WO2018182180A1 - Bmw-based high frequency dielectric ceramic material and method for manufacturing same - Google Patents

Bmw-based high frequency dielectric ceramic material and method for manufacturing same Download PDF

Info

Publication number
WO2018182180A1
WO2018182180A1 PCT/KR2018/002315 KR2018002315W WO2018182180A1 WO 2018182180 A1 WO2018182180 A1 WO 2018182180A1 KR 2018002315 W KR2018002315 W KR 2018002315W WO 2018182180 A1 WO2018182180 A1 WO 2018182180A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic material
high frequency
dielectric ceramic
metal element
frequency dielectric
Prior art date
Application number
PCT/KR2018/002315
Other languages
French (fr)
Korean (ko)
Inventor
윤상옥
김신
홍창배
Original Assignee
강릉원주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180020807A external-priority patent/KR102023398B1/en
Application filed by 강릉원주대학교산학협력단 filed Critical 강릉원주대학교산학협력단
Priority to CN201880026647.8A priority Critical patent/CN110603610B/en
Priority to JP2020503679A priority patent/JP6883142B2/en
Priority to US16/499,862 priority patent/US11027985B2/en
Publication of WO2018182180A1 publication Critical patent/WO2018182180A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Definitions

  • the present invention relates to a dielectric ceramic material for resonators, filters, and oscillators used in a wireless communication system.
  • the present invention relates to a Ba (Mg 0.5 W 0.5 ) O 3 based high frequency dielectric ceramic material having an appropriate dielectric constant in a high frequency band and having a high quality factor. It is to provide a manufacturing method.
  • the present invention selected Ba (Mg 0.5 W 0.5 ) O 3 as a good material having high frequency dielectric properties.
  • a high frequency dielectric ceramic material composition having a high quality factor and stable temperature characteristics was prepared. If necessary, the +5 valent metal element can be added quantitatively to the tungsten (W) site.
  • microwave dielectric ceramics have been applied to mobile phones, wireless LAN (Local Area Network), GPS (Global Position Satellite), military radar system, Intelligent Transport System (ITS), etc. It is actively applied, and the dielectric ceramics for resonators, filters, and oscillators used in the system require an appropriate dielectric constant ( ⁇ r ), a high quality factor (Q ⁇ f), and a temperature coefficient close to zero ( ⁇ f ).
  • the high quality factor (Q ⁇ f) of Ba (Mg 0.5 W 0.5 ) O 3 is due to the 1: 1 regularization of B-site and generally improves the high frequency dielectric properties through the modification of the composition.
  • US Pat. No. 5,432,135 (1995.07.11.) Controls the composition ratio of the basic elements barium (Ba), magnesium (Mg) and tungsten (W), and as an additive yttrium oxide (Y 2 O 3 ), titanium oxide ( Disclosed is a high frequency dielectric ceramic material having improved dielectric properties using TiO 2 ), manganese oxide (MnO 2 ), and the like.
  • Japanese Patent Laid-Open No. 2000-044338 (2000.02.15.) Discloses Ba (Mg 0.5 W 0.5 ) O 3.
  • the dielectric properties are changed by substituting a part of strontium (Sr) in place of barium (Ba) and a certain amount of zinc (Zn), nickel (Ni) and cobalt (Co) in place of magnesium (Mg).
  • Sr strontium
  • Zn zinc
  • Ni nickel
  • Co cobalt
  • U.S. Patent No. 5,268,341 (1993.12.07.) Is characterized by improving the temperature coefficient ( ⁇ f ) of the resonant frequency by substituting tantalum (Ta) elements in place of tungsten (W).
  • Chinese Patent CN 102765938B (2014.04.02.) Discloses Ba (Mg 0.5 W 0.5 ) O 3
  • yttrium oxide (Y 2 O 3 ) or some rare earth oxides (RE 2 O 3 ) and zirconium oxide (ZrO 2 ) are substituted in place of magnesium (Mg), and manganese oxide (MnO 2 ) is added to 1
  • Mg yttrium oxide
  • RE 2 O 3 rare earth oxides
  • ZrO 2 zirconium oxide
  • Mg manganese oxide
  • MnO 2 manganese oxide
  • an alkali metal element such as sodium (Na) is placed in place of barium (Ba) in Ba (Mg 0.5 W 0.5 ) O 3 high frequency dielectric ceramic material.
  • + trivalent metal elements such as yttrium (Y) in place of magnesium (Mg) to partially replace and compensate for this, an excellent high frequency dielectric ceramic material composition having a high quality factor is disclosed.
  • an appropriate additive is selected in consideration of the substitution element size or valence associated with the crystal structure, and an appropriate amount of high-frequency dielectric ceramic material having a high quality factor and stable temperature characteristics is required. As can be developed, it has come to the present invention.
  • the present invention has been made to solve the above-mentioned problems, the present invention has a more appropriate dielectric constant, for example, to achieve a high quality factor of 100,000 GHz or more, preferably 150,000 GHz or more for removing noise and efficient transmission and reception It is an object of the present invention to provide a high frequency dielectric ceramic material capable of retaining the temperature coefficient of the resonant frequency improved to within ⁇ 10ppm / °C for the temperature stability of the transmission and reception frequency.
  • the present invention in the composition of (Ba 1-ab Ma a Mb b ) (Mg 0.5-c Mc c W 0.5 ) O 3 , Ma and Mb are alkali metals and alkaline earth metals, Mc is + 3 is a metal, a and c are each 0.01 to 0.1, and b is 0.09 to 0.25 to provide a MM-based high frequency dielectric ceramic material.
  • part of W is further substituted by Me, which is a +5 valent metal element, to form a composition of (Ba 1-ab Ma a Mb b ) (Mg 0.5-c Mc c W 0.5-e Me e ) O 3 , It is preferable that e is 0.01-0.05.
  • Ma is a + monovalent alkali metal element represented by Ma 2 O, and is preferably any one selected from Na, K, and Li.
  • the Mb is a + divalent alkaline earth metal element represented by MbO, and is preferably any one selected from Sr and Ca.
  • Mc is a + trivalent lanthanide metal element represented by Mc 2 O 3, and preferably any one selected from Sc, Y, Sm, Gd, Yb, and Dy or In boron group metal element.
  • Me is a + 5-valent vanadium group metal element represented by Me 2 O 5 , and is preferably any one selected from Nb and Ta.
  • the Ma and Mb is preferably all added for the purpose of high quality factor.
  • the Mb and Me is preferably added alone or all for the purpose of temperature characteristics of the resonance frequency.
  • the high frequency dielectric ceramic material has a more appropriate dielectric constant, and a high quality factor is realized.
  • the high frequency dielectric ceramic material according to the present invention has a stable temperature coefficient (for example, within ⁇ 10ppm / °C) it can be expected to exhibit good dielectric properties.
  • the high frequency dielectric ceramic material according to the present invention can be expected to have a high-quality high-frequency transmission and reception in the tens of GHz frequency band.
  • Figure 1 according to an embodiment of the present invention (Ba 1 -a- b Ma a Mb b) (Mg 0 .5- c YcW 0 .5- e Me e) O 3 series according to the Mb content of the high-frequency dielectric ceramic material, This graph shows the change in the temperature coefficient of the resonant frequency.
  • Figure 3 is according to the Me content of the (Ba 1 -a- b Ma a Sr b) according to an embodiment of the present invention (Mg 0 .5- c YcW .5- 0 e e Me) O 3 based high-frequency dielectric ceramic material,
  • This graph shows the change in the temperature coefficient of the resonant frequency.
  • an excellent ceramic dielectric requires the following characteristics.
  • an excellent ceramic dielectric resonator requires proper dielectric constant, high quality coefficient, and temperature coefficient of resonance frequency within ⁇ 10ppm / °C.
  • the temperature coefficient the more the value converges to 0, the better.
  • Ceramic material of the present invention was prepared by the following manufacturing method.
  • BaCO 3 purity 99.5% of SAKAI Chem. Ind. Co., Ltd., Na 2 CO 3 (purity: 99.5%) of Samjeon Pure Chemical Industries, Ltd., Japan High Purity Chemical Research Institute (Kojundo Chem. Lab. Co., Ltd) MgO (purity: 99%), Y 2 O 3 (purity: 99.9%), SrCO 3 (purity 99.9%), CaCO 3 (purity 99.5%), Ta 2 O 5 (purity: 99.9%), Nb 2 O 5 (purity: 99.9%) and WO 3 (purity: 99.9%) were used.
  • the mixed powder was placed in a metal mold having a diameter of 25 mm and uniaxially press-molded, and then calcined at 900 to 1100 ° C. for 10 hours.
  • the calcined molded body was again ball milled by the above mixing method, placed in an oven, and dried at 110 to 120 ° C. for 24 to 48 hours.
  • the dried powder was placed in a metal mold having a diameter of 15 mm and uniaxially press-molded at a pressure of 50 MPa, followed by sintering.
  • the sintering temperature and time were 1600-1700 ° C and 1 hour, and the temperature increase rate and the cooling rate up to 1200 ° C were 5 ° C / min.
  • the shrinkage ratio of the sintered body manufactured by the above method was measured and X-ray diffraction analysis (D / MAX-2500V / PC, Rigaku, Japan) was performed on the powder obtained by pulverizing the sintered body.
  • the quality coefficient (Q ⁇ f) and the temperature coefficient ( ⁇ f ) were measured by the cavity method, and the dielectric constant was measured by the network analyzer using the Hakki-Coleman method.
  • the temperature coefficient was used model name R3767CG (Advantest, Japan)
  • the quality coefficient and dielectric constant was used model name E5071C (Keysight, USA).
  • alkaline earth metal elements (group 2a) such as strontium (Sr)
  • + 5-valent metal elements such as tantalum (Ta)
  • the change of temperature characteristic of the resonant frequency was investigated.
  • alkaline earth metal elements (group 2a) such as strontium (Sr)
  • tantalum (Ta) was placed in the tungsten (W) site. Quantitative additions were arranged experimentally.
  • the quality factor is gradually reduced with strontium (Sr) content as shown in Figure 2 and can be seen to sharply lower at more than 0.25 mol, if not added depending on the content of sodium (Na) and yttrium (Y) It can be seen that the quality factor was greatly increased at 0.01 mol compared with that and then gradually decreased again. Therefore, sodium (Na) and yttrium (Y) should be added at least 0.01 mole, although not shown in the table, it is preferred to add up to 0.1 mole. The same is true for alkali metals other than sodium and yttrium (K, Li, etc.) and + trivalent metal elements (Al, Ga, Gd, Sm, etc.).
  • Table 2 replaces the barium (Ba) site with only alkaline earth metal elements and replaces the +5 valence vanadium metal element with the tungsten (W) site and compensates the charge.
  • + Trivalent metal elements Sc, Sm, Gd, Yb, Dy, etc.
  • the comparative example shows that only the alkali metal is substituted, and as shown in FIG. It can be seen that the number can be effectively controlled.
  • the result is similar even if yttrium (Y) is substituted for the trivalent lanthanide metal element Sc, Sm, Gd, Yb, Dy, or In, which is a boron metal element.
  • the temperature coefficient of the resonance frequency tends to increase linearly in accordance with the increase of strontium (Sr) and tantalum (Ta), and gradually increases when strontium (Sr) and tantalum (Ta) are added together.
  • strontium (Sr) and +5 valent vanadium group metal elements eg, Nb, Ta
  • the + 5-valent vanadium group metal element maintain the ratio (1-5 mol%) of 0.01-0.05 mol. In the case of less than 0.01 mole, the change in the temperature coefficient ⁇ f of the resonant frequency is too small, and when it exceeds 0.05 mole, the deterioration of the quality factor is not preferable.
  • the temperature coefficient of the resonant frequency is an important factor in the part design along with the quality factor.
  • +3 is added in place of magnesium (Mg).
  • Mg magnesium
  • the quantitative addition of metal elements and +5 in the place of tungsten (W) can be seen as a very efficient way to produce high frequency dielectric ceramic material compositions with high quality coefficients and stable temperature characteristics. .
  • the change of these properties can be regarded as a phenomenon associated with the change of crystal structure which is closely related to the ion radius and the substitution amount of the substitution element.

