WO2018181925A1 - Separating material for gel filtration and method for purifying water-soluble polymer substance - Google Patents

Separating material for gel filtration and method for purifying water-soluble polymer substance Download PDF

Info

Publication number
WO2018181925A1
WO2018181925A1 PCT/JP2018/013692 JP2018013692W WO2018181925A1 WO 2018181925 A1 WO2018181925 A1 WO 2018181925A1 JP 2018013692 W JP2018013692 W JP 2018013692W WO 2018181925 A1 WO2018181925 A1 WO 2018181925A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel filtration
polymer
separation material
hydroxyl group
porous polymer
Prior art date
Application number
PCT/JP2018/013692
Other languages
French (fr)
Japanese (ja)
Inventor
史彦 河内
優 渡邊
亜季子 川口
笑 宮澤
健 安江
後藤 泰史
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019510266A priority Critical patent/JPWO2018181925A1/en
Publication of WO2018181925A1 publication Critical patent/WO2018181925A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/34Size selective separation, e.g. size exclusion chromatography, gel filtration, permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a separation material for gel filtration and a purification method of a water-soluble polymer substance.
  • the chromatographic method plays an extremely important role as a method for separating and purifying proteins
  • the gel filtration (gel chromatography) method is one of the most frequently used methods.
  • This method is generally a separation mode based on the molecular sieve effect based only on the molecular weight difference of globular proteins, and is performed under conditions that exclude influences such as ionic properties and hydrophobic properties. Therefore, it is a very versatile and sensitive separation technique in that it can be applied to many proteins and enzymes simultaneously.
  • the separation material for gel filtration carrier for gel chromatography
  • a synthetic polymer separation material and a natural polysaccharide separation material.
  • the synthetic polymer separator examples include a gel obtained by insolubilizing a water-soluble polymer such as polyvinyl alcohol or polyacrylamide by crosslinking. Synthetic polymer-based separators are generally considered to have higher strength than natural polysaccharide-based separators. On the other hand, the synthetic polymer-based separating material has a problem that the affinity with protein is low and the yield is likely to decrease due to denaturation or deactivation due to nonspecific adsorption such as hydrophobic adsorption.
  • natural polysaccharide separation material examples include microbial polysaccharides such as dextran gel, seaweeds such as agarose gel, celluloses, and those obtained by crosslinking these.
  • Natural polysaccharide separators are usually more expensive than synthetic polymer separators because they tend to be expensive to produce, such as extraction from natural products, purification, and gel preparation.
  • natural polysaccharide separation materials generally have a high swelling ratio and are weak, so that, for example, when an eluent is flowed at a high speed in a gel filtration column, the column pressure is likely to increase, and the particle strength is high. There is a problem that it is difficult to lengthen the column length because it is low.
  • an object of the present invention is to provide a separation material for gel filtration that has less nonspecific adsorption of proteins, is excellent in high molecular weight protein fractionation properties, and has excellent durability when used as a column.
  • Another object of the present invention is to provide a method for purifying a water-soluble polymer substance using the separation material for gel filtration.
  • the present invention provides a separation material for gel filtration described in [1] to [6] below and a method for purifying a water-soluble polymer substance described in [7] below.
  • a porous polymer particle and a coating layer containing a polymer having a hydroxyl group that covers at least a part of the surface of the porous polymer particle, and a 5% compressive deformation modulus in a wet state is 100 MPa or more.
  • the gel filtration separation material according to [1], wherein the porous polymer particles include a polymer containing a styrene monomer as a monomer unit.
  • the present invention it is possible to provide a separation material for gel filtration that has less nonspecific adsorption of protein, is excellent in high molecular weight protein fractionation, and has excellent durability when used as a column.
  • the present invention can also provide a method for purifying a water-soluble polymer substance using the above-described separation material for gel filtration.
  • the separation material of this embodiment is a separation material for gel filtration.
  • the separation material of this embodiment includes porous polymer particles and a coating layer containing a polymer having a hydroxyl group that covers at least a part of the surface of the porous polymer particles, and is 5% compressive deformed in a wet state.
  • the elastic modulus is 100 MPa or more.
  • Such a separation material has less non-specific protein adsorption, and is excellent in high molecular weight protein fractionation (separability) and durability when used as a column.
  • the separation material of this embodiment is also excellent in liquid permeability, pressure resistance and handling when used as a column.
  • the separation material of the present embodiment is excellent in strength and can have a shape close to a true sphere. Spherical separators are considered hydrodynamically advantageous when used in chromatography.
  • the separation material of the present embodiment is excellent in the fractionation property between proteins having similar molecular weights and can stably separate the target substance over a long period of time
  • the “surface of the porous polymer particle” includes not only the outer surface of the porous polymer particle but also the surface of the pores inside the porous polymer particle.
  • the porous polymer particles according to this embodiment are, for example, particles obtained by polymerizing a monomer in the presence of a porosifying agent.
  • the porous polymer particles can be synthesized by, for example, conventional suspension polymerization and emulsion polymerization.
  • a styrene-type monomer can be used. That is, the porous polymer particles may be obtained by polymerizing a monomer containing a styrene monomer.
  • the styrene monomer means a monomer having a styrene skeleton.
  • the porous polymer particles according to this embodiment may contain a polymer containing a styrene monomer as a monomer unit.
  • the porous polymer particles according to the present embodiment may include a polymer having a structural unit derived from a styrene monomer.
  • styrene monomer examples include the following polyfunctional monomers and monofunctional monomers.
  • the styrenic polyfunctional monomer examples include divinyl compounds having a styrene skeleton such as divinylbenzene, divinylbiphenyl, divinylnaphthalene, and divinylphenanthrene. These polyfunctional monomers can be used alone or in combination of two or more. Among these, divinylbenzene is preferably used from the viewpoint of further improving durability, acid resistance and alkali resistance. That is, the porous polymer particles may contain a polymer containing divinylbenzene as a monomer unit.
  • styrene monofunctional monomers examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2 , 4-dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, p- Examples thereof include styrene such as n-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorosty
  • Styrene derivatives having a functional group such as a carboxy group, an amino group, a hydroxyl group, and an aldehyde group can also be used. These monofunctional monomers can be used alone or in combination of two or more. Among these, styrene is preferably used from the viewpoint of further improving acid resistance and alkali resistance.
  • the porosifying agent examples include aliphatic or aromatic hydrocarbons, esters, ketones, ethers, alcohols, and the like, which are organic solvents that promote phase separation at the time of polymerization and promote pore formation of particles. It is done. Specific examples include toluene, xylene, diethylbenzene, cyclohexane, octane, butyl acetate, dibutyl phthalate, methyl ethyl ketone, dibutyl ether, 1-hexanol, 2-octanol, decanol, lauryl alcohol, cyclohexanol and the like. These porosifying agents can be used singly or in combination of two or more.
  • the above porous agent can be used, for example, in an amount of 0 to 200% by mass with respect to the total mass of the monomer.
  • the porosity of the porous polymer particles can be controlled by the amount of the porous agent.
  • the size and shape of the pores of the porous polymer particles can be controlled by the kind of the porous agent.
  • Water used as a solvent can be used as a porous agent.
  • the particles can be made porous by, for example, dissolving an oil-soluble surfactant in the monomer and absorbing water.
