WO2018184479A1 - 一种编码方法、译码方法、装置和设备 - Google Patents

一种编码方法、译码方法、装置和设备 Download PDF

Info

Publication number
WO2018184479A1
WO2018184479A1 PCT/CN2018/080403 CN2018080403W WO2018184479A1 WO 2018184479 A1 WO2018184479 A1 WO 2018184479A1 CN 2018080403 W CN2018080403 W CN 2018080403W WO 2018184479 A1 WO2018184479 A1 WO 2018184479A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
information bits
subchannels
rate matching
bits mapped
Prior art date
Application number
PCT/CN2018/080403
Other languages
English (en)
French (fr)
Inventor
李榕
陈莹
黄凌晨
张公正
张华滋
周悦
罗禾佳
王坚
乔云飞
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018184479A1 publication Critical patent/WO2018184479A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a rate matching method and apparatus for a polar code, and a communication device.
  • eMBB and mMTC require future channel coding to support a wider range of code rates with lower complexity.
  • the coding of the future control channel has greater gain, lower miss detection and false alarm probability, and lower decoding delay than LTE TBCC coding.
  • An important feature of these communication scenarios is short- and medium-packet transmission, so channel coding is required to better support communication of this type of code length.
  • URLLC further imposes stricter requirements on the reliability of data transmission.
  • the current LTE turbo can not support too low and too high code rate; for medium and short packet transmission, Turbo code and LDPC code are difficult to achieve ideal under limited code length due to the characteristics of their own compiled code.
  • Arikan proposes an encoding method based on channel polarization, which is called Polar Codes.
  • the polarization code is the first and only known channel coding method that can be rigorously proven to "reach" the channel capacity.
  • the performance of Polar codes is much better than Turbo codes and LDPC codes.
  • Polar codes have lower computational complexity in terms of encoding and decoding.
  • one feature of the Polar code is that it has a positive integer power of 2, and the actual code length can be flexibly configured. Therefore, the flexibility of the code length needs to be realized by rate matching technology.
  • Rate matching can usually be achieved by puncture or shortening rate matching.
  • conventional random punching can be used, that is, randomly generated for the position where punching is required. For example, the mother code length of the Polar code is 16, and the required number of punches is 6, in these 16 positions. Choose 6 punch positions at random. The use of random puncturing to achieve rate matching reduces the performance of the Polar code.
  • the invention provides a rate matching method and device for a Polar code, and a communication device, which can improve the coding performance of the Polar code.
  • the present invention provides a rate matching method for a Polar code, including:
  • the information bit sequence includes K information bits, and a code length of the mother code for encoding the information bit sequence is N;
  • the mother code corresponds to N subchannels, and the N subchannels include S intervals, and the positions of the information bits mapped in each interval are according to the number of information bits mapped in each interval, the structure sequence, and the rate matching manner. Determining, the constructed sequence is used to indicate reliability ordering of the N subchannels, and S is a positive integer;
  • the information bit sequence is subjected to Polar code encoding and rate matching according to the position of the information bits mapped in each interval.
  • the present invention provides a rate matching apparatus for a Polar code, including:
  • An acquiring module configured to obtain an information bit sequence, where the information bit sequence includes K information bits, and a code length of the mother code used to encode the information bit sequence is N;
  • the mother code corresponds to N subchannels, and the N subchannels include S intervals, and the positions of the information bits mapped in each interval are according to the number of information bits mapped in each interval, the structure sequence, and the rate matching manner. Determining, the constructed sequence is used to indicate reliability ordering of the N subchannels, and S is a positive integer;
  • an encoding module configured to perform Polar code encoding and rate matching on the information bit sequence according to the location of the information bits mapped in each interval.
  • the number of information bits mapped in each interval is an initial amount of each of the intervals by using an adjustment amount corresponding to each interval The number of information bits is adjusted and determined.
  • - ⁇ K is the adjustment amount corresponding to the interval [N/2, N]
  • P is the number of punched holes or shortened in the interval [1, N/2] in the rate matching mode
  • N is the mother code
  • the code length, K1 is the number of subchannels in the interval [1, N/2] of the top K subchannels with the highest reliability in the constructed sequence.
  • the number of initial information bits in the interval [1, N/2] is K1
  • the initial information bits in the interval [N/2, N] is K2
  • the number K2 is the number of subchannels in the interval [N/2, N] of the top K subchannels with the highest reliability in the constructed sequence
  • the number of information bits mapped in the interval [1, N/2] is equal to K1 + ⁇ K
  • the number of information bits mapped in the interval [N/2, N] is equal to K2- ⁇ K.
  • the number of information bits mapped in each interval is determined according to a rate matching manner, the mother code length N, and a configuration sequence.
  • the number of information bits K i ' mapped in the i-th interval is calculated by the following formula :
  • K i is the number of subchannels in the i-th interval in which the top K subchannels with the highest reliability in the constructed sequence are located
  • P is the number of punctures in the punching mode in the i-th interval
  • N i is the number of subchannels in the i th interval.
  • the number of information bits mapped in the interval [N/2+1, N] is: KK 1 ';
  • K 1 ' is the number of information bits mapped in the interval [1, N/2]
  • K1 is the highest reliability of the first K subchannels in the constructed sequence in the interval [1, N/2]
  • P is the number of puncturings in the puncturing mode in the interval [1, N/2] or the number of shortenings in the shortening mode
  • N is the mother code length.
  • the number of information bits mapped in each interval is determined according to a capacity and rate matching manner of each subchannel in each interval.
  • the number k i of information bits mapped in the i-th interval is determined according to the following formula:
  • K 1 is used to indicate the total number of punches or shortened
  • K 2 is used to indicate the number of punches or shortened in the i-th interval
  • C j is the capacity of the sub-channel j in the interval, [Xi, Yi] Used to indicate the i-th interval.
  • the present invention provides a rate matching method for a Polar code, including:
  • the structure sequence is used to indicate reliability ordering of the N subchannels; when rate matching is used, determining a position of the information bits mapped in each of the S intervals; a union of the positions of the information bits mapped in each interval is used as a set of information bit positions corresponding to the code length N; according to the code length N
  • the set of information bit positions performs Polar code encoding and rate matching.
  • the present invention provides a rate matching method for a Polar code, including:
  • the structure sequence is used to indicate reliability ordering of the N subchannels;
  • the K number with the highest reliability and the non-punctured position or the non-shortened position are selected as the information bit position set corresponding to the code length N, and K is the input. Number of information bits;
  • Polar code coding and rate matching are performed according to the information bit position set corresponding to the code length N.
  • determining the location of the information bits mapped in the i-th interval includes:
  • the number, the constructed sequence, and the rate matching manner determine the position of the information bits mapped in the i-th interval.
  • determining the location of the information bits mapped in the i-th interval includes:
  • a communication device including:
  • a processor for executing the program stored by the memory the processor for performing any one of the possible implementations described in various aspects or aspects when the program is executed.
  • Yet another aspect of the present application is directed to a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of the present application provides a computer program that, when run on a computer, causes the computer to perform the methods described in the various aspects above.
  • the location of the information bits of the N subchannel mappings determined based on the S intervals may improve the performance of the Polar code.
  • FIG. 2 is a schematic diagram of a basic flow of a wireless communication transmitting end and a receiving end;
  • FIG. 3a is a schematic flowchart of a Polar code rate matching method provided by the present application.
  • FIG. 3b is a schematic flowchart of still another method for matching a Polar code rate provided by the present application.
  • FIG. 3c is a schematic diagram of an implementation process of step S320 in FIG. 3b;
  • FIG. 3d is a schematic diagram of another implementation process of step S320 in FIG. 3b;
  • 4a is a schematic flowchart of still another method for matching a Polar code rate provided by the present application.
  • 4b is a schematic diagram of an implementation process of step S420 in FIG. 4a;
  • FIG. 5 is a schematic flowchart diagram of still another Polar code rate matching method provided by the present application.
  • FIG. 6 is a structural diagram of a rate matching apparatus for a Polar code provided by the present application.
  • FIG. 7 is a structural diagram of a communication device provided by the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • An access terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a UE (User Equipment, User equipment).
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the base station can be used for communication with a mobile device, and the base station can be a BTS (Base Transceiver Station) in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access), or
  • the NB (NodeB, base station) in the WCDMA (Wideband Code Division Multiple Access) may be an eNB or an eNodeB (Evolved Node B) in LTE (Long Term Evolution).
  • System 100 includes a base station 102 that can include multiple antenna groups.
  • one antenna group may include antennas 104 and 106
  • another antenna group may include antennas 108 and 110
  • additional groups may include antennas 112 and 114.
  • Two antennas are shown for each antenna group, however more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Base station 102 can communicate with one or more access terminals, such as access terminal 116 and access terminal 122. However, it will be appreciated that base station 102 can communicate with substantially any number of access terminals similar to access terminals 116 and 122. Access terminals 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment. As shown, access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and receive information from access terminal 122 over reverse link 126.
  • FDD Frequency Division Duplex
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link 126. Different frequency bands used.
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
  • the antenna group can be designed to communicate with access terminals in sectors of the coverage area of base station 102.
  • the transmit antennas of base station 102 may utilize beamforming to improve the signal to noise ratio for forward links 118 and 124 of access terminals 116 and 122.
  • the base station 102 transmits to the randomly dispersed access terminals 116 and 122 in the relevant coverage area by the base station as compared to all of the access terminals transmitted by the base station, the mobile devices in the adjacent cells are subject to Less interference.
  • base station 102, access terminal 116, and/or access terminal 122 may be a transmitting wireless communication device and/or a receiving wireless communication device.
  • the transmitting wireless communication device can encode the data for transmission.
  • the transmitting wireless communication device can have (eg, generate, obtain, store in memory, etc.) a certain number of information bits to be transmitted over the channel to the receiving wireless communication device.
  • Such information bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce a plurality of code blocks.
  • the transmitting wireless communication device can encode each code block using a Polar code encoder (not shown).
  • the source of the transmitting end is sequentially transmitted on the channel after source coding, channel coding, rate matching, and modulation. After receiving the signal, the receiving end undergoes demodulation, de-rate matching, and A channel is obtained after channel decoding and source decoding.
  • Channel codec is one of the core technologies in the field of wireless communication, and its performance improvement will directly improve network coverage and user transmission rate.
  • the polarization code is a channel coding technology that can theoretically prove to reach the Shannon limit and has practical linear complexity coding and decoding capabilities.
  • the core of the polarization code structure is the processing of "channel polarization".
  • the coding method is used to make each subchannel exhibit different reliability.
  • some channels will tend to be close to the capacity.
