WO2018182406A1 - Procédé de réduction de la corrosion d'un échangeur de chaleur d'un incinérateur comprenant ledit échangeur de chaleur - Google Patents

Procédé de réduction de la corrosion d'un échangeur de chaleur d'un incinérateur comprenant ledit échangeur de chaleur Download PDF

Info

Publication number
WO2018182406A1
WO2018182406A1 PCT/NL2018/050184 NL2018050184W WO2018182406A1 WO 2018182406 A1 WO2018182406 A1 WO 2018182406A1 NL 2018050184 W NL2018050184 W NL 2018050184W WO 2018182406 A1 WO2018182406 A1 WO 2018182406A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
heat exchanger
calcium carbonate
temperature
incinerator
Prior art date
Application number
PCT/NL2018/050184
Other languages
English (en)
Inventor
Joseph Jan Peter Biermann
Original Assignee
Minplus B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL2020048A external-priority patent/NL2020048B1/nl
Application filed by Minplus B.V. filed Critical Minplus B.V.
Priority to JP2019553953A priority Critical patent/JP2020515804A/ja
Priority to US16/495,737 priority patent/US20200016532A1/en
Priority to EP18718238.1A priority patent/EP3600605A1/fr
Priority to KR1020197028196A priority patent/KR20190131500A/ko
Priority to CN201880020647.7A priority patent/CN110520208A/zh
Publication of WO2018182406A1 publication Critical patent/WO2018182406A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices

Definitions

  • a method of reducing corrosion of a heat exchanger of an incinerator comprising said heat exchanger
  • the present invention relates to a method of reducing corrosion of a heat exchanger of an incinerator, said incinerator comprising
  • WO2013093097 discloses a method according to the preamble wherein a mineral additive blend comprising clay and a functional mineral (calcium carbonate) is introduced into a furnace, a fuel is introduced into the furnace and the two are heated with the fuel being incinerated.
  • the amount of additive material that has to be introduced is relatively high, adding to the cost of the method.
  • a further disadvantage of the known method is that the amount of ash produced is significantly increased.
  • alkaline additives are capable of reducing the total amount of corrosive compounds - anions- in the flue gas, but this typically results in an increased rate of corrosion. This is caused by a preference of these alkaline additives to remove sulphur compounds from the flue gas, which reduces the formation of protective deposits of sulphate containing material on the boiler internals, leaving these internals more vulnerable for corrosion by other flue gas constituents such as chlorides, which are harder to capture from the flue gas by such additives. This effect of alkaline additives causing increased corrosion when applied in flue gases containing both sulphur and chlorine compounds is described in "High-Temperature Chlorine
  • incinerators is problematic with alkaline additives.
  • the object of the present invention is to reduce corrosion of a heat exchanger of an incinerator.
  • a method according to the preamble is characterized in that the additive material is a powdery material that is introduced into the flue gas upstream of the heat exchanger, a powder particle of said powdery additive material comprising granules, each granule comprising a mixture of clay and calcium carbonate, at least 10% by weight relative to the calcium carbonate being calcium carbonate in a form that when characterized by means of Thermogravimetric Analysis under a nitrogen atmosphere with a rate of increase in temperature of 10 °C per minute has decomposed completely when a temperature of 875 °C has been reached.
  • the method according to the present invention allows for reduced downtime for heat exchanger maintenance and/or heat exchange at a higher temperature at a relatively low rate of use of additive material.
  • high-temperature corrosion (wall temperature of the heat exchanger of 500 °C or higher) is reduced.
  • Thermogravimetric Analysis measures the mass reduction upon heating the sample at a specified rate in a specified atmosphere. The measured mass reduction of the additive material then can be
  • TGA measurements are carried out under a nitrogen atmosphere and at a heating rate of 10 °C per minute from ambient temperature up to typically 1100 °C.
  • the weight of the sample is expressed as percent of calcium carbonate, where 100% represents non-converted calcium carbonate. Since the (rounded) molar weight of CaC0 3 is 100 g/mol, and that of the C0 2 released upon heating the carbonate is 44 g/mol, the remaining mass fraction after decomposition is 56%.
  • particulate fuel means that the fuel is solid at a temperature of 30 ° C.
  • the chamber into which the fuel is introduced is for example a fluidized bed or the chamber of a grate incinerator.
  • the size of the fuel particles may be relatively small (e.g. in the order of millimeters or smaller) or relatively large (e.g. in the order of centimeters or larger) .
  • the particulate fuel is for example biomass, refuse from industrial processes or households or mixtures thereof.
  • powdery material indicates material having a particle size of less than 100 ⁇ . These particles have a granular nature, i.e. a particle typically comprises a multitude of even smaller particles.
  • the additive material will be introduced in the flue gas where the flue gas has a temperature of at least 850 °C and less than 1150 ° C. In case of an incineration process involving flames, it is preferred that the additive material is injected downstream of the flames .
  • the residence time of the additive in the flue gas prior to leaving the heat exchanger is typically at least 1 second, preferably at least 3 seconds, and more preferably at least 5 seconds. Thus at least part of the heat exchanger is protected.
  • the residence time is such that the residence time of the additive in the flue gas before entering the heat exchanger is at least 1 second, preferably at least 3 seconds, and more preferably at least 5 seconds.
  • the flue gas is flue gas containing non-gaseous material.
  • non-gaseous material in the flue gas typically
  • the concentration of non-gaseous material is more than 0.02% by wt . relative to the weight of the flue gas.
  • the method according to the invention is very suitable for the incineration of particulate waste material.
  • the particulate fuel will typically consist for more than 50%, preferably more than 75%, and even more preferably more than 90% of such material (including mixtures of household and industrial waste materials) .
  • the oxygen-comprising gas is typically air.
  • the water content of the additive material will be less than 2% wt./wt. of the additive material.
  • At least 40% by weight and more preferably at least 70% relative to the calcium carbonate is calcium carbonate in a form that when characterized by means of
  • Thermogravimetric Analysis under a nitrogen atmosphere with a rate of increase in temperature of 10 'C per minute has decomposed completely when a temperature of 875 "C has been reached.
  • the additive material is introduced in the flue gas where the flue gas has a temperature in a range from 875 °C to 1050 °C, and preferably in a range from 900 °C to 1000°C.
  • the powdery additive material is introduced with a rate of at least 0.005% by mass relative to the flow of flue gas, preferably with a rate of at least 0.02% by mass and most preferably at least 0.04% by mass.
  • the flow rates are expressed in kg/s.
  • the amount added is typically less than 0.4% by mass, and preferably less than 0.2% by mass to avoid an unnecessary increase in effort to remove particulates from the flue gas and/or the disposal thereof after removal using a technique such as cyclone separation, filtration or washing.
  • the incinerator is part of a plant, said plant further comprising a unit for the thermal
  • the fluidized bed is operated at a temperature between 720 and 850°C and the temperature of the freeboard is 850°C or lower to result in the powdery additive material, which is introduced into the flue gas of the incinerator.
  • the weight/weight ratio of convertible calcium carbonate to the clay is in the range of 1 to 10, preferably 1 to 5 and more preferably 1 to 3.
  • the powdery material has a water content of less than 0.9% wt./wt.%, preferably less than 0.5% wt . /wt ..
  • additive-comprising material is collected from the flue gas downstream of the heat exchanger
  • part of said particulate material is re-introduced into the flue gas upstream of the heat exchanger.
  • Fig. 1 shows a schematic view of an incinerator
  • Fig. 2 shows a Thermogravimetric Analysis (TGA) graph for various calcium carbonate-comprising materials.
  • Fig. 1 shows a plant comprising an incinerator 100 comprising a combustion chamber 110, a flue gas channel 120, a heat exchanger 130 and an exhaust pipe 140.
  • a mixture of household and industry derived waste materials was fed from a fuel storage via a hopper on a grate 170. Air is introduced into the combustion chamber 110 via an air supply conduit 180.
  • Additive material is introduced into the flue gas channel 120 via lances 150.
  • the additive material Downstream of the heat exchanger, the additive material is separated from the cooled down flue gas from the heat exchanger 130 using a conventional filter system before the cleaned flue gas is vented to the atmosphere via the exhaust pipe 140.
  • Laser diffraction was used to measure particle size in the range of 0.1 - 600 pm.
  • a solid-state, diode laser is focused by an automatic alignment system through the measurement cell.
  • Light is scattered by sample particles to a multi-element detector system including high-angle and backscatter detectors, for a full angular light intensity distribution.
  • 10 mg of a sample was added to the liquid dispersing medium.
  • the recommended dispersing medium for the samples is isopropyl alcohol. 95% by weight of the particles of the samples A to F described below had a size of less than 100 pm.
  • the material's composition was determined by means of X-ray fluorescence.
  • the material contained 30 massl of calcium carbonate; 25 mass% of calcium oxide; and 36% of silica-alumina clay in the form of meta-kaolin .
  • SRM Id is composed of argillaceous limestone
  • TGA measurements were carried out in a nitrogen atmosphere and at a heating rate of 10 °C per minute using a Setaram Labsys EVO TGA apparatus (Setaram Company, Caluire, France) .
  • the silica/alumina species represent the clay fraction present in the additive material.
  • the incinerator processed an averaged amount of fuel of 4.2 kg/s consisting of a mixture of household and industrial derived waste materials.
  • the incineration resulted in an averaged flue gas flow of 30.5 kg/s.
  • the additive applied in this example was produced from a mixture of paper residue and composted sewage sludge in a weight ratio of 85% to 15%, using the method descried in O9606057.
  • the additive is injected into the flue gas of the incinerator leaving the incineration chamber at a height of 19 meters measured from the lowest point of the incineration grate. During the experiment it was observed that no flames reached this height for more than 90% of the duration of the experiment.
  • the temperature of the flue gas at the location of the additive injection varied with the particulate fuel and the energy production in the incinerator, being between 950 and 1050 'C.
  • 0.02 kg/s of additive was injected into the flue gas by means of pneumatic injection through four steel injection lances (right-pointing arrow in Fig. 1) of 32 mm internal diameter, resulting in a ratio of additive to flue gas of 0.06-0.07% wt./wt..
  • the averaged velocity of the injection air was 15 m/s .
  • the additive material is a powdery material that is introduced into the flue gas upstream of the heat exchanger, a powder particle of said powdery additive material comprising granules, each granule comprising a mixture of clay and calcium carbonate, at least 10% by weight relative to the calcium carbonate being calcium carbonate in a form that when characterized by means of
  • Thermogravimetric Analysis under a nitrogen atmosphere with a rate of increase in temperature of 10 C C per minute has decomposed completely when a temperature of 875 "C has been reached.
  • the additive material will be added to the flue gas at a flue gas temperature of less than 1200 ° C.
  • Preferred embodiments correspond to the dependent claims of the method of incinerating listed below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

