WO2018185810A1 - Contactless power supply system - Google Patents

Contactless power supply system Download PDF

Info

Publication number
WO2018185810A1
WO2018185810A1 PCT/JP2017/013930 JP2017013930W WO2018185810A1 WO 2018185810 A1 WO2018185810 A1 WO 2018185810A1 JP 2017013930 W JP2017013930 W JP 2017013930W WO 2018185810 A1 WO2018185810 A1 WO 2018185810A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
voltage
current
output
Prior art date
Application number
PCT/JP2017/013930
Other languages
French (fr)
Japanese (ja)
Inventor
三菱電機照明株式会社
岳秋 飯田
Original Assignee
三菱電機株式会社
三菱電機照明株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機照明株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/013930 priority Critical patent/WO2018185810A1/en
Priority to JP2019510509A priority patent/JP6884201B2/en
Publication of WO2018185810A1 publication Critical patent/WO2018185810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a non-contact power supply system that supplies power to a light source by non-contact power supply.
  • a power feeding device that feeds power in a non-contact manner to a power receiving device is provided with an inverter circuit, and by controlling the drive frequency and conduction ratio (duty ratio) of the inverter circuit, There has been proposed one that varies the power to be supplied (see, for example, Patent Document 1).
  • a dimming function that varies the brightness of the light source is required. For this reason, when power is supplied from an AC power source to a light source in a non-contact manner, it is necessary to vary the power supply in a wide range.
  • Patent Document 1 when the technique described in Patent Document 1 is applied to a power supply device that supplies power to a light source, it is necessary to greatly change the drive frequency and duty ratio of the inverter circuit in order to vary the power supply in a wide range. There is a problem that loss increases. In addition, there is a problem in that transmission efficiency at the time of dimming is reduced due to switching loss, and heat is generated.
  • the present invention has been made to solve the above-described problems, and in a non-contact power feeding system that supplies power to a light source by non-contact power feeding, switching loss when changing the power output from the power feeding device to the light source. It is possible to obtain a non-contact power feeding system that can reduce power consumption.
  • a contactless power supply system includes a first rectifier circuit that rectifies AC power input from an AC power supply, a DC converter circuit that converts an output of the first rectifier circuit into an arbitrary DC voltage, and the DC converter.
  • a power supply apparatus comprising: an inverter circuit that converts the DC voltage output from the circuit into high-frequency power; a first coil that is supplied with the high-frequency power output from the inverter circuit; and a control unit that controls the DC conversion circuit.
  • a second coil that receives the high-frequency power from the first coil, a second rectifier circuit that rectifies the high-frequency power received by the second coil, and an output of the second rectifier circuit to an arbitrary direct current
  • a power receiving device having a current control circuit for converting and outputting to a light source, wherein the inverter circuit has a switching element and a resonance circuit, and has a preset frequency and
  • the control unit is configured by a resonant inverter in which the switching element is driven with a duty ratio, and the control unit varies the DC voltage of the DC conversion circuit to change the power output from the power receiving device to the light source. is there.
  • the inverter circuit is constituted by a resonance type inverter, and the DC voltage of the DC conversion circuit is varied to change the power output from the power receiving device to the light source. For this reason, the switching loss at the time of changing the electric power output to a light source from an electric power feeder can be reduced.
  • FIG. 1 is a block diagram showing a non-contact power feeding system according to Embodiment 1 of the present invention.
  • the non-contact power feeding system includes a power feeding device 1 and a power receiving device 2.
  • the power feeding device 1 converts AC power input from the AC power source 3 into high frequency AC power and supplies the power to the power feeding coil 11 to transmit power in a non-contact manner.
  • the power receiving device 2 receives power from the power feeding device 1 in a non-contact manner by the power receiving coil 21 and outputs the power to the LED 22 that is a load.
  • the power receiving device 2 performs dimming control that varies the brightness of the LED 22 by adjusting the current supplied to the LED 22.
  • FIG. 2 is a circuit diagram showing a power feeding device of the non-contact power feeding system according to Embodiment 1 of the present invention.
  • the power feeding device 1 includes a power feeding coil 11, a DC conversion circuit 12, a resonant inverter 13, a power feeding side control unit 14, a power feeding side communication unit 15, a power feeding side rectifier circuit 16, and an input.
  • a filter 17 and a capacitor 18 are provided.
  • the input filter 17 reduces high frequency components superimposed on the current input from the AC power supply 3.
  • the input filter 17 includes a coil 171 and a capacitor 172.
  • the coil 171 is connected in series to the AC power supply 3.
  • One end of the coil 171 is connected to one end of the AC power supply 3, and the other end of the coil 171 is connected to the capacitor 172 and the power supply side rectifier circuit 16.
  • the power supply side rectifier circuit 16 is disposed between the input filter 17 and the DC converter circuit 12.
  • the power supply side rectifier circuit 16 has a function of converting an AC voltage supplied from the AC power supply 3 into a DC voltage.
  • the power supply side rectifier circuit 16 is configured by, for example, a diode bridge in which four diodes are combined. Note that the configuration of the power supply side rectifier circuit 16 is not limited to this, and a MOSFET (Metal Oxide Semiconductor-Field Effect Transistor) which is a unidirectional conducting element may be combined.
  • MOSFET Metal Oxide Semiconductor-Field Effect Transistor
  • the capacitor 18 smoothes the output voltage of the power supply side rectifier circuit 16.
  • the DC conversion circuit 12 is disposed between the capacitor 18 and the resonant inverter 13.
  • the DC conversion circuit 12 converts the output voltage of the power supply side rectifier circuit 16 smoothed by the capacitor 18 into an arbitrary DC voltage.
  • the DC conversion circuit 12 is configured by, for example, a boost chopper circuit.
  • the DC conversion circuit 12 that is a step-up chopper circuit includes a MOSFET 121 that is a switching element, a coil 122, and a diode 123.
  • flow conversion circuit 12 it can comprise with circuits, such as a step-up / step-down chopper circuit, a flyback circuit, a fly forward circuit, a SEPIC, a Zeta converter, a Cuk converter, other than a step-up chopper circuit.
  • MOSFET 121 The drain of MOSFET 121 is connected to coil 122 and diode 123 on the positive electrode side of the DC bus.
  • the source of MOSFET 121 is connected to capacitor 18 and smoothing capacitor 124 on the negative electrode side of the DC bus.
  • the gate of the MOSFET 121 is connected to the power supply side control unit 14.
  • a control signal output from the power supply side control unit 14 is input to the gate of the MOSFET 121, and on / off control is performed.
  • Coil 122 is arranged between capacitor 18 and MOSFET 121 on the positive electrode side of the DC bus. One end of the coil 122 is connected to one end of the capacitor 18, and the other end of the coil 122 is connected to the MOSFET 121 and the diode 123.
  • the diode 123 is disposed between the MOSFET 121 and the smoothing capacitor 124 on the positive electrode side of the DC bus.
  • the anode of the diode 123 is connected to the coil 122 and the MOSFET 121.
  • the cathode of the diode 123 is connected to the smoothing capacitor 124.
  • the DC conversion circuit 12 boosts the output voltage of the power supply side rectifier circuit 16 by the MOSFET 121 being turned on and off, and outputs the boosted voltage to the smoothing capacitor 124. Further, by performing the control described later, it is possible to provide a function of reducing the harmonics of the input current and improving the power factor.
  • the smoothing capacitor 124 is disposed between the output of the DC conversion circuit 12 and the resonant inverter 13 on the DC bus. One end of the smoothing capacitor 124 is connected to the positive side of the DC bus, and the other end of the smoothing capacitor 124 is connected to the negative side of the DC bus. The smoothing capacitor 124 smoothes the output voltage of the DC conversion circuit 12.
  • the resonance inverter 13 is disposed between the DC conversion circuit 12 and the feeding coil 11.
  • the resonant inverter 13 converts the DC voltage output from the DC conversion circuit 12 into high frequency power of several MHz.
  • the resonant inverter 13 is configured by, for example, a current resonance type class E inverter.
  • the resonant inverter 13 includes a switching element 131, a capacitor 132, a capacitor 133, and a coil 134.
  • the configuration of the resonant inverter 13 is not limited to this, and other known circuit configurations can be applied.
  • One end of the capacitor 132 is connected to the positive side of the DC bus, and the other end of the capacitor 132 is connected to the negative side of the DC bus.
  • One end of the switching element 131 is connected to the capacitor 132 and the capacitor 133 on the positive electrode side of the DC bus.
  • the other end of the switching element 131 is connected to the capacitor 132 and the feeding coil 11 on the negative electrode side of the DC bus.
  • the capacitor 133 is disposed between the switching element 131 and the coil 134 on the positive electrode side of the DC bus.
  • the coil 134 is connected between the capacitor 133 and the feeding coil 11 on the positive electrode side of the DC bus.
  • the resonant inverter 13 converts the output voltage of the DC conversion circuit 12 into high-frequency AC power by controlling the switching element 131 on and off. In addition, when outputting to the feeding coil 11, the resonant inverter 13 outputs a high-frequency alternating current exceeding several MHz while suppressing an increase in switching loss by using the resonance of the coil 134 and the capacitors 132 and 133. be able to.
  • the feeding coil 11, the coil 134, the capacitor 132, and the capacitor 133 constitute a resonance circuit.
  • the switching element 131 is driven at a preset frequency and duty ratio. Thereby, switching of the switching element 131 is performed at the timing when the current generated by the resonance phenomenon of the resonance circuit becomes zero. Such switching is called soft switching.
  • the resonant inverter 13 is a voltage resonance type inverter, switching is performed at a timing when the voltage becomes zero.
  • a MOSFET made of silicon can be used.
  • GaN-HEMT made of gallium nitride can be used instead of MOSFET.
  • the feeding coil 11 is connected to the output of the resonant inverter 13.
  • the feeding coil 11 has a configuration in which a conducting wire is wound on the same plane.
  • the feeding coil 11 is supplied with high-frequency power output from the resonant inverter 13.
  • the power feeding coil 11 is magnetically coupled to the power receiving coil 21.
  • the power feeding coil 11 is magnetically coupled to the power receiving coil 21 to transmit the high frequency power output from the resonant inverter 13 to the power receiving device 2 in a non-contact manner.
  • a non-contact power transmission method any one of a magnetic resonance method, an electric field resonance method, and an electromagnetic induction method can be used.
  • the power supply side control unit 14 includes a control circuit 141, a voltage detection circuit 142, and a calculation unit 143.
  • the voltage detection circuit 142 detects the voltage of the smoothing capacitor 124. That is, the voltage detection circuit 142 detects the output voltage of the DC conversion circuit 12.
  • the voltage detection circuit 142 is configured by, for example, a voltage dividing circuit using resistors.
  • the voltage dividing circuit is applied to the smoothing capacitor 124 by connecting one end of a series resistor, in which resistors are connected in series, to the positive side DC bus and connecting the other end of the series resistor to the negative side DC bus. It is a circuit that divides the applied voltage.
  • the voltage detection circuit 142 only needs to be configured to detect the voltage of the smoothing capacitor 124, and any sensor can be used.
  • the information regarding the target value of the electric power made to output to LED22 which is a light source from the power receiving apparatus 2 is input into the calculating part 143.
  • the computing unit 143 determines the target value of the output voltage of the DC conversion circuit 12 according to the information regarding the target value of power.
  • the control circuit 141 controls ON / OFF of the switching element 131 of the resonant inverter 13 at a preset frequency and duty ratio.
  • the control circuit 141 controls the on / off of the MOSFET 121 so that the output voltage of the DC conversion circuit 12 becomes a target value of the output voltage determined by the calculation unit 143.
  • the power supply side control unit 14 can be realized by hardware such as a circuit device, or can be realized as software executed on an arithmetic device such as a microcomputer or CPU.
  • the power supply side communication unit 15 receives the information regarding the target value of power transmitted from the power receiving device 2. The received information is input to the power supply side control unit 14.
  • the power supply side communication unit 15 is configured by a wireless communication interface that conforms to an arbitrary communication standard such as a wireless LAN, Bluetooth (registered trademark), infrared communication, NFC (Near Field Communication), and the like.
  • the power supply side rectifier circuit 16 corresponds to the “first rectifier circuit” in the present invention.
  • the resonant inverter 13 corresponds to an “inverter circuit” in the present invention.
  • the feeding coil 11 corresponds to a “first coil” in the present invention.
  • the power supply side communication unit 15 corresponds to the “first communication unit” in the present invention.
  • the power supply side control unit 14 corresponds to a “control unit” in the present invention.
  • FIG. 3 is a waveform showing the operation of the DC conversion circuit of the non-contact power feeding system according to Embodiment 1 of the present invention.
  • the vertical axis in FIG. 3 indicates the input current of the AC power supply 3, the current flowing through the coil 122, the drain voltage of the MOSFET 121, and the gate voltage of the MOSFET 121 in order from the top, and the horizontal axis indicates time.
  • the cycle of turning on and off the gate voltage of the MOSFET 121 is shown to be longer than actual.
  • the MOSFET 121 When the ON time set by the control circuit 141 elapses, the MOSFET 121 is turned off, and a closed circuit is formed by the coil 122, the diode 123, and the smoothing capacitor 124. As a result, the current in the coil 122 decreases, the energy accumulated in the coil 122 is released, and the smoothing capacitor 124 is charged.
  • control circuit 141 turns on the MOSFET 121 again. Control in which switching is performed at a timing when the current of the coil 122 becomes zero is called current critical mode control.
  • the current flowing through the coil 122 has a triangular waveform, and the apex thereof has a sine wave envelope as indicated by a dotted line.
  • the current input from the AC power supply 3 is smoothed by the input filter 17, and an average value of the current flowing through the coil 122 is input, resulting in a sinusoidal current waveform. Therefore, the power factor is improved.
  • control circuit 141 performs feedback control so that the output voltage of the DC conversion circuit 12 detected by the voltage detection circuit 142 follows the target value of the output voltage determined by the calculation unit 143.
  • the feedback control response time is set so that the loop gain of the feedback control is not less than 1/2 of one cycle of the AC power supply 3 and not more than 1 (0 dB).
  • the frequency is set to be 1 (0 dB) or less at a frequency 2 times or less of the frequency of the AC power supply 3.
  • the loop gain of the constant voltage feedback control is set to 1 (0 dB) or less at a frequency of 100 Hz or less corresponding to a half cycle (half wave), that is, a cycle of 10 msec or more.
  • the constant voltage feedback control is set so as not to respond in a cycle shorter than 1 ⁇ 2 of the power cycle.
  • the same effect can be obtained by setting the update period of the on-time of the MOSFET 121 to half the period of the AC power supply 3 or a period longer than half.
  • FIG. 4 is a circuit diagram showing a power receiving device of the non-contact power feeding system according to Embodiment 1 of the present invention.
  • the power receiving device 2 includes a power receiving coil 21, a power receiving side rectifier circuit 23, a current control circuit 24, a power receiving side control unit 25, a power receiving side communication unit 26, and a current sensor 27. .
  • the power receiving coil 21 has a configuration in which a conducting wire is wound on the same plane.
  • the power receiving coil 21 is magnetically coupled to the power feeding coil 11.
  • the power receiving coil 21 receives the high frequency power transmitted from the power feeding coil 11 of the power feeding device 1.
  • the power receiving coil 21 outputs the high frequency power transmitted from the power feeding coil 11 to the power receiving side rectifier circuit 23.
  • the power receiving side rectifier circuit 23 is disposed between the power receiving coil 21 and the current control circuit 24.
  • the power receiving side rectifier circuit 23 rectifies the high frequency power received by the power receiving coil 21 and outputs the rectified power to the current control circuit 24.
  • the power receiving side rectifier circuit 23 includes a coil 231, diodes 232a, 232b, 232c, and 232d, and capacitors 233a, 233b, 233c, and 233d.
  • the power receiving side rectifier circuit 23 is configured by a resonant rectifier circuit.
  • the power-receiving-side rectifier circuit 23 can rectify the received high-frequency power with a small switching loss by appropriately setting the resonance frequency of the capacitor and coil even with high-frequency AC power exceeding several MHz.
  • the current control circuit 24 controls the current flowing through the LED 22 that is a load.
  • the current control circuit 24 converts the DC voltage output from the power receiving side rectifier circuit 23 into a DC current that can be input to the LED 22.
  • the current control circuit 24 is configured by, for example, a step-down chopper circuit.
  • the current control circuit 24 includes a MOSFET 241, a coil 244, a diode 243, a capacitor 242, and a smoothing capacitor 245.
  • the current control circuit 24 can be configured by a step-down chopper circuit, a step-up / step-down chopper circuit, a flyback circuit, a flyforward circuit, a SEPIC, a Zeta converter, a Cuk converter, and the like.
  • One end of the capacitor 242 is connected to the positive side of the DC bus, and the other end of the capacitor 242 is connected to the negative side of the DC bus.
  • MOSFET 241 is arranged on the positive electrode side of the DC bus.
  • the drain of the MOSFET 241 is connected to the capacitor 242.
  • the source of the MOSFET 241 is connected to the diode 243 and the coil 244.
  • a control signal output from the power receiving side control unit 25 is input to the gate of the MOSFET 241 to perform on / off control.
  • the cathode of the diode 243 is connected to the MOSFET 241 and the coil 244.
  • the anode of the diode 243 is connected to the smoothing capacitor 245 and the capacitor 242.
  • the smoothing capacitor 245 smoothes the current output to the LED 22.
  • the current sensor 27 detects a current flowing through the LED 22 and transmits a signal related to the detection result to the power receiving side control unit 25.
  • Examples of the current sensor 27 include a configuration using a hall sensor in addition to a configuration using a shunt resistor.
  • the LED 22 that is a load of the power receiving device 2 is configured by, for example, an LED group in which a plurality of LEDs are directly connected. One end of the LED group is connected to the positive side of the DC bus, and the other end of the LED group is connected to the negative side of the DC bus.
  • the power receiving side control unit 25 includes a control circuit 251, a voltage detection circuit 252, a current detection circuit 253, and a power calculation unit 254.
  • the voltage detection circuit 252 detects a voltage applied to the LED 22.
  • the current detection circuit 253 detects the current flowing through the LED 22.
  • the power calculation unit 254 calculates the output power of the LED 22 based on the detection results of the voltage detection circuit 252 and the current detection circuit 253.
  • the control circuit 251 outputs a signal for on / off control of the MOSFET 241 of the current control circuit 24 based on the detection result of the current detection circuit 253.
  • the power receiving side communication unit 26 performs wireless communication with the power feeding side communication unit 15.
  • the power receiving side communication unit 26 transmits information related to a target value of power to be output from the power receiving device 2 to the LED 22 that is a light source.
  • the power receiving side communication unit 26 is configured by a wireless communication interface conforming to an arbitrary communication standard such as a wireless LAN, Bluetooth (registered trademark), infrared communication, NFC (Near Field Communication).
  • the power receiving coil 21 corresponds to a “second coil” in the present invention.
  • the power receiving side rectifier circuit 23 corresponds to a “second rectifier circuit” in the present invention.
  • the power receiving side communication unit 26 corresponds to the “second communication unit” in the present invention.
  • the voltage detection circuit 252 corresponds to a “voltage sensor” in the present invention.
  • FIG. 5 is a waveform showing the operation of the current control circuit of the non-contact power feeding system according to Embodiment 1 of the present invention.
  • the vertical axis of FIG. 5 indicates the current flowing through the LED 22, the current flowing through the coil 244, and the control signal (gate voltage) of the MOSFET 241 in order from the top, and the horizontal axis indicates time.
  • the current flowing through the coil 244 has a triangular waveform, but the current output to the LED 22 is smoothed by the smoothing capacitor 245 and the average value of the current flowing through the coil 244 is output.
  • this method is a control method for obtaining a desired output by adjusting the ON period. Since the ratio of the ON time Ton to the switching period Tsw is called duty, this method is called duty control.
  • the power receiving side control unit 25 stores in advance the target value of the output current output from the current control circuit 24 to the LED 22 in accordance with the dimming rate.
