 In the phosphorescent transition metal complex having the partial structure represented by the general formula (2), ring C is a 5-membered nitrogen-containing heteroaromatic ring having 3 or less nitrogen atoms from the viewpoint of robustness of the compound. It is preferable. That is, ring C is preferably an azole ring. More preferably, it is an imidazole ring or a triazole ring.
 前記一般式(2)で表される部分構造を有するリン光発光性の遷移金属錯体において化合物の堅牢性の点から、環Cはアゾール環であることが好ましく、より具体的には、前記一般式(2)で表されるリン光発光性の遷移金属錯体は、前記一般式(3)で表される部分構造を有するリン光発光性の遷移金属錯体であることが好ましい。 In the phosphorescent transition metal complex having the partial structure represented by the general formula (2), from the viewpoint of fastness of the compound, the ring C is preferably an azole ring, and more specifically, The phosphorescent transition metal complex represented by the formula (2) is preferably a phosphorescent transition metal complex having a partial structure represented by the general formula (3).
 具体的には、前記一般式(1)で表されるリン光発光性の遷移金属錯体が、前記一般式(3)表される部分構造を有するリン光発光性の遷移金属錯体であることが好ましい。 Specifically, the phosphorescent transition metal complex represented by the general formula (1) is a phosphorescent transition metal complex having a partial structure represented by the general formula (3). preferable.
 前記一般式(2)又は一般式(3)で表される部分構造を有するリン光発光性有機金属錯体において、発光性の点及び化合物の堅牢性の点から、環Bは6員の芳香族炭化水素環又は含窒素複素芳香族環であることが好ましい。すなわち、前記一般式(2)又は(3)で表される部分構造を有するリン光発光性の遷移金属錯体は、前記一般式(4)で表される部分構造を有するリン光発光性の遷移金属錯体であることが好ましい。 In the phosphorescent organometallic complex having the partial structure represented by the general formula (2) or the general formula (3), the ring B is a 6-membered aromatic from the viewpoint of luminescence and fastness of the compound. It is preferably a hydrocarbon ring or a nitrogen-containing heteroaromatic ring. That is, the phosphorescent transition metal complex having the partial structure represented by the general formula (2) or (3) is the phosphorescent transition metal complex having the partial structure represented by the general formula (4). A metal complex is preferred.
 具体的には、前記一般式(1)で表されるリン光発光性の遷移金属錯体が、前記一般式(4)表される部分構造を有するリン光発光性の遷移金属錯体であることが好ましい。 Specifically, the phosphorescent transition metal complex represented by the general formula (1) is a phosphorescent transition metal complex having a partial structure represented by the general formula (4). preferable.
 前記一般式(4)で表される部分構造を有するリン光発光性の遷移金属錯体としてより好ましくは、前記一般式(5)又は(6)のいずれかで表される部分構造を有するリン光発光性の遷移金属錯体であることが好ましい。 More preferably, the phosphorescent transition metal complex having the partial structure represented by the general formula (4) is phosphorescent having the partial structure represented by either the general formula (5) or (6). A luminescent transition metal complex is preferred.
 前記一般式(3)~一般式(6)において、Rb及びRcで表される電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることが好ましい。 In the general formulas (3) to (6), the electron-withdrawing group represented by Rb and Rc is a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, or a fluorinated group. It is preferably selected from alkyl groups.
 また、前記遷移金属が、イリジウムであることが好ましい。 The transition metal is preferably iridium.
 また、前記発光層が、フルオレン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、又は、これらの縮環化合物誘導体を構成する炭化水素環の炭素原子の少なくとも1つが窒素原子で置換されているもの、及び、これらの組合せをホスト材料として含有することが好ましい。 Further, in the light emitting layer, a fluorene derivative, a dibenzofuran derivative, a dibenzothiophene derivative, a carbazole derivative, or a compound in which at least one carbon atom of a hydrocarbon ring constituting these condensed ring compound derivatives is substituted with a nitrogen atom, And it is preferable to contain these combinations as a host material.
 さらに、前記リン光発光性の遷移金属錯体を含有した有機層が、塗布形成層であることが、均質な膜が得られやすく、且つピンホールが生成しにくいことから好ましい。 Furthermore, it is preferable that the organic layer containing the phosphorescent transition metal complex is a coating formation layer because a homogeneous film is easily obtained and pinholes are hardly generated.
 本発明の有機EL素子は、照明装置及び表示装置に好適に具備され得る。 The organic EL element of the present invention can be suitably included in a lighting device and a display device.
 本発明の実施態様として、本発明の遷移金属錯体は中心金属としての遷移金属に複数の芳香族環が直接結合している配位子を有するリン光発光性の遷移金属錯体であって、前記(1)~(4)の4要件を満足することが好ましい。 As an embodiment of the present invention, the transition metal complex of the present invention is a phosphorescent transition metal complex having a ligand in which a plurality of aromatic rings are directly bonded to a transition metal as a central metal, It is preferable to satisfy the four requirements (1) to (4).
 さらに、本発明のリン光発光性の遷移金属錯体は、有機エレクトロルミネッセンス素子用材料として好ましく用いることができる。 Furthermore, the phosphorescent transition metal complex of the present invention can be preferably used as a material for an organic electroluminescence element.
 また、本発明のリン光発光性の遷移金属錯体を含有する組成物は、有機エレクトロルミネッセンス素子用材料組成物として好ましく用いることができる。 Moreover, the composition containing the phosphorescent transition metal complex of the present invention can be preferably used as a material composition for an organic electroluminescence device.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《本発明の有機エレクトロルミネッセンス素子》
 本発明の有機エレクトロルミネッセンス素子は、発光層を含む有機層の少なくとも1層に、リン光発光性の遷移金属錯体を含有する有機エレクトロルミネッセンス素子であって、前記遷移金属錯体が、中心金属としての遷移金属に複数の芳香族環が直接結合している配位子を有し、かつ下記要件(1)及び(2)を満足することを特徴とする。
(1)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、電子吸引性基を有する。
(2)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、当該芳香族環との共役が切断され、単結合によって接続された窒素原子と芳香族環とを含んだ正孔輸送性の部分構造を有する。
<< Organic electroluminescence device of the present invention >>
The organic electroluminescence device of the present invention is an organic electroluminescence device containing a phosphorescent transition metal complex in at least one organic layer including a light emitting layer, wherein the transition metal complex is a central metal. It has a ligand in which a plurality of aromatic rings are directly bonded to a transition metal, and satisfies the following requirements (1) and (2).
(1) At least one of the plurality of aromatic rings directly bonded to the transition metal has an electron withdrawing group.
(2) At least one of the plurality of aromatic rings directly bonded to the transition metal is a positive chain containing a nitrogen atom and an aromatic ring which are conjugated with the aromatic ring and are connected by a single bond. It has a hole transporting partial structure.
 すなわち、本発明の基本要件として、リン光発光性の遷移金属錯体において、前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、電子吸引性基を有することによって、前記遷移金属錯体の3重項励起エネルギーが拡大し、3重項遷移に伴うリン光発光の波長が短波化されている。 That is, as a basic requirement of the present invention, in the phosphorescent transition metal complex, at least one of a plurality of aromatic rings directly bonded to the transition metal has an electron-withdrawing group, whereby the transition metal The triplet excitation energy of the complex is expanded, and the wavelength of phosphorescence emission accompanying triplet transition is shortened.
 一方、ここで、電子吸引性基の導入によるリン光発光波長の短波化に伴って、前記遷移金属錯体の最高被占軌道(HOMO)のエネルギー準位が低くなることにより、隣接する正孔輸送層の正孔輸送材料や発光層において前記の遷移金属錯体を分散しているホスト材料のHOMOの準位と、前記の遷移金属錯体のHOMOの準位との準位差が拡大してしまった結果、正孔輸送材料やホスト材料からの正孔の移動が阻害され、その結果、前記の遷移金属錯体上での励起子の生成確率が著しく低下することで発光効率の低下が引き起こされることが問題となる。 On the other hand, as the phosphorescence emission wavelength is shortened by introducing an electron-withdrawing group, the energy level of the highest occupied orbital (HOMO) of the transition metal complex is lowered, so that adjacent hole transport is performed. The difference in level between the HOMO level of the host material in which the transition metal complex is dispersed in the hole transport material of the layer and the light emitting layer and the HOMO level of the transition metal complex has expanded. As a result, the movement of holes from the hole transport material or the host material is inhibited, and as a result, the generation probability of excitons on the transition metal complex is significantly reduced, which may cause a decrease in luminous efficiency. It becomes a problem.
 前記の遷移金属錯体への正孔の移動を促進し、発光効率を回復するための必須要件が、前記の遷移金属に直接結合している複数の芳香族環の少なくとも1つが、当該芳香族環との共役が切断され、単結合によって接続された窒素原子と芳香族環とを含んだ正孔輸送性の部分構造を有することである。 The essential requirement for promoting the movement of holes to the transition metal complex and restoring the light emission efficiency is that at least one of the plurality of aromatic rings directly bonded to the transition metal is the aromatic ring. And having a hole transporting partial structure containing a nitrogen atom and an aromatic ring connected by a single bond.
 従来も、窒素原子と芳香族環とを含んだ正孔輸送性の部分構造を遷移金属に置換基として導入することは試みられているが、本発明において、短波化のために導入している電子吸引性基とは互いの効果が相反していることが多く、単純に組み合わせるだけでは、所望の結果を得ることはできなかった。 Conventionally, it has been attempted to introduce a hole transporting partial structure containing a nitrogen atom and an aromatic ring into a transition metal as a substituent, but in the present invention, it is introduced for shortening the wave length. In many cases, the effects of the electron withdrawing group are contradictory to each other, and a desired result cannot be obtained by simple combination.
 本発明においては、窒素原子と芳香族環とを含んだ正孔輸送性の部分構造を前記の遷移金属に直接結合している複数の芳香族環の少なくとも1つと結合する際に、当該芳香族環との共役が切断された状態で、単結合によって窒素原子と接続することで、正孔輸送性の部分構造を導入することによる副次的な影響を最小化することに成功した。 In the present invention, when the hole transporting partial structure containing a nitrogen atom and an aromatic ring is bonded to at least one of the plurality of aromatic rings directly bonded to the transition metal, the aromatic In the state where the conjugation with the ring is broken, by connecting to the nitrogen atom by a single bond, we succeeded in minimizing the side effects caused by introducing a hole transporting partial structure.
 本発明の構成要件を満たす遷移金属錯体に共通する特徴を分子軌道計算によって確認することができる。分子軌道計算によって、本発明の遷移金属錯体の電子軌道を詳細に解析することで以下のような共通する特徴が確認できた。ここで、使用する分子軌道計算手法は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian09を用い、キーワードとしてB3LYP/LANL2DZを用いて構造最適化を行うことにより算出した。 The characteristics common to the transition metal complexes satisfying the constituent requirements of the present invention can be confirmed by molecular orbital calculation. The following common features were confirmed by detailed analysis of the electron orbital of the transition metal complex of the present invention by molecular orbital calculation. Here, the molecular orbital calculation method used was calculated by using Gaussian09, which is molecular orbital calculation software manufactured by Gaussian, USA, and performing structural optimization using B3LYP / LANL2DZ as a keyword.
 本発明の遷移金属錯体の分子軌道計算を行い、算出された分子軌道を詳細に検討すると、前記遷移金属錯体の最高被占軌道(HOMO)から下位のエネルギー準位5番目(HOMO-5)までの結合性軌道のいずれか1つの中に、当該結合性軌道上の電子の80%以上が前記の正孔輸送性の部分構造上に存在する電子密度分布を有する軌道が存在し、かつ、前記最高被占軌道と当該結合性軌道(HOMO-x:xは1~5のいずれか)とのエネルギー準位との差の絶対値を見ると、いずれも0.7eV未満であることが確認できた。 When the molecular orbital calculation of the transition metal complex of the present invention is performed and the calculated molecular orbital is examined in detail, from the highest occupied orbital (HOMO) to the fifth lowest energy level (HOMO-5) of the transition metal complex. In any one of the bonding orbitals, there is an orbit having an electron density distribution in which 80% or more of the electrons on the bonding orbitals exist on the hole transporting partial structure, and Looking at the absolute value of the difference between the energy level of the highest occupied orbit (HOMO-x: x is one of 1 to 5), it can be confirmed that both are less than 0.7 eV. It was.
 一方、正孔輸送性の部分構造を有しているが、本発明の構成要件を満たしていない、他の遷移金属錯体について同様の解析を行うと、それらも当該遷移金属錯体の最高被占軌道(HOMO)から下位のエネルギー準位の結合性軌道のいずれか1つの中に、当該結合性軌道上の電子の60%以上が、前記の正孔輸送性の部分構造上に存在する電子密度分布を有する軌道が存在するものの、それらは、前記最高被占軌道と当該結合性軌道とのエネルギー準位との差の絶対値を見ると、いずれも0.9eV以上であった。 On the other hand, when a similar analysis is performed on other transition metal complexes that have a hole transporting partial structure but do not satisfy the constituent requirements of the present invention, they are also the highest occupied orbitals of the transition metal complexes. (HOMO) The electron density distribution in which at least 60% of the electrons on the bonding orbitals are present on the hole transporting partial structure in any one of the bonding orbitals of the lower energy level. Although there are orbits having the above, they were all 0.9 eV or more in terms of the absolute value of the difference between the energy level of the highest occupied orbit and the binding orbit.
 すなわち、遷移金属錯体の最高被占軌道(HOMO)から下位のエネルギー準位の結合性軌道の中で、前記最高被占軌道と当該結合性軌道とのエネルギー準位との差の絶対値が0.7eV未満の軌道の電子の80%以上が正孔輸送性の部分構造に分布していることが、本発明の遷移金属錯体への正孔の移動を促進し、発光効率を回復したものと考えられる。 That is, the absolute value of the difference between the energy level of the highest occupied orbital and the binding orbital among the binding orbitals of the lower energy level from the highest occupied orbital (HOMO) of the transition metal complex is 0. 80% or more of the electrons in the orbit of less than 0.7 eV are distributed in the hole transporting partial structure, which promotes the movement of holes to the transition metal complex of the present invention and restores the luminous efficiency. Conceivable.
 また、前記最高被占軌道(HOMO)と当該結合性軌道とのエネルギー準位との差の絶対値が0.7eV未満の軌道の電子の80%以上が正孔輸送性の部分構造に分布していることで、当該結合性軌道が、最高被占軌道(HOMO)から下位のエネルギー準位5番目(HOMO-5:HOMOを1番目としてそこから数えて6番目の結合性軌道)までの結合性軌道のいずれか1つの中に位置することになったと考えられる。 In addition, 80% or more of the electrons of the orbital whose absolute value of the difference between the energy level of the highest occupied orbital (HOMO) and the binding orbital is less than 0.7 eV is distributed in the hole transporting partial structure. As a result, the binding orbital from the highest occupied orbital (HOMO) to the fifth lowest energy level (HOMO-5: HOMO as the first and the sixth binding orbital counting from there) It is thought that it was located in any one of the sex trajectories.
 一方、本発明の遷移金属錯体の3重項励起エネルギー(T)と当該前記遷移金属錯体から前記正孔輸送性部分構造を除いた構造を有する遷移金属錯体の3重項励起エネルギー(T)のそれぞれについて分子軌道計算で算出し、3重項励起エネルギー(T)を発光極大波長(λmax)に変換して比較すると、それぞれの発光極大波長の差の絶対値は、10nm以下であり、前記正孔輸送性部分構造の導入による発光波長の長波化は極めて小さく抑えられていることが確認できた。 On the other hand, triplet excitation energy of the transition metal complex having the structure except for the hole transporting moiety triplet excitation energy (T 1) from the said transition metal complex of a transition metal complex of the present invention (T 1 ) Is calculated by molecular orbital calculation, and the triplet excitation energy (T 1 ) is converted into the emission maximum wavelength (λmax) and compared, the absolute value of the difference between the emission maximum wavelengths is 10 nm or less. Thus, it was confirmed that the increase of the emission wavelength due to the introduction of the hole transporting partial structure was suppressed to be extremely small.
 《有機EL素子の構成層》
 本発明において、有機層とは、有機物を含有する層をいう。陽極と陰極との間に設けられている有機エレクトロルミネッセンス(以下、有機ELともいう)を構成する正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等が含まれる
 本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Constituent layers of organic EL elements >>
In the present invention, the organic layer refers to a layer containing an organic substance. Hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer constituting organic electroluminescence (hereinafter also referred to as organic EL) provided between the anode and the cathode The constituent layers of the organic EL device of the present invention will be described. In this invention, although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.
 (i)陽極/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (vi)陽極/正孔輸送層/陽極バッファー層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (vii)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
 複数の発光層が含まれる場合、該発光層間に非発光性の中間層を有してもよい。また、上記層構成の内、陽極及び陰極を除く発光層を含む有機化合物層を1つの発光ユニットとし、複数の発光ユニットを積層することが可能である。該複数の積層された発光ユニットにおいては、発光ユニット間に非発光性の中間層を有していてもよく、更に中間層は電荷発生層を含んでいてもよい。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode (vi) anode / hole transport layer / anode buffer layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (vii) anode / anode buffer Layer / hole transport layer / light emitting layer / electron transport layer / cathode buffer layer / cathode When a plurality of light emitting layers are included, a non-light emitting intermediate layer may be provided between the light emitting layers. In addition, among the above layer structures, an organic compound layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked. The plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
 本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。本発明の有機EL素子を構成する各層について説明する。 The organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these. Each layer which comprises the organic EL element of this invention is demonstrated.
 《発光層》
 本発明に係る発光層は、陰極若しくは電子輸送層又は陽極若しくは正孔輸送層から注入されてくる電子及び正孔が再結合して生成した励起子が失活する際発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light when excitons generated by recombination of electrons and holes injected from the cathode or the electron transport layer or the anode or the hole transport layer are deactivated. The portion to be formed may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
 発光層の厚さの総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm~5μmの範囲に調整され、更に好ましくは2~200nmの範囲に調整され、特に好ましくは5~100nmの範囲に調整される。 The total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the stability of the emission color against the driving current and preventing the application of a high voltage unnecessary during the light emission, and the film homogeneity. It is preferably adjusted in the range of 2 nm to 5 μm, more preferably adjusted in the range of 2 to 200 nm, particularly preferably in the range of 5 to 100 nm.
 発光層の作製には、後述する発光ドーパントやホスト材料(以下ホスト化合物ともいう。)を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。))等により製膜して形成することができる。好ましくは発光層が、ウェットプロセスを経て形成された層である。ウェットプロセスにより層を形成することにより、真空蒸着法に比べて熱による発光層のダメージを軽減することができる。 For the production of the light emitting layer, a light emitting dopant or a host material (hereinafter also referred to as a host compound) described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, Blade coating method, roll coating method, ink jet method, printing method, spray coating method, curtain coating method, LB method (Langmuir-Blodgett method and the like can be mentioned)) and the like. can do. Preferably, the light emitting layer is a layer formed through a wet process. By forming the layer by a wet process, damage to the light emitting layer due to heat can be reduced as compared with the vacuum deposition method.
 本発明の有機EL素子の発光層には、発光ドーパントと、ホスト化合物とを含有し、少なくとも1つの発光ドーパントは、前述の一般式(1)で表されるリン光発光性の遷移金属錯体であることが好ましく、より好ましくは、一般式(2)から(6)までのいずれかで表される部分構造を有するリン光発光性の遷移金属錯体である。 The light emitting layer of the organic EL device of the present invention contains a light emitting dopant and a host compound, and at least one light emitting dopant is a phosphorescent transition metal complex represented by the general formula (1). It is preferable that there is a phosphorescent transition metal complex having a partial structure represented by any one of the general formulas (2) to (6).
 また、本発明に係る発光層には、以下の特許公報に記載されている化合物等を併用してもよい。 In addition, the light-emitting layer according to the present invention may be used in combination with compounds described in the following patent publications.