La présente invention concerne un procédé de réduction de la corrosion d'un échangeur de chaleur d'un incinérateur, ledit procédé comprenant les étapes consistant à introduire un gaz contenant de l'oxygène et un combustible particulaire dans une chambre de combustion, à introduire un matériau additif comprenant i) de l'argile et ii) du carbonate de calcium dans l'incinérateur, à récupérer la chaleur provenant du gaz de combustion à l'aide d'un échangeur de chaleur. Pour protéger l'échangeur de chaleur, le matériau additif est un matériau pulvérulent qui est introduit dans le gaz de combustion en amont de l'échangeur de chaleur, une particule de poudre dudit matériau additif pulvérulent comprenant des granules, chaque granule comprenant un mélange d'argile et de carbonate de calcium, au moins 10 % en poids par rapport au carbonate de calcium étant du carbonate de calcium sous une forme qui, lorsqu'il est caractérisé par une analyse thermogravimétrique sous une atmosphère d'azote avec un taux d'augmentation de température de 10 JC par minute, s'est décomposée complètement lorsqu'une température de 875 °C a été atteinte.
PCT/NL2018/050184 2017-03-29 2018-03-26 Procédé de réduction de la corrosion d'un échangeur de chaleur d'un incinérateur comprenant ledit échangeur de chaleur WO2018182406A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019553953A JP2020515804A (ja) 2017-03-29 2018-03-26 熱交換器を含む焼却炉の前記熱交換器の腐食を低減する方法
US16/495,737 US20200016532A1 (en) 2017-03-29 2018-03-26 Method of reducing corrosion of a heat exchanger of an incinerator comprising said heat exchanger
EP18718238.1A EP3600605A1 (fr) 2017-03-29 2018-03-26 Procédé de réduction de la corrosion d'un échangeur de chaleur d'un incinérateur comprenant ledit échangeur de chaleur
KR1020197028196A KR20190131500A (ko) 2017-03-29 2018-03-26 열 교환기를 포함하는 소각로의 상기 열교환기 부식 감소 방법
CN201880020647.7A CN110520208A (zh) 2017-03-29 2018-03-26 减少包括热交换器的焚烧炉的所述热交换器的腐蚀的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL2018595 2017-03-29
NL2018595 2017-03-29
NL2020048 2017-12-08
NL2020048A NL2020048B1 (en) 2017-03-29 2017-12-08 A method of reducing corrosion of a heat exchanger of an incinerator comprising said heat exchanger