  • the power receiving side control unit 25 includes, for example, a recording unit therein, and stores a target value of output current for a plurality of dimming rates.
  • the power receiving side control part 25 acquires the information of the light control rate input from the light control switch (not shown), for example. And the power receiving side control part 25 sets the target value of the output current of LED22 according to the acquired dimming rate.
  • the setting of the target value of the output current is not limited to this.
  • the power receiving side control unit 25 may acquire information on the dimming rate from an external device via the power receiving side communication unit 26 and set the target value of the output current.
  • the dimming rate information may be numerical information in the range of 0 to 100%, for example, with the rated output of the LED 22 being 100% and the extinction being 0%, or dark, normal, bright, etc.
  • a plurality of identification information corresponding to the size may be used.
  • the power receiving side control unit 25 outputs a signal for on / off control of the MOSFET 241 of the current control circuit 24 based on the current of the LED 22 detected by the current sensor 27.
  • the resonant inverter 13 of the power supply device 1 performs a soft switching operation at a fixed frequency and a fixed duty. For this reason, in order to vary the output power of the power receiving device 2 according to the dimming of the LED 22, control is performed to vary the output voltage of the DC conversion circuit 12. Details of the operation of the DC conversion circuit 12 during dimming will be described with reference to FIGS.
  • FIG. 6 is a flowchart showing the operation of the non-contact power feeding system according to Embodiment 1 of the present invention.
  • FIG. 7 is an example of operation waveforms of the non-contact power feeding system according to Embodiment 1 of the present invention.
  • the vertical axis in FIG. 7 indicates the output voltage of the DC conversion circuit 12, the output current of the resonant inverter 13, and the output power of the LED 22 in order from the top, and the horizontal axis indicates time.
  • the power receiving side control unit 25 of the power receiving device 2 determines whether or not the dimming rate has been changed (S001).
  • the power receiving side control unit 25 sets the target of the output current of the LED 22 according to the dimming rate. Set the value.
  • the power calculation unit 254 of the power receiving side control unit 25 obtains a target value of the power output to the LED 22 from the target value of the output current of the LED 22.
  • the target value of power may be obtained from the detection result of the voltage detection circuit 252 and the target value of current, or the actual measurement value of current power based on the detection results of the current detection circuit 253 and the voltage detection circuit 252 and the current value. You may obtain
  • the power receiving side communication part 26 transmits the information regarding the target value of the electric power output to LED22 to the electric power feeder 1 (S002).
  • the target value of the power itself may be used, or the target value of the current may be used by regarding the LED 22 as a constant voltage load.
  • the information on the dimming rate may be regarded as information on the target value of the power output to the LED 22.
  • the power supply side communication unit 15 of the power supply apparatus 1 receives the information regarding the target value of the power of the LED 22 transmitted from the power reception side communication unit 26.
  • the calculation unit 143 of the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 according to the information regarding the target value of the power of the LED 22 (S003).
  • the calculation unit 143 stores in advance the target value of the output voltage of the DC conversion circuit 12 in correspondence with the target value of the power of the LED 22.
  • the calculation unit 143 includes a recording unit therein, and stores the target value of the output voltage of the DC conversion circuit 12 for a plurality of target values of power.
  • the target value of the output voltage of the DC conversion circuit 12 is set higher as the target value of the power of the LED 22 is larger.
  • the control circuit 141 controls on / off of the MOSFET 121 so that the output voltage of the DC conversion circuit 12 becomes the target value of the output voltage determined by the calculation unit 143. Thereafter, the process returns to step S001, and the above operation is repeated.
  • the output power of the LED 22 is set to P1 and the output voltage of the DC conversion circuit 12 is set to V1.
  • the output current of the resonant inverter 13 becomes I1.
  • the target value of the power of the LED 22 is increased from P1 to P2 from time t1 to time t2
  • the output voltage of the DC conversion circuit 12 is increased from V1 to V2.
  • the output current of the resonant inverter 13 increases from I1 to I2.
  • the output voltage of the DC conversion circuit 12 is decreased from V2 to V1.
  • the output current of the resonant inverter 13 decreases from I2 to I1.
  • the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 higher as the power of the LED 22 is larger. For this reason, since the output current of the resonant inverter 13 increases as the output voltage of the DC converter circuit 12 increases, the power output from the power feeding device 1 can be increased. Moreover, the power supply side control part 14 sets the target value of the output voltage of the DC converter circuit 12 so that the electric power of LED22 is small. For this reason, since the output current of the resonant inverter 13 becomes smaller as the output voltage of the DC converter circuit 12 becomes lower, the power output from the power feeding device 1 can be reduced.
  • the resonant inverter 13 includes a switching element and a resonant circuit, and is configured by a resonant inverter in which the switching element is driven with a preset frequency and duty ratio.
  • the power supply side control unit 14 varies the DC voltage of the DC conversion circuit 12 to change the power output from the power receiving device 2 to the light source. For this reason, the switching loss at the time of changing the electric power output from the power receiving apparatus 2 to LED22 can be reduced. Therefore, a decrease in transmission efficiency during dimming can be suppressed, and heat generation of the switching element can be suppressed.
  • the power supply side control unit 14 switches the switching element at the timing when the current becomes zero or the voltage becomes zero, which is generated by the resonance phenomenon of the resonance circuit. With such soft switching, it is possible to reduce switching loss when changing the power output from the power receiving device 2 to the LED 22.
  • the power supply side control unit 14 receives information on the target value of power to be output from the power receiving apparatus 2 to the LED 22, and the DC conversion circuit 12 has the information on the target value of power. Variable DC voltage. For this reason, the electric power which the electric power feeder 1 outputs can be set according to the electric power of LED22.
  • the electric power feeding side control part 14 makes the DC voltage of the DC converter circuit 12 high, so that the target value of the electric power of LED22 is large. For this reason, the electric power which the electric power feeder 1 outputs can be set according to the electric power of LED22.
  • the present invention is not limited to this.
  • the current value of the LED 22 may be transmitted instead of the power consumed by the LED 22.
  • the LED 22 When the LED 22 is connected as a load of the power receiving device 2, the LED 22 can be regarded as a constant voltage load. Therefore, by storing information on the voltage at the time of lighting of the LED 22 in the power supply side control unit 14 of the power supply device 1 in advance, the information on the current of the LED 22 transmitted from the power receiving device 2 can be used. In the power supply side control unit 14, the output power of the LED 22 can be estimated. In this case, the power receiving side control unit 25 in the power receiving device 2 does not require the power calculating unit 254 that calculates the power from the current and voltage of the LED 22, and can have a simpler configuration. Cost can be increased.
  • Embodiment 2 a configuration in which a plurality of power receiving devices 2 are provided for one power feeding device 1 will be described.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the difference from the first embodiment will be mainly described.
  • FIG. 8 is a block diagram showing a non-contact power feeding system according to Embodiment 2 of the present invention.
  • the non-contact power feeding system includes a power feeding device 1, a power receiving device 2A, and a power receiving device 2B.
  • the power feeding device 1 converts AC power input from the AC power source 3 into high-frequency AC power and supplies the power to the feeding coil 11 to transmit power in a non-contact manner.
  • the power receiving device 2A receives power from the power feeding device 1 in a non-contact manner by the power receiving coil 21A, and outputs the power to the LED 22A that is a load.
  • the power receiving device 2A performs dimming control that varies the brightness of the LED 22A by adjusting the current supplied to the LED 22A.
  • the power receiving device 2B receives power from the power feeding device 1 in a non-contact manner by the power receiving coil 21B, and outputs the power to the LED 22B that is a load. Further, the power receiving device 2B performs dimming control that varies the brightness of the LED 22B by adjusting the current supplied to the LED 22B.
  • the configuration of power reception devices 2A and 2B is the same as that of power reception device 2 described in the first embodiment.
  • the power receiving device 2 In the second embodiment, two examples of the power receiving device 2 are shown, but three or more power receiving devices 2 may be used.
  • FIG. 9 is a flowchart showing the operation of the non-contact power feeding system according to Embodiment 2 of the present invention.
  • FIG. 10 is an example of operation waveforms of the non-contact power feeding system according to Embodiment 2 of the present invention.
  • the vertical axis in FIG. 10 is the sum of the output voltage of the DC conversion circuit 12, the output current of the resonant inverter 13, the output power Pa of the LED 22A, the output power Pb of the LED 22B, the output power Pa and the output power Pb in order from the top.
  • the electric power Psum is shown, and the horizontal axis shows time.
  • FIG. 9 shows, referring FIG.
  • the power receiving side control unit 25 of the power receiving devices 2A and 2B determines whether or not the dimming rate is changed (S011). When there is a change in the dimming rate (S001: YES), the power receiving side communication unit 26 of the power receiving apparatus 2A transmits information regarding the target value of the power output to the LED 22A to the power feeding apparatus 1. In addition, the power receiving side communication unit 26 of the power receiving device 2B transmits information related to the target value of the power output to the LED 22B to the power feeding device 1 (S012).
  • the power feeding side communication unit 15 of the power feeding device 1 receives information regarding the target values of the power of the LEDs 22A and 22B transmitted from the power receiving device 2A and the power receiving device 2B, respectively.
  • the calculation unit 143 of the power supply side control unit 14 calculates the total power Psum by summing the target values of power to the LEDs 22A and 22B transmitted from the power receiving devices 2A and 2B (S013).
  • the calculation unit 143 of the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 according to the total power Psum (S014).
  • the calculation unit 143 stores in advance a target value of the output voltage of the DC conversion circuit 12 corresponding to the total power Psum.
  • the calculation unit 143 includes a recording unit therein, and stores a target value of the output voltage of the DC conversion circuit 12 for a plurality of values of the total power Psum.
  • the target value of the output voltage of the DC conversion circuit 12 is set higher as the total power Psum is larger.
  • the control circuit 141 controls on / off of the MOSFET 121 so that the output voltage of the DC conversion circuit 12 becomes the target value of the output voltage determined by the calculation unit 143. Thereafter, the process returns to step S011, and the above-described operation is repeated.
  • the output voltage of the DC conversion circuit 12 is V1 with respect to the total power Psum1 that is the sum of the output power Pa1 of the LED 22A and the output power Pb2 of the LED 22B.
  • the output current of the resonant inverter 13 becomes I1.
  • the target value of the power of the LED 22A is increased from Pa1 to Pa2 from time t1 to t2
  • the total power increases from Psum1 to Psum2
  • the output voltage of the DC conversion circuit 12 changes from V1 to V2.
  • the output current of the resonant inverter 13 increases from I1 to I2.
  • the output voltage of the DC conversion circuit 12 is decreased from V2 to V1. .
  • the output current of the resonant inverter 13 decreases from I2 to I1.
  • the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 higher as the total power Psum increases. For this reason, since the output current of the resonant inverter 13 increases as the output voltage of the DC converter circuit 12 increases, the power output from the power feeding device 1 can be increased. Further, the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 to be lower as the total power Psum is smaller. For this reason, since the output current of the resonant inverter 13 becomes smaller as the output voltage of the DC converter circuit 12 becomes lower, the power output from the power feeding device 1 can be reduced.
  • the second embodiment includes a plurality of power receiving devices 2.
  • the power supply side communication unit 15 receives information related to the target value of power from each of the plurality of power receiving apparatuses 2, and the power supply side control unit 14 determines the DC conversion circuit 12 according to the sum of the target values of the plurality of powers. Variable DC voltage. For this reason, the some power receiving apparatus 2 can light-control LED22 which is each load separately. Moreover, even if it is a case where the electric power which each power receiving apparatus 2 outputs fluctuates because the some power receiving apparatus 2 dimmes separately, the increase in switching loss can be suppressed.
  • the power feeding side control unit 14 increases the DC voltage of the DC conversion circuit 12 as the total power target value increases. For this reason, according to the electric power which each of the some power receiving apparatus 2 outputs, the electric power which the electric power feeder 1 outputs can be set.
  • Embodiment 3 an operation when the DC voltage of the DC conversion circuit 12 falls below a preset lower limit value will be described.
  • the same parts as those in the second embodiment are denoted by the same reference numerals, and the difference from the second embodiment will be mainly described.
  • the power supply side control unit 14 stops the operation of the resonant inverter 13 when the DC voltage falls below a preset lower limit value Vlim.
  • FIG. 11 is a flowchart showing the operation of the non-contact power feeding system according to Embodiment 3 of the present invention.
  • FIG. 12 is an example of operation waveforms of the non-contact power feeding system according to Embodiment 3 of the present invention.
  • the vertical axis in FIG. 12 is the sum of the output voltage of the DC conversion circuit 12, the output current of the resonant inverter 13, the output power Pa of the LED 22A, the output power Pb of the LED 22B, the output power Pa and the output power Pb in order from the top.
  • the electric power Psum is shown, and the horizontal axis shows time.
  • FIG. 11 it demonstrates, referring FIG.
  • steps S021 to S024 are the same as steps S011 to S014 in the second embodiment.
  • step S024 the control circuit 141 of the power supply side control unit 14 compares the DC voltage of the DC conversion circuit 12 detected by the voltage detection circuit 142 with a preset lower limit value Vlim (S025). When the DC voltage is equal to or higher than the lower limit value Vlim (S025: YES), the control circuit 141 continues the operation of the resonant inverter 13 (S026). Thereafter, the process returns to step S021, and the above-described operation is repeated.
  • the control circuit 141 stops the operation of the resonant inverter 13 (S027). Thereby, the non-contact power feeding operation from the power feeding device 1 to the power receiving devices 2A and 2B is stopped. Thereafter, the process returns to step S021, and the above-described operation is repeated.
  • the output voltage of the DC conversion circuit 12 is V1 with respect to the total power Psum that is the sum of the output power Pa of the LED 22A and the output power Pb of the LED 22B.
  • the output voltage V1 of the DC conversion circuit 12 is also gradually decreased.
  • the control circuit 141 stops the operation of the resonant inverter 13. Thereby, after time t2, the output power Pa of the LED 22A and the output power Pb of the LED 22B become zero.
  • the power supply side control unit 14 performs the operation of the resonant inverter 13 when the DC voltage is lower than the preset lower limit value Vlim. Stop. For this reason, the operation
  • Embodiment 4 FIG. In the fourth embodiment, an operation for correcting the output voltage of the DC conversion circuit 12 will be described.
  • the same parts as those in the first to third embodiments are denoted by the same reference numerals, and differences from the first to third embodiments will be mainly described.
  • FIG. 13 is a circuit diagram showing a power receiving device of the non-contact power feeding system according to Embodiment 4 of the present invention.
  • the power reception side control unit 25 of the power reception device 2 includes an LED current determination unit 255 in addition to the configuration of the first embodiment.
  • the LED current determination unit 255 acquires information on the actual value of the current flowing through the LED 22 detected by the current sensor 27. The LED current determination unit 255 determines whether the measured value of the current flowing through the LED 22 exceeds the target value, and transmits the determination result from the power receiving side communication unit 26. Other configurations are the same as those of the first embodiment. Further, similarly to the second embodiment, a plurality of power receiving devices 2 may be provided. In the following description, a configuration including the power receiving devices 2A and 2B will be described.
  • FIG. 14 is a flowchart showing the operation of the non-contact power feeding system according to Embodiment 4 of the present invention.
  • FIG. 15 is an example of operation waveforms of the non-contact power feeding system according to Embodiment 4 of the present invention.
  • the vertical axis in FIG. 15 indicates the output voltage of the DC conversion circuit 12, the output current of the resonant inverter 13, the output current Ia of the LED 22A, the output power Pa of the LED 22A, the output current Ib of the LED 22B, and the output power Pb of the LED 22B in order from the top.
  • the determination result (error signal) of the LED current determination unit 255 is shown, and the horizontal axis indicates time.
  • description will be made with reference to FIG. 15 based on each step of FIG.
  • steps S031 to S034 are the same as steps S011 to S014 in the second embodiment.
  • the LED current determination unit 255 of the power receiving device 2A compares the detection value of the current sensor 27 with a preset LED current target value Ia_ref.
  • the LED current determination unit 255 of the power receiving device 2B compares the detection value of the current sensor 27 with a preset LED current target value Ib_ref (S035).
  • the LED current target value is a value determined according to the target value of the power supplied to the LED 22. That is, the LED current target value is set so that the power becomes the target value when the LED 22 is regarded as a constant voltage load and the LED current target value is supplied.
  • the LED current determination unit 255 receives a determination result of turning on an error signal indicating that a desired current is not obtained. The data is transmitted to the side communication unit 26 (S036).
  • the power feeding side communication unit 15 receives the error signal transmitted from the power receiving device 2 and inputs the error signal to the power feeding side control unit 14.
  • the calculation unit 143 of the power supply side control unit 14 receives the error signal, and when a predetermined time elapses, the output voltage target is set to be higher by the correction value ⁇ V than the previously stored target value of the output voltage of the DC conversion circuit 12. The value is corrected (S037). Thereafter, the process returns to step S031, and the above operation is repeated.
  • the LED current determination unit 255 does not transmit an error signal. Thereby, the DC conversion circuit 12 holds the target value of the output voltage (S038). Thereafter, the process returns to step S031, and the above operation is repeated.
  • the output voltage of the DC conversion circuit 12 is added by the correction value ⁇ Vpfc at time t2. Further, the output current of the resonant inverter 13 increases from I2 to I3. After the time t2, the output current Ia of the LED 22a becomes the LED current target value Ia_ref, and the error signal from the LED current determination unit 255 is stopped.
  • the detection value of the current sensor 27 is compared with the LED current target value has been described, but the present invention is not limited to this.
  • An actual measurement value of the power of the LED 22 may be calculated from the detection value of the current sensor 27 and the detection value of the voltage detection circuit 252, and the actual measurement value of the power may be compared with a target value of the power of the LED 22.
  • the power supply side control unit 14 varies the DC voltage of the DC conversion circuit 12 according to the target value of the power of the LED 22, and then when the measured value of the power of the LED 22 is lower than the target value of the power, the DC conversion circuit 12.
  • a configuration for increasing the direct current voltage of may be used.
  • the DC voltage of the DC conversion circuit 12 is increased.
  • the power receiving apparatuses 2A and 2B when a desired current cannot be output to the LED 22, it can be corrected to increase the output voltage of the DC conversion circuit 12, and the current of the desired LED 22A and 22B can be changed. Can be output.
  • the power output from the resonant inverter 13 may not be sufficient with the output voltage of the DC conversion circuit 12 determined in advance. is there. In such a case, a desired current may not be output in the power receiving devices 2A and 2B, but a desired current can be output to the LED 22 by the operation of the fourth embodiment.