Abstract

The present invention relates to a dielectric ceramic material for a resonator, a filter, and an oscillator used in a wireless communication system. In particular, provided is a Ba(Mg0.5W0.5)O3-based high frequency dielectric ceramic material having an appropriate dielectric constant and a high quality factor in a high frequency band, and a method for producing the same. For this purpose, in the present invention, Ba(Mg0.5W0.5)O3 was selected as a material with good high frequency dielectric properties wherein barium (Ba) is partly substituted with an alkali metal or an alkaline earth metal element, and to compensate for the same, a +3-valent metal element is quantitatively added to the magnesium (Mg) site. Thus, a high frequency dielectric ceramic material composition with a high quality factor and a stable temperature characteristic is produced. A +5-valent metal element may be quantitatively added to tungsten (W) as needed. According to the present invention as described above, a high frequency dielectric ceramic material is expected to have the effects of having a more suitable dielectric constant, excellent temperature characteristics, and a high quality factor.

Description

BMW계 고주파 유전체 세라믹 소재 및 그 제조방법WMV high frequency dielectric ceramic material and manufacturing method thereof
본 발명은 무선통신 시스템에서 사용되는 공진기, 필터, 발진기용 유전체 세라믹 소재에 관한 것으로, 고주파 대역에서 적절한 유전상수를 가지면서 품질계수가 높은 Ba(Mg0.5W0.5)O3계 고주파 유전체 세라믹 소재 및 그 제조방법을 제공하는 것이다. 이를 위하여 본 발명은 고주파 유전특성이 좋은 소재로서 Ba(Mg0.5W0.5)O3를 선정하였다. 이 때, 바륨(Ba)자리에 알카리 금속 또는 알카리토류 금속원소를 일부 치환하고 이를 보상하기 위하여 마그네슘(Mg) 자리에 +3가 금속원소를 정량적으로 첨가한다. 이로써 높은 품질계수를 갖고 온도특성이 안정한 고주파 유전체 세라믹 소재 조성물을 제조하였다. 필요에 따라서 텅스텐(W) 자리에는 +5가 금속원소를 정량적으로 더 첨가할 수 있다.The present invention relates to a dielectric ceramic material for resonators, filters, and oscillators used in a wireless communication system. The present invention relates to a Ba (Mg 0.5 W 0.5 ) O 3 based high frequency dielectric ceramic material having an appropriate dielectric constant in a high frequency band and having a high quality factor. It is to provide a manufacturing method. To this end, the present invention selected Ba (Mg 0.5 W 0.5 ) O 3 as a good material having high frequency dielectric properties. At this time, to partially replace the alkali metal or alkaline earth metal element in place of the barium (Ba) and + trivalent metal element is added quantitatively in place of magnesium (Mg). Thus, a high frequency dielectric ceramic material composition having a high quality factor and stable temperature characteristics was prepared. If necessary, the +5 valent metal element can be added quantitatively to the tungsten (W) site.
최근, 무선 통신 산업의 급격한 발달에 따라서 휴대전화, 무선LAN(Local Area Network), GPS(Global Position Satellite), 군용 레이더(radar) 시스템, 지능교통시스템(ITS, Intelligent Transport System) 등에 마이크로파 유전체 세라믹스를 적극적으로 적용하고 있으며, 상기 시스템에서 사용되는 공진기, 필터, 발진기용 유전체 세라믹스는 적절한 유전상수(εr), 높은 품질계수(Q×f), 0에 가까운 온도계수(τf)가 요구된다. Recently, with the rapid development of the wireless communication industry, microwave dielectric ceramics have been applied to mobile phones, wireless LAN (Local Area Network), GPS (Global Position Satellite), military radar system, Intelligent Transport System (ITS), etc. It is actively applied, and the dielectric ceramics for resonators, filters, and oscillators used in the system require an appropriate dielectric constant (ε r ), a high quality factor (Q × f), and a temperature coefficient close to zero (τ f ).
또한, 무선통신의 발달로 정보량이 급증하고 통신 주파수 대역이 포화됨에 따라 사용 주파수 대역이 더욱 높아지고 있으며, 이에 부응하는 고품위의 고주파 송수신용 부품이 절실히 요구되고 있는 실정이다. 따라서, 높은 주파수 대역에서도 유전상수(εr)가 낮고 품질계수(Q×f)는 더욱 높은 재료에 대한 필요성이 증대되고 있다. In addition, as the amount of information increases and the communication frequency band saturates due to the development of wireless communication, the use frequency band is further increased, and a high quality high frequency transmission / reception component corresponding thereto is urgently required. Therefore, there is an increasing need for a material having a low dielectric constant ε r and a higher quality factor Q × f even in a high frequency band.
한편, 마이크로파 영역에서 사용되는 유전체 공진기로 많은 종류의 세라믹 소재가가 개발되고 있다. 예를 들어 복합 페롭스카이트(perovskite)인 Ba(Mg0.33Ta0.67)O3 (BMT;εr=24, Q×f=250,000 GHz)와 Ba(Zn0.33Ta0.67)O3 (BZT;εr=29, Q×f=150,000 GHz)가 이미 상용화 되었다. On the other hand, many kinds of ceramic materials have been developed as dielectric resonators used in the microwave region. For example, Ba (Mg 0.33 Ta 0.67 ) O 3 (BMT; ε r = 24, Q × f = 250,000 GHz) and Ba (Zn 0.33 Ta 0.67 ) O 3, which are composite perovskites (BZT; ε r = 29, Q x f = 150,000 GHz) has already been commercialized.
최근에는 본 발명의 기본조성인 Ba(Mg0.5W0.5)O3(BMW; εr=21, Q×f=170,000 GHz) 또한 많이 연구가 되었으며, 일부 상용화를 이루고 있다. Recently, the basic composition of the present invention Ba (Mg 0.5 W 0.5 ) O 3 (BMW; ε r = 21, Q × f = 170,000 GHz) has also been studied a lot, and some commercialization has been achieved.
Ba(Mg0.5W0.5)O3(BMW)는 복합 페롭스카이트(perovskite) 결정구조를 가지며, εr=16.7, Q×f=42,000 GHz, τf=-25 ppm/℃의 물성을 보유하는데, Ba(Mg0.5W0.5)O3의 높은 품질계수(Q×f)는 B-site의 1 : 1 규칙화에 기인하며, 일반적으로 조성의 변형을 통하여 고주파 유전특성을 개선하고 있다. Ba (Mg 0.5 W 0.5 ) O 3 (BMW) has a composite perovskite crystal structure and possesses the properties of ε r = 16.7, Q × f = 42,000 GHz, τ f = -25 ppm / ° C. The high quality factor (Q × f) of Ba (Mg 0.5 W 0.5 ) O 3 is due to the 1: 1 regularization of B-site and generally improves the high frequency dielectric properties through the modification of the composition.
이와 같은 BMW와 관련된 선행기술들을 살펴보면 아래와 같다. Looking at the prior art related to such BMW is as follows.
미국특허 US 6,835,685B2호 (2004.12.28.)와 일본특허 특개2002-087881호 (2002.03.27.) 및 중국특허 CN 1264779C호 (2006.07.19.)는 바륨(Ba)자리에 스트론튬(Sr)을 1 ~ 15 mol% 치환하고 희토류 산화물(RE2O3)을 1 ~ 10 mol% 첨가하여 조합함으로써 유전특성을 향상시키는 것을 특징으로 한다. US Pat. No. 6,835,685B2 (Dec. 28, 2004), Japanese Patent Laid-Open No. 2002-087881 (2002.03.27.), And Chinese Patent No. 1264779C (July 19, 2006) show strontium (Sr) in place of barium (Ba). Substituting 1 to 15 mol% and adding 1 to 10 mol% of rare earth oxides (RE 2 O 3 ) are combined to improve dielectric properties.
또한, 미국특허 US 5,432,135호 (1995.07.11.)에서는 기본 원소들인 바륨(Ba)과 마그네슘(Mg) 그리고 텅스텐(W)의 구성비를 제어하고 첨가제로 산화이트륨(Y2O3), 산화티타늄(TiO2), 산화망간(MnO2)등을 사용하여 유전특성을 향상시킨 고주파 유전체 세라믹 소재를 개시하고 있다.In addition, US Pat. No. 5,432,135 (1995.07.11.) Controls the composition ratio of the basic elements barium (Ba), magnesium (Mg) and tungsten (W), and as an additive yttrium oxide (Y 2 O 3 ), titanium oxide ( Disclosed is a high frequency dielectric ceramic material having improved dielectric properties using TiO 2 ), manganese oxide (MnO 2 ), and the like.