  • the no-noise channel of 1 and the other part of the channel tend to be a full-noise channel with a capacity close to zero, and the information is directly transmitted on a channel having a capacity close to 1 to approximate the channel capacity.
  • the encoding strategy of the Polar code is the characteristic that applies this phenomenon.
  • the non-noise channel is used to transmit the useful information of the user, and the full-noise channel transmits the agreed information or does not transmit the information.
  • the Polar code is also a linear block code whose encoding matrix is G N and the encoding process is among them Is a binary line vector of length N (ie code length); G N is an N ⁇ N matrix, and Defined as the Kronecker product of log 2 N matrices F 2 . Above matrix
  • GN.(A) is a collection in GN.
  • the sub-matrices obtained from those rows corresponding to the index, GN.(AC) is the set in GN.
  • the encoded output of the Polar code can be simplified to:
  • indicates the number of elements in the collection
  • K is the size of the information block
  • the construction process of the Polar code is a collection
  • the selection process determines the performance of the Polar code.
  • the construction process of the Polar code is generally: determining that there are N polarized channels in total according to the length N of the mother code, respectively corresponding to N rows of the coding matrix, calculating the reliability of the polarized channel, and the first K polarizations with higher reliability.
  • Channel index as a collection Element
  • the index corresponding to the remaining (NK) polarized channels as the index set of fixed bits Elements. set Determine the location of the information bits, the collection The position of the fixed bit is determined.
  • the embodiment 1 of the present application provides a Polar code rate matching method 300a, as shown in FIG. 3a.
  • the rate matching method includes:
  • the information bit sequence includes K information bits, and the code length of the mother code used for encoding the information bit sequence is N;
  • the mother code corresponds to N subchannels, and the N subchannels include S intervals, and the positions of the information bits mapped in each interval are determined according to the number of information bits mapped in each interval, the structure sequence, and the rate matching manner.
  • the constructed sequence is used to indicate the reliability order of the N subchannels, and S is a positive integer;
  • Construction sequences in the present invention include, but are not limited to, reliability ranking sequences Reliability sequence Normalized reliability sequence Wait.
  • Reliability ranking sequence It is a sorting sequence composed of the corresponding polarized channel numbers in ascending or descending order according to reliability of the N polarized channels, and the reliability sequence Is a reliability sequence composed of the reliability or error probability of each polarization channel calculated according to the Polar code construction algorithm, and the normalized reliability sequence It is a normalized reliability sequence obtained by normalizing each polarization channel reliability according to linear or nonlinear processing.
  • the constructed sequence can be obtained by online calculation, table lookup, or online calculation combined with lookup table.
  • a configuration sequence corresponding to different code lengths may be stored in the communication system, and a structure sequence corresponding to the code length N may be obtained based on the lookup table.
  • a communication sequence with a code length of 64 is stored in the communication system: [1, 2, 3, 5, 9, 17, 4, 33, 6, 7, 10, 11, 18, 13, 19, 34, 21,35,8,25,37,12,41,14,20,15,49,22,36,23,26,38,27,39,42,29,43,16,50,45,51, 24, 53, 28, 40, 57, 30, 44, 31, 46, 52, 47, 54, 55, 58, 59, 32, 61, 48, 56, 60, 62, 63, 64].
  • the number of information bits mapped in each interval is determined by adjusting the number of initial information bits in each interval by using an adjustment amount corresponding to each interval.
  • Example 1 When the N subchannels include two intervals [1, N/2] and [N/2+1, N], the adjustment amount ⁇ K corresponding to the interval [1, N/2] is calculated by the following formula :
  • - ⁇ K is the adjustment amount corresponding to the interval [N/2, N]
  • P is the number of punched holes or shortened in the interval [1, N/2] in the rate matching mode
  • N is the mother code
  • the code length, K1 is the number of subchannels in the interval [1, N/2] of the top K subchannels with the highest reliability in the constructed sequence.
  • the rounding function int() includes but is not limited to rounding up, down rounding, rounding, etc.; in addition, the adjustment amount may be a negative number, and the negative amount indicates that the number of information bits will decrease. .
  • the number of initial information bits in the interval [1, N/2] is K1
  • the number K2 of initial information bits in the interval [N/2, N] is the top K subchannels with the highest reliability among the constructed sequences.
  • the number of information bits mapped in the interval [1, N/2] is equal to K1 + ⁇ K, and the number of information bits mapped in the interval [N/2, N] is equal to K2- ⁇ K.
  • the number of information bits mapped in each interval is determined according to a rate matching manner, the mother code length N, and a configuration sequence.
  • the number of information bits K i ' mapped in the i-th interval is calculated by the following formula:
  • K i is the number of subchannels in the i-th interval in which the top K subchannels with the highest reliability in the constructed sequence are located
  • P is the number of punctures in the punching mode in the i-th interval
  • N i is the number of subchannels in the i th interval.
  • the number K of information bits mapped in the interval [1, N/2] 1 ' is calculated by the following formula:
  • the number of information bits mapped in the interval [N/2+1, N] is: KK 1 ';
  • K 1 ' is the number of information bits mapped in the interval [1, N/2]
  • K1 is the highest reliability of the first K subchannels in the constructed sequence in the interval [1, N/2]
  • P is the number of puncturings in the puncturing mode in the interval [1, N/2] or the number of shortenings in the shortening mode
  • N is the mother code length.
  • the number of information bits mapped in each interval is determined according to a capacity and rate matching manner of each subchannel in each interval.
  • the number k i of information bits mapped in the i-th interval is determined according to the following formula:
  • K 1 is used to indicate the total number of punches or shortened
  • K 2 is used to indicate the number of punches or shortened in the i-th interval
  • C j is the capacity of the sub-channel j in the interval, [Xi, Yi] For the i-th interval.
  • the location of the information bits of the N subchannel mappings determined based on the S intervals may improve the performance of the Polar code.
  • the embodiment 2 of the present application further provides a Polar code rate matching method 300b, as shown in FIG. 3b.
  • the rate matching method includes:
  • the S-polarized channel number interval is formed by dividing the interval [1, N] corresponding to the code length N in a uniform or non-uniform manner, and S is a positive integer.
  • S320 Determine, when rate matching is used, a location of information bits mapped in each of the S intervals.
  • the rate matching refers to adopting the punching method and the number of punching holes is non-zero, or the shortening manner and the shortening number is non-zero.
  • the interval [1, N] is used to indicate N subchannels starting from 1 to ending N, and the S intervals constitute an interval [1, N].
  • the interval [1, N] can be evenly divided into two intervals [1, N/2] and [N/2+1, N], where the interval [1, N/2] is used to indicate from 1 to N/2 subchannels ending in N/2, the interval [N/2+1, N] is used to indicate N/2 subchannels starting from N/2+1 to ending N.
  • the sequence may start from 0 to N-1, and the interval of the N subchannels is [0, N-1].
  • the present invention starts from 1 or 0 for the subchannel number. Not limited.
  • a position set of a corresponding information bit can be determined for each interval, and the determined union of the position sets of the S information bits is the information bit position set corresponding to the code length N.
  • the coded bits to be transmitted are obtained after Polar coding and rate matching.
  • step S320 for the i-th interval, 1 ⁇ i ⁇ S, determining the position of the information bits mapped in the i-th interval includes:
  • the first K polarized channel numbers with the highest reliability in the constructed sequence are taken according to the number of information bits K, and the number K i of the subchannels in the i th interval is determined among the first K polarized channel numbers, K i is the number of information bits in the i-th interval.
  • the initial information bit position set in the i-th interval may also be determined according to the information bit number K and the configuration sequence, and the number of elements included in the initial information bit position set in each interval is included in each interval. The number of information bits.
  • an adjustment amount is determined according to the number of information bits K i , the number of puncturing bits, and the code length N in the i-th interval, where the adjustment amount is used to adjust the number K i of information bits in the ith interval; and then according to the adjustment
  • the quantity and the number K i of information bits in the i-th interval determine the number K' i of the adjusted information bits in the i-th interval, for example, the adjustment amount and the number of information bits included in the i-th interval K i is added to obtain the adjusted number of information bits K' i .
  • N] the adjustment amount ⁇ K j corresponding to the i-th interval determined when the number of punched holes or the number of shortening P is located in a different interval range is given as follows, where 1 ⁇ j ⁇ 3 , where N is the code length.
  • S323a Determine, according to the adjusted number of information bits, the constructed sequence, and the rate matching manner, the location of the information bits mapped in the i-th interval.
  • the set of the M1 and the non-punctured position or the non-shortened position having the highest reliability in the i-th interval is determined as the information bit position set in the i-th interval, where M1 is the first The number of adjusted information bits K' i in the i intervals.
  • step S320 for the i-th interval, 1 ⁇ i ⁇ S, determining the position of the information bits in the i-th interval includes:
  • S321b Determine, according to the capacity and rate matching manner of each subchannel in the i th interval, the number of information bits mapped in the i th interval.
  • N channels of the mother code length where M channels of the code length are actual channels (experienced, for example, an additive white Gaussian noise (AWGN) channel), P channels that are punctured or shortened, and coded for the polarization code Rate transfer calculation.
  • the capacity of the actual channel is set to K/M, and the channel capacity of the puncturing is set to 0 (the shortened channel capacity is set to 1).
  • the channel capacity after polarization can be calculated by the following formula:
  • Another calculation method is to obtain the capacity of C + by looking up the table.
  • one of the two channels is a punctured channel
  • the channel capacity before polarization is 0 and C, respectively.
  • the capacity after polarization is
  • the capacity after polarization is a punctured channel
  • Performing one-step polarization on the original N channels will result in a N/2 long C - channel, corresponding to the interval [1, N/2], and another N/2 long C + channel, corresponding to the interval [1+N /2, N]; the next polarization will occur in the interval [1, N/2] and / or [1 + N / 2, N].
  • the polarization is gradually performed until the interval after polarization reaches the preset S polarization channel number interval, and the capacity of each subchannel is C 1 , C 2 , . . . , C N .
  • the number of information bits allocated to each polarization channel number interval is calculated.
  • the interval boundary is [x i , y i ]
  • the number of information bits allocated in the i-th interval is:
  • K 1 is used to indicate the total number of punches or shortened
  • K 2 is used to indicate the number of punches or the number of punches in the i-th interval.
  • S322b Determine, according to the number of information bits mapped by the i-th interval, the constructed sequence, and the rate matching manner, the location of the information bits mapped in the i-th interval.
  • the set of the M1 and the non-punctured position or the non-shortened position having the highest reliability in the i-th interval is determined as the information bit position set in the i-th interval, where M1 is the first The number of adjusted information bits K' i in the i intervals.
  • the rate matching method includes:
  • the K numbers with the highest reliability and the non-punctured position or the non-shortened position may be selected as the information bit position set corresponding to the code length N.
  • the location of the information bits of the N subchannel mappings determined based on the S intervals may improve the performance of the Polar code.
  • Embodiment 3 of the present application is a specific application of Embodiment 2 above.
  • the interval [1, N] is evenly divided into two intervals [1, N/2] and [N/2+1, N.
  • the rate matching method 400 includes:
  • S401 may refer to part S310 in Embodiment 1, and details are not described herein again.
  • step S420 includes:
  • the first K polarized channel numbers with the highest reliability in the constructed sequence are taken; among the first K polarized channel numbers, the number of information bits in the interval [1, N/2] is K1.