Publications (1)

Publication Number Publication Date
WO2018182406A1 true WO2018182406A1 (fr) 2018-10-04

Family

ID=62002373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2018/050184 WO2018182406A1 (fr) 2017-03-29 2018-03-26 Procédé de réduction de la corrosion d'un échangeur de chaleur d'un incinérateur comprenant ledit échangeur de chaleur

Country Status (1)

Country Link
WO (1) WO2018182406A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225436A1 (fr) * 2020-05-08 2021-11-11 Minplus B.V. Procédé de piégeage d'alcali à partir de gaz de fumée

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006057A1 (fr) 1994-08-24 1996-02-29 Brp De Bilt B.V. Procede de production d'un materiau puzzolanique a partir de residus de papier, et procede permettant de produire du ciment a partir dudit materiau
WO2000009256A1 (fr) 1998-08-14 2000-02-24 Cdem Holland B.V. Procede de production d'un sorbant, sorbant ainsi obtenu et procede d'epuration d'un courant de gaz chaud
EP1271053A2 (fr) 2001-06-29 2003-01-02 Bayer Aktiengesellschaft Procédé pour incinérer des déchets à forte teneur en halogènes en réduisant les émissions nocives ainsi que la corrosion
WO2006124772A2 (fr) 2005-05-17 2006-11-23 Fuel Tech, Inc. Procede pour reguler la corrosion dans des chaudieres
WO2013093097A1 (fr) 2011-12-21 2013-06-27 Kentucky-Tennessee Clay Co. Compositions de mélange d'additifs minéraux et procédés pour le fonctionnement de chambres de combustion permettant d'éviter des problèmes tels que l'agglomération, le dépôt et la corrosion et la réduction des émissions
EP2891843A1 (fr) * 2014-01-07 2015-07-08 Imerys Ceramics France Compositions et procédés de mélange d'additif minéral pour l'exploitation de chambres de combustion de valorisation énergétique des déchets afin d'améliorer leur performance opérationnelle et leur disponibilité, de protéger le matériel et l'équipement de la chambre de combustion et d'améliorer la qualité des cendres et éviter les problèmes de combustion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006057A1 (fr) 1994-08-24 1996-02-29 Brp De Bilt B.V. Procede de production d'un materiau puzzolanique a partir de residus de papier, et procede permettant de produire du ciment a partir dudit materiau
WO2000009256A1 (fr) 1998-08-14 2000-02-24 Cdem Holland B.V. Procede de production d'un sorbant, sorbant ainsi obtenu et procede d'epuration d'un courant de gaz chaud
EP1271053A2 (fr) 2001-06-29 2003-01-02 Bayer Aktiengesellschaft Procédé pour incinérer des déchets à forte teneur en halogènes en réduisant les émissions nocives ainsi que la corrosion
WO2006124772A2 (fr) 2005-05-17 2006-11-23 Fuel Tech, Inc. Procede pour reguler la corrosion dans des chaudieres
WO2013093097A1 (fr) 2011-12-21 2013-06-27 Kentucky-Tennessee Clay Co. Compositions de mélange d'additifs minéraux et procédés pour le fonctionnement de chambres de combustion permettant d'éviter des problèmes tels que l'agglomération, le dépôt et la corrosion et la réduction des émissions
EP2891843A1 (fr) * 2014-01-07 2015-07-08 Imerys Ceramics France Compositions et procédés de mélange d'additif minéral pour l'exploitation de chambres de combustion de valorisation énergétique des déchets afin d'améliorer leur performance opérationnelle et leur disponibilité, de protéger le matériel et l'équipement de la chambre de combustion et d'améliorer la qualité des cendres et éviter les problèmes de combustion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. W. COATS; J.P. REDFERN, THERMOGRAVIMETRIC ANALYSIS; A REVIEW, ANALYST, vol. 88, 1963, pages 906 - 924
XIAOYANG GAUS-LIU: "High-Temperature Chlorine Corrosion during Co-Utilisation of Coal with Biomass or Waste", DISSERTATION UNIVERSITY OF STUTTGART, ISBN: 978-3-86727-568-2