 例えば、国際公開第00/70655号、特開2002-280178号公報、特開2001-181616号公報、特開2002-280179号公報、特開2001-181617号公報、特開2002-280180号公報、特開2001-247859号公報、特開2002-299060号公報、特開2001-313178号公報、特開2002-302671号公報、特開2001-345183号公報、特開2002-324679号公報、国際公開第02/15645号、特開2002-332291号公報、特開2002-50484号公報、特開2002-332292号公報、特開2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、特開2002-338588号公報、特開2002-170684号公報、特開2002-352960号公報、国際公開第01/93642号、特開2002-50483号公報、特開2002-100476号公報、特開2002-173674号公報、特開2002-359082号公報、特開2002-175884号公報、特開2002-363552号公報、特開2002-184582号公報、特開2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、特開2002-226495号公報、特開2002-234894号公報、特開2002-235076号公報、特開2002-241751号公報、特開2001-319779号公報、特開2001-319780号公報、特開2002-62824号公報、特開2002-100474号公報、特開2002-203679号公報、特開2002-343572号公報、特開2002-203678号公報等である。 For example, International Publication No. 00/70655, JP 2002-280178, JP 2001-181616, JP 2002-280179, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, International publication No. 02/15645, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-83684 A, JP 2002-540572 A, JP 2002-2002 A. No. 117978, Japanese Patent Laid-Open No. 2002-3385 No. 8, JP-A No. 2002-170684, JP-A No. 2002-352960, WO 01/93642, JP-A No. 2002-50483, JP-A No. 2002-1000047, JP-A No. 2002-173684 Gazette, JP-A-2002-359082, JP-A-2002-175484, JP-A-2002-363552, JP-A-2002-184582, JP-A-2003-7469, JP-T-2002-525808, JP 2003-7471, JP 2002-525833, JP 2003-31366, JP 2002-226495, JP 2002-234894, JP 2002-233506, JP JP 2002-241751 A, JP 2001-31977 A JP, JP 2001-319780, JP 2002-62824, JP 2002-1000047, JP 2002-203679, JP 2002-343572, JP 2002-203678. Etc.
 (1)発光ドーパント
 発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光ドーパント、リン光性化合物、リン光発光性化合物等ともいう)を用いることができる。
(1) Luminescent dopant As the luminescent dopant, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent dopant (also referred to as a phosphorescent dopant, a phosphorescent compound, a phosphorescent compound, or the like) can be used.
 本発明者らは、上記した本発明の目的を達成するために鋭意研究を重ねた結果、一般式(1)で表されるリン光発光性の遷移金属錯体をリン光ドーパントとして用いることにより、短波な波長を持ちながら、高い発光輝度と低駆動電圧、さらに発光寿命の長寿命化も同時に達成できることを見いだし、本発明に至った。また、本発明のリン光ドーパントを用いて作製された有機EL素子は経時安定性の点でも改善されることが分かった。 As a result of intensive studies to achieve the above-described object of the present invention, the present inventors have used a phosphorescent transition metal complex represented by the general formula (1) as a phosphorescent dopant, It has been found that a high light emission luminance, a low drive voltage, and a long light emission life can be simultaneously achieved while having a short wavelength, and the present invention has been achieved. Moreover, it turned out that the organic electroluminescent element produced using the phosphorescence dopant of this invention is improved also at the point of temporal stability.
 本発明に係る一般式(1)で表されるリン光発光性の遷移金属錯体においては、Mは元素周期表における8~10族の遷移金属であることが好ましい。 In the phosphorescent transition metal complex represented by the general formula (1) according to the present invention, M is preferably a group 8-10 transition metal in the periodic table.
 遷移金属原子Mに配位している配位子の組み合わせを変更したり、配位子に置換基を導入したりすることによって、リン光発光性の遷移金属錯体の発光波長を所望の領域に制御することができる。 By changing the combination of the ligands coordinated to the transition metal atom M or introducing a substituent into the ligand, the emission wavelength of the phosphorescent transition metal complex is adjusted to a desired region. Can be controlled.
 (1.1)リン光ドーパント
 本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
(1.1) Phosphorescent dopant The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), Although the phosphorescence quantum yield is defined to be a compound of 0.01 or more at 25 ° C., the preferred phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
 リン光ドーパントの発光は原理としては2種挙げられ、1つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう1つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type to obtain light emission from a phosphorescent dopant. The other is a carrier trap type in which a phosphorescent dopant serves as a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
 本発明の実施形態におけるリン光ドーパントとしては、以下に説明する、一般式(1)で表されるリン光発光性の遷移金属錯体が用いられる。 As the phosphorescent dopant in the embodiment of the present invention, a phosphorescent transition metal complex represented by the general formula (1) described below is used.
 (1.1.1)一般式(1)で表されるリン光発光性の遷移金属錯体
 一般式(1)
   ML・L・(L)n
 〔式中、MLは、下記一般式(2)で表される部分構造を表し、Mは、元素周期表における8~10族の遷移金属を表す。L~Lは、各々2価の配位子を表し、L~Lは同一であっても異なっていてもよく、互いに結合していてもよい。nは、1又は0を表す。〕
Figure JPOXMLDOC01-appb-C000011
(1.1.1) Phosphorescent transition metal complex represented by general formula (1) General formula (1)
ML A · L B · (L C ) n
[Wherein, ML A represents a partial structure represented by the following general formula (2), and M represents a transition metal of group 8 to 10 in the periodic table of elements. L A to L C each represents a divalent ligand, and L A to L C may be the same or different, and may be bonded to each other. n represents 1 or 0. ]
Figure JPOXMLDOC01-appb-C000011
 一般式(2)において、環Bは、C=Cと共に形成される6員の芳香族炭化水素環又は5員若しくは6員の芳香族複素環を表す。 In general formula (2), ring B represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle formed with C═C.
 環Bで表される6員の芳香族炭化水素環としてはベンゼン環が挙げられ、環Bで表される5員又は6員の芳香族複素環としては、例えば、オキサゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、チアジアゾール環、等が挙げられる。 Examples of the 6-membered aromatic hydrocarbon ring represented by ring B include a benzene ring. Examples of the 5-membered or 6-membered aromatic heterocycle represented by ring B include oxazole ring, pyridine ring, and pyridazine. Ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, thiadiazole ring, and the like.
 前記一般式(2)で表される部分構造を有するリン光発光性の遷移金属錯体において発光性の点及び化合物の堅牢性の点から、環Bは6員の芳香族炭化水素環又は含窒素複素芳香族環であることが好ましく、より好ましくは、環Bは、ベンゼン環、ピリジン環、又はピリミジン環である。 In the phosphorescent transition metal complex having the partial structure represented by the general formula (2), ring B is a 6-membered aromatic hydrocarbon ring or a nitrogen-containing compound from the viewpoint of luminescence and fastness of the compound. It is preferably a heteroaromatic ring, and more preferably, ring B is a benzene ring, a pyridine ring, or a pyrimidine ring.
 環Cは、C=Nと共に形成される5員もしくは6員の芳香族複素環を表す。
環Cで表される5員の芳香族複素環としては、例えば、トリアゾール環、イミダゾール環、テトラゾール等が挙げられる。
環Cで表される6員の芳香族複素環としては、例えば、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環等が挙げられる。
Ring C represents a 5- or 6-membered aromatic heterocycle formed with C═N.
Examples of the 5-membered aromatic heterocycle represented by ring C include a triazole ring, an imidazole ring, and a tetrazole.
Examples of the 6-membered aromatic heterocycle represented by ring C include a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, and a triazine ring.
 前記一般式(2)で表される部分構造を有するリン光発光性の遷移金属錯体において化合物の発光波長の点から、環Cはピリジン環、又はアゾール環であることが好ましく、より好ましくは、アゾール環であり、さらに好ましくはイミダゾール環、又はトリアゾール環である。 In the phosphorescent transition metal complex having the partial structure represented by the general formula (2), from the viewpoint of the emission wavelength of the compound, the ring C is preferably a pyridine ring or an azole ring, more preferably An azole ring, more preferably an imidazole ring or a triazole ring.
 Rb及びRcは、それぞれ環B及び環Cに置換可能な電子吸引性の置換基を表す。
電子吸引性基の例としては、フッ素原子、シアノ基、ニトロ基、トリフルオロメチル基などのフッ化アルキル基、ペンタフルオロフェニル基のようなフッ化アリール基、ホルミル基、アルキルカルボニル基、アリールカルボニル基、カルバモイル基、ペンタフルオロスルファニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アルキルスルファモイル基、アリールスルファモイル基、ホスフェノ基、ホスフィンオキシド基、などが挙げられる。
Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
Examples of electron withdrawing groups include fluorine atoms, cyano groups, nitro groups, fluorinated alkyl groups such as trifluoromethyl groups, fluorinated aryl groups such as pentafluorophenyl groups, formyl groups, alkylcarbonyl groups, arylcarbonyl Group, carbamoyl group, pentafluorosulfanyl group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, alkylsulfamoyl group, arylsulfamoyl group, phospheno group, phosphine oxide group, and the like.
 本発明において、電子吸引性基は、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることが好ましい。 In the present invention, the electron withdrawing group is preferably selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group.
 nbは0~3の整数を表し、ncは0~2の整数を表す。1≦nb+nc≦4である。Rb、Rcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。 Nb represents an integer from 0 to 3, and nc represents an integer from 0 to 2. 1 ≦ nb + nc ≦ 4. When there are a plurality of Rb and Rc, they may be the same or different from each other.
 HTGは窒素原子と芳香族環を含んだ正孔輸送性の部分構造を表す。芳香族環としては、ベンゼン環、ナフタレン環、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環などが挙げられる。HTGとして好ましくは2つの芳香族環が置換した窒素原子からなる構造が好ましく、2つの芳香族環同士が互いに結合して環状構造を形成してもよい。2つの芳香族環の連結部分は単結合で直接結合してもよいし、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれる原子を介して結合してもよい。さらに、芳香族環は置換されていてもよく、置換基としては炭素数1~4の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~4の直鎖、分岐若しくは環状のアルコキシ基が好ましい。 HTG represents a hole transporting partial structure containing a nitrogen atom and an aromatic ring. Examples of the aromatic ring include a benzene ring, a naphthalene ring, a furan ring, a thiophene ring, a benzofuran ring, and a benzothiophene ring. HTG is preferably a structure composed of nitrogen atoms substituted by two aromatic rings, and the two aromatic rings may be bonded to each other to form a cyclic structure. The connecting part of the two aromatic rings may be directly bonded by a single bond or bonded via an atom selected from an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom. May be. Further, the aromatic ring may be substituted, and examples of the substituent include a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms, or a linear, branched or cyclic alkoxy group having 1 to 4 carbon atoms. preferable.
 具体的には、ジアリールアミノ基、アリールヘテロアリールアミノ基、ビス(ヘテロアリールアミノ)基、カルバゾール-9-イル基、フェノキサジン-10-イル基、フェノチアジン-10-イル基、5,10-ジヒドロフェナジン-5-イル基、9,10-ジヒドロアクリジン-10-イル基などが挙げられる。これらの基はさらに置換されていてもよい。 Specifically, diarylamino group, arylheteroarylamino group, bis (heteroarylamino) group, carbazol-9-yl group, phenoxazin-10-yl group, phenothiazin-10-yl group, 5,10-dihydro Examples include phenazin-5-yl group and 9,10-dihydroacridin-10-yl group. These groups may be further substituted.
 HTGの例としては以下のような構造を挙げることができる。 The following structure can be given as an example of HTG.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、*は遷移金属錯体の配位子部分である環B又は環Cとの、又は連結基Lとの結合部位を表す。 In the formula, * represents a binding site with ring B or ring C, which is a ligand part of the transition metal complex, or with linking group L.
 Lは炭素数6~10のアリーレン基を表し、Lは環B又は環Cに結合しているが、環B又は環Cと共役は連続していない。Lと環B又は環Cの結合部分で共役が連続しないためには、Lと環B又は環Cの結合部分が単結合であり、さらに、この単結結合を挟んでLと環B又は環Cが形成する2面角が30°以上になればよい。具体的には、Lと環B又は環Cの結合部分に隣接する2つのo-位の原子上に置換基を導入すればよい。導入される置換基が多くなるか、嵩高くなることで、前記の2面角はより大きくなる。置換基としては、アルキル基又はアルコキシ基が好ましく、アルキル基がより好ましい。 L represents an arylene group having 6 to 10 carbon atoms, and L is bonded to ring B or ring C, but conjugation with ring B or ring C is not continuous. In order that conjugation does not continue at the bonding part of L and ring B or ring C, the bonding part of L and ring B or ring C is a single bond, and further, L and ring B or ring sandwich this single bond. The dihedral angle formed by C may be 30 ° or more. Specifically, a substituent may be introduced on two o-position atoms adjacent to the bonding portion between L and ring B or ring C. The dihedral angle becomes larger as the number of substituents to be introduced increases or becomes bulky. As the substituent, an alkyl group or an alkoxy group is preferable, and an alkyl group is more preferable.
 炭素数6~10のアリーレンとしては、無置換又は置換されていてもよい、フェニレン基、ナフタレン基が挙げられる。置換基としては炭素数1~4の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~4の直鎖、分岐若しくは環状のアルコキシ基が好ましい。n1は1又は2を表す。n2は1又は2を表す。Lが複数ある場合には、互いに同一であっても良いし異なってもよい。 Examples of the arylene having 6 to 10 carbon atoms include a phenylene group and a naphthalene group which may be unsubstituted or substituted. As the substituent, a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms, or a linear, branched or cyclic alkoxy group having 1 to 4 carbon atoms is preferable. n1 represents 1 or 2. n2 represents 1 or 2. When there are a plurality of L, they may be the same or different.
 連結基Lの好ましい例として、連結基LG-1~LG-12を以下に示す。式中、*は正孔輸送性の部分構造との結合部位を表す。#は遷移金属錯体の配位子部分との結合部位を表す。 As preferred examples of the linking group L, linking groups LG-1 to LG-12 are shown below. In the formula, * represents a bonding site with a hole transporting partial structure. # Represents a binding site with the ligand portion of the transition metal complex.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、*は正孔輸送性の部分構造HTGとの結合部位を表す。#は遷移金属錯体の配位子部分である環B又は環Cとの結合部位を表す。 In the formula, * represents a bonding site with the hole transporting partial structure HTG. # Represents a binding site with ring B or ring C which is a ligand part of the transition metal complex.
 Mは、元素周期表における8~10族の遷移金属を表す。8~10族の遷移金属としては、イリジウム、ロジウム、オスミウム、ルテニウム、パラジウム、白金などが挙げられるが、イリジウム、パラジウム、白金が好ましく、最も好ましくはイリジウムである。 M represents a transition metal of group 8 to 10 in the periodic table. Examples of the group 8-10 transition metal include iridium, rhodium, osmium, ruthenium, palladium, platinum, and the like. Iridium, palladium, and platinum are preferable, and iridium is most preferable.
 一般式(1)において、L、Lは、Mに配位したモノアニオン性の二座配位子を表す。L、Lで表されるモノアニオン性の二座配位子の具体例としては、下記式の配位子等が挙げられる。 In the general formula (1), L B and L C represent a monoanionic bidentate ligand coordinated to M. Specific examples of monoanionic bidentate ligands represented by L B and L C include ligands of the following formulas.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記の式中において、Xは、窒素原子、酸素原子及び硫黄原子から選ばれる原子を表す。X及びXは、炭素原子又は窒素原子を表す。各配位子内で複数存在しているX及びXは、互いに同じであっても良いし異なっていても良い。
R′、R″及びR″′は水素原子又は置換基を表し、R′、R″及びR″′で表される置換基の例としては、例えば、アルキル基、アルケニル基、アルキニル基、非芳香族炭化水素環基、シクロアルコキシ基、シクロアルキルチオ基、非芳香族複素環基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基又はヘテロアリールスルホニル基、アミノ基、ハロゲン原子、フッ化炭化水素基、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基、ホスホノ基等が挙げられる。
In said formula, X represents the atom chosen from a nitrogen atom, an oxygen atom, and a sulfur atom. X A and X B represent a carbon atom or a nitrogen atom. A plurality of X A and X B present in each ligand may be the same or different from each other.
R ′, R ″ and R ″ ′ each represent a hydrogen atom or a substituent. Examples of the substituent represented by R ′, R ″ and R ″ ′ include, for example, an alkyl group, an alkenyl group, an alkynyl group, Aromatic hydrocarbon ring group, cycloalkoxy group, cycloalkylthio group, non-aromatic heterocyclic group, aromatic hydrocarbon group, aromatic heterocyclic group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkoxycarbonyl group , Aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group, carbamoyl group, ureido group, sulfinyl group, alkylsulfonyl group, arylsulfonyl group or heteroarylsulfonyl group, amino group, halogen atom, fluorinated hydrocarbon Group, cyano group, nitro group, hydroxy group, mercapto group, silyl group, phosphono group, etc. It is.
 (1.1.2)一般式(3)で表される部分構造を有するリン光発光性の遷移金属錯体
 一般式(1)で表されるリン光発光性の遷移金属錯体の好ましい実施態様の1つは一般式(2)で表される部分構造が、下記一般式(3)で表される部分構造であるリン光発光性の遷移金属錯体である。
(1.1.2) A phosphorescent transition metal complex having a partial structure represented by the general formula (3) According to a preferred embodiment of the phosphorescent transition metal complex represented by the general formula (1) One is a phosphorescent transition metal complex in which the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(3)において、
環Aは炭素数6~10の2価のアリーレン基を表す。
環Bは、C=Cと共に形成される6員の芳香族炭化水素環又は5員もしくは6員の芳香族複素環を表す。
環Cは、N-C=Nと共に形成される5員の芳香族複素環を表す。
Raは、置換可能な置換基を表し、naは0~3の整数を表す。
Rb及びRcは、それぞれ環B及び環Cに置換可能な電子吸引性の置換基を表す。
nbは0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
Ra、Rb及びRcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
nd及びneは、0又は1を表す。
、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは0又は1を表す。
Ar、Ar、Ar、Ar、Ar及びArは炭素数6~10の芳香族基を表す。
,L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
m、n及びoは0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは4,5,又は6のいずれかを表す。
p、q及びrは0又は1を表し。1≦p+q+r≦2である。
Mは、元素周期表における8~10族の遷移金属を表す。
及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。
In general formula (3),
Ring A represents a divalent arylene group having 6 to 10 carbon atoms.
Ring B represents a 6-membered aromatic hydrocarbon ring or 5-membered or 6-membered aromatic heterocycle formed with C═C.
Ring C represents a 5-membered aromatic heterocycle formed with N—C═N.
Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
nd and ne represent 0 or 1.
L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1;
Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each represent an aromatic group having 6 to 10 carbon atoms.
L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
p, q and r represent 0 or 1; 1 ≦ p + q + r ≦ 2.
M represents a transition metal of group 8 to 10 in the periodic table.
R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
 Ra及びR及びRで表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、非芳香族炭化水素環基(例えば、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、テトラヒドロナフタレン環、9,10-ジヒドロアントラセン環、ビフェニレン環等から導出される1価の基)、非芳香族複素環基(例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環等から導出される一価の基)、芳香族炭化水素基(例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等から導出される一価の基)、芳香族複素環基(例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等から導出される一価の基)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。 Examples of the substituent represented by Ra and R 1 and R 2 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group). Group, tridecyl group, tetradecyl group, pentadecyl group etc.), alkenyl group (eg vinyl group, allyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.), non-aromatic hydrocarbon ring group (eg cyclo Alkyl groups (eg, cyclopentyl group, cyclohexyl group, etc.), cycloalkoxy groups (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), cycloalkylthio groups (eg, cyclopentylthio group, cyclohexylthio group, etc.), tetrahydronaphthalene ring, 9 , 10-Dihydroanthracene ring, biphenyle A monovalent group derived from a ring, etc.), a non-aromatic heterocyclic group (for example, epoxy ring, aziridine ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring , Imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε-caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring 1,3-dioxane ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholine ring, thiomorpholine-1,1-dioxide ring, pyranose ring, diazabicyclo [2,2,2] -octane Ring, phenoxazine , Monovalent group derived from phenothiazine ring, oxanthrene ring, thioxanthene ring, phenoxathiin ring, etc.), aromatic hydrocarbon group (for example, benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene) Ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene Ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, monovalent group derived from anthraanthrene ring, etc.), aromatic heterocyclic group (for example, silole ring, furan ring, thiophene ring, oxazole) Ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine Ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, Consists of carbazole ring, azacarbazole ring (represents any one or more of carbon atoms constituting carbazole ring replaced by nitrogen atom), dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or dibenzofuran ring Rings in which any one or more carbon atoms are replaced by nitrogen atoms, benzodifuran rings, benzodithiophene rings, acridine rings, benzoquinoline rings, phenazine rings, phenanthridine rings, phenanthroline rings, cyclazine rings, quinines Phosphorus ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, A monovalent group derived from an anthradifuran ring, an anthrathiophene ring, an anthradithiophene ring, a thianthrene ring, a phenoxathiin ring, a dibenzocarbazole ring, an indolocarbazole ring, a dithienobenzene ring, etc.), an alkoxy group (for example, , Methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group) , Ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), arylthio group (for example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (for example, methyloxycarbonyl group, ethyloxycarbonyl group, Butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, Dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group Group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2- Ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group) , Phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group) Group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, Methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl Group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylurea) Group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group) 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2 -Ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthi) Rusulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthyl) Amino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl) Group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group and the like.