  • an adjustment amount is first determined; and the number K of the adjusted information bits in the interval [1, N/2] is obtained according to the adjustment amount and the number K1 of information bits in the polarization channel number interval [1, N/2] ' 1 , and according to the adjustment amount and the number K2 of information bits in the interval [N/2+1, N], the number Kt of the adjusted information bits in the polarization channel number interval [N/2+1, N] is obtained. 2 , wherein the adjustment amount is an integer indicating the amount of change in the number of information bits.
  • the adjustment amount may be determined according to K1, the number of punches P, and the code length N. Specifically, the adjustment amount may be calculated by the following formula:
  • ⁇ K represents the adjustment amount
  • P represents the number of punches
  • N is the code length
  • the code length is 64
  • the number of information bits is 32
  • the number of the most reliable K' 1 in the interval [N/2+1, N] and which is the non-punctured position or the non-shortened position is the information bit position set in the interval [N/2+1, N]
  • K' 1 is the number of information bits adjusted in the interval [1, N/2]
  • K' 2 is the number of information bits adjusted in the interval [N/2+1, N].
  • steps S421 and S423 may be replaced by determining the number of information bits mapped in the i-th interval according to the capacity and rate matching manner of each sub-channel in the i-th interval.
  • steps S421 and S423 may be replaced by determining the number of information bits mapped in the i-th interval according to the capacity and rate matching manner of each sub-channel in the i-th interval.
  • the rate matching method includes:
  • the K channel with the highest reliability and the non-punctured position may be selected as the information bit position set corresponding to the code length N.
  • the location of the information bits of the N subchannel mappings determined based on the S intervals may improve the performance of the Polar code.
  • the mother code length N corresponds to N subchannels, which can be expressed as an interval [1, N], and [1, N] is initially uniformly divided into two intervals [1, N/2] and [N/ 2+1, N], determining whether the stop condition is satisfied for each of the divided sections. When the stop condition is not satisfied, the section is again divided into two sections, and the recursion is continued until the stop condition is satisfied, thereby determining A set of information bit positions corresponding to the code length N.
  • the rate matching method 500 includes:
  • S510 Obtain a structure sequence corresponding to a code length N, where the mother code corresponds to N subchannels, and the N subchannels include S intervals, where the structure sequence is used to indicate reliability ordering of the N subchannels.
  • S510 may refer to part S310 in Embodiment 1, and details are not described herein again.
  • the interval [1, N] is uniformly divided into intervals [1, N/2] and intervals [N/2+1, N] as the to-be-divided interval;
  • the adjustment amount may be determined according to K1, the number of punches P, and the code length N, for example, the adjustment amount is calculated by the following formula:
  • ⁇ K represents the adjustment amount
  • P represents the number of punches
  • N is the code length
  • S550 Determine, for each interval, whether the interval satisfies the termination condition. If the stop condition is met, go to S560. If the stop condition is not met, then the interval is taken as the to-division interval to S520, that is, the interval is evenly divided into Two intervals, and continue to execute S530, S540, and S550 until the termination condition is satisfied.
  • the termination condition may be that the length of the interval is less than or equal to the first threshold, the ratio of the number of information bits in the interval and the length of the interval is less than or equal to the second threshold, the number of information bits in the interval is less than or equal to the third threshold, or the punch in the interval The number is less than or equal to the fourth threshold.
  • the first threshold, the second threshold, the third threshold, and the fourth threshold may be empirical values, or may be a better performance after computer simulation. For example, the first threshold may be equal to 16 and the second threshold may be 1/6. The third threshold is 3 and the fourth threshold is 4.
  • S560 Determine, for each segment after the division, the position of the information bits in each interval according to the number of adjusted information bits in each interval, the configuration sequence, and the rate matching manner.
  • the M2 number of the highest reliability in each interval is the position of the information bits in the interval, wherein M2 is the adjusted information bit in the interval. Number of.
  • the location of the information bits of the N subchannel mappings determined based on the S intervals may improve the performance of the Polar code.
  • the present invention provides a rate matching apparatus 600 for a Polar code, and the rate matching apparatus 600 includes:
  • the obtaining module 610 is configured to obtain an information bit sequence, where the information bit sequence includes K information bits, and the code length of the mother code used to encode the information bit sequence is N;
  • the mother code corresponds to N subchannels, and the N subchannels include S intervals, and the positions of the information bits mapped in each interval are according to the number of information bits mapped in each interval, the structure sequence, and the rate matching manner. Determining, the constructed sequence is used to indicate reliability ordering of the N subchannels, and S is a positive integer;
  • the encoding module 620 is configured to perform Polar code encoding and rate matching on the information bit sequence according to the position of the information bits mapped in each interval.
  • the number of information bits mapped in each interval is determined by adjusting the number of initial information bits in each interval by using an adjustment amount corresponding to each interval.
  • the adjustment amount ⁇ K corresponding to the interval [1, N/2] is calculated by the following formula :
  • - ⁇ K is the adjustment amount corresponding to the interval [N/2, N]
  • P is the number of punched holes or shortened in the interval [1, N/2] in the rate matching mode
  • N is the mother code
  • the code length, K1 is the number of subchannels in the interval [1, N/2] of the top K subchannels with the highest reliability in the constructed sequence.
  • the number of initial information bits in the interval [1, N/2] is K1
  • the number K2 of initial information bits in the interval [N/2, N] is the top K subchannels with the highest reliability among the constructed sequences.
  • the number of sub-channels located in the interval [N/2, N] is equal to K1 + ⁇ K
  • the number of information bits mapped in the interval [N/2, N] Equal to K2- ⁇ K.
  • the number of information bits mapped in each interval is determined according to a rate matching manner, the mother code length N, and a structure sequence.
  • the number of information bits K i ' mapped in the i-th interval is calculated by the following formula:
  • K i is the number of subchannels in the i-th interval in which the top K subchannels with the highest reliability in the constructed sequence are located
  • P is the number of punctures in the punching mode in the i-th interval
  • N i is the number of subchannels in the i th interval.
  • the number K of information bits mapped in the interval [1, N/2] 1 ' is calculated by the following formula:
  • the number of information bits mapped in the interval [N/2+1, N] is: KK 1 ';
  • K 1 ' is the number of information bits mapped in the interval [1, N/2]
  • K1 is the highest reliability of the first K subchannels in the constructed sequence in the interval [1, N/2]
  • P is the number of puncturings in the puncturing mode in the interval [1, N/2] or the number of shortenings in the shortening mode
  • N is the mother code length.
  • the number of information bits mapped in each interval is determined according to a capacity and rate matching manner of each subchannel in each interval.
  • the number k i of information bits mapped in the i-th interval is determined according to the following formula:
  • K 1 is used to indicate the total number of punches or shortened
  • K 2 is used to indicate the number of punches or shortened in the i-th interval
  • C j is the capacity of the sub-channel j in the interval, [Xi, Yi] Used to indicate the i-th interval.
  • the rate matching device 600 of the Polar code can be used to perform the execution process in the foregoing embodiment, for example, any one of Embodiment 1 to Embodiment 4.
  • the embodiment is convenient for description, and the related content is not repeated. description.
  • the position of the information bits of the N subchannel mappings determined based on the S intervals can improve the performance of the Polar code.
  • FIG. 7 is a schematic structural diagram of a communication device 700 according to an embodiment of the present invention (for example, an access point or a communication device such as a base station, a station, or a terminal, or a chip in the foregoing communication device, etc.).
  • a communication device 700 for example, an access point or a communication device such as a base station, a station, or a terminal, or a chip in the foregoing communication device, etc.
  • communication device 700 can be implemented by bus 701 as a general bus architecture.
  • bus 701 can include any number of interconnecting buses and bridges.
  • Bus 701 connects various circuits together, including processor 702, storage medium 703, and bus interface 704.
  • the communication device 700 connects the network adapter 705 or the like via the bus 701 using the bus interface 704.
  • the network adapter 705 can be used to implement signal processing functions of the physical layer in the wireless communication network, and transmit and receive radio frequency signals through the antenna 707.
  • the user interface 706 can be connected to a user terminal such as a keyboard, display, mouse or joystick.
  • the bus 701 can also be connected to various other circuits, such as timing sources, peripherals, voltage regulators, or power management circuits, etc., which are well known in the art and therefore will not be described in detail.
  • communication device 700 can also be configured as a general purpose processing system, such as generally referred to as a chip, including: one or more microprocessors that provide processor functionality; and an external memory that provides at least a portion of storage medium 703 All of this is connected to other support circuits through an external bus architecture.
  • a general purpose processing system such as generally referred to as a chip, including: one or more microprocessors that provide processor functionality; and an external memory that provides at least a portion of storage medium 703 All of this is connected to other support circuits through an external bus architecture.
  • the communication device 700 can be implemented using an ASIC (Application Specific Integrated Circuit) having a processor 702, a bus interface 704, a user interface 706, and at least a portion of a storage medium 703 integrated in a single chip, or Communication device 700 can be implemented using one or more FPGAs (field programmable gate arrays), PLDs (programmable logic devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuitry, Or any combination of circuits capable of performing the various functions described throughout the present invention.
  • ASIC Application Specific Integrated Circuit
  • the processor 702 is responsible for managing the bus and general processing (including executing software stored on the storage medium 703).
  • Processor 702 can be implemented using one or more general purpose processors and/or special purpose processors. Examples of processors include microprocessors, microcontrollers, DSP processors, and other circuits capable of executing software.
  • Software should be interpreted broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Storage medium 703 is shown separated from processor 702 in the following figures, however, those skilled in the art will readily appreciate that storage medium 703, or any portion thereof, may be located external to communication device 700.
  • storage medium 703 can include a transmission line, a carrier waveform modulated with data, and/or a computer article separate from the wireless node, which can be accessed by processor 702 via bus interface 704.
  • storage medium 703, or any portion thereof, may be integrated into processor 702, for example, may be a cache and/or a general purpose register.
  • the processor 702 can perform the implementation process in the foregoing embodiment, for example, the foregoing embodiment 1, the embodiment 2, the embodiment 3, or the embodiment 4, and the execution process of the processor 702 is not described herein again.
  • the information bits may only include information bits, or may be bits obtained by using information bits according to a certain functional relationship, and may also include information bits and check bits, and the check bits may be CRC or parity. Check bit.
  • the above functions are implemented in the form of software and sold or used as stand-alone products, they can be stored in a computer readable storage medium.
  • the part of the technical solution of the present application which contributes in essence or to the prior art, or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明公开了一种Polar码的速率匹配方法及装置、通信设备,该速率匹配方法包括:获取信息比特序列,该信息比特序列中包括K个信息比特,用于对该信息比特序列进行编码的母码的码长为N;该母码对应N个子信道,该N个子信道包括S个区间,每个区间中映射的信息比特的位置是根据每个区间中映射的信息比特的数目、构造序列和速率匹配方式确定的,该构造序列用于指示该N个子信道的可靠度排序,S为正整数;根据每个区间中映射的信息比特的位置对信息比特序列进行Polar码编码和速率匹配。采用上述速率匹配方法确定出的N个子信道映射的信息比特的位置可以提高Polar码的性能。

