WO2018185833A1 - Information processing device - Google Patents

Information processing device Download PDF

Info

Publication number
WO2018185833A1
WO2018185833A1 PCT/JP2017/014088 JP2017014088W WO2018185833A1 WO 2018185833 A1 WO2018185833 A1 WO 2018185833A1 JP 2017014088 W JP2017014088 W JP 2017014088W WO 2018185833 A1 WO2018185833 A1 WO 2018185833A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
unit
value
change value
power supply
Prior art date
Application number
PCT/JP2017/014088
Other languages
French (fr)
Japanese (ja)
Inventor
神藤 高広
慎二 瀧川
陽大 丹羽
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2019510530A priority Critical patent/JP6806883B2/en
Priority to CN201780089361.XA priority patent/CN110476486B/en
Priority to PCT/JP2017/014088 priority patent/WO2018185833A1/en
Publication of WO2018185833A1 publication Critical patent/WO2018185833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present invention relates to an information processing apparatus that monitors index values of current or voltage supplied to a plurality of electrodes of a plasma generator.
  • a processing gas is supplied to a reaction chamber, and power is supplied to a plurality of electrodes arranged in the reaction chamber. Thereby, discharge occurs in the reaction chamber, and the processing gas is turned into plasma. For this reason, it is possible to appropriately execute the plasma processing by the plasma generator by monitoring the index value of the current or voltage supplied to the plurality of electrodes of the plasma generator.
  • JP 2016-070447 A Japanese Patent Laying-Open No. 2015-149263
  • the present specification provides an index value for indexing current or voltage supplied to the plurality of electrodes of a plasma generator that generates plasma by discharge between the plurality of electrodes.
  • An acquisition unit to acquire a calculation unit that calculates a change value that is a numerical value related to a change in the index value based on the index value acquired by the acquisition unit, and the calculation unit that is calculated by the calculation unit at a predetermined timing
  • the change value is calculated by the storage unit that stores the change value as the specific change value and the calculation unit, the power supply state when the change value is calculated becomes the power supply state at the predetermined timing.
  • a first determination unit that determines whether or not the change value is calculated based on the change value and the specific change value, and the power supply state at the time of calculation of the change value by the first determination unit is the predetermined timing. If it is determined that has the power supply state in the grayed discloses an information processing apparatus including a control unit and a notification unit for notifying predetermined information.
  • whether or not the power supply state to the electrode is the power supply state at a predetermined timing is determined based on the change value related to the change in the index value of the supply current or voltage to the electrode. .
  • predetermined information is alert
  • FIG. 1 to FIG. 3 show an atmospheric pressure plasma generator 10.
  • the atmospheric pressure plasma generator 10 is an apparatus for generating plasma under atmospheric pressure, and includes a plasma gas ejection device 12, a heated gas ejection device 14, and a control device (see FIG. 4) 16.
  • FIG. 1 is a perspective view of the entire atmospheric pressure plasma generator 10 from a perspective from obliquely above.
  • FIG. 2 is a perspective view of the lower end portion of the atmospheric pressure plasma generator 10 from a perspective from obliquely below.
  • FIG. 3 is a cross-sectional view of a main part of the atmospheric pressure plasma generator 10.
  • the width direction of the atmospheric pressure plasma generator 10 is referred to as the X direction
  • the depth direction of the atmospheric pressure plasma generator 10 is referred to as the Y direction
  • the direction perpendicular to the X direction and the Y direction, that is, the vertical direction is referred to as the Z direction.
  • the plasma gas ejection device 12 includes a housing 20, a cover 22, and a pair of electrodes 24 and 26.
  • the housing 20 includes a main housing 30, a heat radiating plate 31, a ground plate 32, a lower housing 34, and a nozzle block 36.
  • the main housing 30 has a generally block shape, and a reaction chamber 38 is formed inside the main housing 30.
  • the main housing 30 is formed with a plurality of first gas passages (only one first gas passage is shown in FIG. 3) 50 so as to extend in the vertical direction.
  • the first gas flow paths 50 are arranged at a predetermined interval in the X direction. An upper end portion of each first gas channel 50 opens to the reaction chamber 38, and a lower end portion opens to the bottom surface of the main housing 30.
  • the heat sink 31 is disposed on one side surface of the main housing 30 in the Y direction.
  • the heat radiating plate 31 has a plurality of fins (not shown) and radiates heat from the main housing 30.
  • the ground plate 32 functions as a lightning rod, and is fixed to the lower surface of the main housing 30.
  • the ground plate 32 has a plurality of through holes 56 penetrating in the vertical direction corresponding to the plurality of first gas flow paths 50, and each through hole 56 is formed in the corresponding first gas flow path 50. It is connected.
  • the lower housing 34 has a block shape and is fixed to the lower surface of the ground plate 32.
  • a plurality of second gas flow paths 62 are formed in the lower housing 34 so as to extend in the vertical direction corresponding to the plurality of through holes 56.
  • the upper end portions of the second gas flow paths 62 are connected to the corresponding through holes 56, and the lower end portions are open to the bottom surface of the lower housing 34.
  • the nozzle block 36 is fixed to the lower surface of the lower housing 34, and a plurality of third gas passages 66 are formed to extend in the vertical direction corresponding to the plurality of second gas passages 62 of the lower housing 34. Has been.
  • the upper end portion of each third gas flow channel 66 is connected to the corresponding second gas flow channel 62, and the lower end portion opens at the bottom surface of the nozzle block 36.
  • the cover 22 has a generally bowl shape, and is disposed on the lower surface of the ground plate 32 so as to cover the lower housing 34 and the nozzle block 36.
  • a through hole 70 is formed in the lower surface of the cover 22.
  • the through hole 70 is larger than the lower surface of the nozzle block 36, and the lower surface of the nozzle block 36 is located inside the through hole 70.
  • a through hole 72 is also formed in the side surface of the cover 22 on the heated gas ejection device 14 side so as to extend in the Y direction.
  • the pair of electrodes 24 and 26 are disposed so as to face each other inside the reaction chamber 38 of the main housing 30.
  • a processing gas supply device (see FIG. 4) 74 is connected to the reaction chamber 38.
  • the processing gas supply device 74 is a device that supplies at least one of an inert gas such as nitrogen and an active gas such as oxygen as a processing gas. As a result, the processing gas is supplied to the reaction chamber 38.
  • the heated gas ejection device 14 includes a protective cover 80, a gas pipe 82, a heater 83, and a connecting block 84.
  • the protective cover 80 is disposed so as to cover the heat radiating plate 31 of the plasma gas ejection device 12.
  • the gas pipe 82 is disposed so as to extend in the vertical direction inside the protective cover 80, and a heating gas supply device 86 (see FIG. 4) 86 is connected to the gas pipe 82.
  • the heating gas supply device 86 is a device that supplies an active gas such as oxygen or an inert gas such as nitrogen.
  • a generally cylindrical heater 83 is disposed on the outer peripheral surface of the gas pipe 82, and the gas pipe 82 is heated by the heater 83. Thereby, the gas supplied to the gas pipe 82 from the heating gas supply device 86 is heated.
  • the connecting block 84 is connected to the lower end of the gas pipe 82 and is fixed to the side surface of the cover 22 on the heated gas ejection device 14 side in the Y direction.
  • the connection block 84 is formed with a communication path 88 that is bent in an L-shape.
  • One end of the communication path 88 opens on the upper surface of the connection block 84 and the other end of the communication path 88 is Y. Open in the side surface on the plasma gas ejection device 12 side in the direction.
  • One end of the communication path 88 communicates with the gas pipe 82, and the other end of the communication path 88 communicates with the through hole 72 of the cover 22.
  • the control device 16 includes a controller 100, a plurality of drive circuits 102, and a control circuit 104.
  • the plurality of drive circuits 102 are connected to the electrodes 24, 26, the processing gas supply device 74, the heater 83, and the heating gas supply device 86.
  • the controller 100 includes a CPU, a ROM, a RAM, and the like, mainly a computer, and is connected to a plurality of drive circuits 102. Thereby, the operation of the plasma gas ejection device 12 and the heated gas ejection device 14 is controlled by the controller 100.
  • the controller 100 is connected to the display device 106 via the control circuit 104.
  • the controller 100 is connected to the input device 107.
  • the input device 107 is composed of operation buttons and the like, and outputs operation information by operating the operation buttons. Thereby, operation information obtained by operating the operation buttons is input to the controller 100.
  • the plasma gas ejection device 12 has a transformer (not shown), and 200 volt power supplied from the power source is boosted to 15 kvolt by the transformer, and the boosted power is supplied to the electrodes 24 and 26. Is done.
  • the control device 16 includes a detection sensor 108 that detects a current supplied from the power source to the transformer, that is, a transformer primary current, and the detection sensor 108 is connected to the controller 100. As a result, a value detected by the detection sensor 108, that is, a transformer temporary current supplied to the electrodes 24 and 26 is input to the controller 100.
  • the PC 110 is connected to the controller 100.
  • the PC 110 includes a display device 112 and a storage device 114, displays an image based on information transmitted from the controller 100 on the display device 112, and stores information transmitted from the controller 100 in the storage device 114.
  • the plasma gas ejection device 12 converts the processing gas into plasma inside the reaction chamber 38 by the above-described configuration, and the third nozzle block 36.
  • Plasma gas is ejected from the lower end of the gas flow channel 66. Further, the gas heated by the heated gas ejection device 14 is supplied into the cover 22. Then, the plasma gas is ejected from the through hole 70 of the cover 22 together with the heated gas, and the object to be processed is subjected to plasma processing.
  • the processing gas is supplied to the reaction chamber 38 by the processing gas supply device 74.
  • power is supplied to the pair of electrodes 24 and 26 in the reaction chamber 38, and a current flows between the pair of electrodes 24 and 26.
  • a discharge is generated between the pair of electrodes 24 and 26, and the processing gas is turned into plasma by the discharge.
  • the plasma generated in the reaction chamber 38 flows downward in the first gas channel 50 and flows into the second gas channel 62 through the through hole 56.
  • the plasma gas flows downward in the second gas channel 62 and the third gas channel 66. Thereby, plasma gas is ejected from the lower end of the third gas channel 66.
  • the gas is supplied to the gas pipe 82 by the heating gas supply device 86, and the gas pipe 82 is heated by the heater 83.
  • the gas supplied to the gas pipe 82 is heated to 600 ° C. to 800 ° C.
  • the heated gas flows into the cover 22 from the through hole 72 of the cover 22 through the communication path 88 of the connection block 84.
  • the heated gas flowing into the cover 22 is ejected from the through hole 70 of the cover 22.
  • the plasma gas ejected from the lower end of the third gas passage 66 of the nozzle block 36 is protected by the heated gas. Thereby, it becomes possible to perform a plasma process appropriately.
  • the object to be processed is placed at a predetermined distance from the jet outlet from which the plasma gas is jetted, and the plasma gas is jetted from the jet outlet to the target to be processed. That is, at the time of plasma treatment, the plasma gas is ejected into the air, and the object to be treated is irradiated with the plasma gas ejected into the air. At this time, the plasma gas reacts with an active gas such as oxygen in the air to generate ozone. For this reason, there exists a possibility that plasma gas may deactivate and a plasma processing cannot be performed appropriately.
  • the gas heated by the heated gas ejection device 14 is ejected into the cover 22 and ejected from the through hole 70 of the cover 22.
  • the plasma gas ejected from the lower end of the nozzle block 36 is protected by the heated gas. Since the heated gas is heated to 600 ° C. to 800 ° C. in the gas pipe 82, the heated gas ejected from the through hole 70 is 250 ° C. or higher. Since ozone is decomposed at 200 ° C. or higher, ozonization of the plasma gas covered with the heated gas is prevented. Thereby, the deactivation of plasma gas is prevented, and it becomes possible to perform a plasma process appropriately.
  • the heated gas of 200 ° C. or higher is ejected toward the object to be processed together with the plasma gas, the object to be processed is heated by the heating gas, and the heated object to be processed is subjected to plasma treatment.
  • the reactivity of a to-be-processed object improves and it becomes possible to perform a plasma process effectively.
  • the plasma processing capability may decrease.
  • the electrodes 24, 26, etc. deteriorate, even the discharge may not occur.
  • the operation time of the apparatus is managed by a timer, and maintenance, replacement, etc. of the electrodes 24, 26, etc. are performed every predetermined time.
  • the deterioration rates of the electrodes 24 and 26 and the like vary depending on the usage frequency of the user, the material of the object to be processed by plasma processing, the temperature during the plasma processing, and the like.
  • the predetermined time that serves as a guide for replacement is generally set shorter. For this reason, although the deterioration has not progressed so much and the plasma processing capacity has not decreased so much, maintenance and replacement of the electrodes 24 and 26 may be performed, which is useless.
  • the pair of electrodes 24 and 26 is subjected to 0.1 second. It is detected whether or not a state where no current flows continuously occurs. When no current flows through the electrodes 24 and 26 for 0.1 seconds and no current flows through the electrodes 24 and 26, no discharge occurs and plasma is not generated for 0.1 seconds. In addition, when no current flows for 0.1 seconds continuously, a state in which no current flows for less than 0.1 seconds occurs many times other than 0.1 seconds. In other words, if discharge does not occur continuously for 0.1 second of one second, that is, a time corresponding to 10%, a discharge of less than 0.1 second occurs during the time other than 0.1 second. Many situations that do not occur occur.
  • the atmospheric pressure plasma generator 10 a sign of a decrease is notified before the plasma processing capacity is significantly decreased.
  • the current supplied to the electrodes 24 and 26 is detected by the detection sensor 108, and the local maximum value, that is, the amplitude for each cycle is detected.
  • the current supplied to the electrodes 24 and 26 changes as shown in FIG. 5, the current waveform changes periodically, and the amplitude of the current is It becomes almost constant.
  • the current waveform is chipped, and the amplitude may be extremely reduced instantaneously. In this way, when the amplitude drops instantaneously, the discharge does not occur instantaneously, but since the stop of the discharge is instantaneous, it hardly affects the plasma processing capability.
  • the current waveform supplied to the electrodes 24 and 26 may increase or decrease as a whole and fluctuate as shown in FIG. That is, the maximum value of the current supplied to the electrodes 24 and 26 may increase or decrease, and the maximum value may vary. In such a case, the discharge state varies, but plasma is generated, so that the plasma processing capacity is not significantly affected.
  • the instantaneous decrease in the local maximum value of the current occurs more than once, and the instantaneous decrease in the local maximum value of the current generated multiple times continues. It will be in the state where electric power does not flow continuously.
  • an instantaneous decrease or variation in the maximum value of current is considered to be a sign of a decrease in plasma processing capability. Therefore, in the atmospheric pressure plasma generator 10, the maximum value for each cycle of the current detected by the detection sensor 108 is monitored. At this time, the maximum value X (hereinafter referred to as “average maximum value”) X for each period of the normal current is specified.
  • the average maximum value X is an average value of the local maximum values for each period of the normal current when the electrodes 24 and 26 are not deteriorated.
  • the detected maximum value (hereinafter referred to as “detected maximum value”) and the average maximum value X each time the maximum value for each cycle of the current is detected. It is compared, and it is determined whether or not the detected maximum value is within a predetermined range (for example, X ⁇ 0.3X) (hereinafter referred to as “average maximum value range”) centered on the average maximum value X. Is done. When it is determined that the detected maximum value is out of the average maximum value range, the number of waveform failures is counted up by one.
  • the number of waveform defects is counted up cumulatively for one minute, and is the number of times that the detected maximum value is determined to be outside the average maximum value range per unit time (1 minute).
  • the number of waveform failures counted up for one minute cumulatively shifts every time the detected maximum value and the average maximum value range are compared. That is, after the number of waveform failures is counted up for one minute, when the detected maximum value and the average maximum value range are compared, the comparison result between the detected maximum value and the average maximum value range is added to the number of waveform failures, The comparison result between the detected maximum value and the average maximum value range one minute ago is deleted from the number of waveform failures. As a result, the number of waveform failures when the detected maximum value is compared with the average maximum value range is determined to be outside the average maximum value range while the number of waveform failures is one minute after the comparison timing. Number of times.
  • the number of waveform failures exceeds the set number it is determined that there is a sign of a decrease in plasma processing capacity, and a screen showing a sign of a decrease in plasma processing capacity (hereinafter referred to as a “prediction notification screen”) Is displayed on the display device 106.
  • the number of settings is set by the operator by operating the input device 107. However, the operator does not know how many times the set number can be set so that a sign of a decrease in plasma processing capacity can be determined. For this reason, in order to find an appropriate setting number, the operator repeatedly performs setting of the setting number and measurement of actual plasma processing capability.
  • the operator first sets a small number, for example, 50 times. In other words, when the set number is set to 50 times, when a lack or the like occurs in the current waveform 50 times per minute, a predictive notification screen is displayed on the display device 106. Then, when the predictor notification screen is displayed on the display device 106, the operator measures the object to be processed by the plasma processing performed when the predictor notification screen is displayed, using a contact angle meter or the like. .
  • the wettability of the object to be processed is a physical property that changes according to the contact angle of the surface of the object to be processed, and the wettability of the object to be processed is evaluated by measuring the contact angle of the object to be processed with a contact angle meter. Can do. For this reason, it can be judged whether the plasma processing is performed appropriately by measuring the contact angle of a to-be-processed object with a contact angle meter. That is, it is possible to determine whether or not the plasma processing capacity is reduced.
  • the operator can measure the contact angle of the workpiece using a dyne pen. For this reason, it is also possible to determine whether or not the plasma processing capability is reduced by measuring the contact angle of the object to be processed with a dyne pen.
  • an indicator whose optical characteristics change due to plasma irradiation has been developed, and by using the indicator, it can be determined whether or not the plasma processing is being performed appropriately. Since the indicator changes its color by plasma irradiation and is a known one, it will be briefly described below.
  • Indicators that change color by plasma irradiation include, for example, viscous fluids containing compositions that change by reacting with hydrogen ions obtained by nitrogen oxides, azo-based dyes, nitrogen-containing polymers, and cationic surfactants A thin film layer is formed on the surface of the sheet by a viscous fluid containing a composition composed of an agent.
  • an indicator including a thin film layer that changes color when irradiated with plasma is formed. Note that details of the indicator whose color is changed by plasma irradiation are disclosed in JP2013-178922A, JP2013-95765A, JP2013-98196A, JP2013-95764A, and JP2015. -13982, JP-A-2015-205995, and the like.
  • the color of the indicator changes due to plasma irradiation, it is determined whether or not the plasma processing is appropriately performed based on the color difference between the indicator after plasma irradiation and the indicator not irradiated with plasma. .
  • an indicator value related to the color of an indicator not irradiated with plasma that is, an unprocessed indicator is set as a color sample.
  • the index value relating to color lightness L * in Lab color space and chromaticity a * and b * indicating hue and saturation are employed.
  • the indicator irradiated with the plasma together with the object to be processed is measured by the color difference meter, and the color difference ⁇ E * ab between the indicator irradiated with the plasma and the unprocessed indicator is calculated.
  • FIG. 8 shows a graph showing the color difference ⁇ E * ab of the indicator irradiated with plasma under the plasma irradiation conditions 1 to 6 and the color difference ⁇ E * ab of the untreated indicator.
  • the color difference ⁇ E * ab of the unprocessed indicator is naturally zero.
  • the larger the number indicating the condition the larger the plasma irradiation amount. That is, the larger the number indicating the condition, the shorter the plasma irradiation distance and the longer the plasma irradiation time.
  • the irradiation conditions 2 and 3 out of the plasma irradiation conditions 1 to 6 are the optimum plasma irradiation conditions. That is, the optimum value of the color difference ⁇ E * ab is about 4 to 6. For this reason, when the color difference ⁇ E * ab is less than 4, the plasma irradiation is insufficient, and when the color difference ⁇ E * ab is 6 or more, it is determined that the plasma irradiation is too much. When the plasma irradiation is insufficient, it is naturally determined that the plasma processing is not properly performed and the plasma processing capability is reduced.
  • the object to be processed becomes fragile by plasma irradiation when the object to be processed is a resin material.
  • the contact angle of the object to be processed is lowered, and it may be determined that the plasma processing has been appropriately performed.
  • the object to be processed is a resin material, the polymer resin in the object to be processed is divided by the excessive plasma irradiation and the molecular weight is lowered, so that the object to be processed becomes fragile. In such a fragile object to be processed, even if the contact angle is low, it is not preferable as a product.
  • the number of settings (50 times) set by the user is assumed to be too small. Therefore, the user resets a number larger than the previously set number (50 times), for example, 100 times as the set number.
  • a predictive notification screen is displayed on the display device 106.
  • the operator determines whether or not the plasma processing object that has been executed when the predictor notification screen is displayed is suitable for plasma processing according to the above procedure. To do.
  • the worker sets the number greater than the previously set number (100 times) to the set number. Reset as.
  • the measurement value indicating the plasma processing capability gradually decreases. That is, for example, the contact angle of the object to be processed is gradually increased, and the color difference ⁇ E * ab is a value that gradually deviates from 5.
