WO2018185896A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018185896A1
WO2018185896A1 PCT/JP2017/014289 JP2017014289W WO2018185896A1 WO 2018185896 A1 WO2018185896 A1 WO 2018185896A1 JP 2017014289 W JP2017014289 W JP 2017014289W WO 2018185896 A1 WO2018185896 A1 WO 2018185896A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbg
user terminal
retransmission
unit
control information
Prior art date
Application number
PCT/JP2017/014289
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/014289 priority Critical patent/WO2018185896A1/ja
Priority to JP2019511009A priority patent/JP6949941B2/ja
Priority to EP17904557.0A priority patent/EP3609226A4/en
Priority to CN201780091311.5A priority patent/CN110679176A/zh
Priority to US16/603,063 priority patent/US11451338B2/en
Publication of WO2018185896A1 publication Critical patent/WO2018185896A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1635Cumulative acknowledgement, i.e. the acknowledgement message applying to all previous messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10-13, etc.
  • LTE Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New RAT: Radio Access Technology), LTE Rel. 14 ⁇
  • FRA Full Radio Access
  • 5G 5th generation mobile communication system
  • NR New RAT: Radio Access Technology
  • TBS transport block size
  • AMC Adaptive Modulation and Coding
  • the TB when the TBS exceeds a predetermined threshold (for example, 6144 bits), the TB is divided into one or more segments (code block (CB: Code Block)), and encoding in segment units is performed. Performed (Code Block Segmentation). Each encoded code block is concatenated and transmitted.
  • a predetermined threshold for example, 6144 bits
  • HARQ Hybrid Automatic Repeat reQuest
  • ACK Acknowledge
  • NACK Negative ACK
  • a / N retransmission control information
  • a larger TBS than the existing LTE system is used to support high-speed and large-capacity communication (eMBB: enhanced Mobile Broad Band).
  • eMBB enhanced Mobile Broad Band
  • the TB of such a large TBS is assumed to be divided into many CBs (for example, several tens of CBs per 1 TB) as compared with the existing LTE system.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a user terminal and a wireless communication method capable of appropriately performing retransmission control in units smaller than TB (for example, CBG units).
  • TB for example, CBG units
  • a user terminal transmits a reception unit that receives a transport block (TB) including one or more code block groups (CBG) and retransmission control information indicating ACK or NACK for each CBG. And a control unit that determines the number of bits of the retransmission control information based on the number of all CBGs in the TB or the number of CBGs to be retransmitted when at least one CBG in the TB is retransmitted. It is characterized by comprising.
  • CBG code block groups
  • FIG. 1 is a diagram illustrating an example of transmission processing when code block segmentation is applied.
  • Code block division refers to a transport block (hereinafter abbreviated as TB) to which CRC (Cyclic Redundancy Check) bits are added (information bit sequence including CRC bits) having a predetermined threshold (for example, 6144 bits or 8192 bits). ) Is divided into a plurality of segments.
  • the code block division is performed, for example, in order to adjust the TBS to a size corresponding to the encoder, and the predetermined threshold may be equal to the maximum size corresponding to the encoder.
  • the information bit sequence including the CRC bits is divided into a plurality of segments ( segment). Note that filler bits may be added to the head of segment # 1.
  • CRC bits eg, 24 bits
  • channel coding eg, 1/3, 1/4, 1/8, etc.
  • LDPC Low-Density Parity-check Code
  • CB code bits of each code block
  • Each CB is interleaved by a predetermined method, and an amount of bit sequence corresponding to the scheduled resource amount is selected and transmitted.
  • the systematic bit series, the first parity bit series, and the second parity bit series are individually interleaved (sub-block interleaving). Thereafter, the systematic bit sequence, the first parity bit sequence, and the second parity bit sequence are respectively input to a buffer (circular buffer), and the number of REs that can be used in the allocated resource block from the buffer.
  • the code bits of each CB are selected (rate matching). Interleaving may be performed between a plurality of CBs.
  • Each CB composed of selected code bits is connected as a code word (CW).
  • the code word is transmitted after being subjected to scrambling, data modulation, and the like.
  • FIG. 2 is a diagram illustrating an example of reception processing when code block division is applied.
  • the TBS is determined based on the TBS index and the number of allocated resource blocks (for example, PRB: Physical Resource Block), and the number of CBs is determined based on the TBS.
  • PRB Physical Resource Block
  • each CB is decoded, and error detection of each CB is performed using the CRC bits added to each CB. Also, the code block division is restored (undo), and the TB is restored. Further, error detection of the entire TB is performed using the CRC added to the TB.
  • retransmission control information (ACK or NACK, hereinafter abbreviated as A / N, also referred to as HARQ-ACK or the like) for the entire TB is transmitted on the transmission side according to the error detection result of the entire TB. Sent to. On the transmitting side, the entire TB is retransmitted in response to the NACK from the receiving side.
  • FIG. 3 is a diagram illustrating an example of DL signal retransmission control in an existing LTE system.
  • retransmission control is performed in units of TB regardless of whether the TB is divided into a plurality of CBs.
  • a HARQ process is allocated for each TB.
  • the HARQ process is a processing unit for retransmission control, and each HARQ process is identified by a HARQ process number (HPN).
  • HPN HARQ process number
  • One or more HARQ processes are set in a user terminal (UE: User Equipment), and the same data is retransmitted in the same HPN HARQ process until an ACK is received.
  • UE User Equipment
  • the radio base station eNB: eNodeB
  • the radio base station eNB: eNodeB
  • the radio base station eNB: eNodeB
  • the radio base station eNB: eNodeB
  • the radio base station uses the HPN and the new data identifier (NDI) as downlink control information (DCI: Downlink Control Information) (DL assignment) for assigning DL signals (for example, PDSCH) for transmitting TB. ) And a redundancy version (RV: Redundancy Version).
  • DCI Downlink Control Information
  • DL assignment for assigning DL signals (for example, PDSCH) for transmitting TB.
  • RV Redundancy Version
  • the NDI is an identifier indicating either initial transmission or retransmission. For example, if NDI is not toggled in the same HPN (the same value as the previous time), it indicates retransmission, and if NDI is toggled (a value different from the previous time), it is the first transmission. Indicates.
  • RV indicates the difference in transmission data redundancy.
  • the value of RV is, for example, 0, 1, 2, 3 and 0 is used for the first transmission because the degree of redundancy is the lowest.
  • the initial transmission DCI of TB # 1 includes HPN “0”, toggled NDI, and RV value “0”. For this reason, the user terminal can recognize that HPN “0” is the first transmission, and decodes TB # 1 based on the RV value “0”.
  • DCI at the time of retransmission of TB # 1 includes HPN “0”, non-toggled NDI, and RV value “2”. For this reason, the user terminal can recognize that HPN “0” is retransmission, and decodes TB # 1 based on the RV value “2”.
  • the first transmission of TB # 2 is the same as the first transmission of TB # 1.
  • retransmission control in units smaller than TB for example, CBG units
  • the user terminal needs to transmit retransmission control information indicating ACK or NACK in units smaller than TB. Therefore, the present inventors have studied a method of transmitting retransmission control information indicating ACK or NACK in units smaller than TB, and have reached the present invention.
  • asynchronous HARQ asynchronous retransmission control
  • synchronous HARQ synchronized retransmission control
  • retransmission of each HARQ process is performed after a certain period from the initial transmission.
  • asynchronous HARQ retransmission of each HARQ process is performed after a non-constant period from the initial transmission of the UL data.
  • a DL data channel for example, PDSCH: Physical Downlink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • the retransmission control according to the present embodiment can be applied to retransmission control such as a random access response (RAR).
  • RAR random access response
  • the present embodiment can also be applied to UL signals such as UL data channels (for example, PUSCH: Physical Uplink Shared Channel).
  • the transport block (TB) in the present embodiment is a unit of information bit sequence, and may be, for example, at least one of a unit of information bit sequence allocated to one subframe or a unit of scheduling. Good. Also, the CRC bit may or may not be included in the TB.
  • the code block (CB) in the present embodiment is a unit of information bits that can be input to an encoder (for example, a turbo encoder). If TBS is less than or equal to the encoder's corresponding size (maximum coding size), TB may be referred to as CB. Further, when TBS exceeds the corresponding size of the encoder, TB may be divided into a plurality of segments, and each segment may be referred to as CB. Note that the transmission processing and reception processing in the case where the code block division described in FIGS. 1 and 2 is applied are merely examples, and in the present embodiment, any transmission processing and reception processing in which CB or CBG is used. It is also applicable to.
  • the user terminal receives TB including one or more CBGs, and includes retransmission control information (also referred to as A / N bit or A / N codebook) indicating ACK or NACK for each CBG. Send.
  • retransmission control information also referred to as A / N bit or A / N codebook
  • the user terminal determines the number of bits (also referred to as A / N codebook size) of the retransmission control information based on the number of all CBGs in the TB. To do.
  • the user terminal sets the number of bits of the retransmission control information to It may be determined equal to the number of all CBGs in the TB.
  • the retransmission control information includes ACK or NACK of all the CBGs in the TB. May be shown.
  • the user terminal receives information on CBG to be retransmitted (also referred to as retransmission CBG) (eg, at least one of retransmission CBG index (CBG index), HPN, NDI, and RV of retransmission CBG). You may receive it.
  • CBG index retransmission CBG index
  • HPN retransmission CBG index
  • NDI retransmission CBG index
  • RV retransmission CBG index
  • the HARQ process is assumed to be assigned in units of TB, but may be assigned in units of CBG.
  • FIG. 4 is a diagram illustrating a transmission example of retransmission control information according to the first aspect.
  • a case where 1 TB includes 4 CBGs is illustrated, but the present invention is not limited thereto, and the number of CBGs in 1 TB may be 1 or more.
  • Each CBG includes one or more CBs.
  • the radio base station schedules and transmits a TB including CBG # 0- # 3 (step S101). Specifically, the radio base station transmits downlink control information (DCI: Downlink Control Information) (DL assignment) including scheduling information of the TB, and transmits the TB via the PDSCH.
  • DCI Downlink Control Information
  • the DCI may include information related to each CBG in the TB (for example, at least one of the CBG index, HPN, NDI, and RV of each CBG).
  • the user terminal receives the TB via the PDSCH based on the DCI from the radio base station.
  • the user terminal transmits retransmission control information generated based on the result of demodulation and / or decoding (demodulation / decoding) of each CBG (step S102).
  • the retransmission control information may indicate ACK or NACK for each CBG.
  • NACK is indicated for the CBG.
  • the user terminal successfully demodulates / decodes CBG # 0 and # 3, but fails to demodulate / decode CBG # 1 and # 2. For this reason, the user terminal generates 4-bit retransmission control information (4 A / N bits) indicating ACK of CBG # 0, NACK of CBG # 1 and # 2, and ACK of CBG # 3.
  • the user terminal transmits the generated retransmission control information via a UL control channel (for example, PUCCH: Physical Uplink Control Channel) or a UL data channel (for example, PUSCH).
  • a UL control channel for example, PUCCH: Physical Uplink Control Channel
  • PUSCH UL data channel
  • a user terminal may use PUCCH format 3.
  • the retransmission control information may be transmitted as uplink control information (UCI).
  • the UCI may include at least one of the retransmission control information, a scheduling request (SR), and channel state information (CSI).