  • oil-soluble surfactant used for the porosification examples include sorbitan monoesters of branched C16 to C24 fatty acids, chain unsaturated C16 to C22 fatty acids or chain saturated C12 to C14 fatty acids, such as sorbitan monolaurate, sorbitan Sorbitan monoesters derived from monooleate, sorbitan monomyristate or coconut fatty acid; diglycerol monoesters of branched C16-C24 fatty acids, chain unsaturated C16-C22 fatty acids or chain saturated C12-C14 fatty acids, for example di- Glycerol monooleate (for example, diglycerol monoester of C18: 1 (18 carbon atoms, 1 double bond) fatty acid), diglycerol monomyristate, diglycerol monoisostearate or diglycerol monoester of coconut fatty acid Ester; Branch C16 ⁇ 24 alcohol (e.g., Guerbet alcohols), linear unsaturated C16 ⁇ C24
  • sorbitan monolaurate eg, SPAN 20
  • Sorbitan monooleate e.g., SPAN 80
  • Diglycerol monooleate eg, diglycerol monooleate having a purity of preferably greater than about 40%, more preferably greater than about 50%, even more preferably greater than about 70%
  • diglycerol monoisostearate Form example, the purity is preferably greater than about 40%, more preferably about 50%.
  • diglycerol monoisostearate diglycerol monomyristate (eg, preferably greater than about 40%, more preferably greater than about 50%, even more preferably about 70% purity).
  • % Of sorbitan monomyristate a cocoyl (eg, lauryl and myristoyl group) ether of diglycerol; or a mixture thereof.
  • oil-soluble surfactants are preferably used in the range of 5 to 80% by mass relative to the total mass of the monomer.
  • content of the oil-soluble surfactant is 5% by mass or more, the stability of the water droplets is easily improved, so that a large single hole is easily formed.
  • content of the oil-soluble surfactant is 80% by mass or less, the porous polymer particles are more easily retained in shape after polymerization.
  • aqueous medium used for the polymerization reaction examples include water, a mixed medium of water and a water-soluble solvent (for example, lower alcohol), and the like.
  • the aqueous medium may contain a surfactant.
  • the surfactant any of anionic, cationic, nonionic and zwitterionic surfactants can be used.
  • anionic surfactant examples include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone.
  • Acid salts alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates Salts, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate salts
  • cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • Nonionic surfactants include, for example, hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides. Agents, polyether-modified silicon nonionic surfactants such as silicon polyethylene oxide adducts and polypropylene oxide adducts, and fluorine nonionic surfactants such as perfluoroalkyl glycols.
  • hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides.
  • Agents polyether-modified silicon nonionic surfactants such as silicon polyethylene oxide adducts and polypropylene oxide adducts, and
  • zwitterionic surfactants include hydrocarbon surfactants such as lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite ester surfactants.
  • Surfactant may be used alone or in combination of two or more.
  • anionic surfactants are preferable from the viewpoint of dispersion stability during monomer polymerization.
  • polymerization initiator examples include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, tert-butyl peroxide.
  • Organic peroxides such as oxy-2-ethylhexanoate and di-tert-butyl peroxide; and 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 And azo compounds such as' -azobis (2,4-dimethylvaleronitrile).
  • the polymerization initiator can be used, for example, in the range of 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the monomer.
  • the polymerization temperature can be appropriately selected according to the type of monomer and polymerization initiator.
  • the polymerization temperature may be, for example, 25 to 110 ° C. or 50 to 100 ° C.
  • a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the particles.
  • polymer dispersion stabilizer examples include polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, etc.), and polyvinyl pyrrolidone, and inorganic water-soluble polymer compounds such as sodium tripolyphosphate are also included. Can be used together. Of these, polyvinyl alcohol or polyvinyl pyrrolidone is preferred.
  • the amount of the polymer dispersion stabilizer added may be, for example, 1 to 10 parts by mass with respect to 100 parts by mass of the monomer.
  • a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, polyphenols and the like may be used.
  • the average particle diameter of the porous polymer particles may be, for example, 300 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less, from the viewpoint of further improving the separability. From the viewpoint of improving liquid permeability, the average particle diameter of the porous polymer particles may be, for example, 1 ⁇ m or more, 10 ⁇ m or more, 30 ⁇ m or more, or 50 ⁇ m or more. Also good. From these viewpoints, the average particle diameter of the porous polymer particles may be, for example, 1 to 300 ⁇ m, 10 to 150 ⁇ m, 30 to 100 ⁇ m, or 50 to 100 ⁇ m. Also good.
  • the coefficient of variation (CV) of the particle size of the porous polymer particles may be, for example, 1 to 50% or 3 to 15% from the viewpoint of easy improvement of liquid permeability. It may be 5 to 15% or 5 to 10%.
  • CV coefficient of variation
  • monodispersion by an emulsification apparatus such as a microprocess server (Hitachi Ltd.) can be mentioned.
  • C. of average particle size and particle size of porous polymer particles or separator V. can be determined by the following measurement method. 1) Disperse particles (porous polymer particles or separation material) in water (including a dispersant such as a surfactant) using an ultrasonic dispersion device to prepare a dispersion containing 1% by mass of particles. . 2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), an average particle size and particle size of C.I. V. (Coefficient of variation) is measured.
  • the coating layer according to the present embodiment includes a polymer having a hydroxyl group.
  • a polymer having a hydroxyl group By covering the porous polymer particles with a polymer having a hydroxyl group, it is easy to suppress an increase in column pressure and nonspecific adsorption of proteins.
  • the polymer having a hydroxyl group may be cross-linked, for example, from the viewpoint of further suppressing the increase in the column pressure and from the viewpoint that the porous polymer particles and the coating layer are difficult to peel off.
  • the polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule, and more preferably a hydrophilic polymer.
  • examples of the polymer having a hydroxyl group include polysaccharides and polyvinyl alcohol.
  • examples of the polysaccharide include agarose, dextran, cellulose, and chitosan.
  • the weight average molecular weight of the polymer having a hydroxyl group may be, for example, 10,000 or more.
  • the polymer having a hydroxyl group may be used singly or in combination of two or more.
  • the polymer having a hydroxyl group may be a modified body (hydrophobic group-modified body) modified with a hydrophobic group from the viewpoint of improving the interfacial adsorption ability with the particles.
  • the hydrophobic group include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a propyl group.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
  • a hydrophobic group is introduced by reacting a functional group that reacts with a hydroxyl group (for example, an epoxy group) and a compound having a hydrophobic group (for example, glycidyl phenyl ether) with a polymer having a hydroxyl group by a conventionally known method. Can do.
  • a functional group that reacts with a hydroxyl group for example, an epoxy group
  • a compound having a hydrophobic group for example, glycidyl phenyl ether
  • the total molar amount of all structural units constituting the hydrophobic group-modified product (sum of the molar amounts of the structural unit containing a hydrophobic group and the structural unit not containing a hydrophobic group)
  • the content ratio of the structural unit containing a hydrophobic group (hereinafter also referred to as “hydrophobic group content”) is to maintain the hydrophobic interaction force for adsorbing to the particle surface and to suppress nonspecific adsorption of proteins. From the viewpoint of balance, for example, it may be 5 to 30%, 10 to 20%, or 12 to 17%.
  • the polymer having a hydroxyl group may be, for example, a polysaccharide or a modified product thereof from the viewpoint of easily improving the hydrophilicity of the separation material surface.
  • modified polysaccharides include hydrophobic group-modified products.
  • the coating layer according to the present embodiment can be formed by, for example, the following method.
  • a polymer solution having a hydroxyl group is adsorbed on the surface of the porous polymer particles.
  • the solvent of the solution is not particularly limited as long as it can dissolve a polymer having a hydroxyl group, but water is the most common.
  • the concentration of the polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
  • the polymer solution is impregnated with the above solution.
  • porous polymer particles are added to a polymer solution having a hydroxyl group and left for a predetermined time.
  • the impregnation time varies depending on the surface state of the porous polymer particles, the polymer concentration is in equilibrium with the external concentration inside the porous polymer particles if it is usually impregnated overnight. Then, it wash
  • Crosslinking treatment Next, a crosslinking agent is added to cause the polymer having a hydroxyl group adsorbed on the surface of the porous polymer particles to undergo a crosslinking reaction to form a crosslinked body. At this time, the crosslinked body has a three-dimensional crosslinked network structure having a hydroxyl group.