Abstract

The contactless power supply system according to the present invention is provided with: a power supply device having a DC conversion circuit for converting the output of a first rectifier circuit to a desired DC voltage, an inverter circuit for converting the DC voltage outputted by the DC conversion circuit to high-frequency power, and a first coil to which the high-frequency power outputted by the inverter circuit is supplied; and a power reception device having a second coil for receiving the high-frequency power from the first coil, a second rectifier circuit for rectifying the high-frequency power received by the second coil, and a current control circuit for converting the output of the second rectifier circuit to a desired DC current and outputting the DC current to a light source. The inverter circuit is configured from a resonance-type inverter in which a switching element is driven at a frequency and duty ratio set in advance. The control unit varies the DC voltage of the DC conversion circuit and changes the power outputted from the power reception device to the light source.

Description

非接触給電システムContactless power supply system
 本発明は、非接触給電によって光源へ電力を供給する非接触給電システムに関する。 The present invention relates to a non-contact power supply system that supplies power to a light source by non-contact power supply.
 従来の非接触給電システムにおいては、例えば、受電装置へ非接触で電力を給電する給電装置にインバータ回路を備え、インバータ回路の駆動周波数及び導通比(デューティ比)を制御することで、受電装置に供給する電力を可変するものが提案されている(例えば、特許文献1参照)。 In a conventional non-contact power feeding system, for example, a power feeding device that feeds power in a non-contact manner to a power receiving device is provided with an inverter circuit, and by controlling the drive frequency and conduction ratio (duty ratio) of the inverter circuit, There has been proposed one that varies the power to be supplied (see, for example, Patent Document 1).
国際公開第2013/136753号International Publication No. 2013/136753
 LED(Light Emitting Diode)又は有機EL(Electroluminescence)などの光源を点灯する照明器具においては、光源の明るさを可変する調光機能が求められる。このため、交流電源から光源へ非接触で電力を給電する場合には、広い範囲で給電電力を可変することが必要となる。 In a lighting fixture that lights a light source such as an LED (Light Emitting Diode) or an organic EL (Electroluminescence), a dimming function that varies the brightness of the light source is required. For this reason, when power is supplied from an AC power source to a light source in a non-contact manner, it is necessary to vary the power supply in a wide range.
 しかしながら、特許文献1に記載の技術を、光源へ電力を供給する給電装置に適用すると、広い範囲で給電電力を可変するためにインバータ回路の駆動周波数及びデューティ比を大きく変化させる必要があり、スイッチング損失が大きくなる課題がある。また、スイッチング損失によって調光時の伝送効率が低下し、また、熱が発生するという課題がある。 However, when the technique described in Patent Document 1 is applied to a power supply device that supplies power to a light source, it is necessary to greatly change the drive frequency and duty ratio of the inverter circuit in order to vary the power supply in a wide range. There is a problem that loss increases. In addition, there is a problem in that transmission efficiency at the time of dimming is reduced due to switching loss, and heat is generated.
 本発明は、上記のような課題を解決するためになされたもので、非接触給電によって光源へ電力を供給する非接触給電システムにおいて、給電装置から光源へ出力させる電力を可変する際のスイッチング損失を低減することができる非接触給電システムを得るものである。 The present invention has been made to solve the above-described problems, and in a non-contact power feeding system that supplies power to a light source by non-contact power feeding, switching loss when changing the power output from the power feeding device to the light source. It is possible to obtain a non-contact power feeding system that can reduce power consumption.
 本発明に係る非接触給電システムは、交流電源から入力される交流電力を整流する第1整流回路と、前記第1整流回路の出力を任意の直流電圧に変換する直流変換回路と、前記直流変換回路が出力した前記直流電圧を高周波電力に変換するインバータ回路と、前記インバータ回路が出力した前記高周波電力が供給される第1コイルと、前記直流変換回路を制御する制御部と、を有する給電装置と、前記第1コイルから前記高周波電力を受電する第2コイルと、前記第2コイルが受電した前記高周波電力を整流する第2整流回路と、前記第2整流回路の出力を任意の直流電流に変換し、光源に出力する電流制御回路と、を有する受電装置と、を備え、前記インバータ回路は、スイッチング素子と共振回路とを有し、予め設定された周波数及びデューティ比で前記スイッチング素子が駆動される共振型インバータにより構成され、前記制御部は、前記直流変換回路の前記直流電圧を可変させて、前記受電装置から前記光源へ出力させる電力を変化させるものである。 A contactless power supply system according to the present invention includes a first rectifier circuit that rectifies AC power input from an AC power supply, a DC converter circuit that converts an output of the first rectifier circuit into an arbitrary DC voltage, and the DC converter. A power supply apparatus comprising: an inverter circuit that converts the DC voltage output from the circuit into high-frequency power; a first coil that is supplied with the high-frequency power output from the inverter circuit; and a control unit that controls the DC conversion circuit. A second coil that receives the high-frequency power from the first coil, a second rectifier circuit that rectifies the high-frequency power received by the second coil, and an output of the second rectifier circuit to an arbitrary direct current A power receiving device having a current control circuit for converting and outputting to a light source, wherein the inverter circuit has a switching element and a resonance circuit, and has a preset frequency and The control unit is configured by a resonant inverter in which the switching element is driven with a duty ratio, and the control unit varies the DC voltage of the DC conversion circuit to change the power output from the power receiving device to the light source. is there.
 本発明は、インバータ回路が共振型インバータにより構成され、直流変換回路の直流電圧を可変させて、受電装置から光源へ出力させる電力を変化させる。
 このため、給電装置から光源へ出力させる電力を可変する際のスイッチング損失を低減することができる。
In the present invention, the inverter circuit is constituted by a resonance type inverter, and the DC voltage of the DC conversion circuit is varied to change the power output from the power receiving device to the light source.
For this reason, the switching loss at the time of changing the electric power output to a light source from an electric power feeder can be reduced.
本発明の実施の形態1に係る非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る非接触給電システムの給電装置を示す回路図である。It is a circuit diagram which shows the electric power feeder of the non-contact electric power feeding system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る非接触給電システムの直流変換回路の動作を示す波形である。It is a waveform which shows operation | movement of the direct-current conversion circuit of the non-contact electric power feeding system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る非接触給電システムの受電装置を示す回路図である。It is a circuit diagram which shows the power receiving apparatus of the non-contact electric power feeding system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る非接触給電システムの電流制御回路の動作を示す波形である。It is a waveform which shows operation | movement of the current control circuit of the non-contact electric power feeding system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る非接触給電システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the non-contact electric power feeding system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る非接触給電システムの動作波形の例である。It is an example of the operation | movement waveform of the non-contact electric power feeding system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る非接触給電システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the non-contact electric power feeding system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る非接触給電システムの動作波形の例である。It is an example of the operation | movement waveform of the non-contact electric power feeding system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る非接触給電システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the non-contact electric power feeding system which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る非接触給電システムの動作波形の例である。It is an example of the operation | movement waveform of the non-contact electric power feeding system which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る非接触給電システムの受電装置を示す回路図である。It is a circuit diagram which shows the power receiving apparatus of the non-contact electric power feeding system which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る非接触給電システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the non-contact electric power feeding system which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る非接触給電システムの動作波形の例である。It is an example of the operation | movement waveform of the non-contact electric power feeding system which concerns on Embodiment 4 of this invention.
 以下に、本発明の実施の形態に係る非接触給電システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a non-contact power feeding system according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1に係る非接触給電システムを示すブロック図である。
 図1に示すように、非接触給電システムは、給電装置1と受電装置2とを備える。給電装置1は、交流電源3から入力される交流電力を高周波の交流電力に変換し、給電コイル11に供給することで非接触により電力を伝送する。受電装置2は、受電コイル21によって、給電装置1から非接触により電力を受電し、負荷であるLED22へ電力を出力する。また、受電装置2は、LED22へ供給する電流を調整することでLED22の明るさを可変する調光制御を行う。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a non-contact power feeding system according to Embodiment 1 of the present invention.
As shown in FIG. 1, the non-contact power feeding system includes a power feeding device 1 and a power receiving device 2. The power feeding device 1 converts AC power input from the AC power source 3 into high frequency AC power and supplies the power to the power feeding coil 11 to transmit power in a non-contact manner. The power receiving device 2 receives power from the power feeding device 1 in a non-contact manner by the power receiving coil 21 and outputs the power to the LED 22 that is a load. In addition, the power receiving device 2 performs dimming control that varies the brightness of the LED 22 by adjusting the current supplied to the LED 22.
(給電装置1の構成)
 図2は、本発明の実施の形態1に係る非接触給電システムの給電装置を示す回路図である。
 図2に示すように、給電装置1は、給電コイル11と、直流変換回路12と、共振インバータ13と、給電側制御部14と、給電側通信部15と、給電側整流回路16と、入力フィルタ17と、コンデンサ18とを備えている。
(Configuration of power supply device 1)
FIG. 2 is a circuit diagram showing a power feeding device of the non-contact power feeding system according to Embodiment 1 of the present invention.
As shown in FIG. 2, the power feeding device 1 includes a power feeding coil 11, a DC conversion circuit 12, a resonant inverter 13, a power feeding side control unit 14, a power feeding side communication unit 15, a power feeding side rectifier circuit 16, and an input. A filter 17 and a capacitor 18 are provided.
 入力フィルタ17は、交流電源3から入力される電流に重畳する高周波成分を低減する。入力フィルタ17は、コイル171、およびコンデンサ172を有する。コイル171は、交流電源3に直列接続される。コイル171の一端は交流電源3の一端に接続され、コイル171の他端はコンデンサ172、並びに給電側整流回路16に接続される。 The input filter 17 reduces high frequency components superimposed on the current input from the AC power supply 3. The input filter 17 includes a coil 171 and a capacitor 172. The coil 171 is connected in series to the AC power supply 3. One end of the coil 171 is connected to one end of the AC power supply 3, and the other end of the coil 171 is connected to the capacitor 172 and the power supply side rectifier circuit 16.
 給電側整流回路16は、入力フィルタ17と直流変換回路12との間に配置される。給電側整流回路16は、交流電源3から供給される交流電圧を直流電圧に変換する機能を有する。
 給電側整流回路16は、例えば、4つのダイオードを組み合わせたダイオードブリッジで構成されている。なお、給電側整流回路16の構成はこれに限定されるものではなく、単方向導通素子であるMOSFET(Metal Oxide Semiconductor-Field Effect Transistor)を組み合わせて構成してもよい。
The power supply side rectifier circuit 16 is disposed between the input filter 17 and the DC converter circuit 12. The power supply side rectifier circuit 16 has a function of converting an AC voltage supplied from the AC power supply 3 into a DC voltage.
The power supply side rectifier circuit 16 is configured by, for example, a diode bridge in which four diodes are combined. Note that the configuration of the power supply side rectifier circuit 16 is not limited to this, and a MOSFET (Metal Oxide Semiconductor-Field Effect Transistor) which is a unidirectional conducting element may be combined.
 コンデンサ18は、給電側整流回路16の出力電圧を平滑する。 The capacitor 18 smoothes the output voltage of the power supply side rectifier circuit 16.
 直流変換回路12は、コンデンサ18と共振インバータ13との間に配置される。直流変換回路12は、コンデンサ18によって平滑された給電側整流回路16の出力電圧を、任意の直流電圧に変換する。 The DC conversion circuit 12 is disposed between the capacitor 18 and the resonant inverter 13. The DC conversion circuit 12 converts the output voltage of the power supply side rectifier circuit 16 smoothed by the capacitor 18 into an arbitrary DC voltage.
 直流変換回路12は、例えば、昇圧チョッパ回路によって構成される。昇圧チョッパ回路である直流変換回路12は、スイッチング素子であるMOSFET121と、コイル122と、ダイオード123とを有する。
 なお、直流変換回路12の構成としては、昇圧チョッパ回路の他、昇降圧チョッパ回路、フライバック回路、フライフォワード回路、SEPIC、Zetaコンバータ、Cukコンバータなどの回路により構成することができる。
The DC conversion circuit 12 is configured by, for example, a boost chopper circuit. The DC conversion circuit 12 that is a step-up chopper circuit includes a MOSFET 121 that is a switching element, a coil 122, and a diode 123.
In addition, as a structure of the direct current | flow conversion circuit 12, it can comprise with circuits, such as a step-up / step-down chopper circuit, a flyback circuit, a fly forward circuit, a SEPIC, a Zeta converter, a Cuk converter, other than a step-up chopper circuit.
 MOSFET121のドレインは、直流母線の正極側において、コイル122とダイオード123とに接続される。
 MOSFET121のソースは、直流母線の負極側において、コンデンサ18と平滑コンデンサ124とに接続される。
 MOSFET121のゲートは、給電側制御部14に接続される。MOSFET121のゲートには、給電側制御部14から出力される制御信号が入力され、オン、オフ制御が行われる。
The drain of MOSFET 121 is connected to coil 122 and diode 123 on the positive electrode side of the DC bus.
The source of MOSFET 121 is connected to capacitor 18 and smoothing capacitor 124 on the negative electrode side of the DC bus.
The gate of the MOSFET 121 is connected to the power supply side control unit 14. A control signal output from the power supply side control unit 14 is input to the gate of the MOSFET 121, and on / off control is performed.
 コイル122は、直流母線の正極側において、コンデンサ18とMOSFET121との間に配置される。
 コイル122の一端はコンデンサ18の一端に接続され、コイル122の他端はMOSFET121とダイオード123とに接続される。
Coil 122 is arranged between capacitor 18 and MOSFET 121 on the positive electrode side of the DC bus.
One end of the coil 122 is connected to one end of the capacitor 18, and the other end of the coil 122 is connected to the MOSFET 121 and the diode 123.
 ダイオード123は、直流母線の正極側において、MOSFET121と平滑コンデンサ124との間に配置される。
 ダイオード123のアノードは、コイル122とMOSFET121に接続される。ダイオード123のカソードは、平滑コンデンサ124に接続される。
The diode 123 is disposed between the MOSFET 121 and the smoothing capacitor 124 on the positive electrode side of the DC bus.
The anode of the diode 123 is connected to the coil 122 and the MOSFET 121. The cathode of the diode 123 is connected to the smoothing capacitor 124.
 直流変換回路12は、MOSFET121がオン、オフ制御されることにより、給電側整流回路16の出力電圧を昇圧し、平滑コンデンサ124に出力する。また、後述する制御を行うことで、入力電流の高調波を低減し、力率を改善する機能をもたせることができる。 The DC conversion circuit 12 boosts the output voltage of the power supply side rectifier circuit 16 by the MOSFET 121 being turned on and off, and outputs the boosted voltage to the smoothing capacitor 124. Further, by performing the control described later, it is possible to provide a function of reducing the harmonics of the input current and improving the power factor.
 平滑コンデンサ124は、直流母線において、直流変換回路12の出力と共振インバータ13との間に配置される。平滑コンデンサ124の一端は直流母線の正極側に接続され、平滑コンデンサ124の他端は直流母線の負極側に接続される。平滑コンデンサ124は、直流変換回路12の出力電圧を平滑にする。 The smoothing capacitor 124 is disposed between the output of the DC conversion circuit 12 and the resonant inverter 13 on the DC bus. One end of the smoothing capacitor 124 is connected to the positive side of the DC bus, and the other end of the smoothing capacitor 124 is connected to the negative side of the DC bus. The smoothing capacitor 124 smoothes the output voltage of the DC conversion circuit 12.
 共振インバータ13は、直流変換回路12と給電コイル11との間に配置される。共振インバータ13は、直流変換回路12が出力した直流電圧を数MHzの高周波電力に変換する。 The resonance inverter 13 is disposed between the DC conversion circuit 12 and the feeding coil 11. The resonant inverter 13 converts the DC voltage output from the DC conversion circuit 12 into high frequency power of several MHz.
 共振インバータ13は、例えば、電流共振型のE級インバータによって構成される。共振インバータ13は、スイッチング素子131と、コンデンサ132と、コンデンサ133と、コイル134とを有している。
 なお、共振インバータ13の構成はこれに限るものではなく、公知の他の回路構成を適用することもできる。
The resonant inverter 13 is configured by, for example, a current resonance type class E inverter. The resonant inverter 13 includes a switching element 131, a capacitor 132, a capacitor 133, and a coil 134.
The configuration of the resonant inverter 13 is not limited to this, and other known circuit configurations can be applied.
 コンデンサ132の一端は直流母線の正極側に接続され、コンデンサ132の他端は直流母線の負極側に接続される。 One end of the capacitor 132 is connected to the positive side of the DC bus, and the other end of the capacitor 132 is connected to the negative side of the DC bus.
 スイッチング素子131の一端は、直流母線の正極側において、コンデンサ132とコンデンサ133とに接続される。
 スイッチング素子131の他端は、直流母線の負極側において、コンデンサ132と給電コイル11とに接続される。
One end of the switching element 131 is connected to the capacitor 132 and the capacitor 133 on the positive electrode side of the DC bus.
The other end of the switching element 131 is connected to the capacitor 132 and the feeding coil 11 on the negative electrode side of the DC bus.
 コンデンサ133は、直流母線の正極側において、スイッチング素子131とコイル134との間に配置される。 The capacitor 133 is disposed between the switching element 131 and the coil 134 on the positive electrode side of the DC bus.
 コイル134は、直流母線の正極側において、コンデンサ133と給電コイル11との間に接続される。 The coil 134 is connected between the capacitor 133 and the feeding coil 11 on the positive electrode side of the DC bus.
 共振インバータ13は、スイッチング素子131をオン、オフ制御することにより、直流変換回路12の出力電圧を高周波の交流電力に変換する。また、共振インバータ13は、給電コイル11に出力する場合において、コイル134、コンデンサ132、133の共振を利用して、数MHzを超える高周波の交流電流を、スイッチング損失の増加を抑制しつつ出力することができる。 The resonant inverter 13 converts the output voltage of the DC conversion circuit 12 into high-frequency AC power by controlling the switching element 131 on and off. In addition, when outputting to the feeding coil 11, the resonant inverter 13 outputs a high-frequency alternating current exceeding several MHz while suppressing an increase in switching loss by using the resonance of the coil 134 and the capacitors 132 and 133. be able to.
 即ち、給電コイル11と、コイル134と、コンデンサ132と、コンデンサ133とが共振回路を構成する。共振インバータ13は、予め設定された周波数及びデューティ比でスイッチング素子131が駆動される。これにより、共振回路の共振現象により生じた、電流がゼロとなるタイミングで、スイッチング素子131のスイッチングが行われる。このようなスイッチングをソフトスイッチングと称する。
 なお、共振インバータ13を電圧共振型のインバータで構成した場合には、電圧がゼロとなるタイミングでスイッチングが行われる。
That is, the feeding coil 11, the coil 134, the capacitor 132, and the capacitor 133 constitute a resonance circuit. In the resonant inverter 13, the switching element 131 is driven at a preset frequency and duty ratio. Thereby, switching of the switching element 131 is performed at the timing when the current generated by the resonance phenomenon of the resonance circuit becomes zero. Such switching is called soft switching.
When the resonant inverter 13 is a voltage resonance type inverter, switching is performed at a timing when the voltage becomes zero.
 なお、スイッチング素子131としては、シリコンを材料としたMOSFETを使用することができる。また、MOSFETの代わりに窒化ガリウムを材料としたGaN-HEMTを用いることができる。GaN-HEMTを使用する場合、MOSFETに比べて高速にオン、オフ動作が可能である。このため、GaN-HEMTを使用すると、スイッチング損失が少なく、共振インバータにおいて1MHzを超えるような周波数で動作する場合において、回路の損失を抑制でき、また温度上昇も抑制することができる。 As the switching element 131, a MOSFET made of silicon can be used. Further, GaN-HEMT made of gallium nitride can be used instead of MOSFET. When a GaN-HEMT is used, it can be turned on / off faster than a MOSFET. For this reason, when the GaN-HEMT is used, the switching loss is small, and when the resonant inverter operates at a frequency exceeding 1 MHz, the loss of the circuit can be suppressed and the temperature rise can also be suppressed.
 給電コイル11は、共振インバータ13の出力に接続される。給電コイル11は、導線を同一平面上に巻線した構成である。給電コイル11には、共振インバータ13が出力した高周波電力が供給される。 The feeding coil 11 is connected to the output of the resonant inverter 13. The feeding coil 11 has a configuration in which a conducting wire is wound on the same plane. The feeding coil 11 is supplied with high-frequency power output from the resonant inverter 13.
 給電コイル11は、受電コイル21と磁気的に結合されている。給電コイル11は、受電コイル21と磁気的に結合していることで、共振インバータ13が出力した高周波電力を受電装置2に対して非接触により伝送する。
 なお、非接触による電力伝送の方式は磁界共鳴方式、電界共鳴方式の他、電磁誘導方式のいずれかの方式を用いることができる。