  • the radio base station retransmits CBG # 1 and # 2 in which the retransmission control information reported from the user terminal in step S102 indicates NACK (step S103). Specifically, the radio base station transmits DCI including scheduling information of retransmission CBGs # 1 and # 2, and transmits the retransmission CBGs # 1 and # 2 via the PDSCH.
  • the DCI may include information on retransmission CBGs # 1 and # 2 (for example, at least one of CBG index, HPN, NDI, and RV of retransmission CBGs # 1 and # 2, respectively).
  • the user terminal receives retransmission CBG # 1 and # 2 based on DCI from the radio base station.
  • the user terminal generates and transmits retransmission control information indicating ACKs or NACKs of all CBGs # 0 to # 3 in the TB based on the demodulation / decoding results of the retransmission CBGs # 1 and # 2 (step S104).
  • the user terminal may combine the retransmission CBGs # 1 and # 2 and the data stored in the user terminal (a soft buffer thereof) and generate the retransmission control information based on the combination result.
  • the user terminal succeeds in demodulation / decoding of retransmission CBG # 1, but fails in demodulation / decoding of retransmission CBG # 2. For this reason, the user terminal generates 4-bit retransmission control information indicating the ACK of CBG # 0 and # 1, the NACK of CBG # 2, and the ACK of CBG # 3, and transmits using PUCCH or PUSCH.
  • the radio base station retransmits CBG # 2 in which the retransmission control information reported from the user terminal in step S104 indicates NACK (step S105). Specifically, the radio base station transmits DCI including retransmission CBG # 2 scheduling information, and transmits the retransmission CBG # 2 via the PDSCH.
  • the DCI may include information on retransmission CBG # 2 (for example, at least one of CBG index, HPN, NDI, and RV of retransmission CBG # 2).
  • the user terminal receives retransmission CBG # 2 based on DCI from the radio base station. Based on the demodulation / decoding result of retransmission CBG # 2, the user terminal generates and transmits retransmission control information indicating ACKs or NACKs of all CBGs # 0 to # 3 in the TB (step S106). As described above, CBG # 2 to be retransmitted may be combined with data stored in (a soft buffer of) the user terminal.
  • the user terminal since the retransmission CBG # 2 is successfully demodulated / decoded, the user terminal generates 4-bit retransmission control information indicating ACKs of CBGs # 0 to # 3, and transmits using PUCCH or PUSCH. To do.
  • ACK is also reported in steps S104 and S106.
  • the ACK of the CBG is also reported in the subsequent retransmission control information.
  • the NACK of the CBG may be reported in the subsequent retransmission control information. Permissible.
  • the radio base station transmits information indicating the retransmitted CBG to the DCI including the scheduling information of the CBG to be retransmitted. That is, information indicating which CBG is retransmitted (for example, at least one of CB index, HPN, and NDI) may be included.
  • the first aspect when at least one CBG in a TB is retransmitted, not only the retransmission CBG but also retransmission control information indicating only ACK / NACK of all CBGs in the TB is reported. Even when a NACK-to-ACK error of a CBG occurs in the radio base station, an opportunity to retransmit the CBG can be given.
  • the user terminal when at least one CBG in the TB is retransmitted, transmits the bits of the retransmission control information based on the number of retransmission CBGs instead of the number of all CBGs in the TB. It differs from the first mode in that the number (also referred to as A / N codebook size) is determined. Below, it demonstrates centering on difference with a 1st aspect.
  • the user terminal may determine the number of bits of the retransmission control information to be equal to the number of retransmission CBGs.
  • the retransmission control information may indicate ACK or NACK of the retransmitted CBG.
  • the user terminal may receive information on retransmission CBG (for example, at least one of retransmission CBG index (CBG index), retransmission CBG HPN, NDI, and RV).
  • retransmission CBG for example, at least one of retransmission CBG index (CBG index), retransmission CBG HPN, NDI, and RV.
  • FIG. 5 is a diagram illustrating a transmission example of retransmission control information according to the second mode.
  • FIG. 5 shows a case where 1 TB includes 4 CBG, as in FIG. 4. Note that steps S201 to S203 in FIG. 5 are the same as steps S101 to S103 in FIG. Below, it demonstrates centering on difference with FIG.
  • the user terminal based on the result of demodulation / decoding of retransmission CBG # 1 and # 2, transmits 2-bit retransmission control information (2A indicating ACK or NACK of retransmission CBG # 1 and # 2). / N bits) and the retransmission control information is transmitted using PUCCH or PUSCH (step S204).
  • the user terminal succeeds in the demodulation / decoding of the retransmitted CBG # 1, but fails in the demodulation / decoding of the CBG # 2. For this reason, the user terminal generates 2-bit retransmission control information indicating ACK for CBG # 1 and NACK for CBG # 2, and transmits the generated information using PUCCH or PUSCH.
  • the radio base station retransmits CBG # 2 in which the retransmission control information reported from the user terminal in step S204 indicates NACK (step S205). Based on the demodulation / decoding result of retransmission CBG # 2, the user terminal generates and transmits 1-bit retransmission control information (1A / N bits) indicating ACK or NACK of retransmission CBG # 2 (step S206). ).
  • the radio base station adds information indicating the retransmission CBG to the DCI including the scheduling information of the retransmission CBG, that is, which CBG. May be included (for example, at least one of a CB index, HPN, and NDI) indicating whether to retransmit.
  • the user terminal may change the PUCCH format according to the number of bits of retransmission control information. For example, when transmitting 4-bit retransmission control information as shown in step S201, PUCCH format 3 is used, and when transmitting 2- or 1-bit retransmission control information as shown in step S204 or S206, PUCCH format is used. 1a or 1b may be used. Further, the user terminal may change at least one of the coding scheme, the number of PUCCH transmission symbols, and the transmission power of PUCCH according to the number of bits of retransmission control information.
  • the user terminal when at least one CBG in the TB is retransmitted, the user terminal reports the retransmission control information indicating the ACK / NACK of the retransmitted CBG, and accordingly, according to the number of retransmitted CBGs.
  • the number of bits of retransmission control information can be adjusted, and overhead associated with retransmission control information reporting can be reduced.
  • the retransmission control information may include a bit indicating A / N of the entire TB.
  • the A / N of the entire TB becomes ACK when the CRCs of all CBGs are checked. Therefore, as long as errors remain, the user terminal sets the bit as NACK. As a result, if the error remains for some reason and the bit is NACK, the radio base station can recognize that the user terminal has not successfully received the TB. Residual errors can be resolved by taking measures such as retransmitting the whole.
  • step S103 of FIG. 4 and step S203 of FIG. 5 retransmission CBGs # 1 and # 2 are transmitted after being bundled with TB or retransmission CBG to which a different HPN is assigned from retransmission CBGs # 1 and # 2. Also good.
  • step S104 of FIG. 4 the user terminal, in addition to the ACK or NACK of all the CBGs in the TB including the retransmission CBGs # 1 and # 2, in addition to the TBs assigned with the different HPNs (or All CBG ACKs or NACKs, or retransmission control information indicating ACKs or NACKs of all CBGs in the TB including the retransmission CBGs to which the different HPNs are assigned may be transmitted.
  • All CBG ACKs or NACKs, or retransmission control information indicating ACKs or NACKs of all CBGs in the TB including the retransmission CBGs to which the different HPNs are assigned may be transmitted.
  • step S204 of FIG. 5 the user terminal, in addition to the ACK or NACK of retransmission CBGs # 1 and # 2, ACK / NACK of the TB to which the different HPN is allocated (or all CBGs in the TB), Alternatively, retransmission control information indicating ACK / NACK of a retransmission CBG to which the different HPN is assigned may be transmitted. The same applies to step S206 in FIG.
  • the retransmission control information indicating ACK / NACK for each CBG has been described above.
  • the retransmission control information can be appropriately applied to retransmission control information indicating ACK / NACK for each CB.
  • transmission control of retransmission control information for each CBG or CB of the DL signal in the user terminal has been described.
  • the number of CBs per CBG may be notified (set) from the radio base station to the user terminal by higher layer signaling (for example, RRC signaling).
  • higher layer signaling for example, RRC signaling
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 6 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • the wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New RAT), or the like.
  • the radio communication system 1 shown in FIG. 6 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
  • CC cells
  • the user terminal 20 can perform communication using time division duplex (TDD) or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD cell and the FDD cell may be referred to as a TDD carrier (frame configuration type 2), an FDD carrier (frame configuration type 1), and the like, respectively.
  • a subframe having a relatively long time length for example, 1 ms
  • TTI normal TTI
  • long TTI normal subframe
  • long subframe long subframe
  • slot etc.
  • Any one of subframes having a short time length also referred to as a short TTI, a short subframe, and a slot
  • a subframe having a time length of two or more may be applied.
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that between the base station 11 and the base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal. Further, the user terminal 20 can perform inter-terminal communication (D2D) with other user terminals 20.
  • D2D inter-terminal communication
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
  • SC-FDMA can be applied to a side link (SL) used for terminal-to-terminal communication.
  • SL side link
  • DL channels DL data channels (PDSCH: Physical Downlink Shared Channel, also referred to as DL shared channel) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • L1 / L2 control channels include DL control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • PUSCH retransmission control information (A / N, HARQ-ACK) can be transmitted by at least one of PHICH, PDCCH, and EPDCCH.
  • a UL data channel (PUSCH: Physical Uplink Shared Channel, also referred to as a UL shared channel) shared by each user terminal 20, a UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of PDSCH retransmission control information (A / N, HARQ-ACK) and channel state information (CSI) is transmitted by PUSCH or PUCCH.
  • the PRACH can transmit a random access preamble for establishing a connection with a cell.
  • FIG. 7 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ Hybrid Automatic Repeat reQuest
  • IFFT inverse fast Fourier transform
  • precoding Transmission processing such as processing is performed and transferred to the transmission / reception unit 103.
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmitter / receiver, the transmission / reception circuit, or the transmission / reception device can be configured based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, error correction on UL data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • the transceiver 103 transmits a DL signal (for example, DCI (at least one of DL assignment for scheduling DL data and / or UL grant for scheduling UL data), DL data, and DL reference signal), and UL.
  • a DL signal for example, DCI (at least one of DL assignment for scheduling DL data and / or UL grant for scheduling UL data), DL data, and DL reference signal
  • a signal eg, at least one of UL data, UCI, UL reference signal
  • the transceiver 103 receives DL signal retransmission control information (also referred to as ACK / NACK, A / N, HARQ-ACK, A / N codebook, etc.).
  • the unit of the retransmission control information may be any of, for example, every CB, every CBG, every TB, or every one or more TBs (every CB, every CBG, every TB, or every one or more TBs).
  • ACK or NACK may be indicated in units).
  • the transmission / reception unit 103 may transmit setting information in units of the retransmission control information.
  • the transmission / reception unit 103 may transmit setting information for retransmission units of DL signals and / or UL signals. Further, the transmission / reception unit 103 may transmit information indicating the number of CBs per CBG.