또한, 일본특허 특개2000-044338호 (2000.02.15.)는 Ba(Mg0.5W0.5)O3 고주파 유전체 세라믹 소재에서 바륨(Ba)자리에 스트론튬(Sr)을 일부 치환하고 마그네슘(Mg)자리에 아연(Zn), 니켈(Ni) 및 코발트(Co)를 일정량 치환하여 유전특성을 변화시키는 것을 특징으로 하며, 미국특허 US 5,268,341호 (1993.12.07.)는 텅스텐(W)자리에 탄탈륨(Ta) 원소를 치환함으로써 공진주파수의 온도계수(τf)를 개선하는 것을 특징으로 하고 있다.In addition, Japanese Patent Laid-Open No. 2000-044338 (2000.02.15.) Discloses Ba (Mg 0.5 W 0.5 ) O 3. In the high frequency dielectric ceramic material, the dielectric properties are changed by substituting a part of strontium (Sr) in place of barium (Ba) and a certain amount of zinc (Zn), nickel (Ni) and cobalt (Co) in place of magnesium (Mg). U.S. Patent No. 5,268,341 (1993.12.07.) Is characterized by improving the temperature coefficient (τ f ) of the resonant frequency by substituting tantalum (Ta) elements in place of tungsten (W).
아울러, 중국특허 CN 102765938B호 (2014.04.02.)에서는 Ba(Mg0.5W0.5)O3 고주파 유전체 세라믹 소재에서 마그네슘(Mg) 자리에 산화이트륨(Y2O3) 또는 일부 희토류산화물(RE2O3), 그리고 산화지르코늄(ZrO2)을 치환하고 여기에 산화망간(MnO2)을 1 mol% 첨가하여 조합함으로써 유전특성을 향상시킨 고주파 유전체 세라믹 소재를 개시하고 있다.In addition, Chinese Patent CN 102765938B (2014.04.02.) Discloses Ba (Mg 0.5 W 0.5 ) O 3 In the high-frequency dielectric ceramic material, yttrium oxide (Y 2 O 3 ) or some rare earth oxides (RE 2 O 3 ) and zirconium oxide (ZrO 2 ) are substituted in place of magnesium (Mg), and manganese oxide (MnO 2 ) is added to 1 A high frequency dielectric ceramic material having improved dielectric properties by adding mol% in combination is disclosed.
한편, 한국특허출원 제10-2017-0041421호 (2017.03.31)에 의하면 Ba(Mg0.5W0.5)O3 고주파 유전체 세라믹 소재에서 바륨(Ba)자리에 소디움(Na)등의 알카리류 금속원소를 일부 치환하고 이를 보상하기 위하여 마그네슘(Mg) 자리에 이트륨(Y) 등의 +3가 금속원소를 정량적으로 첨가함으로써, 높은 품질계수를 갖는 우수한 고주파 유전체 세라믹 소재 조성물을 개시하고 있다.Meanwhile, according to Korean Patent Application No. 10-2017-0041421 (2017.03.31), an alkali metal element such as sodium (Na) is placed in place of barium (Ba) in Ba (Mg 0.5 W 0.5 ) O 3 high frequency dielectric ceramic material. To quantitatively add + trivalent metal elements such as yttrium (Y) in place of magnesium (Mg) to partially replace and compensate for this, an excellent high frequency dielectric ceramic material composition having a high quality factor is disclosed.
그러나, 이러한 선행기술들에서 개시하고 있는 Ba(Mg0.5W0.5)O3계 고주파 유전체 세라믹 소재의 유전특성은 각각의 자리에 치환시키는 원소나 첨가물에 따라서 변화됨을 나타내고 있는데, 특히 공진주파수의 온도계수는 다른 원소의 고용에 따른 결정구조(crystal structure)의 미세한 변화에 크게 영향을 받으며, 이러한 문제를 명확히 해결하지 못하고 있다는 문제점이 있다.However, the dielectric properties of Ba (Mg 0.5 W 0.5 ) O 3 based high frequency dielectric ceramic materials disclosed in these prior arts have been shown to change depending on the element or additive to be substituted at each site, especially the temperature coefficient of the resonance frequency. It is greatly affected by the minute change of the crystal structure (crystal structure) due to the employment of other elements, there is a problem that does not solve the problem clearly.
그러므로, 유전체의 공진주파수의 온도계수를 개선시키기 위해서는 결정구조와 연관되는 치환원소의 크기나 원자가를 고려하여 적절한 첨가제를 선정하고, 적정량을 첨가하여야만 높은 품질계수을 갖고 온도특성이 안정한 우수한 고주파 유전체 세라믹 소재를 개발할 수 있는 바, 본 발명에 이르게 되었다.Therefore, in order to improve the temperature coefficient of the dielectric resonance frequency of the dielectric, an appropriate additive is selected in consideration of the substitution element size or valence associated with the crystal structure, and an appropriate amount of high-frequency dielectric ceramic material having a high quality factor and stable temperature characteristics is required. As can be developed, it has come to the present invention.
또한, 향후 5세대 통신의 본격적인 도입으로 인해 수십GHz 주파수 대역에서 고품위의 고주파 송수신이 필요하며, 따라서, 유전상수(εr)는 낮고 품질계수(Q×f)는 더욱 높으며 공진 주파수의 온도특성이 안정한 고주파 유전체 세라믹 소재가 요구되고 있다.In addition, due to the full-scale introduction of fifth generation communication, high-quality high-frequency transmission / reception is required in several tens of GHz frequency bands. Therefore, the dielectric constant (ε r ) is low, the quality factor (Q × f) is high, and the temperature characteristic of the resonance frequency is high. There is a need for a stable high frequency dielectric ceramic material.
본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 보다 적절한 유전상수를 가지며, 예를 들어 잡음을 없애고 효율적인 송수신을 위하여 100,000GHz 이상 바람직하게는 150,000GHz 이상의 높은 품질계수가 구현되도록 하고, 송수신 주파수의 온도 안정성을 위하여 ±10ppm/℃ 이내로 개선된 공진주파수의 온도계수를 보유할 수 있는 고주파 유전체 세라믹 소재를 제공하는 것을 목적으로 한다. The present invention has been made to solve the above-mentioned problems, the present invention has a more appropriate dielectric constant, for example, to achieve a high quality factor of 100,000 GHz or more, preferably 150,000 GHz or more for removing noise and efficient transmission and reception It is an object of the present invention to provide a high frequency dielectric ceramic material capable of retaining the temperature coefficient of the resonant frequency improved to within ± 10ppm / ℃ for the temperature stability of the transmission and reception frequency.
본 발명에서는 고주파 유전특성이 좋은 Ba(Mg0.5W0.5)O3에 다른 원소의 고용에 따른 격자결함(lattice defects)이나 제2상(2nd phases)의 형성을 막기 위하여 바륨(Ba)자리에 소디움(Na)등의 알카리 금속원소를 일부 치환하고 이를 보상하기 위하여 마그네슘(Mg) 자리에 이트륨(Y)등의 +3가 금속원소를 적정량 첨가함으로써 높은 품질계수를 갖도록 조합하고, 바륨(Ba)자리에 스트론튬(Sr) 등의 알칼리토류 금속원소(2a족 원소)를 첨가함으로써 공진주파수의 온도특성이 우수한 고주파 유전체 세라믹 소재 조성물을 개발할 수 있었다. In the present invention, in order to prevent the formation of lattice defects or second phases due to the employment of other elements in Ba (Mg 0.5 W 0.5 ) O 3 having good high frequency dielectric properties, sodium is placed in place of barium (Ba). In order to replace some of the alkali metal elements such as (Na) and to compensate for them, a combination of compounds having a high quality coefficient by adding an appropriate amount of a + trivalent metal element such as yttrium (Y) to the magnesium (Mg) site, and the barium (Ba) site By adding alkaline earth metal elements (group 2a elements), such as strontium (Sr), to a high frequency dielectric ceramic material composition having excellent temperature characteristics of the resonance frequency was developed.
그리고 텅스텐(W) 자리에는 탄탈륨(Ta) 등의 +5가 금속원소를 정량적으로 단독 또는 추가하여 첨가함으로써 이러한 우수한 특성을 더욱 제고할 수 있었다.In addition, it was possible to further enhance these excellent characteristics by adding +5 valent metal elements such as tantalum (Ta) alone or in addition to the tungsten (W) sites.
본 발명은 전술한 목적을 달성하기 위하여, (Ba1-a-bMaaMbb)(Mg0.5-cMccW0.5)O3 의 조성 중, Ma 및 Mb는 알칼리 금속 및 알칼리 토금속이며, Mc는 +3가 금속이고, a 및 c가 각각 0.01 내지 0.1이고, b는 0.09 내지 0.25인 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재를 제공한다.In order to achieve the above object, the present invention, in the composition of (Ba 1-ab Ma a Mb b ) (Mg 0.5-c Mc c W 0.5 ) O 3 , Ma and Mb are alkali metals and alkaline earth metals, Mc is + 3 is a metal, a and c are each 0.01 to 0.1, and b is 0.09 to 0.25 to provide a MM-based high frequency dielectric ceramic material.
상기 조성에서 W의 일부는 +5가의 금속원소인 Me에 의하여 더 치환되어, (Ba1-a-bMaaMbb)(Mg0.5-cMccW0.5-eMee)O3 의 조성을 이루며, e는 0.01 내지 0.05인 것이 바람직하다.In the composition, part of W is further substituted by Me, which is a +5 valent metal element, to form a composition of (Ba 1-ab Ma a Mb b ) (Mg 0.5-c Mc c W 0.5-e Me e ) O 3 , It is preferable that e is 0.01-0.05.
상기 Ma는 Ma2O로 표시되는 +1가의 알칼리 금속원소로서, Na, K 및 Li 중에서 선택되는 어느 하나인 것이 바람직하다.Ma is a + monovalent alkali metal element represented by Ma 2 O, and is preferably any one selected from Na, K, and Li.