  • an epihalohydrin such as epichlorohydrin
  • a dialdehyde compound such as glutaraldehyde
  • a diisocyanate compound such as methylene diisocyanate
  • a glycidyl compound such as ethylene glycol diglycidyl ether
  • two or more functional groups active on a hydroxyl group for example, an epihalohydrin such as epichlorohydrin, a dialdehyde compound such as glutaraldehyde, a diisocyanate compound such as methylene diisocyanate, a glycidyl compound such as ethylene glycol diglycidyl ether, and two or more functional groups active on a hydroxyl group.
  • a dihalide compound such as dichlorooctane can also be used as a crosslinking agent.
  • a catalyst is usually used for this crosslinking reaction.
  • a conventionally known catalyst can be appropriately used according to the type of the crosslinking agent.
  • the crosslinking agent is epichlorohydrin or the like
  • an alkali such as sodium hydroxide
  • the crosslinking agent is a dialdehyde compound.
  • a mineral acid such as hydrochloric acid is effective.
  • the crosslinking reaction with a crosslinking agent is usually performed by adding a crosslinking agent to a system in which porous polymer particles adsorbing a polymer having a hydroxyl group are dispersed and suspended in an appropriate medium.
  • a crosslinking agent added to a system in which porous polymer particles adsorbing a polymer having a hydroxyl group are dispersed and suspended in an appropriate medium.
  • the amount of the crosslinking agent added is within a range of 0.1 to 100 mol times with respect to 1 mol of one unit of the monosaccharide. It can be selected according to the performance of the target separation material.
  • the addition amount of the crosslinking agent may be appropriately adjusted from the viewpoint of the molecular weight of the object to be purified by the separating material, for example.
  • the addition amount of the crosslinking agent is 0.1 mol times or more, the coating layer tends to hardly peel from the porous polymer particles.
  • the network size of the three-dimensional network structure of the crosslinked body tends to be small even when the reaction rate with the polymer having a hydroxyl group is low.
  • the fractionation property of a substance having a low molecular weight is further improved.
  • the amount of the catalyst used in the crosslinking reaction depends on the type of crosslinking agent, but when a polysaccharide is used as the polymer having a hydroxyl group, usually 1 mol of one unit of monosaccharide forming the polysaccharide is used. Then, it is preferably used in the range of 0.01 to 10 mole times, more preferably 0.1 to 5 mole times.
  • the cross-linking reaction condition is a temperature condition
  • the temperature of the reaction system is raised, and the cross-linking reaction occurs when the temperature reaches the reaction temperature.
  • the polymer or crosslinking agent is not extracted from the impregnated polymer solution, and a crosslinking reaction is performed.
  • the crosslinking reaction can be usually performed at a temperature in the range of 5 to 90 ° C. for 1 to 10 hours.
  • the temperature of the crosslinking reaction is preferably 30 to 90 ° C.
  • the produced particles are filtered off and then washed with a hydrophilic organic solvent such as methanol or ethanol to remove unreacted polymer, suspending medium and the like.
  • a hydrophilic organic solvent such as methanol or ethanol to remove unreacted polymer, suspending medium and the like.
  • a separating material is obtained in which at least a part of the surface of the porous polymer particles is covered with a coating layer containing a polymer having a hydroxyl group, and the polymer having a hydroxyl group is crosslinked. If necessary, the cross-linking treatment step may be omitted.
  • the 5% compression deformation elastic modulus of the separating material in a wet state is 100 MPa or more.
  • the 5% compressive deformation elastic modulus of the separating material in a wet state is less than 100 MPa, it is considered that the separating material is easily deformed by increasing the flexibility of the separating material, so that the column pressure is increased due to consolidation in the column.
  • the 5% compression deformation modulus of the separating material in a wet state is 100 MPa or more, it is considered that such an increase in column pressure is easily suppressed and nonspecific adsorption of proteins is easily reduced.
  • wet state refers to a state saturated with moisture. In order to maintain the wet state, it is preferable to use the separating material taken out of water immediately before the measurement. In the “wet state”, the particle surface and the pores in the particle usually contain water (pure water or the like).
  • the 5% compression deformation elastic modulus (for example, 5% compression deformation elastic modulus when the separation material is compressed at 50 mN) of the separation material of the present embodiment can be calculated as follows. Using a micro compression tester (manufactured by Fisher), the load when the separating material is compressed from 0 mN to 50 mN with a smooth end face (50 ⁇ m ⁇ 50 ⁇ m) of a square column at a load rate of 1 mN / sec at room temperature (25 ° C.). And measure the compression displacement. From the measured value obtained, the compression deformation elastic modulus (5% K value) when the separating material is 5% compressively deformed can be obtained by the following formula.
  • the 5% compressive deformation elastic modulus of the separating material in a wet state is, for example, 110 MPa or more from the viewpoint of further reducing nonspecific adsorption of proteins and from the viewpoint that particles are not easily deformed even if the column length is increased. It may be 120 MPa or more, or 130 MPa or more.
  • the 5% compressive deformation elastic modulus of the separating material in the wet state may be, for example, 1000 MPa or less, 950 MPa or less, 900 MPa or less, or 500 MPa or less.
  • the 5% compressive deformation modulus of the separating material can be adjusted by the type and amount of crosslinking agent used, the amount of coating layer, and the like. For example, as the amount of the crosslinking agent used or the amount of the coating layer increases, the 5% compressive deformation modulus tends to increase.
  • the average particle diameter of the separation material of the present embodiment may be, for example, 300 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less from the viewpoint of further improving the separation performance.
  • the average particle diameter of the separating material may be, for example, 1 ⁇ m or more, 10 ⁇ m or more, 30 ⁇ m or more, or 50 ⁇ m or more.
  • the average particle diameter of the separating material may be, for example, 1 to 300 ⁇ m, 10 to 150 ⁇ m, 30 to 100 ⁇ m, or 50 to 100 ⁇ m. .
  • the variation coefficient (CV) of the particle size of the separation material of the present embodiment may be, for example, 1% or more, 3% or more, or 5% or more.
  • the variation coefficient may be, for example, 50% or less, 15% or less, or 10% or less.
  • the coefficient of variation (CV) of the particle size of the separating material of the present embodiment may be, for example, 1 to 50% or 3 to 15% from the viewpoint of easy improvement of liquid permeability. It may be 5 to 15% or 5 to 10%.
  • the separation material of the present embodiment preferably includes a coating layer of 30 to 500 mg per 1 g of porous polymer particles.
  • the amount of the coating layer can be measured by reducing the weight of pyrolysis.
  • the liquid passing speed is 800 cm / h or more when the column pressure is 0.3 MPa.
  • the flow rate of protein solution or the like is generally in the range of 400 cm / h or less.
  • the separation rate for normal protein separation is as follows. It can be used at a liquid passing speed of 800 cm / h or more faster than the separating material.
  • liquid flow rate in this specification represents the liquid flow rate when the separation material of this embodiment is filled in a stainless steel column of ⁇ 7.8 ⁇ 300 mm and the liquid is passed.
  • the separation material of the present embodiment is provided with a coating layer containing a polymer having a hydroxyl group on porous polymer particles, whereby particles made of natural polymers or particles made of synthetic polymers in the separation of biopolymers such as proteins.
  • a coating layer containing a polymer having a hydroxyl group on porous polymer particles whereby particles made of natural polymers or particles made of synthetic polymers in the separation of biopolymers such as proteins.
  • the separation material of the present embodiment is suitable for use in separation by size exclusion purification of biopolymers, and the separation material of the present embodiment can be used in column chromatography.