Description

一种编码方法、译码方法、装置和设备
本申请要求于2017年04月06日提交中国专利局、申请号为201710226860.0、申请名称为“极化Polar码的速率匹配方法和装置、通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及polar码的速率匹配方法和装置、通信设备。
背景技术
无线通信的快速演进预示着未来5G通信系统将呈现出一些新的特点,最典型的三个通信场景包括eMBB,mMTC和URLLC,这些通信场景的需求将对现有LTE技术提出新的挑战。信道编码作为最基本的无线接入技术,是满足5G通信需求的重要研究对象之一。在香农理论提出后,各国学者一直致力于寻找能够达到香农极限同时具有相对较低复杂度的编译码方法。虽然成为主流研究方向的Turbo码和重新被提出的LDPC码已经在LTE和WiMAX中得到了很好的应用,但这两种码不能够很好的解决5G通信中的一些重要问题。例如,eMBB和mMTC需要未来信道编码能够以较低的复杂度支持更大范围的码率。未来控制信道的编码相比LTE的TBCC编码,要有更大的增益,更低的漏检和虚警概率以及更低的译码延迟。这些通信场景的一个重要特点是中短包传输,因此要求信道编码可以更好的支持该类码长的通信。URLLC进一步对数据传输的可靠度提出了更加严格的要求。另外,5G通信对于码率,目前LTE turbo不能够支持过低和过高的码率;对于中短包传输,Turbo码和LDPC码由于自身编译码的特点,在有限码长下很难达到理想的性能;对于长包,虽然Turbo和LDPC码随着码长的变长能够逼近香农极限,但理论性能始终未能到达。另外,在实现方面,Turbo码和LDPC码在编译码实现过程中具有较高的复杂度。因此,5G通信系统中,急需一种新的编码技术来解决现有技术在短包,码率、可靠度以及复杂度上存在的问题。
Arikan基于信道极化提出了一种编码方式,起名为极化码(Polar Codes)。极化码是第一种、也是已知的唯一一种能够被严格证明“达到”信道容量的信道编码方法。在不同码长下,尤其对于有限码,Polar码的性能远优于Turbo码和LDPC码。另外,Polar码在编译码方面具有较低的计算复杂度。这些优点让Polar码在5G中具有很大的发展和应用前景。
由Polar码的编码原理可知,Polar码的一个特点是其码长为2的正整数次幂,而实际通信中要求码长可以灵活配置。因此,需要通过速率匹配技术实现码长的灵活可变。
通常可以采用打孔(puncture)或缩短(shorten)的速率匹配方式实现速率匹配。现有技术中,可以采用传统的随机打孔,即对于需要打孔的位置随机产生,比如,Polar码的母码码长是16,需要的打孔数是6,则在这16个位置中随机选择6个打孔位置。采用随机打孔的方式来实现速率匹配降低了Polar码的性能。
发明内容
本发明提供了一种Polar码的速率匹配方法及装置、通信设备,可以提高Polar码的编码性能。
第一方面,本发明提供一种Polar码的速率匹配方法,包括:
获取信息比特序列,所述信息比特序列中包括K个信息比特,用于对所述信息比特序列进行编码的母码的码长为N;
所述母码对应N个子信道,所述N个子信道包括S个区间,每个区间中映射的信息比特的位置是根据所述每个区间中映射的信息比特的数目、构造序列和速率匹配方式确定的,所述构造序列用于指示所述N个子信道的可靠度排序,S为正整数;
根据所述每个区间中映射的信息比特的位置对所述信息比特序列进行Polar码编码和速率匹配。
第二方面,本发明提供一种Polar码的速率匹配装置,包括:
获取模块,用于获取信息比特序列,所述信息比特序列中包括K个信息比特,用于对所述信息比特序列进行编码的母码的码长为N;
所述母码对应N个子信道,所述N个子信道包括S个区间,每个区间中映射的信息比特的位置是根据所述每个区间中映射的信息比特的数目、构造序列和速率匹配方式确定的,所述构造序列用于指示所述N个子信道的可靠度排序,S为正整数;
编码模块,用于根据所述每个区间中映射的信息比特的位置对所述信息比特序列进行Polar码编码和速率匹配。
在上述第一方面或第二方面的一种可能的实现方式中,所述每个区间中映射的信息比特的数目是利用所述每个区间对应的调整量对所述每个区间中初始的信息比特的数目调整后确定的。
在上述第一方面或第二方面的一种可能的实现方式中,在所述N个子信道包括两个区间[1,N/2]和[N/2+1,N]时,区间[1,N/2]所对应的调整量ΔK通过如下公式计算:
Figure PCTCN2018080403-appb-000001
其中,-ΔK为区间[N/2,N]所对应的调整量,P为在所述速率匹配方式下区间[1,N/2]中打孔数目或缩短数目,N为所述母码码长,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目。
在上述第一方面或第二方面的一种可能的实现方式中,区间[1,N/2]中初始的信息比特的数目为K1,区间[N/2,N]中初始的信息比特的数目K2为所述构造序列中可靠度最高的前K个子信道位于区间[N/2,N]中的子信道数目,区间[1,N/2]中映射的信息比特的数目等于K1+ΔK,区间[N/2,N]中映射的信息比特的数目等于K2-ΔK。
在上述第一方面或第二方面的一种可能的实现方式中,所述每个区间中映射的信息比特的数目是根据速率匹配方式、所述母码码长N、构造序列确定的。
在上述第一方面或第二方面的一种可能的实现方式中,针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目K i′通过如下公式计算:
Figure PCTCN2018080403-appb-000002
其中,K i为所述构造序列中可靠度最高的前K个子信道位于第i个区间中的子信道数目,P为所述第i个区间中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N i为所述第i个区间中子信道的数目。
在上述第一方面或第二方面的一种可能的实现方式中,在所述N个子信道包括两个区间[1,N/2]和[N/2+1,N]时,所述区间[1,N/2]中映射的信息比特的数目K 1′通过如下公式计算:
Figure PCTCN2018080403-appb-000003
所述区间[N/2+1,N]中映射的信息比特的数目为:K-K 1′;
其中,K 1′为所述区间[1,N/2]中映射的信息比特的数目,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目,P为区间[1,N/2]中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N为所述母码码长。
在上述第一方面或第二方面的一种可能的实现方式中,所述每个区间中映射的信息比特的数目是根据所述每个区间中每个子信道的容量和速率匹配方式确定的。
在上述第一方面或第二方面的一种可能的实现方式中,针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目k i根据如下公式确定:
Figure PCTCN2018080403-appb-000004
其中,K 1用于指示总的打孔数目或缩短数目,K 2用于指示第i个区间中的打孔 数目或缩短数目,C j表示区间中子信道j的容量,[Xi,Yi]用于指示第i个区间。
第三方面,本发明提供一种Polar码的速率匹配方法,包括:
获取母码码长N对应的构造序列,该母码对应N个子信道,该N个子信道包括S个区间,该构造序列用于指示该N个子信道的可靠度排序;在采用速率匹配时,确定S个区间中每个区间中映射的信息比特的位置;将每个区间中映射的信息比特的位置的并集作为该码长N所对应的信息比特位置集合;根据该码长N所对应的信息比特位置集合进行Polar码编码和速率匹配。
第四方面,本发明提供一种Polar码的速率匹配方法,包括:
获取母码码长N对应的构造序列,该母码对应N个子信道,该N个子信道包括S个区间,该构造序列用于指示该N个子信道的可靠度排序;
在采用速率匹配时,确定S个区间中每个区间中映射的信息比特的位置,以及将每个区间中映射的信息比特的位置的并集作为该码长N所对应的信息比特位置集合;
在不采用速率匹配时,在该构造序列中选择出可靠度最高的K个且为非打孔位置或非缩短位置的序号作为所述码长N所对应的信息比特位置集合,K为输入的信息比特的数目;
根据该码长N所对应的信息比特位置集合进行Polar码编码和速率匹配。
在第三方面或第四方面的一种可能的实现方式中,针对第i个区间,1≤i≤S,确定第i个区间中映射的信息比特的位置包括:
根据输入的信息比特数目和该构造序列,确定第i个区间中信息比特的数目;对第i个区间中信息比特的数目进行调整以得到调整后的信息比特的数目;根据调整后 的信息比特的数目、该构造序列和速率匹配方式确定第i个区间中映射的信息比特的位置。
在第三方面或第四方面的一种可能的实现方式中,针对第i个区间,1≤i≤S,确定第i个区间中映射的信息比特的位置包括:
根据第i个区间中每个子信道的容量和速率匹配方式确定第i个区间中映射的信息比特的数目;根据第i个区间映射的信息比特数目、该构造序列和速率匹配方式确定第i个区间中映射的信息比特的位置。
第五方面,提供一种通信设备,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行各方面或各方面所述的任意一种可能的实现方式。
本申请的又一方面提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例中,基于S个区间所确定出的N个子信道映射的信息比特的位置可以提高Polar码的性能。
附图说明
图1是本申请提供的无线通信系统的结构;
图2是无线通信发送端和接收端的基本流程示意图;
图3a是本申请提供的一种Polar码速率匹配方法的流程示意图;
图3b是本申请提供的又一种Polar码速率匹配方法的流程示意图
图3c是图3b中步骤S320的一种实现流程示意图;
图3d是图3b中步骤S320的另一种实现流程示意图;
图4a是本申请提供的又一种Polar码速率匹配方法的流程示意图;
图4b是图4a中步骤S420的实现流程示意图;
图5是本申请提供的又一种Polar码速率匹配方法的流程示意图;
图6是本申请提供的一种Polar码的速率匹配装置的结构图;
图7是本申请提供的一种通信设备的结构图。
具体实施方式
下面结合附图对本发明具体实施例作进一步的详细描述。
本发明实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称“FDD”)系统、LTE时分双工(Time Division Duplex,简称“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)等。在上述的系统中的基站或者终端使用传统Turbo码、LDPC码编码处理的信息或者数据都可以使用本实施例中的Polar码编码。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关 的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
此外,结合接入终端描述了各个实施例。接入终端也可以称为系统、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或UE(User Equipment,用户设备)。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。此外,结合基站描述了各个实施例。基站可用于与移动设备通信,基站可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者未来5G网络中的基站设备等。
现在,参照图1,示出根据本文所述的各个实施例的无线通信系统100。系统100包括基站102,后者可包括多个天线组。例如,一个天线组可包括天线104和106, 另一个天线组可包括天线108和110,附加组可包括天线112和114。对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与一个或多个接入终端(例如接入终端116和接入终端122)通信。然而,可以理解,基站102可以与类似于接入终端116和122的基本上任意数目的接入终端通信。接入终端116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。如图所示,接入终端116与天线112和114通信,其中天线112和114通过前向链路118向接入终端116发送信息,并通过反向链路120从接入终端116接收信息。此外,接入终端122与天线104和106通信,其中天线104和106通过前向链路124向接入终端122发送信息,并通过反向链路126从接入终端122接收信息。在FDD(Frequency Division Duplex,频分双工)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。此外,在TDD(Time Division Duplex,时分双工)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的接入终端通信。在通过前向链路118和124的通信中,基站102的发射天线可利用波束成形来改善针对接入终端116和122的前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的接入终端发送相比,在基站102利用波束成形向相关覆盖区域中随机分散的接入终端116和122发送时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、接入终端116和/或接入终端122可以是发送无线通信设备和/或接收无线通信设备。当发送数据时,发送无线通信设备可对数据进行编码以用于传输。具体地,发送无线通信设备可具有(例如生成、获得、在存储器中保存等)要通过信道发送至接收无线通信设备的一定数目的信息比特。这种信息比特可包含在数据的传输块(或多个传输块)中,其可被分段以产生多个代码块。此外,发送无线通信设备可使用Polar码编码器(未示出)来对每个代码块编码。