상기 Mb는 MbO로 표시되는 +2가의 알칼리토류 금속원소로서, Sr 및 Ca 중에서 선택되는 어느 하나인 것이 바람직하다.The Mb is a + divalent alkaline earth metal element represented by MbO, and is preferably any one selected from Sr and Ca.
상기 Mc는 Mc2O3로 표시되는 +3가의 란탄족 금속원소로서, Sc, Y, Sm, Gd, Yb, Dy 중에서 선택되는 어느 하나 또는 붕소족 금속원소로서 In인 것이 바람직하다.Mc is a + trivalent lanthanide metal element represented by Mc 2 O 3, and preferably any one selected from Sc, Y, Sm, Gd, Yb, and Dy or In boron group metal element.
상기 Me는 Me2O5로 표시되는 +5가의 바나듐족 금속원소로서, Nb 및 Ta 중에서 선택되는 어느 하나인 것이 바람직하다.Me is a + 5-valent vanadium group metal element represented by Me 2 O 5 , and is preferably any one selected from Nb and Ta.
상기 Ma 및 Mb는 높은 품질계수를 목적으로 모두 첨가되는 것이 바람직하다.The Ma and Mb is preferably all added for the purpose of high quality factor.
상기 Mb 및 Me는 공진주파수의 온도특성을 목적으로 단독 또는 모두 첨가되는 것이 바람직하다.The Mb and Me is preferably added alone or all for the purpose of temperature characteristics of the resonance frequency.
이상과 같은 본 발명에 따르면, 고주파 유전체 세라믹 소재가 보다 적절한 유전상수를 가지며, 높은 품질계수가 구현되는 효과를 기대할 수 있다.According to the present invention as described above, it can be expected that the high frequency dielectric ceramic material has a more appropriate dielectric constant, and a high quality factor is realized.
또한, 본 발명에 따른 고주파 유전체 세라믹 소재는 안정된 범위의 온도계수(예를 들어 ±10ppm/℃ 이내)를 가지므로 양호한 유전특성의 발현 효과를 기대할 수 있다.In addition, since the high frequency dielectric ceramic material according to the present invention has a stable temperature coefficient (for example, within ± 10ppm / ℃) it can be expected to exhibit good dielectric properties.
그리고, 본 발명에 따른 고주파 유전체 세라믹 소재를 사용하여 수십 GHz 주파수 대역에서 고품위의 고주파 송수신이 가능한 효과를 기대할 수 있다.In addition, the high frequency dielectric ceramic material according to the present invention can be expected to have a high-quality high-frequency transmission and reception in the tens of GHz frequency band.
도 1은 본 발명의 실시예에 의한 (Ba1 -a- bMaaMbb)(Mg0 .5- cYcW0 .5- eMee)O3계 고주파 유전체 세라믹 소재의 Mb함량에 따른 공진주파수의 온도계수 변화를 보여주는 그래프이다.Figure 1 according to an embodiment of the present invention (Ba 1 -a- b Ma a Mb b) (Mg 0 .5- c YcW 0 .5- e Me e) O 3 series according to the Mb content of the high-frequency dielectric ceramic material, This graph shows the change in the temperature coefficient of the resonant frequency.
도 2는 본 발명의 실시예에 의한 (Ba1 -a- bMaaMbb)(Mg0 .5- cYcW0 .5- eMee)O3계 고주파 유전체 세라믹 소재의 Mb함량에 따른 품질계수의 변화를 나타내는 그래프이다.2 is according to the Mb content of (Ba 1 -a- b Ma a Mb b) (Mg 0 .5- c YcW 0 .5- e Me e) O 3 based high-frequency dielectric ceramic material according to an embodiment of the present invention It is a graph showing the change of the quality factor.
도 3은 본 발명의 실시예에 의한 (Ba1 -a- bMaaSrb)(Mg0 .5- cYcW0 .5- eMee)O3 계 고주파 유전체 세라믹 소재의 Me함량에 따른 공진주파수의 온도계수 변화를 보여주는 그래프이다.Figure 3 is according to the Me content of the (Ba 1 -a- b Ma a Sr b) according to an embodiment of the present invention (Mg 0 .5- c YcW .5- 0 e e Me) O 3 based high-frequency dielectric ceramic material, This graph shows the change in the temperature coefficient of the resonant frequency.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참고하여 상세하게 설명하도록 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명을 설명함에 있어서, 정의되는 용어들은 본 발명에서의 기능을 고려하여 정의 내려진 것으로, 이는 당 분야에 종사하는 기술자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the description of the present invention, terms defined are defined in consideration of functions in the present invention, which may vary according to the intention or custom of a person skilled in the art and the definitions are based on the contents throughout this specification. Will have to be lowered.
본 발명에 관해서 상세히 설명하기에 앞서, 우수한 세라믹 유전체는 다음과 같은 특성이 필요함을 주지하여야 한다. 즉, 우수한 세라믹 유전체 공진기는 적절한 유전상수와 높은 품질계수 및 ±10ppm/℃ 이내의 공진주파수의 온도계수 특성이 필요하다. 즉, 온도계수의 경우 값이 0으로 수렴할수록 좋다. Before describing the present invention in detail, it should be noted that an excellent ceramic dielectric requires the following characteristics. In other words, an excellent ceramic dielectric resonator requires proper dielectric constant, high quality coefficient, and temperature coefficient of resonance frequency within ± 10ppm / ℃. In other words, in the case of the temperature coefficient, the more the value converges to 0, the better.
본 발명의 세라믹 소재는 다음과 같은 제조방법에 의하여 제조하였다. Ceramic material of the present invention was prepared by the following manufacturing method.
출발물질로서, 일본 사카이화학공업(SAKAI Chem. Ind. Co., Ltd)의 BaCO3(순도 99.5%), 삼전순약공업(주)의 Na2CO3(순도: 99.5%), 일본 고순도화학연구소(Kojundo Chem. Lab. Co., Ltd)의 MgO(순도: 99%), Y2O3 (순도: 99.9%), SrCO3(순도 99.9%), CaCO3(순도 99.5%), Ta2O5 (순도: 99.9%), Nb2O5 (순도: 99.9%) 및 WO3(순도: 99.9%)를 사용하였다.As starting materials, BaCO 3 (purity 99.5%) of SAKAI Chem. Ind. Co., Ltd., Na 2 CO 3 (purity: 99.5%) of Samjeon Pure Chemical Industries, Ltd., Japan High Purity Chemical Research Institute (Kojundo Chem. Lab. Co., Ltd) MgO (purity: 99%), Y 2 O 3 (purity: 99.9%), SrCO 3 (purity 99.9%), CaCO 3 (purity 99.5%), Ta 2 O 5 (purity: 99.9%), Nb 2 O 5 (purity: 99.9%) and WO 3 (purity: 99.9%) were used.
이를 후술하는 [표 1] 및 [표 2]와 같은 다양한 실시예에 따르도록 출발원료를 칭량한 다음, 지르코니아 볼 및 에틸 알코올을 폴리에틸렌 용기에 넣고 24시간 혼합하였다. Starting materials were weighed according to various examples such as [Table 1] and [Table 2] described below, and then zirconia balls and ethyl alcohol were put into polyethylene containers and mixed for 24 hours.
혼합된 원료를 건조한 후, 혼합분말을 직경 25mm의 금속재질 몰드에 넣고 1축 가압성형하였으며, 이후 900∼1100℃에서 10시간 동안 하소하였다. 하소된 성형체를 상기 혼합방법으로 다시 볼밀(ball milling)한 후, 오븐(oven)에 넣고 110 ~ 120℃에서 24 ~ 48시간 동안 건조하였다. After the mixed raw materials were dried, the mixed powder was placed in a metal mold having a diameter of 25 mm and uniaxially press-molded, and then calcined at 900 to 1100 ° C. for 10 hours. The calcined molded body was again ball milled by the above mixing method, placed in an oven, and dried at 110 to 120 ° C. for 24 to 48 hours.
이후, 건조된 분말을 직경 15mm의 금속재질 몰드에 넣고 50MPa의 압력으로 1축 가압성형하였으며, 이후 소결을 수행하였다. 이 때, 소결온도 및 시간은 1600∼1700℃ 및 1시간이었으며, 승온속도 및 1200℃까지의 냉각속도는 5℃/min으로 하였다. Thereafter, the dried powder was placed in a metal mold having a diameter of 15 mm and uniaxially press-molded at a pressure of 50 MPa, followed by sintering. At this time, the sintering temperature and time were 1600-1700 ° C and 1 hour, and the temperature increase rate and the cooling rate up to 1200 ° C were 5 ° C / min.
이와 같은 방법에 의하여 제조된 소결체의 선수축율를 측정하고 소결체를 분쇄하여 얻은 분말에 대해서 X-선 회절분석(D/MAX-2500V/PC, Rigaku, Japan)을 하였다. 또한, 고주파 유전특성 중에서 품질계수(Q×f) 및 온도계수(τf)는 cavity법으로, 유전상수는 Hakki-Coleman법으로 각각 Network Analyser를 사용하여 측정하였다. 아울러, 온도계수는 모델명 R3767CG(Advantest, Japan)를 사용하였으며, 품질계수 및 유전상수는 모델명 E5071C(Keysight, U.S.A.)를 사용하였다. The shrinkage ratio of the sintered body manufactured by the above method was measured and X-ray diffraction analysis (D / MAX-2500V / PC, Rigaku, Japan) was performed on the powder obtained by pulverizing the sintered body. Among the high frequency dielectric properties, the quality coefficient (Q × f) and the temperature coefficient (τ f ) were measured by the cavity method, and the dielectric constant was measured by the network analyzer using the Hakki-Coleman method. In addition, the temperature coefficient was used model name R3767CG (Advantest, Japan), the quality coefficient and dielectric constant was used model name E5071C (Keysight, USA).