  • FIG. 8 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 8 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire radio base station 10. For example, the control unit 301 schedules DL signals and UL signals, DL signal generation processing (for example, encoding and modulation) by the transmission signal generation unit 302, DL signal mapping by the mapping unit 303, reception signal processing unit The reception processing (for example, demodulation, decoding, etc.) of the UL signal by 304 and the measurement by the measurement unit 305 are controlled.
  • DL signal generation processing for example, encoding and modulation
  • the reception processing for example, demodulation, decoding, etc.
  • control unit 301 determines a DL signal modulation scheme and a TBS based on a channel quality identifier (CQI) fed back from the user terminal 20.
  • the control unit 301 controls the transmission signal generation unit 302 to encode the DL signal with the TBS and modulate the DL signal with the modulation scheme.
  • CQI channel quality identifier
  • the control unit 301 may apply code block division that divides the TBS into a plurality of CBs to the DL signal.
  • the control unit 301 may control the transmission signal generation unit 302 to perform coding and rate matching for each CB, and may control the mapping unit 303 to map the CWs obtained by connecting the CBs. .
  • the control part 301 may apply code block division
  • the control unit 301 also controls UL signal reception processing (for example, demodulation, decoding, etc.). For example, the control unit 301 demodulates the UL signal based on the modulation scheme indicated by the MCS index specified by DCI (UL grant), and determines the TBS based on the TBS index indicated by the MCS index and the number of allocated resource blocks.
  • the received signal processing unit 304 may be controlled to decode the DL signal based on the TBS.
  • the control unit 301 also controls UL signal reception processing (for example, demodulation, decoding, etc.). For example, the control unit 301 demodulates the UL signal based on the modulation scheme indicated by the MCS index specified by DCI (UL grant), and determines the TBS based on the TBS index indicated by the MCS index and the number of allocated resource blocks.
  • the received signal processing unit 304 may be controlled to decode the DL signal based on the TBS.
  • control unit 301 may control retransmission of each CB (or each CBG) based on retransmission control information indicating ACK or NACK for each CB (or for each CBG) from the user terminal 20.
  • control unit 301 may control to retransmit only the CB or CBG in which NACK is indicated.
  • control unit 301 bundles the CB or CBG with a TB that is transmitted for the first time with an HPN different from the CB or the CBG and / or retransmits with an HPN different from the CB or the CBG.
  • bundling with CBG may be performed to perform retransmission.
  • control unit 301 may control retransmission of each CB (or each CBG) constituting the UL signal based on the decoding (error correction) result of each CB constituting the UL signal (other modes). . Specifically, the control unit 301 may perform control so as to transmit a DCI (UL grant) for scheduling a CB that has failed in decoding or a CBG including the CB.
  • DCI UL grant
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 Based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a DL signal (including at least one of DL data, DCI, DL reference signal, and control information by higher layer signaling), and a mapping unit 303 May be output.
  • a DL signal including at least one of DL data, DCI, DL reference signal, and control information by higher layer signaling
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) of the UL signal transmitted from the user terminal 20.
  • reception processing for example, demapping, demodulation, decoding, etc.
  • the received signal processing unit 304 may perform decoding processing in units of CBs in accordance with instructions from the control unit 301.
  • reception signal processing unit 304 may output a reception signal or a signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may measure, for example, received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 301.
  • FIG. 9 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control processing (for example, HARQ processing), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, etc. Is transferred to the unit 203.
  • UCI for example, at least one of DL signal A / N, channel state information (CSI), scheduling request (SR), etc.
  • CSI channel state information
  • SR scheduling request
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 receives a DL signal (eg, at least one of DCI (DL assignment and / or UL grant), DL data, and DL reference signal), and receives a UL signal (eg, UL data, UCI, UL). At least one of the reference signals).
  • a DL signal eg, at least one of DCI (DL assignment and / or UL grant), DL data, and DL reference signal
  • a UL signal eg, UL data, UCI, UL. At least one of the reference signals).
  • the transmission / reception unit 203 transmits DL signal retransmission control information.
  • the unit of the retransmission control information may be, for example, every CB, every CBG, every TB, or every one or more TBs (every CB, every CBG, every TB, or every one or more TBs).
  • ACK or NACK may be indicated in any unit).
  • the transmission / reception unit 203 may receive setting information in units of the retransmission control information. Further, the transmission / reception unit 203 may receive the setting information of the retransmission unit of the DL signal and / or UL signal. Further, the transmission / reception unit 203 may receive information indicating the number of CBs per CBG.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. Further, the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 10 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. I have.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 controls DL signal reception processing by the reception signal processing unit 404, UL signal generation processing by the transmission signal generation unit 402, UL signal mapping by the mapping unit 403, and measurement by the measurement unit 405.
  • control unit 401 controls DL signal reception processing (eg, demodulation, decoding, etc.) based on DCI (DL assignment). For example, the control unit 401 may control the reception signal processing unit 404 to demodulate the DL signal based on the modulation scheme indicated by the MCS index in DCI. Further, the control unit 401 may control the received signal processing unit 404 to determine the TBS based on the TBS index indicated by the MCS index and the number of allocated resource blocks, and to decode the DL signal based on the TBS. .
  • DCI DL assignment
  • control 401 may control the generation and / or transmission of retransmission control information for DL signals. Specifically, the control unit 401 may control generation and / or transmission of retransmission control information indicating ACK or NACK for each predetermined unit (for example, CB unit or CBG unit). Specifically, the control unit 401 may control the generation of retransmission control information indicating ACK / NACK for each CBG based on the result of demodulation and / or decoding (error correction) of each CB.
  • predetermined unit for example, CB unit or CBG unit
  • the control unit 401 may determine the number of bits of the retransmission control information based on the number of all CBGs in the TB (first mode) ).
  • the retransmission control information may indicate ACKs or NACKs of all CBGs in the TB (first mode).
  • the control unit 401 may determine the number of bits of the retransmission control information based on the number of retransmission CBGs (second mode).
  • the retransmission control information may indicate ACK or NACK of the retransmission CBG (second mode).
  • control unit 401 may control the restoration of the TB constituting the DL signal. Specifically, the control unit 401 may control to restore the TB based on the CB or CBG transmitted for the first time and / or the retransmitted CB / CBG.
  • control unit 401 may control retransmission CBG reception processing based on information on retransmission CBG included in DCI (DL assignment). For example, the control unit 401 may control the combining process of the data stored in the user terminal 20 (the soft buffer) and the retransmission CBG based on the CBG index of the retransmission CBG included in the DCI.
  • control unit 401 controls generation and transmission processing (for example, encoding, modulation, mapping, etc.) of UL signals based on DCI (UL grant). For example, the control unit 401 may control the transmission signal generation unit 402 so as to modulate the UL signal based on the modulation scheme indicated by the MCS index in the DCI. Further, the control unit 401 determines the TBS based on the TBS index indicated by the MCS index and the number of allocated resource blocks, and controls the transmission signal generation unit 402 so as to encode the UL signal based on the TBS. Also good.
  • control unit 401 may apply code block division for dividing the TBS into a plurality of CBs to the UL signal when the TBS exceeds a predetermined threshold.
  • control unit 401 may apply code block division to the UL signal based on an application instruction by higher layer signaling and / or DCI.
  • control unit 401 may control the transmission of the UL signal based on the DCI from the radio base station 10. Further, the control unit 401 may control retransmission of each CB (or each CBG) constituting the UL signal based on the DCI from the radio base station 10. Specifically, the control unit 401 may control to retransmit the CB or CBG instructed by the DCI using the same or different neurology as the initial transmission.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates retransmission control information of UL signals and DL signals (for example, encoding, rate matching, puncturing, modulation, etc.) based on an instruction from the control unit 401 and outputs the information to the mapping unit 403 To do.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 Based on an instruction from the control unit 401, the mapping unit 403 maps the retransmission control information of the UL signal and the DL signal generated by the transmission signal generation unit 402 to radio resources, and outputs them to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the received signal processing unit 404 performs DL signal reception processing (for example, demapping, demodulation, decoding, etc.). For example, the received signal processing unit 404 may perform decoding processing in units of CBs according to instructions from the control unit 401 and output the decoding results of each CB to the control unit 401.
  • DL signal reception processing for example, demapping, demodulation, decoding, etc.
  • the received signal processing unit 404 may perform decoding processing in units of CBs according to instructions from the control unit 401 and output the decoding results of each CB to the control unit 401.
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401.
  • the received signal processing unit 404 sends, for example, broadcast information, system information, upper layer control information by upper layer signaling such as RRC signaling, L1 / L2 control information (for example, UL grant, DL assignment), and the like to the control unit 401. Output.
  • the received signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the measurement unit 405 measures the channel state based on a reference signal (for example, CSI-RS) from the radio base station 10 and outputs the measurement result to the control unit 401. Note that the channel state measurement may be performed for each CC.
  • a reference signal for example, CSI-RS
  • the measuring unit 405 can be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are explained based on common recognition in the technical field according to the present invention.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the radio base station, user terminal, and the like in this embodiment may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004.
  • predetermined software program
  • it is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be composed of one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology. The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), or may be a processing unit such as scheduling or link adaptation.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, or the like.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of subframes or slots per radio frame, the number of minislots included in the slot, the number of symbols included in the slot or minislot, the subcarriers included in the RB The number of symbols, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • the terms “connected”, “coupled”, or any variation thereof refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.