  • the measurement value indicating the plasma processing capability may be extremely lowered. For this reason, when the operator resets the set number, it is preferable to reset the set number that is somewhat larger than the previously set number.
  • first set number Specified number
  • first measured value the measured value indicating the plasma processing capability when the first set number is specified
  • the first measurement value by setting the first measurement value to a value close to the measurement value when it is determined that the plasma processing cannot be appropriately performed, in the final stage in a range where the appropriate plasma processing can be performed, It is possible to know a sign of a decrease in plasma processing capacity.
  • the first measurement value by setting the first measurement value to be a value far from the measurement value when it is determined that the plasma processing cannot be performed appropriately, the plasma processing capability is reduced at the initial stage of the plasma processing capability reduction. It becomes possible to know the signs of As described above, in the atmospheric pressure plasma generation apparatus 10, the operator can recognize the signs of various stages of the decrease in the plasma processing capability by arbitrarily specifying the first measurement value.
  • the degree of decrease in the plasma processing capability by repeatedly executing the setting of the set number and the measurement of the plasma processing capability. Specifically, after the first set number is specified, the set value and the measurement of the plasma processing capability are repeatedly performed, so that the measured value indicating the plasma processing capability further decreases. Therefore, the setting of the set number and the measurement of the plasma processing capacity are repeatedly performed until the measurement value indicating the plasma processing capacity reaches the measurement value when it is determined that the appropriate plasma processing is not performed. . Based on the relationship between the set number and the measured value indicating the plasma processing capability, the relationship between the number of waveform defects per unit time and the measured value indicating the plasma processing capability is formulated into a mathematical formula. As a result, it is possible to appropriately estimate the degree of decrease in the plasma processing capability according to the number of waveform defects per unit time, and it is possible to appropriately recognize a sign of a decrease in the plasma processing capability.
  • the atmospheric pressure plasma generator 10 each time the current maximum value is detected by the detection sensor 108, the current maximum value and the number of waveform defects per unit time are displayed on the display device 106. As a result, the operator recognizes the maximum value of the current and the number of waveform failures per unit time so that the atmospheric pressure plasma generator 10 can perform the operation even before the predictive notification screen is displayed on the display device 106. It becomes possible to estimate the plasma processing capability to some extent.
  • the maximum value of the current and the number of waveform defects per unit time are changed from the atmospheric pressure plasma generator 10 to the PC 110. Sent to.
  • the maximum value of the received current and the number of waveform failures per unit time are displayed on the display device 112. Thereby, for example, a factory manager or the like recognizes the maximum value of the current of the atmospheric pressure plasma generator 10 and the number of waveform failures per unit time, thereby improving the plasma processing capability of the atmospheric pressure plasma generator 10. It becomes possible to estimate to some extent.
  • the maximum value of the received current and the number of waveform failures per unit time are stored in the storage device 114. As a result, the relationship between the change in the current supplied to the electrodes 24 and 26 in the atmospheric pressure plasma generator 10 and the number of waveform defects per unit time can be analyzed and used for a sign of a decrease in plasma processing capability. .
  • the controller 100 of the atmospheric pressure plasma generation apparatus 10 includes an acquisition unit 120, a determination unit 122, a count unit 124, a display unit 126, and an output unit 128, as shown in FIG.
  • the acquisition unit 120 is a functional unit for acquiring a local maximum value, that is, an amplitude over time, as an index value indicating the current supplied to the electrodes 24 and 26.
  • the determination unit 122 is a functional unit for determining whether or not the maximum value of the current satisfies the setting condition, that is, a functional unit for determining whether or not the detected maximum value is within the average maximum value range. .
  • the counting unit 124 counts the number of times that the current maximum value is determined not to satisfy the set condition, that is, the number of times that the detected maximum value is determined to be outside the average maximum value range. It is a functional part.
  • the display unit 126 is a functional unit for displaying a predictive notification screen on the display device 106 when the count number counted by the count unit 124, that is, when the number of waveform failures is equal to or greater than the set number.
  • the output unit 128 is a functional unit for outputting the current maximum value and the number of waveform failures to the PC 110.
  • (B) Second Embodiment In the atmospheric pressure plasma generation apparatus 10 of the first embodiment, after the operator repeatedly executes the setting of the set number and the measurement of the plasma processing capacity and specifies the first set number, By setting the first set number with the input device 107, the predictive notification screen is displayed on the display device 106 at an appropriate timing.
  • the first set number is set by the operation of the control device 16 so that the predictive notification screen is displayed on the display device 106 at an appropriate timing.
  • the atmospheric pressure plasma generator 10 of the second embodiment is the same as the atmospheric pressure plasma generator 10 of the first embodiment except for the storage device and the interface. For this reason, the storage device and the interface will be described, description of other components will be omitted, and the reference numerals of the components of the first embodiment will be used.
  • the control device 16 includes an interface 150 and a storage device 151.
  • the interface 150 is for connecting a measuring device that measures physical properties that change due to plasma irradiation, and a contact angle meter 152 and a color difference meter 154 are connected to the interface 150.
  • the contact angle meter 152 and the color difference meter 154 are the same as those described in the first embodiment.
  • the interface 150 is connected to the controller 100, and values measured by the contact angle meter 152 and the color difference meter 154 are input to the controller 100.
  • the storage device 151 stores various information used for specifying the first set number, and is connected to the controller 100. As a result, various types of information used for specifying the first set number is input to the controller 100, and the first set number is specified in the controller 100.
  • the plasma processing capacity is lowered based on the measured values by the contact angle meter 152 and the color difference meter 154 and the information input to the input device 107 by the operator. Is estimated and the first set number is set. Then, when the number of waveform defects becomes equal to or greater than the first set number, a predictive notification screen is displayed on the display device 106.
  • the current flowing through the electrodes 24 and 26 is detected by the detection sensor 108, and each time the maximum value of the current is detected by the detection sensor 108, Then, it is determined whether or not the detected maximum value is within the average maximum value range.
  • the number of waveform failures is counted up by one. That is, also in the second embodiment, the number of waveform defects per unit time (1 minute) is counted as in the first embodiment.
  • the counted number of waveform failures is stored in the storage device 151 as the operation history of the atmospheric pressure plasma generator 10 together with the counted date and time.
  • the detected maximum value is also stored in the storage device 151 as the operation history of the atmospheric pressure plasma generator 10 together with the detected date and time each time it is detected by the detection sensor 108.
  • the operator measures the plasma processing ability of the workpiece at an arbitrary timing. That is, the contact angle of the workpiece irradiated with plasma by the atmospheric pressure plasma generator 10 is measured by the contact angle meter 152. Further, the color difference ⁇ E * ab of the indicator irradiated with plasma by the atmospheric pressure plasma generator 10 together with the object to be processed is measured by the color difference meter 154.
  • the measurement method of the contact angle of the object to be processed by the contact angle meter 152 and the measurement method of the color difference ⁇ E * ab of the indicator by the color difference meter 154 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the operator estimates a decrease in the plasma processing capacity based on the measured value of the contact angle meter 152 and the like, but in the second embodiment, the contact angle meter 152 and the color difference meter 154 are estimated. Is connected to the interface 150 of the control device 16. For this reason, the measured values of the contact angle meter 152 and the color difference meter 154 are input to the controller 100 of the control device 16. Then, the measured values of the contact angle meter 152 and the color difference meter 154 (hereinafter referred to as “input measured value”) are stored in the storage device 151 together with the measurement date and time.
  • the input measurement value is the operation history so that the date and time included in the previously stored operation history of the atmospheric pressure plasma generator 10 and the date and time included in the input measurement value match within a predetermined range.
  • the data are stored in the storage device 151 in association with each other.
  • the controller 100 estimates the plasma processing capability based on the input measurement value. Specifically, threshold values corresponding to the measured values of the contact angle meter 152 and the color difference meter 154 are stored in the storage device 151. The threshold value of each measurement value does not reach the measurement value when it is determined that the plasma processing cannot be performed properly, and is set to a value within an allowable range in which the plasma processing can be performed appropriately. Then, the controller 100 determines whether or not the input measurement value has reached a threshold value.
  • the input measurement value does not reach the threshold value, it is estimated that the processing capability of the atmospheric pressure plasma generator 10 is appropriate.
  • the threshold value it is estimated that the processing capability of the atmospheric pressure plasma generator 10 is within the allowable range, but is reduced.
  • the number of waveform failures in the operation history stored in association with the input measurement value is registered as the first set number. That is, the number of waveform failures during the plasma processing, which is estimated to be a decrease in the processing capability of the atmospheric pressure plasma generator 10, is stored in the storage device 151 as the first set number. Then, when the number of waveform defects becomes equal to or greater than the first set number, a predictive notification screen is displayed on the display device 106.
  • the indication notification screen is displayed on the display device 106. Is done. That is, when the number of waveform defects is equal to or greater than the first set number, it is determined that the power supply state to the electrodes 24 and 26 is the power supply state when the processing capability is assumed to be reduced.
  • the predictive notification screen is displayed. As a result, the operator can appropriately recognize a sign of a decrease in the plasma processing capacity, and can adjust the work schedule and the like.
  • the threshold value used when specifying the first measurement value is set to a value close to the measurement value when it is determined that the plasma processing cannot be appropriately performed, so that the appropriate plasma processing can be performed. At the final stage, it is possible to know a sign of a decrease in plasma processing capacity.
  • the threshold value used when specifying the first measurement value is set to be a value far from the measurement value when it is determined that the plasma processing cannot be performed appropriately, it is possible to reduce the plasma processing capability at an early stage. It becomes possible to know a sign of a decrease in plasma processing capacity.
  • by adjusting the threshold value it is possible to recognize signs of various stages of the decrease in the plasma processing capacity.
  • the plasma treatment by the atmospheric pressure plasma generator 10 is generally performed as a pretreatment for the surface treatment of the workpiece.
  • the surface treatment of the object to be treated include adhesion treatment to the surface of the object to be treated, painting treatment, and coating treatment.
  • an adhesion process to the surface of the object to be processed, a coating process, a coating process, or the like is performed on the object to be processed after the plasma processing by the atmospheric pressure plasma generator 10 is completed.
  • a post-process such as a coating process is performed on the target object that has been subjected to the plasma process by the atmospheric pressure plasma generator 10. And after post-processing, such as a coating process, the quality of a to-be-processed object is confirmed. At this time, if there is no problem in the quality of the object to be processed, it is estimated that the plasma processing as the preprocessing is appropriately performed. On the other hand, when there is a problem in the quality of the object to be processed, it is estimated that the plasma processing as the preprocessing is not properly performed.
  • the operator inputs the date and time when the plasma process is performed on the object to be processed as input information. Input to 107.
  • the input information is input to the controller 100, and the controller 100 specifies the execution date and time of the plasma processing included in the input information.
  • the controller 100 refers to the operation history stored in the storage device 151 and extracts an operation history including the specified date and time and the date and time within a predetermined range. The number of waveform failures included in the operation history is registered as the first set number.
  • the number of waveform failures when the quality of an object to be processed after plasma processing is not good is registered as the first set number. Then, when the number of waveform defects becomes equal to or greater than the first set number, a predictive notification screen is displayed on the display device 106. That is, when the number of waveform defects is equal to or greater than the first set number, the power supply state to the electrodes 24 and 26 is a power supply state when post-processing cannot be performed properly due to a decrease in plasma processing capability. Is determined, and a predictive notification screen is displayed. Thereby, the operator can recognize a sign of a decrease in the plasma processing capability in consideration of the post-processing of the plasma processing.
  • the operator inputs not only the result of the post-processing of the plasma processing but also the input information to the input device 107 when the performance of the plasma processing is predicted to be reduced by another method and the performance of the plasma processing is predicted to be reduced.
  • the operator uses a dyne pen to measure the contact angle of the object to be processed after the plasma processing. At this time, when the contact angle is higher than the angle assumed in advance, it is estimated that the plasma processing capability is reduced. For this reason, the operator inputs the date and time when the plasma processing is performed on the workpiece to the input device 107 as input information.
  • the predictive notification screen is displayed on the display device 106.
  • the atmospheric pressure plasma generation device 10 each time the input measurement value is stored in the storage device 151 in association with the operation history, the input measurement value and the operation history are displayed on the display device 106. As a result, the operator recognizes the measured value of the contact angle meter 152 and the like, the maximum value of the current included in the operation history, and the number of waveform failures per unit time, whereby the predictive notification screen is displayed on the display device 106. Even before being performed, the plasma processing capability of the atmospheric pressure plasma generator 10 can be estimated to some extent.
  • the atmospheric pressure plasma generation device 10 each time the input measurement value is stored in the storage device 151 in association with the operation history, the input measurement value and the operation history are transmitted from the atmospheric pressure plasma generation device 10 to the PC 110.
  • the In the PC 110 the received input measurement value and operation history are displayed on the display device 112.
  • a factory manager can recognize the measured value of the contact angle meter 152, the maximum value of the current included in the operation history, and the number of waveform failures per unit time, thereby generating atmospheric pressure plasma. It becomes possible to estimate the plasma processing capability of the apparatus 10 to some extent.
  • the received input measurement values and operation history are stored in the storage device 114.
  • the relationship between the change in the current supplied to the electrodes 24 and 26 in the atmospheric pressure plasma generator 10, the number of waveform defects per unit time, and the measured value of the contact angle meter 152, etc. is analyzed, and the plasma processing capability is analyzed. It can be used to predict the decline.
  • the relationship between the measured value of the contact angle meter 152 or the like, that is, the measured value indicating the plasma processing capability, and the number of waveform defects can be formulated.
  • the degree of decrease in the plasma processing capability corresponding to the number of waveform failures can be estimated appropriately, and the plasma processing capability can be estimated. It is possible to appropriately recognize the signs of decline.
  • the controller 100 of the atmospheric pressure plasma generator 10 includes an acquisition unit 160, a calculation unit 162, a storage unit 164, a state determination unit 166, a display unit 168, and an output unit 170. It has.
  • the calculation unit 162 includes a condition determination unit 172.
  • the acquisition unit 160 is a functional unit for acquiring a local maximum value, that is, an amplitude over time, as an index value indicating the current supplied to the electrodes 24 and 26.
  • the condition determination unit 172 is a functional unit for determining whether or not the maximum value of the current satisfies the setting condition, that is, a functional unit for determining whether or not the detected maximum value is within the average maximum value range. is there.
  • the calculation unit 162 is a functional unit for counting the number of times determined by the condition determination unit 172 and calculating the number of waveform defects.
  • the storage unit 164 stores a predetermined timing, that is, the number of waveform failures when it is determined that the input measurement value has reached the threshold value or when input information is input to the input device 107 as the first set number. This is a functional unit for storing in the device 151.
  • the state determination unit 166 determines whether or not the power supply state to the electrodes 24 and 26 is a power supply state when the plasma processing capacity is reduced. It is a functional part for judging.
  • the display unit 168 is a functional unit for displaying a predictive notification screen on the display device 106 when the power supply state to the electrodes 24 and 26 is the power supply state when the plasma processing capacity is reduced. It is.
  • the output unit 170 is a functional unit for outputting input measurement values and operation history to the PC 110.
  • the atmospheric pressure plasma generator 10 is an example of a plasma generator.
  • the control device 16 is an example of a control device and an information processing device.
  • the electrodes 24 and 26 are examples of electrodes.
  • the input device 107 is an example of an operation reception unit.
  • the PC 110 is an example of an external device.
  • the interface 150 is an example of a connection unit.
  • the contact angle meter 152 and the color difference meter 154 are examples of a measuring device.
  • the acquisition unit 160 is an example of an acquisition unit.
  • the calculation unit 162 is an example of a calculation unit.
  • the storage unit 164 is an example of a storage unit.
  • the state determination unit 166 is an example of a first determination unit.
  • Display unit 168 is an example of a notification unit.
  • the output unit 170 is an example of an output unit.
  • the condition determination unit 172 is an example of a second determination unit.
  • the number of waveform defects is an example of a change value and a count number.
  • the first set number is an example of a specific change value and a specific count number.
  • this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, the number of waveform failures is counted based on the maximum value of the current detected by the detection sensor 108, that is, the amplitude, but the waveform failure is counted based on the supplied power amount. The number of times may be counted. That is, for example, as shown in FIG. 10, when the current detected by the detection sensor 108 is changing, the integrated value of the current waveform, that is, the area (shaded portion in the figure) is the amount of supplied power. Become.
  • the power supply amount for each cycle is monitored, and when the power supply amount exceeds the set range, for example, in FIG. 10, the number of waveform defects is counted up by 1 when the power supply amount is extremely reduced.
  • the number of waveform defects can be appropriately counted. Note that the number of waveform defects may be counted based not only on the current supplied to the electrodes 24 and 26 but also on the voltage supplied to the electrodes 24 and 26.
  • the process for estimating the decrease in the plasma processing capability of the atmospheric pressure plasma generator 10 is executed in the control device 16, but may be executed by an information processing device such as the PC 110.
  • the information processing apparatus of the present invention is the PC 110.
  • a contact angle meter and a color difference meter are adopted as an apparatus for measuring physical properties that change due to plasma irradiation.
  • various devices can be used as long as they can measure physical properties that change due to plasma irradiation. It is possible to employ a device. For example, it is possible to employ an apparatus capable of measuring the surface free energy of the object to be processed.
  • the notification method is not limited to display on the screen, and various methods such as voice, lighting of a lamp, printing on a sheet, and the like can be employed.
  • the predictive notification screen is displayed based on the number of waveform defects and the first set number.
  • the predictive notification screen may be displayed in consideration of the input measurement value. . That is, the predictive notification screen may be displayed based on the number of waveform defects, the first set number, and the input measurement value. Specifically, when it is determined whether or not the number of waveform failures is equal to or greater than the first set number, the input measurement value stored in association with the operation history including the number of waveform failures is specified. Then, it is determined whether or not the input measurement value has reached a preset setting value. At this time, when the number of waveform failures is equal to or greater than the first set number and the input measurement value has reached the set value, the predictive notification screen may be displayed.
  • Atmospheric pressure plasma generator (plasma generator) 16: Control device (information processing device) 24: Electrode 26: Electrode 107: Input device (operation reception unit) 110: PC (external device) 150: Interface (connection unit) 152: Contact angle meter (measuring device) 154: Color difference meter (measuring device) 160: Acquisition unit 162: Calculation unit 164: Storage unit 166: State judgment unit (first judgment unit) 168: Display unit (notification unit) 170: Output unit 172: Condition determination unit (second determination unit)