图2是采用无线技术进行通信的基本流程,发送端的信源依次经过信源编码、信道编码、速率匹配和调制后在信道上发出,接收端收到信号后依次经过解调、解速率匹配、信道解码和信源解码后获得信宿。
信道编解码是无线通信领域的核心技术之一,其性能的改进将直接提升网络覆盖及用户传输速率。目前,极化码是可理论证明达到香农极限,并且具有可实用的线性复杂度编译码能力的信道编码技术。极化码构造的核心是通过“信道极化”的处理,在编码侧,采用编码的方法使各个子信道呈现出不同的可靠性,当码长持续增加时,一部分信道将趋向于容量接近于1的无噪信道,另一部分信道趋向于容量接近于0的全噪信道,选择在容量接近于1的信道上直接传输信息以逼近信道容量。
Polar码的编码策略正是应用了这种现象的特性,利用无噪信道传输用户有用的信息,全噪信道传输约定的信息或者不传信息。Polar码也是一种线性块码,其编码矩阵为G N,编码过程为
Figure PCTCN2018080403-appb-000005
其中
Figure PCTCN2018080403-appb-000006
是一个二进制的行矢量,长度为N(即码长);G N是一个N×N的矩阵,且
Figure PCTCN2018080403-appb-000007
Figure PCTCN2018080403-appb-000008
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积。上述矩阵
Figure PCTCN2018080403-appb-000009
Polar码的编码过程中,
Figure PCTCN2018080403-appb-000010
中的一部分比特用来携带信息,称为信息比特集合,这些比特的索引的集合记作
Figure PCTCN2018080403-appb-000011
另外的一部分比特设置为接收端和发送端预先约定的固定值,称之为固定比特集合或冻结比特集合(frozen bits),其索引的集合用
Figure PCTCN2018080403-appb-000012
的补集
Figure PCTCN2018080403-appb-000013
表示。Polar码的编码过程相当于:
Figure PCTCN2018080403-appb-000014
这里,GN.(A)是GN.中由集合
Figure PCTCN2018080403-appb-000015
中的索引对应的那些行得到的子矩阵,GN.(AC)是GN.中由集合
Figure PCTCN2018080403-appb-000016
中的索引对应的那些行得到的子矩阵。
Figure PCTCN2018080403-appb-000017
Figure PCTCN2018080403-appb-000018
中的信息比特集合,数量为K;
Figure PCTCN2018080403-appb-000019
Figure PCTCN2018080403-appb-000020
中的固定比特集合,其数量为(N-K),是已知比特。这些固定比特通常被设置为0,但是只要接收端和发送端预先约定,固定比特可以被任意设置。从而,Polar码的编码输出可简化为:
Figure PCTCN2018080403-appb-000021
这里
Figure PCTCN2018080403-appb-000022
Figure PCTCN2018080403-appb-000023
中的信息比特集合,
Figure PCTCN2018080403-appb-000024
为长度K的行矢量,即
Figure PCTCN2018080403-appb-000025
|·|表示集合中元素的数目,K为信息块大小,
Figure PCTCN2018080403-appb-000026
是矩阵G N中由集合
Figure PCTCN2018080403-appb-000027
中的索引对应的那些行得到的子矩阵,
Figure PCTCN2018080403-appb-000028
是一个K×N的矩阵。
Polar码的构造过程即集合
Figure PCTCN2018080403-appb-000029
的选取过程,决定了Polar码的性能。Polar码的构造过程通常是,根据母码码长N确定共存在N个极化信道,分别对应编码矩阵的N个行,计算极化信道可靠度,将可靠度较高的前K个极化信道的索引作为集合
Figure PCTCN2018080403-appb-000030
的元素,剩余(N-K)个极化信道对应的索引作为固定比特的索引集合
Figure PCTCN2018080403-appb-000031
的元素。集合
Figure PCTCN2018080403-appb-000032
决定了信息比特的位置,集合
Figure PCTCN2018080403-appb-000033
决定了固定比特的位置。
实施例1
本申请实施例1提供了一种Polar码速率匹配方法300a,如图3a所示,具体地,该速率匹配方法包括:
S310、获取信息比特序列,该信息比特序列中包括K个信息比特,用于对该信息 比特序列进行编码的母码的码长为N;
S320、该母码对应N个子信道,该N个子信道包括S个区间,每个区间中映射的信息比特的位置是根据每个区间中映射的信息比特的数目、构造序列和速率匹配方式确定的,该构造序列用于指示该N个子信道的可靠度排序,S为正整数;
本发明中构造序列包括但不限于可靠度排序序列
Figure PCTCN2018080403-appb-000034
可靠度序列
Figure PCTCN2018080403-appb-000035
归一化可靠度序列
Figure PCTCN2018080403-appb-000036
等。其中,可靠度排序序列
Figure PCTCN2018080403-appb-000037
是按照N个极化信道按照可靠度升序或者降序排列对应的极化信道序号构成的排序序列,可靠度序列
Figure PCTCN2018080403-appb-000038
是根据Polar码构造算法计算得到的每个极化信道的可靠度或错误概率大小构成的可靠度序列,归一化可靠度序列
Figure PCTCN2018080403-appb-000039
是对每个极化信道可靠度按照线性或者非线性进行归一化处理后获得的归一化可靠度序列。
该构造序列可以通过在线计算、查表、或者在线计算与查表相结合的方式获得。
示例地,针对查表方式,可以在通信系统中存储不同的码长所对应的构造序列,基于查表来获取码长N所对应的构造序列。比如,在通信系统中存储码长为64所对应的构造序列:[1,2,3,5,9,17,4,33,6,7,10,11,18,13,19,34,21,35,8,25,37,12,41,14,20,15,49,22,36,23,26,38,27,39,42,29,43,16,50,45,51,24,53,28,40,57,30,44,31,46,52,47,54,55,58,59,32,61,48,56,60,62,63,64]。
S330、根据每个区间中映射的信息比特的位置对该信息比特序列进行Polar码编码和速率匹配。
在上述S320的一种实现方式中,所述每个区间中映射的信息比特的数目是利用所述每个区间对应的调整量对所述每个区间中初始的信息比特的数目调整后确定的。
示例1:在所述N个子信道包括两个区间[1,N/2]和[N/2+1,N]时,区间[1,N/2] 所对应的调整量ΔK通过如下公式计算:
Figure PCTCN2018080403-appb-000040
其中,-ΔK为区间[N/2,N]所对应的调整量,P为在所述速率匹配方式下区间[1,N/2]中打孔数目或缩短数目,N为所述母码码长,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目。
示例2:针对极化信道序号区间[1,N]不均匀的划分成3个(即S=3)极化信道序号区间[1,N/4]、[N/4+1,N/2]和[N/2+1,N],该三个区间所对应的调整量依次Δk 1,Δk 2和Δk 3,如下给出了每个区间所对应的调整量ΔK j,其中,1≤j≤3,N为码长,P为总的打孔数目或shorten数目。
当P<N/4
Figure PCTCN2018080403-appb-000041
Figure PCTCN2018080403-appb-000042
Figure PCTCN2018080403-appb-000043
当N/4≤P<N/2
Δk 1=-k 1
Figure PCTCN2018080403-appb-000044
Figure PCTCN2018080403-appb-000045
需要说明的是,取整函数int()包括但不限于向上取整、向下取整、四舍五入等; 另外,该调整量可以为负数,该调整量为负数表示信息比特的数目将会减小。
由于存在S个极化信道序号区间,每个极化信道序号区间都存在一个对应的调整量,因此共存在S个调整量,该S个调整量之和为零,且该S个调整量均为整数。
进一步,区间[1,N/2]中初始的信息比特的数目为K1,区间[N/2,N]中初始的信息比特的数目K2为所述构造序列中可靠度最高的前K个子信道位于区间[N/2,N]中的子信道数目,
区间[1,N/2]中映射的信息比特的数目等于K1+ΔK,区间[N/2,N]中映射的信息比特的数目等于K2-ΔK。
在上述S320的又一种实现方式中,所述每个区间中映射的信息比特的数目是根据速率匹配方式、所述母码码长N、构造序列确定的。
针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目K i′通过如下公式计算:
Figure PCTCN2018080403-appb-000046
其中,K i为所述构造序列中可靠度最高的前K个子信道位于第i个区间中的子信道数目,P为所述第i个区间中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N i为所述第i个区间中子信道的数目。
示例地,在所述N个子信道包括两个区间[1,N/2]和[N/2+1,N]时,所述区间[1,N/2]中映射的信息比特的数目K 1′通过如下公式计算:
Figure PCTCN2018080403-appb-000047
所述区间[N/2+1,N]中映射的信息比特的数目为:K-K 1′;
其中,K 1′为所述区间[1,N/2]中映射的信息比特的数目,K1为所述构造序列中可 靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目,P为区间[1,N/2]中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N为所述母码码长。
在上述S320的又一种实现方式中,所述每个区间中映射的信息比特的数目是根据所述每个区间中每个子信道的容量和速率匹配方式确定的。
针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目k i根据如下公式确定:
Figure PCTCN2018080403-appb-000048
其中,K 1用于指示总的打孔数目或缩短数目,K 2用于指示第i个区间中的打孔数目或缩短数目,C j表示区间中子信道j的容量,[Xi,Yi]为第i个区间。
进一步,关于C j的计算在实施例2中有进一步描述,此处不再赘述。
本申请实施例中,基于S个区间所确定出的N个子信道映射的信息比特的位置可以提高Polar码的性能。
实施例2
本申请实施例2又提供了一种Polar码速率匹配方法300b,如图3b所示,具体地,该速率匹配方法包括:
S310、获取母码码长N对应的构造序列,该母码对应N个子信道,该N个子信道包括S个区间,该构造序列用于指示该N个子信道的可靠度排序;
其中,该S个极化信道序号区间由码长N所对应的区间[1,N]按照均匀或非均匀的方式划分形成,S为正整数。
S320、在采用速率匹配时,确定S个区间中每个区间中映射的信息比特的位置;
其中,采用速率匹配是指采用打孔方式且打孔数目为非零,或者缩短方式且缩短数目为非零。区间[1,N]用于指示从1开始到N结束的N个子信道,该S个区间组成区间[1,N]。
示例地,区间[1,N]可以不均匀的划分成3个(即S=3)区间,依次为[1,N/4]、[N/4+1,N/2]和[N/2+1,N],其中,区间[1,N/4]用于指示从1开始到N/4结束的N/4个子信道,区间[N/4+1,N/2]用于指示从N/4+1开始到N/2+1结束的N/4个子信道,区间[N/2+1,N]用于指示从N/2+1开始到N结束的N/2个子信道;
示例地,区间[1,N]可以均匀分成两个区间[1,N/2]和[N/2+1,N],其中,区间[1,N/2]用于指示从1开始到N/2结束的N/2个子信道,区间[N/2+1,N]用于指示从N/2+1开始到N结束的N/2个子信道。
需要说明的是,对于N个子信道序号,也可以从0开始到N-1结束,此时N个子信道的区间为[0,N-1],本发明对于子信道序号从1或从0开始不做限定。
关于S320的具体实现将在本实施例的后面部分描述。
S330、将每个区间中映射的信息比特的位置的并集作为该码长N所对应的信息比特位置集合;
由于存在S个区间,针对每个区间都能确定出一个对应的信息比特的位置集合,则确定出的S个信息比特的位置集合的并集即为码长N所对应的信息比特位置集合。
S340、根据该码长N所对应的信息比特位置集合进行Polar码编码和速率匹配。
Polar编码和速率匹配后得到的为待发送的编码比特。
下文将具体描述S320的两种不同的实现方式:
实现方式一:如图3c所示,在S320步骤中,针对第i个区间,1≤i≤S,确定第i个区间中映射的信息比特的位置包括:
S321a、根据输入的信息比特数目和该构造序列,确定第i个区间中信息比特的数目;
具体地,根据信息比特数目K取该构造序列中可靠度最高的前K个极化信道序号,在该前K个极化信道序号中确定处于第i个区间中的子信道的数目K i,K i即为第i个区间中信息比特的数目。
进一步,根据信息比特数目K和该构造序列还可以确定出第i个区间中初始的信息比特位置集合,各个区间中初始的信息比特位置集合中所包含的元素的数目即为各个区间中所包含的信息比特的数目。