 (1.1.3)一般式(4)で表される部分構造を有するリン光発光性の遷移金属錯体
 一般式(1)で表されるリン光発光性の遷移金属錯体のより好ましい実施態様の1つは一般式(2)で表される部分構造が、下記一般式(4)で表される部分構造であるリン光発光性の遷移金属錯体である。
(1.1.3) A phosphorescent transition metal complex having a partial structure represented by the general formula (4) More preferred embodiment of the phosphorescent transition metal complex represented by the general formula (1) One of them is a phosphorescent transition metal complex in which the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(4)において、
及びYは炭素原子、又は窒素原子を表す。
環Cは、N-C=Nと共に形成される5員の芳香族複素環を表す。
Raは、置換可能な置換基を表し、naは0~3の整数を表す。
Rb及びRcは、それぞれ環B及び環Cに置換可能な電子吸引性の置換基を表す。
nbは0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
Ra、Rb及びRcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
nd及びneは、0又は1を表す。
、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは0又は1を表す。
Ar、Ar、Ar、Ar、Ar及びArは炭素数6~10の芳香族基を表す。
,L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
m、n及びoは0又は1を表し、0である場合は対応するLxは存在せず、隣り合ったAr環同士は連結されない。xは4、5又は6のいずれかを表す。
p、q及びrは0又は1を表し。1≦p+q+r≦2である。
Mは、元素周期表における8~10族の遷移金属を表す。
及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。
In general formula (4),
Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
Ring C represents a 5-membered aromatic heterocycle formed with N—C═N.
Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
nd and ne represent 0 or 1.
L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1;
Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each represent an aromatic group having 6 to 10 carbon atoms.
L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
m, n, and o represent 0 or 1, and when it is 0, there is no corresponding Lx, and adjacent Ar rings are not connected to each other. x represents any of 4, 5 and 6.
p, q and r represent 0 or 1; 1 ≦ p + q + r ≦ 2.
M represents a transition metal of group 8 to 10 in the periodic table.
R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
 (1.1.4)一般式(5)で表される部分構造を有するリン光発光性の遷移金属錯体
 一般式(1)で表されるリン光発光性の遷移金属錯体のさらに好ましい実施態様の1つは一般式(2)で表される部分構造が、下記一般式(5)で表される部分構造であるリン光発光性の遷移金属錯体である。
(1.1.4) Phosphorescent transition metal complex having a partial structure represented by general formula (5) Further preferred embodiment of phosphorescent transition metal complex represented by general formula (1) One of them is a phosphorescent transition metal complex in which the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(5)において、
X1及びX2は、一方が炭素原子を、他方が窒素原子を表す。
及びYは炭素原子、又は窒素原子を表す。
Raは、置換可能な置換基を表し、naは0~3の整数を表す。
Rb及びRcは、それぞれ環B及び環Cに置換可能な電子吸引性の置換基を表す。
nbは0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
Ra、Rb及びRcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
nd及びneは、0又は1を表す。
、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは0又は1を表す。
Ar、Ar、Ar、Ar、Ar及びArは炭素数6~10の芳香族基を表す。
,L、Lは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
m、n及びoは0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは4,5,又は6のいずれかを表す。
p、q及びrは0又は1を表し。1≦p+q+r≦2である。
Mは、元素周期表における8~10族の遷移金属を表す。
1及びは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。
In general formula (5),
One of X1 and X2 represents a carbon atom and the other represents a nitrogen atom.
Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
nd and ne represent 0 or 1.
L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1;
Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each represent an aromatic group having 6 to 10 carbon atoms.
L 4 , L 5 , and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom, and a sulfur atom, and connect adjacent aromatic rings.
m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
p, q and r represent 0 or 1; 1 ≦ p + q + r ≦ 2.
M represents a transition metal of group 8 to 10 in the periodic table.
R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
 (1.1.5)一般式(6)で表される部分構造を有するリン光発光性の遷移金属錯体
 一般式(1)で表されるリン光発光性の遷移金属錯体のさらに好ましい実施態様のもう1つは一般式(2)で表される部分構造が、下記一般式(6)で表される部分構造であるリン光発光性の遷移金属錯体である。
(1.1.5) Further preferred embodiment of phosphorescent transition metal complex having partial structure represented by general formula (6): phosphorescent transition metal complex represented by general formula (1) The other is a phosphorescent transition metal complex in which the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(6)において、
及びYは炭素原子、又は窒素原子を表す。
Raは、置換可能な置換基を表し、naは0~3の整数を表す。
Rb及びRcは、それぞれ環B及び環Cに置換可能な電子吸引性の置換基を表す。
nbは0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
Ra、Rb及びRcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
nd及びneは、0又は1を表す。
、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは0又は1を表す。
Ar、Ar、Ar、Ar、Ar及びArは炭素数6~10の芳香族基を表す。
,L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
m、n及びoは0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは4,5,又は6のいずれかを表す。
p、q及びrは0又は1を表す。1≦p+q+r≦2である。
Mは、元素周期表における8~10族の遷移金属を表す。
及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。
In general formula (6),
Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
Rb and Rc represent electron-withdrawing substituents that can be substituted for ring B and ring C, respectively.
nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
nd and ne represent 0 or 1.
L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1;
Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each represent an aromatic group having 6 to 10 carbon atoms.
L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
p, q and r represent 0 or 1; 1 ≦ p + q + r ≦ 2.
M represents a transition metal of group 8 to 10 in the periodic table.
R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent.
 本発明に係る青色リン光発光性の遷移金属錯体についてさらに説明する。 The blue phosphorescent transition metal complex according to the present invention will be further described.
 (1.1.6)遷移金属錯体の分子軌道計算例
 以下に、一般式(1)で表される遷移金属錯体の分子計算の具体例と共に説明するが、本発明はこれらに限定されない。
(1.1.6) Examples of Molecular Orbital Calculations of Transition Metal Complexes Hereinafter, specific examples of molecular calculations of transition metal complexes represented by the general formula (1) will be described, but the present invention is not limited thereto.
 ここで、使用する分子軌道計算手法は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian09を用い、キーワードとしてB3LYP/LANL2DZを用いて構造最適化を行うことにより算出した。 Here, the molecular orbital calculation method to be used was calculated by using Gaussian09, a molecular orbital calculation software manufactured by Gaussian, USA, and performing structure optimization using B3LYP / LANL2DZ as a keyword.
 (1.1.6.1)計算例-1
 計算例1-aの化合物はHOMO~HOMO-5のいずれの分子軌道も中心金属及び中心金属に直結している芳香族環部分に電子雲が分布している。
(1.1.6.1) Calculation Example-1
In the compound of Calculation Example 1-a, an electron cloud is distributed in the central metal and the aromatic ring portion directly connected to the central metal in any molecular orbital of HOMO to HOMO-5.
 一方、計算例1-aの化合物に正孔輸送性の部分構造としてジフェニルアミノ基を置換した化合物である計算例1-bの化合物は、HOMO-3(HOMOから数えて4番目の結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示された。この軌道のエネルギー準位とHOMOとの準位差の絶対値(以下単に準位差ともいう。)は0.23eVであった。また、この化合物の計算で算出された3重項励起エネルギーは435nmであり、比較となる計算例1-aの化合物のそれとの差は4nmであり波長変化が少ないことが計算結果から推測される。 On the other hand, the compound of Calculation Example 1-b, which is a compound obtained by substituting the compound of Calculation Example 1-a with a diphenylamino group as a hole transporting partial structure, is HOMO-3 (fourth binding orbital counting from HOMO). The calculation results show that molecular orbitals corresponding to) are distributed on the hole transport site (HTG). The absolute value of the level difference between this orbital energy level and HOMO (hereinafter also simply referred to as level difference) was 0.23 eV. In addition, the triplet excitation energy calculated by calculation of this compound is 435 nm, the difference from that of the compound of calculation example 1-a for comparison is 4 nm, and it is estimated from the calculation results that the wavelength change is small. .
 さらに、計算例1-a及び計算例1-bの化合物を合成して室温での発光波長を測定した結果、それぞれ、計算例1-aの化合物が465nm、計算例1-bの化合物が465nmであり、計算結果以上に波長変化は少ないことを確認した。 Furthermore, as a result of synthesizing the compounds of Calculation Example 1-a and Calculation Example 1-b and measuring the emission wavelength at room temperature, the compound of Calculation Example 1-a was 465 nm and the compound of Calculation Example 1-b was 465 nm, respectively. It was confirmed that the wavelength change was smaller than the calculation result.
 同様に、計算例1-aの化合物に正孔輸送性の部分構造としてカルバゾール-9-イル基を置換した化合物である計算例1-cの化合物も、HOMO-3(HOMOから数えて4番目の結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示された。この軌道の準位とHOMOとの準位差は0.45eVであった。また、この化合物の計算で算出された3重項励起エネルギーは435nmであり、比較となる計算例1-aの化合物のそれとの差は4nmであり波長変化が少ないことが計算結果から推測される。分子計算の結果を以下の表Iにまとめる。 Similarly, the compound of Calculation Example 1-c, which is a compound obtained by substituting the compound of Calculation Example 1-a with a carbazol-9-yl group as a hole transporting partial structure, is also represented by HOMO-3 (fourth counting from HOMO). It was shown from the calculation results that molecular orbitals corresponding to (binding orbitals) are distributed on the hole transport site (HTG). The level difference between this orbital level and HOMO was 0.45 eV. In addition, the triplet excitation energy calculated by calculation of this compound is 435 nm, the difference from that of the compound of calculation example 1-a for comparison is 4 nm, and it is estimated from the calculation results that the wavelength change is small. . The results of the molecular calculations are summarized in Table I below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 また、計算で算出された分子軌道を示したもの及びイメージ化したものを示す。
計算例1-b、計算例1-cでは、HOMO-3の軌道が1つの正孔輸送性部位の上に分布していることが判る。
Moreover, what showed the molecular orbital calculated by calculation, and what was imaged are shown.
In Calculation Example 1-b and Calculation Example 1-c, it can be seen that the orbits of HOMO-3 are distributed over one hole transporting site.
 下記の分子軌道では、各原子上の実線で仕切られた領域の内部に電子が存在するという計算結果を示している。各領域の内、ドット表記の部分と斜線表記の部分は互いに分子軌道の位相が異なっていること示す。 In the following molecular orbitals, the calculation results show that electrons exist inside the region partitioned by solid lines on each atom. In each region, the dot notation and the hatched notation indicate that the phases of the molecular orbitals are different from each other.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 (1.1.6.2)計算例-2
 計算例2-aの化合物はHOMO~HOMO-5のいずれの分子軌道も中心金属及び中心金属に直結している芳香族環部分に電子雲が分布している。
(1.1.6.2) Calculation Example-2
In the compound of Calculation Example 2-a, an electron cloud is distributed over the central metal and the aromatic ring portion directly connected to the central metal in any molecular orbital of HOMO to HOMO-5.
 一方、計算例2-aの化合物に正孔輸送性の部分構造としてジフェニルアミノ基を置換した化合物である計算例2-bの化合物は、HOMO-3(HOMOから数えて4番目の結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示された。この軌道の準位とHOMOとの準位差は0.52eVであった。また、この化合物の計算で算出された3重項励起エネルギーは434nmであり、比較となる計算例2-aの化合物のそれとの差は1nmであり波長変化が少ないことが計算結果から推測される。 On the other hand, the compound of Calculation Example 2-b, which is a compound obtained by substituting the compound of Calculation Example 2-a with a diphenylamino group as a hole transporting partial structure, is HOMO-3 (fourth binding orbital counting from HOMO). The calculation results show that molecular orbitals corresponding to) are distributed on the hole transport site (HTG). The level difference between this orbital level and HOMO was 0.52 eV. Further, the triplet excitation energy calculated by calculation of this compound is 434 nm, and the difference from that of the compound of calculation example 2-a for comparison is 1 nm, and it is estimated from the calculation results that the wavelength change is small. .
 同様に、計算例2-aの化合物に正孔輸送性の部分構造としてカルバゾール-9-イル基を置換した化合物である計算例2-cの化合物も、HOMO-3(HOMOから数えて4番目の結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示された。この軌道の準位とHOMOとの準位差は0.63eVであった。また、この化合物の計算で算出された3重項励起エネルギーは435nmであり、比較となる計算例2-aの化合物のそれとの差は2nmであり波長変化が少ないことが計算結果から推測される。分子計算の結果を以下の表IIにまとめる。 Similarly, the compound of Calculation Example 2-c, which is a compound obtained by substituting the compound of Calculation Example 2-a with a carbazol-9-yl group as a hole transporting partial structure, is also represented by HOMO-3 (fourth counting from HOMO). It was shown from the calculation results that molecular orbitals corresponding to (binding orbitals) are distributed on the hole transport site (HTG). The level difference between this orbital level and HOMO was 0.63 eV. Further, the triplet excitation energy calculated by calculation of this compound is 435 nm, the difference from that of the compound of Comparative Example 2-a is 2 nm, and it is estimated from the calculation results that the wavelength change is small. . The results of molecular calculations are summarized in Table II below.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 また、計算で算出された分子軌道を図示したものは、計算例1同様のものであった。
計算例2の結果はイメージ化した図のみを示す。
Further, the molecular orbitals calculated by calculation were the same as those in Calculation Example 1.
The result of Calculation Example 2 shows only an imaged image.
 計算例2-b、計算例2-cでも、HOMO-3の軌道が1つの正孔輸送性部位の上に分布していることが判った。 In Calculation Example 2-b and Calculation Example 2-c, it was found that the orbit of HOMO-3 was distributed on one hole transporting site.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 (1.1.6.3)計算例-3
 計算例3の結果も、計算例1及び計算例2同様の結果となった。正孔輸送性置換基を導入した化合物ではいずれもHOMO-3(HOMOから数えて4番目の結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示された。分子計算の結果を以下の表IIIにまとめる。
(1.1.6.3) Calculation Example-3
The result of Calculation Example 3 was the same as that of Calculation Example 1 and Calculation Example 2. From the calculation results, it can be seen from the calculation results that the molecular orbitals corresponding to HOMO-3 (fourth binding orbital counting from HOMO) are distributed on the hole-transporting site (HTG) in any compound having a hole-transporting substituent introduced. Indicated. The results of molecular calculations are summarized in Table III below.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 また、計算で算出された分子軌道を図示したものは、計算例1同様のものであった。
計算例3の結果もイメージ化した図のみを示す。計算例3-b、計算例3-cでも、HOMO-3の軌道が1つの正孔輸送性部位の上に分布していることが判った。
Further, the molecular orbitals calculated by calculation were the same as those in Calculation Example 1.
Only the figure which also imaged the result of the calculation example 3 is shown. In calculation example 3-b and calculation example 3-c, it was found that the orbit of HOMO-3 was distributed on one hole transporting site.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 (1.1.6.4)計算例-4
 計算例4の結果も、計算例1、計算例2及び計算例3同様の結果となった。正孔輸送性置換基を導入した化合物ではいずれもHOMO-3(HOMOから数えて4番目の結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示された。分子計算の結果を以下の表IVにまとめる。
(1.1.6.4) Calculation Example-4
The result of Calculation Example 4 was the same as that of Calculation Example 1, Calculation Example 2, and Calculation Example 3. From the calculation results, it can be seen from the calculation results that the molecular orbitals corresponding to HOMO-3 (fourth binding orbital counting from HOMO) are distributed on the hole-transporting site (HTG) in any compound having a hole-transporting substituent introduced. Indicated. The results of the molecular calculations are summarized in Table IV below.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 また、計算で算出された分子軌道を図示したものは、計算例1同様のものであった。
計算例4の結果もイメージ化した図のみを示す。計算例4-b、計算例4-cでも、HOMO-3の軌道が1つの正孔輸送性部位の上に分布していることが判った。
Further, the molecular orbitals calculated by calculation were the same as those in Calculation Example 1.
Only the result of calculation example 4 is also shown in an image. Also in Calculation Example 4-b and Calculation Example 4-c, it was found that the orbit of HOMO-3 was distributed on one hole transporting site.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (1.1.6.5)計算例-5
 計算例5-aの化合物はHOMO~HOMO-5のいずれの分子軌道も中心金属及び中心金属に直結している芳香族環部分に電子雲が分布している。
(1.1.6.5) Calculation example-5
In the compound of Calculation Example 5-a, an electron cloud is distributed in the central metal and the aromatic ring portion directly connected to the central metal in any molecular orbital of HOMO to HOMO-5.
 一方、計算例5-aの化合物に正孔輸送性の部分構造としてジフェニルアミノ基を置換した化合物である計算例5-bの化合物は、強い電子吸引性置換基の効果で錯体全体のエネルギー準位が低くなったことによって、HOMO(最も準位の高い結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示された。計算からは、HOMO-1(HOMOから数えて2番目の結合性軌道)とHOMO-2(HOMOから数えて3番目の結合性軌道)に相当する分子軌道も正孔輸送部位(HTG)上に分布することが計算結果から示された。通常の遷移金属錯体(たとえば計算例5-aの化合物)においてHOMOに相当する電子分布を示す軌道は、HOMO-3であることが計算結果から示された。計算上のHOMOと通常のHOMOに相当するHOMO-3の軌道の準位差は0.31eVであった。また、この化合物の計算で算出された3重項励起エネルギーは427nmであり、比較となる計算例5-aの化合物のそれとの差は-1nmであり波長変化が少ないことが計算結果から推測される。 On the other hand, the compound of Calculation Example 5-b, which is a compound obtained by substituting the compound of Calculation Example 5-a with a diphenylamino group as a hole transporting partial structure, has a strong electron-withdrawing substituent effect, and thus the energy level of the entire complex. The calculation results showed that molecular orbitals corresponding to HOMO (the highest level binding orbitals) were distributed on the hole transport sites (HTG) due to the lowering of the position. From the calculation, molecular orbitals corresponding to HOMO-1 (second bonding orbit counted from HOMO) and HOMO-2 (third bonding orbit counted from HOMO) are also present on the hole transport site (HTG). Distribution was shown from the calculation results. The calculation results show that the orbit showing the electron distribution corresponding to HOMO in a normal transition metal complex (for example, the compound of Calculation Example 5-a) is HOMO-3. The orbital level difference between the calculated HOMO and the normal HOMO-3 orbit was 0.31 eV. In addition, the triplet excitation energy calculated by calculation of this compound is 427 nm, the difference from that of the compound of calculation example 5-a for comparison is −1 nm, and it is estimated from the calculation results that the wavelength change is small. The
 同様に、計算例5-aの化合物に正孔輸送性の部分構造としてカルバゾール-9-イル基を置換した化合物である計算例5-cの化合物も、強い電子吸引性置換基の効果で錯体全体の準位が低くなったことによって、HOMO(最もエネルギー準位の高い結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示された。計算からは、HOMO-1(HOMOから数えて2番目の結合性軌道)とHOMO-2(HOMOから数えて3番目の結合性軌道)に相当する分子軌道も正孔輸送部位(HTG)上に分布することが計算結果から示された。通常の遷移金属錯体(たとえば計算例5-aの化合物)においてHOMOに相当する電子分布を示す軌道は、HOMO-3であることが計算結果から示された。計算上のHOMOと通常のHOMOに相当するHOMO-3の軌道の準位差は0.18eVであった。また、この化合物の計算で算出された3重項励起エネルギーは428nmであり、比較となる計算例5-aの化合物のそれとの差は0nmであり波長変化が少ないことが計算結果から推測される。分子計算の結果を以下の表Vにまとめる。 Similarly, the compound of Calculation Example 5-c, which is a compound obtained by substituting the compound of Calculation Example 5-a with a carbazol-9-yl group as a hole transporting partial structure, is also a complex due to the strong electron-withdrawing substituent. The calculation results show that molecular orbitals corresponding to HOMO (bonding orbitals with the highest energy level) are distributed on the hole transport site (HTG) by lowering the overall level. From the calculation, molecular orbitals corresponding to HOMO-1 (second bonding orbit counted from HOMO) and HOMO-2 (third bonding orbit counted from HOMO) are also present on the hole transport site (HTG). Distribution was shown from the calculation results. The calculation results show that the orbit showing the electron distribution corresponding to HOMO in a normal transition metal complex (for example, the compound of Calculation Example 5-a) is HOMO-3. The level difference between the calculated HOMO and the normal HOMO orbital of HOMO-3 was 0.18 eV. Further, the triplet excitation energy calculated by calculation of this compound is 428 nm, the difference from that of the compound of Comparative Example 5-a is 0 nm, and it is estimated from the calculation results that the wavelength change is small. . The results of the molecular calculations are summarized in Table V below.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 また、計算で算出された分子軌道を図示したもの、及びイメージ化した図を示す。
計算例5-b、計算例5-cでは、HOMO、HOMO-1及びHOMO-2の軌道がそれぞれ異なる1つの正孔輸送性部位の上に分布していることが判る。また、HOMO-3の軌道が通常のHOMOに相当する電子の分布を示すことが判った。
In addition, a diagram illustrating a molecular orbital calculated by calculation and an imaged diagram are shown.