Abstract

This information processing device is equipped with a control device comprising: an acquisition unit which successively acquires indicator values which indicate the current or voltage supplied to a plurality of electrodes of a plasma-generating device which generates plasma by discharge between a plurality of electrodes; a calculation unit which calculates a variation value which is a numerical value pertaining to change in indicator values, on the basis of the indicator values acquired by the acquisition unit; a recording unit which stores, as characteristic variation values, the variation values calculated by the calculation unit at predetermined timing; a first determination unit which determines, on the basis of the variation value and the characteristics variation value, whether the power supply status when the variation value is calculated is the power supply status at the predetermined timing, each time the variation value is calculated by the calculation unit; and a having a notification unit which communicates predetermined information if the power supply status when the variation value is calculated by the first determination unit is deemed to be the power supply status at the predetermined timing.

Description

情報処理装置Information processing device
 本発明は、プラズマ発生装置の複数の電極に供給される電流又は電圧の指標値を監視する情報処理装置に関する。 The present invention relates to an information processing apparatus that monitors index values of current or voltage supplied to a plurality of electrodes of a plasma generator.
 プラズマ発生装置では、下記特許文献に記載されているように、反応室に処理ガスが供給され、反応室に配設された複数の電極に電力が供給される。これにより、反応室において、放電が生じ、処理ガスがプラズマ化される。このため、プラズマ発生装置の複数の電極に供給される電流又は電圧の指標値を監視することで、プラズマ発生装置によるプラズマ処理を適切に実行することが可能となる。 In the plasma generator, as described in the following patent document, a processing gas is supplied to a reaction chamber, and power is supplied to a plurality of electrodes arranged in the reaction chamber. Thereby, discharge occurs in the reaction chamber, and the processing gas is turned into plasma. For this reason, it is possible to appropriately execute the plasma processing by the plasma generator by monitoring the index value of the current or voltage supplied to the plurality of electrodes of the plasma generator.
特開2016-070447号公報JP 2016-070447 A 特開2015-149263号公報Japanese Patent Laying-Open No. 2015-149263
 プラズマ発生装置の複数の電極に供給される電流又は電圧の指標値を監視することで、プラズマ発生装置によるプラズマ処理を適切に実行することが可能となる。このため、プラズマ発生装置の複数の電極に供給される電流又は電圧の指標値を適切に監視することを課題とする。 By monitoring the index values of the current or voltage supplied to the plurality of electrodes of the plasma generator, it is possible to appropriately execute the plasma processing by the plasma generator. For this reason, it is an object to appropriately monitor index values of current or voltage supplied to a plurality of electrodes of a plasma generator.
 上記課題を解決するために、本明細書は、複数の電極間での放電によりプラズマを発生させるプラズマ発生装置の前記複数の電極に供給される電流又は電圧を指標する指標値を継時的に取得する取得部と、前記取得部により取得された前記指標値に基づいて、前記指標値の変化に関する数値である変化値を演算する演算部と、所定のタイミングにおいて前記演算部により演算された前記変化値を、特定変化値として記憶する記憶部と、前記演算部により前記変化値が演算される毎に、当該変化値の演算時の電力供給状態が、前記所定のタイミングにおける電力供給状態になっているか否かを、当該変化値と前記特定変化値とに基づいて判断する第1判断部と、前記第1判断部により前記変化値の演算時の電力供給状態が、前記所定のタイミングにおける電力供給状態になっていると判断された場合に、所定の情報を報知する報知部とを有する制御装置を備える情報処理装置を開示する。 In order to solve the above-described problem, the present specification provides an index value for indexing current or voltage supplied to the plurality of electrodes of a plasma generator that generates plasma by discharge between the plurality of electrodes. An acquisition unit to acquire, a calculation unit that calculates a change value that is a numerical value related to a change in the index value based on the index value acquired by the acquisition unit, and the calculation unit that is calculated by the calculation unit at a predetermined timing Each time the change value is calculated by the storage unit that stores the change value as the specific change value and the calculation unit, the power supply state when the change value is calculated becomes the power supply state at the predetermined timing. A first determination unit that determines whether or not the change value is calculated based on the change value and the specific change value, and the power supply state at the time of calculation of the change value by the first determination unit is the predetermined timing. If it is determined that has the power supply state in the grayed discloses an information processing apparatus including a control unit and a notification unit for notifying predetermined information.
 本開示によれば、電極への電力供給状態が、所定のタイミングにおける電力供給状態になっているか否かが、電極への供給電流又は電圧の指標値の変化に関する変化値に基づいて判断される。そして、電極への電力供給状態が、所定のタイミングにおける電力供給状態になっている場合に、所定の情報が報知される。つまり、例えば、所定のタイミングがプラズマ処理能力の低下しているタイミングなどであった場合に、プラズマ処理能力の低下しているタイミングで、所定の情報が報知される。これにより、電極への供給電流又は電圧の指標値を適切に監視することが可能となる。 According to the present disclosure, whether or not the power supply state to the electrode is the power supply state at a predetermined timing is determined based on the change value related to the change in the index value of the supply current or voltage to the electrode. . And predetermined information is alert | reported when the electric power supply state to an electrode is the electric power supply state in predetermined timing. That is, for example, when the predetermined timing is a timing when the plasma processing capability is reduced, the predetermined information is notified at the timing when the plasma processing capability is reduced. This makes it possible to appropriately monitor the index value of the current supplied to the electrode or the voltage.
大気圧プラズマ発生装置を示す斜視図である。It is a perspective view which shows an atmospheric pressure plasma generator. 大気圧プラズマ発生装置の下端部を示す斜視図である。It is a perspective view which shows the lower end part of an atmospheric pressure plasma generator. 大気圧プラズマ発生装置の要部を示す断面図である。It is sectional drawing which shows the principal part of an atmospheric pressure plasma generator. 第1実施例の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of 1st Example. 正常時の電極への供給電流の波形を示す概略図である。It is the schematic which shows the waveform of the electric current supplied to the electrode at the time of normal. プラズマ処理能力低下時の電極への供給電流の波形を示す概略図である。It is the schematic which shows the waveform of the electric current supplied to the electrode at the time of a plasma processing capability fall. プラズマ処理能力低下時の電極への供給電流の波形を示す概略図である。It is the schematic which shows the waveform of the electric current supplied to the electrode at the time of a plasma processing capability fall. プラズマ照射により色が変化するインジケータへのプラズマ照射条件と、色差との関係を示す図である。It is a figure which shows the relationship between the plasma irradiation conditions to the indicator from which a color changes with plasma irradiation, and a color difference. 第2実施例の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of 2nd Example. プラズマ処理能力低下時の電極への供給電流の波形を示す概略図である。It is the schematic which shows the waveform of the electric current supplied to the electrode at the time of a plasma processing capability fall.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as modes for carrying out the present invention.
 (A)第1実施例
 (a)大気圧プラズマ発生装置の構成
 図1乃至図3に、大気圧プラズマ発生装置10を示す。大気圧プラズマ発生装置10は、大気圧下でプラズマを発生させるための装置であり、プラズマガス噴出装置12と加熱ガス噴出装置14と制御装置(図4参照)16とを備えている。なお、図1は、斜め上方からの視点における大気圧プラズマ発生装置10全体の斜視図である。図2は、斜め下方からの視点における大気圧プラズマ発生装置10の下端部の斜視図である。図3は、大気圧プラズマ発生装置10の要部の断面図である。また、大気圧プラズマ発生装置10の幅方向をX方向と、大気圧プラズマ発生装置10の奥行方向をY方向と、X方向とY方向とに直行する方向、つまり、上下方向をZ方向と称する。
(A) First Example (a) Configuration of Atmospheric Pressure Plasma Generator FIG. 1 to FIG. 3 show an atmospheric pressure plasma generator 10. The atmospheric pressure plasma generator 10 is an apparatus for generating plasma under atmospheric pressure, and includes a plasma gas ejection device 12, a heated gas ejection device 14, and a control device (see FIG. 4) 16. FIG. 1 is a perspective view of the entire atmospheric pressure plasma generator 10 from a perspective from obliquely above. FIG. 2 is a perspective view of the lower end portion of the atmospheric pressure plasma generator 10 from a perspective from obliquely below. FIG. 3 is a cross-sectional view of a main part of the atmospheric pressure plasma generator 10. Further, the width direction of the atmospheric pressure plasma generator 10 is referred to as the X direction, the depth direction of the atmospheric pressure plasma generator 10 is referred to as the Y direction, and the direction perpendicular to the X direction and the Y direction, that is, the vertical direction is referred to as the Z direction. .
 プラズマガス噴出装置12は、ハウジング20、カバー22、1対の電極24,26によって構成されている。ハウジング20は、メインハウジング30、放熱板31、アース板32、下部ハウジング34、ノズルブロック36を含む。メインハウジング30は、概してブロック状をなし、メインハウジング30の内部には、反応室38が形成されている。また、メインハウジング30には、上下方向に延びるように、複数の第1ガス流路(図3では1本の第1ガス流路のみが記されている)50が形成されており、複数の第1ガス流路50は、X方向に所定の間隔をおいて並んでいる。各第1ガス流路50の上端部は、反応室38に開口し、下端部は、メインハウジング30の底面に開口している。 The plasma gas ejection device 12 includes a housing 20, a cover 22, and a pair of electrodes 24 and 26. The housing 20 includes a main housing 30, a heat radiating plate 31, a ground plate 32, a lower housing 34, and a nozzle block 36. The main housing 30 has a generally block shape, and a reaction chamber 38 is formed inside the main housing 30. The main housing 30 is formed with a plurality of first gas passages (only one first gas passage is shown in FIG. 3) 50 so as to extend in the vertical direction. The first gas flow paths 50 are arranged at a predetermined interval in the X direction. An upper end portion of each first gas channel 50 opens to the reaction chamber 38, and a lower end portion opens to the bottom surface of the main housing 30.
 放熱板31は、メインハウジング30のY方向における一方側の側面に配設されている。放熱板31は、複数のフィン(図示省略)を有しており、メインハウジング30の熱を放熱する。また、アース板32は、避雷針として機能するものであり、メインハウジング30の下面に固定されている。アース板32には、複数の第1ガス流路50に対応して、上下方向に貫通する複数の貫通穴56が形成されており、各貫通穴56は、対応する第1ガス流路50に連結されている。 The heat sink 31 is disposed on one side surface of the main housing 30 in the Y direction. The heat radiating plate 31 has a plurality of fins (not shown) and radiates heat from the main housing 30. The ground plate 32 functions as a lightning rod, and is fixed to the lower surface of the main housing 30. The ground plate 32 has a plurality of through holes 56 penetrating in the vertical direction corresponding to the plurality of first gas flow paths 50, and each through hole 56 is formed in the corresponding first gas flow path 50. It is connected.
 下部ハウジング34は、ブロック状をなし、アース板32の下面に固定されている。下部ハウジング34には、複数の貫通穴56に対応して、複数の第2ガス流路62が上下方向に延びるように形成されている。各第2ガス流路62の上端部は、対応する貫通穴56に連結され、下端部は、下部ハウジング34の底面に開口している。 The lower housing 34 has a block shape and is fixed to the lower surface of the ground plate 32. A plurality of second gas flow paths 62 are formed in the lower housing 34 so as to extend in the vertical direction corresponding to the plurality of through holes 56. The upper end portions of the second gas flow paths 62 are connected to the corresponding through holes 56, and the lower end portions are open to the bottom surface of the lower housing 34.
 ノズルブロック36は、下部ハウジング34の下面に固定されており、下部ハウジング34の複数の第2ガス流路62に対応して、複数の第3ガス流路66が、上下方向に延びるように形成されている。各第3ガス流路66の上端部は、対応する第2ガス流路62に連結され、下端部は、ノズルブロック36の底面に開口している。 The nozzle block 36 is fixed to the lower surface of the lower housing 34, and a plurality of third gas passages 66 are formed to extend in the vertical direction corresponding to the plurality of second gas passages 62 of the lower housing 34. Has been. The upper end portion of each third gas flow channel 66 is connected to the corresponding second gas flow channel 62, and the lower end portion opens at the bottom surface of the nozzle block 36.
 カバー22は、概して枡形をなし、下部ハウジング34およびノズルブロック36を覆うように、アース板32の下面に配設されている。カバー22の下面には、貫通穴70が形成されている。その貫通穴70は、ノズルブロック36の下面より大きく、ノズルブロック36の下面が、貫通穴70の内部に位置している。また、カバー22の加熱ガス噴出装置14側の側面にも、Y方向に延びるように貫通穴72が形成されている。 The cover 22 has a generally bowl shape, and is disposed on the lower surface of the ground plate 32 so as to cover the lower housing 34 and the nozzle block 36. A through hole 70 is formed in the lower surface of the cover 22. The through hole 70 is larger than the lower surface of the nozzle block 36, and the lower surface of the nozzle block 36 is located inside the through hole 70. A through hole 72 is also formed in the side surface of the cover 22 on the heated gas ejection device 14 side so as to extend in the Y direction.
 1対の電極24,26は、メインハウジング30の反応室38の内部において、対向するように配設されている。その反応室38には、処理ガス供給装置(図4参照)74が接続されている。処理ガス供給装置74は、窒素等の不活性ガスと酸素等の活性ガスとの少なくとも一方を、処理ガスとして供給する装置である。これにより、反応室38に、処理ガスが供給される。 The pair of electrodes 24 and 26 are disposed so as to face each other inside the reaction chamber 38 of the main housing 30. A processing gas supply device (see FIG. 4) 74 is connected to the reaction chamber 38. The processing gas supply device 74 is a device that supplies at least one of an inert gas such as nitrogen and an active gas such as oxygen as a processing gas. As a result, the processing gas is supplied to the reaction chamber 38.
 また、加熱ガス噴出装置14は、保護カバー80、ガス管82、ヒータ83、連結ブロック84を含む。保護カバー80は、プラズマガス噴出装置12の放熱板31を覆うように配設されている。ガス管82は、保護カバー80の内部において、上下方向に延びるように配設されており、ガス管82には、加熱用ガス供給装置(図4参照)86が接続されている。加熱用ガス供給装置86は、酸素等の活性ガス、若しくは、窒素等の不活性ガスを供給する装置である。また、ガス管82の外周面には、概して円筒状のヒータ83が配設されており、ガス管82がヒータ83によって加熱される。これにより、加熱用ガス供給装置86からガス管82に供給されたガスが加熱される。 Further, the heated gas ejection device 14 includes a protective cover 80, a gas pipe 82, a heater 83, and a connecting block 84. The protective cover 80 is disposed so as to cover the heat radiating plate 31 of the plasma gas ejection device 12. The gas pipe 82 is disposed so as to extend in the vertical direction inside the protective cover 80, and a heating gas supply device 86 (see FIG. 4) 86 is connected to the gas pipe 82. The heating gas supply device 86 is a device that supplies an active gas such as oxygen or an inert gas such as nitrogen. A generally cylindrical heater 83 is disposed on the outer peripheral surface of the gas pipe 82, and the gas pipe 82 is heated by the heater 83. Thereby, the gas supplied to the gas pipe 82 from the heating gas supply device 86 is heated.
 連結ブロック84は、ガス管82の下端に連結されるとともに、カバー22のY方向での加熱ガス噴出装置14側の側面に固定されている。連結ブロック84には、概してL字型に屈曲した連通路88が形成されており、連通路88の一端部は、連結ブロック84の上面に開口するとともに、連通路88の他端部は、Y方向でのプラズマガス噴出装置12側の側面に開口している。そして、連通路88の一端部がガス管82に連通し、連通路88の他端部が、カバー22の貫通穴72に連通している。 The connecting block 84 is connected to the lower end of the gas pipe 82 and is fixed to the side surface of the cover 22 on the heated gas ejection device 14 side in the Y direction. The connection block 84 is formed with a communication path 88 that is bent in an L-shape. One end of the communication path 88 opens on the upper surface of the connection block 84 and the other end of the communication path 88 is Y. Open in the side surface on the plasma gas ejection device 12 side in the direction. One end of the communication path 88 communicates with the gas pipe 82, and the other end of the communication path 88 communicates with the through hole 72 of the cover 22.
 また、制御装置16は、図4に示すように、コントローラ100と複数の駆動回路102と制御回路104とを備えている。複数の駆動回路102は、上記電極24,26、処理ガス供給装置74、ヒータ83、加熱用ガス供給装置86に接続されている。コントローラ100は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路102に接続されている。これにより、プラズマガス噴出装置12、加熱ガス噴出装置14の作動が、コントローラ100によって制御される。また、コントローラ100は、制御回路104を介して、表示装置106に接続されている。これにより、コントローラ100の指令に従って、表示装置106に画像が表示される。さらに、コントローラ100は、入力装置107に接続されている。入力装置107は、操作ボタンなどにより構成されており、操作ボタンへの操作による操作情報を出力する。これにより、操作ボタンへの操作による操作情報が、コントローラ100に入力される。 Further, as shown in FIG. 4, the control device 16 includes a controller 100, a plurality of drive circuits 102, and a control circuit 104. The plurality of drive circuits 102 are connected to the electrodes 24, 26, the processing gas supply device 74, the heater 83, and the heating gas supply device 86. The controller 100 includes a CPU, a ROM, a RAM, and the like, mainly a computer, and is connected to a plurality of drive circuits 102. Thereby, the operation of the plasma gas ejection device 12 and the heated gas ejection device 14 is controlled by the controller 100. The controller 100 is connected to the display device 106 via the control circuit 104. As a result, an image is displayed on the display device 106 in accordance with a command from the controller 100. Further, the controller 100 is connected to the input device 107. The input device 107 is composed of operation buttons and the like, and outputs operation information by operating the operation buttons. Thereby, operation information obtained by operating the operation buttons is input to the controller 100.
 なお、プラズマガス噴出装置12は、トランス(図示省略)を有しており、電源から供給される200ボルトの電力が、トランスにより15kボルトまで昇圧され、昇圧された電力が電極24,26に供給される。また、制御装置16は、電源からトランスに供給される電流、つまり、トランス一次電流を検出する検出センサ108を有しており、その検出センサ108はコントローラ100に接続されている。これにより、検出センサ108による検出値、つまり、電極24,26に供給されるトランス一時電流がコントローラ100に入力される。 The plasma gas ejection device 12 has a transformer (not shown), and 200 volt power supplied from the power source is boosted to 15 kvolt by the transformer, and the boosted power is supplied to the electrodes 24 and 26. Is done. In addition, the control device 16 includes a detection sensor 108 that detects a current supplied from the power source to the transformer, that is, a transformer primary current, and the detection sensor 108 is connected to the controller 100. As a result, a value detected by the detection sensor 108, that is, a transformer temporary current supplied to the electrodes 24 and 26 is input to the controller 100.
 さらに、コントローラ100には、PC110が接続されている。PC110は、表示装置112と記憶装置114とを含んでおり、コントローラ100から送信される情報に基づく画像を表示装置112に表示し、コントローラ100から送信される情報を記憶装置114に記憶する。 Furthermore, a PC 110 is connected to the controller 100. The PC 110 includes a display device 112 and a storage device 114, displays an image based on information transmitted from the controller 100 on the display device 112, and stores information transmitted from the controller 100 in the storage device 114.
 (b)大気圧プラズマ発生装置によるプラズマ処理
 大気圧プラズマ発生装置10において、プラズマガス噴出装置12では、上述した構成により、反応室38の内部で処理ガスがプラズマ化され、ノズルブロック36の第3ガス流路66の下端からプラズマガスが噴出される。また、加熱ガス噴出装置14により加熱されたガスがカバー22の内部に供給される。そして、カバー22の貫通穴70から、プラズマガスが、加熱されたガスとともに噴出され、被処理体がプラズマ処理される。
(B) Plasma processing by atmospheric pressure plasma generator In the atmospheric pressure plasma generator 10, the plasma gas ejection device 12 converts the processing gas into plasma inside the reaction chamber 38 by the above-described configuration, and the third nozzle block 36. Plasma gas is ejected from the lower end of the gas flow channel 66. Further, the gas heated by the heated gas ejection device 14 is supplied into the cover 22. Then, the plasma gas is ejected from the through hole 70 of the cover 22 together with the heated gas, and the object to be processed is subjected to plasma processing.
 詳しくは、プラズマガス噴出装置12では、処理ガス供給装置74によって処理ガスが反応室38に供給される。その際、反応室38では、1対の電極24,26に電力が供給されており、1対の電極24,26間に電流が流れる。これにより、1対の電極24,26間に放電が生じ、その放電により、処理ガスがプラズマ化される。反応室38で発生したプラズマは、第1ガス流路50内を下方に向かって流れ、貫通穴56を介して、第2ガス流路62に流れ込む。そして、プラズマガスは、第2ガス流路62および、第3ガス流路66内を下方に向かって流れる。これにより、第3ガス流路66の下端から、プラズマガスが噴出される。 Specifically, in the plasma gas ejection device 12, the processing gas is supplied to the reaction chamber 38 by the processing gas supply device 74. At this time, power is supplied to the pair of electrodes 24 and 26 in the reaction chamber 38, and a current flows between the pair of electrodes 24 and 26. Thereby, a discharge is generated between the pair of electrodes 24 and 26, and the processing gas is turned into plasma by the discharge. The plasma generated in the reaction chamber 38 flows downward in the first gas channel 50 and flows into the second gas channel 62 through the through hole 56. Then, the plasma gas flows downward in the second gas channel 62 and the third gas channel 66. Thereby, plasma gas is ejected from the lower end of the third gas channel 66.
 また、加熱ガス噴出装置14では、加熱用ガス供給装置86によってガスがガス管82に供給され、そのガス管82が、ヒータ83により加熱される。これにより、ガス管82に供給されているガスが600℃~800℃に加熱される。その加熱されたガスは、連結ブロック84の連通路88を介して、カバー22の貫通穴72からカバー22の内部に流入する。そして、カバー22内に流入した加熱ガスは、カバー22の貫通穴70から噴出される。この際、ノズルブロック36の第3ガス流路66の下端から噴出されるプラズマガスが、加熱ガスによって保護される。これにより、適切にプラズマ処理を行うことが可能となる。 In the heated gas ejection device 14, the gas is supplied to the gas pipe 82 by the heating gas supply device 86, and the gas pipe 82 is heated by the heater 83. As a result, the gas supplied to the gas pipe 82 is heated to 600 ° C. to 800 ° C. The heated gas flows into the cover 22 from the through hole 72 of the cover 22 through the communication path 88 of the connection block 84. The heated gas flowing into the cover 22 is ejected from the through hole 70 of the cover 22. At this time, the plasma gas ejected from the lower end of the third gas passage 66 of the nozzle block 36 is protected by the heated gas. Thereby, it becomes possible to perform a plasma process appropriately.
 詳しくは、プラズマ処理時には、プラズマガスを噴出する噴出口から所定の距離、離れた位置に被処理体が載置され、その被処理体に噴出口からプラズマガスが噴出される。つまり、プラズマ処理時において、プラズマガスは空気中に噴出され、空気中に噴出されたプラズマガスが被処理体に照射される。この際、プラズマガスは、空気中において、酸素等の活性ガスと反応し、オゾンが発生する。このため、プラズマガスは失活し、適切にプラズマ処理を行うことができない虞がある。 More specifically, at the time of plasma processing, the object to be processed is placed at a predetermined distance from the jet outlet from which the plasma gas is jetted, and the plasma gas is jetted from the jet outlet to the target to be processed. That is, at the time of plasma treatment, the plasma gas is ejected into the air, and the object to be treated is irradiated with the plasma gas ejected into the air. At this time, the plasma gas reacts with an active gas such as oxygen in the air to generate ozone. For this reason, there exists a possibility that plasma gas may deactivate and a plasma processing cannot be performed appropriately.