Abstract

TBよりも小さい単位(例えば、CB単位又はCBG単位)での再送制御を適切に行うこと。本発明の一態様に係るユーザ端末は、一以上のコードブロックグループ(CBG)を含むトランスポートブロック(TB)を受信する受信部と、CBG毎のACK又はNACKを示す再送制御情報を送信する送信部と、前記TB内の少なくとも一つのCBGが再送される場合、前記TB内の全CBGの数又は前記再送されるCBGの数に基づいて、前記再送制御情報のビット数を決定する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10~13等ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New RAT:Radio Access Technology)、LTE Rel.14~などともいう)も検討されている。
 既存のLTEシステム(例えば、Rel.13以前)では、リンクアダプテーションとして、変調方式、トランスポートブロックサイズ(TBS:Transport Block Size)、符号化率の少なくとも一つを適応的に変化させる適応変調符号化(AMC:Adaptive Modulation and Coding)が行われる。ここで、TBSとは、情報ビット系列の単位であるトランスポートブロック(TB:Transport Block)のサイズである。1サブフレームには、一つ又は複数のTBが割り当てられる。
 また、既存のLTEシステムでは、TBSが所定の閾値(例えば、6144ビット)を超える場合、TBを一以上のセグメント(コードブロック(CB:Code Block))に分割し、セグメント単位での符号化が行われる(コードブロック分割:Code Block Segmentation)。符号化された各コードブロックは連結されて、送信される。
 また、既存のLTEシステムでは、TB単位で、DL信号及び/又はUL信号の再送制御(HARQ:Hybrid Automatic Repeat reQuest)が行われる。具体的には、既存のLTEシステムでは、TBが複数のCBに分割される場合であっても、TB単位で再送制御情報(ACK(Acknowledge)又はNACK(Negative ACK)(以下、A/Nと略する)、HARQ-ACK等ともいう)が送信される。
 将来の無線通信システム(例えば、5G、NRなど)では、例えば、高速で大容量の通信(eMBB:enhanced Mobile Broad Band)をサポートするため、既存のLTEシステムよりも大きいTBSを用いることも想定される。このような大きいTBSのTBは、既存のLTEシステムと比べて多くのCB(例えば、1TBあたり数十のCB)に分割されることが想定される。
 このように、1TBあたりのCB数が増加することが想定される将来の無線通信システムにおいて、既存のLTEシステムと同様に、TB単位で再送制御を行う場合、誤りが検出されていない(復号に成功した)CBの再送が生じる結果、性能(performance、スループット)が低下する恐れがある。したがって、将来の無線通信システムでは、TBよりも小さい単位(例えば、一以上のCBを含むグループ(コードブロックグループ:CBG:Code Block Group)単位)での再送制御が望まれる。
 本発明はかかる点に鑑みてなされたものであり、TBよりも小さい単位(例えば、CBG単位)での再送制御を適切に行うことが可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明の一態様に係るユーザ端末は、一以上のコードブロックグループ(CBG)を含むトランスポートブロック(TB)を受信する受信部と、CBG毎のACK又はNACKを示す再送制御情報を送信する送信部と、前記TB内の少なくとも一つのCBGが再送される場合、前記TB内の全CBGの数又は前記再送されるCBGの数に基づいて、前記再送制御情報のビット数を決定する制御部と、を具備することを特徴とする。
 本発明によれば、TBよりも小さい単位(例えば、CBG単位)での再送制御を適切に行うことができる。
コードブロック分割が適用される場合の送信処理の一例を示す図である。 コードブロック分割が適用される場合の受信処理の一例を示す図である。 既存のLTEシステムにおけるDLの再送制御の一例を示す図である。 第1の態様に係る再送制御情報の送信の一例を示す図である。 第2の態様に係る再送制御情報の送信の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 図1は、コードブロック分割(Code block segmentation)が適用される場合の送信処理の一例を示す図である。コードブロック分割とは、CRC(Cyclic Redundancy Check)ビットが付加されたトランスポートブロック(以下、TBと略する)(CRCビットを含む情報ビット系列)が所定の閾値(例えば、6144ビットまたは8192ビットなど)を超える場合、当該TBを複数のセグメントに分割することである。コードブロック分割は、例えば、符号器が対応するサイズにTBSを合わせるために行われ、上記所定の閾値は、符号器が対応する最大サイズと等しくともよい。
 図1に示すように、送信側では、TBサイズ(TBS)が所定の閾値(例えば、6144ビットまたは8192ビットなど)を超える場合、当該CRCビットを含む情報ビット系列は、複数のセグメントに分割(segment)される。なお、セグメント#1の先頭には、フィラービット(filler bits)が付加されてもよい。
 図1に示すように、各セグメントには、CRCビット(例えば、24ビット)が付加され、所定の符号化率(例えば、1/3、1/4、1/8など)でチャネル符号化(例えば、ターボ符号化、低密度パリティ検査(LDPC:Low-Density Parity-check Code)符号化など)が行われる。チャネル符号化により、システマティックビットおよびパリティビット(たとえば、第1及び第2のパリティビット(#1及び#2))が、各コードブロック(以下、CBと略する)のコードビットとして生成される。
 CBは、それぞれ所定の方法でインターリーブされ、スケジュールされたリソース量に見合った量のビット系列が選択され、送信される。例えば、システマティックビットの系列、第1のパリティビットの系列及び第2のパリティビットの系列は、それぞれ、個別にインターリーブされる(サブブロックインターリーブ)。その後、システマティックビットの系列、第1のパリティビットの系列及び第2のパリティビットの系列は、それぞれ、バッファ(サーキュラバッファ)に入力され、バッファからは、割り当てられたリソースブロックで使用可能なRE数、冗長バージョン(RV:Redundancy Version)に基づいて、各CBのコードビットが選択される(レートマッチング)。複数のCB間でインターリーブを行ってもよい。
 選択されたコードビットで構成される各CBは、コードワード(CW:Code Word)として連結される。コードワードに対しては、スクランブリング、データ変調等が行われて、送信される。
 図2は、コードブロック分割が適用される場合の受信処理の一例を示す図である。受信側では、TBSインデックスと、割り当てられたリソースブロック(例えば、PRB:Physical Resource Block)の数とに基づいて、TBSが決定され、TBSに基づいて、CBの数が決定される。
 図2に示すように、受信側では、各CBが復号され、各CBに付加されたCRCビットを用いて、各CBの誤り検出を行う。また、コードブロック分割を元に戻し(undo)、TBを復元する。さらに、TBに付加されたCRCを用いて、TB全体の誤り検出を行う。
 既存のLTEシステムの受信側では、当該TB全体の誤り検出結果に応じて、TB全体に対する再送制御情報(ACK又はNACK、以下、A/Nと略する、HARQ-ACK等ともいう)が送信側に送信される。送信側では、受信側からのNACKに応じて、TB全体を再送する。
 図3は、既存のLTEシステムにおけるDL信号の再送制御の一例を示す図である。既存のLTEシステムでは、TBが複数のCBに分割されるか否かに関係なく、TB単位で再送制御が行われる。具体的には、TB毎にHARQプロセスが割り当てられる。ここで、HARQプロセスは、再送制御の処理単位であり、各HARQプロセスは、HARQプロセス番号(HPN)で識別される。ユーザ端末(UE:User Equipment)には、一以上のHARQプロセスが設定され、同一のHPNのHARQプロセスでは、ACKが受信されるまで同一データが再送される。
 例えば、図3では、新規(初回)送信のTB#1に対してHPN=0が割り当てられる。無線基地局(eNB:eNodeB)は、NACKを受信するとHPN=0で同じTB#1を再送し、ACKを受信するとHPN=0で次のTB#2を初回送信する。
 また、無線基地局は、TBを送信するDL信号(例えば、PDSCH)を割り当てる下り制御情報(DCI:Downlink Control Information)(DLアサインメント)に、上記HPNと、新規データ識別子(NDI:New Data Indicator)と、冗長バージョン(RV:Redundancy Version)を含めることができる。
 ここで、NDIは、初回送信又は再送のいずれかを示す識別子である。例えば、同一のHPNにおいてNDIがトグルされていない(前回と同じ値である)場合、再送であることを示し、NDIがトグルされている(前回と異なる値である)場合、初回送信であることを示す。
 また、RVとは、送信データの冗長化の違いを示す。RVの値は、例えば、0、1、2、3であり、0は冗長化の度合いが最も低いため初回送信に用いられる。同一のHPNの送信毎に異なるRV値を適用することにより、HARQのゲインを効果的に得ることができる。
 例えば、図3では、TB#1の初回送信のDCIには、HPN「0」、トグルされたNDI、RV値「0」が含まれる。このため、ユーザ端末は、HPN「0」が初回送信であることを認識でき、RV値「0」に基づいてTB#1を復号する。一方、TB#1の再送時のDCIには、HPN「0」、トグルされていないNDI、RV値「2」が含まれる。このため、ユーザ端末は、HPN「0」が再送であることを認識でき、RV値「2」に基づいてTB#1を復号する。TB#2の初回送信時は、TB#1の初回送信時と同様である。
 以上のように、既存のLTEシステムでは、コードブロック分割が適用されるか否かに関係なく、TB単位で再送制御が行われる。このため、コードブロック分割が適用される場合、TBを分割して構成されるC個(C>1)のCBの一部に誤りが偏っていたとしても、TB全体が再送される。