S322a、对第i个区间中信息比特的数目进行调整以得到调整后的信息比特的数目;
具体地,首先根据第i个区间中信息比特的数目K i、打孔数目和码长N确定调整量,该调整量用于调整第i个区间中信息比特的数目K i;然后根据该调整量和第i个区间中信息比特的数目K i确定第i个区间中调整后的信息比特的数目K′ i,例如,可以将该调整量和第i个区间中所包含的信息比特的数目K i相加以得到调整后的信息比特的数目K′ i
示例地,针对区间[1,N]不均匀的划分成3个(即S=3)区间[1,N/4]、[N/4+1,N/2]和[N/2+1,N],如下给出了打孔数目或缩短数目P位于不同的区间范围时所确定的第i个区间所对应的调整量ΔK j,其中,1≤j≤3,N为码长。
当P<N/4
Figure PCTCN2018080403-appb-000049
Figure PCTCN2018080403-appb-000050
Figure PCTCN2018080403-appb-000051
当N/4≤P<N/2
Δk 1=-k 1
Figure PCTCN2018080403-appb-000052
Figure PCTCN2018080403-appb-000053
由于存在S个区间,每个区间都存在一个对应的调整量,因此共存在S个调整量,该S个调整量之和为零,且该S个调整量均为整数。
S323a、根据调整后的信息比特的数目、该构造序列和速率匹配方式确定第i个区间中映射的信息比特的位置。
具体地,根据该构造序列,确定第i个区间中可靠度最高的M1个且为非打孔位置或非缩短位置的序号的集合为第i个区间中信息比特位置集合,其中,M1为第i个区间中调整后的信息比特的数目K′ i
实现方式二:如图3d所示,在S320步骤中,针对第i个区间,1≤i≤S,确定第i个区间中信息比特的位置包括:
S321b、根据第i个区间中每个子信道的容量和速率匹配方式确定第i个区间中映射的信息比特的数目。
对母码长的N个信道,其中编码码长的M个信道为实际信道(经历比如加性白高斯噪声(AWGN)信道),打孔或缩短长度的P个信道,进行极化码的码率转移计算。将实际信道的容量设置为K/M,打孔的信道容量设置为0(缩短的信道容量则设置为1)。 对一步极化,极化后的信道容量可以通过以下公式计算:
1、若两个信道均为实际信道,则假设极化前的信道容量为C1和C2,极化后的信道容量的一种计算方式为,
Figure PCTCN2018080403-appb-000054
其中,
Figure PCTCN2018080403-appb-000055
a J,1=-0.0421061,b J,1=0.209252,c J,1=-0.00640081,
a J,2=0.00181491,b J,2=-0.142675,c J,2=-0.0822054,d J,1=0.0549608
Figure PCTCN2018080403-appb-000056
a σ,1=1.09542,b σ,1=0.214217,c σ,1=2.33727
a σ,2=0.706692,a σ,2=0.386013,c σ,2=-1.75017
另一种计算方法为通过查表获得C +的容量。
2、若两个信道其中一个为打孔信道,假设极化前的信道容量分别为0和C。比如第一个信道为打孔信道,容量为0,则极化后的容量为
Figure PCTCN2018080403-appb-000057
对应的,若第二个信道为打孔信道,则极化后容量为
Figure PCTCN2018080403-appb-000058
3、若两个信道其中一个为缩短信道,则假设极化前的信道容量分别为1和C,1对应打孔信道,C对应另一信道,则极化后的容量为
Figure PCTCN2018080403-appb-000059
对原始的N个信道进行一步极化,将得到一段N/2长的C -信道,对应区间[1,N/2],另一段N/2长的C +信道,对应区间[1+N/2,N];下一步的极化将在区间[1,N/2]内和/或[1+N/2,N]内进行。逐步进行极化,直到极化后的区间达到预设的S个极化信道序号区间,此时每个子信道的容量为C 1,C 2,...,C N
下一步计算分配到每个极化信道序号区间中的信息比特数目。对第i个区间,其区间边界为[x i,y i],则第i个区间分配的信息比特数目为:
Figure PCTCN2018080403-appb-000060
其中,K 1用于指示总的打孔数目或缩短数目,K 2用于指示第i个区间中的打孔数目或缩短数目。
S322b、根据第i个区间映射的信息比特数目、该构造序列和速率匹配方式确定第i个区间中映射的信息比特的位置。
具体地,根据该构造序列,确定第i个区间中可靠度最高的M1个且为非打孔位置或非缩短位置的序号的集合为第i个区间中信息比特位置集合,其中,M1为第i个区间中调整后的信息比特的数目K′ i
可替换地,针对上述S320和S330,该速率匹配方法包括:
在不采用速率匹配方式时,则可以在构造序列中选择出可靠度最高的K个且为非打孔位置或非缩短位置的序号作为所述码长N所对应的信息比特位置集合。
本申请实施例中,基于S个区间所确定出的N个子信道映射的信息比特的位置可以提高Polar码的性能。
实施例3
本申请实施例3是对上述实施例2的一个具体应用,在实施例3中,区间[1,N]均匀划分成两个区间[1,N/2]和[N/2+1,N],如图4a所示,具体地,该速率匹配方法400包括:
S410、获取码长N对应的构造序列,该母码对应N个子信道,该N个子信道包括S个区间,该构造序列用于指示所述N个子信道的可靠度排序;
具体地,S401可以参考实施例1中S310部分,在此不再赘述。
S420、在采用速率匹配时时,确定区间[1,N/2]中映射的信息比特的位置和[N/2+1,N]中映射的信息比特的位置;
S430、将区间[1,N/2]中映射的信息比特的位置和[N/2+1,N]中映射的信息比特的位置的并集作为该码长N所对应的信息比特位置集合;
S440、根据该码长N所对应的信息比特位置集合进行Polar码编码和速率匹配。
具体地,如图4b所示,步骤S420的具体实现包括:
S421、根据信息比特数目和该构造序列,分别确定[1,N/2]和[N/2+1,N]中信息比特的数目;
根据信息比特数目K取该构造序列中可靠度最高的前K个极化信道序号;在该前K个极化信道序号中,处于区间[1,N/2]中的信息比特的数目为K1,处于区间[N/2+1,N]中信息比特的数目为K2,且K=K1+K2。示例地,码长为64,信息比特数目为32, 对应地,K1=8,K2=24。
S422、对[1,N/2]中信息比特的数目和[N/2+1,N]中信息比特的数目分别进行调整以得到[1,N/2]中调整后的信息比特的数目和[N/2+1,N]中调整后的信息比特的数目。
具体地,首先确定一个调整量;根据该调整量和极化信道序号区间[1,N/2]中信息比特的数目K1得到区间[1,N/2]中调整后的信息比特的数目K′ 1、以及根据该调整量和区间[N/2+1,N]中信息比特的数目K2得到极化信道序号区间[N/2+1,N]中调整后的信息比特的数目K′ 2,其中,该调整量为整数,用于指示信息比特数目的变化量。
进一步,可以根据K1、打孔数目P和码长N确定该调整量,具体地,可以通过如下公式来计算该调整量:
Figure PCTCN2018080403-appb-000061
其中,ΔK表示该调整量,P表示打孔数目,N为码长。
在确定出调整量之后,可以将调整量ΔK加上K1以得到调整后的K′ 1,将该调整量的相反数-ΔK加上K2得到调整后的K′ 2,其中,K′ 1+K′ 2=K。
示例地,码长为64,信息比特数目为32,对应地可以得到K1=8,K2=24,若打孔数目为6,打孔方式为从前往后,即打孔位置序号为1,2,3,4,5,6,可以得到ΔK=-1,进而确定K′ 1=8-1=7,K′ 2=24+1=25。
S423、根据区间[1,N/2]中调整后的信息比特的数目、该构造序列和打孔位置确定区间[1,N/2]中映射的信息比特的位置、以及根据区间[N/2+1,N]中调整后的信息比特的数目、该构造序列和打孔位置确定区间[N/2+1,N]中映射的信息比特的位置。
根据该构造序列,将区间[1,N/2]中可靠度最高的K′ 1个且为非打孔位置或非缩短 位置的序号集合作为区间[1,N/2]中信息比特位置集合、以及区间[N/2+1,N]中可靠度最高的K′ 1个且为非打孔位置或非缩短位置的序号作为区间[N/2+1,N]中信息比特位置集合,其中,K′ 1为区间[1,N/2]中调整后的信息比特的数目,K′ 2为区间[N/2+1,N]中调整后的信息比特的数目。
需要说明的是,上述步骤S421和S423可以被替换为根据第i个区间中每个子信道的容量和速率匹配方式确定第i个区间中映射的信息比特的数目,具体可以参考实施例2中S321b步骤,此处不再赘述。
进一步,可替换地,针对S420和S430,该速率匹配方法包括:
在不采用速率匹配时,则可以在构造序列中选择出可靠度最高的K个且为非打孔位置的极化信道序号作为所述码长N所对应的信息比特位置集合。
本申请实施例中,基于S个区间所确定出的N个子信道映射的信息比特的位置可以提高Polar码的性能。
实施例4
在实施例4中,母码码长N对应N个子信道,可表示为区间[1,N],[1,N]最开始均匀划分成两个区间[1,N/2]和[N/2+1,N],针对划分后的每个区间判断是否满足停止条件,当不满足停止条件时,则对该区间再次划分成两个区间,通过不断的递归直至满足停止条件,进而确定出码长N所对应的信息比特位置集合。如图5所示,具体地,该速率匹配方法500包括:
S510、获取码长N对应的构造序列,该母码对应N个子信道,该N个子信道包括S个区间,该构造序列用于指示所述N个子信道的可靠度排序。
具体地,S510可以参考实施例1中S310部分,在此不再赘述。
S520、在采用速率匹配时,将区间[1,N]作为待划分区间均匀划分为区间[1,N/2]和区间[N/2+1,N];
S530、根据信息比特数目和该构造序列,分别确定区间[1,N/2]和区间[N/2+1,N]中信息比特的数目;
根据信息比特数目K取该构造序列中可靠度最高的前K个子信道序号;在该前K个子信道序号中,处于区间[1,N/2]中的子信道的数目为K1,处于区间[N/2+1,N]中子信道的数目为K2,且K=K1+K2。
S540、对区间[1,N/2]中信息比特的数目进行调整以得到区间[1,N/2]中调整后的信息比特的数目,以及对区间[N/2+1,N]中信息比特的数目进行调整以得到区间[N/2+1,N]中调整后的信息比特的数目。
具体地,首先确定调整量;根据调整量和[1,N/2]中信息比特的数目K1得到[1,N/2]中调整后的信息比特的数目调整后的K′ 1、以及根据该调整量和[N/2+1,N]中信息比特的数目K2得到[N/2+1,N]中调整后的信息比特的数目K′ 2,其中,该调整量为整数,用于指示信息比特数目的变化量。
进一步,可以根据K1、打孔数目P和码长N确定该调整量,例如,通过如下公式来计算该调整量:
Figure PCTCN2018080403-appb-000062
其中,ΔK表示该调整量,P表示打孔数目,N为码长。
在确定出调整量之后,可以将调整量ΔK加上K1以得到调整后的K′ 1,将该调整量的相反数-ΔK加上K2得到调整后的K′ 2,其中,K′ 1+K′ 2=K。
S550、针对每个区间,判断该区间是否满足终止条件;若满足停止条件,则转到 S560,若不满足停止条件,则将该区间作为待划分区间转到S520,即将该区间再次均匀划分成两个区间,并继续执行S530、S540和S550直至满足该终止条件。
其中,该终止条件可以是区间的长度小于等于第一阈值、区间中信息比特的数目和区间的长度的比值小于等于第二阈值、区间中信息比特的数目小于等于第三阈值或者区间中打孔数目小于等于第四阈值。第一阈值、第二阈值、第三阈值和第四阈值可以是经验值,也可以是计算机仿真后的性能较好的值,示例地,第一阈值可以等于16,第二阈值为1/6,第三阈值为3,第四阈值为4。
S560、针对划分后的每个区间,根据每个区间中调整后的信息比特的数目、该构造序列、以及速率匹配方式确定每个区间中信息比特的位置。
根据该构造序列,将每个区间中可靠度最高的M2个且为非打孔位置或非缩短位置的序号集合作为该区间中信息比特的位置,其中,M2为该区间中调整后的信息比特的数目。
S570、将划分后各个区间中信息比特的位置的并集作为该码长N所对应的信息比特位置集合;
S580、根据该码长N所对应的信息比特位置集合进行Polar码编码和速率匹配。
本申请实施例中,基于S个区间所确定出的N个子信道映射的信息比特的位置可以提高Polar码的性能。
实施例5
参见图6,本发明提供一种Polar码的速率匹配装置600,该速率匹配装置600包括:
获取模块610,用于获取信息比特序列,所述信息比特序列中包括K个信息比特,用于对所述信息比特序列进行编码的母码的码长为N;
所述母码对应N个子信道,所述N个子信道包括S个区间,每个区间中映射的信息比特的位置是根据所述每个区间中映射的信息比特的数目、构造序列和速率匹配方式确定的,所述构造序列用于指示所述N个子信道的可靠度排序,S为正整数;
编码模块620,用于根据所述每个区间中映射的信息比特的位置对所述信息比特序列进行Polar码编码和速率匹配。
进一步,所述每个区间中映射的信息比特的数目是利用所述每个区间对应的调整量对所述每个区间中初始的信息比特的数目调整后确定的。
示例地,在所述N个子信道包括两个区间[1,N/2]和[N/2+1,N]时,区间[1,N/2]所对应的调整量ΔK通过如下公式计算:
Figure PCTCN2018080403-appb-000063
其中,-ΔK为区间[N/2,N]所对应的调整量,P为在所述速率匹配方式下区间[1,N/2]中打孔数目或缩短数目,N为所述母码码长,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目。
其中,区间[1,N/2]中初始的信息比特的数目为K1,区间[N/2,N]中初始的信息比特的数目K2为所述构造序列中可靠度最高的前K个子信道位于区间[N/2,N]中的子信道数目,区间[1,N/2]中映射的信息比特的数目等于K1+ΔK,区间[N/2,N]中映射的信息比特的数目等于K2-ΔK。
进一步,所述每个区间中映射的信息比特的数目是根据速率匹配方式、所述母码码长N、构造序列确定的。