  • the separation material of this embodiment is for liquid chromatography, for example.
  • the biopolymer that can be separated using the separation material of the present embodiment is preferably a water-soluble substance.
  • the purification method of the water-soluble polymer substance of the present embodiment performs gel filtration chromatography using the separation material for gel filtration of the present embodiment.
  • the water-soluble polymer substance to be purified include water-soluble biopolymers.
  • water-soluble biopolymers include proteins such as serum albumin and blood proteins such as immunoglobulins, enzymes present in living bodies, protein bioactive substances produced by biotechnology, DNA, and bioactivity. Peptides are mentioned.
  • the weight average molecular weight of the water-soluble polymer substance to be purified may be, for example, 2 million or less, or 500,000 or less.
  • the properties, conditions, etc. of the separation material may be selected according to the isoelectric point, ionization state, etc. of the protein. Examples of known methods include the methods described in JP-A-60-169427.
  • water-soluble polymer substances to be purified include thyroglobulin, gamma globulin, bovine serum albumin, myoglobin, and uracil.
  • the mass (kDa) of the water-soluble polymer substance may be, for example, 0.01 to 10,000 kDa, 0.05 to 5000 kDa, or 0.1 to 1000 kDa.
  • Example 1 Synthesis of porous polymer particles
  • 16 g of 96% pure divinylbenzene manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: DVB960
  • 16 g of hexanol as a porous agent
  • 16 g of diethylbenzene and benzoyl peroxide as an initiator
  • 0.5 mass% polyvinyl alcohol aqueous solution was used as a continuous phase.
  • porous polymer particles 1 After emulsifying the continuous phase and the dispersed phase using a microprocess server, the obtained emulsion was transferred to a flask and stirred for about 8 hours using a stirrer while heating in a water bath at 80 ° C. The obtained particles were filtered and then washed with acetone to obtain porous polymer particles (hereinafter, the porous polymer particles obtained in this example are referred to as “porous polymer particles 1”). The particle size of the porous polymer particles 1 was measured with a flow type particle size measuring device, and the average particle size and particle size C.I. V. The value (coefficient of variation) was calculated. The results are shown in Table 1.
  • the hydrophobic group content of the modified agarose adsorbed on the particles was determined by treating 0.2 g of the particles in 10 mL of 1M sulfuric acid at 70 ° C. for 5 hours, and measuring the absorbance at 269 nm with a spectrophotometer. It can calculate similarly by calculating
  • Porous polymer particles 1 were added to a 20 mg / mL modified agarose aqueous solution at a concentration of 70 mL / particle g and stirred at 55 ° C. for 24 hours to adsorb the modified polymer particles 1 to the porous polymer particles 1.
  • the particles adsorbed with the modified agarose were filtered off and further washed with hot water.
  • the modified agarose was crosslinked as follows. 10 g of particles adsorbed with modified agarose were dispersed in a 0.4 M aqueous sodium hydroxide solution, a crosslinking agent (epichlorohydrin) was added to a concentration of 0.04 M, and the mixture was stirred at room temperature for 8 hours. . Then, after washing with 2% by mass of hot sodium dodecyl sulfate aqueous solution, it was washed with pure water. The obtained particles were dried to obtain a separating material. The mass of the coating layer per 1 g of porous polymer particles (mg / particle g) was calculated by thermogravimetric analysis of the obtained separating material. Further, the particle size of the obtained separating material was measured with a flow type particle size measuring device, and the average particle size and particle size of C.I. V. The value (coefficient of variation) was calculated. These results are shown in Table 2.
  • Example 2 In the same manner as in Example 1, porous polymer particles were synthesized, and the obtained porous polymer particles were evaluated (hereinafter, the porous polymer particles obtained in this example are referred to as “porous polymer particles 2”). . The results are shown in Table 1.
  • a separating material was prepared and evaluated in the same manner as in Example 1 except that the amount of the crosslinking agent added was such that the concentration of the crosslinking agent (epichlorohydrin) was 0.4M. The evaluation results are shown in Tables 2 and 3.
  • agarose particles 1 Commercially available agarose particles (Sepharose 6 FF, GE Healthcare) were prepared (hereinafter referred to as “agarose particles 1”). In the same manner as the porous polymer particles 1 and 2, the average particle diameter and the C.I. V. The value (coefficient of variation) was calculated. The results are shown in Table 1. Agarose particles 1 were used as they were as a separating material and evaluated in the same manner as in Example 1. The results are shown in Tables 2 and 3.
  • the separation materials of Examples 1 and 2 have less protein non-specific adsorption, excellent fractionation of high molecular weight proteins, and excellent durability when used as a column. I understand that. Moreover, it turns out that a water-soluble polymer substance can be refine

Abstract

The present invention relates to a separating material for gel filtration, the material comprising: porous polymer particles; and a covering layer that includes a polymer having a hydroxyl group, and that covers at least a part of the porous polymer particle surfaces. For the separating material, the modulus of 5% compression deformation elasticity in wet condition is 100 MPa or greater.

Description

ゲルろ過用分離材及び水溶性高分子物質の精製方法Separation material for gel filtration and purification method of water-soluble polymer substance
 本発明は、ゲルろ過用分離材及び水溶性高分子物質の精製方法に関する。 The present invention relates to a separation material for gel filtration and a purification method of a water-soluble polymer substance.
 水溶性高分子物質、特にタンパク質の分離、精製は各種生化学的研究などの分野で広く行われている。分離、精製されたタンパク質を得ることは、該タンパク質の性質を研究するために重要であり、かつ分離、精製されたタンパク質を各種の生化学反応に応用することもまた重要なこととなっている。近年、機能性高分子としてのタンパク質、酵素の工業的需要が食品、製薬、化学等の諸分野においてますます高まりつつある。 分離 Separation and purification of water-soluble polymer substances, especially proteins, are widely performed in various biochemical research fields. Obtaining separated and purified protein is important for studying the properties of the protein, and it is also important to apply the separated and purified protein to various biochemical reactions. . In recent years, industrial demand for proteins and enzymes as functional polymers is increasing in various fields such as food, pharmaceuticals, and chemistry.
 従来、タンパク質の分離、精製法としてクロマトグラフィー法の果す役割は非常に大きなものであり、中でも、ゲルろ過(ゲルクロマトグラフィー)法は最も繁用されている手法の一つである。該方法は、一般的に、球状タンパク質の分子量差のみに基づく分子篩効果による分離モードであり、イオン的性質、疎水的性質等による影響を排除した条件下で行われる。したがって、多くのタンパク質及び酵素に同時に適応できる点で非常に汎用性が高くかつ鋭敏な分離手法である。 Conventionally, the chromatographic method plays an extremely important role as a method for separating and purifying proteins, and the gel filtration (gel chromatography) method is one of the most frequently used methods. This method is generally a separation mode based on the molecular sieve effect based only on the molecular weight difference of globular proteins, and is performed under conditions that exclude influences such as ionic properties and hydrophobic properties. Therefore, it is a very versatile and sensitive separation technique in that it can be applied to many proteins and enzymes simultaneously.
 上記方法に使用されるゲルろ過用分離材(ゲルクロマト用担体)としては、主に、合成ポリマ系分離材及び天然多糖系分離材がある。 As the separation material for gel filtration (carrier for gel chromatography) used in the above method, there are mainly a synthetic polymer separation material and a natural polysaccharide separation material.