 したがって、誤りが検出された(復号に失敗した)CBだけでなく、誤りが検出されていない(復号に成功した)CBも再送することとなり、性能(スループット)が低下する恐れがある。将来の無線通信システム(例えば、5G、NRなど)では、TBが多くのCB(例えば、数十のCB)に分割されるケースが増加することが想定されるため、TB単位の再送では、性能の低下が顕著になる恐れがある。
 したがって、TBよりも小さい単位(例えば、CBG単位)での再送制御が望まれる。この場合、ユーザ端末が、TBより小さい単位でACK又はNACKを示す再送制御情報を送信する必要がある。そこで、本発明者らは、TBよりも小さい単位でACK又はNACKを示す再送制御情報を送信する方法を検討し、本発明に至った。
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。なお、以下、本実施の形態は、非同期の再送制御(非同期HARQ)を想定して説明を行うが、本実施の形態は、同期した再送制御(同期HARQ)にも適宜適用可能である。同期HARQでは、各HARQプロセスの再送は、初回送信から一定期間後に行われる。一方、非同期HARQでは、各HARQプロセスの再送は、当該ULデータの初回送信から一定でない期間後に行われる。
 また、本実施の形態では、DL信号として、DLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel)を想定するがこれに限られない。例えば、本実施の形態の再送制御は、ランダムアクセス応答(RAR:Random Access Response)等の再送制御にも適用可能である。また、本実施の形態は、ULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)等のUL信号にも適用可能である。
 また、本実施の形態におけるトランスポートブロック(TB)とは、情報ビット系列の単位であり、例えば、1サブフレームに割り当てられる情報ビット系列の単位や、スケジューリングの単位の少なくとも一つであってもよい。また、TBには、CRCビットが含まれてもよいし、含まれなくともよい。
 また、本実施の形態におけるコードブロック(CB)とは、符号器(例えば、ターボ符号器)に入力可能な情報ビットの単位である。TBSが符号器の対応サイズ(最大符号化サイズ)以下である場合、TBは、CBと呼ばれてもよい。また、TBSが符号器の対応サイズを超える場合、TBを複数のセグメントに分割し、各セグメントがCBと呼ばれてもよい。なお、図1及び2で説明したコードブロック分割が適用される場合の送信処理及び受信処理は、例示にすぎず、本実施の形態は、CB又はCBGが用いられるどのような送信処理及び受信処理にも適用可能である。
(第1の態様)
 第1の態様では、ユーザ端末は、一以上のCBGを含むTBを受信し、CBG毎のACK又はNACKを示す再送制御情報(A/Nビット又はA/Nコードブック等ともいう)を含む情報を送信する。ユーザ端末は、当該TB内の少なくとも一つのCBGが再送される場合、当該TB内の全CBGの数に基づいて、当該再送制御情報のビット数(A/Nコードブックサイズ等ともいう)を決定する。
 具体的には、ユーザ端末は、TB内の少なくとも一つのCBGが再送される場合(TB内の一部のCBGが再送される場合であっても)、当該再送制御情報のビット数を、当該TB内の全CBGの数と等しく決定してもよい。また、TB内の少なくとも一つのCBGが再送される場合(TB内の一部のCBGが再送される場合であっても)、当該再送制御情報は、前記TB内の全CBGのACK又はNACKを示してもよい。
 また、第1の態様において、ユーザ端末は、再送されるCBG(再送CBGともいう)に関する情報(例えば、再送CBGのインデックス(CBGインデックス)、再送CBGのHPN、NDI及びRVの少なくとも一つ)を受信してもよい。なお、以下では、HARQプロセスは、TB単位で割り当てられるものとするが、CBG単位で割り当てられてもよい。
 図4は、第1の態様に係る再送制御情報の送信例を示す図である。図4では、1TBが4CBGを含む場合を例示するが、これに限られず、1TB内のCBG数は1以上であればよい。また、各CBGは、1以上のCBを含むものとする。
 図4に示すように、無線基地局(gNB)は、CBG#0-#3を含むTBをスケジュールして送信する(ステップS101)。具体的には、無線基地局は、当該TBのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)(DLアサインメント)を送信し、PDSCHを介して当該TBを送信する。なお、当該DCIには、当該TB内の各CBGに関する情報(例えば、各CBGのCBGインデックス、HPN、NDI及びRVの少なくとも一つ)が含まれてもよい。
 ユーザ端末は、無線基地局からのDCIに基づいて、PDSCHを介してTBを受信する。ユーザ端末は、各CBGの復調及び/又は復号(復調/復号)の結果に基づいて生成される再送制御情報を送信する(ステップS102)。図4に示すように、当該再送制御情報は、CBG毎のACK又はNACKを示してもよい。なお、CBG内の少なくとも一つのCBの復調/復号に失敗する場合、当該CBGについてはNACKが示される。
 例えば、図4では、ユーザ端末は、CBG#0及び#3の復調/復号に成功するが、CBG#1及び#2の復調/復号に失敗する。このため、ユーザ端末は、CBG#0のACK、CBG#1及び#2のNACK、CBG#3のACKを示す4ビットの再送制御情報(4 A/Nビット)を生成する。
 ユーザ端末は、生成された再送制御情報を、UL制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)又はULデータチャネル(例えば、PUSCH)を介して送信する。図4に示すように、4ビットの再送制御情報を送信する場合、ユーザ端末は、PUCCHフォーマット3を用いてもよい。また、当該再送制御情報は、上りリンク制御情報(UCI)として送信されてもよい。UCIは、当該再送制御情報、スケジューリング要求(SR)、チャネル状態情報(CSI)の少なくとも一つを含んでもよい。
 無線基地局は、ステップS102でユーザ端末から報告された再送制御情報がNACKを示すCBG#1及び#2を再送する(ステップS103)。具体的には、無線基地局は、再送CBG#1及び#2のスケジューリング情報を含むDCIを送信し、PDSCHを介して当該再送CBG#1及び#2を送信する。当該DCIには、再送CBG#1及び#2に関する情報(例えば、再送CBG#1及び#2それぞれのCBGインデックス、HPN、NDI及びRVの少なくとも一つ)が含まれてもよい。
 ユーザ端末は、無線基地局からのDCIに基づいて、再送CBG#1及び#2を受信する。ユーザ端末は、再送CBG#1及び#2の復調/復号の結果に基づいて、TB内の全CBG#0~#3のACK又はNACKを示す再送制御情報を生成して送信する(ステップS104)。なお、ユーザ端末は、再送CBG#1及び#2と、当該ユーザ端末(のソフトバッファ)に格納されたデータとを合成し、合成結果に基づいて当該再送制御情報を生成してもよい。
 例えば、図4では、ユーザ端末は、再送CBG#1の復調/復号に成功するが、再送CBG#2の復調/復号に失敗する。このため、ユーザ端末は、CBG#0及び#1のACK、CBG#2のNACK、CBG#3のACKを示す4ビットの再送制御情報を生成し、PUCCH又はPUSCHを用いて送信する。
 無線基地局は、ステップS104でユーザ端末から報告された再送制御情報がNACKを示すCBG#2を再送する(ステップS105)。具体的には、無線基地局は、再送CBG#2のスケジューリング情報を含むDCIを送信し、PDSCHを介して当該再送CBG#2を送信する。当該DCIには、再送CBG#2に関する情報(例えば、再送CBG#2のCBGインデックス、HPN、NDI及びRVの少なくとも一つ)が含まれてもよい。
 ユーザ端末は、無線基地局からのDCIに基づいて、再送CBG#2を受信する。ユーザ端末は、再送CBG#2の復調/復号の結果に基づいて、TB内の全CBG#0~#3のACK又はNACKを示す再送制御情報を生成して送信する(ステップS106)。上述のように、再送されるCBG#2は、ユーザ端末(のソフトバッファ)に格納されたデータと合成されてもよい。
 例えば、図4では、再送CBG#2の復調/復号に成功するので、ユーザ端末は、CBG#0~#3のACKを示す4ビットの再送制御情報を生成し、PUCCH又はPUSCHを用いて送信する。
 このように、図4では、TB内の少なくとも一つのCBGが再送される場合、再送CBGだけでなく、当該TB内の全CBGのACK/NACKを示す再送制御情報が無線基地局に報告される。このため、無線基地局があるCBGのNACKをACKと誤認する(NACK-to-ACKエラーが発生する)場合でも、無線基地局は、当該CBGのNACKを示す後続の再送制御情報に基づいて当該CBGを再送することができる。
 なお、図4では、ステップS102でACKが報告されるCBG#0及び#3については、ステップS104、S106でもACKが報告される。このように、図4では、あるCBGのACKが一度報告されると、後続の再送制御情報でも当該CBGのACKが報告されるが、後続の再送制御情報で当該CBGのNACKを報告することも許容される。
 例えば、無線基地局とユーザ端末との間で再送されるCBGの認識が一致しない場合、再送されるCBGと、ユーザ端末に格納される異なるCBGのデータとの合成の結果、復号に失敗することが想定される。この場合、前の再送制御情報でACKが報告されたCBGについて、後続の再送制御情報でNACKが報告され得る。したがって、無線基地局とユーザ端末との間での再送されるCBGの認識不一致を防止するため、無線基地局は、再送されるCBGのスケジューリング情報を含むDCIに、当該再送されるCBGを示す情報、すなわち、どのCBGを再送するかを示す情報(例えば、CBインデックス、HPN及びNDIの少なくとも一つ)を含めてもよい。
 以上のように、第1の態様では、TB内の少なくとも一つのCBGが再送される場合、再送CBGだけでなく、当該TBの全CBGのACK/NACKだけを示す再送制御情報が報告されるので、無線基地局においてあるCBGのNACK-to-ACKエラーが発生する場合でも、当該CBGの再送機会を与えることができる。
(第2の態様)