针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目K i′通过如下公式计算:
Figure PCTCN2018080403-appb-000064
其中,K i为所述构造序列中可靠度最高的前K个子信道位于第i个区间中的子信道数目,P为所述第i个区间中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N i为所述第i个区间中子信道的数目。
示例地,在所述N个子信道包括两个区间[1,N/2]和[N/2+1,N]时,所述区间[1,N/2]中映射的信息比特的数目K 1′通过如下公式计算:
Figure PCTCN2018080403-appb-000065
所述区间[N/2+1,N]中映射的信息比特的数目为:K-K 1′;
其中,K 1′为所述区间[1,N/2]中映射的信息比特的数目,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目,P为区间[1,N/2]中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N为所述母码码长。
进一步,所述每个区间中映射的信息比特的数目是根据所述每个区间中每个子信道的容量和速率匹配方式确定的。
针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目k i根据如下公式确定:
Figure PCTCN2018080403-appb-000066
其中,K 1用于指示总的打孔数目或缩短数目,K 2用于指示第i个区间中的打孔数目或缩短数目,C j表示区间中子信道j的容量,[Xi,Yi]用于指示第i个区间。
需要说明的是,该Polar码的速率匹配装置600可用于执行上述实施例中的执行过程,例如实施例1到实施例4中任一实施例,该实施例为描述方便,相关内容不再重复描述。
在该实施例中,基于S个区间所确定出的N个子信道映射的信息比特的位置可以提高Polar码的性能。
实施例6
图7为本发明实施例所提供的通信设备700的结构示意图(例如接入点或基站、站点或者终端等通信设备,或者前述通信设备中的芯片等)。
如图7所示,通信设备700可以由总线701作一般性的总线体系结构来实现。根据通信设备700的具体应用和整体设计约束条件,总线701可以包括任意数量的互连总线和桥接。总线701将各种电路连接在一起,这些电路包括处理器702、存储介质703和总线接口704。可选的,通信设备700使用总线接口704将网络适配器705等经由总线701连接。网络适配器705可用于实现无线通信网络中物理层的信号处理功能,并通过天线707实现射频信号的发送和接收。用户接口706可以连接用户终端,例如:键盘、显示器、鼠标或者操纵杆等。总线701还可以连接各种其它电路,如定时源、外围设备、电压调节器或者功率管理电路等,这些电路是本领域所熟知的,因此不再详述。
可以替换的,通信设备700也可配置成通用处理系统,例如通称为芯片,该通用处理系统包括:提供处理器功能的一个或多个微处理器;以及提供存储介质703的至少一部分的外部存储器,所有这些都通过外部总线体系结构与其它支持电路连接在一起。
可替换的,通信设备700可以使用下述来实现:具有处理器702、总线接口704、 用户接口706的ASIC(专用集成电路);以及集成在单个芯片中的存储介质703的至少一部分,或者,通信设备700可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本发明通篇所描述的各种功能的电路的任意组合。
其中,处理器702负责管理总线和一般处理(包括执行存储在存储介质703上的软件)。处理器702可以使用一个或多个通用处理器和/或专用处理器来实现。处理器的例子包括微处理器、微控制器、DSP处理器和能够执行软件的其它电路。应当将软件广义地解释为表示指令、数据或其任意组合,而不论是将其称作为软件、固件、中间件、微代码、硬件描述语言还是其它。
在下图中存储介质703被示为与处理器702分离,然而,本领域技术人员很容易明白,存储介质703或其任意部分可位于通信设备700之外。举例来说,存储介质703可以包括传输线、用数据调制的载波波形、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器702通过总线接口704来访问。可替换地,存储介质703或其任意部分可以集成到处理器702中,例如,可以是高速缓存和/或通用寄存器。
处理器702可执行上述实施例中的实现过程,例如,上述实施例1、实施例2、实施例3或实施例4,在此不再对处理器702的执行过程进行赘述。
需要说明的是,本申请实施例中,信息比特可以仅包含信息比特,也可以是信息比特按照一定函数关系得到的比特,还可以包含信息比特和校验比特,校验比特可以是CRC或奇偶校验比特。
结合前面的描述,本领域的技术人员可以意识到,本文实施例的方法,可以通过硬件(例如,逻辑电路),或者软件,或者硬件与软件的结合来实现。这些方法究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应 认为超出本申请的范围。
当上述功能通过软件的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。在这种情况下,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种Polar码的速率匹配方法,其特征在于,包括:
    获取信息比特序列,所述信息比特序列中包括K个信息比特,用于对所述信息比特序列进行编码的母码的码长为N;
    所述母码对应N个子信道,所述N个子信道包括S个区间,每个区间中映射的信息比特的位置是根据所述每个区间中映射的信息比特的数目、构造序列和速率匹配方式确定的,所述构造序列用于指示所述N个子信道的可靠度排序,S为正整数;
    根据所述每个区间中映射的信息比特的位置对所述信息比特序列进行Polar码编码和速率匹配。
  2. 根据权利要求1所述的方法,其特征在于,所述每个区间中映射的信息比特的数目是利用所述每个区间对应的调整量对所述每个区间中初始的信息比特的数目调整后确定的。
  3. 根据权利要求2所述的方法,其特征在于,在所述N个子信道包括两个区间[1,N/2]和[N/2+1,N]时,区间[1,N/2]所对应的调整量ΔK通过如下公式计算:
    Figure PCTCN2018080403-appb-100001
    其中,-ΔK为区间[N/2,N]所对应的调整量,P为在所述速率匹配方式下区间[1,N/2]中打孔数目或缩短数目,N为所述母码码长,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目。
  4. 根据权利要求3所述的方法,其特征在于,区间[1,N/2]中初始的信息比特的数目为K1,区间[N/2,N]中初始的信息比特的数目K2为所述构造序列中可靠度最 高的前K个子信道位于区间[N/2,N]中的子信道数目,
    区间[1,N/2]中映射的信息比特的数目等于K 1+ΔK,区间[N/2,N]中映射的信息比特的数目等于K 2-ΔK。
  5. 根据权利要求1所述的方法,其特征在于,所述每个区间中映射的信息比特的数目是根据速率匹配方式、所述母码码长N、构造序列确定的。
  6. 根据权利要求5所述的方法,其特征在于,针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目K i′通过如下公式计算:
    Figure PCTCN2018080403-appb-100002
    其中,K i为所述构造序列中可靠度最高的前K个子信道位于第i个区间中的子信道数目,P为所述第i个区间中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N i为所述第i个区间中子信道的数目。
  7. 根据权利要求5所述的方法,其特征在于,在所述N个子信道包括两个区间[1,N/2]和[N/2+1,N]时,所述区间[1,N/2]中映射的信息比特的数目K 1′通过如下公式计算:
    Figure PCTCN2018080403-appb-100003
    所述区间[N/2+1,N]中映射的信息比特的数目为:K-K 1';
    其中,K 1′为所述区间[1,N/2]中映射的信息比特的数目,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目,P为区间[1,N/2]中 所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N为所述母码码长。
  8. 根据权利要求1所述的方法,其特征在于,所述每个区间中映射的信息比特的数目是根据所述每个区间中每个子信道的容量和速率匹配方式确定的。
  9. 根据权利要求8所述的方法,其特征在于,针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目k i根据如下公式确定:
    Figure PCTCN2018080403-appb-100004
    其中,K 1用于指示总的打孔数目或缩短数目,K 2用于指示第i个区间中的打孔数目或缩短数目,C j表示区间中子信道j的容量,[Xi,Yi]用于指示第i个区间。
  10. 一种Polar码的速率匹配装置,其特征在于,包括:
    获取模块,用于获取信息比特序列,所述信息比特序列中包括K个信息比特,用于对所述信息比特序列进行编码的母码的码长为N;
    所述母码对应N个子信道,所述N个子信道包括S个区间,每个区间中映射的信息比特的位置是根据所述每个区间中映射的信息比特的数目、构造序列和速率匹配方式确定的,所述构造序列用于指示所述N个子信道的可靠度排序,S为正整数;
    编码模块,用于根据所述每个区间中映射的信息比特的位置对所述信息比特序列进行Polar码编码和速率匹配。
  11. 根据权利要求10所述的装置,其特征在于,所述每个区间中映射的信息比特的数目是利用所述每个区间对应的调整量对所述每个区间中初始的信息比特的数目调整后确定的。
  12. 根据权利要求11所述的装置,其特征在于,在所述N个子信道包括两个区 间[1,N/2]和[N/2+1,N]时,区间[1,N/2]所对应的调整量ΔK通过如下公式计算:
    Figure PCTCN2018080403-appb-100005
    其中,-ΔK为区间[N/2,N]所对应的调整量,P为在所述速率匹配方式下区间[1,N/2]中打孔数目或缩短数目,N为所述母码码长,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目。
  13. 根据权利要求12所述的装置,其特征在于,区间[1,N/2]中初始的信息比特的数目为K1,区间[N/2,N]中初始的信息比特的数目K2为所述构造序列中可靠度最高的前K个子信道位于区间[N/2,N]中的子信道数目,
    区间[1,N/2]中映射的信息比特的数目等于K 1+ΔK,区间[N/2,N]中映射的信息比特的数目等于K 2-ΔK。
  14. 根据权利要求10所述的装置,其特征在于,所述每个区间中映射的信息比特的数目是根据速率匹配方式、所述母码码长N、构造序列确定的。
  15. 根据权利要求14所述的装置,其特征在于,针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目K i′通过如下公式计算:
    Figure PCTCN2018080403-appb-100006
    其中,K i为所述构造序列中可靠度最高的前K个子信道位于第i个区间中的子信道数目,P为所述第i个区间中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N i为所述第i个区间中子信道的数目。
  16. 根据权利要求14所述的装置,其特征在于,在所述N个子信道包括两个区 间[1,N/2]和[N/2+1,N]时,所述区间[1,N/2]中映射的信息比特的数目K 1′通过如下公式计算:
    Figure PCTCN2018080403-appb-100007
    所述区间[N/2+1,N]中映射的信息比特的数目为:K-K 1';
    其中,K 1′为所述区间[1,N/2]中映射的信息比特的数目,K1为所述构造序列中可靠度最高的前K个子信道位于区间[1,N/2]中的子信道数目,P为区间[1,N/2]中所述打孔模式下的打孔数目或所述缩短模式下的缩短数目,N为所述母码码长。
  17. 根据权利要求10所述的装置,其特征在于,所述每个区间中映射的信息比特的数目是根据所述每个区间中每个子信道的容量和速率匹配方式确定的。
  18. 根据权利要求17所述的装置,其特征在于,针对第i个区间,1≤i≤S,所述第i个区间中映射的信息比特的数目k i根据如下公式确定:
    Figure PCTCN2018080403-appb-100008
    其中,K 1用于指示总的打孔数目或缩短数目,K 2用于指示第i个区间中的打孔数目或缩短数目,C j表示区间中子信道j的容量,[Xi,Yi]用于指示第i个区间。
  19. 一种通信设备,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求1-9中任一所述的步骤。
  20. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-9任意一项所述的方法。
PCT/CN2018/080403 2017-04-06 2018-03-24 一种编码方法、译码方法、装置和设备 WO2018184479A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710226860.0 2017-04-06
CN201710226860.0A CN108696334B (zh) 2017-04-06 2017-04-06 极化Polar码的速率匹配方法和装置、通信设备