본 발명에서 바륨(Ba)자리에 스트론튬(Sr) 등의 알칼리토 금속원소(2a족)를, 그리고 텅스텐(W) 자리에는 탄탈륨(Ta) 등 +5가 금속원소를 정량적으로 단독 또는 모두 첨가함으로써 공진주파수의 온도특성의 변화을 알아보았다. [표 1]에서는 바륨(Ba)자리에 스트론튬(Sr) 등의 알칼리토 금속원소(2a족)를 첨가한 것을 실험적으로 정리하였고, [표 2]에서는 텅스텐(W) 자리에는 탄탈륨(Ta)을 정량적으로 첨가한 것을 실험적으로 정리하였다.In the present invention, by adding quantitatively alone or all of the alkaline earth metal elements (group 2a) such as strontium (Sr) to the barium (Ba) site, and + 5-valent metal elements such as tantalum (Ta) to the tungsten (W) site The change of temperature characteristic of the resonant frequency was investigated. In Table 1, the addition of alkaline earth metal elements (group 2a) such as strontium (Sr) to the barium (Ba) site was experimentally summarized. In Table 2, tantalum (Ta) was placed in the tungsten (W) site. Quantitative additions were arranged experimentally.
[표 1]에서 나타낸 바와 같이 한국특허출원 제10-2017-0041421호 (2017.03.31.)에 개시된 결과를 비교예로 하여 본 발명의 실시예와 비교 평가하였다. 비교 평가 대상물성은 소결성 및 유전 특성으로 하였다. 비교예에서는 특히 -10 ppm/℃보다 더 낮은 온도계수가 관찰되었으며, 이는 바람직하지 못한 결과이다. 가사 -10 ppm/℃의 범위 내에서 온도계수가 기록되었다고 하더라도, 비교예에서는 품질계수가 매우 낮은 값을 보이는 경우가 많았다. As shown in Table 1, the results disclosed in Korean Patent Application No. 10-2017-0041421 (2017.03.31.) Were compared with the examples of the present invention as comparative examples. Comparative evaluation object properties were made into sinterability and dielectric properties. In the comparative example, particularly a temperature coefficient lower than −10 ppm / ° C. was observed, which is an undesirable result. Even if the temperature coefficient was recorded within the range of -10 ppm / ° C, the comparative example often showed very low values of the quality coefficient.
번호number 조성(mol%)Composition (mol%) 수축율(%)Shrinkage (%) εr ε r Q×f(GHz) Q × f (GHz) τf(ppm/℃)τ f (ppm / ℃)
BaOBaO SrOSrO Na2ONa 2 O MgOMgO Y2O3 Y 2 O 3 WO3 WO 3
비교예1Comparative Example 1 100100 00 NaNa 00 5050 YY 00 5050 17.53%17.53% 17.6017.60 5730057300 -25.00-25.00
비교예2Comparative Example 2 9797 1One NaNa 22 4848 YY 22 5050 24.20%24.20% 18.6518.65 271290271290 -16.42-16.42
비교예3Comparative Example 3 9696 22 NaNa 22 4848 YY 22 5050 24.66%24.66% 18.6518.65 254909254909 -13.78-13.78
비교예4Comparative Example 4 9595 33 NaNa 22 4848 YY 22 5050 24.40%24.40% 18.6818.68 241074241074 -13.76-13.76
비교예5Comparative Example 5 9494 44 NaNa 22 4848 YY 22 5050 23.40%23.40% 18.6918.69 251841251841 -13.74-13.74
비교예6Comparative Example 6 9393 55 NaNa 22 4848 YY 22 5050 24.46%24.46% 18.8918.89 239341239341 -13.69-13.69
비교예7Comparative Example 7 9292 66 NaNa 22 4848 YY 22 5050 24.40%24.40% 19.0719.07 210021210021 -13.21-13.21
비교예8Comparative Example 8 9191 77 NaNa 22 4848 YY 22 5050 24.60%24.60% 18.9818.98 196833196833 -11.93-11.93
비교예9Comparative Example 9 9090 88 NaNa 22 4848 YY 22 5050 23.73%23.73% 18.9818.98 192519192519 -11.24-11.24
비교예10Comparative Example 10 8585 1515 NaNa 00 5050 YY 00 5050 23.87%23.87% 19.3819.38 7714777147 -5.42-5.42
비교예11Comparative Example 11 8080 2020 NaNa 00 5050 YY 00 5050 24.47%24.47% 19.5819.58 7231572315 0.000.00
비교예12Comparative Example 12 7575 2525 NaNa 00 5050 YY 00 5050 24.13%24.13% 19.6619.66 4912449124 5.365.36
비교예13Comparative Example 13 7070 3030 NaNa 00 5050 YY 00 5050 25.27%25.27% 20.2520.25 8586685866 10.310.3
실시예1Example 1 8585 1414 NaNa 1One 4949 YY 1One 5050 23.73%23.73% 18.8918.89 240413240413 -5.37-5.37
실시예2Example 2 8585 1313 NaNa 22 4848 YY 22 5050 24.93%24.93% 19.4319.43 203677203677 -5.41-5.41
실시예3Example 3 8585 1212 NaNa 33 4747 YY 33 5050 24.33%24.33% 19.7319.73 188072188072 -5.43-5.43
실시예4Example 4 8585 1111 NaNa 44 4646 YY 44 5050 22.80%22.80% 19.3619.36 168124168124 -5.43-5.43
실시예5Example 5 8080 1919 NaNa 1One 4949 YY 1One 5050 24.47%24.47% 19.3919.39 193794193794 0.000.00
실시예6Example 6 8080 1818 NaNa 22 4848 YY 22 5050 25.93%25.93% 19.7119.71 161269161269 2.702.70
실시예7Example 7 8080 1717 NaNa 33 4747 YY 33 5050 24.33%24.33% 19.519.5 162180162180 2.712.71
실시예8Example 8 8080 1616 NaNa 44 4646 YY 44 5050 23.93%23.93% 19.3219.32 150436150436 2.712.71
실시예9Example 9 7575 2424 NaNa 1One 4949 YY 1One 5050 25.20%25.20% 18.7618.76 189083189083 5.375.37
실시예10Example 10 7575 2323 NaNa 22 4848 YY 22 5050 25.53%25.53% 19.3119.31 162618162618 5.435.43
실시예11Example 11 7575 2222 NaNa 33 4747 YY 33 5050 24.60%24.60% 19.4219.42 156668156668 8.178.17
실시예12Example 12 7575 2121 NaNa 44 4646 YY 44 5050 23.07%23.07% 18.9718.97 148661148661 5.435.43
위 표 1로 부터 알 수 있는 바와 같이, 수축률의 면에서는 실시예와 비교예 공히 20% 이상의 충분한 소결수축이 이루어져 소결특성에는 문제가 없었다. 한편, 고주파 유전특성에서 유전상수(εr )는 대략 18 내지 20 정도로 큰 차이가 없으나, 공진주파수의 온도계수는 도 1에서 보는 바와 같이 스트론튬(Sr)함량에 따라 선형적으로 변화함을 알 수 있고, 소디움(Na)과 이트륨(Y)의 함량에 따라서도 연계하여 변화함을 알 수 있다. 즉, 스트론튬(Sr)만으로 단독 치환하는 것보다는 여기에 소디움(Na)과 이트륨(Y)를 같이 치환한 것이 공진주파수의 온도계수를 효율적으로 제어할 수 있음을 알 수 있었다. 한편, 품질계수는 도 2에서 보는 바와 같이 스트론튬(Sr)함량에 따라 서서히 감소하다가 0.25 mol 이상에서 급격히 낮아짐을 볼 수 있으며, 소디움(Na)과 이트륨(Y)의 함량에 따라서도 첨가하지 않은 경우와 대비하여 0.01 mol 에서 품질계수가 크게 증가하였다가 이 이상에서 다시 서서히 감소함을 알 수 있다. 따라서, 소디움(Na)과 이트륨(Y)은 적어도 0.01몰은 첨가되어야 하며, 표에서는 나타내지 아니하였으나, 최대 0.1몰까지 첨가되는 것이 좋다. 이는 소디움과 이트륨이 아닌 다른 알칼리 금속(K, Li 등)과 +3가 금속원소(Al, Ga, Gd, Sm 등)에서도 마찬가지이다. 따라서, 품질계수(Q×f)가 높고 공진 주파수의 온도특성이 안정한 고주파 유전체 세라믹 소재를 개발하기 위해서는 스트론튬(Sr)만으로 단독 치환하는 것보다는 여기에 소디움(Na)과 이트륨(Y)를 같이 치환한 것이 효율적인 방안임을 알 수 있다. 여기서, 여기서, 0.01몰 미만의 경우 공진주파수의 온도계수(τf)의 변화가 미미하며, 0.1몰 초과시는 품질계수의 저하가 크므로 바람직하지 못하다. 따라서, 위 범위에서 그 임계적 의의가 있다. Sr을 대체하여 Ca를 사용하여도 결과는 유사하다 한편, 스트론튬(Sr)은 0.09 내지 0.25몰 포함되는 것이 바람직한데, 위 범위를 벗어나면 품질계수와 온도계수 중 어느 하나는 낮은 값을 나타내어 바람직하지 않다.이러한 특성들의 변화는 치환성분과 함께 치환량에 따라 상호 연계하여 나타남을 알 수 있으며, 이는 치환 원소의 이온반경과 치환량에 따른 결정구조의 변화와 연계된 현상으로 볼 수 있다.As can be seen from Table 1 above, in terms of shrinkage rate, sintering shrinkage of 20% or more was achieved in both Examples and Comparative Examples, and thus there was no problem in sintering characteristics. On the other hand, the dielectric constant (ε r ) in the high frequency dielectric properties does not have a large difference of about 18 to 20, but the temperature coefficient of the resonance frequency is linearly changed according to the strontium (Sr) content as shown in FIG. In addition, it can be seen that it changes in conjunction with the content of sodium (Na) and yttrium (Y). In other words, it was found that the substitution of sodium (Na) and yttrium (Y) together with the strontium (Sr) alone can effectively control the temperature coefficient of the resonance frequency. On the other hand, the quality factor is gradually reduced with strontium (Sr) content as shown in Figure 2 and can be seen to sharply lower at more than 0.25 mol, if not added depending on the content of sodium (Na) and yttrium (Y) It can