 第2の態様では、ユーザ端末は、当該TB内の少なくとも一つのCBGが再送される場合、当該TB内の全CBGの数の代わりに、当該再送CBGの数に基づいて当該再送制御情報のビット数(A/Nコードブックサイズ等ともいう)を決定する点で、第1の態様と異なる。以下では、第1の態様との相違点を中心に説明する。
 具体的には、ユーザ端末は、TB内の少なくとも一つのCBGが再送される場合、当該再送制御情報のビット数を、再送CBGの数と等しく決定してもよい。また、TB内の少なくとも一つのCBGが再送される場合、当該再送制御情報は、当該再送CBGのACK又はNACKを示してもよい。
 また、第2の態様において、ユーザ端末は、再送CBGに関する情報(例えば、再送CBGのインデックス(CBGインデックス)、再送CBGのHPN、NDI及びRVの少なくとも一つ)を受信してもよい。
 図5は、第2の態様に係る再送制御情報の送信例を示す図である。図5では、図4と同様に、1TBが4CBGを含む場合が示される。なお、図5のステップS201-S203は、図4のステップS101-S103と同様である。以下では、図4との相違点を中心に説明する。
 図5に示すように、ユーザ端末は、再送CBG#1及び#2の復調/復号の結果に基づいて、当該再送CBG#1及び#2のACK又はNACKを示す2ビットの再送制御情報(2A/Nビット)を生成し、当該再送制御情報をPUCCH又はPUSCHを用いて送信する(ステップS204)。
 例えば、図5では、ユーザ端末は、再送されたCBG#1の復調/復号に成功するが、CBG#2の復調/復号に失敗する。このため、ユーザ端末は、CBG#1のACK、CBG#2のNACKを示す2ビットの再送制御情報を生成し、PUCCH又はPUSCHを用いて送信する。
 無線基地局は、ステップS204でユーザ端末から報告された再送制御情報がNACKを示すCBG#2を再送する(ステップS205)。ユーザ端末は、再送CBG#2の復調/復号の結果に基づいて、当該再送CBG#2のACK又はNACKを示す1ビットの再送制御情報(1A/Nビット)を生成して送信する(ステップS206)。
 図5では、あるCBGのACKが一度報告されると、ユーザ端末は、当該CBGについてのACKをNACKに切り替えて報告することはできない。したがって、無線基地局とユーザ端末との間での再送CBGの認識不一致を回避するために、無線基地局は、再送CBGのスケジューリング情報を含むDCIに、当該再送CBGを示す情報、すなわち、どのCBGを再送するかを示す情報(例えば、CBインデックス、HPN及びNDIの少なくとも一つ)を含めてもよい。
 また、図5では、TB内の少なくとも一つのCBGが再送される場合、再送CBGのACK/NACKだけを示す再送制御情報が報告される。このため、無線基地局が再送CBGのNACKをACKと誤認する(NACK-to-ACKエラーが発生する)場合、当該再送CBGは決して再送されず、ユーザ端末は、当該再送CBGを受信できない。一方で、ユーザ端末が報告する再送制御情報のビット数を再送CBGの数に応じて調整できるので、オーバーヘッドの削減に有効である。
 また、図5では、ユーザ端末は、再送制御情報のビット数に応じて、PUCCHフォーマットを変更してもよい。例えば、ステップS201で示すように4ビットの再送制御情報を送信する場合、PUCCHフォーマット3が用いられ、ステップS204又はS206で示すように、2又は1ビットの再送制御情報を送信する場合、PUCCHフォーマット1a又は1bが用いられてもよい。また、ユーザ端末は、再送制御情報のビット数に応じて、符号化方式、PUCCHの送信シンボル数、PUCCHの送信電力、の少なくとも一つを変更してもよい。
 以上のように、第2の態様では、TB内の少なくとも一つのCBGが再送される場合、ユーザ端末は、再送CBGのACK/NACKを示す再送制御情報を報告するので、再送CBGの数に応じて再送制御情報のビット数を調整でき、再送制御情報の報告に伴うオーバーヘッドを削減できる。
 なお、再送制御情報には、当該TB全体のA/Nを示すビットを含めるものとしてもよい。当該TB全体のA/Nは、すべてのCBGのCRCがチェックされた場合にACKとなる。したがって、誤りが残留する限り、ユーザ端末は当該ビットをNACKとする。これにより、何らかの理由で誤りが残留しており、当該ビットがNACKとなっている場合に、無線基地局は、当該ユーザ端末が当該TBの受信に成功していないと認識できるので、次にTB全体を再送する等の処置によって誤りの残留を解決できる。
(その他の態様)
 図4のステップS103及び図5のステップS203において、再送CBG#1及び#2は、当該再送CBG#1及び#2とは異なるHPNが割り当てられたTB又は再送CBGとバンドリングして送信されてもよい。図4のステップS105及び図5のステップS205についても同様である。
 この場合、図4のステップS104において、ユーザ端末は、再送CBG#1及び#2を含むTB内の全CBGのACK又はNACKに加えて、当該異なるHPNが割り当てられたTB(又は当該TB内の全CBG)のACK又はNACK、又は当該異なるHPNが割り当てられた再送CBGを含むTB内の全CBGのACK又はNACKを示す再送制御情報を送信してもよい。図4のステップS106についても同様である。
 また、図5のステップS204において、ユーザ端末は、再送CBG#1及び#2のACK又はNACKに加えて、当該異なるHPNが割り当てられたTB(又は当該TB内の全CBG)のACK/NACK、又は、当該異なるHPNが割り当てられた再送CBGのACK/NACKを示す再送制御情報を送信してもよい。図5のステップS206についても同様である。
 また、以上では、CBG毎のACK/NACKを示す再送制御情報について説明したが、CB毎のACK/NACKを示す再送制御情報にも適宜適用可能である。また、第1及び第2の態様では、ユーザ端末におけるDL信号のCBG毎又はCB毎の再送制御情報の送信制御について説明したが、無線基地局におけるUL信号のCBG毎又はCB毎の再送制御情報の送信制御にも適宜適用可能である。
 また、1CBGあたりのCB数は、上位レイヤシグナリング(例えば、RRCシグナリング)により、無線基地局からユーザ端末に通知(設定)されてもよい。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図6は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New RAT)などと呼ばれても良い。
 図6に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成タイプ2)、FDDキャリア(フレーム構成タイプ1)等と呼ばれてもよい。
 また、各セル(キャリア)では、相対的に長い時間長(例えば、1ms)を有するサブフレーム(TTI、通常TTI、ロングTTI、通常サブフレーム、ロングサブフレーム、スロット等ともいう)、又は、相対的に短い時間長を有するサブフレーム(ショートTTI、ショートサブフレーム、スロット等ともいう)のいずれか一方が適用されてもよいし、ロングサブフレーム及びショートサブフレームの双方が適用されてもよい。また、各セルで、2以上の時間長のサブフレームが適用されてもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。また、端末間通信に用いられるサイドリンク(SL)にSC-FDMAを適用できる。
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICH、PDCCH、EPDCCHの少なくとも一つにより、PUSCHの再送制御情報(A/N、HARQ-ACK)を伝送できる。
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。PDSCHの再送制御情報(A/N、HARQ-ACK)やチャネル状態情報(CSI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。
<無線基地局>
 図7は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、レートマッチング、スクランブリング、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 また、送受信部103は、DL信号(例えば、DCI(DLデータをスケジューリングするDLアサインメント及び/又はULデータをスケジューリングするULグラント)、DLデータ、DL参照信号の少なくとも一つ)を送信し、UL信号(例えば、ULデータ、UCI、UL参照信号の少なくとも一つ)を受信する。
 また、送受信部103は、DL信号の再送制御情報(ACK/NACK、A/N、HARQ-ACK、A/Nコードブック等ともいう)を受信する。当該再送制御情報の単位は、例えば、CB毎、CBG毎、TB毎又は一以上のTB毎のいずれであってもよい(CB毎、CBG毎、TB毎又は一以上のTB毎のいずれでの単位でACK又はNACKが示されてもよい)。また、送受信部103は、当該再送制御情報の単位の設定情報を送信してもよい。また、送受信部103は、DL信号及び/又はUL信号の再送単位の設定情報を送信してもよい。また、送受信部103は、CBGあたりのCB数を示す情報を送信してもよい。
 図8は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図8は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図8に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、DL信号及びUL信号のスケジューリング、送信信号生成部302によるDL信号の生成処理(例えば、符号化、変調など)や、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調、復号など)、測定部305による測定を制御する。
 具体的には、制御部301は、ユーザ端末20からフィードバックされるチャネル品質識別子(CQI)に基づいて、DL信号の変調方式及びTBSを決定する。制御部301は、当該TBSでDL信号を符号化し、当該変調方式でDL信号を変調するよう、送信信号生成部302を制御する。
 また、制御部301は、TBSが所定の閾値を超える場合、TBSを複数のCBに分割するコードブロック分割をDL信号に適用してもよい。具体的には、制御部301は、CB毎に符号化及びレートマッチングを行うように送信信号生成部302を制御し、各CBを連結したCWをマッピングするようマッピング部303を制御してもよい。また、制御部301は、TBSが所定の閾値を超える場合、コードブロック分割をUL信号に適用してもよい。