In Calculation Example 5-b and Calculation Example 5-c, it can be seen that the orbitals of HOMO, HOMO-1, and HOMO-2 are distributed on different hole transporting sites. It was also found that the orbit of HOMO-3 shows an electron distribution corresponding to normal HOMO.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 (1.1.6.6)計算例-比較1
 計算例5の比較として計算例5-aの化合物に正孔輸送性ではない芳香族環を置換した化合物である計算例-比較1は、計算例5-aの化合物と同様にHOMO~HOMO-5のいずれの分子軌道も中心金属及び中心金属に直結している芳香族環部分に電子雲が分布していることが計算結果から示された。計算で算出された分子軌道の結果はイメージ化した図のみを示す。
(1.1.6.6) Calculation Example-Comparison 1
As a comparison with Calculation Example 5, Calculation Example 5-a is a compound obtained by substituting an aromatic ring that is not hole-transporting to the compound of Calculation Example 5-a. From the calculation results, it was shown that the electron clouds were distributed in the central metal and the aromatic ring portion directly connected to the central metal in any of the molecular orbitals of No. 5. The result of molecular orbital calculated by calculation shows only an imaged figure.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 (1.1.6.7)計算例-比較2
 計算例1~5に対する比較として、電子吸引性基を配位子の芳香族環上の置換基として有さない遷移金属の分子軌道計算を行った。
(1.1.6.7) Calculation Example-Comparison 2
As a comparison with calculation examples 1 to 5, molecular orbital calculation was performed for a transition metal having no electron-withdrawing group as a substituent on the aromatic ring of the ligand.
 計算例-比較2-aの化合物はHOMO~HOMO-5のいずれの分子軌道も中心金属及び中心金属に直結している芳香族環部分に電子雲が分布している。 Calculation Example-Comparative 2-a compound has an electron cloud distributed in the central metal and the aromatic ring part directly connected to the central metal in any molecular orbital of HOMO to HOMO-5.
 一方、計算例-比較2-aの化合物に正孔輸送性の部分構造としてジフェニルアミノ基を置換した化合物である計算例-比較2-bの化合物は、HOMO-3(HOMOから数えて4番目の結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示されたが、この軌道の準位とHOMOとの準位差は0.92eVであり、本発明の遷移金属錯体と比較すると準位差が大きいことが判る。 On the other hand, the compound of Calculation Example-Comparison 2-b, which is a compound in which the compound of Comparative Example 2-a is substituted with a diphenylamino group as a hole transporting partial structure, is HOMO-3 (fourth counting from HOMO). The calculation results show that molecular orbitals corresponding to the bonding orbitals of (HTG) are distributed on the hole transport site (HTG). The level difference between this orbital level and HOMO is 0.92 eV. It can be seen that the level difference is large compared to the transition metal complex of the present invention.
 同様に、計算例-比較2-aの化合物に正孔輸送性の部分構造としてカルバゾール-9-イル基を置換した化合物である計算例-比較2-cの化合物も、HOMO-3(HOMOから数えて4番目の結合性軌道)に相当する分子軌道が正孔輸送部位(HTG)上に分布することが計算結果から示されたが、この軌道の準位とHOMOとの準位差は1.12eVであり、本発明の遷移金属錯体と比較して準位差が大きいことが判る。 Similarly, the compound of Calculation Example-Comparison 2-c, which is a compound obtained by substituting the compound of Calculation Example-Comparative 2-a with a carbazol-9-yl group as a hole transporting partial structure, is also represented by HOMO-3 (from HOMO). The calculation results show that molecular orbitals corresponding to the fourth bonding orbital are distributed on the hole transport site (HTG), and the level difference between this orbital level and HOMO is 1 It can be seen that the level difference is larger than that of the transition metal complex of the present invention.
 分子計算の結果を以下の表VIにまとめる。 The results of molecular calculations are summarized in Table VI below.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 計算で算出された分子軌道の結果はイメージ化した図のみを示す。 The results of molecular orbitals calculated by calculation are only images.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 以上の計算例から、本発明の遷移金属錯体に共通する特性が、分子軌道計算によって検証できることが判る。 From the above calculation examples, it can be seen that the characteristics common to the transition metal complexes of the present invention can be verified by molecular orbital calculation.
 すなわち、リン光発光性の遷移金属錯体が、中心金属としての遷移金属に複数の芳香族環が直接結合している配位子を有し、かつ、(1)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、電子吸引性基を有しており、及び(2)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、当該芳香族環との共役が切断され、単結合によって接続された窒素原子と芳香族環とを含んだ正孔輸送性部分構造を有する場合に、前記遷移金属錯体は、分子軌道計算での評価において、最高被占軌道(HOMO)から下位のエネルギー準位5番目(HOMO-5)までの結合性軌道のいずれか1つは、当該結合性軌道上の電子の80%以上が前記正孔輸送性の部分構造上に存在する電子密度分布を有し、かつ、前記最高被占軌道と当該結合性軌道とのエネルギー準位との差の絶対値が0.7eV未満であることが、共通する特性として確認できることが判った。 That is, the phosphorescent transition metal complex has a ligand in which a plurality of aromatic rings are directly bonded to the transition metal as the central metal, and (1) the ligand is bonded directly to the transition metal. At least one of the plurality of aromatic rings has an electron-withdrawing group, and (2) at least one of the plurality of aromatic rings directly bonded to the transition metal is bonded to the aromatic ring. When having a hole transporting partial structure containing a nitrogen atom and an aromatic ring connected to each other by a single bond, the transition metal complex has the highest occupied orbital in the evaluation by molecular orbital calculation. One of the bonding orbitals from (HOMO) to the fifth lower energy level (HOMO-5) is such that 80% or more of the electrons on the bonding orbital are on the hole transporting partial structure. Has an existing electron density distribution, and The absolute value of the difference between the energy level of the occupied molecular orbital and the bonding orbital is less than 0.7eV, it was found to be confirmed as a common characteristic.
 また、同時に前記遷移金属錯体と当該前記遷移金属錯体から前記正孔輸送性部分構造を除いた構造を有する遷移金属錯体のそれぞれについて分子軌道計算で算出される発光極大波長の差の絶対値が、10nm以下であることも、共通する特性として確認できることが判った。 At the same time, the absolute value of the difference in emission maximum wavelength calculated by the molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex, It was found that the thickness was 10 nm or less as a common characteristic.
 本発明に係る青色リン光発光性の遷移金属錯体についてさらに説明する。 The blue phosphorescent transition metal complex according to the present invention will be further described.
 (1.1.7)青色リン光発光性の遷移金属錯体の具体例
 以下に、一般式(1)で表される遷移金属錯体の具体例をそれぞれ記載するが、本発明はこれらに限定されない。
(1.1.7) Specific Examples of Blue Phosphorescent Transition Metal Complex Specific examples of the transition metal complex represented by the general formula (1) are described below, but the present invention is not limited thereto. .
 以下の一般式(DP-A)~一般式(DP-Y)で表される構造を有する例示化合物中、金属錯体に直接結合する芳香族環のうち、上部が、一般式(2)及び一般式(3)に記載の環C、下部が環Bを表している。 Of the aromatic rings directly bonded to the metal complex, the upper part of the exemplary compounds having the structures represented by the following general formulas (DP-A) to (DP-Y) is represented by the general formula (2) and the general formula Ring C described in formula (3), and the lower part represents ring B.
 R及びRは、一般式(3)~一般式(6)に記載のR及びRと同義であり、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。 R 1 and R 2 are synonymous with R 1 and R 2 described in the general formulas (3) to (6), and each represents a hydrogen atom or a substituent, and at least one of R 1 and R 2 is Represents a substituent.
 Q101、Q102、Q103、Q201、Q202、Q203、Q301、Q302、Q401、Q402、Q403及びQ404は、それぞれ独立に、水素原子又は置換基を表し、置換基は、一般式(3)~一般式(6)に記載のRa、Ra、Ra、Rb、Rb、Rb、Rc、Rc、Rd、Rd、Rd及びRdに記載した置換基及び本発明に係る正孔輸送性部分構造が含まれる。 Q 101 , Q 102 , Q 103 , Q 201 , Q 202 , Q 203 , Q 301 , Q 302 , Q 401 , Q 402 , Q 403 and Q 404 each independently represent a hydrogen atom or a substituent, and are substituted The groups include Ra 1 , Ra 2 , Ra 3 , Rb 1 , Rb 2 , Rb 3 , Rc 1 , Rc 2 , Rd 1 , Rd 2 , Rd 3 and the general formulas (3) to (6). The substituent described in Rd 4 and the hole transporting partial structure according to the present invention are included.
 環B又は環Cの少なくとも一つは、電子吸引性基を有する。そして、環B又は環C少なくとも1つは、正孔輸送性部分構造HTG-1~HTG-15のいずれかと結合している。このとき連結基LG-1~LG-12のいずれかを介して結合していても良い。 At least one of ring B or ring C has an electron withdrawing group. At least one of ring B or ring C is bonded to any one of the hole transporting partial structures HTG-1 to HTG-15. At this time, they may be bonded via any one of the linking groups LG-1 to LG-12.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000208
 化合物例における正孔輸送性部分構造HTG-1~HTG-15と連結基LG-1~LG-12は、前記した構造のものである。 In the compound examples, the hole transporting partial structures HTG-1 to HTG-15 and the linking groups LG-1 to LG-12 have the structures described above.
 前記の化合物例における配位子AL-1~AL-24は、以下に示す構造である。 The ligands AL-1 to AL-24 in the above compound examples have the following structures.
 式中、*は遷移金属との結合部位を表す。 In the formula, * represents a binding site with a transition metal.
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000210
 これらの金属錯体は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、Organic Letter誌、vol8、No.3、415~418頁(2006)、更にこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。 These metal complexes are described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), Organic Letter, vol8, No. 3, pp. 415 to 418 (2006), and further by applying methods such as references described in these documents.
 以下に、代表的な化合物の合成例を示す。
・錯体 DP-A1の合成
 1.中間体C-1の合成
 以下の反応スキームに沿って、3-臭化安息香酸と1.5当量の塩化チオニルを混合し、還流温度で3時間反応させた後、過剰の塩化チオニルを減圧濃縮で溜去し、3-臭化安息香酸塩化物とした。次いで、1.2当量の2-クロロエチルアミン塩酸、3.0当量のトリエチルアミンを塩化メチレン中、室温で1時間撹拌した中に前記の3-臭化安息香酸塩化物を添加し、さらに室温で5時間反応させ、中間体A-1を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は72%だった。なお、反応スキーム中、RTは室温を表し、yは単離収率を表す。
Below, the synthesis example of a typical compound is shown.
Synthesis of complex DP-A1 Synthesis of Intermediate C-1 According to the following reaction scheme, 3-bromobenzoic acid and 1.5 equivalents of thionyl chloride were mixed and reacted at reflux temperature for 3 hours, and then excess thionyl chloride was concentrated under reduced pressure. To give 3-brominated benzoic acid chloride. Subsequently, 1.2 equivalents of 2-chloroethylamine hydrochloric acid and 3.0 equivalents of triethylamine were stirred in methylene chloride at room temperature for 1 hour, and the above-mentioned 3-brominated benzoic acid chloride was added. Reaction was performed for a while to obtain Intermediate A-1. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 72%. In the reaction scheme, RT represents room temperature and y represents the isolated yield.
 次いで、1当量の中間体A-1と1.5当量の五塩化リンをキシレン中で加熱還流下に3時間反応させた。反応液を室温まで冷却した後、1.5当量の4-ヨード-2,6-ジメチルアニリンを添加し、再び加熱し還流温度で10時間反応し、中間体B-1を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は80%だった。 Next, 1 equivalent of the intermediate A-1 and 1.5 equivalents of phosphorus pentachloride were reacted in xylene under heating and refluxing for 3 hours. After cooling the reaction solution to room temperature, 1.5 equivalents of 4-iodo-2,6-dimethylaniline was added, and the mixture was heated again and reacted at reflux temperature for 10 hours to obtain Intermediate B-1. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 80%.
 次いで、この中間体B-1を20倍量の塩化メチレン:アセトニトリル混合溶媒(1:1)に溶解し、この溶液を撹拌している中に、2.0当量の過マンガン酸カリウムと同重量のK-10 crayを乳鉢で細かく砕いたものを少しずつ添加した。添加終了後、室温で4時間反応させ、中間体C-1とした。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は65%だった。 Then, this intermediate B-1 was dissolved in 20 times the amount of methylene chloride: acetonitrile mixed solvent (1: 1), and while stirring this solution, 2.0 equivalents of potassium permanganate and the same weight Of K-10 clay, finely crushed in a mortar, was added little by little. After completion of the addition, the mixture was reacted at room temperature for 4 hours to obtain Intermediate C-1. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 65%.
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000211
 2.中間体D-1の合成
  以下の反応スキームに沿って、1当量の中間体C-1と1.5当量のビス-トリルアミン、2モル%のテトラキス(トリフェニルホスフィン)パラジウム(0)、1.8当量のナトリウム-tert-ブトキシドをトルエン-水混合溶媒中、還流温度で10時間反応し、中間体D-1を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は85%だった。
2. Synthesis of Intermediate D-1 According to the following reaction scheme, 1 equivalent of Intermediate C-1 and 1.5 equivalents of bis-tolylamine, 2 mol% tetrakis (triphenylphosphine) palladium (0), 1. 8 equivalents of sodium-tert-butoxide were reacted in a toluene-water mixed solvent at reflux temperature for 10 hours to obtain Intermediate D-1. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 85%.
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000212
 3.配位子L-1の合成
 以下の反応スキームに沿って、1当量の中間体D-1と2.5当量のN-臭化コハク酸イミドを10倍量のジメチルホルムアミド中、50℃で4時間反応させ、中間体E-1とした。反応液は、水と酢酸エチルで希釈後に3回水洗した後、硫酸マグネシウムで乾燥し減圧濃縮した。得られた中間体E-1の粗製物を10倍量の脱水テトラヒドロフラン(THF)に溶解し、窒素雰囲気化に-78℃まで冷却した。ここに1.1当量分のn-ブチルリチウムのヘキサン溶液を滴下し、さらに冷却下に3時間反応した。その後、冷却下に、過剰の水を添加し反応を停止させた。そのまま室温まで昇温させた後、反応液を飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し減圧濃縮し、配位子L-1を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は68%だった。
3. Synthesis of Ligand L-1 According to the following reaction scheme, 1 equivalent of Intermediate D-1 and 2.5 equivalents of N-brominated succinimide were added in 10 volumes of dimethylformamide at 50 ° C. The reaction was performed for a while to obtain an intermediate E-1. The reaction solution was diluted with water and ethyl acetate, washed with water three times, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product of Intermediate E-1 was dissolved in 10 times the amount of dehydrated tetrahydrofuran (THF), and cooled to −78 ° C. in a nitrogen atmosphere. A 1.1 equivalent amount of n-butyllithium in hexane was added dropwise thereto, and the reaction was further continued for 3 hours under cooling. Then, under cooling, excess water was added to stop the reaction. After the temperature was raised to room temperature, the reaction solution was washed with saturated saline. Thereafter, it was dried over magnesium sulfate and concentrated under reduced pressure to obtain ligand L-1. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 68%.
Figure JPOXMLDOC01-appb-C000213
・中間体F-1の合成
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000213
・ Synthesis of Intermediate F-1
Figure JPOXMLDOC01-appb-C000214
 窒素雰囲気下で配位子L-1 1.20g(2.0ミリモル;4.0当量)及び酢酸イリジウム 0.18g(0.50ミリモル;1.0当量)をエチレングリコール30mlに懸濁させた。そのまま加熱を始め、窒素雰囲気下に160℃で5時間反応させた。反応液を冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量620mgの粗生成物を得た。この粗生成物をシカゲルカラムクロマトグラフィー(ヘキサン-テトラヒドロフラン=10:1~4:1)及びGPC(ゲル浸透クロマトグラフィー)によって精製し540mg(収率54%)の中間体F-1を得た。
・錯体DP-A1の合成
Figure JPOXMLDOC01-appb-C000215
Under a nitrogen atmosphere, 1.20 g (2.0 mmol; 4.0 equivalent) of ligand L-1 and 0.18 g (0.50 mmol; 1.0 equivalent) of iridium acetate were suspended in 30 ml of ethylene glycol. . Heating was started as it was, and the reaction was carried out at 160 ° C. for 5 hours under a nitrogen atmosphere. The reaction solution was cooled, 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol and dried to obtain 620 mg of a crude product. This crude product was purified by sika gel column chromatography (hexane-tetrahydrofuran = 10: 1 to 4: 1) and GPC (gel permeation chromatography) to obtain 540 mg (yield 54%) of intermediate F-1. .
・ Synthesis of complex DP-A1
Figure JPOXMLDOC01-appb-C000215
 窒素雰囲気下で中間体F-1 540mg(0.27ミリモル)及び、シアン化亜鉛 0.95g(8.1ミリモル;10.0当量)、亜鉛粉 0.59g(9ミリモル;11.0当量)、ビス(ジベンジリデンアセトン)パラジウム(0) 0.16g(0.28ミリモル、1.0当量)、トリ(tert-ブチル)ホスフィン 0.27g(1.35ミリモル、5.0当量)をジメチルアセトアミド20mlに懸濁させた。そのまま加熱を始め、窒素雰囲気下に150℃で30時間反応させた。反応液を、水と酢酸エチルで希釈後に3回水洗した後、硫酸マグネシウムで乾燥し減圧濃縮した。得られた粗生成物をシカゲルカラムクロマトグラフィー(ヘキサン-テトラヒドロフラン=10:1~4:1)及びGPC(ゲル浸透クロマトグラフィー)によって精製し158mg(収率35%)の錯体DP-A1を得た。 540 mg (0.27 mmol) of intermediate F-1 and 0.95 g (8.1 mmol; 10.0 equivalents) of zinc cyanide and 0.59 g (9 mmol; 11.0 equivalents) of zinc powder under a nitrogen atmosphere Bis (dibenzylideneacetone) palladium (0) 0.16 g (0.28 mmol, 1.0 eq), tri (tert-butyl) phosphine 0.27 g (1.35 mmol, 5.0 eq) in dimethylacetamide Suspended in 20 ml. Heating was started as it was, and a reaction was performed at 150 ° C. for 30 hours in a nitrogen atmosphere. The reaction mixture was diluted with water and ethyl acetate, washed with water three times, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by column gel chromatography (hexane-tetrahydrofuran = 10: 1 to 4: 1) and GPC (gel permeation chromatography) to obtain 158 mg (yield 35%) of complex DP-A1. It was.
 精製した化合物が目的物であることをMASS、1H-NMRにより確認した。 It was confirmed by MASS and 1H-NMR that the purified compound was the target product.
 日立製作所製F-4500を用いて測定した例示化合物DP-A1の溶液におけるPL発光極大波長は、
450nm(T=77K、2-メチルテトラヒドロフラン中)、456nm(室温、塩化メチレン中)
であった。
・錯体 DP-A162の合成
1.中間体A-2の合成
 以下の反応スキームに沿って、1当量の4-ブロモ-2,6-ジイソプロピルアニリンと1.5当量のビス-(4-イソプロピルフェニル)アミン、2モル%のテトラキス(トリフェニルホスフィン)パラジウム(0)、1.8当量のナトリウム-tert-ブトキシドをトルエン-水混合溶媒中、還流温度で10時間反応し、中間体A-2を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は85%だった。
The PL emission maximum wavelength in the solution of Exemplified Compound DP-A1 measured using Hitachi F-4500 is
450 nm (T = 77 K in 2-methyltetrahydrofuran), 456 nm (room temperature in methylene chloride)
Met.
Synthesis of complex DP-A162 Synthesis of Intermediate A-2 According to the following reaction scheme, 1 equivalent of 4-bromo-2,6-diisopropylaniline and 1.5 equivalents of bis- (4-isopropylphenyl) amine, 2 mol% of tetrakis ( Triphenylphosphine) palladium (0) and 1.8 equivalents of sodium-tert-butoxide were reacted in a toluene-water mixed solvent at reflux temperature for 10 hours to obtain Intermediate A-2. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 85%.
Figure JPOXMLDOC01-appb-C000216
2.配位子L-2、L-3の合成
 以下の反応スキームに沿って、窒素雰囲気下に中間体A-2と1.1当量のn-ブチルリチウムをエーテル中で反応させた。次いでその中に、1.05当量の3-ブロモベンゾニトリルのエーテル溶液を滴下し、さらに室温で3時間反応させた。反応液に水を加え反応を停止した後、3回水洗を行った。硫酸マグネシウムで乾燥し減圧濃縮した。得られた粗生成物からシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製によって、中間体B-2を得た。単離収率は72%だった。
Figure JPOXMLDOC01-appb-C000216
2. Synthesis of Ligands L-2 and L-3 According to the following reaction scheme, Intermediate A-2 was reacted with 1.1 equivalents of n-butyllithium in ether under a nitrogen atmosphere. Next, 1.05 equivalent of an ether solution of 3-bromobenzonitrile was added dropwise thereto, and the mixture was further reacted at room temperature for 3 hours. Water was added to the reaction solution to stop the reaction, followed by washing with water three times. The extract was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) to give intermediate B-2. The isolation yield was 72%.