 そこで、大気圧プラズマ発生装置10では、加熱ガス噴出装置14により加熱されたガスが、カバー22の内部に噴出され、カバー22の貫通穴70から噴出される。この際、ノズルブロック36の下端から噴出されるプラズマガスが、加熱ガスによって保護される。加熱ガスは、ガス管82において600℃~800℃まで加熱されているため、貫通穴70から噴出される加熱ガスは、250℃以上となっている。オゾンは、200℃以上で分解されるため、加熱ガスに覆われたプラズマガスのオゾン化が防止される。これにより、プラズマガスの失活が防止され、適切にプラズマ処理を行うことが可能となる。 Therefore, in the atmospheric pressure plasma generation device 10, the gas heated by the heated gas ejection device 14 is ejected into the cover 22 and ejected from the through hole 70 of the cover 22. At this time, the plasma gas ejected from the lower end of the nozzle block 36 is protected by the heated gas. Since the heated gas is heated to 600 ° C. to 800 ° C. in the gas pipe 82, the heated gas ejected from the through hole 70 is 250 ° C. or higher. Since ozone is decomposed at 200 ° C. or higher, ozonization of the plasma gas covered with the heated gas is prevented. Thereby, the deactivation of plasma gas is prevented, and it becomes possible to perform a plasma process appropriately.
 また、200℃以上の加熱ガスが、プラズマガスとともに、被処理体に向かって噴出されるため、加熱ガスによって被処理体が加熱され、その加熱された被処理体にプラズマ処理が行われる。これにより、被処理体の反応性が向上し、効果的にプラズマ処理を行うことが可能となる。 Further, since the heated gas of 200 ° C. or higher is ejected toward the object to be processed together with the plasma gas, the object to be processed is heated by the heating gas, and the heated object to be processed is subjected to plasma treatment. Thereby, the reactivity of a to-be-processed object improves and it becomes possible to perform a plasma process effectively.
 (c)大気圧プラズマ発生装置によるプラズマ処理能力の低下を報知
 上述したように、大気圧プラズマ発生装置10では、1対の電極24,26の間に電流が流れ、放電が生じることでプラズマガスが発生し、そのプラズマガスが、加熱ガスとともに、カバー22の貫通穴70から噴出されることで、プラズマ処理が実行される。ただし、1対の電極24,26の間に電流が流され、放電が生じることで、電極24,26は劣化する。また、1対の電極24,26の間だけでなく、反応室38を区画する内壁面に沿って放電が生じる場合もある。このため、反応室38を区画する内壁面も劣化する。そして、電極24,26などが劣化すると、プラズマ処理能力が低下する虞があり、電極24,26などの劣化が進むと、放電すら生じなくなる虞がある。このため、従来の大気圧プラズマ発生装置では、装置の稼働時間をタイマで管理し、所定の時間毎に、電極24,26などのメンテナンス,交換等を行っていた。
(C) Notification of a decrease in plasma processing capacity by the atmospheric pressure plasma generator As described above, in the atmospheric pressure plasma generator 10, a current flows between the pair of electrodes 24 and 26, and a discharge occurs to generate plasma gas. Is generated, and the plasma gas is ejected from the through hole 70 of the cover 22 together with the heating gas, whereby the plasma processing is performed. However, a current is caused to flow between the pair of electrodes 24 and 26 to cause discharge, so that the electrodes 24 and 26 are deteriorated. In addition, discharge may occur not only between the pair of electrodes 24 and 26 but also along the inner wall surface that partitions the reaction chamber 38. For this reason, the inner wall surface that partitions the reaction chamber 38 also deteriorates. When the electrodes 24, 26 and the like deteriorate, the plasma processing capability may decrease. When the electrodes 24, 26, etc. deteriorate, even the discharge may not occur. For this reason, in the conventional atmospheric pressure plasma generator, the operation time of the apparatus is managed by a timer, and maintenance, replacement, etc. of the electrodes 24, 26, etc. are performed every predetermined time.
 しかしながら、稼働時間をタイマで管理し、所定の時間毎に行われる電極24,26などのメンテナンス,交換等は、無駄が多い。詳しくは、ユーザの使用頻度,プラズマ処理の被処理体の材質,プラズマ処理時の温度等に応じて、電極24,26などの劣化速度は異なる。一方で、交換などの目安となる所定の時間は、一般的に、短めに設定される。このため、劣化があまり進んでおらず、プラズマ処理能力があまり低下していないにも拘らず、電極24,26のメンテナンス,交換等が行われる場合があり、無駄である。 However, maintenance, replacement, etc. of the electrodes 24, 26, etc. performed every predetermined time by managing the operation time with a timer is wasteful. Specifically, the deterioration rates of the electrodes 24 and 26 and the like vary depending on the usage frequency of the user, the material of the object to be processed by plasma processing, the temperature during the plasma processing, and the like. On the other hand, the predetermined time that serves as a guide for replacement is generally set shorter. For this reason, although the deterioration has not progressed so much and the plasma processing capacity has not decreased so much, maintenance and replacement of the electrodes 24 and 26 may be performed, which is useless.
 このため、プラズマ処理能力が実際に低下しているか否かを検知することが考えられる。具体的には、1対の電極24,26に供給される電力を指標する指標値、例えば、検出センサ108により検出される電流値に基づいて、1対の電極24,26に0.1秒連続して、電流が流れない状態が発生するか否かを検出する。電極24,26に、0.1秒連続して、電極24,26に電流が流れない場合には、0.1秒間連続して、放電が生じず、プラズマは発生しない。また、0.1秒連続して電流が流れない場合には、その0.1秒以外の間に、0.1秒未満の電流が流れない状態が何回も発生する。つまり、1秒のうちの0.1秒、つまり、1割に相当する時間、連続して放電が生じない場合には、その0.1秒以外の間に、0.1秒未満の放電が生じない状態が多く発生する。 For this reason, it is conceivable to detect whether or not the plasma processing capacity actually decreases. Specifically, based on an index value indicating the power supplied to the pair of electrodes 24 and 26, for example, a current value detected by the detection sensor 108, the pair of electrodes 24 and 26 is subjected to 0.1 second. It is detected whether or not a state where no current flows continuously occurs. When no current flows through the electrodes 24 and 26 for 0.1 seconds and no current flows through the electrodes 24 and 26, no discharge occurs and plasma is not generated for 0.1 seconds. In addition, when no current flows for 0.1 seconds continuously, a state in which no current flows for less than 0.1 seconds occurs many times other than 0.1 seconds. In other words, if discharge does not occur continuously for 0.1 second of one second, that is, a time corresponding to 10%, a discharge of less than 0.1 second occurs during the time other than 0.1 second. Many situations that do not occur occur.
 このため、通常のプラズマ処理能力が発揮される際において、1秒間に何千回もの放電が生じるが、0.1秒連続して電流が流れない場合には、通常のプラズマ処理能力の1割減でなく、3~5割減のプラズマ処理能力しか発揮されない。このことから、電極24,26に0.1秒連続して電流が流れない場合には、プラズマ処理能力が実際に相当低下していると推定される。そこで、電極24,26に0.1秒連続して、電流が流れない状態が発生した場合に、エラー表示等が行われ、作業者により電極24,26の交換等が行われる。 For this reason, when normal plasma processing capability is exerted, discharge occurs thousands of times per second, but when current does not flow continuously for 0.1 second, 10% of normal plasma processing capability is generated. Only 30 to 50% of the plasma processing capacity is reduced. From this, it is presumed that the plasma processing capacity is actually considerably reduced when no current flows through the electrodes 24 and 26 continuously for 0.1 second. Therefore, when a state where no current flows through the electrodes 24 and 26 for 0.1 second has occurred, an error display or the like is performed, and the electrodes 24 and 26 are replaced by the operator.
 しかしながら、このようにプラズマ処理能力が大幅に低下したタイミングで、エラー表示された場合には、以降の作業を一旦停止し、電極24,26の交換などを行う必要があり、以降の作業予定が大幅にズレてしまう。このため、このようにプラズマ処理能力が大幅に低下する前に、低下の予兆を知ることが望ましく、低下の予兆を知ることで、作業予定等を調整することが可能となる。 However, when an error is displayed at the timing when the plasma processing capacity is greatly reduced in this way, it is necessary to temporarily stop the subsequent work and replace the electrodes 24 and 26, and the subsequent work schedule is scheduled. It will shift greatly. For this reason, it is desirable to know the sign of the decrease before the plasma processing capacity is greatly reduced as described above, and the work schedule and the like can be adjusted by knowing the sign of the decrease.
 そこで、大気圧プラズマ発生装置10では、プラズマ処理能力が大幅に低下する前に、低下の予兆が報知される。具体的には、電極24,26に供給される電流が、検出センサ108によって検出され、その電流のうちの1周期毎の極大値、つまり、振幅が検出される。この際、電極24,26などに劣化が生じていない場合に、電極24,26に供給される電流は、図5に示すように変化し、電流波形は周期的に変化し、電流の振幅はおおむね一定となる。一方で、何らかの要因により、図6に示すように、電流波形に欠けが生じ、振幅が瞬間的に極端に低下する場合がある。このように振幅が瞬間的に低下した場合に、放電が瞬間的に発生しなくなるが、放電の停止は瞬間的であるため、プラズマ処理能力に殆ど影響しない。 Therefore, in the atmospheric pressure plasma generator 10, a sign of a decrease is notified before the plasma processing capacity is significantly decreased. Specifically, the current supplied to the electrodes 24 and 26 is detected by the detection sensor 108, and the local maximum value, that is, the amplitude for each cycle is detected. At this time, when the electrodes 24 and 26 are not deteriorated, the current supplied to the electrodes 24 and 26 changes as shown in FIG. 5, the current waveform changes periodically, and the amplitude of the current is It becomes almost constant. On the other hand, for some reason, as shown in FIG. 6, the current waveform is chipped, and the amplitude may be extremely reduced instantaneously. In this way, when the amplitude drops instantaneously, the discharge does not occur instantaneously, but since the stop of the discharge is instantaneous, it hardly affects the plasma processing capability.
 また、電極24,26に供給される電流波形が、図7に示すように、全体的に増減し、ゆらぐ場合がある。つまり、電極24,26に供給される電流の極大値が増減し、極大値にバラツキが生じる場合がある。このような場合には、放電状態にバラツキが生じるが、プラズマは発生するため、プラズマ処理能力に然程、影響しない。 In addition, the current waveform supplied to the electrodes 24 and 26 may increase or decrease as a whole and fluctuate as shown in FIG. That is, the maximum value of the current supplied to the electrodes 24 and 26 may increase or decrease, and the maximum value may vary. In such a case, the discharge state varies, but plasma is generated, so that the plasma processing capacity is not significantly affected.
 しかしながら、電流の極大値の瞬間的な低下,バラツキが複数回、発生し、それら複数回発生した電流の極大値の瞬間的な低下が連続することで、上述したように、0.1秒の連続して電力が流れない状態となる。つまり、電流の極大値の瞬間的な低下,バラツキが、プラズマ処理能力の低下の予兆と考えられる。そこで、大気圧プラズマ発生装置10では、検出センサ108により検出される電流の1周期毎の極大値が監視されている。この際、通常時の電流の1周期毎の極大値(以下、「平均極大値」と記載する)Xが特定される。平均極大値Xは、電極24,26に劣化等が発生していない場合の通常時の電流の1周期毎の極大値の平均値とされる。 However, as described above, the instantaneous decrease in the local maximum value of the current occurs more than once, and the instantaneous decrease in the local maximum value of the current generated multiple times continues. It will be in the state where electric power does not flow continuously. In other words, an instantaneous decrease or variation in the maximum value of current is considered to be a sign of a decrease in plasma processing capability. Therefore, in the atmospheric pressure plasma generator 10, the maximum value for each cycle of the current detected by the detection sensor 108 is monitored. At this time, the maximum value X (hereinafter referred to as “average maximum value”) X for each period of the normal current is specified. The average maximum value X is an average value of the local maximum values for each period of the normal current when the electrodes 24 and 26 are not deteriorated.
 そして、平均極大値Xが特定されると、電流の1周期毎の極大値が検出される毎に、検出された極大値(以下、「検出極大値」記載する)と平均極大値Xとが比較され、検出極大値が、平均極大値Xを中心値とする所定の範囲(例えば、X±0.3X)(以下、「平均極大値範囲」と記載する)内であるか否かが判定される。そして、検出極大値が平均極大値範囲外であると判定されると、波形不良回数が1カウントアップされる。 When the average maximum value X is specified, the detected maximum value (hereinafter referred to as “detected maximum value”) and the average maximum value X each time the maximum value for each cycle of the current is detected. It is compared, and it is determined whether or not the detected maximum value is within a predetermined range (for example, X ± 0.3X) (hereinafter referred to as “average maximum value range”) centered on the average maximum value X. Is done. When it is determined that the detected maximum value is out of the average maximum value range, the number of waveform failures is counted up by one.
 なお、波形不良回数は、1分間、累積的にカウントアップされ、単位時間(1分)当たりに、検出極大値が平均極大値範囲外であると判定された回数となる。そして、累積的に1分間カウントアップされる波形不良回数は、検出極大値と平均極大値範囲とが比較される毎に、シフトする。つまり、波形不良回数が1分間カウントアップされた後に、検出極大値と平均極大値範囲とが比較されると、その検出極大値と平均極大値範囲との比較結果が波形不良回数に加えられ、1分前の検出極大値と平均極大値範囲との比較結果が波形不良回数から削除される。これにより、検出極大値と平均極大値範囲とが比較された際の波形不良回数は、その比較のタイミングから1分遡った間に、検出極大値が平均極大値範囲外であると判定された回数となる。 The number of waveform defects is counted up cumulatively for one minute, and is the number of times that the detected maximum value is determined to be outside the average maximum value range per unit time (1 minute). The number of waveform failures counted up for one minute cumulatively shifts every time the detected maximum value and the average maximum value range are compared. That is, after the number of waveform failures is counted up for one minute, when the detected maximum value and the average maximum value range are compared, the comparison result between the detected maximum value and the average maximum value range is added to the number of waveform failures, The comparison result between the detected maximum value and the average maximum value range one minute ago is deleted from the number of waveform failures. As a result, the number of waveform failures when the detected maximum value is compared with the average maximum value range is determined to be outside the average maximum value range while the number of waveform failures is one minute after the comparison timing. Number of times.
 そして、検出極大値と平均極大値範囲とが比較される毎に、波形不良回数が設定数未満であるか否かが判定される。そして、波形不良回数が設定数以上となった場合に、プラズマ処理能力の低下の予兆があると判断され、プラズマ処理能力の低下の予兆を示す画面(以下、「予兆告知画面」と記載する)が表示装置106に表示される。なお、設定数は、入力装置107への操作により作業者によって設定される。ただし、作業者は、設定数を何回に設定すれば、プラズマ処理能力の低下の予兆を見極められるかを、知らない。このため、適切な設定数を見つけるべく、作業者は、設定数の設定と、実際のプラズマ処理能力の測定とを繰り返して行う。 Each time the detected maximum value is compared with the average maximum value range, it is determined whether or not the number of waveform defects is less than the set number. When the number of waveform failures exceeds the set number, it is determined that there is a sign of a decrease in plasma processing capacity, and a screen showing a sign of a decrease in plasma processing capacity (hereinafter referred to as a “prediction notification screen”) Is displayed on the display device 106. Note that the number of settings is set by the operator by operating the input device 107. However, the operator does not know how many times the set number can be set so that a sign of a decrease in plasma processing capacity can be determined. For this reason, in order to find an appropriate setting number, the operator repeatedly performs setting of the setting number and measurement of actual plasma processing capability.
 具体的には、作業者が設定数として、まず、少なめの数、例えば、50回を設定する。つまり、設定数を50回に設定した場合には、1分間に50回、電流波形に欠け等が発生すると、予兆告知画面が表示装置106に表示される。そして、表示装置106に予兆告知画面が表示されると、作業者は、その予兆告知画面が表示された際に実行されていたプラズマ処理による被処理物を、接触角計等を用いて測定する。 Specifically, the operator first sets a small number, for example, 50 times. In other words, when the set number is set to 50 times, when a lack or the like occurs in the current waveform 50 times per minute, a predictive notification screen is displayed on the display device 106. Then, when the predictor notification screen is displayed on the display device 106, the operator measures the object to be processed by the plasma processing performed when the predictor notification screen is displayed, using a contact angle meter or the like. .
 詳しくは、プラズマ処理による被処理物では、プラズマの照射によって濡れ性等の物性が変化する。被処理体の濡れ性は、被処理体表面の接触角に応じて変化する物性であり、接触角計により被処理体の接触角を測定することで、被処理体の濡れ性を評価することができる。このため、接触角計により被処理体の接触角を測定することで、プラズマ処理が適切に実行されているか否かを判断することができる。つまり、プラズマ処理能力の低下の有無を判断することができる。 More specifically, physical properties such as wettability change in the object to be processed by plasma treatment due to plasma irradiation. The wettability of the object to be processed is a physical property that changes according to the contact angle of the surface of the object to be processed, and the wettability of the object to be processed is evaluated by measuring the contact angle of the object to be processed with a contact angle meter. Can do. For this reason, it can be judged whether the plasma processing is performed appropriately by measuring the contact angle of a to-be-processed object with a contact angle meter. That is, it is possible to determine whether or not the plasma processing capacity is reduced.
 また、作業者は、被処理体の接触角を、ダインペンを用いて測定することも可能である。このため、ダインペンにより被処理体の接触角を測定することで、プラズマ処理能力の低下の有無を判断することもできる。 Also, the operator can measure the contact angle of the workpiece using a dyne pen. For this reason, it is also possible to determine whether or not the plasma processing capability is reduced by measuring the contact angle of the object to be processed with a dyne pen.
 さらに言えば、近年、プラズマの照射により光学的特性が変化するインジケータが開発されており、そのインジケータを用いることで、プラズマ処理が適切に実行されているか否かを判断することができる。インジケータは、プラズマの照射により色が変化するものであり、公知のものであるため、以下に簡略的に説明する。 Furthermore, in recent years, an indicator whose optical characteristics change due to plasma irradiation has been developed, and by using the indicator, it can be determined whether or not the plasma processing is being performed appropriately. Since the indicator changes its color by plasma irradiation and is a known one, it will be briefly described below.
 プラズマの照射により色が変化するインジケータでは、例えば、窒素酸化物によって得られる水素イオンと反応することにより変化する組成物を含む粘性流体、アゾ系等の染料と窒素含有高分子とカチオン系界面活性剤とにより構成される組成物を含む粘性流体等によって、シートの表面に薄膜層が形成されている。これにより、プラズマの照射により変色する薄膜層を含むインジケータが形成される。なお、プラズマの照射により色が変化するインジケータの詳細は、特開2013-178922号公報、特開2013-95765号公報、特開2013-98196号公報、特開2013-95764号公報、特開2015-13982号公報、特開2015-205995号公報等に記載されている。 Indicators that change color by plasma irradiation include, for example, viscous fluids containing compositions that change by reacting with hydrogen ions obtained by nitrogen oxides, azo-based dyes, nitrogen-containing polymers, and cationic surfactants A thin film layer is formed on the surface of the sheet by a viscous fluid containing a composition composed of an agent. As a result, an indicator including a thin film layer that changes color when irradiated with plasma is formed. Note that details of the indicator whose color is changed by plasma irradiation are disclosed in JP2013-178922A, JP2013-95765A, JP2013-98196A, JP2013-95764A, and JP2015. -13982, JP-A-2015-205995, and the like.
 上記インジケータは、プラズマの照射により色が変化するため、プラズマ照射後のインジケータと、プラズマが照射されていないインジケータとの色差に基づいて、プラズマ処理が適切に実行されているか否かが判断される。具体的には、色差計において、プラズマが照射されていないインジケータ、つまり、未処理のインジケータの色に関する指標値が色見本として設定されている。色に関する指標値は、Lab色空間における明度L*、色相と彩度を示す色度a*、b*が採用されている。そして、被処理体にプラズマ処理が実行される際に、インジケータが被処理体の近傍に設置され、被処理体とともに、インジケータにもプラズマが照射される。プラズマの照射が完了すると、被処理体とともにプラズマ照射されたインジケータが色差計により測定され、プラズマ照射されたインジケータと、未処理のインジケータとの色差ΔE*abが演算される。 Since the color of the indicator changes due to plasma irradiation, it is determined whether or not the plasma processing is appropriately performed based on the color difference between the indicator after plasma irradiation and the indicator not irradiated with plasma. . Specifically, in the color difference meter, an indicator value related to the color of an indicator not irradiated with plasma, that is, an unprocessed indicator is set as a color sample. As the index value relating to color, lightness L * in Lab color space and chromaticity a * and b * indicating hue and saturation are employed. When the plasma processing is performed on the object to be processed, the indicator is installed in the vicinity of the object to be processed, and the indicator is irradiated with the plasma together with the object to be processed. When the plasma irradiation is completed, the indicator irradiated with the plasma together with the object to be processed is measured by the color difference meter, and the color difference ΔE * ab between the indicator irradiated with the plasma and the unprocessed indicator is calculated.
 プラズマ照射条件1~6でプラズマ照射されたインジケータの色差ΔE*abと、未処理のインジケータの色差ΔE*abとを示すグラフを、図8に示す。ここで、未処理のインジケータの色差ΔE*abは、当然、0となる。また、プラズマの照射条件において、条件を示す数字が大きいほど、プラズマの照射量は多くされている。つまり、条件を示す数字が大きいほど、プラズマの照射距離は短く、プラズマの照射時間は長くされている。 FIG. 8 shows a graph showing the color difference ΔE * ab of the indicator irradiated with plasma under the plasma irradiation conditions 1 to 6 and the color difference ΔE * ab of the untreated indicator. Here, the color difference ΔE * ab of the unprocessed indicator is naturally zero. Further, in the plasma irradiation conditions, the larger the number indicating the condition, the larger the plasma irradiation amount. That is, the larger the number indicating the condition, the shorter the plasma irradiation distance and the longer the plasma irradiation time.
 そして、プラズマの照射条件1~6のうちの照射条件2及び3が、最適のプラズマ照射条件とされている。つまり、色差ΔE*abは、4~6程度が最適な値とされている。このため、色差ΔE*abが4未満である場合は、プラズマ照射が足らず、色差ΔE*abが6以上である場合には、プラズマ照射が多すぎると判定される。プラズマ照射が足らない場合には、当然、プラズマ処理が適切に実行されておらず、プラズマ処理能力が低下していると判断される。 The irradiation conditions 2 and 3 out of the plasma irradiation conditions 1 to 6 are the optimum plasma irradiation conditions. That is, the optimum value of the color difference ΔE * ab is about 4 to 6. For this reason, when the color difference ΔE * ab is less than 4, the plasma irradiation is insufficient, and when the color difference ΔE * ab is 6 or more, it is determined that the plasma irradiation is too much. When the plasma irradiation is insufficient, it is naturally determined that the plasma processing is not properly performed and the plasma processing capability is reduced.
 また、プラズマ照射が多すぎる場合にも、プラズマ処理が適切に実行されていないと判断される。これは、被処理体が樹脂素材である場合に被処理体がプラズマ照射により脆弱となるためである。詳しくは、プラズマ処理時において、過剰にプラズマが照射されると、被処理体の接触角は低くなり、適切にプラズマ処理が実行されたと判断される場合がある。ただし、被処理体が樹脂素材であると、過剰なプラズマ照射により、被処理体中の高分子樹脂が分断され、低分子化するため、被処理体が脆弱となる。このように脆弱となった被処理体では、接触角が低くても、製品として好ましくないため、プラズマ照射が多すぎる場合にも、プラズマ処理が適切に実行されていないと判断される。このように、インジケータを用いることで、過剰なプラズマ照射による被処理体の脆弱化を抑制することが可能となり、適切なプラズマ処理を担保することが可能となる。 Also, when there is too much plasma irradiation, it is determined that the plasma processing is not properly performed. This is because the object to be processed becomes fragile by plasma irradiation when the object to be processed is a resin material. Specifically, when plasma is excessively applied during plasma processing, the contact angle of the object to be processed is lowered, and it may be determined that the plasma processing has been appropriately performed. However, if the object to be processed is a resin material, the polymer resin in the object to be processed is divided by the excessive plasma irradiation and the molecular weight is lowered, so that the object to be processed becomes fragile. In such a fragile object to be processed, even if the contact angle is low, it is not preferable as a product. Therefore, it is determined that the plasma processing is not properly performed even when the plasma irradiation is excessive. Thus, by using an indicator, it becomes possible to suppress weakening of the to-be-processed object by excessive plasma irradiation, and it becomes possible to ensure appropriate plasma processing.