The power feeding coil 11 is magnetically coupled to the power receiving coil 21. The power feeding coil 11 is magnetically coupled to the power receiving coil 21 to transmit the high frequency power output from the resonant inverter 13 to the power receiving device 2 in a non-contact manner.
As a non-contact power transmission method, any one of a magnetic resonance method, an electric field resonance method, and an electromagnetic induction method can be used.
 給電側制御部14は、制御回路141と、電圧検出回路142と、演算部143とを備える。 The power supply side control unit 14 includes a control circuit 141, a voltage detection circuit 142, and a calculation unit 143.
 電圧検出回路142は、平滑コンデンサ124の電圧を検出する。即ち、電圧検出回路142は、直流変換回路12の出力電圧を検出する。
 電圧検出回路142としては、例えば、抵抗による分圧回路で構成される。分圧回路は、抵抗を直列接続した直列抵抗体の一端が正極側直流母線に接続されると共に、当該直列抵抗体の他端が負極側直流母線に接続されることで、平滑コンデンサ124に印加される電圧を分圧する回路である。
 なお、電圧検出回路142は、平滑コンデンサ124の電圧を検出する構成であれば良く、任意のセンサを用いることができる。
The voltage detection circuit 142 detects the voltage of the smoothing capacitor 124. That is, the voltage detection circuit 142 detects the output voltage of the DC conversion circuit 12.
The voltage detection circuit 142 is configured by, for example, a voltage dividing circuit using resistors. The voltage dividing circuit is applied to the smoothing capacitor 124 by connecting one end of a series resistor, in which resistors are connected in series, to the positive side DC bus and connecting the other end of the series resistor to the negative side DC bus. It is a circuit that divides the applied voltage.
The voltage detection circuit 142 only needs to be configured to detect the voltage of the smoothing capacitor 124, and any sensor can be used.
 演算部143は、受電装置2から光源であるLED22へ出力させる電力の目標値に関する情報が入力される。演算部143は、電力の目標値に関する情報に応じて、直流変換回路12の出力電圧の目標値を定める。 The information regarding the target value of the electric power made to output to LED22 which is a light source from the power receiving apparatus 2 is input into the calculating part 143. The computing unit 143 determines the target value of the output voltage of the DC conversion circuit 12 according to the information regarding the target value of power.
 制御回路141は、予め設定された周波数及びデューティ比で、共振インバータ13のスイッチング素子131のオン、オフを制御する。 The control circuit 141 controls ON / OFF of the switching element 131 of the resonant inverter 13 at a preset frequency and duty ratio.
 制御回路141は、直流変換回路12の出力電圧が、演算部143が定めた出力電圧の目標値となるように、MOSFET121のオン、オフを制御する。 The control circuit 141 controls the on / off of the MOSFET 121 so that the output voltage of the DC conversion circuit 12 becomes a target value of the output voltage determined by the calculation unit 143.
 なお、給電側制御部14は、回路デバイスなどのハードウェアで実現することもできるし、マイコンやCPUなどの演算装置上で実行されるソフトウェアとして実現することもできる。 The power supply side control unit 14 can be realized by hardware such as a circuit device, or can be realized as software executed on an arithmetic device such as a microcomputer or CPU.
 給電側通信部15は、受電装置2から送信された、電力の目標値に関する情報を受信する。受信した情報を給電側制御部14へ入力する。
 給電側通信部15は、例えば、無線LAN、Bluetooth(登録商標)、赤外線通信、NFC(Near Field Communication:近距離無線通信)など、任意の通信規格に適合した無線通信インターフェースによって構成される。
The power supply side communication unit 15 receives the information regarding the target value of power transmitted from the power receiving device 2. The received information is input to the power supply side control unit 14.
The power supply side communication unit 15 is configured by a wireless communication interface that conforms to an arbitrary communication standard such as a wireless LAN, Bluetooth (registered trademark), infrared communication, NFC (Near Field Communication), and the like.
 なお、給電側整流回路16は、本発明における「第1整流回路」に相当する。
 また、共振インバータ13は、本発明における「インバータ回路」に相当する。
 また、給電コイル11は、本発明における「第1コイル」に相当する。
 また、給電側通信部15は、本発明における「第1通信部」に相当する。
 また、給電側制御部14は、本発明における「制御部」に相当する。
The power supply side rectifier circuit 16 corresponds to the “first rectifier circuit” in the present invention.
The resonant inverter 13 corresponds to an “inverter circuit” in the present invention.
The feeding coil 11 corresponds to a “first coil” in the present invention.
The power supply side communication unit 15 corresponds to the “first communication unit” in the present invention.
The power supply side control unit 14 corresponds to a “control unit” in the present invention.
(直流変換回路12の動作)
 直流変換回路12に力率改善機能をもたせる場合の制御の例を詳細に説明する。
(Operation of DC conversion circuit 12)
An example of control when the DC conversion circuit 12 is provided with a power factor improving function will be described in detail.
 図3は、本発明の実施の形態1に係る非接触給電システムの直流変換回路の動作を示す波形である。
 図3の縦軸は、上段から順に、交流電源3の入力電流、コイル122に流れる電流、MOSFET121のドレイン電圧、MOSFET121のゲート電圧を示し、横軸は時間を示す。
 ただし、図3では説明のため、MOSFET121のゲート電圧をオン、オフする周期を実際よりも長く記載している。
FIG. 3 is a waveform showing the operation of the DC conversion circuit of the non-contact power feeding system according to Embodiment 1 of the present invention.
The vertical axis in FIG. 3 indicates the input current of the AC power supply 3, the current flowing through the coil 122, the drain voltage of the MOSFET 121, and the gate voltage of the MOSFET 121 in order from the top, and the horizontal axis indicates time.
However, in FIG. 3, for the sake of explanation, the cycle of turning on and off the gate voltage of the MOSFET 121 is shown to be longer than actual.
 MOSFET121がオンされたとき、交流電源3、給電側整流回路16、コイル122、およびMOSFET121により閉回路が形成され、交流電源3がコイル122を介して短絡される。そのため閉回路に交流電源3からの電流が流れ、コイル122の電流が増加し、コイル122にエネルギーが蓄積される。 When the MOSFET 121 is turned on, a closed circuit is formed by the AC power supply 3, the power supply side rectifier circuit 16, the coil 122, and the MOSFET 121, and the AC power supply 3 is short-circuited through the coil 122. Therefore, the current from the AC power supply 3 flows in the closed circuit, the current of the coil 122 increases, and energy is accumulated in the coil 122.
 制御回路141により設定されたオン時間が経過すると、MOSFET121がオフされ、コイル122、ダイオード123、平滑コンデンサ124により閉回路が形成される。これにより、コイル122の電流が減少し、コイル122に蓄積されたエネルギーが放出され、平滑コンデンサ124に充電される。 When the ON time set by the control circuit 141 elapses, the MOSFET 121 is turned off, and a closed circuit is formed by the coil 122, the diode 123, and the smoothing capacitor 124. As a result, the current in the coil 122 decreases, the energy accumulated in the coil 122 is released, and the smoothing capacitor 124 is charged.
 コイル122の電流がゼロになると、制御回路141によりMOSFET121が再びオンされる。このように、コイル122の電流がゼロとなるタイミングでスイッチングを行う制御は、電流臨界モード制御と呼ばれる。 When the current of the coil 122 becomes zero, the control circuit 141 turns on the MOSFET 121 again. Control in which switching is performed at a timing when the current of the coil 122 becomes zero is called current critical mode control.
 一連のMOSFET121のオン、オフ動作により、コイル122に流れる電流は、三角波状の波形となり、その頂点は点線で示すような正弦波の包絡線になる。
 このとき、交流電源3から入力される電流は、入力フィルタ17により平滑化され、コイル122に流れる電流の平均値が入力され、正弦波状の電流波形となる。したがって、力率が改善される。
By the on / off operation of the series of MOSFETs 121, the current flowing through the coil 122 has a triangular waveform, and the apex thereof has a sine wave envelope as indicated by a dotted line.
At this time, the current input from the AC power supply 3 is smoothed by the input filter 17, and an average value of the current flowing through the coil 122 is input, resulting in a sinusoidal current waveform. Therefore, the power factor is improved.
 さらに、制御回路141は、電圧検出回路142が検出する直流変換回路12の出力電圧が、演算部143が定めた出力電圧の目標値に追従するよう、フィードバック制御を行う。 Furthermore, the control circuit 141 performs feedback control so that the output voltage of the DC conversion circuit 12 detected by the voltage detection circuit 142 follows the target value of the output voltage determined by the calculation unit 143.
 フィードバック制御する際、MOSFET121のオン時間が大きく変化してしまうと、コイル122に流れる電流の頂点の包絡線が正弦波にならず、入力電流を正弦波状にすることができない。
 このため、フィードバック制御の応答時間を、フィードバック制御のループゲインが交流電源3の1周期の1/2周期以上で1倍(0dB)以下となるように設定する。言い換えると、交流電源3の周波数の2倍以下の周波数で1倍(0dB)以下となるように設定する。
When feedback control is performed, if the ON time of the MOSFET 121 changes significantly, the envelope of the peak of the current flowing through the coil 122 does not become a sine wave, and the input current cannot be made a sine wave.
For this reason, the feedback control response time is set so that the loop gain of the feedback control is not less than 1/2 of one cycle of the AC power supply 3 and not more than 1 (0 dB). In other words, the frequency is set to be 1 (0 dB) or less at a frequency 2 times or less of the frequency of the AC power supply 3.
 例えば電源周波数が50Hzの場合、その半周期(半波)にあたる100Hz以下、すなわち周期10msec以上で定電圧フィードバック制御のループゲインを1倍(0dB)以下とする。そして、定電圧フィードバック制御を電源周期の1/2より短い周期で応答しないように設定する。これにより、電源周期の1/2周期以内においては、MOSFET121のオン時間の変動が抑制され、コイル122に流れる電流の頂点の包絡線が正弦波状の波形となる。 For example, when the power supply frequency is 50 Hz, the loop gain of the constant voltage feedback control is set to 1 (0 dB) or less at a frequency of 100 Hz or less corresponding to a half cycle (half wave), that is, a cycle of 10 msec or more. The constant voltage feedback control is set so as not to respond in a cycle shorter than ½ of the power cycle. Thus, fluctuations in the on-time of the MOSFET 121 are suppressed within a half cycle of the power supply cycle, and the envelope at the apex of the current flowing through the coil 122 becomes a sinusoidal waveform.
 また、フィードバック制御において、MOSFET121のオン時間の更新周期を交流電源3の周期の半分、あるいは半分より長い周期とすることによっても、同様の効果を得ることができる。 Further, in the feedback control, the same effect can be obtained by setting the update period of the on-time of the MOSFET 121 to half the period of the AC power supply 3 or a period longer than half.
(受電装置2の構成)
 図4は、本発明の実施の形態1に係る非接触給電システムの受電装置を示す回路図である。
 図4に示すように、受電装置2は、受電コイル21と、受電側整流回路23と、電流制御回路24と、受電側制御部25と、受電側通信部26と、電流センサ27とを備える。
(Configuration of power receiving device 2)
FIG. 4 is a circuit diagram showing a power receiving device of the non-contact power feeding system according to Embodiment 1 of the present invention.
As illustrated in FIG. 4, the power receiving device 2 includes a power receiving coil 21, a power receiving side rectifier circuit 23, a current control circuit 24, a power receiving side control unit 25, a power receiving side communication unit 26, and a current sensor 27. .
 受電コイル21は、導線を同一平面上に巻線した構成である。受電コイル21は、給電コイル11と磁気的に結合されている。
 受電コイル21は、給電装置1の給電コイル11から送信された高周波電力を受電する。受電コイル21は、給電コイル11から送信された高周波電力を受電側整流回路23に出力する。
The power receiving coil 21 has a configuration in which a conducting wire is wound on the same plane. The power receiving coil 21 is magnetically coupled to the power feeding coil 11.
The power receiving coil 21 receives the high frequency power transmitted from the power feeding coil 11 of the power feeding device 1. The power receiving coil 21 outputs the high frequency power transmitted from the power feeding coil 11 to the power receiving side rectifier circuit 23.
 受電側整流回路23は、受電コイル21と電流制御回路24の間に配置される。受電側整流回路23は、受電コイル21が受電した高周波電力を整流し、電流制御回路24に出力する。 The power receiving side rectifier circuit 23 is disposed between the power receiving coil 21 and the current control circuit 24. The power receiving side rectifier circuit 23 rectifies the high frequency power received by the power receiving coil 21 and outputs the rectified power to the current control circuit 24.
 受電側整流回路23は、コイル231と、ダイオード232a、232b、232c、232dと、コンデンサ233a、233b、233c、233dとを有する。受電側整流回路23は、共振型整流回路により構成されている。受電側整流回路23は、数MHzを超える高周波の交流電力においても、コンデンサ、コイルの共振周波数を適切に設定することで、少ないスイッチング損失で、受信した高周波電力を整流することができる。 The power receiving side rectifier circuit 23 includes a coil 231, diodes 232a, 232b, 232c, and 232d, and capacitors 233a, 233b, 233c, and 233d. The power receiving side rectifier circuit 23 is configured by a resonant rectifier circuit. The power-receiving-side rectifier circuit 23 can rectify the received high-frequency power with a small switching loss by appropriately setting the resonance frequency of the capacitor and coil even with high-frequency AC power exceeding several MHz.
 電流制御回路24は、負荷であるLED22に流す電流を制御する。電流制御回路24は、受電側整流回路23が出力した直流電圧を、LED22に入力可能な直流電流に変換する。 The current control circuit 24 controls the current flowing through the LED 22 that is a load. The current control circuit 24 converts the DC voltage output from the power receiving side rectifier circuit 23 into a DC current that can be input to the LED 22.
 電流制御回路24は、例えば、降圧チョッパ回路によって構成される。電流制御回路24は、MOSFET241と、コイル244と、ダイオード243と、コンデンサ242と、平滑コンデンサ245とを有する。
 なお、電流制御回路24の構成としては、降圧チョッパ回路の他、昇降圧チョッパ回路、フライバック回路、フライフォワード回路、SEPIC、Zetaコンバータ、Cukコンバータなどの回路により構成することができる。
The current control circuit 24 is configured by, for example, a step-down chopper circuit. The current control circuit 24 includes a MOSFET 241, a coil 244, a diode 243, a capacitor 242, and a smoothing capacitor 245.
The current control circuit 24 can be configured by a step-down chopper circuit, a step-up / step-down chopper circuit, a flyback circuit, a flyforward circuit, a SEPIC, a Zeta converter, a Cuk converter, and the like.
 コンデンサ242の一端は直流母線の正極側に接続され、コンデンサ242の他端は直流母線の負極側に接続される。 One end of the capacitor 242 is connected to the positive side of the DC bus, and the other end of the capacitor 242 is connected to the negative side of the DC bus.
 MOSFET241は、直流母線の正極側に配置される。
 MOSFET241のドレインは、コンデンサ242に接続される。
 MOSFET241のソースは、ダイオード243とコイル244とに接続される。
 MOSFET241のゲートには、受電側制御部25から出力される制御信号が入力され、オン、オフ制御が行われる。
MOSFET 241 is arranged on the positive electrode side of the DC bus.
The drain of the MOSFET 241 is connected to the capacitor 242.
The source of the MOSFET 241 is connected to the diode 243 and the coil 244.
A control signal output from the power receiving side control unit 25 is input to the gate of the MOSFET 241 to perform on / off control.
 ダイオード243のカソードは、MOSFET241とコイル244とに接続される。ダイオード243のアノードは、平滑コンデンサ245とコンデンサ242とに接続される。 The cathode of the diode 243 is connected to the MOSFET 241 and the coil 244. The anode of the diode 243 is connected to the smoothing capacitor 245 and the capacitor 242.
 平滑コンデンサ245の一端は直流母線の正極側に接続され、平滑コンデンサ245の他端は直流母線の負極側に接続される。平滑コンデンサ245は、LED22に出力する電流を平滑にする。 One end of the smoothing capacitor 245 is connected to the positive side of the DC bus, and the other end of the smoothing capacitor 245 is connected to the negative side of the DC bus. The smoothing capacitor 245 smoothes the current output to the LED 22.
 電流センサ27は、LED22に流れる電流を検出し、検出結果に関する信号を受電側制御部25に送信する。
 電流センサ27としては、例えば、シャント抵抗を用いる構成の他、ホールセンサを用いる構成がある。
The current sensor 27 detects a current flowing through the LED 22 and transmits a signal related to the detection result to the power receiving side control unit 25.
Examples of the current sensor 27 include a configuration using a hall sensor in addition to a configuration using a shunt resistor.
 受電装置2の負荷であるLED22は、例えば、複数のLEDを直接に接続したLED群で構成される。LED群の一端は直流母線の正極側に接続され、LED群の他端は直流母線の負極側に接続される。 The LED 22 that is a load of the power receiving device 2 is configured by, for example, an LED group in which a plurality of LEDs are directly connected. One end of the LED group is connected to the positive side of the DC bus, and the other end of the LED group is connected to the negative side of the DC bus.
 受電側制御部25は、制御回路251と、電圧検出回路252と、電流検出回路253と、電力演算部254とを備える。 The power receiving side control unit 25 includes a control circuit 251, a voltage detection circuit 252, a current detection circuit 253, and a power calculation unit 254.
 電圧検出回路252は、LED22へ印加される電圧を検出する。
 電流検出回路253は、LED22に流れる電流を検出する。
 電力演算部254は、電圧検出回路252及び電流検出回路253の検出結果に基づき、LED22の出力電力を演算する。
The voltage detection circuit 252 detects a voltage applied to the LED 22.
The current detection circuit 253 detects the current flowing through the LED 22.
The power calculation unit 254 calculates the output power of the LED 22 based on the detection results of the voltage detection circuit 252 and the current detection circuit 253.
 制御回路251は、電流検出回路253の検出結果に基づいて、電流制御回路24のMOSFET241をオン、オフ制御するための信号を出力する。 The control circuit 251 outputs a signal for on / off control of the MOSFET 241 of the current control circuit 24 based on the detection result of the current detection circuit 253.
 受電側通信部26は、給電側通信部15との間で無線通信を行う。受電側通信部26は、受電装置2から光源であるLED22へ出力させる電力の目標値に関する情報を送信する。受電側通信部26は、例えば、無線LAN、Bluetooth(登録商標)、赤外線通信、NFC(Near Field Communication:近距離無線通信)など、任意の通信規格に適合した無線通信インターフェースによって構成される。 The power receiving side communication unit 26 performs wireless communication with the power feeding side communication unit 15. The power receiving side communication unit 26 transmits information related to a target value of power to be output from the power receiving device 2 to the LED 22 that is a light source. The power receiving side communication unit 26 is configured by a wireless communication interface conforming to an arbitrary communication standard such as a wireless LAN, Bluetooth (registered trademark), infrared communication, NFC (Near Field Communication).
 なお、受電コイル21は、本発明における「第2コイル」に相当する。
 また、受電側整流回路23は、本発明における「第2整流回路」に相当する。
 また、受電側通信部26は、本発明における「第2通信部」に相当する。
 また、電圧検出回路252は、本発明における「電圧センサ」に相当する。
The power receiving coil 21 corresponds to a “second coil” in the present invention.
The power receiving side rectifier circuit 23 corresponds to a “second rectifier circuit” in the present invention.
The power receiving side communication unit 26 corresponds to the “second communication unit” in the present invention.
The voltage detection circuit 252 corresponds to a “voltage sensor” in the present invention.
(電流制御回路24の動作)
 図5は、本発明の実施の形態1に係る非接触給電システムの電流制御回路の動作を示す波形である。
 図5の縦軸は、上段から順に、LED22に流れる電流、コイル244に流れる電流、MOSFET241の制御信号(ゲート電圧)を示し、横軸は時間を示す。
(Operation of the current control circuit 24)
FIG. 5 is a waveform showing the operation of the current control circuit of the non-contact power feeding system according to Embodiment 1 of the present invention.
The vertical axis of FIG. 5 indicates the current flowing through the LED 22, the current flowing through the coil 244, and the control signal (gate voltage) of the MOSFET 241 in order from the top, and the horizontal axis indicates time.
 MOSFET241のゲートにオン信号が入力されると、コンデンサ242、MOSFET241、コイル244、平滑コンデンサ245を通る電流経路が形成され、コイル244の電流が増加する。 When an ON signal is input to the gate of the MOSFET 241, a current path passing through the capacitor 242, the MOSFET 241, the coil 244, and the smoothing capacitor 245 is formed, and the current of the coil 244 increases.
 このとき、コイル244に流れる電流は三角波状の波形となるが、LED22に出力される電流は、平滑コンデンサ245により平滑化され、コイル244に流れる電流の平均値が出力される。 At this time, the current flowing through the coil 244 has a triangular waveform, but the current output to the LED 22 is smoothed by the smoothing capacitor 245 and the average value of the current flowing through the coil 244 is output.
 LED22を調光するため、LED22の電流を制御する際は、MOSFET241をターンオンするスイッチング周期Tswを一定とし、オン時間Tonを出力電流の目標値によって可変する制御を行う。このように、オン期間を調整することにより所望の出力を得る制御方法であり、スイッチング周期Tswに対するオン時間Tonの割合をデューティと呼ぶことから、本方式はデューティ制御と呼ばれる。 When dimming the LED 22, when controlling the current of the LED 22, the switching cycle Tsw for turning on the MOSFET 241 is made constant, and the on-time Ton is controlled to vary according to the target value of the output current. As described above, this method is a control method for obtaining a desired output by adjusting the ON period. Since the ratio of the ON time Ton to the switching period Tsw is called duty, this method is called duty control.
 受電側制御部25は、調光率に応じて、電流制御回路24がLED22に出力する出力電流の目標値を予め記憶している。受電側制御部25は、例えば、内部に記録部を備え、複数の調光率について出力電流の目標値が記憶される。 The power receiving side control unit 25 stores in advance the target value of the output current output from the current control circuit 24 to the LED 22 in accordance with the dimming rate. The power receiving side control unit 25 includes, for example, a recording unit therein, and stores a target value of output current for a plurality of dimming rates.
 受電側制御部25は、例えば、調光スイッチ(図示せず)から入力された調光率の情報を取得する。そして、受電側制御部25は、取得した調光率に応じて、LED22の出力電流の目標値を設定する。 The power receiving side control part 25 acquires the information of the light control rate input from the light control switch (not shown), for example. And the power receiving side control part 25 sets the target value of the output current of LED22 according to the acquired dimming rate.