 次いで、1当量の中間体B-2と2.2当量の3-ブロモ-1,1,1-トリフルオロプロパン-2-オン、2.0当量の炭酸水素ナトリウムをイソプロピルアルコール中に溶解し、加熱還流下に3時間反応させた。反応液を濃縮し、中間体C-2の粗製物を得た。 Then, 1 equivalent of intermediate B-2 and 2.2 equivalents of 3-bromo-1,1,1-trifluoropropan-2-one, 2.0 equivalents of sodium bicarbonate are dissolved in isopropyl alcohol, The reaction was carried out for 3 hours under heating to reflux. The reaction solution was concentrated to obtain a crude product of Intermediate C-2.
 シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は70%だった。 The isolation yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 70%.
 次いで、この中間体C-2を20倍量のトルエンに溶解し、0.5当量のp-トルエンスルホン酸を加えた後、加熱還流下に8時間反応させた。反応液を水酸化ナトリウムで中和後に3回水洗した後、濃縮し、配位子L-2の粗製物を得た。 Next, this intermediate C-2 was dissolved in 20 times the amount of toluene, 0.5 equivalent of p-toluenesulfonic acid was added, and the mixture was reacted for 8 hours with heating under reflux. The reaction solution was neutralized with sodium hydroxide, washed with water three times, and concentrated to obtain a crude product of ligand L-2.
 シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は65%だった。 The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 65%.
 中間体B-2、C-2と同様の反応によって、3-ブロモベンゾニトリルと2,6-ジイソプロピルアニリンから、中間体D-2、E-2を経由して配位子L-3を合成した。中間体D-2の単離収率は80%、中間体E-2の単離収率は76%、配位子L-3の単離収率は70%だった。 Ligand L-3 is synthesized from 3-bromobenzonitrile and 2,6-diisopropylaniline via intermediates D-2 and E-2 by the same reaction as intermediates B-2 and C-2 did. The isolation yield of intermediate D-2 was 80%, the isolation yield of intermediate E-2 was 76%, and the isolation yield of ligand L-3 was 70%.
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
3.中間体F-2の合成
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000218
3. Synthesis of intermediate F-2
Figure JPOXMLDOC01-appb-C000219
 窒素雰囲気下で配位子L-2 0.70g(1.0ミリモル;2.0当量)、配位子L-3 0.45g(1.0ミリモル;2.0当量)及び酢酸イリジウム 0.18g(0.50ミリモル;1.0当量)をエチレングリコール30mlに懸濁させた。そのまま加熱を始め、窒素雰囲気下に160℃で5時間反応させた。反応液を冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量720mgの粗生成物を得た。この粗生成物をシカゲルカラムクロマトグラフィー(ヘキサン-テトラヒドロフラン=10:1~4:1)及びGPC(ゲル浸透クロマトグラフィー)によって精製し480mg(収率42%)の中間体F-2を得た。
・錯体DP-A162の合成
Figure JPOXMLDOC01-appb-C000220
Under a nitrogen atmosphere, 0.70 g (1.0 mmol; 2.0 eq) of ligand L-2, 0.45 g (1.0 mmol; 2.0 eq) of ligand L-3 and iridium acetate 18 g (0.50 mmol; 1.0 equivalent) was suspended in 30 ml of ethylene glycol. Heating was started as it was, and the reaction was carried out at 160 ° C. for 5 hours under a nitrogen atmosphere. The reaction solution was cooled, 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol and dried to obtain 720 mg of a crude product. This crude product was purified by sika gel column chromatography (hexane-tetrahydrofuran = 10: 1 to 4: 1) and GPC (gel permeation chromatography) to obtain 480 mg (yield 42%) of intermediate F-2. .
・ Synthesis of complex DP-A162
Figure JPOXMLDOC01-appb-C000220
 窒素雰囲気下で中間体F-2 480mg(0.20ミリモル)及び、シアン化亜鉛 0.70g(6.0ミリモル;30.0当量)、亜鉛粉 0.43g(6.6ミリモル;33.0当量)、ビス(ジベンジリデンアセトン)パラジウム(0) 0.115g(0.20ミリモル、1.0当量)、トリ(tert-ブチル)ホスフィン 0.202g(1.0ミリモル、5.0当量)をジメチルアセトアミド20mlに懸濁させた。そのまま加熱を始め、窒素雰囲気下に150℃で30時間反応させた。反応液を、水と酢酸エチルで希釈後に3回水洗した後、硫酸マグネシウムで乾燥し減圧濃縮した。得られた粗生成物をシカゲルカラムクロマトグラフィー(ヘキサン-テトラヒドロフラン=10:1~4:1)及びGPC(ゲル浸透クロマトグラフィー)によって精製し192mg(収率45%)の錯体DP-A162を得た。 480 mg (0.20 mmol) of intermediate F-2 and 0.70 g (6.0 mmol; 30.0 equivalents) of zinc cyanide and 0.43 g (6.6 mmol; 33.0) of zinc powder under a nitrogen atmosphere Equivalent)), 0.115 g (0.20 mmol, 1.0 equivalent) of bis (dibenzylideneacetone) palladium (0), 0.202 g (1.0 mmol, 5.0 equivalent) of tri (tert-butyl) phosphine. Suspended in 20 ml of dimethylacetamide. Heating was started as it was, and a reaction was performed at 150 ° C. for 30 hours in a nitrogen atmosphere. The reaction mixture was diluted with water and ethyl acetate, washed with water three times, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by column gel chromatography (hexane-tetrahydrofuran = 10: 1 to 4: 1) and GPC (gel permeation chromatography) to obtain 192 mg (yield 45%) of complex DP-A162. It was.
 精製した化合物が目的物であることをMASS、H-NMRにより確認した。 It was confirmed by MASS and 1 H-NMR that the purified compound was the target product.
 日立製作所製F-4500を用いて測定した例示化合物DP-A162の溶液におけるPL発光極大波長は、448nm(T=77K、2-メチルテトラヒドロフラン中)、454nm(室温、塩化メチレン中)であった。 The maximum PL emission wavelength in a solution of Exemplified Compound DP-A162 measured using Hitachi F-4500 was 448 nm (T = 77K in 2-methyltetrahydrofuran) and 454 nm (room temperature in methylene chloride).
 本発明のその他の化合物も上記の合成例と同様に、適切な原料、反応を用いることで収率良く合成することができる。 Other compounds of the present invention can also be synthesized with good yield by using appropriate raw materials and reactions as in the above synthesis examples.
 本発明のその他の化合物も上記の合成例と同様に、適切な原料、反応を用いることで収率良く合成することができる。 Other compounds of the present invention can also be synthesized with good yield by using appropriate raw materials and reactions as in the above synthesis examples.
 (1.2)蛍光ドーパント
 蛍光ドーパント(蛍光性化合物ともいう)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
(1.2) Fluorescent dopants Fluorescent dopants (also referred to as fluorescent compounds) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes having a high fluorescence quantum yield such as laser dyes and the like, and dyes based on dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
 (1.3)従来公知の発光ドーパントとの併用
 また本発明に係る発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。併用するリン光ドーパント及び蛍光ドーパントとして、公知のものを用いることができる。
(1.3) Combined use with conventionally known light-emitting dopants The light-emitting dopant according to the present invention may be used in combination with a plurality of types of compounds, a combination of phosphorescent dopants having different structures, a phosphorescent dopant and A combination of fluorescent dopants may also be used. Known phosphorescent dopants and fluorescent dopants can be used.
 (2)ホスト材料
 本発明においてホスト材料(ホスト化合物ともいう)は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
(2) Host material In the present invention, the host material (also referred to as a host compound) is a compound contained in the light emitting layer, the mass ratio in the layer is 20% or more, and at room temperature (25 ° C.). A phosphorescence quantum yield of phosphorescence is defined as a compound having a value of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
 本発明に用いることができるホスト化合物としては、特に制限はなく、従来有 機EL素子で用いられる化合物を用いることができる。代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又は、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも1つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。 The host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL elements can be used. Typically, a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound or the like having a basic skeleton, or a carboline derivative or a diazacarbazole derivative (here And the diazacarbazole derivative represents one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
 本発明に用いることができる公知のホスト化合物としては正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。 As the known host compound that can be used in the present invention, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being longer, and has a high Tg (glass transition temperature) is preferable.
 また、本発明においては、従来公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、前記リン光ドーパントとして用いられる本発明の金属錯体及び/又は従来公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。また、本発明に用いられるホスト化合物としては、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性ホスト化合物)でもよく、このような化合物を一種又は複数種用いても良い。 In the present invention, conventionally known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of the metal complex of this invention used as the said phosphorescence dopant, and / or a conventionally well-known compound, and, thereby, arbitrary luminescent colors can be obtained. The host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound (polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group. Of course, one or a plurality of such compounds may be used.
 公知のホスト化合物の具体例としては、以下の文献に記載の化合物が挙げられる。特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。 Specific examples of known host compounds include compounds described in the following documents. JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
 次に、本発明の有機EL素子の構成層として好ましく用いられる、注入層、阻止層、電子輸送層等について説明する。 Next, an injection layer, a blocking layer, an electron transport layer, and the like that are preferably used as the constituent layers of the organic EL element of the present invention will be described.
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。
 また、特表2003-519432や特開2006-135145等に記載されているようなアザトリフェニレン誘導体も同様に正孔注入材料として用いることができる。
The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Representative phthalocyanine buffer layer, oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) ) Orthometalated complex layers represented by iridium complexes and the like.
Similarly, azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole injection material.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその厚さは0.1nm~5μmの範囲が好ましい。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, as described in JP-A Nos. 11-204258 and 11-204359 and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)”. There is a hole blocking layer.
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
 また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。 Moreover, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
 正孔阻止層には、前述のホスト化合物として挙げたカルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(カルボリン誘導体のカルボリン環を構成する炭素原子のいずれかひとつが窒素原子で置き換わったものを示す)を含有することが好ましい。 The hole blocking layer contains the carbazole derivative, carboline derivative, or diazacarbazole derivative (shown in which any one of the carbon atoms constituting the carboline ring of the carboline derivative is replaced by a nitrogen atom). It is preferable to contain.
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。 In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
 イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)準位にある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。 The ionization potential is defined by the energy required to discharge electrons in the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be determined by the following method, for example.
 (1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian09を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。 (1) The second decimal place of the value (eV unit converted value) calculated by structural optimization using B3LYP / 6-31G * as a keyword using Gaussian 09, a molecular orbital calculation software manufactured by Gaussian, USA The ionization potential can be obtained as a value rounded off. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.
 (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いて、又は紫外光電子分光として知られている方法を好適に用いることができる。 (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
 また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の厚さとしては、好ましくは3~100nmであり、更に好ましくは5~30nmである。 Moreover, the structure of the hole transport layer described later can be used as an electron blocking layer as necessary. The thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。また、特表2003-519432や特開2006-135145号公報等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. Further, azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
 更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、銅フタロシアニンやトリス(2-フェニルピリジン)イリジウム錯体等に代表されるシクロメタル化錯体やオルトメタル化錯体等も正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material. In addition, cyclometalated complexes and orthometalated complexes such as copper phthalocyanine and tris (2-phenylpyridine) iridium complex can also be used as the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の厚さについては特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して、単独又は組み合わせて用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。 Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for the electron transport layer adjacent to the cathode side with respect to the light emitting layer was injected from the cathode. Any material can be used as long as it has a function of transferring electrons to the light-emitting layer, and any material known in the art can be selected and used alone or in combination. For example, a nitro-substituted fluorene derivative , Diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
 更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives, such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の厚さについては特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be produced.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムスズ酸化物(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not so required (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 又は、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に厚さは材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。 Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、厚さは通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
 また、陰極に上記金属を1~20nmの厚さで作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 Further, after producing the above metal on the cathode with a thickness of 1 to 20 nm, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode, By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
As a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、ポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic, polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987. A high barrier film having a permeability of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 1 × 10 −5 g / (m 2 · 24 h) or less is preferable. .
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。 The external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
 ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。 Also, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.
 《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。 In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned.
 更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。 Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured in (1) is 1 × 10 −3 g / (m 2 · 24 h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive.
 封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 Application of the adhesive to the sealing portion may be performed using a commercially available dispenser or may be printed like screen printing.
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、又は前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、若しくは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light and the light, and the light is guided through the transparent electrode or the light emitting layer.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明はこれらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。 When a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. .
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
 また、低屈折率媒質の厚さは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む厚さになると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
 全反射を起こす界面、若しくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Of these, light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode). I want to take it out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
 回折格子を導入する位置としては前述の通り、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。 As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。 At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。 The arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、又は所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
《Condensing sheet》
The organic EL device of the present invention is processed on the light extraction side of the substrate, for example, so as to provide a microlens array-like structure, or in combination with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface. By condensing in the front direction, the luminance in a specific direction can be increased.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 Further, in order to control the light emission angle from the light emitting element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《有機EL素子の作製方法》
 本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法を説明する。
<< Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
 まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの厚さになるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。 First, an anode is produced by forming a thin film made of a desired electrode material, for example, an anode material on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably 10 to 200 nm.
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物薄膜を形成させる。 Next, organic compound thin films such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, are formed thereon.
 これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。特に、本発明に係るリン光発光性の遷移金属錯体を含有した有機層は、ウェットプロセスを経て形成されることが上記の理由で好ましい。 As a method for forming each of these layers, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes. In view of the above, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention. In particular, the organic layer containing the phosphorescent transition metal complex according to the present invention is preferably formed through a wet process for the above reason.
 本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50~200nmの範囲の厚さになるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。 After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm. By providing, a desired organic EL element can be obtained.
 また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 It is also possible to reverse the production order and produce the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE 1931表色系における色度がx=0.33±0.07、y=0.33±0.1の領域内にあることを言う。 Further, when the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is measured when the 2 ° viewing angle front luminance is measured by the above method. It means that it is in the region of x = 0.33 ± 0.07 and y = 0.33 ± 0.1.
 《表示装置》
 本発明の表示装置について説明する。本発明の表示装置は上記有機EL素子を有する。
<Display device>
The display device of the present invention will be described. The display device of the present invention has the organic EL element.
 本発明の表示装置は、単色でも多色でもよいが、ここでは多色表示装置について説明する。 The display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。 In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a cast method, a spin coat method, an inkjet method, a printing method, or the like.
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを用いたパターニングが好ましい。 In the case of patterning only the light emitting layer, the method is not limited, but is preferably a vapor deposition method, an inkjet method, or a printing method. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.
 また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。 It is also possible to reverse the production order to produce the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, and the anode in this order.
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。 The multicolor display device can be used as a display device, a display, and various light sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。 Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
 発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではない。 Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. However, it is not limited to this.
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。 Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like. The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal. The image information is sequentially emitted to scan the image and display the image information on the display unit A.
 図2は表示部Aの模式図である。 FIG. 2 is a schematic diagram of the display unit A.
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。図2においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。 The display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate. The main members of the display unit A will be described below. FIG. 2 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。 The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。 A full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。 Next, the light emission process of the pixel will be described.
 図3は画素の回路図である。 FIG. 3 is a circuit diagram of the pixel.
 画素は有機EL素子10、スイッチングトランジスター11、駆動トランジスター12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。 The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図3において、制御部Bからデータ線6を介してスイッチングトランジスター11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスター11のゲートに走査信号が印加されると、スイッチングトランジスター11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスター12のゲートに伝達される。 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスター12の駆動がオンする。駆動トランジスター12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10. The power supply line 7 connects the organic EL element 10 to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスター11の駆動がオフする。しかし、スイッチングトランジスター11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスター12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスター12が駆動して有機EL素子10が発光する。 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even when the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスター11と駆動トランジスター12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 That is, the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL elements 10 of the plurality of pixels, and the organic EL elements 10 of the plurality of pixels 3 emit light. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。 Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
 図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。 FIG. 4 is a schematic view of a passive matrix display device. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。 When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。 In the passive matrix method, there is no active element in the pixel 3, and the manufacturing cost can be reduced.
 《照明装置》
 本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
《Lighting device》
The lighting device of the present invention will be described. The illuminating device of this invention has the said organic EL element.
 本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 The organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image ( It may be used as a display.
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
 また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。 Further, the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing. The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
 また複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
 発光層若しくは正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。 A mask is provided only at the time of forming a light emitting layer, a hole transport layer, an electron transport layer, etc., and it is only necessary to arrange them separately by coating with the mask. Since other layers are common, patterning of the mask or the like is not necessary. In addition, for example, an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 There is no restriction | limiting in particular as a luminescent material used for a light emitting layer, For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
 このように、本発明に係る白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。 As described above, the white light emitting organic EL element according to the present invention is used as a kind of lamp such as household illumination, interior lighting, and exposure light source as various light emitting light sources and lighting devices in addition to the display device and display. It is also useful for display devices such as backlights for liquid crystal display devices.
 その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。 Others such as backlights for watches, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. There are a wide range of uses such as household appliances.
 《本発明の照明装置の一態様》
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
<< One Embodiment of Lighting Device of the Present Invention >>
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。 The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS. A device can be formed.
 図5は、照明装置の概略図を示している。図5に示すとおり、有機EL素子101はガラスカバー102で覆われている。 FIG. 5 shows a schematic diagram of the lighting device. As shown in FIG. 5, the organic EL element 101 is covered with a glass cover 102.
 ガラスカバー102での封止作業は、好ましくは、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行われる。 The sealing operation with the glass cover 102 is preferably performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 into contact with the atmosphere.
 図6は、照明装置の断面図を示している。図6に示すとおり、照明装置は主に陰極105、有機EL層106及び透明電極付きガラス基板107で構成され、これら部材がガラスカバー102で覆われている。 FIG. 6 shows a cross-sectional view of the lighting device. As shown in FIG. 6, the lighting device mainly includes a cathode 105, an organic EL layer 106, and a glass substrate 107 with a transparent electrode, and these members are covered with a glass cover 102.
 ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 《遷移金属錯体》
 本発明の遷移金属錯体は前述した有機エレクトロルミネッセンス素子に、有機エレクトロルミネッセンス素子用材料として好ましく用いることができる。また、本発明のリン光発光性の遷移金属錯体を含有する組成物は、有機エレクトロルミネッセンス素子用材料組成物として好ましく用いることができる。
<Transition metal complex>
The transition metal complex of the present invention can be preferably used as a material for an organic electroluminescence element in the above-described organic electroluminescence element. In addition, the composition containing the phosphorescent transition metal complex of the present invention can be preferably used as a material composition for an organic electroluminescence device.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例において用いられる化合物の構造を下記に示す。 The structure of the compound used in the examples is shown below.
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000226
 〔実施例1〕
 〈蒸着型青色発光有機EL素子〉
 《青色発光有機EL素子1-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムスズ酸化物)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
[Example 1]
<Vapor deposition type blue light emitting organic EL element>
<< Production of Blue Light-Emitting Organic EL Element 1-1 >>
After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate was formed as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate, this transparent ITO electrode was provided. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔注入材料1を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物(OC-11)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(比較化合物1)を100mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料1を200mg入れ、更に別のモリブデン製抵抗加熱ボートに電子輸送材料2を200mg入れ、真空蒸着装置に取付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is put into another resistance heating boat made of molybdenum, 100 mg of the luminescent dopant (Comparative Compound 1) is put into another resistance heating boat made of molybdenum, and the electron transport material 1 is put into another resistance heating boat made of molybdenum. And 200 mg of the electron transport material 2 was placed in another molybdenum resistance heating boat and attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し厚さ20nmの正孔注入層を設けた。 The vacuum chamber was then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing the hole injection material 1 and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
 更に、真空槽を4×10-4Paまで減圧した後、正孔輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、厚さ20nmの正孔輸送層を設けた。 Furthermore, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
 更に、ホスト化合物(OC-11)と発光ドーパント(比較化合物1)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.035nm/秒で前記正孔輸送層上に共蒸着して、厚さ40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。 Further, the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the light-emitting dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.035 nm / second, respectively. A 40 nm-thick luminescent layer was provided by co-evaporation. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 更に、電子輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して厚さ10nmの正孔阻止層を設けた。 Further, the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
 その上に、更に、電子輸送材料2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に厚さ20nmの電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。 In addition, the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm. Was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1-1を作製した。なお以下の表では、有機EL素子をELと略記し、例えば有機EL素子1-1をEL1-1と表記した。 Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 1-1 was produced. In the table below, the organic EL element is abbreviated as EL, for example, the organic EL element 1-1 is denoted as EL1-1.
 《有機EL素子1-2~1-75の作製》
 有機EL素子1-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物及び発光ドーパント(以下の表ではドーパントと略記した。)のみを表VII~IXに示す化合物
に置き換えた以外は有機EL素子1-1と同様にして、有機EL素子1-2~1-75を作製した。
<< Preparation of organic EL elements 1-2 to 1-75 >>
In the production of the organic EL device 1-1, except that only the hole injection material, the hole transport material, the host compound, and the light emitting dopant (abbreviated as dopant in the following table) were replaced with the compounds shown in Tables VII to IX. Organic EL elements 1-2 to 1-75 were produced in the same manner as the organic EL element 1-1.