 そして、上述する手順によって、被処理体に対して適切なプラズマ処理が行われていると判断された場合には、ユーザにより設定された設定数(50回)は、少なすぎると想定される。そこで、ユーザは、先に設定された設定数(50回)より多い数、例えば、100回を設定数として再設定する。これにより、1分間に100回、電流波形に欠け等が発生すると、予兆告知画面が表示装置106に表示される。そして、表示装置106に予兆告知画面が表示されると、作業者は、その予兆告知画面が表示された際に実行されていたプラズマ処理による被処理物を、上記手順に従ってプラズマ処理の適否を判断する。 Then, when it is determined by the above-described procedure that an appropriate plasma process is being performed on the object to be processed, the number of settings (50 times) set by the user is assumed to be too small. Therefore, the user resets a number larger than the previously set number (50 times), for example, 100 times as the set number. As a result, when the current waveform is chipped 100 times per minute, a predictive notification screen is displayed on the display device 106. When the predictor notification screen is displayed on the display device 106, the operator determines whether or not the plasma processing object that has been executed when the predictor notification screen is displayed is suitable for plasma processing according to the above procedure. To do.
 この際、再度、被処理体に対して適切なプラズマ処理が行われていると判断された場合には、作業者は、先に設定された設定数(100回)より多い数を、設定数として再設定する。このように、設定数の設定と、プラズマ処理能力の測定とが繰り返し実行されると、プラズマの処理能力を示す測定値は徐々に低下する。つまり、例えば、被処理体の接触角が、徐々に高くなり、色差ΔE*abが徐々に5から離れた数値となる。なお、作業者が、設定数を再設定する際に、先に設定されていた設定数より相当多い設定数を再設定すると、プラズマの処理能力を示す測定値が極端に低下する虞がある。このため、作業者が、設定数を再設定する際に、先に設定されていた設定数より、ある程度多い設定数を再設定することが好ましい。 At this time, if it is determined again that an appropriate plasma process is being performed on the object to be processed, the worker sets the number greater than the previously set number (100 times) to the set number. Reset as. As described above, when the setting of the set number and the measurement of the plasma processing capability are repeatedly performed, the measurement value indicating the plasma processing capability gradually decreases. That is, for example, the contact angle of the object to be processed is gradually increased, and the color difference ΔE * ab is a value that gradually deviates from 5. When the operator resets the set number, if the set number is considerably larger than the previously set number, the measurement value indicating the plasma processing capability may be extremely lowered. For this reason, when the operator resets the set number, it is preferable to reset the set number that is somewhat larger than the previously set number.
 そして、設定数の設定と、プラズマ処理能力の測定とが繰り返し実行され、プラズマの処理能力を示す測定値が徐々に低下した際の設定数が、プラズマ処理能力の低下の予兆を見極めることが可能な設定数(以下、「第1設定数」と記載する)として特定される。なお、第1設定数が特定される際のプラズマの処理能力を示す測定値(以下、「第1測定値」と記載する)は、適切にプラズマ処理を行うことができないと判断される際の測定値に至っておらず、プラズマ処理を適切に行うことが可能な許容範囲内の値とされている。このように、第1設定数を設定することで、プラズマ処理能力が通常時より著しく低下する前に、予兆告知画面を表示装置106に表示することが可能となる。これにより、作業者は、プラズマ処理能力の低下の予兆を適切に認識することが可能となり、作業予定等を調整することが可能となる。 And the setting of the set number and the measurement of the plasma processing capacity are repeatedly executed, and the set number when the measured value indicating the plasma processing capacity gradually decreases can determine the sign of the decrease in the plasma processing capacity. Specified number (hereinafter referred to as “first set number”). Note that the measured value indicating the plasma processing capability when the first set number is specified (hereinafter referred to as “first measured value”) is determined when it is determined that the plasma processing cannot be performed appropriately. The measured value is not reached, and the value is within an allowable range in which plasma processing can be appropriately performed. As described above, by setting the first set number, it is possible to display the predictive notification screen on the display device 106 before the plasma processing capacity is significantly reduced compared to the normal time. As a result, the operator can appropriately recognize a sign of a decrease in the plasma processing capacity, and can adjust the work schedule and the like.
 なお、第1測定値を、適切にプラズマ処理を行うことができないと判断される際の測定値に近い値とすることで、適切なプラズマ処理を実行可能な範囲での最終的な段階で、プラズマ処理能力の低下の予兆を知ることが可能となる。また、第1測定値を、適切にプラズマ処理を行うことができないと判断される際の測定値から大きく離れた値とすることで、プラズマ処理能力の低下の初期段階で、プラズマ処理能力の低下の予兆を知ることが可能となる。このように、大気圧プラズマ発生装置10では、作業者が第1測定値を任意に特定することで、プラズマ処理能力の低下の種々の段階の予兆を認識することが可能となる。 In addition, by setting the first measurement value to a value close to the measurement value when it is determined that the plasma processing cannot be appropriately performed, in the final stage in a range where the appropriate plasma processing can be performed, It is possible to know a sign of a decrease in plasma processing capacity. In addition, by setting the first measurement value to be a value far from the measurement value when it is determined that the plasma processing cannot be performed appropriately, the plasma processing capability is reduced at the initial stage of the plasma processing capability reduction. It becomes possible to know the signs of As described above, in the atmospheric pressure plasma generation apparatus 10, the operator can recognize the signs of various stages of the decrease in the plasma processing capability by arbitrarily specifying the first measurement value.
 また、第1設定数が特定された後も、設定数の設定と、プラズマ処理能力の測定とを繰り返し実行することで、プラズマ処理能力の低下の程度を知ることが可能となる。詳しくは、第1設定数が特定された後に、設定数の設定と、プラズマ処理能力の測定とが繰り返し実行されることで、プラズマの処理能力を示す測定値が更に低下する。そこで、プラズマの処理能力を示す測定値が、適切なプラズマ処理が実行されていないと判断される際の測定値に至るまで、設定数の設定と、プラズマ処理能力の測定とが繰り返し実行される。そして、設定数と、プラズマの処理能力を示す測定値との関係に基づいて、単位時間当たりの波形不良回数と、プラズマの処理能力を示す測定値との関係を数式化する。これにより、単位時間当たりの波形不良回数に応じたプラズマ処理能力の低下の程度を適切に推定することが可能となり、プラズマ処理能力の低下の予兆を適切に認識することが可能となる。 Further, even after the first set number is specified, it is possible to know the degree of decrease in the plasma processing capability by repeatedly executing the setting of the set number and the measurement of the plasma processing capability. Specifically, after the first set number is specified, the set value and the measurement of the plasma processing capability are repeatedly performed, so that the measured value indicating the plasma processing capability further decreases. Therefore, the setting of the set number and the measurement of the plasma processing capacity are repeatedly performed until the measurement value indicating the plasma processing capacity reaches the measurement value when it is determined that the appropriate plasma processing is not performed. . Based on the relationship between the set number and the measured value indicating the plasma processing capability, the relationship between the number of waveform defects per unit time and the measured value indicating the plasma processing capability is formulated into a mathematical formula. As a result, it is possible to appropriately estimate the degree of decrease in the plasma processing capability according to the number of waveform defects per unit time, and it is possible to appropriately recognize a sign of a decrease in the plasma processing capability.
 なお、大気圧プラズマ発生装置10では、検出センサ108により電流の極大値が検出される毎に、その電流の極大値と、単位時間当たりの波形不良回数とが表示装置106に表示される。これにより、作業者は、その電流の極大値と、単位時間当たりの波形不良回数とを認識することで、表示装置106に予兆告知画面が表示される前においても、大気圧プラズマ発生装置10によるプラズマ処理能力をある程度、推定することが可能となる。 In the atmospheric pressure plasma generator 10, each time the current maximum value is detected by the detection sensor 108, the current maximum value and the number of waveform defects per unit time are displayed on the display device 106. As a result, the operator recognizes the maximum value of the current and the number of waveform failures per unit time so that the atmospheric pressure plasma generator 10 can perform the operation even before the predictive notification screen is displayed on the display device 106. It becomes possible to estimate the plasma processing capability to some extent.
 また、大気圧プラズマ発生装置10において、検出センサ108により電流の極大値が検出される毎に、その電流の極大値と、単位時間当たりの波形不良回数とが、大気圧プラズマ発生装置10からPC110に送信される。そして、PC110では、受信した電流の極大値と、単位時間当たりの波形不良回数とが表示装置112に表示される。これにより、例えば、工場の管理者なども、大気圧プラズマ発生装置10の電流の極大値と、単位時間当たりの波形不良回数とを認識することで、大気圧プラズマ発生装置10によるプラズマ処理能力をある程度、推定することが可能となる。また、PC110では、受信した電流の極大値と、単位時間当たりの波形不良回数とが記憶装置114に記憶される。これにより、大気圧プラズマ発生装置10における電極24,26への供給電流の変化と、単位時間当たりの波形不良回数との関係を分析し、プラズマ処理能力の低下の予兆に役立てることが可能となる。 Further, each time the maximum value of current is detected by the detection sensor 108 in the atmospheric pressure plasma generator 10, the maximum value of the current and the number of waveform defects per unit time are changed from the atmospheric pressure plasma generator 10 to the PC 110. Sent to. In the PC 110, the maximum value of the received current and the number of waveform failures per unit time are displayed on the display device 112. Thereby, for example, a factory manager or the like recognizes the maximum value of the current of the atmospheric pressure plasma generator 10 and the number of waveform failures per unit time, thereby improving the plasma processing capability of the atmospheric pressure plasma generator 10. It becomes possible to estimate to some extent. Further, in the PC 110, the maximum value of the received current and the number of waveform failures per unit time are stored in the storage device 114. As a result, the relationship between the change in the current supplied to the electrodes 24 and 26 in the atmospheric pressure plasma generator 10 and the number of waveform defects per unit time can be analyzed and used for a sign of a decrease in plasma processing capability. .
 なお、大気圧プラズマ発生装置10のコントローラ100は、図4に示すように、取得部120と、判断部122と、カウント部124と、表示部126と、出力部128とを有している。取得部120は、電極24,26に供給される電流を指標する指標値として、電流の1周期毎の極大値、つまり、振幅を継時的に取得するための機能部である。判断部122は、電流の極大値が設定条件を満たすか否かを判断するための機能部、つまり、検出極大値が平均極大値範囲内であるか否かを判断するための機能部である。カウント部124は、電流の極大値が設定条件を満たさないと判断された回数をカウントするための機能部、つまり、検出極大値が平均極大値範囲外であると判定された回数をカウントするための機能部である。表示部126は、カウント部124によりカウントされたカウント数、つまり、波形不良回数が設定数以上となった場合に、予兆告知画面を表示装置106に表示するための機能部である。出力部128は、電流の極大値と波形不良回数とをPC110に出力するための機能部である。 In addition, the controller 100 of the atmospheric pressure plasma generation apparatus 10 includes an acquisition unit 120, a determination unit 122, a count unit 124, a display unit 126, and an output unit 128, as shown in FIG. The acquisition unit 120 is a functional unit for acquiring a local maximum value, that is, an amplitude over time, as an index value indicating the current supplied to the electrodes 24 and 26. The determination unit 122 is a functional unit for determining whether or not the maximum value of the current satisfies the setting condition, that is, a functional unit for determining whether or not the detected maximum value is within the average maximum value range. . The counting unit 124 counts the number of times that the current maximum value is determined not to satisfy the set condition, that is, the number of times that the detected maximum value is determined to be outside the average maximum value range. It is a functional part. The display unit 126 is a functional unit for displaying a predictive notification screen on the display device 106 when the count number counted by the count unit 124, that is, when the number of waveform failures is equal to or greater than the set number. The output unit 128 is a functional unit for outputting the current maximum value and the number of waveform failures to the PC 110.
 (B)第2実施例
 第1実施例の大気圧プラズマ発生装置10では、作業者が、設定数の設定と、プラズマ処理能力の測定とを繰り返し実行し、第1設定数を特定した後に、その第1設定数を入力装置107により設定することで、予兆告知画面が適切なタイミングで表示装置106に表示される。一方、第2実施例の大気圧プラズマ発生装置10では、制御装置16の作動により第1設定数が設定されることで、予兆告知画面が適切なタイミングで表示装置106に表示される。なお、第2実施例の大気圧プラズマ発生装置10は、記憶装置およびインターフェースを除いて、第1実施例の大気圧プラズマ発生装置10と同じである。このため、記憶装置およびインターフェースについて説明し、他の構成要素について説明を省略し、第1実施例の構成要素の符号を用いる。
(B) Second Embodiment In the atmospheric pressure plasma generation apparatus 10 of the first embodiment, after the operator repeatedly executes the setting of the set number and the measurement of the plasma processing capacity and specifies the first set number, By setting the first set number with the input device 107, the predictive notification screen is displayed on the display device 106 at an appropriate timing. On the other hand, in the atmospheric pressure plasma generation apparatus 10 of the second embodiment, the first set number is set by the operation of the control device 16 so that the predictive notification screen is displayed on the display device 106 at an appropriate timing. The atmospheric pressure plasma generator 10 of the second embodiment is the same as the atmospheric pressure plasma generator 10 of the first embodiment except for the storage device and the interface. For this reason, the storage device and the interface will be described, description of other components will be omitted, and the reference numerals of the components of the first embodiment will be used.
 第2実施例の大気圧プラズマ発生装置10では、図9に示すように、制御装置16が、インターフェース150と記憶装置151とを備えている。インターフェース150は、プラズマ照射により変化する物性を測定する測定装置を接続するためのものであり、接触角計152と色差計154とが接続されている。なお、接触角計152及び色差計154は、第1実施例で説明したものと同じである。そして、インターフェース150は、コントローラ100に接続されており、接触角計152及び色差計154による測定値が、コントローラ100に入力される。また、記憶装置151は、第1設定数の特定に用いられる各種情報を記憶するものであり、コントローラ100に接続されている。これにより、第1設定数の特定に用いられる各種情報が、コントローラ100に入力され、コントローラ100において、第1設定数が特定される。 In the atmospheric pressure plasma generator 10 of the second embodiment, as shown in FIG. 9, the control device 16 includes an interface 150 and a storage device 151. The interface 150 is for connecting a measuring device that measures physical properties that change due to plasma irradiation, and a contact angle meter 152 and a color difference meter 154 are connected to the interface 150. The contact angle meter 152 and the color difference meter 154 are the same as those described in the first embodiment. The interface 150 is connected to the controller 100, and values measured by the contact angle meter 152 and the color difference meter 154 are input to the controller 100. The storage device 151 stores various information used for specifying the first set number, and is connected to the controller 100. As a result, various types of information used for specifying the first set number is input to the controller 100, and the first set number is specified in the controller 100.
 このような構造において、第2実施例の大気圧プラズマ発生装置10では、接触角計152及び色差計154による測定値,作業者による入力装置107への入力情報に基づいて、プラズマ処理能力の低下の予兆が推定され、第1設定数が設定される。そして、波形不良回数が第1設定数以上となった場合に、予兆告知画面が表示装置106に表示される。 In such a structure, in the atmospheric pressure plasma generation apparatus 10 of the second embodiment, the plasma processing capacity is lowered based on the measured values by the contact angle meter 152 and the color difference meter 154 and the information input to the input device 107 by the operator. Is estimated and the first set number is set. Then, when the number of waveform defects becomes equal to or greater than the first set number, a predictive notification screen is displayed on the display device 106.
 具体的には、第2実施例においても、第1実施例と同様に、電極24,26に流れる電流が検出センサ108により検出されており、検出センサ108により電流の極大値が検出される毎に、検出極大値が平均極大値範囲内であるか否かが判定される。そして、検出極大値が平均極大値範囲外であると判定されると、波形不良回数が1カウントアップされる。つまり、第2実施例においても、第1実施例と同様に、単位時間(1分)当たりの波形不良回数がカウントされている。なお、カウントされた波形不良回数は、カウントされた日時とともに、大気圧プラズマ発生装置10の動作履歴として記憶装置151に記憶される。また、検出極大値も、検出センサ108により検出される毎に、検出された日時とともに、大気圧プラズマ発生装置10の動作履歴として記憶装置151に記憶される。 Specifically, also in the second embodiment, as in the first embodiment, the current flowing through the electrodes 24 and 26 is detected by the detection sensor 108, and each time the maximum value of the current is detected by the detection sensor 108, Then, it is determined whether or not the detected maximum value is within the average maximum value range. When it is determined that the detected maximum value is out of the average maximum value range, the number of waveform failures is counted up by one. That is, also in the second embodiment, the number of waveform defects per unit time (1 minute) is counted as in the first embodiment. The counted number of waveform failures is stored in the storage device 151 as the operation history of the atmospheric pressure plasma generator 10 together with the counted date and time. The detected maximum value is also stored in the storage device 151 as the operation history of the atmospheric pressure plasma generator 10 together with the detected date and time each time it is detected by the detection sensor 108.
 また、第2実施例では、作業者が、任意のタイミングで被処理体のプラズマ処理能力の測定を行う。つまり、大気圧プラズマ発生装置10によってプラズマ照射された被処理体の接触角を、接触角計152によって測定する。また、大気圧プラズマ発生装置10によって被処理体とともにプラズマ照射されたインジケータの色差ΔE*abを、色差計154によって測定する。ちなみに、接触角計152による被処理体の接触角の測定および、色差計154によるインジケータの色差ΔE*abの測定手法は、第1実施例と同じであるため、説明を省略する。 In the second embodiment, the operator measures the plasma processing ability of the workpiece at an arbitrary timing. That is, the contact angle of the workpiece irradiated with plasma by the atmospheric pressure plasma generator 10 is measured by the contact angle meter 152. Further, the color difference ΔE * ab of the indicator irradiated with plasma by the atmospheric pressure plasma generator 10 together with the object to be processed is measured by the color difference meter 154. Incidentally, the measurement method of the contact angle of the object to be processed by the contact angle meter 152 and the measurement method of the color difference ΔE * ab of the indicator by the color difference meter 154 are the same as those in the first embodiment, and thus description thereof is omitted.
 なお、第1実施例では、接触角計152等の測定値に基づいて、作業者が、プラズマ処理能力の低下を推定しているが、第2実施例では、接触角計152および色差計154が、制御装置16のインターフェース150に接続されている。このため、接触角計152および色差計154の測定値が、制御装置16のコントローラ100に入力される。そして、接触角計152および色差計154の測定値(以下、「入力測定値」と記載する)が、測定日時とともに、記憶装置151に記憶される。この際、入力測定値は、先に記憶されている大気圧プラズマ発生装置10の動作履歴に含まれる日時と入力測定値に含まれる日時とが所定の範囲内で一致するように、動作履歴と関連付けて、記憶装置151に記憶される。 In the first embodiment, the operator estimates a decrease in the plasma processing capacity based on the measured value of the contact angle meter 152 and the like, but in the second embodiment, the contact angle meter 152 and the color difference meter 154 are estimated. Is connected to the interface 150 of the control device 16. For this reason, the measured values of the contact angle meter 152 and the color difference meter 154 are input to the controller 100 of the control device 16. Then, the measured values of the contact angle meter 152 and the color difference meter 154 (hereinafter referred to as “input measured value”) are stored in the storage device 151 together with the measurement date and time. At this time, the input measurement value is the operation history so that the date and time included in the previously stored operation history of the atmospheric pressure plasma generator 10 and the date and time included in the input measurement value match within a predetermined range. The data are stored in the storage device 151 in association with each other.
 また、入力測定値がコントローラ100に入力されると、コントローラ100は、その入力測定値に基づいて、プラズマ処理能力が推定される。詳しくは、接触角計152と色差計154との各々の測定値に応じた閾値が、記憶装置151に記憶されている。各測定値の閾値は、適切にプラズマ処理を行うことができないと判断される際の測定値に至っておらず、プラズマ処理を適切に行うことが可能な許容範囲内の値に設定されている。そして、コントローラ100は、入力測定値が閾値に至っているか否かを判断する。 Further, when the input measurement value is input to the controller 100, the controller 100 estimates the plasma processing capability based on the input measurement value. Specifically, threshold values corresponding to the measured values of the contact angle meter 152 and the color difference meter 154 are stored in the storage device 151. The threshold value of each measurement value does not reach the measurement value when it is determined that the plasma processing cannot be performed properly, and is set to a value within an allowable range in which the plasma processing can be performed appropriately. Then, the controller 100 determines whether or not the input measurement value has reached a threshold value.
 この際、入力測定値が閾値に至っていない場合は、大気圧プラズマ発生装置10の処理能力は適切であると推定される。一方、入力測定値が閾値に至っている場合は、大気圧プラズマ発生装置10の処理能力は許容範囲内であるが、低下していると推定される。このため、入力測定値が閾値に至っている場合に、その入力測定値と関連付けて記憶されている動作履歴の波形不良回数が、第1設定数として登録される。つまり、大気圧プラズマ発生装置10の処理能力が低下していると推定されるプラズマ処理時の波形不良回数が、第1設定数として記憶装置151に記憶される。そして、波形不良回数が第1設定数以上となった場合に、表示装置106に予兆告知画面が表示される。 At this time, if the input measurement value does not reach the threshold value, it is estimated that the processing capability of the atmospheric pressure plasma generator 10 is appropriate. On the other hand, when the input measurement value reaches the threshold value, it is estimated that the processing capability of the atmospheric pressure plasma generator 10 is within the allowable range, but is reduced. For this reason, when the input measurement value reaches the threshold value, the number of waveform failures in the operation history stored in association with the input measurement value is registered as the first set number. That is, the number of waveform failures during the plasma processing, which is estimated to be a decrease in the processing capability of the atmospheric pressure plasma generator 10, is stored in the storage device 151 as the first set number. Then, when the number of waveform defects becomes equal to or greater than the first set number, a predictive notification screen is displayed on the display device 106.