 合成ポリマ系分離材としては、例えば、ポリビニルアルコール、ポリアクリルアミド等の水溶性ポリマを架橋により不溶化したゲルが挙げられる。合成ポリマ系分離材は、一般的に、天然多糖系分離材よりも高い強度を有すると考えられる。一方で、合成ポリマ系分離材は、タンパク質との親和性が低く、かつ、疎水的吸着等の非特異的吸着に起因した変性、失活等による収率低下が起こり易いという問題がある。 Examples of the synthetic polymer separator include a gel obtained by insolubilizing a water-soluble polymer such as polyvinyl alcohol or polyacrylamide by crosslinking. Synthetic polymer-based separators are generally considered to have higher strength than natural polysaccharide-based separators. On the other hand, the synthetic polymer-based separating material has a problem that the affinity with protein is low and the yield is likely to decrease due to denaturation or deactivation due to nonspecific adsorption such as hydrophobic adsorption.
 天然多糖系分離材としては、例えば、デキストランゲル等の微生物多糖、アガロースゲル等の海藻類、セルロース類、及びこれらを架橋処理したものが挙げられる。天然多糖系分離材は、天然物からの抽出、精製、ゲルの調製等の製造コストが高くなり易いことから、通常、合成ポリマ系分離材よりも高価である。また、天然多糖系分離材は、一般的に、膨潤率が高く柔弱であることから、例えば、ゲルろ過カラムにおいて溶離液を高速で流した場合にカラム圧が上昇し易く、かつ、粒子強度が低いためにカラム長を長くし難いという問題がある。 Examples of the natural polysaccharide separation material include microbial polysaccharides such as dextran gel, seaweeds such as agarose gel, celluloses, and those obtained by crosslinking these. Natural polysaccharide separators are usually more expensive than synthetic polymer separators because they tend to be expensive to produce, such as extraction from natural products, purification, and gel preparation. In addition, natural polysaccharide separation materials generally have a high swelling ratio and are weak, so that, for example, when an eluent is flowed at a high speed in a gel filtration column, the column pressure is likely to increase, and the particle strength is high. There is a problem that it is difficult to lengthen the column length because it is low.
 天然多糖系分離材が持つ欠点を克服するため、親水性天然高分子を「骨格」となる剛直な物質と組み合わせる試みがこれまでになされている(例えば、特許文献1~3を参照)。 In order to overcome the shortcomings of natural polysaccharide separation materials, attempts have been made so far to combine hydrophilic natural polymers with rigid substances that become “skeletons” (see, for example, Patent Documents 1 to 3).
米国特許第4965289号明細書US Pat. No. 4,965,289 特開平1-254247号公報JP-A-1-254247 米国特許第5114577号明細書US Pat. No. 5,114,577
 しかしながら、従来のゲルろ過用分離材は、タンパク質の非特異吸着が少ないこと、高分子量タンパク質の分画性に優れること及びカラムとして用いたときの耐久性に優れることを充分なレベルで満足するものではない。 However, conventional separation materials for gel filtration satisfy a sufficient level of low non-specific adsorption of proteins, excellent fractionation of high molecular weight proteins, and excellent durability when used as a column. is not.
 そこで、本発明は、タンパク質の非特異吸着が少なく、高分子量タンパク質の分画性に優れ、かつ、カラムとして用いたときの耐久性に優れるゲルろ過用分離材を提供することを目的とする。本発明はまた、上記ゲルろ過用分離材を用いた水溶性高分子物質の精製方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a separation material for gel filtration that has less nonspecific adsorption of proteins, is excellent in high molecular weight protein fractionation properties, and has excellent durability when used as a column. Another object of the present invention is to provide a method for purifying a water-soluble polymer substance using the separation material for gel filtration.
 本発明は、下記[1]~[6]に記載のゲルろ過用分離材及び下記[7]に記載の水溶性高分子物質の精製方法を提供する。
[1]多孔質ポリマ粒子と、該多孔質ポリマ粒子の表面の少なくとも一部を被覆する、水酸基を有する高分子を含む被覆層と、を備え、湿潤状態における5%圧縮変形弾性率が100MPa以上である、ゲルろ過用分離材。
[2]多孔質ポリマ粒子が、スチレン系モノマをモノマ単位として含有するポリマを含む、[1]に記載のゲルろ過用分離材。
[3]水酸基を有する高分子が、多糖類又はその変性体である、[1]又は[2]に記載のゲルろ過用分離材。
[4]水酸基を有する高分子が架橋されている、[1]~[3]のいずれかに記載のゲルろ過用分離材。
[5]平均粒径が1~300μmである、[1]~[4]のいずれかに記載のゲルろ過用分離材。
[6]粒径の変動係数が1~50%である、[1]~[5]のいずれかに記載のゲルろ過用分離材。
[7][1]~[6]のいずれかに記載のゲルろ過用分離材を用いてゲルろ過クロマトグラフィーを行う、水溶性高分子物質の精製方法。
The present invention provides a separation material for gel filtration described in [1] to [6] below and a method for purifying a water-soluble polymer substance described in [7] below.
[1] A porous polymer particle and a coating layer containing a polymer having a hydroxyl group that covers at least a part of the surface of the porous polymer particle, and a 5% compressive deformation modulus in a wet state is 100 MPa or more. A separation material for gel filtration.
[2] The gel filtration separation material according to [1], wherein the porous polymer particles include a polymer containing a styrene monomer as a monomer unit.
[3] The gel filtration separation material according to [1] or [2], wherein the polymer having a hydroxyl group is a polysaccharide or a modified product thereof.
[4] The gel filtration separation material according to any one of [1] to [3], wherein a polymer having a hydroxyl group is crosslinked.
[5] The gel filtration separation material according to any one of [1] to [4], wherein the average particle size is 1 to 300 μm.
[6] The gel filtration separation material according to any one of [1] to [5], wherein the coefficient of variation in particle size is 1 to 50%.
[7] A method for purifying a water-soluble polymer substance, wherein gel filtration chromatography is performed using the gel filtration separation material according to any one of [1] to [6].
 本発明によれば、タンパク質の非特異吸着が少なく、高分子量タンパク質の分画性に優れ、かつ、カラムとして用いたときの耐久性に優れるゲルろ過用分離材を提供できる。本発明によればまた、上記ゲルろ過用分離材を用いた水溶性高分子物質の精製方法を提供できる。 According to the present invention, it is possible to provide a separation material for gel filtration that has less nonspecific adsorption of protein, is excellent in high molecular weight protein fractionation, and has excellent durability when used as a column. The present invention can also provide a method for purifying a water-soluble polymer substance using the above-described separation material for gel filtration.
 以下、本発明の好適な実施形態について説明をするが、本発明はこれらの実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
<分離材>
 本実施形態の分離材は、ゲルろ過用分離材である。本実施形態の分離材は、多孔質ポリマ粒子と、該多孔質ポリマ粒子の表面の少なくとも一部を被覆する、水酸基を有する高分子を含む被覆層と、を備え、湿潤状態における5%圧縮変形弾性率が100MPa以上である。このような分離材は、タンパク質の非特異吸着が少なく、高分子量タンパク質の分画性(分離性)及びカラムとして用いたときの耐久性に優れる。本実施形態の分離材はまた、カラムとして用いた時の通液性、耐圧性及び取り扱い性にも優れる。本実施形態の分離材は、強度にも優れると共に、真球に近い形状とすることもできる。真球状の分離材は、クロマトグラフィーで使用した場合、流体力学的に有利であると考えられる。また、本実施形態の分離材は、近い分子量のタンパク質同士の分画性にも優れる共に、長期にわたり安定的に対象物質を分離できる。
<Separation material>
The separation material of this embodiment is a separation material for gel filtration. The separation material of this embodiment includes porous polymer particles and a coating layer containing a polymer having a hydroxyl group that covers at least a part of the surface of the porous polymer particles, and is 5% compressive deformed in a wet state. The elastic modulus is 100 MPa or more. Such a separation material has less non-specific protein adsorption, and is excellent in high molecular weight protein fractionation (separability) and durability when used as a column. The separation material of this embodiment is also excellent in liquid permeability, pressure resistance and handling when used as a column. The separation material of the present embodiment is excellent in strength and can have a shape close to a true sphere. Spherical separators are considered hydrodynamically advantageous when used in chromatography. Moreover, the separation material of the present embodiment is excellent in the fractionation property between proteins having similar molecular weights and can stably separate the target substance over a long period of time.