 《有機EL素子の評価》
 得られた有機EL素子1-1~1-75を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5及び図6に示すような照明装置を形成して評価した。
<< Evaluation of organic EL elements >>
When evaluating the obtained organic EL elements 1-1 to 1-75, the non-light-emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. In addition, an epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material around the periphery, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and an illumination device as shown in FIGS. 5 and 6 was formed and evaluated.
 図5は照明装置の概略図を示している。有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバー102での封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。 FIG. 5 shows a schematic diagram of the lighting device. The organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover 102 is a glove box (purity of 99.999% or more in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere). In a high-purity nitrogen gas atmosphere).
 図6は照明装置の断面図を示している。照明装置の内部には、陽極としての透明電極付きガラス基板107、有機EL層106及び陰極105がこの順に積層されている。ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 6 shows a cross-sectional view of the lighting device. Inside the lighting device, a glass substrate 107 with a transparent electrode as an anode, an organic EL layer 106 and a cathode 105 are laminated in this order. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 (1)外部取り出し量子効率
 各有機EL素子を室温(25℃)、初期輝度2000cd/m、及び4000cd/m(以下の表ではそれぞれ、輝度A、輝度Bとして示した。)を与える電流で定電流駆動して、点灯開始直後の駆動電流[mA]を測定することにより、発光効率の評価尺度として外部取り出し量子効率(η)を算出した。ここで、発光輝度の測定はCS-1000(コニカミノルタ(株)製)を用いた。
(1) External extraction quantum efficiency Current that gives each organic EL element room temperature (25 ° C.), initial luminance 2000 cd / m 2 , and 4000 cd / m 2 (shown as luminance A and luminance B in the following tables, respectively). The external extraction quantum efficiency (η) was calculated as an evaluation measure of the light emission efficiency by driving at a constant current and measuring the drive current [mA] immediately after the start of lighting. Here, CS-1000 (manufactured by Konica Minolta Co., Ltd.) was used for measurement of light emission luminance.
 外部取り出し量子収率はいずれも、初期輝度2000cd/mにおける有機EL素子1-1を基準(100)とした相対値で示した。 The external extraction quantum yields are all expressed as relative values with the organic EL element 1-1 at an initial luminance of 2000 cd / m 2 as a reference (100).
 (2)駆動電圧
 各有機EL素子を室温(25℃)、初期輝度2000cd/m、及び4000cd/mを与える電流で定電流駆動して、点灯開始直後の駆動電流[mA]を測定することにより、駆動電圧を測定した。ここで、発光輝度の測定はCS-1000(コニカミノルタ(株)製)を用いた。
(2) RT driving voltage the organic EL device (25 ° C.), the initial luminance 2000 cd / m 2, and 4000 cd / m 2 at a current giving by constant current driving, measuring the lighting start immediately after the drive current [mA] Thus, the driving voltage was measured. Here, CS-1000 (manufactured by Konica Minolta Co., Ltd.) was used for measurement of light emission luminance.
 駆動電圧はいずれも、初期輝度2000cd/mにおける有機EL素子1-1を基準(100)とした相対値で示した。 All of the drive voltages are shown as relative values with the organic EL element 1-1 at an initial luminance of 2000 cd / m 2 as a reference (100).
   駆動電圧={(各素子の駆動電圧/有機EL素子1-1の駆動電圧(初期輝度2000cd/m))}×100
 値が小さいほうが比較に対して駆動電圧が低いことを示す。
Drive voltage = {(drive voltage of each element / drive voltage of the organic EL element 1-1 (initial luminance 2000 cd / m 2 ))} × 100
A smaller value indicates a lower drive voltage for comparison.
 (3)駆動電圧上昇率
 10mA/cmの一定電流で駆動したときに、初期電圧と200時間後の電圧を測定した。初期電圧に対する200時間後の電圧の上昇を百分率で表示し駆動電圧上昇率とした。
(3) Driving voltage increase rate When driving at a constant current of 10 mA / cm 2 , the initial voltage and the voltage after 200 hours were measured. The increase in voltage after 200 hours with respect to the initial voltage was displayed as a percentage and used as the drive voltage increase rate.
  駆動電圧上昇率(%)={[(各有機EL素子の駆動200時間後の駆動電圧/V)-(各有機EL素子の初期駆動電圧/V)]/(各有機EL素子の初期駆動電圧/V)}×100
 (4)半減発光寿命(25℃)
 下記に示す測定法に従って、半減発光寿命の評価を行った。
Drive voltage increase rate (%) = {[(Drive voltage after driving 200 hours for each organic EL element / V) − (Initial drive voltage for each organic EL element / V)] / (Initial drive voltage for each organic EL element) / V)} × 100
(4) Half light emission lifetime (25 ° C)
The half-light emission lifetime was evaluated according to the measurement method shown below.
 各有機EL素子を25℃及び70℃の高温槽内で、初期輝度2000cd/mを与える電流で定電流駆動して、初期輝度の1/2(1000cd/m)になる時間を求め、これを半減発光寿命の尺度とした。 Each organic EL element is driven at a constant current in a high-temperature bath at 25 ° C. and 70 ° C. with a current that gives an initial luminance of 2000 cd / m 2 , and a time to become 1/2 (1000 cd / m 2 ) of the initial luminance is obtained. This was taken as a measure of half-life.
 半減発光寿命は、25℃において得られた有機EL素子1-1の半減発光寿命を基準(100)と設定する相対値で表した。 The half-light emission lifetime was expressed as a relative value set with the reference (100) as the half-light emission lifetime of the organic EL device 1-1 obtained at 25 ° C.
 (5)初期劣化
 下記に示す測定法に従って、初期劣化の評価を行った。
(5) Initial degradation Initial degradation was evaluated according to the measurement method shown below.
 前記25℃での半減発光寿命の測定時に、各有機EL素子の発光輝度が初期輝度の90%(1800cd/m)に到達する時間を測定し、これを初期劣化の尺度とした。 At the time of measuring the half light emission lifetime at 25 ° C., the time required for the emission luminance of each organic EL element to reach 90% (1800 cd / m 2 ) of the initial luminance was measured, and this was used as a measure of initial deterioration.
 初期劣化は、有機EL素子1-1の半減発光寿命を基準(100)と設定する相対値で表した。 The initial deterioration was expressed as a relative value set with the reference (100) as the half-light emission lifetime of the organic EL element 1-1.
 初期劣化は以下の計算式を基に計算した。 The initial deterioration was calculated based on the following formula.
   初期劣化={(有機EL素子1-1の輝度90%到達時間(hr))/(各有機EL素子の輝度90%到達時間(hr))}×100
 すなわち、初期劣化の値は、小さいほど初期の劣化が小さいことを示す。
Initial degradation = {(90% arrival time of luminance of organic EL element 1-1 (hr)) / (90% arrival time of each organic EL element (hr))} × 100
That is, the smaller the initial deterioration value is, the smaller the initial deterioration is.
 《発光色度の測定》
 各有機EL素子について、発光色を観察し、すべて青色を呈することを目視で確認した。さらに、分光放射輝度計CS-1000(コニカミノルタ(株)製)で、1000cd/mでの2度視野角正面輝度を測定し、CIE色度座標(CIE 1931表色系)における色度(x、y)を求めた。
<Measurement of emission chromaticity>
About each organic EL element, the luminescent color was observed and it confirmed visually that all showed blue. Further, a 2-degree viewing angle front luminance at 1000 cd / m 2 was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and the chromaticity in the CIE chromaticity coordinates (CIE 1931 color system) ( x, y) was determined.
 以上の評価結果を表VII~IXに示す。なお、以下の表では、初期輝度2000cd/m
を輝度A、及び初期4000cd/mを輝度Bとして示した。
The above evaluation results are shown in Tables VII to IX. In the table below, the initial luminance is 2000 cd / m.
2 was shown as luminance A, and initial 4000 cd / m 2 was shown as luminance B.
Figure JPOXMLDOC01-appb-T000227
Figure JPOXMLDOC01-appb-T000227
Figure JPOXMLDOC01-appb-T000228
Figure JPOXMLDOC01-appb-T000228
Figure JPOXMLDOC01-appb-T000229
Figure JPOXMLDOC01-appb-T000229
 表VII~IX、から、比較の有機EL素子1-1~1-6に比べて、本発明の有機EL素
子1-7~1-75は、外部取り出し量子効率が高く、かつ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。
From Tables VII to IX, the organic EL elements 1-7 to 1-75 of the present invention have higher external extraction quantum efficiency and initial luminance than the comparative organic EL elements 1-1 to 1-6. It can be seen that there is little deterioration, and accordingly, it has a long life at both room temperature and high temperature.
 さらに、駆動電圧の上昇も抑えられていることもわかる。 It can also be seen that the drive voltage rise is also suppressed.
 かかる結果から、少なくとも発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、青色発光ドーパントとして本発明に係るリン光発光性の遷移金属錯体を使用することが有用であることがわかる。 From these results, it is useful to use the phosphorescent transition metal complex according to the present invention as a blue light-emitting dopant in at least improving luminous efficiency, reducing driving voltage, and improving luminous lifetime. Recognize.
 〔実施例2〕
 〈ウェットプロセス型青色発光素子〉
 《青色発光有機EL素子2-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムスズ酸化物)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
[Example 2]
<Wet process type blue light emitting element>
<< Preparation of Blue Light-Emitting Organic EL Element 2-1 >>
After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate was formed as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate, this transparent ITO electrode was provided. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、厚さ30nmの第1正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
 この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、50mgの正孔輸送材料3を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。更に180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。 This substrate was transferred to a nitrogen atmosphere, and a solution obtained by dissolving 50 mg of the hole transport material 3 in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. . Furthermore, after irradiating with ultraviolet light for 180 seconds to perform photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to obtain a second hole transport layer.
 この第2正孔輸送層上に、100mgのホスト化合物(ホスト材料1)と15mgの発光ドーパント(比較化合物1)とを10mlの酢酸ブチルに溶解した溶液を用いて600rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、厚さ約70nmの発光層とした。 On this second hole transport layer, using a solution in which 100 mg of the host compound (host material 1) and 15 mg of the luminescent dopant (comparative compound 1) are dissolved in 10 ml of butyl acetate, under the condition of 600 rpm for 30 seconds, A thin film was formed by spin coating. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the light emitting layer about 70 nm thick.
 次に、この発光層上に、50mgの電子輸送材料3を10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、厚さ約30nmの電子輸送層とした。 Next, a thin film was formed on the light emitting layer by spin coating using a solution obtained by dissolving 50 mg of the electron transport material 3 in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer about 30 nm thick.
 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2-1を作製した。 Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 × 10 −4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed to produce an organic EL element 2-1.
 《有機EL素子2-2~2-75の作製》
 有機EL素子2-1の作製において、ホスト化合物及び発光ドーパントのみを表X~XIIに示す化合物に置き換えた以外は有機EL素子2-1同様にして、有機EL素子2-2~2-75を作製した。
<< Preparation of organic EL elements 2-2 to 2-75 >>
In the production of the organic EL element 2-1, the organic EL elements 2-2 to 2-75 were prepared in the same manner as the organic EL element 2-1, except that only the host compound and the light-emitting dopant were replaced with the compounds shown in Tables X to XII. Produced.
 《有機EL素子の評価》
 得られた有機EL素子2-1~2-75について、実施例1と同様の手法及び基準で、素子の性能を評価した。
<< Evaluation of organic EL elements >>
With respect to the obtained organic EL devices 2-1 to 2-75, the device performance was evaluated by the same method and standard as in Example 1.
 なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命及び(5)初期劣化の各評価では、有機EL素子2-1を基準として実施例1と同様にして相対値を求めた。 In this example, in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 2-1. The relative value was obtained in the same manner as described above.
 評価結果を表X~XIIに示す。 Evaluation results are shown in Tables X to XII.
Figure JPOXMLDOC01-appb-T000230
Figure JPOXMLDOC01-appb-T000230
Figure JPOXMLDOC01-appb-T000231
Figure JPOXMLDOC01-appb-T000231
Figure JPOXMLDOC01-appb-T000232
Figure JPOXMLDOC01-appb-T000232
 表X~XIIから、比較の有機EL素子2-1~2-6に比べて、本発明の有機EL素子2-7~2-75は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。 From Tables X to XII, the organic EL elements 2-7 to 2-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL elements 2-1 to 2-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
 さらに、本発明の有機EL素子2-7~2-75は駆動電圧の上昇も抑えられていることもわかる。 Furthermore, it can be seen that the organic EL elements 2-7 to 2-75 of the present invention also suppress the increase in driving voltage.
 かかる結果から、発光層をスピンコート法によるウェットプロセスで形成する場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、青色発光ドーパントとして本発明に係るリン光発光性の遷移金属錯体を使用することが有用であることがわかる。 From these results, even when the light emitting layer is formed by a wet process using a spin coating method, the phosphorescent property according to the present invention is used as a blue light emitting dopant in order to improve the light emission efficiency, reduce the driving voltage, and improve the light emission life. It can be seen that it is useful to use a transition metal complex of
 〔実施例3〕
 〈蒸着型白色発光素子-1〉
 《白色発光有機EL素子の3-1作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムスズ酸化物)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 3
<Vapor deposition type white light emitting element-1>
<< Production of White Light-Emitting Organic EL Element 3-1 >>
After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate was formed as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate, this transparent ITO electrode was provided. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔注入材料1を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物(OC-11)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(比較化合物1)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-6)を100mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料1を200mg入れ、更に別のモリブデン製抵抗加熱ボートに電子輸送材料2を200mg入れ、真空蒸着装置に取付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, In another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is added. In another molybdenum resistance heating boat, 100 mg of the luminescent dopant (Comparative Compound 1) is added. In another molybdenum resistance heating boat, the luminescent dopant (D -6) was put in 100 mg, 200 mg of the electron transport material 1 was put in another resistance heating boat made of molybdenum, and 200 mg of the electron transport material 2 was put in another resistance heating boat made of molybdenum, and attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し厚さ20nmの正孔注入層を設けた。 The vacuum chamber was then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing the hole injection material 1 and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
 更に、真空槽を4×10-4Paまで減圧した後、正孔輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、厚さ20nmの正孔輸送層を設けた。 Furthermore, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
 更に、ホスト化合物(OC-11)と発光ドーパント(比較化合物1)と発光ドーパント(D-6)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.022nm/秒、0.0010nm/秒で前記正孔輸送層上に共蒸着して、厚さ40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。 Further, the heating boat containing the host compound (OC-11), the luminescent dopant (Comparative Compound 1) and the luminescent dopant (D-6) was energized and heated, and the deposition rate was 0.2 nm / second and 0.022 nm, respectively. A light emitting layer having a thickness of 40 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 更に、電子輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して厚さ10nmの正孔阻止層を設けた。 Further, the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
 その上に、更に、電子輸送材料2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に厚さ20nmの電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。 In addition, the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm. Was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子3-1を作製した。 Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 3-1 was produced.
 《有機EL素3-2~3-75の作製》
 有機EL素子3-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物、及び発光ドーパントのうち比較化合物1のみを表XIII~XVに示す化合物に置き換えた以外は有機EL素子3-1と同様にして、有機EL素子3-2~3-75を作製した。
<< Production of organic EL elements 3-2 to 3-75 >>
In the production of the organic EL device 3-1, the organic EL device 3 was prepared except that only the comparative compound 1 was replaced with the compounds shown in Tables XIII to XV among the hole injection material, the hole transport material, the host compound, and the light emitting dopant. In the same manner as in Example 1, organic EL devices 3-2 to 3-75 were produced.
 《有機EL素子の評価》
 得られた有機EL素子3-1~3-75について、実施例1と同様の手法及び基準で、素子の性能を評価した。
<< Evaluation of organic EL elements >>
With respect to the obtained organic EL devices 3-1 to 3-75, the performance of the devices was evaluated by the same method and standard as in Example 1.
 なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命及び(5)初期劣化の各評価では、有機EL素子3-1を基準として実施例1と同様にして相対値を求めた。 In this example, in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 3-1. The relative value was obtained in the same manner as described above.
 評価結果を表XIII~XVに示す。 Evaluation results are shown in Tables XIII to XV.
 なお、本発に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタ(株)製)で、1000cd/mでの2度視野角正面輝度を測定した結果、CIE色度座標(CIE 1931表色系)における色度がx=0.33±0.07、y=0.33±0.1の領域内にあり、白色に発光することを確認した。 The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and as a result of measuring the 2-degree viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates ( It was confirmed that the chromaticity in the CIE 1931 color system was in the region of x = 0.33 ± 0.07 and y = 0.33 ± 0.1 and emitted white light.
Figure JPOXMLDOC01-appb-T000233
Figure JPOXMLDOC01-appb-T000233
Figure JPOXMLDOC01-appb-T000234
Figure JPOXMLDOC01-appb-T000234
Figure JPOXMLDOC01-appb-T000235
Figure JPOXMLDOC01-appb-T000235
 表XIII~XVから、比較の有機EL素子3-1~3-6に比べて、本発明の有機EL素子3-7~3-75は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。 From Tables XIII to XV, the organic EL devices 3-7 to 3-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL devices 3-1 to 3-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
 さらに、本発明の有機EL素子3-7~3-75は、駆動電圧の上昇も抑えられていることもわかる。 Furthermore, it can be seen that the organic EL elements 3-7 to 3-75 of the present invention also suppress the increase in driving voltage.
 かかる結果から、2種の発光ドーパントで単層の発光層を形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性の遷移金属錯体を使用することが有用であることがわかる。 From these results, even in the case where a single light emitting layer is formed with two kinds of light emitting dopants to emit white light, the invention relates to the present invention as a light emitting dopant in order to improve light emission efficiency, drive voltage, and light emission life. It can be seen that it is useful to use a phosphorescent transition metal complex.
 〔実施例4〕
 〈蒸着型白色発光素子-2〉
 《白色発光素子4-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムスズ酸化物)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 4
<Vapor deposition type white light emitting element-2>
<< Preparation of white light emitting element 4-1 >>
After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate was formed as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate, this transparent ITO electrode was provided. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔注入材料1を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物(OC-11)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(比較化合物1)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-3)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-6)を100mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料1を200mg入れ、更に別のモリブデン製抵抗加熱ボートに電子輸送材料2を200mg入れ、真空蒸着装置に取付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, In another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is added. In another molybdenum resistance heating boat, 100 mg of the luminescent dopant (Comparative Compound 1) is added. In another molybdenum resistance heating boat, the luminescent dopant (D -3) 100 mg, 100 mg of luminescent dopant (D-6) in another molybdenum resistance heating boat, 200 mg of electron transport material 1 in another molybdenum resistance heating boat, and another molybdenum resistance heating boat 200 mg of the electron transport material 2 was put in and attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し厚さ20nmの正孔注入層を設けた。 The vacuum chamber was then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing the hole injection material 1 and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
 更に、真空槽を4×10-4Paまで減圧した後、正孔輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、厚さ20nmの正孔輸送層を設けた。 Furthermore, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
 更に、ホスト化合物(OC-11)と発光ドーパント(比較化合物1)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.035nm/秒で前記正孔輸送層上に共蒸着して、厚さ20nmの青色発光層を設けた。なお、蒸着時の基板温度は室温であった。 Further, the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the light-emitting dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.035 nm / second, respectively. A blue light emitting layer having a thickness of 20 nm was provided by co-evaporation. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 更に、ホスト化合物(OC-11)と発光ドーパント(D-3)と発光ドーパント(D-6)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.010nm/秒、0.0010nm/秒で前記正孔輸送層上に共蒸着して、厚さ20nmの黄色発光層を設けた。なお、蒸着時の基板温度は室温であった。 Further, the heating boat containing the host compound (OC-11), the luminescent dopant (D-3), and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.010 nm, respectively. A yellow light emitting layer having a thickness of 20 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 更に、電子輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して厚さ10nmの正孔阻止層を設けた。 Further, the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
 その上に、更に、電子輸送材料2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に厚さ20nmの電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。 In addition, the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm. Was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子4-1を作製した。 Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 4-1 was produced.
 《有機EL素4-2~4-75の作製》
 有機EL素子4-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物、及び発光ドーパントのうち比較化合物1のみを表XVI~XVIIIに示す化合物に置き換えた以外は有機EL素子4-1と同様にして、有機EL素子4-2~4-75を作製した。
<< Production of organic EL elements 4-2 to 4-75 >>
In the production of the organic EL element 4-1, the organic EL element 4 was replaced except that only the comparative compound 1 was replaced with the compounds shown in Tables XVI to XVIII among the hole injection material, the hole transport material, the host compound, and the light emitting dopant. In the same manner as in Example 1, organic EL elements 4-2 to 4-75 were produced.
 《有機EL素子の評価》
 得られた有機EL素子4-1~4-75について、実施例1と同様の手法及び基準で、素子の性能を評価した。
<< Evaluation of organic EL elements >>
With respect to the obtained organic EL elements 4-1 to 4-75, the performance of the elements was evaluated by the same method and standard as in Example 1.
 なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命及び(5)初期劣化の各評価では、有機EL素子4-1を基準として実施例1と同様にして相対値を求めた。 In this example, in each evaluation of (1) external extraction quantum efficiency, (2) drive voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 4-1. The relative value was obtained in the same manner as described above.
 評価結果を表XVI~XVIIIに示す。 Evaluation results are shown in Tables XVI to XVIII.
 なお、本発明に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタ(株)製)で、1000cd/mでの2度視野角正面輝度を測定した結果、CIE色度座標(CIE 1931表色系)における色度がx=0.33±0.07、y=0.33±0.1の領域内にあり、白色に発光することを確認した。 The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and as a result of measuring the 2 ° viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates ( It was confirmed that the chromaticity in the CIE 1931 color system was in the region of x = 0.33 ± 0.07 and y = 0.33 ± 0.1 and emitted white light.
Figure JPOXMLDOC01-appb-T000236
Figure JPOXMLDOC01-appb-T000236
Figure JPOXMLDOC01-appb-T000237
Figure JPOXMLDOC01-appb-T000237
Figure JPOXMLDOC01-appb-T000238
Figure JPOXMLDOC01-appb-T000238
 表XVI~XVIIIから、比較の有機EL素子4-1~4-6に比べて、本発明の有機EL素子4-7~4-75は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。 From Tables XVI to XVIII, the organic EL elements 4-7 to 4-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL elements 4-1 to 4-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
 さらに、本発明の有機EL素子4-7~4-75は、駆動電圧の上昇も抑えられていることもわかる。 Furthermore, it can be seen that the organic EL elements 4-7 to 4-75 of the present invention also suppress the increase in driving voltage.
 かかる結果から、同一のホスト化合物と3種の発光ドーパントとで2層の発光層を形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性の遷移金属錯体を使用することが有用であることがわかる。 From these results, even when two layers of light emitting layers are formed with the same host compound and three types of light emitting dopants to emit white light, it is necessary to improve the light emission efficiency, drive voltage, and light emission life. It can be seen that it is useful to use the phosphorescent transition metal complex according to the present invention as a dopant.
 〔実施例5〕
 〈蒸着型白色発光素子-3〉
 《白色発光素子5-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムスズ酸化物)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 5
<Vapor deposition type white light emitting element-3>
<< Preparation of white light emitting element 5-1 >>
After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate was formed as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate, this transparent ITO electrode was provided. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔注入材料1を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物1(OC-11)を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物2(OC-6)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(比較化合物1)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-3)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-6)を100mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料1を200mg入れ、更に別のモリブデン製抵抗加熱ボートに電子輸送材料2を200mg入れ、真空蒸着装置に取付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, 200 mg of host compound 1 (OC-11) is put into another resistance heating boat made of molybdenum, 200 mg of host compound 2 (OC-6) is put into another resistance heating boat made of molybdenum, and the luminescent dopant is put into another resistance heating boat made of molybdenum. 100 mg of (Comparative Compound 1) was added, 100 mg of the luminescent dopant (D-3) was put in another molybdenum resistance heating boat, and 100 mg of the luminescent dopant (D-6) was put in another molybdenum resistance heating boat. 200 mg of electron transport material 1 is put in a resistance heating boat, and another molybdenum resistance heating boat The electron transport material 2 placed 200mg Doo, mounted in a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し厚さ20nmの正孔注入層を設けた。 The vacuum chamber was then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing the hole injection material 1 and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
 更に、真空槽を4×10-4Paまで減圧した後、正孔輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、厚さ20nmの正孔輸送層を設けた。 Furthermore, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
 更に、ホスト化合物(OC-11)と発光ドーパント(比較化合物1)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.035nm/秒で前記正孔輸送層上に共蒸着して、厚さ20nmの青色発光層を設けた。なお、蒸着時の基板温度は室温であった。 Further, the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the light-emitting dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.035 nm / second, respectively. A blue light emitting layer having a thickness of 20 nm was provided by co-evaporation. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 更に、ホスト化合物(OC-6)と発光ドーパント(D-3)と発光ドーパント(D-6)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.010nm/秒、0.0010nm/秒で前記正孔輸送層上に共蒸着して、厚さ20nmの黄色発光層を設けた。なお、蒸着時の基板温度は室温であった。 Further, the heating boat containing the host compound (OC-6), the luminescent dopant (D-3) and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.010 nm, respectively. A yellow light emitting layer having a thickness of 20 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 更に、電子輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して厚さ10nmの正孔阻止層を設けた。 Further, the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
 その上に、更に、電子輸送材料2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に厚さ20nmの電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。 In addition, the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm. Was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature.
 引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子5-1を作製した。 Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 5-1 was produced.
 《有機EL素5-2~5-75の作製》
 有機EL素子5-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物1(OC-11)、ホスト化合物2(OC-6)、及び発光ドーパントのうち比較化合物1のみを表XIX~XXIに示す化合物に置き換えた以外は有機EL素子5-1と同様にして、有機EL素子5-2~5-75を作製した。
<< Production of organic EL elements 5-2 to 5-75 >>
In the production of the organic EL device 5-1, only the comparative compound 1 among the hole injection material, the hole transport material, the host compound 1 (OC-11), the host compound 2 (OC-6), and the light emitting dopant is shown in Table XIX. Organic EL elements 5-2 to 5-75 were produced in the same manner as the organic EL element 5-1, except that the compounds shown in FIGS.
 《有機EL素子の評価》
 得られた有機EL素子5-1~5-75について、実施例1と同様の手法及び基準で、素子の性能を評価した。
<< Evaluation of organic EL elements >>
With respect to the obtained organic EL devices 5-1 to 5-75, the performance of the devices was evaluated by the same method and standard as in Example 1.
 なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命及び(5)初期劣化の各評価では、有機EL素子5-1を基準として実施例1と同様にして相対値を求めた。 In this example, in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 5-1. The relative value was obtained in the same manner as described above.
 評価結果を表XIX~XXIに示す。 Evaluation results are shown in Tables XIX to XXI.
 なお、本発明に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタ(株)製)で、1000cd/mでの2度視野角正面輝度を測定した結果、CIE色度座標(CIE 1931表色系)における色度がx=0.33±0.07、y=0.33±0.1の領域内にあり、白色に発光することを確認した。 The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and as a result of measuring the 2 ° viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates ( It was confirmed that the chromaticity in the CIE 1931 color system was in the region of x = 0.33 ± 0.07 and y = 0.33 ± 0.1 and emitted white light.
Figure JPOXMLDOC01-appb-T000239
Figure JPOXMLDOC01-appb-T000239
Figure JPOXMLDOC01-appb-T000240
Figure JPOXMLDOC01-appb-T000240
Figure JPOXMLDOC01-appb-T000241
Figure JPOXMLDOC01-appb-T000241
 表XIX~XXIから、比較の有機EL素子5-1~5-6に比べて、本発明の有機EL素子5-7~5-75は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。 From Tables XIX to XXI, the organic EL elements 5-7 to 5-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL elements 5-1 to 5-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
 さらに、本発明の有機EL素子5-7~5-75は、駆動電圧の上昇も抑えられていることもわかる。 Furthermore, it can be seen that the organic EL elements 5-7 to 5-75 of the present invention also suppress the increase in driving voltage.
 かかる結果から、互いに異なる2種のホスト化合物と3種の発光ドーパントとで2層の発光層を形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性の遷移金属錯体を使用することが有用であることがわかる。 From these results, even when two light emitting layers are formed with two different host compounds and three light emitting dopants to emit white light, the light emission efficiency is improved, the driving voltage is reduced, and the light emission life is improved. Then, it turns out that it is useful to use the phosphorescence-emitting transition metal complex based on this invention as a light emission dopant.
 〔実施例6〕
 〈ウェットプロセス型白色発光素子-1〉
 《白色発光有機EL素子6-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムスズ酸化物)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 6
<Wet process type white light emitting element-1>
<< Production of White Light-Emitting Organic EL Element 6-1 >>
After patterning a substrate (NA Techno-Glass NA-45) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode, this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、厚さ30nmの第1正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
 この基板を窒素雰囲気下に移し、第1正孔輸送層上に、50mgの正孔輸送材料3を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。 The substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 3 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
 この第2正孔輸送層上に、100mgのホスト化合物(OC-11)、14mgの発光ドーパント(比較化合物1)と1mgの発光ドーパント(D-13)と0.5mgの発光ドーパント(D-6)とを10mlのトルエンに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜し、発光層を形成した。更に60℃で1時間真空乾燥し、厚さ約70nmの発光層とした。 On this second hole transport layer, 100 mg of the host compound (OC-11), 14 mg of the luminescent dopant (Comparative Compound 1), 1 mg of the luminescent dopant (D-13) and 0.5 mg of the luminescent dopant (D-6) ) Was dissolved in 10 ml of toluene using a spin coating method at 1000 rpm for 30 seconds to form a light emitting layer. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the light emitting layer about 70 nm thick.
 次に、この発光層上に、50mgの電子輸送材料3を10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、厚さ約30nmの電子輸送層とした。 Next, a thin film was formed on the light emitting layer by spin coating using a solution obtained by dissolving 50 mg of the electron transport material 3 in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer about 30 nm thick.
 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子6-1を作製した。 Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 × 10 −4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed, and an organic EL element 6-1 was produced.
 なお、蒸着時の基板温度は室温であった。 In addition, the substrate temperature at the time of vapor deposition was room temperature.
 《有機EL素子6-2~6-75の作製》
 有機EL素子6-1の作製において、ホスト化合物、及び発光ドーパントのうち比較化合物1のみを表XXII~XXIVに示す化合物に置き換えた以外は有機EL素子6-1と同様にして、有機EL素子6-2~6-75を作製した。
<< Preparation of organic EL elements 6-2 to 6-75 >>
In the production of the organic EL device 6-1, the organic EL device 6 was prepared in the same manner as the organic EL device 6-1, except that only the comparative compound 1 of the host compound and the light-emitting dopant was replaced with the compounds shown in Tables XXII to XXIV. -2 to 6-75 were produced.
 《有機EL素子の評価》
 得られた有機EL素子6-1~6-75について、実施例1と同様の手法及び基準で、素子の性能を評価した。
<< Evaluation of organic EL elements >>
With respect to the obtained organic EL elements 6-1 to 6-75, the performance of the element was evaluated by the same method and standard as in Example 1.
 なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命及び(5)初期劣化の各評価では、有機EL素子6-1を基準として実施例1と同様にして相対値を求めた。 In this example, in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was performed with reference to the organic EL element 6-1. The relative value was obtained in the same manner as described above.
 評価結果を表XXII~XXIVに示す。 Evaluation results are shown in Tables XXII to XXIV.
 なお、本発明に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタ(株)製)で、1000cd/mでの2度視野角正面輝度を測定した結果、CIE色度座標(CIE 1931表色系)における色度がx=0.33±0.07、y=0.33±0.1の領域内にあり、白色に発光することを確認した。 The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and as a result of measuring the 2 ° viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates ( It was confirmed that the chromaticity in the CIE 1931 color system was in the region of x = 0.33 ± 0.07 and y = 0.33 ± 0.1 and emitted white light.
Figure JPOXMLDOC01-appb-T000242
Figure JPOXMLDOC01-appb-T000242
Figure JPOXMLDOC01-appb-T000243
Figure JPOXMLDOC01-appb-T000243
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000244
 表XXII~XXIVから、比較の有機EL素子6-1~6-6に比べて、本発明の有機EL素子6-7~6-75は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。 From Tables XXII to XXIV, compared with the comparative organic EL elements 6-1 to 6-6, the organic EL elements 6-7 to 6-75 of the present invention have high external extraction quantum efficiency and initial luminance degradation. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
 かかる結果から、3種の発光ドーパントを用いて発光層をスピンコート法によるウェットプロセスで形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性の遷移金属錯体を使用することが有用であることがわかる。 From these results, even when a light emitting layer is formed by a wet process using a spin coating method using three kinds of light emitting dopants to emit white light, in order to improve light emission efficiency, drive voltage, and light emission life, It can be seen that it is useful to use the phosphorescent transition metal complex according to the present invention as a dopant.
 〔実施例7〕
 〈ウェットプロセス型白色発光素子-2〉
 《白色発光有機EL素子7-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムスズ酸化物)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 7
<Wet process type white light emitting element-2>
<< Production of White Light-Emitting Organic EL Element 7-1 >>
After patterning a substrate (NA Techno-Glass NA-45) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode, this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、厚さ30nmの第1正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
 この基板を窒素雰囲気下に移し、第1正孔輸送層上に、50mgの正孔輸送材料3を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。 The substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 3 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
 この第2正孔輸送層上に、100mgのホスト化合物(ホスト材料1)、14mgのドーパント(比較化合物1)と1mgのドーパント(D-33)と0.5mgのドーパント(Ir-14)とを10mlの酢酸ブチルに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜し、発光層を形成した。15秒間紫外光を照射し、光重合・架橋を行わせ、更に60℃で1時間真空乾燥し、厚さ約70nmの発光層とした。 On this second hole transport layer, 100 mg of host compound (host material 1), 14 mg of dopant (Comparative Compound 1), 1 mg of dopant (D-33), and 0.5 mg of dopant (Ir-14) are added. Using a solution dissolved in 10 ml of butyl acetate, a film was formed by a spin coating method at 1000 rpm for 30 seconds to form a light emitting layer. Ultraviolet light was irradiated for 15 seconds to cause photopolymerization / crosslinking, and further vacuum drying at 60 ° C. for 1 hour to obtain a light emitting layer having a thickness of about 70 nm.
 次に、この発光層上に、50mgの電子輸送材料4を10mlのメタノールに溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。60秒間紫外光を照射し、光重合・架橋を行った後、更に60℃で1時間真空乾燥し、厚さ約30nmの電子輸送層とした。 Next, a thin film was formed on this light emitting layer by spin coating under a condition of 1000 rpm and 30 seconds using a solution of 50 mg of electron transport material 4 dissolved in 10 ml of methanol. After irradiating with ultraviolet light for 60 seconds to perform photopolymerization / crosslinking, it was further vacuum-dried at 60 ° C. for 1 hour to obtain an electron transport layer having a thickness of about 30 nm.
 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子7-1を作製した。 Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 × 10 −4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed, and an organic EL element 7-1 was produced.
 なお、蒸着時の基板温度は室温であった。 In addition, the substrate temperature at the time of vapor deposition was room temperature.
 《有機EL素子7-2~7-75の作製》
 有機EL素子7-1の作製において、ホスト化合物、及びドーパントのうち比較化合物1のみを表XXV~XXVIIに示す化合物に置き換えた以外は有機EL素子7-1と同様にして、有機EL素子7-2~7-75を作製した。
<< Preparation of organic EL elements 7-2 to 7-75 >>
In the production of the organic EL element 7-1, the organic EL element 7- was prepared in the same manner as the organic EL element 7-1 except that only the comparative compound 1 of the host compound and dopant was replaced with the compounds shown in Tables XXV to XXVII. 2-7-75 were prepared.
 《有機EL素子の評価》
 得られた有機EL素子7-1~7-75について、実施例1と同様の手法及び基準で、素子の性能を評価した。
<< Evaluation of organic EL elements >>
With respect to the obtained organic EL devices 7-1 to 7-75, the device performance was evaluated by the same method and standard as in Example 1.
 なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命及び(5)初期劣化の各評価では、有機EL素子7-1を基準として実施例1と同様にして相対値を求めた。 In this example, in each evaluation of (1) external extraction quantum efficiency, (2) drive voltage, (4) half-light emission lifetime, and (5) initial deterioration, Example 1 was made with reference to the organic EL element 7-1. The relative value was obtained in the same manner as described above.
 評価結果を表XXV~XXVIIに示す。 Evaluation results are shown in Tables XXV to XXVII.
 なお、本発明に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタ(株)製)で、1000cd/mでの2度視野角正面輝度を測定した結果、CIE色度座標(CIE 1931表色系)における色度がx=0.33±0.07、y=0.33±0.1の領域内にあり、白色に発光することを確認した。 The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and as a result of measuring the 2 ° viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates ( It was confirmed that the chromaticity in the CIE 1931 color system was in the region of x = 0.33 ± 0.07 and y = 0.33 ± 0.1 and emitted white light.
Figure JPOXMLDOC01-appb-T000245
Figure JPOXMLDOC01-appb-T000245
Figure JPOXMLDOC01-appb-T000246
Figure JPOXMLDOC01-appb-T000246
Figure JPOXMLDOC01-appb-T000247
Figure JPOXMLDOC01-appb-T000247
 表XXV~XXVIIから、比較の有機EL素子7-1~7-6に比べて、本発明の有機EL素子7-7~7-75は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。 From Tables XXV to XXVII, the organic EL elements 7-7 to 7-75 of the present invention have higher external extraction quantum efficiency and initial luminance degradation than the comparative organic EL elements 7-1 to 7-6. Accordingly, it can be seen that the life is long at both room temperature and high temperature.
 さらに、本発明の有機EL素子7-7~7-75は、駆動電圧の上昇も抑えられていることもわかる。 Furthermore, it can be seen that the organic EL elements 7-7 to 7-75 of the present invention also suppress the increase in driving voltage.
 かかる結果から、3種のドーパントを用いて発光層をスピンコート法によるウェットプロセスで形成し光反応によって硬化させて作製した白色発光素子においても、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性の遷移金属錯体を使用することが有用であることがわかる。 From these results, even in a white light-emitting element manufactured by forming a light-emitting layer using a spin coating method using three kinds of dopants and curing it by a photoreaction, the light emission efficiency is improved, the driving voltage is reduced, and the light emission lifetime is improved. It can be seen that it is useful to use the phosphorescent transition metal complex according to the present invention as a light-emitting dopant for improvement.
 本発明の有機エレクトロルミネッセンス素子は、青色リン光素子として十分に短波な発光を有しながら、発光効率が高く、駆動電圧が低く、耐久性に優れており、表示デバイス、ディスプレイ、各種発光光源として用いることができる。 The organic electroluminescence element of the present invention has a sufficiently short wave emission as a blue phosphorescent element, has high emission efficiency, low driving voltage, and excellent durability, and is used as a display device, display, and various light emission sources. Can be used.
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスター
12 駆動トランジスター
13 コンデンサー
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate 108 with a transparent electrode Nitrogen gas 109 Water capturing Agent A Display unit B Control unit

Claims (25)

  1.  発光層を含む有機層の少なくとも1層に、リン光発光性の遷移金属錯体を含有する有機エレクトロルミネッセンス素子であって、
     前記遷移金属錯体が、中心金属としての遷移金属に複数の芳香族環が直接結合している配位子を有し、かつ下記要件(1)及び(2)を満足することを特徴とする有機エレクトロルミネッセンス素子。
    (1)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、電子吸引性基を有する。
    (2)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、当該芳香族環との共役が切断され、単結合によって接続された窒素原子と芳香族環とを含んだ正孔輸送性部分構造を有する。
    An organic electroluminescence device containing a phosphorescent transition metal complex in at least one organic layer including a light emitting layer,
    The transition metal complex has a ligand in which a plurality of aromatic rings are directly bonded to a transition metal as a central metal, and satisfies the following requirements (1) and (2): Electroluminescence element.
    (1) At least one of the plurality of aromatic rings directly bonded to the transition metal has an electron withdrawing group.
    (2) At least one of the plurality of aromatic rings directly bonded to the transition metal is a positive chain containing a nitrogen atom and an aromatic ring which are conjugated with the aromatic ring and are connected by a single bond. It has a pore transporting partial structure.
  2. 前記遷移金属錯体が、分子軌道計算での評価において、最高被占軌道(HOMO)から下位のエネルギー準位5番目(HOMO-5)までの結合性軌道のいずれか1つは、当該結合性軌道上の電子の80%以上が前記正孔輸送性の部分構造上に存在する電子密度分布を有し、かつ、前記最高被占軌道と当該結合性軌道とのエネルギー準位との差の絶対値が0.7eV未満であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 When the transition metal complex is evaluated by molecular orbital calculation, any one of the binding orbitals from the highest occupied orbital (HOMO) to the fifth lower energy level (HOMO-5) is the binding orbital. The absolute value of the difference between the energy level of the highest occupied orbital and the binding orbital has an electron density distribution in which 80% or more of the upper electrons exist on the hole transporting partial structure Is less than 0.7 eV, The organic electroluminescent element of Claim 1 characterized by the above-mentioned.
  3.  前記遷移金属錯体と当該前記遷移金属錯体から前記正孔輸送性部分構造を除いた構造を有する遷移金属錯体のそれぞれについて分子軌道計算で算出される発光極大波長の差の絶対値が、10nm以下であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 The absolute value of the difference in emission maximum wavelength calculated by molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex is 10 nm or less. The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is provided.