 なお、出力電流の目標値の設定はこれに限定されない。例えば、受電側制御部25は、受電側通信部26を介して、外部の機器から調光率の情報を取得し、出力電流の目標値を設定しても良い。
 また、調光率の情報としては、例えば、LED22の定格出力を100%とし消灯を0%として、0~100%の範囲の数値情報であっても良いし、暗い、普通、明るいなど、明るさに応じた複数の識別情報などでも良い。
The setting of the target value of the output current is not limited to this. For example, the power receiving side control unit 25 may acquire information on the dimming rate from an external device via the power receiving side communication unit 26 and set the target value of the output current.
The dimming rate information may be numerical information in the range of 0 to 100%, for example, with the rated output of the LED 22 being 100% and the extinction being 0%, or dark, normal, bright, etc. A plurality of identification information corresponding to the size may be used.
 受電側制御部25は、電流センサ27が検出したLED22の電流に基づいて、電流制御回路24のMOSFET241をオン、オフ制御するための信号を出力する。 The power receiving side control unit 25 outputs a signal for on / off control of the MOSFET 241 of the current control circuit 24 based on the current of the LED 22 detected by the current sensor 27.
 ここで、受電装置2がLED22へ供給する電力は、給電装置1から伝送されるため、LED22を調光する場合には、給電装置1から受電装置2へ給電する電力を変化させる必要がある。
 上述したように、給電装置1の共振インバータ13は、固定周波数、固定デューティでソフトスイッチング動作を行う。このため、LED22の調光に応じて受電装置2の出力電力を可変するために、直流変換回路12の出力電圧を可変する制御を行う。
 調光時の直流変換回路12の動作の詳細を、図6、図7により説明する。
Here, since the power supplied from the power receiving device 2 to the LED 22 is transmitted from the power feeding device 1, it is necessary to change the power supplied from the power feeding device 1 to the power receiving device 2 when dimming the LED 22.
As described above, the resonant inverter 13 of the power supply device 1 performs a soft switching operation at a fixed frequency and a fixed duty. For this reason, in order to vary the output power of the power receiving device 2 according to the dimming of the LED 22, control is performed to vary the output voltage of the DC conversion circuit 12.
Details of the operation of the DC conversion circuit 12 during dimming will be described with reference to FIGS.
(調光時の直流変換回路12の動作)
 図6は、本発明の実施の形態1に係る非接触給電システムの動作を示すフローチャートである。
 図7は、本発明の実施の形態1に係る非接触給電システムの動作波形の例である。
 図7の縦軸は、上段から順に、直流変換回路12の出力電圧、共振インバータ13の出力電流、LED22の出力電力を示し、横軸は時間を示す。
 以下、図6の各ステップに基づき、図7を参照しつつ説明する。
(Operation of DC conversion circuit 12 during dimming)
FIG. 6 is a flowchart showing the operation of the non-contact power feeding system according to Embodiment 1 of the present invention.
FIG. 7 is an example of operation waveforms of the non-contact power feeding system according to Embodiment 1 of the present invention.
The vertical axis in FIG. 7 indicates the output voltage of the DC conversion circuit 12, the output current of the resonant inverter 13, and the output power of the LED 22 in order from the top, and the horizontal axis indicates time.
Hereinafter, based on each step of FIG. 6, it demonstrates, referring FIG.
 受電装置2の受電側制御部25は、調光率の変更の有無を判定する(S001)。 The power receiving side control unit 25 of the power receiving device 2 determines whether or not the dimming rate has been changed (S001).
 調光スイッチ(図示せず)又は受電側通信部26から調光率を変更する入力があると(S001:YES)、受電側制御部25は、調光率に応じたLED22の出力電流の目標値を設定する。また、受電側制御部25の電力演算部254は、LED22の出力電流の目標値から、LED22へ出力する電力の目標値を求める。
 この電力の目標値は、電圧検出回路252の検出結果と電流の目標値とから求めても良いし、電流検出回路253及び電圧検出回路252の検出結果に基づく現在の電力の実測値と、現在の調光率と変更後の調光率との比率から求めてもよい。
 受電側通信部26は、LED22へ出力する電力の目標値に関する情報を、給電装置1へ送信する(S002)。
When there is an input for changing the dimming rate from the dimming switch (not shown) or the power receiving side communication unit 26 (S001: YES), the power receiving side control unit 25 sets the target of the output current of the LED 22 according to the dimming rate. Set the value. In addition, the power calculation unit 254 of the power receiving side control unit 25 obtains a target value of the power output to the LED 22 from the target value of the output current of the LED 22.
The target value of power may be obtained from the detection result of the voltage detection circuit 252 and the target value of current, or the actual measurement value of current power based on the detection results of the current detection circuit 253 and the voltage detection circuit 252 and the current value. You may obtain | require from the ratio of the light control rate of this and the light control rate after a change.
The power receiving side communication part 26 transmits the information regarding the target value of the electric power output to LED22 to the electric power feeder 1 (S002).
 ここで、LED22へ出力する電力の目標値に関する情報としては、例えば、電力の目標値そのものでも良いし、LED22を定電圧負荷とみなして、電流の目標値を用いても良い。また例えば、調光率の情報を、LED22へ出力する電力の目標値に関する情報とみなしても良い。 Here, as the information on the target value of the power output to the LED 22, for example, the target value of the power itself may be used, or the target value of the current may be used by regarding the LED 22 as a constant voltage load. For example, the information on the dimming rate may be regarded as information on the target value of the power output to the LED 22.
 給電装置1の給電側通信部15は、受電側通信部26から送信された、LED22の電力の目標値に関する情報を受信する。
 給電側制御部14の演算部143は、LED22の電力の目標値に関する情報に応じて、直流変換回路12の出力電圧の目標値を設定する(S003)。
The power supply side communication unit 15 of the power supply apparatus 1 receives the information regarding the target value of the power of the LED 22 transmitted from the power reception side communication unit 26.
The calculation unit 143 of the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 according to the information regarding the target value of the power of the LED 22 (S003).
 演算部143は、LED22の電力の目標値に対応して、直流変換回路12の出力電圧の目標値を、予め記憶している。演算部143は、例えば、内部に記録部を備え、複数の電力の目標値について、直流変換回路12の出力電圧の目標値が記憶される。
 ここで、直流変換回路12の出力電圧の目標値は、LED22の電力の目標値が大きいほど高く設定されている。
The calculation unit 143 stores in advance the target value of the output voltage of the DC conversion circuit 12 in correspondence with the target value of the power of the LED 22. For example, the calculation unit 143 includes a recording unit therein, and stores the target value of the output voltage of the DC conversion circuit 12 for a plurality of target values of power.
Here, the target value of the output voltage of the DC conversion circuit 12 is set higher as the target value of the power of the LED 22 is larger.
 制御回路141は、直流変換回路12の出力電圧が、演算部143が定めた出力電圧の目標値となるように、MOSFET121のオン、オフを制御する。
 以降、ステップS001へ戻り、上述の動作を繰り返す。
The control circuit 141 controls on / off of the MOSFET 121 so that the output voltage of the DC conversion circuit 12 becomes the target value of the output voltage determined by the calculation unit 143.
Thereafter, the process returns to step S001, and the above operation is repeated.
 このような動作により、例えば図7に示すように、時間t1までにおいて、LED22の出力電力がP1に対して、直流変換回路12の出力電圧がV1に設定される。このとき、共振インバータ13の出力電流がI1となる。
 次に、時間t1からt2において、LED22の電力の目標値がP1からP2に増加されると、直流変換回路12の出力電圧がV1からV2に増加する。このとき、共振インバータ13の出力電流がI1からI2に増加する。
 更に、時間t2以降において、LED22の電力の目標値がP2からP1に減少されると、直流変換回路12の出力電圧がV2からV1に減少する。このとき、共振インバータ13の出力電流がI2からI1に減少する。
By such an operation, for example, as shown in FIG. 7, until the time t1, the output power of the LED 22 is set to P1 and the output voltage of the DC conversion circuit 12 is set to V1. At this time, the output current of the resonant inverter 13 becomes I1.
Next, when the target value of the power of the LED 22 is increased from P1 to P2 from time t1 to time t2, the output voltage of the DC conversion circuit 12 is increased from V1 to V2. At this time, the output current of the resonant inverter 13 increases from I1 to I2.
Further, after time t2, when the target value of the power of the LED 22 is decreased from P2 to P1, the output voltage of the DC conversion circuit 12 is decreased from V2 to V1. At this time, the output current of the resonant inverter 13 decreases from I2 to I1.
 このように、給電側制御部14は、LED22の電力が大きいほど直流変換回路12の出力電圧の目標値を高く設定する。このため、直流変換回路12の出力電圧が高いほど、共振インバータ13の出力電流が大きくなるため、給電装置1が出力する電力を大きくすることができる。
 また、給電側制御部14は、LED22の電力が小さいほど直流変換回路12の出力電圧の目標値を低く設定する。このため、直流変換回路12の出力電圧が低いほど、共振インバータ13の出力電流が小さくなるため、給電装置1が出力する電力を小さくすることができる。
Thus, the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 higher as the power of the LED 22 is larger. For this reason, since the output current of the resonant inverter 13 increases as the output voltage of the DC converter circuit 12 increases, the power output from the power feeding device 1 can be increased.
Moreover, the power supply side control part 14 sets the target value of the output voltage of the DC converter circuit 12 so that the electric power of LED22 is small. For this reason, since the output current of the resonant inverter 13 becomes smaller as the output voltage of the DC converter circuit 12 becomes lower, the power output from the power feeding device 1 can be reduced.
 以上のように本実施の形態1においては、共振インバータ13は、スイッチング素子と共振回路とを有し、予め設定された周波数及びデューティ比でスイッチング素子が駆動される共振型インバータにより構成されている。また、給電側制御部14は、直流変換回路12の直流電圧を可変させて、受電装置2から光源へ出力させる電力を変化させる。
 このため、受電装置2からLED22へ出力させる電力を可変する際のスイッチング損失を低減することができる。よって、調光時の伝送効率の低下を抑制することができ、スイッチング素子の発熱を抑制することができる。
As described above, in the first embodiment, the resonant inverter 13 includes a switching element and a resonant circuit, and is configured by a resonant inverter in which the switching element is driven with a preset frequency and duty ratio. . In addition, the power supply side control unit 14 varies the DC voltage of the DC conversion circuit 12 to change the power output from the power receiving device 2 to the light source.
For this reason, the switching loss at the time of changing the electric power output from the power receiving apparatus 2 to LED22 can be reduced. Therefore, a decrease in transmission efficiency during dimming can be suppressed, and heat generation of the switching element can be suppressed.
 また、本実施の形態1においては、給電側制御部14は、共振回路の共振現象により生じた、電流がゼロとなるタイミング又は電圧がゼロとなるタイミングで、スイッチング素子のスイッチングを行う。
 このようなソフトスイッチングにより、受電装置2からLED22へ出力させる電力を可変する際のスイッチング損失を低減することができる。
In the first embodiment, the power supply side control unit 14 switches the switching element at the timing when the current becomes zero or the voltage becomes zero, which is generated by the resonance phenomenon of the resonance circuit.
With such soft switching, it is possible to reduce switching loss when changing the power output from the power receiving device 2 to the LED 22.
 また、本実施の形態1においては、給電側制御部14は、受電装置2からLED22へ出力させる電力の目標値に関する情報が入力され、電力の目標値に関する情報に応じて、直流変換回路12の直流電圧を可変する。
 このため、LED22の電力に応じて、給電装置1が出力する電力を設定することができる。
Further, in the first embodiment, the power supply side control unit 14 receives information on the target value of power to be output from the power receiving apparatus 2 to the LED 22, and the DC conversion circuit 12 has the information on the target value of power. Variable DC voltage.
For this reason, the electric power which the electric power feeder 1 outputs can be set according to the electric power of LED22.
 また、本実施の形態1においては、給電側制御部14は、LED22の電力の目標値が大きいほど、直流変換回路12の直流電圧を高くする。
 このため、LED22の電力に応じて、給電装置1が出力する電力を設定することができる。
Moreover, in this Embodiment 1, the electric power feeding side control part 14 makes the DC voltage of the DC converter circuit 12 high, so that the target value of the electric power of LED22 is large.
For this reason, the electric power which the electric power feeder 1 outputs can be set according to the electric power of LED22.
 なお、上記の説明においては、受電装置2から給電装置1に送信する情報として、LED22の電圧、電流から得た電力の情報を送信する場合について説明したが、本発明はこれに限定されない。例えば、LED22へ出力させる電力の目標値に関する情報としては、LED22で消費する電力ではなく、LED22の電流値を送信してもよい。 In the above description, the case where the information on the power obtained from the voltage and current of the LED 22 is transmitted as the information transmitted from the power receiving device 2 to the power feeding device 1 is described, but the present invention is not limited to this. For example, as information regarding the target value of power to be output to the LED 22, the current value of the LED 22 may be transmitted instead of the power consumed by the LED 22.
 受電装置2の負荷としてLED22を接続する場合、LED22は定電圧負荷であるとみなすことができる。そのため、予め、給電装置1の給電側制御部14にLED22の点灯時の電圧に関する情報を記憶しておくことで、受電装置2から送信されたLED22の電流の情報を用いて、給電装置1の給電側制御部14において、LED22の出力電力を推定することができる。
 この場合、受電装置2における受電側制御部25は、LED22の電流と電圧から電力を演算する電力演算部254が不要となり、より簡易な構成にすることができ、受電装置2を小型化、低コスト化することができる。
When the LED 22 is connected as a load of the power receiving device 2, the LED 22 can be regarded as a constant voltage load. Therefore, by storing information on the voltage at the time of lighting of the LED 22 in the power supply side control unit 14 of the power supply device 1 in advance, the information on the current of the LED 22 transmitted from the power receiving device 2 can be used. In the power supply side control unit 14, the output power of the LED 22 can be estimated.
In this case, the power receiving side control unit 25 in the power receiving device 2 does not require the power calculating unit 254 that calculates the power from the current and voltage of the LED 22, and can have a simpler configuration. Cost can be increased.
 また、上記の説明では、受電装置2の負荷がLEDの場合について説明したが、有機ELを負荷とした場合においても同様の制御を行うことができる。 In the above description, the case where the load of the power receiving device 2 is an LED has been described. However, the same control can be performed even when the organic EL is a load.
実施の形態2.
 本実施の形態2においては、1つの給電装置1に対して受電装置2を複数備えた構成について説明する。
 なお、以下の説明では、上記実施の形態1と同一部分には同一の符号を付し、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
In the second embodiment, a configuration in which a plurality of power receiving devices 2 are provided for one power feeding device 1 will be described.
In the following description, the same parts as those in the first embodiment are denoted by the same reference numerals, and the difference from the first embodiment will be mainly described.
 図8は、本発明の実施の形態2に係る非接触給電システムを示すブロック図である。
 図8に示すように、非接触給電システムは、給電装置1と、受電装置2Aと、受電装置2Bとを備える。
 給電装置1は、上記実施の形態1と同様に、交流電源3から入力される交流電力を高周波の交流電力に変換し、給電コイル11に供給することで非接触により電力を伝送する。
 受電装置2Aは、受電コイル21Aによって、給電装置1から非接触により電力を受電し、負荷であるLED22Aへ電力を出力する。また、受電装置2Aは、LED22Aへ供給する電流を調整することでLED22Aの明るさを可変する調光制御を行う。
 受電装置2Bは、受電コイル21Bによって、給電装置1から非接触により電力を受電し、負荷であるLED22Bへ電力を出力する。また、受電装置2Bは、LED22Bへ供給する電流を調整することでLED22Bの明るさを可変する調光制御を行う。
 受電装置2A、2Bの構成は、上記実施の形態1で説明した受電装置2と同様である。
FIG. 8 is a block diagram showing a non-contact power feeding system according to Embodiment 2 of the present invention.
As shown in FIG. 8, the non-contact power feeding system includes a power feeding device 1, a power receiving device 2A, and a power receiving device 2B.
Similarly to the first embodiment, the power feeding device 1 converts AC power input from the AC power source 3 into high-frequency AC power and supplies the power to the feeding coil 11 to transmit power in a non-contact manner.
The power receiving device 2A receives power from the power feeding device 1 in a non-contact manner by the power receiving coil 21A, and outputs the power to the LED 22A that is a load. In addition, the power receiving device 2A performs dimming control that varies the brightness of the LED 22A by adjusting the current supplied to the LED 22A.
The power receiving device 2B receives power from the power feeding device 1 in a non-contact manner by the power receiving coil 21B, and outputs the power to the LED 22B that is a load. Further, the power receiving device 2B performs dimming control that varies the brightness of the LED 22B by adjusting the current supplied to the LED 22B.
The configuration of power reception devices 2A and 2B is the same as that of power reception device 2 described in the first embodiment.
 なお、本実施の形態2では、受電装置2が2つの例を示しているが3つ以上であっても良い。 In the second embodiment, two examples of the power receiving device 2 are shown, but three or more power receiving devices 2 may be used.
(調光時の直流変換回路12の動作)
 図9は、本発明の実施の形態2に係る非接触給電システムの動作を示すフローチャートである。
 図10は、本発明の実施の形態2に係る非接触給電システムの動作波形の例である。
 図10の縦軸は、上段から順に、直流変換回路12の出力電圧、共振インバータ13の出力電流、LED22Aの出力電力Pa、LED22Bの出力電力Pb、出力電力Paと出力電力Pbとを合計した合計電力Psumを示し、横軸は時間を示す。
 以下、図9の各ステップに基づき、図10を参照しつつ説明する。
(Operation of DC conversion circuit 12 during dimming)
FIG. 9 is a flowchart showing the operation of the non-contact power feeding system according to Embodiment 2 of the present invention.
FIG. 10 is an example of operation waveforms of the non-contact power feeding system according to Embodiment 2 of the present invention.
The vertical axis in FIG. 10 is the sum of the output voltage of the DC conversion circuit 12, the output current of the resonant inverter 13, the output power Pa of the LED 22A, the output power Pb of the LED 22B, the output power Pa and the output power Pb in order from the top. The electric power Psum is shown, and the horizontal axis shows time.
Hereinafter, based on each step of FIG. 9, it demonstrates, referring FIG.
 上記実施の形態1と同様に、受電装置2A、2Bの受電側制御部25は、調光率の変更の有無を判定する(S011)。
 調光率の変更があると(S001:YES)、受電装置2Aの受電側通信部26は、LED22Aへ出力する電力の目標値に関する情報を、給電装置1へ送信する。また、受電装置2Bの受電側通信部26は、LED22Bへ出力する電力の目標値に関する情報を、給電装置1へ送信する(S012)。
Similar to the first embodiment, the power receiving side control unit 25 of the power receiving devices 2A and 2B determines whether or not the dimming rate is changed (S011).
When there is a change in the dimming rate (S001: YES), the power receiving side communication unit 26 of the power receiving apparatus 2A transmits information regarding the target value of the power output to the LED 22A to the power feeding apparatus 1. In addition, the power receiving side communication unit 26 of the power receiving device 2B transmits information related to the target value of the power output to the LED 22B to the power feeding device 1 (S012).
 給電装置1の給電側通信部15は、受電装置2A及び受電装置2Bのそれぞれから送信された、LED22A、22Bの電力の目標値に関する情報を受信する。
 給電側制御部14の演算部143は、受電装置2A、2Bから送信されたLED22A、22Bへの電力の目標値を合計して、合計電力Psumを演算する(S013)。
 給電側制御部14の演算部143は、合計電力Psumに応じて、直流変換回路12の出力電圧の目標値を設定する(S014)。
The power feeding side communication unit 15 of the power feeding device 1 receives information regarding the target values of the power of the LEDs 22A and 22B transmitted from the power receiving device 2A and the power receiving device 2B, respectively.
The calculation unit 143 of the power supply side control unit 14 calculates the total power Psum by summing the target values of power to the LEDs 22A and 22B transmitted from the power receiving devices 2A and 2B (S013).
The calculation unit 143 of the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 according to the total power Psum (S014).
 演算部143は、合計電力Psumに対応して、直流変換回路12の出力電圧の目標値を、予め記憶している。演算部143は、例えば、内部に記録部を備え、複数の合計電力Psumの値について、直流変換回路12の出力電圧の目標値が記憶される。
 ここで、直流変換回路12の出力電圧の目標値は、合計電力Psumの値が大きいほど高く設定されている。
The calculation unit 143 stores in advance a target value of the output voltage of the DC conversion circuit 12 corresponding to the total power Psum. For example, the calculation unit 143 includes a recording unit therein, and stores a target value of the output voltage of the DC conversion circuit 12 for a plurality of values of the total power Psum.
Here, the target value of the output voltage of the DC conversion circuit 12 is set higher as the total power Psum is larger.
 制御回路141は、直流変換回路12の出力電圧が、演算部143が定めた出力電圧の目標値となるように、MOSFET121のオン、オフを制御する。
 以降、ステップS011へ戻り、上述の動作を繰り返す。
The control circuit 141 controls on / off of the MOSFET 121 so that the output voltage of the DC conversion circuit 12 becomes the target value of the output voltage determined by the calculation unit 143.
Thereafter, the process returns to step S011, and the above-described operation is repeated.
 このような動作により、例えば図10に示すように、時間t1までにおいて、LED22Aの出力電力Pa1とLED22Bの出力電力Pb2の合計である合計電力Psum1に対して、直流変換回路12の出力電圧がV1に設定される。このとき、共振インバータ13の出力電流がI1となる。
 次に、時間t1からt2において、LED22Aの電力の目標値がPa1からPa2に増加されると合計電力がPsum1からPsum2に増加し、これに伴い、直流変換回路12の出力電圧がV1からV2に増加する。このとき、共振インバータ13の出力電流がI1からI2に増加する。
 更に、時間t2以降において、LED22Bの電力の目標値がPb2からPb1に減少されると合計電力がPsum2からPsum1に減少し、これに伴い、直流変換回路12の出力電圧がV2からV1に減少する。このとき、共振インバータ13の出力電流がI2からI1に減少する。