 また、制御部301は、UL信号の受信処理(例えば、復調、復号など)を制御する。例えば、制御部301は、DCI(ULグラント)で指定したMCSインデックスが示す変調方式に基づいて、UL信号を復調し、MCSインデックスが示すTBSインデックスと割り当てリソースブロック数に基づいて、TBSを決定し、当該TBSに基づいてDL信号を復号するよう、受信信号処理部304を制御してもよい。
 また、制御部301は、UL信号の受信処理(例えば、復調、復号など)を制御する。例えば、制御部301は、DCI(ULグラント)で指定したMCSインデックスが示す変調方式に基づいて、UL信号を復調し、MCSインデックスが示すTBSインデックスと割り当てリソースブロック数に基づいて、TBSを決定し、当該TBSに基づいてDL信号を復号するよう、受信信号処理部304を制御してもよい。
 また、制御部301は、ユーザ端末20からのCB毎(又はCBG毎)のACK又はNACKを示す再送制御情報に基づいて、各CB(又は各CBG)の再送を制御してもよい。
 また、制御部301は、NACKが示されたCB又はCBGだけを再送するよう制御してもよい。或いは、制御部301は、当該CB又はCBGと、該CB又は該CBGと異なるHPNで初回送信されるTBとバンドリングして、及び/又は、該CB又は該CBGと異なるHPNで再送されるCB又はCBGとバンドリングして、再送するよう制御してもよい。
 また、制御部301は、UL信号を構成する各CBの復号(誤り訂正)結果に基づいて、UL信号を構成する各CB(又は各CBG)の再送を制御してもよい(その他の態様)。具体的には、制御部301は、復号に失敗したCB又は当該CBを含むCBGをスケジューリングするDCI(ULグラント)を送信するように、制御してもよい。
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータ、DCI、DL参照信号、上位レイヤシグナリングによる制御情報の少なくとも一つを含む)を生成して、マッピング部303に出力してもよい。
 送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号の受信処理(例えば、デマッピング、復調、復号など)を行う。例えば、受信信号処理部304は、制御部301からの指示に従って、CB単位で復号処理を行ってもよい。
 また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力してもよい。測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図9は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御処理(例えば、HARQの処理)や、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。UCI(例えば、DL信号のA/N、チャネル状態情報(CSI)、スケジューリング要求(SR)の少なくとも一つなど)についても、チャネル符号化、レートマッチング、パンクチャ、DFT処理、IFFT処理などが行われて各送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、DL信号(例えば、DCI(DLアサインメント及び/又はULグラント)、DLデータ、DL参照信号の少なくとも一つ)を受信し、UL信号(例えば、ULデータ、UCI、UL参照信号の少なくとも一つ)を送信する。
 また、送受信部203は、DL信号の再送制御情報を送信する。上述の通り、当該再送制御情報の単位は、例えば、CB毎、CBG毎、TB毎又は一以上のTB毎のいずれであってもよい(CB毎、CBG毎、TB毎又は一以上のTB毎のいずれでの単位でACK又はNACKが示されてもよい)。また、送受信部203は、当該再送制御情報の単位の設定情報を受信してもよい。また、送受信部203は、DL信号及び/又はUL信号の再送単位の設定情報を受信してもよい。また、送受信部203は、CBGあたりのCB数を示す情報を受信してもよい。
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 図10は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図10においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図10に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、受信信号処理部404によるDL信号の受信処理、送信信号生成部402によるUL信号の生成処理や、マッピング部403によるUL信号のマッピング、測定部405による測定を制御する。
 具体的には、制御部401は、DCI(DLアサインメント)に基づいて、DL信号の受信処理(例えば、復調、復号など)を制御する。例えば、制御部401は、DCI内のMCSインデックスが示す変調方式に基づいて、DL信号を復調するように、受信信号処理部404を制御してもよい。また、制御部401は、MCSインデックスが示すTBSインデックスと割り当てリソースブロック数に基づいて、TBSを決定し、当該TBSに基づいてDL信号を復号するに、受信信号処理部404を制御してもよい。
 また、制御401は、DL信号の再送制御情報の生成及び/又は送信を制御してもよい。具体的には、制御部401は、所定の単位(例えば、CB単位、又は、CBG単位)毎にACK又はNACKを示す再送制御情報の生成及び/又は送信を制御してもよい。具体的には、制御部401は、各CBの復調及び/又は復号(誤り訂正)の結果に基づいて、CBG毎にACK/NACKを示す再送制御情報の生成を制御してもよい。
 例えば、制御部401は、TB内の少なくとも一つのCBGが再送される場合、当該TB内の全CBGの数に基づいて、当該再送制御情報のビット数を決定してもよい(第1の態様)。当該TB内の少なくとも一つのCBGが再送される場合、当該再送制御情報は、当該TB内の全CBGのACK又はNACKを示してもよい(第1の態様)。
 或いは、制御部401は、TB内の少なくとも一つのCBGが再送される場合、再送CBGの数に基づいて、当該再送制御情報のビット数を決定してもよい(第2の態様)。当該TB内の少なくとも一つのCBGが再送される場合、当該再送制御情報は、当該再送CBGのACK又はNACKを示してもよい(第2の態様)。
 また、制御部401は、DL信号を構成するTBの復元を制御してもよい。具体的には、制御部401は、初回送信されたCB又はCBG、及び/又は、再送されたCB/CBGに基づいてTBを復元するよう制御してもよい。
 また、制御部401は、DCI(DLアサインメント)に含まれる再送CBGに関する情報に基づいて、再送CBGの受信処理を制御してもよい。例えば、制御部401は、DCIに含まれる再送CBGのCBGインデックスに基づいて、当該ユーザ端末20(のソフトバッファ)に格納されたデータと再送CBGとの合成処理を制御してもよい。
 また、制御部401は、DCI(ULグラント)に基づいて、UL信号の生成及び送信処理(例えば、符号化、変調、マッピングなど)を制御する。例えば、制御部401は、DCI内のMCSインデックスが示す変調方式に基づいて、UL信号を変調するように、送信信号生成部402を制御してもよい。また、制御部401は、MCSインデックスが示すTBSインデックスと割り当てリソースブロック数に基づいて、TBSを決定し、当該TBSに基づいてUL信号を符号化するように、送信信号生成部402を制御してもよい。
 また、制御部401は、TBSが所定の閾値を超える場合、TBSを複数のCBに分割するコードブロック分割をUL信号に適用してもよい。或いは、制御部401は、上位レイヤシグナリング及び/又はDCIによる適用指示に基づいて、コードブロック分割をUL信号に適用してもよい。
 また、制御部401は、無線基地局10からのDCIに基づいて、UL信号の送信を制御してもよい。また、制御部401は、無線基地局10からのDCIに基づいて、UL信号を構成する各CB(又は各CBG)の再送を制御してもよい。具体的には、制御部401は、初回送信と同一のニューメロロジー又は異なるニューメロロジーを用いて、DCIにより指示されるCB又はCBGを再送するよう制御してもよい。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号、DL信号の再送制御情報を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号、DL信号の再送制御情報を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号の受信処理(例えば、デマッピング、復調、復号など)を行う。例えば、受信信号処理部404は、制御部401からの指示に従って、CB単位で復号処理を行い、各CBの復号結果を制御部401に出力してもよい。
 受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリングなどの上位レイヤシグナリングによる上位レイヤ制御情報、L1/L2制御情報(例えば、ULグラント、DLアサインメント)などを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において一つ又は複数のシンボルで構成されてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレームやTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅や送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)の送信時間単位であってもよいし、スケジューリングやリンクアダプテーションなどの処理単位となってもよい。なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、又はショートサブフレームなどと呼ばれてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボルの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」や「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。