 なお、本明細書中、「多孔質ポリマ粒子の表面」とは、多孔質ポリマ粒子の外側の表面のみでなく、多孔質ポリマ粒子の内部における細孔の表面を含むものとする。 In the present specification, the “surface of the porous polymer particle” includes not only the outer surface of the porous polymer particle but also the surface of the pores inside the porous polymer particle.
[多孔質ポリマ粒子]
 本実施形態に係る多孔質ポリマ粒子は、例えば、多孔質化剤の存在下でモノマを重合させて得られる粒子である。多孔質ポリマ粒子は、例えば、従来の懸濁重合及び乳化重合により合成できる。モノマとしては、特に限定されないが、耐久性が更に向上する観点及び耐アルカリ性が向上する観点から、例えば、スチレン系モノマを使用することができる。すなわち、多孔質ポリマ粒子は、スチレン系モノマを含むモノマを重合することにより得られるものであってもよい。ここで、スチレン系モノマとは、スチレン骨格を有するモノマをいう。本実施形態に係る多孔質ポリマ粒子は、スチレン系モノマをモノマ単位として含有するポリマを含んでいてもよい。また、本実施形態に係る多孔質ポリマ粒子は、スチレン系モノマに由来する構造単位を有するポリマを含んでいてもよい。
[Porous polymer particles]
The porous polymer particles according to this embodiment are, for example, particles obtained by polymerizing a monomer in the presence of a porosifying agent. The porous polymer particles can be synthesized by, for example, conventional suspension polymerization and emulsion polymerization. Although it does not specifically limit as a monomer, From a viewpoint which durability improves further, and a viewpoint which alkali resistance improves, for example, a styrene-type monomer can be used. That is, the porous polymer particles may be obtained by polymerizing a monomer containing a styrene monomer. Here, the styrene monomer means a monomer having a styrene skeleton. The porous polymer particles according to this embodiment may contain a polymer containing a styrene monomer as a monomer unit. The porous polymer particles according to the present embodiment may include a polymer having a structural unit derived from a styrene monomer.
 スチレン系モノマとしては、以下のような多官能性モノマ、単官能性モノマ等が挙げられる。 Examples of the styrene monomer include the following polyfunctional monomers and monofunctional monomers.
 スチレン系の多官能性モノマとしては、例えば、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ジビニルフェナントレン等のスチレン骨格を有するジビニル化合物が挙げられる。これらの多官能性モノマは、1種を単独で又は2種以上を組み合わせて用いることができる。上記の中でも、耐久性、耐酸性及び耐アルカリ性が更に向上する観点から、ジビニルベンゼンを使用することが好ましい。すなわち、多孔質ポリマ粒子は、ジビニルベンゼンをモノマ単位として含有するポリマを含んでいてもよい。 Examples of the styrenic polyfunctional monomer include divinyl compounds having a styrene skeleton such as divinylbenzene, divinylbiphenyl, divinylnaphthalene, and divinylphenanthrene. These polyfunctional monomers can be used alone or in combination of two or more. Among these, divinylbenzene is preferably used from the viewpoint of further improving durability, acid resistance and alkali resistance. That is, the porous polymer particles may contain a polymer containing divinylbenzene as a monomer unit.
 スチレン系の単官能性モノマとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等のスチレン及びその誘導体が挙げられる。カルボキシ基、アミノ基、水酸基、アルデヒド基等の官能基を有するスチレン誘導体も使用することができる。これらの単官能性モノマは、1種を単独で又は2種以上を組み合わせて用いることができる。上記の中でも、耐酸性及び耐アルカリ性が更に向上する観点から、スチレンを使用することが好ましい。 Examples of styrene monofunctional monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2 , 4-dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, p- Examples thereof include styrene such as n-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, and derivatives thereof. Styrene derivatives having a functional group such as a carboxy group, an amino group, a hydroxyl group, and an aldehyde group can also be used. These monofunctional monomers can be used alone or in combination of two or more. Among these, styrene is preferably used from the viewpoint of further improving acid resistance and alkali resistance.
 多孔質化剤としては、重合時に相分離を促し、粒子の多孔質化を促進する有機溶媒である脂肪族又は芳香族の炭化水素類、エステル類、ケトン類、エーテル類、アルコール類等が挙げられる。具体的には、トルエン、キシレン、ジエチルベンゼン、シクロヘキサン、オクタン、酢酸ブチル、フタル酸ジブチル、メチルエチルケトン、ジブチルエーテル、1-ヘキサノール、2-オクタノール、デカノール、ラウリルアルコール、シクロヘキサノール等が挙げられる。これらの多孔質化剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 Examples of the porosifying agent include aliphatic or aromatic hydrocarbons, esters, ketones, ethers, alcohols, and the like, which are organic solvents that promote phase separation at the time of polymerization and promote pore formation of particles. It is done. Specific examples include toluene, xylene, diethylbenzene, cyclohexane, octane, butyl acetate, dibutyl phthalate, methyl ethyl ketone, dibutyl ether, 1-hexanol, 2-octanol, decanol, lauryl alcohol, cyclohexanol and the like. These porosifying agents can be used singly or in combination of two or more.
 上記多孔質化剤は、モノマ全質量に対して、例えば、0~200質量%使用できる。多孔質化剤の量によって、多孔質ポリマ粒子の空隙率をコントロールできる。さらに、多孔質化剤の種類によって、多孔質ポリマ粒子の細孔の大きさ及び形状をコントロールすることができる。 The above porous agent can be used, for example, in an amount of 0 to 200% by mass with respect to the total mass of the monomer. The porosity of the porous polymer particles can be controlled by the amount of the porous agent. Furthermore, the size and shape of the pores of the porous polymer particles can be controlled by the kind of the porous agent.
 溶媒として使用する水を多孔質化剤とすることもできる。水を多孔質化剤とする場合は、例えば、モノマに油溶性界面活性剤を溶解させ、水を吸収することによって、粒子を多孔質化し得る。 Water used as a solvent can be used as a porous agent. When water is used as the porosifying agent, the particles can be made porous by, for example, dissolving an oil-soluble surfactant in the monomer and absorbing water.
 多孔質化に使用される油溶性界面活性剤としては、分岐C16~C24脂肪酸、鎖状不飽和C16~C22脂肪酸又は鎖状飽和C12~C14脂肪酸のソルビタンモノエステル、例えば、ソルビタンモノラウレート、ソルビタンモノオレエート、ソルビタンモノミリステート又はヤシ脂肪酸から誘導されるソルビタンモノエステル;分岐C16~C24脂肪酸、鎖状不飽和C16~C22脂肪酸又は鎖状飽和C12~C14脂肪酸のジグリセロールモノエステル、例えば、ジグリセロールモノオレエート(例えば、C18:1(炭素数18個、二重結合数1個)脂肪酸のジグリセロールモノエステル)、ジグリセロールモノミリステート、ジグリセロールモノイソステアレート又はヤシ脂肪酸のジグリセロールモノエステル;分岐C16~C24アルコール(例えば、ゲルベアルコール)、鎖状不飽和C16~C22アルコール又は鎖状飽和C12~C14アルコール(例えば、ヤシ脂肪アルコール)のジグリセロールモノ脂肪族エーテル;及びこれらの混合物が挙げられる。 Examples of the oil-soluble surfactant used for the porosification include sorbitan monoesters of branched C16 to C24 fatty acids, chain unsaturated C16 to C22 fatty acids or chain saturated C12 to C14 fatty acids, such as sorbitan monolaurate, sorbitan Sorbitan monoesters derived from monooleate, sorbitan monomyristate or coconut fatty acid; diglycerol monoesters of branched C16-C24 fatty acids, chain unsaturated C16-C22 fatty acids or chain saturated C12-C14 fatty acids, for example di- Glycerol monooleate (for example, diglycerol monoester of C18: 1 (18 carbon atoms, 1 double bond) fatty acid), diglycerol monomyristate, diglycerol monoisostearate or diglycerol monoester of coconut fatty acid Ester; Branch C16 ~ 24 alcohol (e.g., Guerbet alcohols), linear unsaturated C16 ~ C22 alcohols or linear saturated C12 ~ C14 alcohols (e.g., coconut fatty alcohols) diglycerol mono-fatty ethers; and mixtures thereof.