 このように、大気圧プラズマ発生装置10では、波形不良回数が、処理能力が低下していると想定される際の第1設定数以上となった場合に、表示装置106に予兆告知画面が表示される。つまり、波形不良回数が第1設定数以上となった場合に、電極24,26への電力供給状態が、処理能力が低下していると想定される際の電力供給状態になっていると判断され、予兆告知画面が表示される。これにより、作業者は、プラズマ処理能力の低下の予兆を適切に認識することが可能となり、作業予定等を調整することが可能となる。 As described above, in the atmospheric pressure plasma generation apparatus 10, when the number of waveform defects is equal to or more than the first set number when it is assumed that the processing capacity is reduced, the indication notification screen is displayed on the display device 106. Is done. That is, when the number of waveform defects is equal to or greater than the first set number, it is determined that the power supply state to the electrodes 24 and 26 is the power supply state when the processing capability is assumed to be reduced. The predictive notification screen is displayed. As a result, the operator can appropriately recognize a sign of a decrease in the plasma processing capacity, and can adjust the work schedule and the like.
 なお、第1測定値の特定時に用いられる閾値を、適切にプラズマ処理を行うことができないと判断される際の測定値に近い値とすることで、適切なプラズマ処理を実行可能な範囲での最終的な段階で、プラズマ処理能力の低下の予兆を知ることが可能となる。また、第1測定値の特定時に用いられる閾値を、適切にプラズマ処理を行うことができないと判断される際の測定値から大きく離れた値とすることで、プラズマ処理能力の低下の初期段階で、プラズマ処理能力の低下の予兆を知ることが可能となる。このように、第2実施例においても、閾値を調整することで、プラズマ処理能力の低下の種々の段階の予兆を認識することが可能となる。 In addition, the threshold value used when specifying the first measurement value is set to a value close to the measurement value when it is determined that the plasma processing cannot be appropriately performed, so that the appropriate plasma processing can be performed. At the final stage, it is possible to know a sign of a decrease in plasma processing capacity. In addition, by setting the threshold value used when specifying the first measurement value to be a value far from the measurement value when it is determined that the plasma processing cannot be performed appropriately, it is possible to reduce the plasma processing capability at an early stage. It becomes possible to know a sign of a decrease in plasma processing capacity. As described above, also in the second embodiment, by adjusting the threshold value, it is possible to recognize signs of various stages of the decrease in the plasma processing capacity.
 また、第2実施例では、入力測定値に基づいて第1測定値が登録されるだけでなく、作業者の入力装置107への入力情報に基づいて第1測定値が登録される。詳しくは、大気圧プラズマ発生装置10によるプラズマ処理は、一般的に、被処理体の表面処理の前処理として行われる。被処理体の表面処理としては、被処理体の表面への接着処理,塗装処理,コーティング処理などである。つまり、大気圧プラズマ発生装置10によるプラズマ処理の完了した被処理体に対して、後処理として、被処理体の表面への接着処理,塗装処理,コーティング処理等が行われる。 Further, in the second embodiment, not only the first measurement value is registered based on the input measurement value, but also the first measurement value is registered based on the input information to the input device 107 of the worker. Specifically, the plasma treatment by the atmospheric pressure plasma generator 10 is generally performed as a pretreatment for the surface treatment of the workpiece. Examples of the surface treatment of the object to be treated include adhesion treatment to the surface of the object to be treated, painting treatment, and coating treatment. In other words, as a post-treatment, an adhesion process to the surface of the object to be processed, a coating process, a coating process, or the like is performed on the object to be processed after the plasma processing by the atmospheric pressure plasma generator 10 is completed.
 このため、大気圧プラズマ発生装置10によるプラズマ処理の完了した被処理体に対して、コーティング処理などの後処理が実行される。そして、コーティング処理などの後処理が実行された後に、被処理体の品質が確認される。この際、被処理体の品質に問題が無ければ、前処理としてのプラズマ処理が適切に実行されていると推定される。一方、被処理体の品質に問題がある場合には、前処理としてのプラズマ処理が適切に実行されていないと推定される。 For this reason, a post-process such as a coating process is performed on the target object that has been subjected to the plasma process by the atmospheric pressure plasma generator 10. And after post-processing, such as a coating process, the quality of a to-be-processed object is confirmed. At this time, if there is no problem in the quality of the object to be processed, it is estimated that the plasma processing as the preprocessing is appropriately performed. On the other hand, when there is a problem in the quality of the object to be processed, it is estimated that the plasma processing as the preprocessing is not properly performed.
 そこで、コーティング処理などの後処理が実行された後の被処理体の品質に問題がある場合に、作業者は、その被処理体へのプラズマ処理が実行された日時を、入力情報として入力装置107に入力する。これにより、入力情報がコントローラ100に入力され、コントローラ100は、入力情報に含まれるプラズマ処理の実行日時を特定する。さらに、コントローラ100は、記憶装置151に記憶されている動作履歴を参照し、特定した日時と所定の範囲内の日時を含む動作履歴を抽出する。そして、その動作履歴に含まれる波形不良回数が、第1設定数として登録される。つまり、プラズマ処理の後処理の結果が良好でない場合に、前処理として実行されたプラズマ処理能力が低下していると推定され、そのプラズマ処理時の波形不良回数が、第1設定数として登録される。そして、波形不良回数が第1設定数以上となった場合に、表示装置106に予兆告知画面が表示される。 Therefore, when there is a problem with the quality of the object to be processed after the post-processing such as the coating process, the operator inputs the date and time when the plasma process is performed on the object to be processed as input information. Input to 107. As a result, the input information is input to the controller 100, and the controller 100 specifies the execution date and time of the plasma processing included in the input information. Further, the controller 100 refers to the operation history stored in the storage device 151 and extracts an operation history including the specified date and time and the date and time within a predetermined range. The number of waveform failures included in the operation history is registered as the first set number. That is, when the result of the post-processing of the plasma processing is not good, it is estimated that the plasma processing capability executed as the pre-processing is reduced, and the number of waveform defects at the time of the plasma processing is registered as the first set number. The Then, when the number of waveform defects becomes equal to or greater than the first set number, a predictive notification screen is displayed on the display device 106.
 このように、大気圧プラズマ発生装置10では、プラズマ処理後に後処理が実行された被処理体の品質が良好でない場合の波形不良回数が、第1設定数として登録される。そして、波形不良回数が第1設定数以上となった場合に、表示装置106に予兆告知画面が表示される。つまり、波形不良回数が第1設定数以上となった場合に、電極24,26への電力供給状態が、プラズマ処理能力の低下により後処理を適切に実行できない場合の電力供給状態になっていると判断され、予兆告知画面が表示される。これにより、作業者は、プラズマ処理の後処理をも考慮して、プラズマ処理能力の低下の予兆を認識することが可能となる。 As described above, in the atmospheric pressure plasma generation apparatus 10, the number of waveform failures when the quality of an object to be processed after plasma processing is not good is registered as the first set number. Then, when the number of waveform defects becomes equal to or greater than the first set number, a predictive notification screen is displayed on the display device 106. That is, when the number of waveform defects is equal to or greater than the first set number, the power supply state to the electrodes 24 and 26 is a power supply state when post-processing cannot be performed properly due to a decrease in plasma processing capability. Is determined, and a predictive notification screen is displayed. Thereby, the operator can recognize a sign of a decrease in the plasma processing capability in consideration of the post-processing of the plasma processing.
 なお、作業者は、プラズマ処理の後処理の結果だけでなく、別の手法によりプラズマ処理の能力低下を予想し、プラズマ処理の能力低下が予想された場合に、入力情報を入力装置107に入力することが可能である。具体的には、例えば、作業者が、ダインペンを用いて、プラズマ処理の完了した被処理体の接触角を測定する。この際、接触角が予め想定されている角度より高い場合に、プラズマ処理能力が低下していると推定される。このため、作業者は、その被処理体へのプラズマ処理が実行された日時を、入力情報として入力装置107に入力する。これにより、第1設定数が登録され、波形不良回数が第1設定数以上となった場合に、表示装置106に予兆告知画面が表示される。 Note that the operator inputs not only the result of the post-processing of the plasma processing but also the input information to the input device 107 when the performance of the plasma processing is predicted to be reduced by another method and the performance of the plasma processing is predicted to be reduced. Is possible. Specifically, for example, the operator uses a dyne pen to measure the contact angle of the object to be processed after the plasma processing. At this time, when the contact angle is higher than the angle assumed in advance, it is estimated that the plasma processing capability is reduced. For this reason, the operator inputs the date and time when the plasma processing is performed on the workpiece to the input device 107 as input information. As a result, when the first set number is registered and the number of waveform defects becomes equal to or greater than the first set number, the predictive notification screen is displayed on the display device 106.
 なお、大気圧プラズマ発生装置10では、入力測定値が動作履歴と関連付けて記憶装置151に記憶される毎に、それら入力測定値と動作履歴とが表示装置106に表示される。これにより、作業者は、接触角計152等の測定値と、動作履歴に含まれる電流の極大値および単位時間当たりの波形不良回数とを認識することで、表示装置106に予兆告知画面が表示される前においても、大気圧プラズマ発生装置10によるプラズマ処理能力をある程度、推定することが可能となる。 In the atmospheric pressure plasma generation device 10, each time the input measurement value is stored in the storage device 151 in association with the operation history, the input measurement value and the operation history are displayed on the display device 106. As a result, the operator recognizes the measured value of the contact angle meter 152 and the like, the maximum value of the current included in the operation history, and the number of waveform failures per unit time, whereby the predictive notification screen is displayed on the display device 106. Even before being performed, the plasma processing capability of the atmospheric pressure plasma generator 10 can be estimated to some extent.
 また、大気圧プラズマ発生装置10において、入力測定値が動作履歴と関連付けて記憶装置151に記憶される毎に、それら入力測定値と動作履歴とが、大気圧プラズマ発生装置10からPC110に送信される。そして、PC110では、受信した入力測定値と動作履歴とが表示装置112に表示される。これにより、例えば、工場の管理者なども、接触角計152等の測定値と、動作履歴に含まれる電流の極大値および単位時間当たりの波形不良回数とを認識することで、大気圧プラズマ発生装置10によるプラズマ処理能力をある程度、推定することが可能となる。 Further, in the atmospheric pressure plasma generation device 10, each time the input measurement value is stored in the storage device 151 in association with the operation history, the input measurement value and the operation history are transmitted from the atmospheric pressure plasma generation device 10 to the PC 110. The In the PC 110, the received input measurement value and operation history are displayed on the display device 112. As a result, for example, a factory manager can recognize the measured value of the contact angle meter 152, the maximum value of the current included in the operation history, and the number of waveform failures per unit time, thereby generating atmospheric pressure plasma. It becomes possible to estimate the plasma processing capability of the apparatus 10 to some extent.
 また、PC110では、受信した入力測定値と動作履歴とが記憶装置114に記憶される。これにより、大気圧プラズマ発生装置10における電極24,26への供給電流の変化と、単位時間当たりの波形不良回数と、接触角計152等の測定値との関係を分析し、プラズマ処理能力の低下の予兆に役立てることが可能となる。具体的には、例えば、PC110において、接触角計152等の測定値、つまり、プラズマの処理能力を示す測定値と、波形不良回数との関係を数式化することが可能である。このように数式化されたプラズマの処理能力を示す測定値と、波形不良回数との関係用いることで、波形不良回数に応じたプラズマ処理能力の低下の程度を適切に推定し、プラズマ処理能力の低下の予兆を適切に認識することが可能となる。 Also, in the PC 110, the received input measurement values and operation history are stored in the storage device 114. As a result, the relationship between the change in the current supplied to the electrodes 24 and 26 in the atmospheric pressure plasma generator 10, the number of waveform defects per unit time, and the measured value of the contact angle meter 152, etc. is analyzed, and the plasma processing capability is analyzed. It can be used to predict the decline. Specifically, for example, in the PC 110, the relationship between the measured value of the contact angle meter 152 or the like, that is, the measured value indicating the plasma processing capability, and the number of waveform defects can be formulated. By using the relationship between the measured value indicating the plasma processing capability expressed in this way and the number of waveform failures, the degree of decrease in the plasma processing capability corresponding to the number of waveform failures can be estimated appropriately, and the plasma processing capability can be estimated. It is possible to appropriately recognize the signs of decline.
 なお、大気圧プラズマ発生装置10のコントローラ100は、図9に示すように、取得部160と、演算部162と、記憶部164と、状態判断部166と、表示部168と、出力部170とを備えている。また、演算部162は、条件判断部172を有している。取得部160は、電極24,26に供給される電流を指標する指標値として、電流の1周期毎の極大値、つまり、振幅を継時的に取得するための機能部である。条件判断部172は、電流の極大値が設定条件を満たすか否かを判断するための機能部、つまり、検出極大値が平均極大値範囲内であるか否かを判断するための機能部である。演算部162は、条件判断部172により判断された回数をカウントし、波形不良回数を演算するための機能部である。記憶部164は、所定のタイミング、つまり、入力測定値が閾値に至っていると判断された場合、若しくは、入力装置107に入力情報が入力された場合の波形不良回数を、第1設定数として記憶装置151に記憶するための機能部である。状態判断部166は、波形不良回数と第1設定数とに基づいて、電極24,26への電力供給状態が、プラズマ処理能力が低下している際の電力供給状態になっているか否かを判断するための機能部である。表示部168は、電極24,26への電力供給状態が、プラズマ処理能力が低下している際の電力供給状態になっている場合に、予兆告知画面を表示装置106に表示するための機能部である。出力部170は、入力測定値と動作履歴とをPC110に出力するための機能部である。 As shown in FIG. 9, the controller 100 of the atmospheric pressure plasma generator 10 includes an acquisition unit 160, a calculation unit 162, a storage unit 164, a state determination unit 166, a display unit 168, and an output unit 170. It has. In addition, the calculation unit 162 includes a condition determination unit 172. The acquisition unit 160 is a functional unit for acquiring a local maximum value, that is, an amplitude over time, as an index value indicating the current supplied to the electrodes 24 and 26. The condition determination unit 172 is a functional unit for determining whether or not the maximum value of the current satisfies the setting condition, that is, a functional unit for determining whether or not the detected maximum value is within the average maximum value range. is there. The calculation unit 162 is a functional unit for counting the number of times determined by the condition determination unit 172 and calculating the number of waveform defects. The storage unit 164 stores a predetermined timing, that is, the number of waveform failures when it is determined that the input measurement value has reached the threshold value or when input information is input to the input device 107 as the first set number. This is a functional unit for storing in the device 151. Based on the number of waveform failures and the first set number, the state determination unit 166 determines whether or not the power supply state to the electrodes 24 and 26 is a power supply state when the plasma processing capacity is reduced. It is a functional part for judging. The display unit 168 is a functional unit for displaying a predictive notification screen on the display device 106 when the power supply state to the electrodes 24 and 26 is the power supply state when the plasma processing capacity is reduced. It is. The output unit 170 is a functional unit for outputting input measurement values and operation history to the PC 110.
 ちなみに、上記第2実施例において、大気圧プラズマ発生装置10は、プラズマ発生装置の一例である。制御装置16は、制御装置及び情報処理装置の一例である。電極24,26は、電極の一例である。入力装置107は、操作受付部の一例である。PC110は、外部装置の一例である。インターフェース150は、接続部の一例である。接触角計152および色差計154は、測定装置の一例である。取得部160は、取得部の一例である。演算部162は、演算部の一例である。記憶部164は、記憶部の一例である。状態判断部166は、第1判断部の一例である。表示部168は、報知部の一例である。出力部170は、出力部の一例である。条件判断部172は、第2判断部の一例である。また、波形不良回数は、変化値およびカウント数の一例である。第1設定数は、特定変化値および特定カウント数の一例である。 Incidentally, in the second embodiment, the atmospheric pressure plasma generator 10 is an example of a plasma generator. The control device 16 is an example of a control device and an information processing device. The electrodes 24 and 26 are examples of electrodes. The input device 107 is an example of an operation reception unit. The PC 110 is an example of an external device. The interface 150 is an example of a connection unit. The contact angle meter 152 and the color difference meter 154 are examples of a measuring device. The acquisition unit 160 is an example of an acquisition unit. The calculation unit 162 is an example of a calculation unit. The storage unit 164 is an example of a storage unit. The state determination unit 166 is an example of a first determination unit. Display unit 168 is an example of a notification unit. The output unit 170 is an example of an output unit. The condition determination unit 172 is an example of a second determination unit. The number of waveform defects is an example of a change value and a count number. The first set number is an example of a specific change value and a specific count number.
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、検出センサ108により検出される電流の極大値、つまり、振幅に基づいて、波形不良回数がカウントされているが、供給電力量に基づいて、波形不良回数がカウントされてもよい。つまり、例えば、図10に示すように、検出センサ108により検出される電流が変化している場合に、その電流波形の積分値、つまり、面積(図での斜線部)が、供給電力量となる。このため、1周期毎の供給電力量が監視され、供給電力量が設定範囲を超えた場合、例えば、図10では、供給電力量が極端に低下した場合に、波形不良回数が1カウントアップされる。このように、電流の極大値の代わりに、供給電力量を採用しても、適切に波形不良回数をカウントすることが可能となる。なお、電極24,26に供給される電流だけでなく、電極24,26に供給される電圧に基づいて、波形不良回数をカウントしてもよい。 In addition, this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, the number of waveform failures is counted based on the maximum value of the current detected by the detection sensor 108, that is, the amplitude, but the waveform failure is counted based on the supplied power amount. The number of times may be counted. That is, for example, as shown in FIG. 10, when the current detected by the detection sensor 108 is changing, the integrated value of the current waveform, that is, the area (shaded portion in the figure) is the amount of supplied power. Become. For this reason, the power supply amount for each cycle is monitored, and when the power supply amount exceeds the set range, for example, in FIG. 10, the number of waveform defects is counted up by 1 when the power supply amount is extremely reduced. The As described above, even if the power supply amount is employed instead of the current maximum value, the number of waveform defects can be appropriately counted. Note that the number of waveform defects may be counted based not only on the current supplied to the electrodes 24 and 26 but also on the voltage supplied to the electrodes 24 and 26.
 また、上記実施例では、大気圧プラズマ発生装置10のプラズマ処理能力の低下を推定するための処理が、制御装置16において実行されているが、PC110などの情報処理装置で実行してもよい。このような場合に、本発明の情報処理装置はPC110となる。 In the above embodiment, the process for estimating the decrease in the plasma processing capability of the atmospheric pressure plasma generator 10 is executed in the control device 16, but may be executed by an information processing device such as the PC 110. In such a case, the information processing apparatus of the present invention is the PC 110.
 また、上記実施例では、プラズマ照射により変化する物性を測定する装置として、接触角計,色差計が採用されているが、プラズマ照射により変化する物性を測定可能な装置であれば、種々の測定装置を採用することが可能である。例えば、被処理体の表面自由エネルギーを測定可能な装置を採用することが可能である。 Further, in the above embodiment, a contact angle meter and a color difference meter are adopted as an apparatus for measuring physical properties that change due to plasma irradiation. However, various devices can be used as long as they can measure physical properties that change due to plasma irradiation. It is possible to employ a device. For example, it is possible to employ an apparatus capable of measuring the surface free energy of the object to be processed.
 また、上記実施例では、第1設定数のみが設定され、波形不良回数が第1設定数以上となった場合に、予兆告知画面が表示されるが、複数の設定数を設定してもよい。このように、複数の設定数が設定される場合には、波形不良回数が各設定数以上となる毎に、異なる告知画面が表示される。これにより、プラズマ処理の低下を多段階的に報知することが可能となる。なお、報知の手法としては、画面の表示に限られず、音声,ランプの点灯,用紙への印刷等、種々の手法を採用することが可能である。 Further, in the above embodiment, only the first set number is set, and when the number of waveform defects becomes equal to or more than the first set number, the predictive notification screen is displayed, but a plurality of set numbers may be set. . As described above, when a plurality of set numbers are set, a different notification screen is displayed every time the number of waveform defects becomes equal to or greater than each set number. As a result, it is possible to notify the lowering of the plasma processing in multiple stages. Note that the notification method is not limited to display on the screen, and various methods such as voice, lighting of a lamp, printing on a sheet, and the like can be employed.
 また、上記第2実施例では、波形不良回数と第1設定数とに基づいて、予兆告知画面が表示されるが、さらに、入力測定値を考慮して、予兆告知画面を表示してもよい。つまり、波形不良回数と第1設定数と入力測定値とに基づいて、予兆告知画面が表示されてもよい。詳しくは、波形不良回数が第1設定数以上であるか否かが判断される際に、その波形不良回数を含む動作履歴と関連付けて記憶されている入力測定値が特定される。そして、その入力測定値が予め設定されている設定値に至っているか否かが判断される。この際、波形不良回数が第1設定数以上であり、入力測定値が設定値に至っている場合に、予兆告知画面を表示してもよい。 In the second embodiment, the predictive notification screen is displayed based on the number of waveform defects and the first set number. However, the predictive notification screen may be displayed in consideration of the input measurement value. . That is, the predictive notification screen may be displayed based on the number of waveform defects, the first set number, and the input measurement value. Specifically, when it is determined whether or not the number of waveform failures is equal to or greater than the first set number, the input measurement value stored in association with the operation history including the number of waveform failures is specified. Then, it is determined whether or not the input measurement value has reached a preset setting value. At this time, when the number of waveform failures is equal to or greater than the first set number and the input measurement value has reached the set value, the predictive notification screen may be displayed.
 10:大気圧プラズマ発生装置(プラズマ発生装置)  16:制御装置(情報処理装置)  24:電極  26:電極  107:入力装置(操作受付部)  110:PC(外部装置)  150:インターフェース(接続部)  152:接触角計(測定装置)  154:色差計(測定装置)  160:取得部  162:演算部  164:記憶部  166:状態判断部(第1判断部)  168:表示部(報知部)  170:出力部  172:条件判断部(第2判断部) 10: Atmospheric pressure plasma generator (plasma generator) 16: Control device (information processing device) 24: Electrode 26: Electrode 107: Input device (operation reception unit) 110: PC (external device) 150: Interface (connection unit) 152: Contact angle meter (measuring device) 154: Color difference meter (measuring device) 160: Acquisition unit 162: Calculation unit 164: Storage unit 166: State judgment unit (first judgment unit) 168: Display unit (notification unit) 170: Output unit 172: Condition determination unit (second determination unit)