be seen that the quality factor was greatly increased at 0.01 mol compared with that and then gradually decreased again. Therefore, sodium (Na) and yttrium (Y) should be added at least 0.01 mole, although not shown in the table, it is preferred to add up to 0.1 mole. The same is true for alkali metals other than sodium and yttrium (K, Li, etc.) and + trivalent metal elements (Al, Ga, Gd, Sm, etc.). Therefore, in order to develop a high frequency dielectric ceramic material having a high quality factor (Q × f) and stable temperature characteristics of the resonance frequency, it is substituted with sodium (Na) and yttrium (Y) instead of only strontium (Sr) alone. One can see that it is an efficient solution. Here, when less than 0.01 mole, the change in the temperature coefficient (τ f ) of the resonance frequency is insignificant, and when it exceeds 0.1 mole, it is not preferable because the deterioration of the quality factor is large. Therefore, there is a critical significance in the above range. If Ca is used instead of Sr, the results are similar. On the other hand, strontium (Sr) is preferably included in the range of 0.09 to 0.25 moles. It can be seen that the change of these properties is shown in conjunction with the substitution component in accordance with the substitution amount, which is associated with the change in the crystal structure according to the ion radius and substitution amount of the substitution element.
번호number 조성(mol%)Composition (mol%) 수축율(%)Shrinkage (%) εrεr Q×f(GHz) Q × f (GHz) τf(ppm/℃)τ f (ppm / ℃)
BaOBaO SrOSrO Na2ONa 2 O MgOMgO Y2O3Y2O3 WO3WO3 Me2O5 Me 2 O 5
비교예1Comparative Example 1 9797 00 NaNa 1One 5050 YY 22 4949 TaTa 1One 21.26%21.26% 18.7718.77 237188237188 -23.24-23.24
비교예2Comparative Example 2 9696 00 NaNa 22 4848 YY 44 4848 TaTa 22 22.00%22.00% 19.0119.01 183600183600 -13.85-13.85
비교예3Comparative Example 3 9595 00 NaNa 33 4848 YY 66 4747 TaTa 33 22.20%22.20% 19.2919.29 174078174078 -13.96-13.96
비교예4Comparative Example 4 9494 00 NaNa 44 4848 YY 88 4646 TaTa 44 21.86%21.86% 19.6519.65 160964160964 -10.76-10.76
비교예5Comparative Example 5 9393 00 NaNa 55 4848 YY 1010 4545 TaTa 55 22.53%22.53% 18.6918.69 128553128553 -5.64-5.64
실시예1Example 1 9090 1010 NaNa 00 4949 YY 1One 4949 TaTa 1One 23.27%23.27% 19.7519.75 9262792627 -9.35-9.35
실시예2Example 2 9090 1010 NaNa 00 4848 YY 22 4848 TaTa 22 23.87%23.87% 20.2520.25 116229116229 -7.06-7.06
실시예3Example 3 9090 1010 NaNa 00 4747 YY 33 4747 TaTa 33 23.20%23.20% 20.2720.27 125525125525 -4.74-4.74
실시예4Example 4 9090 1010 NaNa 00 4646 YY 44 4646 TaTa 44 23.93%23.93% 20.8720.87 129157129157 -2.38-2.38
실시예5Example 5 9090 1010 NaNa 00 4545 YY 55 4545 TaTa 55 23.93%23.93% 20.8220.82 123299123299 0.000.00
실시예6Example 6 8585 1515 NaNa 00 4848 YY 22 4848 TaTa 22 22.72%22.72% 20.5720.57 124553124553 4.974.97
실시예7Example 7 8585 1515 NaNa 00 4646 YY 44 4646 TaTa 44 22.64%22.64% 20.7620.76 126554126554 5.855.85
실시예8Example 8 9090 1010 NaNa 00 4848 YY 22 4848 NbNb 22 22.93%22.93% 19.5119.51 124757124757 -8.21-8.21
실시예9Example 9 9090 1010 NaNa 00 4646 YY 44 4646 NbNb 44 22.93%22.93% 20.0420.04 144337144337 1.191.19
실시예10Example 10 9090 1010 NaNa 22 4848 YY 44 4848 NbNb 22 23.54%23.54% 20.3720.37 138552138552 -1.37-1.37
표 2는 표 1에서 본 바와 같이 바륨(Ba)자리를 알칼리토 금속원소만으로 치환한 것이 아니라 텅스텐(W)자리에 +5가의 바나듐족 금속원소를 같이 치환하고 전하를 보상하기 위하여 이트륨(Y) 등의 +3가 금속원소(Sc, Sm, Gd, Yb, Dy 등)를 정량적으로 추가하여 첨가한 것인데, 비교예는 알칼리 금속만으로 치환한 것으로 제시함으로써, 도 3에서 보는 바와 같이 공진주파수의 온도계수를 효과적으로 제어할 수 있음을 알 수 있었다. 여기서, 표시가 되지는 아니하였으나, 이트륨(Y)을 대체하여 3가의 란탄족 금속원소인 Sc, Sm, Gd, Yb, Dy 등 또는 붕소족 금속원소인 In을 적용하여도 결과는 유사하다. As shown in Table 1, Table 2 replaces the barium (Ba) site with only alkaline earth metal elements and replaces the +5 valence vanadium metal element with the tungsten (W) site and compensates the charge. + Trivalent metal elements (Sc, Sm, Gd, Yb, Dy, etc.) are added quantitatively, and the comparative example shows that only the alkali metal is substituted, and as shown in FIG. It can be seen that the number can be effectively controlled. Here, although not indicated, the result is similar even if yttrium (Y) is substituted for the trivalent lanthanide metal element Sc, Sm, Gd, Yb, Dy, or In, which is a boron metal element.
즉, 공진주파수의 온도계수가 스트론튬(Sr)과 탄탈륨(Ta)의 증가량에 부합하여 선형적으로 증가하는 경향을 나타내며, 게다가 스트론튬(Sr)과 탄탈륨(Ta)을 같이 첨가할 경우 서서히 증가한다. 또한, 표 2에서 보는 바와 같이 스트론튬(Sr)과 +5가의 바나듐족 금속원소(예를 들어, Nb, Ta)를 같이 첨가할 경우 품질계수의 감소를 최소화할 수 있는 장점이 있다. 여기서, +5가의 바나듐족 금속원소는 0.01 내지 0.05몰의 비율(1 내지 5몰%)을 유지하는 것이 바람직하다. 여기서 0.01몰 미만의 경우 공진주파수의 온도계수(τf)의 변화가 너무 적고 0.05몰 초과시는 품질계수의 저하가 크므로 바람직하지 못하다. That is, the temperature coefficient of the resonance frequency tends to increase linearly in accordance with the increase of strontium (Sr) and tantalum (Ta), and gradually increases when strontium (Sr) and tantalum (Ta) are added together. In addition, as shown in Table 2, when strontium (Sr) and +5 valent vanadium group metal elements (eg, Nb, Ta) are added together, there is an advantage of minimizing the reduction of the quality factor. Here, it is preferable that the + 5-valent vanadium group metal element maintain the ratio (1-5 mol%) of 0.01-0.05 mol. In the case of less than 0.01 mole, the change in the temperature coefficient τ f of the resonant frequency is too small, and when it exceeds 0.05 mole, the deterioration of the quality factor is not preferable.
따라서, 공진주파수의 온도계수는 품질계수와 함께 부품설계에 있어 중요한 인자로, 바륨(Ba)자리에 알카리 금속 또는 알카리토류 금속원소를 일부 치환하고 이를 보상하기 위하여 마그네슘(Mg) 자리에 +3가 금속원소를, 그리고 텅스텐(W) 자리에는 +5가 금속원소를 모두 연계하여 정량적으로 첨가하는 것이 높은 품질계수를 갖고 온도특성이 안정한 고주파 유전체 세라믹 소재 조성물을 제조함에 있어 매우 효율적인 방안임을 알 수 있다. 이러한 특성들의 변화는 치환 원소의 이온반경과 치환량에 밀접하게 연관하여 나타나는 결정구조의 변화와 연계된 현상으로 볼 수 있다.Therefore, the temperature coefficient of the resonant frequency is an important factor in the part design along with the quality factor. In order to compensate for and partially replace the alkali metal or alkaline earth metal element in place of barium (Ba), +3 is added in place of magnesium (Mg). The quantitative addition of metal elements and +5 in the place of tungsten (W) can be seen as a very efficient way to produce high frequency dielectric ceramic material compositions with high quality coefficients and stable temperature characteristics. . The change of these properties can be regarded as a phenomenon associated with the change of crystal structure which is closely related to the ion radius and the substitution amount of the substitution element.
이상에서 실시예를 들어 본 발명을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것이 아니고 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형실시될 수 있다. 따라서, 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 안정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the present invention has been described in more detail with reference to the examples, the present invention is not necessarily limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not stabilized by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (8)