 これらのうち、ソルビタンモノラウレート(例えば、SPAN(スパン、登録商標)20、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるソルビタンモノラウレート);ソルビタンモノオレエート(例えば、SPAN(スパン、登録商標)80、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるソルビタンモノオレエート);ジグリセロールモノオレエート(例えば、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるジグリセロールモノオレエート);ジグリセロールモノイソステアレート(例えば、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるジグリセロールモノイソステアレート);ジグリセロールモノミリステート(例えば、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるソルビタンモノミリステート);ジグリセロールのココイル(例えば、ラウリル基及びミリストイル基)エーテル;又はこれらの混合物が好ましい。 Of these, sorbitan monolaurate (eg, SPAN 20), preferably having a purity of greater than about 40%, more preferably greater than about 50%, and even more preferably greater than about 70%. Sorbitan monooleate (e.g., SPAN 80), preferably greater than about 40%, more preferably greater than about 50%, and even more preferably greater than about 70% sorbitan monooleate ); Diglycerol monooleate (eg, diglycerol monooleate having a purity of preferably greater than about 40%, more preferably greater than about 50%, even more preferably greater than about 70%); diglycerol monoisostearate (For example, the purity is preferably greater than about 40%, more preferably about 50%. Greater than, more preferably greater than about 70% diglycerol monoisostearate); diglycerol monomyristate (eg, preferably greater than about 40%, more preferably greater than about 50%, even more preferably about 70% purity). % Of sorbitan monomyristate); a cocoyl (eg, lauryl and myristoyl group) ether of diglycerol; or a mixture thereof.
 これらの油溶性界面活性剤は、モノマ全質量に対して、5~80質量%の範囲で用いることが好ましい。油溶性界面活性剤の含有量が5質量%以上であると、水滴の安定性が向上し易いことから、大きな単一孔を形成し易い。油溶性界面活性剤の含有量が80質量%以下であると、重合後に多孔質ポリマ粒子が形状をより保持し易くなる。 These oil-soluble surfactants are preferably used in the range of 5 to 80% by mass relative to the total mass of the monomer. When the content of the oil-soluble surfactant is 5% by mass or more, the stability of the water droplets is easily improved, so that a large single hole is easily formed. When the content of the oil-soluble surfactant is 80% by mass or less, the porous polymer particles are more easily retained in shape after polymerization.
 重合反応に用いられる水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体等が挙げられる。水性媒体には、界面活性剤が含まれていてもよい。界面活性剤としては、アニオン系、カチオン系、ノニオン系及び両性イオン系の界面活性剤のうち、いずれも用いることができる。 Examples of the aqueous medium used for the polymerization reaction include water, a mixed medium of water and a water-soluble solvent (for example, lower alcohol), and the like. The aqueous medium may contain a surfactant. As the surfactant, any of anionic, cationic, nonionic and zwitterionic surfactants can be used.
 アニオン系界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、及びポリオキシエチレンアルキル硫酸エステル塩が挙げられる。 Examples of the anionic surfactant include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone. Acid salts, alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates Salts, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate salts
 カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、及びラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩が挙げられる。 Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
 ノニオン系界面活性剤としては、例えば、ポリエチレングリコールアルキルエーテル類、ポリエチレングリコールアルキルアリールエーテル類、ポリエチレングリコールエステル類、ポリエチレングリコールソルビタンエステル類、ポリアルキレングリコールアルキルアミン又はアミド類等の炭化水素系ノニオン界面活性剤、シリコンのポリエチレンオキサイド付加物類、ポリプロピレンオキサイド付加物類等のポリエーテル変性シリコン系ノニオン界面活性剤、及びパーフルオロアルキルグリコール類等のフッ素系ノニオン界面活性剤が挙げられる。 Nonionic surfactants include, for example, hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides. Agents, polyether-modified silicon nonionic surfactants such as silicon polyethylene oxide adducts and polypropylene oxide adducts, and fluorine nonionic surfactants such as perfluoroalkyl glycols.
 両性イオン系界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド等の炭化水素界面活性剤、リン酸エステル系界面活性剤及び亜リン酸エステル系界面活性剤が挙げられる。 Examples of zwitterionic surfactants include hydrocarbon surfactants such as lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite ester surfactants.
 界面活性剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤の中でも、モノマ重合時の分散安定性の観点から、アニオン系界面活性剤が好ましい。 Surfactant may be used alone or in combination of two or more. Among the surfactants, anionic surfactants are preferable from the viewpoint of dispersion stability during monomer polymerization.
 必要に応じて添加される重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;及び2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物が挙げられる。重合開始剤は、モノマ100質量部に対して、例えば、0.1~7.0質量部の範囲で使用することができる。 Examples of the polymerization initiator added as necessary include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, tert-butyl peroxide. Organic peroxides such as oxy-2-ethylhexanoate and di-tert-butyl peroxide; and 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 And azo compounds such as' -azobis (2,4-dimethylvaleronitrile). The polymerization initiator can be used, for example, in the range of 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the monomer.
 重合温度は、モノマ及び重合開始剤の種類に応じて、適宜選択することができる。重合温度は、例えば、25~110℃であってもよく、50~100℃であってもよい。 The polymerization temperature can be appropriately selected according to the type of monomer and polymerization initiator. The polymerization temperature may be, for example, 25 to 110 ° C. or 50 to 100 ° C.
 多孔質ポリマ粒子の合成において、粒子の分散安定性を向上させるために、高分子分散安定剤を添加してもよい。 In the synthesis of porous polymer particles, a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the particles.
 高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース等)、及びポリビニルピロリドンが挙げられ、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物も併用することができる。これらのうち、ポリビニルアルコール又はポリビニルピロリドンが好ましい。高分子分散安定剤の添加量は、モノマ100質量部に対して、例えば、1~10質量部であってもよい。 Examples of the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, etc.), and polyvinyl pyrrolidone, and inorganic water-soluble polymer compounds such as sodium tripolyphosphate are also included. Can be used together. Of these, polyvinyl alcohol or polyvinyl pyrrolidone is preferred. The amount of the polymer dispersion stabilizer added may be, for example, 1 to 10 parts by mass with respect to 100 parts by mass of the monomer.
 モノマが単独で重合することを抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。 In order to suppress the polymerization of the monomer alone, a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, polyphenols and the like may be used.