Claims (8)

  1.  複数の電極間での放電によりプラズマを発生させるプラズマ発生装置の前記複数の電極に供給される電流又は電圧を指標する指標値を継時的に取得する取得部と、
     前記取得部により取得された前記指標値に基づいて、前記指標値の変化に関する数値である変化値を演算する演算部と、
     所定のタイミングにおいて前記演算部により演算された前記変化値を、特定変化値として記憶する記憶部と、
     前記演算部により前記変化値が演算される毎に、当該変化値の演算時の電力供給状態が、前記所定のタイミングにおける電力供給状態になっているか否かを、当該変化値と前記特定変化値とに基づいて判断する第1判断部と、
     前記第1判断部により前記変化値の演算時の電力供給状態が、前記所定のタイミングにおける電力供給状態になっていると判断された場合に、所定の情報を報知する報知部と
     を有する制御装置を備える情報処理装置。
    An acquisition unit that continuously acquires an index value that indicates current or voltage supplied to the plurality of electrodes of the plasma generation apparatus that generates plasma by discharge between the plurality of electrodes;
    An arithmetic unit that calculates a change value that is a numerical value related to a change in the index value based on the index value acquired by the acquisition unit;
    A storage unit for storing the change value calculated by the calculation unit at a predetermined timing as a specific change value;
    Each time the change value is calculated by the calculation unit, whether or not the power supply state at the time of calculating the change value is the power supply state at the predetermined timing, the change value and the specific change value. A first determination unit for determining based on
    A control unit comprising: a notification unit configured to notify predetermined information when the first determination unit determines that the power supply state at the time of calculating the change value is the power supply state at the predetermined timing; An information processing apparatus comprising:
  2.  前記演算部は、
     前記取得部により取得された前記指標値が設定条件を満たすか否かを判断する第2判断部を含み、前記第2判断部により前記指標値が前記設定条件を満たさないと判断された回数をカウントすることで、そのカウント数を、前記変化値として演算し、
     前記記憶部は、
     前記所定のタイミングにおいて前記演算部により前記変化値として演算された前記カウント数を、特定カウント数として記憶し、
     前記第1判断部は、
     前記演算部により前記カウント数が前記変化値として演算される毎に、当該カウント数が前記特定カウント数以上となった場合に、当該変化値の演算時の電力供給状態が、前記所定のタイミングにおける電力供給状態になっていると判断する請求項1に記載の情報処理装置。
    The computing unit is
    A second determination unit configured to determine whether or not the index value acquired by the acquisition unit satisfies a setting condition, and the number of times the index value is determined not to satisfy the setting condition by the second determination unit By counting, the count number is calculated as the change value,
    The storage unit
    The count number calculated as the change value by the calculation unit at the predetermined timing is stored as a specific count number,
    The first determination unit includes:
    Each time the count number is calculated as the change value by the calculation unit, when the count number becomes equal to or greater than the specific count number, the power supply state at the time of calculating the change value is determined at the predetermined timing. The information processing apparatus according to claim 1, wherein the information processing apparatus determines that it is in a power supply state.
  3.  前記情報処理装置は、
     ユーザ操作による入力情報を受け付ける操作受付部を有し、
     前記所定のタイミングは、
     前記操作受付部が受け付けた前記入力情報に応じたタイミングである請求項1または請求項2に記載の情報処理装置。
    The information processing apparatus includes:
    It has an operation reception unit that receives input information by user operation,
    The predetermined timing is
    The information processing apparatus according to claim 1, wherein the timing corresponds to the input information received by the operation receiving unit.
  4.  前記情報処理装置は、
     プラズマ照射により変化する物性を測定する測定装置が接続される接続部を備え、
     前記記憶部は、
     前記特定変化値と関連付けて、前記測定装置による測定値を記憶し、
     前記第1判断部は、
     前記演算部により前記変化値が演算される毎に、当該変化値の演算時の電力供給状態が、前記所定のタイミングにおける電力供給状態になっているか否かを、当該変化値と前記特定変化値と前記測定装置による測定値とに基づいて判断する請求項1ないし請求項3のいずれか1項に記載の情報処理装置。
    The information processing apparatus includes:
    It has a connection part to which a measuring device that measures physical properties that change due to plasma irradiation is connected,
    The storage unit
    In association with the specific change value, the measurement value by the measurement device is stored,
    The first determination unit includes:
    Each time the change value is calculated by the calculation unit, whether or not the power supply state at the time of calculating the change value is the power supply state at the predetermined timing, the change value and the specific change value. The information processing apparatus according to any one of claims 1 to 3, wherein a determination is made based on a measurement value obtained by the measurement apparatus.
  5.  前記測定装置が、
     プラズマ照射により光学的特性が変化するインジケータの光学的特性を測定する装置を含む請求項4に記載の情報処理装置。
    The measuring device is
    The information processing apparatus according to claim 4, comprising an apparatus that measures an optical characteristic of an indicator whose optical characteristic changes due to plasma irradiation.
  6.  前記記憶部は、
     前記特定変化値と関連付けて、その特定変化値が演算された日時を記憶する請求項1ないし請求項5のいずれか1項に記載の情報処理装置。
    The storage unit
    The information processing apparatus according to any one of claims 1 to 5, wherein a date and time when the specific change value is calculated is stored in association with the specific change value.
  7.  前記指標値が、前記複数の電極に供給される電流の振幅と供給電力量との少なくとも一方である請求項1ないし請求項6のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 6, wherein the index value is at least one of an amplitude of a current supplied to the plurality of electrodes and a supply power amount.
  8.  前記制御装置が、
     前記指標値と前記変化値とを外部装置に出力する出力部を有する請求項1ないし請求項7のいずれか1項に記載の情報処理装置。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
    The control device is
    The information processing apparatus according to claim 1, further comprising an output unit configured to output the index value and the change value to an external device.
