By such an operation, for example, as shown in FIG. 10, until the time t1, the output voltage of the DC conversion circuit 12 is V1 with respect to the total power Psum1 that is the sum of the output power Pa1 of the LED 22A and the output power Pb2 of the LED 22B. Set to At this time, the output current of the resonant inverter 13 becomes I1.
Next, when the target value of the power of the LED 22A is increased from Pa1 to Pa2 from time t1 to t2, the total power increases from Psum1 to Psum2, and accordingly, the output voltage of the DC conversion circuit 12 changes from V1 to V2. To increase. At this time, the output current of the resonant inverter 13 increases from I1 to I2.
Further, after the time t2, when the target value of the power of the LED 22B is decreased from Pb2 to Pb1, the total power is decreased from Psum2 to Psum1, and accordingly, the output voltage of the DC conversion circuit 12 is decreased from V2 to V1. . At this time, the output current of the resonant inverter 13 decreases from I2 to I1.
 このように、給電側制御部14は、合計電力Psumが大きいほど直流変換回路12の出力電圧の目標値を高く設定する。このため、直流変換回路12の出力電圧が高いほど、共振インバータ13の出力電流が大きくなるため、給電装置1が出力する電力を大きくすることができる。
 また、給電側制御部14は、合計電力Psumが小さいほど直流変換回路12の出力電圧の目標値を低く設定する。このため、直流変換回路12の出力電圧が低いほど、共振インバータ13の出力電流が小さくなるため、給電装置1が出力する電力を小さくすることができる。
Thus, the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 higher as the total power Psum increases. For this reason, since the output current of the resonant inverter 13 increases as the output voltage of the DC converter circuit 12 increases, the power output from the power feeding device 1 can be increased.
Further, the power supply side control unit 14 sets the target value of the output voltage of the DC conversion circuit 12 to be lower as the total power Psum is smaller. For this reason, since the output current of the resonant inverter 13 becomes smaller as the output voltage of the DC converter circuit 12 becomes lower, the power output from the power feeding device 1 can be reduced.
 以上のように本実施の形態2においては、受電装置2を複数備える。給電側通信部15は、複数の受電装置2のそれぞれから、電力の目標値に関する情報を受信し、給電側制御部14は、複数の電力の目標値の合計に応じて、直流変換回路12の直流電圧を可変する。
 このため、複数の受電装置2は、それぞれの負荷であるLED22を個別に調光することができる。また、複数の受電装置2が個別に調光することにより、各受電装置2の出力する電力が変動する場合であっても、スイッチング損失の増加を抑制することができる。
As described above, the second embodiment includes a plurality of power receiving devices 2. The power supply side communication unit 15 receives information related to the target value of power from each of the plurality of power receiving apparatuses 2, and the power supply side control unit 14 determines the DC conversion circuit 12 according to the sum of the target values of the plurality of powers. Variable DC voltage.
For this reason, the some power receiving apparatus 2 can light-control LED22 which is each load separately. Moreover, even if it is a case where the electric power which each power receiving apparatus 2 outputs fluctuates because the some power receiving apparatus 2 dimmes separately, the increase in switching loss can be suppressed.
 また、本実施の形態2においては、給電側制御部14は、電力の目標値の合計が大きいほど、直流変換回路12の直流電圧を高くする。
 このため、複数の受電装置2のそれぞれが出力する電力に応じて、給電装置1が出力する電力を設定することができる。
In the second embodiment, the power feeding side control unit 14 increases the DC voltage of the DC conversion circuit 12 as the total power target value increases.
For this reason, according to the electric power which each of the some power receiving apparatus 2 outputs, the electric power which the electric power feeder 1 outputs can be set.
実施の形態3.
 本実施の形態3においては、直流変換回路12の直流電圧が予め設定した下限値を下回る場合の動作について説明する。
 なお、以下の説明では、上記実施の形態2と同一部分には同一の符号を付し、実施の形態2との相違点を中心に説明する。
Embodiment 3 FIG.
In the third embodiment, an operation when the DC voltage of the DC conversion circuit 12 falls below a preset lower limit value will be described.
In the following description, the same parts as those in the second embodiment are denoted by the same reference numerals, and the difference from the second embodiment will be mainly described.
 給電装置1の出力電力に対し、LED22A、22Bで消費する電力が少なくなると、共振インバータ13の無効電力が増加し、損失増加及び発熱の原因となる。
 このため、本実施の形態3の給電側制御部14は、直流変換回路12の直流電圧を可変する際、直流電圧が予め設定した下限値Vlimを下回る場合、共振インバータ13の動作を停止させる。
When the power consumed by the LEDs 22A and 22B is less than the output power of the power supply device 1, the reactive power of the resonant inverter 13 increases, causing an increase in loss and heat generation.
For this reason, when the DC voltage of the DC conversion circuit 12 is varied, the power supply side control unit 14 according to the third embodiment stops the operation of the resonant inverter 13 when the DC voltage falls below a preset lower limit value Vlim.
 図11は、本発明の実施の形態3に係る非接触給電システムの動作を示すフローチャートである。
 図12は、本発明の実施の形態3に係る非接触給電システムの動作波形の例である。
 図12の縦軸は、上段から順に、直流変換回路12の出力電圧、共振インバータ13の出力電流、LED22Aの出力電力Pa、LED22Bの出力電力Pb、出力電力Paと出力電力Pbとを合計した合計電力Psumを示し、横軸は時間を示す。
 以下、図11の各ステップに基づき、図12を参照しつつ説明する。
FIG. 11 is a flowchart showing the operation of the non-contact power feeding system according to Embodiment 3 of the present invention.
FIG. 12 is an example of operation waveforms of the non-contact power feeding system according to Embodiment 3 of the present invention.
The vertical axis in FIG. 12 is the sum of the output voltage of the DC conversion circuit 12, the output current of the resonant inverter 13, the output power Pa of the LED 22A, the output power Pb of the LED 22B, the output power Pa and the output power Pb in order from the top. The electric power Psum is shown, and the horizontal axis shows time.
Hereinafter, based on each step of FIG. 11, it demonstrates, referring FIG.
 図11において、ステップS021~S024は、上記実施の形態2におけるステップS011~S014と同じである。 In FIG. 11, steps S021 to S024 are the same as steps S011 to S014 in the second embodiment.
 ステップS024のあと、給電側制御部14の制御回路141は、電圧検出回路142が検出した直流変換回路12の直流電圧と、予め設定した下限値Vlimとの比較を行う(S025)。
 直流電圧が下限値Vlim以上の場合(S025:YES)、制御回路141は、共振インバータ13の動作を継続する(S026)。
 以降、ステップS021へ戻り、上述の動作を繰り返す。
After step S024, the control circuit 141 of the power supply side control unit 14 compares the DC voltage of the DC conversion circuit 12 detected by the voltage detection circuit 142 with a preset lower limit value Vlim (S025).
When the DC voltage is equal to or higher than the lower limit value Vlim (S025: YES), the control circuit 141 continues the operation of the resonant inverter 13 (S026).
Thereafter, the process returns to step S021, and the above-described operation is repeated.
 一方、直流電圧が下限値Vlim以上でない場合(S025:NO)、制御回路141は、共振インバータ13の動作を停止させる(S027)。
 これにより、給電装置1から受電装置2A、2Bに対する非接触給電動作が停止される。
 以降、ステップS021へ戻り、上述の動作を繰り返す。
On the other hand, when the DC voltage is not equal to or lower than the lower limit value Vlim (S025: NO), the control circuit 141 stops the operation of the resonant inverter 13 (S027).
Thereby, the non-contact power feeding operation from the power feeding device 1 to the power receiving devices 2A and 2B is stopped.
Thereafter, the process returns to step S021, and the above-described operation is repeated.
 このような動作により、例えば図12に示すように、時間t1までにおいて、LED22Aの出力電力PaとLED22Bの出力電力Pbの合計である合計電力Psumに対して、直流変換回路12の出力電圧がV1に設定される。
 次に、時間t1からt2において、LED22Aの出力電力Pa及びLED22Bの出力電力Pb、並びに合計電力Psumが徐々に低下すると、直流変換回路12の出力電圧がV1も徐々に低下する。
 時間t2において、直流変換回路12の出力電圧がVlimを下回ると、制御回路141は、共振インバータ13の動作を停止させる。これにより、時間t2以降において、LED22Aの出力電力PaとLED22Bの出力電力Pbはゼロとなる。
By such an operation, for example, as shown in FIG. 12, until the time t1, the output voltage of the DC conversion circuit 12 is V1 with respect to the total power Psum that is the sum of the output power Pa of the LED 22A and the output power Pb of the LED 22B. Set to
Next, when the output power Pa of the LED 22A, the output power Pb of the LED 22B, and the total power Psum are gradually decreased from time t1 to time t2, the output voltage V1 of the DC conversion circuit 12 is also gradually decreased.
At time t2, when the output voltage of the DC conversion circuit 12 falls below Vlim, the control circuit 141 stops the operation of the resonant inverter 13. Thereby, after time t2, the output power Pa of the LED 22A and the output power Pb of the LED 22B become zero.
 以上のように本実施の形態3においては、給電側制御部14は、直流変換回路12の直流電圧を可変する際、直流電圧が予め設定した下限値Vlimを下回る場合、共振インバータ13の動作を停止させる。
 このため、共振インバータ13の無効電力が増加する状態での動作を防止でき、共振インバータ13の損失増加及び発熱を抑制することができる。
As described above, in the third embodiment, when the DC voltage of the DC conversion circuit 12 is varied, the power supply side control unit 14 performs the operation of the resonant inverter 13 when the DC voltage is lower than the preset lower limit value Vlim. Stop.
For this reason, the operation | movement in the state in which the reactive power of the resonant inverter 13 increases can be prevented, and the loss increase and heat_generation | fever of the resonant inverter 13 can be suppressed.
実施の形態4.
 本実施の形態4においては、直流変換回路12の出力電圧を補正する動作について説明する。
 なお、以下の説明では、上記実施の形態1~3と同一部分には同一の符号を付し、実施の形態1~3との相違点を中心に説明する。
Embodiment 4 FIG.
In the fourth embodiment, an operation for correcting the output voltage of the DC conversion circuit 12 will be described.
In the following description, the same parts as those in the first to third embodiments are denoted by the same reference numerals, and differences from the first to third embodiments will be mainly described.
 図13は、本発明の実施の形態4に係る非接触給電システムの受電装置を示す回路図である。
 図13に示すように、受電装置2の受電側制御部25は、上記実施の形態1の構成に加え、LED電流判定部255を備える。
FIG. 13 is a circuit diagram showing a power receiving device of the non-contact power feeding system according to Embodiment 4 of the present invention.
As illustrated in FIG. 13, the power reception side control unit 25 of the power reception device 2 includes an LED current determination unit 255 in addition to the configuration of the first embodiment.
 LED電流判定部255は、電流センサ27が検出したLED22に流れる電流の実測値の情報を取得する。LED電流判定部255は、LED22に流れる電流の実測値が、目標値を超えているかを判断し、判定結果を受電側通信部26から送信させる。
 その他の構成は、上記実施の形態1と同様である。また、上記実施の形態2と同様に、受電装置2を複数備えても良い。以下の説明では、受電装置2A、2Bを備える構成を説明する。
The LED current determination unit 255 acquires information on the actual value of the current flowing through the LED 22 detected by the current sensor 27. The LED current determination unit 255 determines whether the measured value of the current flowing through the LED 22 exceeds the target value, and transmits the determination result from the power receiving side communication unit 26.
Other configurations are the same as those of the first embodiment. Further, similarly to the second embodiment, a plurality of power receiving devices 2 may be provided. In the following description, a configuration including the power receiving devices 2A and 2B will be described.
 図14は、本発明の実施の形態4に係る非接触給電システムの動作を示すフローチャートである。
 図15は、本発明の実施の形態4に係る非接触給電システムの動作波形の例である。
 図15の縦軸は、上段から順に、直流変換回路12の出力電圧、共振インバータ13の出力電流、LED22Aの出力電流Ia、LED22Aの出力電力Pa、LED22Bの出力電流Ib、LED22Bの出力電力Pb、LED電流判定部255の判定結果(エラー信号)を示し、横軸は時間を示す。
 以下、図14の各ステップに基づき、図15を参照しつつ説明する。
FIG. 14 is a flowchart showing the operation of the non-contact power feeding system according to Embodiment 4 of the present invention.
FIG. 15 is an example of operation waveforms of the non-contact power feeding system according to Embodiment 4 of the present invention.
The vertical axis in FIG. 15 indicates the output voltage of the DC conversion circuit 12, the output current of the resonant inverter 13, the output current Ia of the LED 22A, the output power Pa of the LED 22A, the output current Ib of the LED 22B, and the output power Pb of the LED 22B in order from the top. The determination result (error signal) of the LED current determination unit 255 is shown, and the horizontal axis indicates time.
Hereinafter, description will be made with reference to FIG. 15 based on each step of FIG.
 図14において、ステップS031~S034は、上記実施の形態2におけるステップS011~S014と同じである。 In FIG. 14, steps S031 to S034 are the same as steps S011 to S014 in the second embodiment.
 ステップS034のあと、受電装置2AのLED電流判定部255は、電流センサ27の検出値と、予め設定されたLED電流目標値Ia_refとの比較を行う。また、受電装置2BのLED電流判定部255は、電流センサ27の検出値と、予め設定されたLED電流目標値Ib_refとの比較を行う(S035)。
 ここで、LED電流目標値は、LED22へ供給する電力の目標値に応じて定まる値である。即ち、LED22を定電圧負荷とみなして、LED電流目標値を供給した場合に電力が目標値となるように、LED電流目標値が設定される。
After step S034, the LED current determination unit 255 of the power receiving device 2A compares the detection value of the current sensor 27 with a preset LED current target value Ia_ref. The LED current determination unit 255 of the power receiving device 2B compares the detection value of the current sensor 27 with a preset LED current target value Ib_ref (S035).
Here, the LED current target value is a value determined according to the target value of the power supplied to the LED 22. That is, the LED current target value is set so that the power becomes the target value when the LED 22 is regarded as a constant voltage load and the LED current target value is supplied.
 電流センサ27の検出値がLED電流目標値よりも低い場合(S035:YES)、LED電流判定部255は、所望の電流が得られていないことを示すエラー信号をオンとする判定結果を、受電側通信部26に送信させる(S036)。 When the detection value of the current sensor 27 is lower than the LED current target value (S035: YES), the LED current determination unit 255 receives a determination result of turning on an error signal indicating that a desired current is not obtained. The data is transmitted to the side communication unit 26 (S036).
 給電側通信部15は、受電装置2から送信されたエラー信号を受信し、給電側制御部14へ入力する。給電側制御部14の演算部143は、エラー信号を受信し所定時間経過すると、予め記憶している直流変換回路12の出力電圧の目標値よりも補正値ΔVだけ高くなるよう、出力電圧の目標値を補正する(S037)。
 以降、ステップS031へ戻り、上述の動作を繰り返す。
The power feeding side communication unit 15 receives the error signal transmitted from the power receiving device 2 and inputs the error signal to the power feeding side control unit 14. The calculation unit 143 of the power supply side control unit 14 receives the error signal, and when a predetermined time elapses, the output voltage target is set to be higher by the correction value ΔV than the previously stored target value of the output voltage of the DC conversion circuit 12. The value is corrected (S037).
Thereafter, the process returns to step S031, and the above operation is repeated.
 一方、電流センサ27の検出値がLED電流目標値よりも低くない場合(S035:NO)、LED電流判定部255は、エラー信号を送信させない。これにより、直流変換回路12は、出力電圧の目標値を保持する(S038)。
 以降、ステップS031へ戻り、上述の動作を繰り返す。
On the other hand, when the detection value of the current sensor 27 is not lower than the LED current target value (S035: NO), the LED current determination unit 255 does not transmit an error signal. Thereby, the DC conversion circuit 12 holds the target value of the output voltage (S038).
Thereafter, the process returns to step S031, and the above operation is repeated.
 このような動作により、例えば図15に示すように、時間t1において、LED22Aの出力電力Paの目標値が増加した場合、直流変換回路12の出力電圧がVrefに設定される。また、共振インバータ13の出力電流がI1からI2に増加する。
 このとき、LED22aの出力電流Iaが、LED電流目標値Ia_refよりも低いため、LED電流判定部255からエラー信号が送信される。
With this operation, for example, as shown in FIG. 15, when the target value of the output power Pa of the LED 22A increases at time t1, the output voltage of the DC conversion circuit 12 is set to Vref. Further, the output current of the resonant inverter 13 increases from I1 to I2.
At this time, since the output current Ia of the LED 22a is lower than the LED current target value Ia_ref, an error signal is transmitted from the LED current determination unit 255.
 時間t1から所定時間の間、エラー信号が継続すると、時間t2において、直流変換回路12の出力電圧が補正値ΔVpfcだけ加算される。また、共振インバータ13の出力電流がI2からI3に増加する。
 時間t2以降において、LED22aの出力電流Iaが、LED電流目標値Ia_refとなり、LED電流判定部255からのエラー信号が停止される。
When the error signal continues for a predetermined time from time t1, the output voltage of the DC conversion circuit 12 is added by the correction value ΔVpfc at time t2. Further, the output current of the resonant inverter 13 increases from I2 to I3.
After the time t2, the output current Ia of the LED 22a becomes the LED current target value Ia_ref, and the error signal from the LED current determination unit 255 is stopped.
 なお、上記の説明では、電流センサ27の検出値とLED電流目標値とを比較する場合を説明したが、本発明はこれに限定されない。電流センサ27の検出値と電圧検出回路252の検出値とから、LED22の電力の実測値を算出し、この電力の実測値と、LED22の電力の目標値とを比較しても良い。
 即ち、給電側制御部14は、LED22の電力の目標値に応じて直流変換回路12の直流電圧を可変したあと、LED22の電力の実測値が電力の目標値よりも低い場合、直流変換回路12の直流電圧を増加させる構成でも良い。
In the above description, the case where the detection value of the current sensor 27 is compared with the LED current target value has been described, but the present invention is not limited to this. An actual measurement value of the power of the LED 22 may be calculated from the detection value of the current sensor 27 and the detection value of the voltage detection circuit 252, and the actual measurement value of the power may be compared with a target value of the power of the LED 22.
In other words, the power supply side control unit 14 varies the DC voltage of the DC conversion circuit 12 according to the target value of the power of the LED 22, and then when the measured value of the power of the LED 22 is lower than the target value of the power, the DC conversion circuit 12. A configuration for increasing the direct current voltage of may be used.
 以上のように本実施の形態4においては、LED22の電力の実測値が電力の目標値よりも低い場合、直流変換回路12の直流電圧を増加させる。
 このため、受電装置2A、2Bにおいて、LED22へ所望の電流が出力できていない場合には、直流変換回路12の出力電圧を高くするように補正することができ、所望のLED22A、22Bの電流を出力することができる。
As described above, in the fourth embodiment, when the measured value of the power of the LED 22 is lower than the target value of the power, the DC voltage of the DC conversion circuit 12 is increased.
For this reason, in the power receiving apparatuses 2A and 2B, when a desired current cannot be output to the LED 22, it can be corrected to increase the output voltage of the DC conversion circuit 12, and the current of the desired LED 22A and 22B can be changed. Can be output.
 例えば、給電コイル11と、受電コイル21A、21Bの位置関係によって、両コイルの位置が遠い場合などは、予め定めた直流変換回路12の出力電圧では共振インバータ13が出力する電力が十分でない場合がある。このような場合、受電装置2A、2Bにおいて所望の電流を出力できない恐れがあるが、本実施の形態4の動作により、所望の電流をLED22へ出力することが可能となる。 For example, depending on the positional relationship between the feeding coil 11 and the receiving coils 21A and 21B, when the positions of both coils are far away, the power output from the resonant inverter 13 may not be sufficient with the output voltage of the DC conversion circuit 12 determined in advance. is there. In such a case, a desired current may not be output in the power receiving devices 2A and 2B, but a desired current can be output to the LED 22 by the operation of the fourth embodiment.
 1 給電装置、2 受電装置、2A 受電装置、2B 受電装置、3 交流電源、11 給電コイル、12 直流変換回路、13 共振インバータ、14 給電側制御部、15 給電側通信部、16 給電側整流回路、17 入力フィルタ、18 コンデンサ、21 受電コイル、21A 受電コイル、21B 受電コイル、22 LED、22A LED、22B LED、22a LED、23 受電側整流回路、24 電流制御回路、25 受電側制御部、26 受電側通信部、27 電流センサ、121 MOSFET、122 コイル、123 ダイオード、124 平滑コンデンサ、131 スイッチング素子、132 コンデンサ、133 コンデンサ、134 コイル、141 制御回路、142 電圧検出回路、143 演算部、171 コイル、172 コンデンサ、231 コイル、232a ダイオード、232b ダイオード、232c ダイオード、232d ダイオード、233a コンデンサ、233b コンデンサ、233c コンデンサ、233d コンデンサ、241 MOSFET、242 コンデンサ、243 ダイオード、244 コイル、245 平滑コンデンサ、251 制御回路、252 電圧検出回路、253 電流検出回路、254 電力演算部、255 LED電流判定部。 1 power feeding device, 2 power receiving device, 2A power receiving device, 2B power receiving device, 3 AC power supply, 11 power supply coil, 12 DC conversion circuit, 13 resonance inverter, 14 power supply side control unit, 15 power supply side communication unit, 16 power supply side rectifier circuit , 17 input filter, 18 capacitor, 21 power receiving coil, 21A power receiving coil, 21B power receiving coil, 22 LED, 22A LED, 22B LED, 22a LED, 23 power receiving side rectifier circuit, 24 current control circuit, 25 power receiving side control unit, 26 Power-receiving-side communication unit, 27 current sensor, 121 MOSFET, 122 coil, 123 diode, 124 smoothing capacitor, 131 switching element, 132 capacitor, 133 capacitor, 134 coil, 141 control circuit, 142 voltage detection circuit, 143 Arithmetic unit, 171 coil, 172 capacitor, 231 coil, 232a diode, 232b diode, 232c diode, 232d diode, 233a capacitor, 233b capacitor, 233c capacitor, 233d capacitor, 241 MOSFET, 242 capacitor, 243 diode, 244 coil, 245 smoothing Capacitor, 251 control circuit, 252 voltage detection circuit, 253 current detection circuit, 254 power calculation unit, 255 LED current determination unit.