Claims (6)

  1.  一以上のコードブロックグループ(CBG)を含むトランスポートブロック(TB)を受信する受信部と、
     CBG毎のACK又はNACKを示す再送制御情報を送信する送信部と、
     前記TB内の少なくとも一つのCBGが再送される場合、前記TB内の全CBGの数又は前記再送されるCBGの数に基づいて、前記再送制御情報のビット数を決定する制御部と、を具備することを特徴とするユーザ端末。
  2.  前記TB内の少なくとも一つのCBGが再送される場合、前記再送制御情報は、前記TB内の全CBGのACK又はNACKを示すことを特徴とする請求項1に記載のユーザ端末。
  3.  前記TB内の少なくとも一つのCBGが再送される場合、前記再送制御情報は、前記再送されるCBGのACK又はNACKを示すことを特徴とする請求項1に記載のユーザ端末。
  4.  前記受信部は、前記再送されるCBGを示す情報を受信することを特徴とする請求項2又は請求項3に記載のユーザ端末。
  5.  前記CBGは、一以上のコードブロックを含むことを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  ユーザ端末において、
     一以上のコードブロックグループ(CBG)を含むトランスポートブロック(TB)を受信する工程と、
     CBG毎のACK又はNACKを示す再送制御情報を送信する工程と、
     前記TB内の少なくとも一つのCBGが再送される場合、前記TB内の全CBGの数又は前記再送されるCBGの数に基づいて、前記再送制御情報のビット数を決定する工程と、を有することを特徴とする無線通信方法。
PCT/JP2017/014289 2017-04-05 2017-04-05 ユーザ端末及び無線通信方法 WO2018185896A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/014289 WO2018185896A1 (ja) 2017-04-05 2017-04-05 ユーザ端末及び無線通信方法
JP2019511009A JP6949941B2 (ja) 2017-04-05 2017-04-05 端末、無線通信方法、基地局及びシステム
EP17904557.0A EP3609226A4 (en) 2017-04-05 2017-04-05 USER TERMINAL AND WIRELESS COMMUNICATION PROCESS
CN201780091311.5A CN110679176A (zh) 2017-04-05 2017-04-05 用户终端以及无线通信方法
US16/603,063 US11451338B2 (en) 2017-04-05 2017-04-05 User terminal and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014289 WO2018185896A1 (ja) 2017-04-05 2017-04-05 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2018185896A1 true WO2018185896A1 (ja) 2018-10-11

Family

ID=63712088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014289 WO2018185896A1 (ja) 2017-04-05 2017-04-05 ユーザ端末及び無線通信方法

Country Status (5)

Country Link
US (1) US11451338B2 (ja)
EP (1) EP3609226A4 (ja)
JP (1) JP6949941B2 (ja)
CN (1) CN110679176A (ja)
WO (1) WO2018185896A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654096A (zh) * 2019-10-11 2021-04-13 普天信息技术有限公司 竞争窗长度自适应调整方法和装置
WO2021128344A1 (en) * 2019-12-27 2021-07-01 Lenovo (Beijing) Limited Method and apparatus for cbg based transmission for nr sidelink

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631950B (zh) * 2017-03-23 2023-11-07 华为技术有限公司 发送反馈信息的方法和设备
JPWO2018203406A1 (ja) * 2017-05-02 2020-03-12 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109150413B (zh) * 2017-06-16 2021-06-15 华为技术有限公司 发送和接收反馈信息的方法和装置
JP7240375B2 (ja) * 2018-02-14 2023-03-15 エルジー エレクトロニクス インコーポレイティド 下りリンクデータチャネルを送受信する方法及びそのための装置
US11165538B2 (en) * 2019-05-03 2021-11-02 Qualcomm Incorporated Codeblock concatenation for improved vulnerable symbol handling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147755A (ja) * 2008-12-18 2010-07-01 Sharp Corp 送信装置、受信装置および通信システム
JP2010213067A (ja) * 2009-03-11 2010-09-24 Panasonic Corp 送信装置及びack/nack送信方法
WO2010109521A1 (ja) * 2009-03-25 2010-09-30 富士通株式会社 無線通信システム、移動局装置、基地局装置、及び無線通信システムにおける無線通信方法
WO2016175029A1 (ja) * 2015-04-28 2016-11-03 京セラ株式会社 無線通信装置及びユーザ端末

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666709B (zh) 2016-07-28 2022-03-29 夏普株式会社 用户设备、基站及其用于寻呼的方法
US10462805B2 (en) * 2016-09-23 2019-10-29 Apple Inc. LAA/WiFi Coexistence for 5GHz antenna sharing
US20180145703A1 (en) * 2016-11-23 2018-05-24 Qualcomm Incorporated Techniques for using a cyclic redundancy check in conjunction with a low-density parity-check encoding scheme
JP7280187B2 (ja) * 2017-01-04 2023-05-23 アイディーエーシー ホールディングス インコーポレイテッド 無線システムにおける受信機フィードバック
EP3588828B1 (en) * 2017-02-24 2022-03-02 LG Electronics Inc. Method for processing data block and method for harq ack/nack feedback
CN113411892B (zh) * 2017-03-08 2023-09-29 Lg 电子株式会社 在无线通信系统中发送和接收无线电信号的方法和装置
US11303392B2 (en) * 2017-03-16 2022-04-12 Qualcomm Incorporated Multi-HARQ methods and apparatus for codeblock group based transmissions
CN110447193B (zh) * 2017-03-17 2022-03-15 Lg 电子株式会社 在无线通信系统中由终端接收数据的方法和设备
US10892860B2 (en) * 2017-03-23 2021-01-12 Panasonic Intellectual Property Corporation Of America Method, apparatus and system for controlling retransmission scheme
US10727987B2 (en) * 2017-04-03 2020-07-28 Qualcomm Incorporated Feedback for codeblock group based transmissions
CN109391381B (zh) * 2017-08-11 2022-06-03 中兴通讯股份有限公司 数据的确认信息生成和反馈、数据传输方法和装置
US10644842B2 (en) * 2017-09-06 2020-05-05 Qualcomm Incorporated Multiplexing code block group level and transport block level transmission and new data indications
US11075718B2 (en) * 2019-02-13 2021-07-27 Qualcomm Incorporated Partitioning of downlink feedback indication bits
US11690132B2 (en) * 2019-09-03 2023-06-27 Qualcomm Incorporated Medium access control-control element (MAC-CE) communication
US11751208B2 (en) * 2019-10-03 2023-09-05 Ofinno, Llc Uplink control information in unlicensed bands in a wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147755A (ja) * 2008-12-18 2010-07-01 Sharp Corp 送信装置、受信装置および通信システム
JP2010213067A (ja) * 2009-03-11 2010-09-24 Panasonic Corp 送信装置及びack/nack送信方法
WO2010109521A1 (ja) * 2009-03-25 2010-09-30 富士通株式会社 無線通信システム、移動局装置、基地局装置、及び無線通信システムにおける無線通信方法
WO2016175029A1 (ja) * 2015-04-28 2016-11-03 京セラ株式会社 無線通信装置及びユーザ端末

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "HARQ Enhancement for Improved Data Channel Efficiency", 3GPP TSG-RAN WG1#84B RL-162797, vol. RAN WG1, 11 April 2016 (2016-04-11), XP051080366 *
See also references of EP3609226A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654096A (zh) * 2019-10-11 2021-04-13 普天信息技术有限公司 竞争窗长度自适应调整方法和装置
WO2021128344A1 (en) * 2019-12-27 2021-07-01 Lenovo (Beijing) Limited Method and apparatus for cbg based transmission for nr sidelink

Also Published As

Publication number Publication date
CN110679176A (zh) 2020-01-10
JP6949941B2 (ja) 2021-10-13
JPWO2018185896A1 (ja) 2020-02-20
EP3609226A4 (en) 2020-11-18
EP3609226A1 (en) 2020-02-12
US11451338B2 (en) 2022-09-20
US20200112398A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP7157512B2 (ja) 端末、無線通信方法、基地局及びシステム
CN110114994B (zh) 用户终端以及无线通信方法
JP7046841B2 (ja) 端末、無線通信方法、基地局及びシステム
US11470626B2 (en) User terminal and radio communication method
CN110800232B (zh) 用户终端以及无线通信方法
CN110832898B (zh) 用户终端以及无线通信方法
US11239976B2 (en) Receiving device and radio communication method
JP6949941B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018043561A1 (ja) ユーザ端末及び無線通信方法
WO2019103142A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017904557

Country of ref document: EP

Effective date: 20191105