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225436A1 (fr) * 2020-05-08 2021-11-11 Minplus B.V. Procédé de piégeage d'alcali à partir de gaz de fumée

Similar Documents

Publication Publication Date Title
Vamvuka et al. Control methods for mitigating biomass ash-related problems in fluidized beds
Kassman et al. Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion—injection of ammonium sulphate and co-combustion with peat
Davidsson et al. Countermeasures against alkali-related problems during combustion of biomass in a circulating fluidized bed boiler
JP5890440B2 (ja) 廃棄物処理方法および装置
Karlsson et al. Reducing high-temperature corrosion on high-alloyed stainless steel superheaters by co-combustion of municipal sewage sludge in a fluidised bed boiler
Liu et al. Ash deposition behavior in co-combusting high-alkali coal and bituminous coal in a circulating fluidized bed
Silvennoinen et al. Co-firing of agricultural fuels in a full-scale fluidized bed boiler
Materazzi et al. Fate and behavior of inorganic constituents of RDF in a two stage fluid bed-plasma gasification plant
Namkung et al. Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors
Liu et al. Co-firing of coal and biomass under pressurized oxy-fuel combustion mode in a 10 kWth fluidized bed: Nitrogen and sulfur pollutants
Modolo et al. Treatment and use of bottom bed waste in biomass fluidized bed combustors
Liu et al. Ash deposition behavior of a high-alkali coal in circulating fluidized bed combustion at different bed temperatures and the effect of kaolin
US20200016532A1 (en) Method of reducing corrosion of a heat exchanger of an incinerator comprising said heat exchanger
Acharya et al. Ash analysis of poultry litter, willow and oats for combustion in boilers
Prismantoko et al. Ash deposition behavior during co-combustion of solid recovered fuel with different coals
WO2018182406A1 (fr) Procédé de réduction de la corrosion d'un échangeur de chaleur d'un incinérateur comprenant ledit échangeur de chaleur
Cotton et al. Quantification of trace element emissions from low-carbon emission energy sources:(I) Ca-looping cycle for post-combustion CO2 capture and (II) fixed bed, air blown down-draft gasifier
EP3850270B1 (fr) Procédé de fonctionnement d'un incinérateur comprenant un dispositif de capture de cendres entraînées par un gaz de combustion
RU2133408C1 (ru) Способ сжигания городских отходов и применение образующейся при сжигании золы
Abang et al. Corrosion behaviour of selected power plant materials under oxyfuel combustion conditions
Kosowska-Golachowska et al. An investigation on oxy-fuel combustion of sewage sludge in a 12-kW bench-scale CFB combustor
Buekens et al. Waste incineration
Zeng et al. Resource-efficient fuel additives for reducing ash related operational problems in waste wood combustion (REFAWOOD)
Bartolomé et al. Comparative study of ash deposition and emissions during co-firing of different pulverized solid fuel
Ravi et al. Effect of Limestone Addition to Coal on SO2 Emission Control and Erosion-Corrosion Behaviour of Rifle Bore Bed Tube in AFBC Boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18718238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028196

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019553953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018718238

Country of ref document: EP

Effective date: 20191029