Claims (12)

  1.  交流電源から入力される交流電力を整流する第1整流回路と、
     前記第1整流回路の出力を任意の直流電圧に変換する直流変換回路と、
     前記直流変換回路が出力した前記直流電圧を高周波電力に変換するインバータ回路と、
     前記インバータ回路が出力した前記高周波電力が供給される第1コイルと、
     前記直流変換回路を制御する制御部と、
     を有する給電装置と、
     前記第1コイルから前記高周波電力を受電する第2コイルと、
     前記第2コイルが受電した前記高周波電力を整流する第2整流回路と、
     前記第2整流回路の出力を任意の直流電流に変換し、光源に出力する電流制御回路と、
     を有する受電装置と、
     を備え、
     前記インバータ回路は、スイッチング素子と共振回路とを有し、予め設定された周波数及びデューティ比で前記スイッチング素子が駆動される共振型インバータにより構成され、
     前記制御部は、
     前記直流変換回路の前記直流電圧を可変させて、前記受電装置から前記光源へ出力させる電力を変化させる
     非接触給電システム。
    A first rectifier circuit for rectifying AC power input from an AC power source;
    A DC conversion circuit for converting the output of the first rectifier circuit into an arbitrary DC voltage;
    An inverter circuit for converting the DC voltage output by the DC conversion circuit into high-frequency power;
    A first coil to which the high-frequency power output from the inverter circuit is supplied;
    A control unit for controlling the DC conversion circuit;
    A power supply device having
    A second coil that receives the high-frequency power from the first coil;
    A second rectifier circuit for rectifying the high-frequency power received by the second coil;
    A current control circuit that converts the output of the second rectifier circuit into an arbitrary direct current and outputs the direct current to the light source;
    A power receiving device having
    With
    The inverter circuit includes a switching element and a resonance circuit, and is configured by a resonance type inverter in which the switching element is driven at a preset frequency and duty ratio.
    The controller is
    A non-contact power supply system in which the DC voltage of the DC converter circuit is varied to change the power output from the power receiving device to the light source.
  2.  前記制御部は、
     前記受電装置から前記光源へ出力させる電力の目標値に関する情報が入力され、
     前記電力の目標値に関する情報に応じて、前記直流変換回路の前記直流電圧を可変する
     請求項1に記載の非接触給電システム。
    The controller is
    Information regarding a target value of power to be output from the power receiving device to the light source is input,
    The non-contact power feeding system according to claim 1, wherein the DC voltage of the DC conversion circuit is varied according to information on the target value of the power.
  3.  前記制御部は、前記電力の目標値が大きいほど、前記直流電圧を高くする
     請求項2に記載の非接触給電システム。
    The non-contact power feeding system according to claim 2, wherein the control unit increases the DC voltage as the target value of the power increases.
  4.  前記給電装置は、前記電力の目標値に関する情報を受信する第1通信部を備え、
     前記受電装置は、前記第1通信部へ前記電力の目標値に関する情報を送信する第2通信部を備えた
     請求項2又は3に記載の非接触給電システム。
    The power supply apparatus includes a first communication unit that receives information related to a target value of the power,
    The non-contact power feeding system according to claim 2, wherein the power receiving device includes a second communication unit that transmits information on the target value of the power to the first communication unit.
  5.  前記受電装置を複数備え、
     前記第1通信部は、複数の前記受電装置のそれぞれから、前記電力の目標値に関する情報を受信し、
     前記制御部は、複数の前記電力の目標値の合計に応じて、前記直流変換回路の前記直流電圧を可変する
     請求項4に記載の非接触給電システム。
    A plurality of the power receiving devices;
    The first communication unit receives information on the target value of power from each of the plurality of power receiving devices,
    The non-contact power feeding system according to claim 4, wherein the control unit varies the DC voltage of the DC conversion circuit in accordance with a total of a plurality of target values of the electric power.
  6.  前記制御部は、前記電力の目標値の合計が大きいほど、前記直流変換回路の前記直流電圧を高くする
     請求項5に記載の非接触給電システム。
    The non-contact power feeding system according to claim 5, wherein the control unit increases the DC voltage of the DC conversion circuit as the total power target value increases.
  7.  前記第2通信部は、前記光源に供給された電力の実測値に関する情報を送信し、
     前記制御部は、前記電力の目標値に応じて前記直流変換回路の前記直流電圧を可変したあと、前記電力の実測値が前記電力の目標値よりも低い場合、前記直流変換回路の前記直流電圧を増加させる
     請求項4~6の何れか一項に記載の非接触給電システム。
    The second communication unit transmits information on an actual measurement value of power supplied to the light source,
    The control unit varies the DC voltage of the DC conversion circuit according to the target value of the power, and then when the measured value of the power is lower than the target value of the power, the DC voltage of the DC conversion circuit The non-contact power feeding system according to any one of claims 4 to 6.
  8.  前記受電装置は、前記光源に流れる電流を検出する電流センサを備え、
     前記第2通信部は、前記光源に流れる電流の情報を、前記電力の実測値に関する情報として送信する
     請求項7に記載の非接触給電システム。
    The power receiving device includes a current sensor that detects a current flowing through the light source,
    The non-contact power feeding system according to claim 7, wherein the second communication unit transmits information on a current flowing through the light source as information on an actual measurement value of the power.
  9.  前記受電装置は、
     前記光源に流れる電流を検出する電流センサと、
     前記光源に印加された電圧を検出する電圧センサと、
     前記光源に流れる電流と前記光源に印加された電圧とから電力を求める電力演算部と、
     を備え、
     前記第2通信部は、前記電力演算部が求めた電力の情報を、前記電力の実測値に関する情報として送信する
     請求項7に記載の非接触給電システム。
    The power receiving device is:
    A current sensor for detecting a current flowing through the light source;
    A voltage sensor for detecting a voltage applied to the light source;
    A power calculation unit for obtaining power from a current flowing through the light source and a voltage applied to the light source;
    With
    The non-contact power feeding system according to claim 7, wherein the second communication unit transmits the power information obtained by the power calculation unit as information related to the actual measurement value of the power.
  10.  前記制御部は、前記受電装置から前記光源へ供給させる電流の情報を、前記電力の目標値に関する情報とする
     請求項2~9の何れか一項に記載の非接触給電システム。
    The contactless power feeding system according to any one of claims 2 to 9, wherein the control unit uses information on a current supplied from the power receiving apparatus to the light source as information on the target value of the power.
  11.  前記制御部は、前記直流変換回路の前記直流電圧を可変する際、前記直流電圧が予め設定した下限値を下回る場合、前記インバータ回路の動作を停止させる
     請求項1~10の何れか一項に記載の非接触給電システム。
    The control unit, when changing the DC voltage of the DC converter circuit, stops the operation of the inverter circuit if the DC voltage falls below a preset lower limit value. The non-contact power feeding system described.
  12.  前記制御部は、前記共振回路の共振現象により生じた、電流がゼロとなるタイミング又は電圧がゼロとなるタイミングで、前記スイッチング素子のスイッチングを行う
     請求項1~11の何れか一項に記載の非接触給電システム。
    The control unit according to any one of claims 1 to 11, wherein the control unit performs switching of the switching element at a timing when a current becomes zero or a voltage becomes zero, which is generated by a resonance phenomenon of the resonance circuit. Contactless power supply system.
PCT/JP2017/013930 2017-04-03 2017-04-03 Contactless power supply system WO2018185810A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/013930 WO2018185810A1 (en) 2017-04-03 2017-04-03 Contactless power supply system
JP2019510509A JP6884201B2 (en) 2017-04-03 2017-04-03 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013930 WO2018185810A1 (en) 2017-04-03 2017-04-03 Contactless power supply system