PCT/JP2017/014088 2017-04-04 2017-04-04 Information processing device WO2018185833A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019510530A JP6806883B2 (en) 2017-04-04 2017-04-04 Information processing device
CN201780089361.XA CN110476486B (en) 2017-04-04 2017-04-04 Information processing apparatus
PCT/JP2017/014088 WO2018185833A1 (en) 2017-04-04 2017-04-04 Information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014088 WO2018185833A1 (en) 2017-04-04 2017-04-04 Information processing device

Publications (1)

Publication Number Publication Date
WO2018185833A1 true WO2018185833A1 (en) 2018-10-11

Family

ID=63713360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014088 WO2018185833A1 (en) 2017-04-04 2017-04-04 Information processing device

Country Status (3)

Country Link
JP (1) JP6806883B2 (en)
CN (1) CN110476486B (en)
WO (1) WO2018185833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161301A (en) * 2019-03-26 2020-10-01 日本電産株式会社 Plasma processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173982A (en) * 1998-12-01 2000-06-23 Matsushita Electric Ind Co Ltd Plasma treating apparatus and method thereof
JP2002313729A (en) * 2001-04-10 2002-10-25 Matsushita Electric Ind Co Ltd Method of monitoring plasma processor, plasma processing method and apparatus
JP2004128023A (en) * 2002-09-30 2004-04-22 Matsushita Electric Ind Co Ltd Plasma processing apparatus and method therefor
JP2011077891A (en) * 2009-09-30 2011-04-14 Daihen Corp Impedance matching apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375860B1 (en) * 1995-03-10 2002-04-23 General Atomics Controlled potential plasma source
JP3977114B2 (en) * 2002-03-25 2007-09-19 株式会社ルネサステクノロジ Plasma processing equipment
CN101206232A (en) * 2007-07-31 2008-06-25 烟台龙源电力技术有限公司 Method and device for monitoring plasma generator cathode life
CN102448239B (en) * 2012-01-10 2013-06-05 中国科学院西安光学精密机械研究所 Dielectric barrier discharge enhanced-type low-temperature plasma brush generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173982A (en) * 1998-12-01 2000-06-23 Matsushita Electric Ind Co Ltd Plasma treating apparatus and method thereof
JP2002313729A (en) * 2001-04-10 2002-10-25 Matsushita Electric Ind Co Ltd Method of monitoring plasma processor, plasma processing method and apparatus
JP2004128023A (en) * 2002-09-30 2004-04-22 Matsushita Electric Ind Co Ltd Plasma processing apparatus and method therefor
JP2011077891A (en) * 2009-09-30 2011-04-14 Daihen Corp Impedance matching apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161301A (en) * 2019-03-26 2020-10-01 日本電産株式会社 Plasma processing device
JP7067516B2 (en) 2019-03-26 2022-05-16 日本電産株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JPWO2018185833A1 (en) 2019-12-12
CN110476486A (en) 2019-11-19
JP6806883B2 (en) 2021-01-06
CN110476486B (en) 2022-03-08

Similar Documents

Publication Publication Date Title
EP2594119B1 (en) Failure event detection in a plasma arc torch
TWI654900B (en) Integrated device and method for enhancing heater life and performance
KR101998577B1 (en) Substrate processing apparatus, monitoring program and method of manufacturing semiconductor device
TW200527256A (en) Plasma processing method and apparatus thereof
WO2018185833A1 (en) Information processing device
JP6723436B2 (en) Atmospheric pressure plasma device
KR20180053230A (en) Abnormality detecttion apparatus
JP2009049382A (en) Method for drying etching and dry etching apparatus
KR20180065003A (en) Methods and systems for chamber matching and monitoring
WO2018185832A1 (en) Information processing device
US20180120822A1 (en) Substrate processing apparatus and non-transitory computer-readable recording medium
KR101777931B1 (en) Protecting tube deterioration detecting apparatus and method therefor
AU2018312663A1 (en) Method for controlling discharging of glass plate in glass plate tempering technology process
US11742228B2 (en) Substrate processing method and substrate processing system
US8741164B2 (en) Methods for optimizing a plasma process
JP2008177386A (en) Cleaning apparatus
EP3846593B1 (en) Plasma generation device and plasma head cooling method
TWI273361B (en) System and method for real-time quality detection
KR102373672B1 (en) Real-time diagnosis and thin film thickness prediction system for plasma abnormality in semiconductor etching process
JP2015193020A (en) Control method and control device of resistance welder
JP2013111513A (en) Nozzle inspection device, spray coating device mounted with the same, and nozzle inspection method
JPH1076369A (en) Life predicting method of plasma torch electrode and nozzle damage detecting method and device thereof
CN112464426A (en) Method for calculating temperature of strip steel entering zinc pot
TW202240730A (en) Apparatus for monitoring and controlling immersing process
KR20180025437A (en) Fouling preventing system of heat exchanger and control method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904417

Country of ref document: EP

Kind code of ref document: A1