Publications (1)

Publication Number Publication Date
WO2018184479A1 true WO2018184479A1 (zh) 2018-10-11

Family

ID=63712971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080403 WO2018184479A1 (zh) 2017-04-06 2018-03-24 一种编码方法、译码方法、装置和设备

Country Status (2)

Country Link
CN (1) CN108696334B (zh)
WO (1) WO2018184479A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180198555A1 (en) * 2017-01-09 2018-07-12 Mediatek Inc. Broadcast Channel Enhancement with Polar Code

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412198A (zh) * 2021-05-27 2022-11-29 中国移动通信有限公司研究院 Bipcm的映射关系生成方法、信息位集合确定方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164956A (zh) * 2013-11-04 2015-12-16 华为技术有限公司 Polar码的速率匹配方法和设备、无线通信装置
US20160182187A1 (en) * 2013-08-20 2016-06-23 Lg Electronics Inc. Method for transmitting data by using polar coding in wireless access system
CN106027068A (zh) * 2015-03-25 2016-10-12 三星电子株式会社 用于无线信道的harq速率兼容的极性码

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164959B (zh) * 2014-02-21 2019-06-21 华为技术有限公司 用于极化码的速率匹配的方法和装置
CA2972643C (en) * 2014-03-21 2020-05-26 Huawei Technologies Co., Ltd. Polar code rate matching method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160182187A1 (en) * 2013-08-20 2016-06-23 Lg Electronics Inc. Method for transmitting data by using polar coding in wireless access system
CN105164956A (zh) * 2013-11-04 2015-12-16 华为技术有限公司 Polar码的速率匹配方法和设备、无线通信装置
CN106027068A (zh) * 2015-03-25 2016-10-12 三星电子株式会社 用于无线信道的harq速率兼容的极性码

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Details of the Polar code design", 3GPP TSG RAN WG1 MEETING #87, RL-1611254, vol. RAN WG1, 14 November 2016 (2016-11-14), XP051175235 *
HUAWEI ET AL.: "Polar code design and rate matching", 3GPP TSG RAN WG1 MEETING #86, RL-167209, vol. RAN WG1, 26 August 2016 (2016-08-26), XP051140577 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180198555A1 (en) * 2017-01-09 2018-07-12 Mediatek Inc. Broadcast Channel Enhancement with Polar Code
US10498481B2 (en) * 2017-01-09 2019-12-03 Mediatek Inc. Broadcast channel enhancement with polar code

Also Published As

Publication number Publication date
CN108696334B (zh) 2021-06-01
CN108696334A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN108631916B (zh) 极化Polar码的速率匹配方法和装置、通信装置
AU2016388920B2 (en) Generation of polar codes with a variable block length utilizing puncturing
US10574401B2 (en) Polar code retransmission method and apparatus
WO2018049951A1 (zh) 信息传输的方法、发送端设备和接收端设备
US11394491B2 (en) Nested structure for polar code construction using density evolution
CN110166167B (zh) 编码的方法、译码的方法、编码设备和译码设备
US10673654B2 (en) Coding method, coding apparatus, and communications apparatus
WO2019214592A1 (zh) 通信方法、终端设备和网络设备
KR102349879B1 (ko) 폴라 코드들에 대한 crc 인터리빙 패턴
US10979076B2 (en) Encoding method, encoding apparatus, and communications apparatus
US11239945B2 (en) Encoding method, decoding method, apparatus, and device
WO2018171788A1 (zh) 一种编码方法和装置
US10958374B2 (en) Polar code rate matching method and apparatus
WO2019024594A1 (zh) 极化码的编译码方法、装置及设备
US20210328603A1 (en) Efficient polar code construction in 5g
WO2018184479A1 (zh) 一种编码方法、译码方法、装置和设备
WO2020098461A1 (zh) Polar码编码方法及装置
WO2020147527A1 (zh) 一种极化编译码方法及装置
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
WO2018228380A1 (zh) 一种编码方法及通信设备
WO2018233565A1 (zh) 极化编码方法、极化编码器和无线通信设备
WO2017206055A1 (zh) 用于打孔的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780861

Country of ref document: EP

Kind code of ref document: A1