Publications (1)

Publication Number Publication Date
WO2018185810A1 true WO2018185810A1 (en) 2018-10-11

Family

ID=63712151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013930 WO2018185810A1 (en) 2017-04-03 2017-04-03 Contactless power supply system

Country Status (2)

Country Link
JP (1) JP6884201B2 (en)
WO (1) WO2018185810A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020156220A (en) * 2019-03-20 2020-09-24 Tdk株式会社 Power transmission device and wireless power transmission system
WO2024053376A1 (en) * 2022-09-06 2024-03-14 オムロン株式会社 Wireless power transmission system, wireless power-transmitting circuit, and wireless power-receiving circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101907A1 (en) * 2011-01-26 2012-08-02 株式会社村田製作所 Power transmission system
WO2015008506A1 (en) * 2013-07-19 2015-01-22 株式会社Ihi Power supply device and contactless power supply system
JP2015039271A (en) * 2013-08-19 2015-02-26 パナソニック株式会社 Non-contact power supply system
JP2016092960A (en) * 2014-11-04 2016-05-23 株式会社豊田自動織機 Power transmission equipment and contactless power transmission device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104203A (en) * 2008-10-27 2010-05-06 Seiko Epson Corp Power feed control apparatus, power feed apparatus, electric power-receiving control apparatus, electric power-receiving apparatus, electronic equipment, and contactless power transmission system
US20140125139A1 (en) * 2012-11-05 2014-05-08 O2Micro Inc. Method and apparatus for wireless power transmission
US9692238B2 (en) * 2014-02-18 2017-06-27 Panasonic Corporation Wireless power transmission system and power transmitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101907A1 (en) * 2011-01-26 2012-08-02 株式会社村田製作所 Power transmission system
WO2015008506A1 (en) * 2013-07-19 2015-01-22 株式会社Ihi Power supply device and contactless power supply system
JP2015039271A (en) * 2013-08-19 2015-02-26 パナソニック株式会社 Non-contact power supply system
JP2016092960A (en) * 2014-11-04 2016-05-23 株式会社豊田自動織機 Power transmission equipment and contactless power transmission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020156220A (en) * 2019-03-20 2020-09-24 Tdk株式会社 Power transmission device and wireless power transmission system
JP7200784B2 (en) 2019-03-20 2023-01-10 Tdk株式会社 Power transmission device and wireless power transmission system
WO2024053376A1 (en) * 2022-09-06 2024-03-14 オムロン株式会社 Wireless power transmission system, wireless power-transmitting circuit, and wireless power-receiving circuit

Also Published As

Publication number Publication date
JPWO2018185810A1 (en) 2019-11-07
JP6884201B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
CN105991050B (en) Method and apparatus for High Power Factor flyback converter
KR101248807B1 (en) Isolation-type flyback converter for light emitting diode driver
Zhang et al. A primary-side control scheme for high-power-factor LED driver with TRIAC dimming capability
US8593069B2 (en) Power converter with compensation circuit for adjusting output current provided to a constant load
US20150077009A1 (en) Light-emitting diode driving apparatus and semiconductor device
US20150340955A1 (en) Switching Parameter Based Discontinuous Mode-Critical Conduction Mode Transition
US20120248998A1 (en) Led driver and led illuminator having the same
US9872353B2 (en) LED lighting device and LED illuminating device
JP5761301B2 (en) Lighting device and lighting apparatus
JP5377218B2 (en) Power supply circuit and lighting device
US9699842B2 (en) Complementary converter for switch mode power supply
RU2677625C2 (en) Systems and methods for valley switching in pulsed power converter
US9288855B2 (en) Driving circuit for driving LED load
TWI505746B (en) Circuits and method for powering led light source and power converter thereof
US9490692B2 (en) Circuit and method of correcting a power factor for AC direct lighting apparatus
US20110260651A1 (en) Control circuit of light-emitting element
WO2018185810A1 (en) Contactless power supply system
EP2936934B1 (en) Primary side controlled constant current converter for lighting means
US9350248B2 (en) Power supply device with parallel buck converters
JP6135635B2 (en) Lighting device and lighting apparatus
JP2011238439A (en) Led lighting device
JP7293824B2 (en) LIGHTING DEVICE, LIGHTING EQUIPMENT, CONTROL METHOD FOR LIGHTING DEVICE
JP6791486B2 (en) Light emitting element drive device and its drive method
JP2020109775A (en) Lighting device and illumination tool
JP2016201194A (en) LED lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510509

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904632

Country of ref document: EP

Kind code of ref document: A1