  1. (Ba1-a-bMaaMbb)(Mg0.5-cMccW0.5)O3 의 조성 중, Ma 및 Mb는 알칼리 금속 및 알칼리 토금속이며, Mc는 +3가 금속이고, a 및 c가 각각 0.01 내지 0.1이고, b는 0.09 내지 0.25인 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재.”In the composition of (Ba 1-ab Ma a Mb b ) (Mg 0.5-c Mc c W 0.5 ) O 3 , Ma and Mb are alkali metals and alkaline earth metals, Mc is + trivalent metal, and a and c are respectively 0.01 to 0.1, and b is 0.09 to 0.25.
  2. 제1항에 있어서,The method of claim 1,
    상기 조성에서 W의 일부는 +5가의 금속원소인 Me에 의하여 더 치환되어, (Ba1-a-bMaaMbb)(Mg0.5-cMccW0.5-eMee)O3 의 조성을 이루며, e는 0.01 내지 0.05인 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재.In the composition, part of W is further substituted by Me, which is a +5 valent metal element, to form a composition of (Ba 1-ab Ma a Mb b ) (Mg 0.5-c Mc c W 0.5-e Me e ) O 3 , e is a 0.01-0.05 Hz high frequency dielectric ceramic material.
  3. 제1항에 있어서,The method of claim 1,
    상기 Ma는 Ma2O로 표시되는 +1가의 알칼리류 금속원소로서, Na, K 및 Li 중에서 선택되는 어느 하나인 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재.Ma is a + 1-valent alkali metal element represented by Ma 2 O, and is any one selected from Na, K and Li.
  4. 제1항에 있어서,The method of claim 1,
    상기 Mb는 MbO로 표시되는 +2가의 알칼리토류 금속원소로서, Sr 및 Ca 중에서 선택되는 어느 하나인 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재.The Mb is a + divalent alkaline earth metal element represented by MbO, and is any one selected from Sr and Ca.
  5. 제1항에 있어서,The method of claim 1,
    상기 Mc는 Mc2O3로 표시되는 +3가의 란탄족 금속원소로서, Sc, Y, Sm, Gd, Yb, Dy 중에서 선택되는 어느 하나 또는 붕소족 금속원소로서 In 인 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재.Mc is a + trivalent lanthanide metal element represented by Mc 2 O 3, and is any one selected from Sc, Y, Sm, Gd, Yb, and Dy, or an Indium as a boron group metal element. Dielectric ceramic material.
  6. 제2항에 있어서, The method of claim 2,
    상기 Me는 Me2O5로 표시되는 +5가의 바나듐족 금속원소로서, Nb 및 Ta 중에서 선택되는 어느 하나인 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재.Me is a + 5-valent vanadium group metal element represented by Me 2 O 5 , and is any one selected from Nb and Ta.
  7. 제1항에 있어서, The method of claim 1,
    상기 Ma 및 Mb는 높은 품질계수를 목적으로 모두 첨가되는 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재.The Ma and Mb is a high frequency dielectric ceramic material, characterized in that all are added for the purpose of high quality coefficient.
  8. 제2항에 있어서, The method of claim 2,
    상기 Mb 및 Me는 공진주파수의 온도특성을 목적으로 단독 또는 모두 첨가되는 것을 특징으로 하는 BMW계 고주파 유전체 세라믹 소재.The Mb and Me is a high frequency dielectric ceramic material, characterized in that the addition of all or solely for the purpose of temperature characteristics of the resonance frequency.
PCT/KR2018/002315 2017-03-31 2018-02-26 Bmw-based high frequency dielectric ceramic material and method for manufacturing same WO2018182180A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880026647.8A CN110603610B (en) 2017-03-31 2018-02-26 BMW-based high-frequency dielectric ceramic material and method for producing same
JP2020503679A JP6883142B2 (en) 2017-03-31 2018-02-26 BMW-based high-frequency dielectric ceramic material and its manufacturing method
US16/499,862 US11027985B2 (en) 2017-03-31 2018-02-26 BMW-based high frequency dielectric ceramic material and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170041421 2017-03-31
KR10-2017-0041421 2017-03-31
KR1020180020807A KR102023398B1 (en) 2017-03-31 2018-02-21 BMW based microwave dielectric ceramics
KR10-2018-0020807 2018-02-21