  4.  前記窒素原子と芳香族環を含んだ正孔輸送性の部分構造が、それぞれ、無置換又は置換されていてもよい、ジアリールアミノ基、カルバゾール-9-イル基、フェノキサジン-10-イル基、フェニチアジン-10-イル基、ジヒドロフェナジン-5-イル基及びジヒドロアクリジン-10-イル基から選ばれることを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The hole transporting partial structure containing a nitrogen atom and an aromatic ring each may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxazin-10-yl group, The organic electroluminescence device according to any one of claims 1 to 3, wherein the organic electroluminescence device is selected from a phenothiazin-10-yl group, a dihydrophenazin-5-yl group, and a dihydroacridin-10-yl group. .
  5.  前記電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The electron withdrawing group is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group. The organic electroluminescent element according to claim 1.
  6.  前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、アゾール環であることを特徴とする請求項1から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 5, wherein at least one of the plurality of aromatic rings directly bonded to the transition metal is an azole ring.
  7.  前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、イミダゾール環又はトリアゾール環であることを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence according to any one of claims 1 to 6, wherein at least one of the plurality of aromatic rings directly bonded to the transition metal is an imidazole ring or a triazole ring. element.
  8.  発光層を含む有機層を少なくとも1層有する有機ルミネッセンス素子であって、当該有機層の少なくとも1層が、下記一般式(1)で表される遷移金属錯体を含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
     一般式(1)
       ML・L・(L)n
     〔式中、MLは、下記一般式(2)で表される部分構造を表し、Mは、元素周期表における8~10族の遷移金属を表す。L~Lは、各々2価の配位子を表し、L~Lは同一であっても異なっていてもよく、互いに結合していてもよい。nは、1又は0を表す。〕
    Figure JPOXMLDOC01-appb-C000001
     〔式中、
    環Bは、C=Cと共に形成される6員の芳香族炭化水素環又は5員若しくは6員の芳香族複素環を表す。
    環Cは、C=Nと共に形成される5員若しくは6員の芳香族複素環を表す。
    Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性基を表す。
    nbは、0~3の整数を表し、ncは0~2の整数を表す。1≦nb+nc≦4である。Rb、Rcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
    HTGは、窒素原子と芳香族環を含んだ正孔輸送性の部分構造を表す。
    Lは炭素数6~10のアリーレン基を表し、Lは環B又は環Cに結合しているが、環B又は環Cと共役は連続していない。n1は、1又は2を表す。n2は、1又は2を表す。Lが複数ある場合には、互いに同一であっても良いし異なってもよい。
    Mは、元素周期表における8~10族の遷移金属を表す。〕
    An organic luminescence device having at least one organic layer including a light emitting layer, wherein at least one of the organic layers contains a transition metal complex represented by the following general formula (1). The organic electroluminescent element according to any one of claims 1 to 7.
    General formula (1)
    ML A · L B · (L C ) n
    [Wherein, ML A represents a partial structure represented by the following general formula (2), and M represents a transition metal of group 8 to 10 in the periodic table of elements. L A to L C each represents a divalent ligand, and L A to L C may be the same or different, and may be bonded to each other. n represents 1 or 0. ]
    Figure JPOXMLDOC01-appb-C000001
    [Where,
    Ring B represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle formed with C═C.
    Ring C represents a 5- or 6-membered aromatic heterocyclic ring formed with C═N.
    Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
    nb represents an integer of 0 to 3, and nc represents an integer of 0 to 2. 1 ≦ nb + nc ≦ 4. When there are a plurality of Rb and Rc, they may be the same or different from each other.
    HTG represents a hole transporting partial structure including a nitrogen atom and an aromatic ring.
    L represents an arylene group having 6 to 10 carbon atoms, and L is bonded to ring B or ring C, but conjugation with ring B or ring C is not continuous. n1 represents 1 or 2. n2 represents 1 or 2. When there are a plurality of L, they may be the same or different.
    M represents a transition metal of group 8 to 10 in the periodic table. ]
  9.  前記HTGで表される窒素原子と芳香族環を含んだ正孔輸送性の部分構造が、それぞれ、無置換又は置換されていてもよい、ジアリールアミノ基、カルバゾール-9-イル基、フェノキサジン-10-イル基、フェニチアジン-10-イル基、ジヒドロフェナジン-5-イル基及びジヒドロアクリジン-10-イル基から選ばれることを特徴とする、請求項8に記載の有機エレクトロルミネッセンス素子。 Each of the hole transporting partial structures containing a nitrogen atom and an aromatic ring represented by HTG may be an unsubstituted or substituted diarylamino group, carbazol-9-yl group, phenoxazine- 9. The organic electroluminescence device according to claim 8, wherein the organic electroluminescence device is selected from a 10-yl group, a phenothiazin-10-yl group, a dihydrophenazin-5-yl group and a dihydroacridin-10-yl group.
  10.  前記Rb及びRcで表される電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることを特徴とする請求項8又は請求項9に記載の有機エレクトロルミネッセンス素子。 9. The electron withdrawing group represented by Rb and Rc is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group. Or the organic electroluminescent element of Claim 9.
  11.  前記環Cで表される芳香族複素環が、アゾール環を表すことを特徴とする請求項8から請求項10までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 8 to 10, wherein the aromatic heterocycle represented by the ring C represents an azole ring.
  12.  前記環Cで表される芳香族複素環が、イミダゾール環又はトリアゾール環を表すことを特徴とする請求項8から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 8 to 11, wherein the aromatic heterocycle represented by the ring C represents an imidazole ring or a triazole ring.
  13.  前記一般式(2)で表される部分構造が、下記一般式(3)で表される部分構造で表されることを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
     〔式中、
    環Aは、炭素数6~10の2価のアリーレン基を表す。
    環Bは、C=Cと共に形成される6員の芳香族炭化水素環又は5員若しくは6員の芳香族複素環を表す。
    環Cは、N-C=Nと共に形成される5員の芳香族複素環を表す。
    Raは、置換可能な置換基を表す。naは0~3の整数を表す。
    Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性基を表す。
    nbは、0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
    Ra、Rb、Rcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
    Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
    nd及びneは、0又は1を表す。
    、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは、0又は1を表す。
    Ar、Ar、Ar、Ar、Ar及びArは、炭素数6~10の芳香族基を表す。
    、L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
    m、n及びoは0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは、4,5又は6のいずれかを表す。
    p、q及びrは、0又は1を表し。1≦p+q+r≦2である。
    Mは、元素周期表における8~10族の遷移金属を表す。
    及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。〕
    The organic electroluminescent device according to claim 8, wherein the partial structure represented by the general formula (2) is represented by a partial structure represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000002
    [Where,
    Ring A represents a divalent arylene group having 6 to 10 carbon atoms.
    Ring B represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle formed with C═C.
    Ring C represents a 5-membered aromatic heterocycle formed with N—C═N.
    Ra represents a substitutable substituent. na represents an integer of 0 to 3.
    Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
    nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
    When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
    Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
    nd and ne represent 0 or 1.
    L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1.
    Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
    L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
    m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents any of 4, 5 and 6.
    p, q and r each represents 0 or 1; 1 ≦ p + q + r ≦ 2.
    M represents a transition metal of group 8 to 10 in the periodic table.
    R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent. ]
  14.  前記一般式(2)で表される部分構造が、下記一般式(4)で表される部分構造であることを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
     〔式中、
    及びYは炭素原子、又は窒素原子を表す。
    環Cは、N-C=Nと共に形成される5員の芳香族複素環を表す。
    Raは、置換可能な置換基を表し、naは0~3の整数を表す。
    Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性の置換基を表す。
    nbは、0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
    Ra、Rb、Rcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
    Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
    nd及びneは、0又は1を表す。
    、L、Lは、炭素数6~10の2価のアリーレン基を表す。kは0又は1を表す。
    Ar、Ar、Ar、Ar、Ar、Arは、炭素数6~10の芳香族基を表す。
    、L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
    m、n及びoは、0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは、4、5又は6のいずれかを表す。
    p、q及びrは、0又は1を表し。1≦p+q+r≦2である。
    Mは、元素周期表における8~10族の遷移金属を表す。
    及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。〕
    The organic electroluminescence device according to claim 8, wherein the partial structure represented by the general formula (2) is a partial structure represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000003
    [Where,
    Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
    Ring C represents a 5-membered aromatic heterocycle formed with N—C═N.
    Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
    Rb and Rc each represents an electron-withdrawing substituent that can be substituted for ring B and ring C.
    nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
    When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
    Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
    nd and ne represent 0 or 1.
    L 1 , L 2 and L 3 each represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1;
    Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 each represents an aromatic group having 6 to 10 carbon atoms.
    L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
    m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
    p, q and r each represents 0 or 1; 1 ≦ p + q + r ≦ 2.
    M represents a transition metal of group 8 to 10 in the periodic table.
    R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent. ]
  15.  前記一般式(2)で表される部分構造が、下記一般式(5)で表される部分構造で表されることを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
     〔式中、
    及びXは、一方が炭素原子を、他方が窒素原子を表す。
    及びYは、炭素原子又は窒素原子を表す。
    Raは、置換可能な置換基を表し、naは、0~3の整数を表す。
    Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性基を表す。
    nbは、0~3の整数を表し、ncは0又は1を表す。1≦nb+nc≦4である。
    Ra、Rb及びRcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
    Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
    nd及びneは、0又は1を表す。
    、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは、0又は1を表す。
    Ar、Ar、Ar、Ar、Ar及びArは、炭素数6~10の芳香族基を表す。
    、L及びLは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
    m、n及びoは、0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは、4、5又は6のいずれかを表す。
    p、q及びrは、0又は1を表し。1≦p+q+r≦2である。
    Mは、元素周期表における8~10族の遷移金属を表す。
    及びRは、各々水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。〕
    The organic electroluminescence device according to claim 8, wherein the partial structure represented by the general formula (2) is represented by a partial structure represented by the following general formula (5).
    Figure JPOXMLDOC01-appb-C000004
    [Where,
    One of X 1 and X 2 represents a carbon atom, and the other represents a nitrogen atom.
    Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
    Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
    Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
    nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
    When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
    Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
    nd and ne represent 0 or 1.
    L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1.
    Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
    L 4 , L 5 and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom and a sulfur atom, and connect adjacent aromatic rings.
    m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
    p, q and r each represents 0 or 1; 1 ≦ p + q + r ≦ 2.
    M represents a transition metal of group 8 to 10 in the periodic table.
    R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent. ]
  16.  前記一般式(2)で表される部分構造が、下記一般式(6)で表される部分構造で表されることを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
     〔式中、
    及びYは炭素原子、又は窒素原子を表す。
    Raは、置換可能な置換基を表し、naは0~3の整数を表す。
    Rb及びRcは、それぞれ、環B及び環Cに置換可能な電子吸引性基を表す。
    nbは、0~3の整数を表し、ncは、0又は1を表す。1≦nb+nc≦4である。
    Ra、Rb及びRcが複数ある場合には、互いに同一の置換基であっても良いし異なる置換基であってもよい。
    Rd及びReは、それぞれ炭素数1~4の直鎖、分岐又は環状のアルキル基を表す。
    nd及びneは、0又は1を表す。
    、L及びLは、炭素数6~10の2価のアリーレン基を表す。kは、0又は1を表す。
    Ar、Ar、Ar、Ar、Ar及びArは、炭素数6~10の芳香族基を表す。
    、L、Lは、単結合、置換されてもよい炭素原子、置換されてもよい窒素原子、酸素原子及び硫黄原子から選ばれ、隣り合った芳香族環を連結している。
    m、n及びoは、0又は1を表し、0である場合は対応するLxは存在せず、隣り合った芳香族環同士は連結されない。xは、4、5又は6のいずれかを表す。
    p、q及びrは、0又は1を表す。1≦p+q+r≦2である。
    Mは、元素周期表における8~10族の遷移金属を表す。
    及びRは、各々、水素原子又は置換基を表し、R及びRの少なくとも一方は、置換基を表す。〕
    The organic electroluminescence device according to claim 8, wherein the partial structure represented by the general formula (2) is represented by a partial structure represented by the following general formula (6).
    Figure JPOXMLDOC01-appb-C000005
    [Where,
    Y 1 and Y 2 represent a carbon atom or a nitrogen atom.
    Ra represents a substitutable substituent, and na represents an integer of 0 to 3.
    Rb and Rc each represents an electron-withdrawing group that can be substituted for ring B and ring C.
    nb represents an integer of 0 to 3, and nc represents 0 or 1. 1 ≦ nb + nc ≦ 4.
    When there are a plurality of Ra, Rb and Rc, they may be the same or different from each other.
    Rd and Re each represent a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms.
    nd and ne represent 0 or 1.
    L 1 , L 2 and L 3 represent a divalent arylene group having 6 to 10 carbon atoms. k represents 0 or 1.
    Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 represent an aromatic group having 6 to 10 carbon atoms.
    L 4 , L 5 , and L 6 are selected from a single bond, an optionally substituted carbon atom, an optionally substituted nitrogen atom, an oxygen atom, and a sulfur atom, and connect adjacent aromatic rings.
    m, n, and o represent 0 or 1, and when it is 0, the corresponding Lx does not exist, and adjacent aromatic rings are not connected to each other. x represents 4, 5, or 6.
    p, q and r each represents 0 or 1; 1 ≦ p + q + r ≦ 2.
    M represents a transition metal of group 8 to 10 in the periodic table.
    R 1 and R 2 each represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a substituent. ]
  17.  前記Rb及びRcで表される電子吸引性基が、フッ素原子、シアノ基、カルボニル基、スルホニル基、ペンタフルオロスルファニル基、オキシカルボニル基及びフッ化アルキル基から選ばれることを特徴とする請求項13から請求項16までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The electron-withdrawing group represented by Rb and Rc is selected from a fluorine atom, a cyano group, a carbonyl group, a sulfonyl group, a pentafluorosulfanyl group, an oxycarbonyl group, and a fluorinated alkyl group. The organic electroluminescent element according to claim 1.
  18.  前記遷移金属が、イリジウムであることを特徴とする請求項1から請求項17までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 17, wherein the transition metal is iridium.
  19.  前記発光層が、フルオレン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、又は、これらの縮環化合物誘導体を構成する炭化水素環の炭素原子の少なくとも1つが窒素原子で置換されているもの、及び、これらの組合せ、をホスト材料として含有することを特徴とする請求項1から請求項18までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 In the light emitting layer, a fluorene derivative, a dibenzofuran derivative, a dibenzothiophene derivative, a carbazole derivative, or a compound in which at least one carbon atom of a hydrocarbon ring constituting these condensed ring compound derivatives is substituted with a nitrogen atom, and The organic electroluminescence device according to any one of claims 1 to 18, wherein a combination thereof is contained as a host material.
  20.  前記リン光発光性の遷移金属錯体を含有した有機層が、塗布形成層であることを特徴とする請求項1から請求項19までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to any one of claims 1 to 19, wherein the organic layer containing the phosphorescent transition metal complex is a coating formation layer.
  21.  請求項1から請求項20までのいずれか一項に記載の有機エレクトロルミネッセンス素子が備えられていることを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 20.
  22.  請求項1から請求項20までのいずれか一項に記載の有機エレクトロルミネッセンス素子が備えられていることを特徴とする照明装置。 An illuminating device comprising the organic electroluminescent element according to any one of claims 1 to 20.
  23.  中心金属としての遷移金属に複数の芳香族環が直接結合している配位子を有するリン光発光性の遷移金属錯体であって、以下の4要件を満足することを特徴とするとする遷移金属錯体。
    (1)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、電子吸引性基を有する。
    (2)前記遷移金属に直接結合している複数の芳香族環の少なくとも1つが、当該芳香族環との共役が切断され、単結合によって接続された窒素原子と芳香族環とを含んだ正孔輸送性の部分構造を有する。
    (3)分子軌道計算での評価において、最高被占軌道(HOMO)から下位のエネルギー準位5番目(HOMO-5)までの結合性軌道のいずれか1つは、当該結合性軌道上の電子の80%以上が前記正孔輸送性の部分構造上に存在する電子密度分布を有し、かつ、前記最高被占軌道と当該結合性軌道とのエネルギー準位との差の絶対値が0.7eV未満であること
    (4)前記遷移金属錯体と当該前記遷移金属錯体から前記正孔輸送性部分構造を除いた構造を有する遷移金属錯体のそれぞれについて分子軌道計算で算出される発光極大波長の差の絶対値が、10nm以下である
    A phosphorescent transition metal complex having a ligand in which a plurality of aromatic rings are directly bonded to a transition metal as a central metal, characterized by satisfying the following four requirements Complex.
    (1) At least one of the plurality of aromatic rings directly bonded to the transition metal has an electron withdrawing group.
    (2) At least one of the plurality of aromatic rings directly bonded to the transition metal is a positive chain containing a nitrogen atom and an aromatic ring which are conjugated with the aromatic ring and are connected by a single bond. It has a hole transporting partial structure.
    (3) In the evaluation by molecular orbital calculation, one of the binding orbitals from the highest occupied orbital (HOMO) to the fifth lower energy level (HOMO-5) is an electron on the binding orbital. 80% or more has an electron density distribution existing on the hole transporting partial structure, and the absolute value of the difference between the energy level of the highest occupied orbital and the binding orbital is 0. (4) Difference in emission maximum wavelength calculated by molecular orbital calculation for each of the transition metal complex and the transition metal complex having a structure obtained by removing the hole transporting partial structure from the transition metal complex The absolute value of is 10 nm or less
  24.  請求項23に記載の遷移金属錯体を含有することを特徴とする、有機エレクトロルミネッセンス素子材料。 An organic electroluminescence element material comprising the transition metal complex according to claim 23.
  25.  請求項23に記載の遷移金属錯体を含有することを特徴とする、有機エレクトロルミネッセンス素子材料組成物。 An organic electroluminescent element material composition comprising the transition metal complex according to claim 23.
PCT/JP2018/014132 2017-04-04 2018-04-02 Organic electroluminescent element, illumination device, display device, and transition metal complex WO2018186356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511234A JPWO2018186356A1 (en) 2017-04-04 2018-04-02 Organic electroluminescence element, lighting device, display device, and transition metal complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074109 2017-04-04
JP2017-074109 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018186356A1 true WO2018186356A1 (en) 2018-10-11

Family

ID=63712424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014132 WO2018186356A1 (en) 2017-04-04 2018-04-02 Organic electroluminescent element, illumination device, display device, and transition metal complex

Country Status (2)

Country Link
JP (1) JPWO2018186356A1 (en)
WO (1) WO2018186356A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108327A1 (en) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescence element, display device, and illumination device
JP2013041990A (en) * 2011-08-16 2013-02-28 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device
JP2014152151A (en) * 2013-02-12 2014-08-25 Konica Minolta Inc Organometallic complex, organic electroluminescent element material, organic electroluminescent element, lighting device, and display device
JP5730957B2 (en) * 2005-05-06 2015-06-10 ユニバーサル ディスプレイ コーポレイション Stable OLED material and device with improved stability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730957B2 (en) * 2005-05-06 2015-06-10 ユニバーサル ディスプレイ コーポレイション Stable OLED material and device with improved stability
WO2007108327A1 (en) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescence element, display device, and illumination device
JP2013041990A (en) * 2011-08-16 2013-02-28 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device
JP2014152151A (en) * 2013-02-12 2014-08-25 Konica Minolta Inc Organometallic complex, organic electroluminescent element material, organic electroluminescent element, lighting device, and display device

Also Published As

Publication number Publication date
JPWO2018186356A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6582540B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5604848B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
JP5742586B2 (en) Organic electroluminescence element, lighting device and display device
JP5853964B2 (en) Organic electroluminescence element, lighting device and display device
JP6056763B2 (en) Organic electroluminescence device
JP5708176B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2013149880A (en) Organic electroluminescent element, display device and luminaire
JP5652083B2 (en) Organic electroluminescence element, display device and lighting device
JP6094480B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, DISPLAY DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP5862117B2 (en) Organic electroluminescence element, lighting device and display device
JP2014045101A (en) Organic electroluminescent element, lighting device, and display device
JP2013168552A (en) Organic electroluminescent element, and display device and lighting device including the same
JPWO2011052250A1 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
JP6011535B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, DISPLAY DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP2013115087A (en) Organic electroluminescent element
JP5359088B2 (en) Organic electroluminescence element, display device and lighting device
JPWO2013031662A1 (en) Organic electroluminescence element, lighting device and display device
JP5790322B2 (en) Organic electroluminescence device
JP5552268B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE
JP5776808B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
WO2018186356A1 (en) Organic electroluminescent element, illumination device, display device, and transition metal complex
JP6468314B2 (en) Organic electroluminescence element, lighting device and display device
JP6160685B2 (en) Organic electroluminescence element, lighting device and display device
JP6070758B2 (en) Organic electroluminescence element, lighting device and display device
JP5833201B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT ITS MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511234

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780694

Country of ref document: EP

Kind code of ref document: A1