Publications (1)

Publication Number Publication Date
WO2018182180A1 true WO2018182180A1 (en) 2018-10-04

Family

ID=63676820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002315 WO2018182180A1 (en) 2017-03-31 2018-02-26 Bmw-based high frequency dielectric ceramic material and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2018182180A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834405A (en) * 1990-05-18 1998-11-10 International Business Machines Corporation Superconducting multilayer ceramic substrate
EP0881199A1 (en) * 1997-05-30 1998-12-02 Kyocera Corporation Dielectric ceramics
JP2002087881A (en) * 2000-09-18 2002-03-27 Kyocera Corp Dielectric ceramic composition and dielectric resonator using the same
US20050122639A1 (en) * 2003-01-31 2005-06-09 Toshihiro Okamatsu Dielectric ceramic,process for producing the same and laminate ceramic capacitor
CN102765938A (en) * 2012-07-10 2012-11-07 上海大学 New microwave dielectric ceramic material with high Q*f value

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834405A (en) * 1990-05-18 1998-11-10 International Business Machines Corporation Superconducting multilayer ceramic substrate
EP0881199A1 (en) * 1997-05-30 1998-12-02 Kyocera Corporation Dielectric ceramics
JP2002087881A (en) * 2000-09-18 2002-03-27 Kyocera Corp Dielectric ceramic composition and dielectric resonator using the same
US20050122639A1 (en) * 2003-01-31 2005-06-09 Toshihiro Okamatsu Dielectric ceramic,process for producing the same and laminate ceramic capacitor
CN102765938A (en) * 2012-07-10 2012-11-07 上海大学 New microwave dielectric ceramic material with high Q*f value

Similar Documents

Publication Publication Date Title
US5756412A (en) Dielectric ceramic composition
WO2010143904A2 (en) Sintered material for dielectric substance and process for manufacturing same
JP2000044341A (en) Dielectric ceramic composition
KR102023398B1 (en) BMW based microwave dielectric ceramics
JP3840869B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2001181029A (en) Dielectric ceramic composition for high-frequency use, dielectric resonator, dielectric filter, dielectric duplexer and telecommunication equipment
WO2018182180A1 (en) Bmw-based high frequency dielectric ceramic material and method for manufacturing same
JPWO2006013981A1 (en) Dielectric ceramic composition and dielectric ceramic
US5432135A (en) Dielectric ceramic composition for high frequency
JP2003055043A (en) Dielectric ceramic composition
JPH08295561A (en) Dielectric porcelain composition
JP2781503B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
EP1013624B1 (en) High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer and communication device
JP3214308B2 (en) Dielectric porcelain composition
JP4765367B2 (en) Dielectric porcelain composition
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP3235410B2 (en) Dielectric porcelain composition
JPH06333426A (en) Dielectric ceramic composition for high frequency
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
KR100489887B1 (en) Microwave dielectric ceramic compositions and prepartion method thereof
JPH10330165A (en) Dielectric substance ceramic for high frequency
JP3239708B2 (en) Dielectric porcelain composition
KR970008752B1 (en) Microwave dielectric ceramics
JP3239707B2 (en) Dielectric porcelain composition
KR970000061B1 (en) Dielectric materials for high frequency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777089

Country of ref document: EP

Kind code of ref document: A1