 多孔質ポリマ粒子の平均粒径は、分離能が更に向上し易い観点から、例えば、300μm以下であってもよく、150μm以下であってもよく、100μm以下であってもよい。多孔質ポリマ粒子の平均粒径は、通液性の向上の観点から、例えば、1μm以上であってもよく、10μm以上であってもよく、30μm以上であってもよく、50μm以上であってもよい。これらの観点から、多孔質ポリマ粒子の平均粒径は、例えば、1~300μmであってもよく、10~150μmであってもよく、30~100μmであってもよく、50~100μmであってもよい。 The average particle diameter of the porous polymer particles may be, for example, 300 μm or less, 150 μm or less, or 100 μm or less, from the viewpoint of further improving the separability. From the viewpoint of improving liquid permeability, the average particle diameter of the porous polymer particles may be, for example, 1 μm or more, 10 μm or more, 30 μm or more, or 50 μm or more. Also good. From these viewpoints, the average particle diameter of the porous polymer particles may be, for example, 1 to 300 μm, 10 to 150 μm, 30 to 100 μm, or 50 to 100 μm. Also good.
 多孔質ポリマ粒子の粒径の変動係数(C.V.)は、通液性が向上し易い観点から、例えば、1~50%であってもよく、3~15%であってもよく、5~15%であってもよく、5~10%であってもよい。C.V.を低減する方法としては、マイクロプロセスサーバー(株式会社日立製作所)等の乳化装置により単分散化することが挙げられる。 The coefficient of variation (CV) of the particle size of the porous polymer particles may be, for example, 1 to 50% or 3 to 15% from the viewpoint of easy improvement of liquid permeability. It may be 5 to 15% or 5 to 10%. C. V. As a method for reducing the above, monodispersion by an emulsification apparatus such as a microprocess server (Hitachi Ltd.) can be mentioned.
 多孔質ポリマ粒子又は分離材の平均粒径及び粒径のC.V.(変動係数)は、以下の測定法により求めることができる。
1)粒子(多孔質ポリマ粒子又は分離材)を、超音波分散装置を使用して水(界面活性剤等の分散剤を含む)に分散させ、1質量%の粒子を含む分散液を調製する。
2)粒度分布計(シスメックスフロー、シスメックス株式会社製)を用いて、上記分散液中の粒子約1万個の画像により平均粒径及び粒径のC.V.(変動係数)を測定する。
C. of average particle size and particle size of porous polymer particles or separator V. (Coefficient of variation) can be determined by the following measurement method.
1) Disperse particles (porous polymer particles or separation material) in water (including a dispersant such as a surfactant) using an ultrasonic dispersion device to prepare a dispersion containing 1% by mass of particles. .
2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), an average particle size and particle size of C.I. V. (Coefficient of variation) is measured.
[被覆層]
 本実施形態に係る被覆層は、水酸基を有する高分子を含む。水酸基を有する高分子で多孔質ポリマ粒子を被覆することにより、カラム圧の上昇及びタンパク質の非特異吸着を抑制し易い。水酸基を有する高分子は、カラム圧の上昇を更に抑制し易い観点及び多孔質ポリマ粒子と被覆層とが剥離し難い観点から、例えば、架橋されていてもよい。
[Coating layer]
The coating layer according to the present embodiment includes a polymer having a hydroxyl group. By covering the porous polymer particles with a polymer having a hydroxyl group, it is easy to suppress an increase in column pressure and nonspecific adsorption of proteins. The polymer having a hydroxyl group may be cross-linked, for example, from the viewpoint of further suppressing the increase in the column pressure and from the viewpoint that the porous polymer particles and the coating layer are difficult to peel off.
(水酸基を有する高分子)
 水酸基を有する高分子は、1分子中に2個以上の水酸基を有することが好ましく、親水性高分子であることがより好ましい。水酸基を有する高分子としては、例えば、多糖類及びポリビニルアルコールが挙げられる。多糖類としては、例えば、アガロース、デキストラン、セルロース及びキトサンが挙げられる。水酸基を有する高分子の重量平均分子量は、例えば、10000以上であってもよい。水酸基を有する高分子は、1種を単独で又は2種以上を組み合わせて用いてもよい。
(Polymer having a hydroxyl group)
The polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule, and more preferably a hydrophilic polymer. Examples of the polymer having a hydroxyl group include polysaccharides and polyvinyl alcohol. Examples of the polysaccharide include agarose, dextran, cellulose, and chitosan. The weight average molecular weight of the polymer having a hydroxyl group may be, for example, 10,000 or more. The polymer having a hydroxyl group may be used singly or in combination of two or more.
 水酸基を有する高分子は、粒子との界面吸着能を向上させる観点から、疎水基により変性された変性体(疎水基変性体)であってもよい。疎水基としては、例えば、炭素数1~6のアルキル基、及び炭素数6~10のアリール基が挙げられる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基及びプロピル基が挙げられる。炭素数6~10のアリール基としては、例えば、フェニル基及びナフチル基が挙げられる。疎水基は、水酸基と反応する官能基(例えば、エポキシ基)及び疎水基を有する化合物(例えば、グリシジルフェニルエーテル)を、水酸基を有する高分子と従来公知の方法で反応させることにより、導入することができる。 The polymer having a hydroxyl group may be a modified body (hydrophobic group-modified body) modified with a hydrophobic group from the viewpoint of improving the interfacial adsorption ability with the particles. Examples of the hydrophobic group include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a propyl group. Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group. A hydrophobic group is introduced by reacting a functional group that reacts with a hydroxyl group (for example, an epoxy group) and a compound having a hydrophobic group (for example, glycidyl phenyl ether) with a polymer having a hydroxyl group by a conventionally known method. Can do.
 水酸基を有する高分子が疎水基変性体である場合、疎水基変性体を構成する全構成単位の総モル量(疎水基を含有する構成単位及び疎水基を含有しない構成単位のモル量の総和)に対する、疎水基を含有する構成単位の含有割合(以下、「疎水基含有量」ともいう)は、粒子表面に吸着するための疎水的相互作用力の保持と、タンパク質の非特異吸着の抑制のバランスの観点から、例えば、5~30%であってもよく、10~20%であってもよく、12~17%であってもよい。 When the polymer having a hydroxyl group is a hydrophobic group-modified product, the total molar amount of all structural units constituting the hydrophobic group-modified product (sum of the molar amounts of the structural unit containing a hydrophobic group and the structural unit not containing a hydrophobic group) The content ratio of the structural unit containing a hydrophobic group (hereinafter also referred to as “hydrophobic group content”) is to maintain the hydrophobic interaction force for adsorbing to the particle surface and to suppress nonspecific adsorption of proteins. From the viewpoint of balance, for example, it may be 5 to 30%, 10 to 20%, or 12 to 17%.
 水酸基を有する高分子は、分離材表面の親水性が向上し易い観点から、例えば、多糖類又はその変性体であってもよい。多糖類の変性体としては、例えば、疎水基変性体が挙げられる。 The polymer having a hydroxyl group may be, for example, a polysaccharide or a modified product thereof from the viewpoint of easily improving the hydrophilicity of the separation material surface. Examples of modified polysaccharides include hydrophobic group-modified products.
(水酸基を有する高分子を含む被覆層の形成方法)
 本実施形態に係る被覆層は、例えば、以下に示す方法により形成することができる。
(Method for forming a coating layer containing a polymer having a hydroxyl group)
The coating layer according to the present embodiment can be formed by, for example, the following method.
 まず、水酸基を有する高分子の溶液を多孔質ポリマ粒子表面に吸着させる。上記溶液の溶媒としては、水酸基を有する高分子を溶解することのできるものであれば、特に限定されないが、水が最も一般的である。溶媒に溶解させる高分子の濃度は、5~20(mg/mL)が好ましい。 First, a polymer solution having a hydroxyl group is adsorbed on the surface of the porous polymer particles. The solvent of the solution is not particularly limited as long as it can dissolve a polymer having a hydroxyl group, but water is the most common. The concentration of the polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
 具体的には、例えば、上記溶液を、多孔質ポリマ粒子に含浸させる。含浸方法は、水酸基を有する高分子の溶液に多孔質ポリマ粒子を加えて一定時間放置する。含浸時間は多孔質ポリマ粒子の表面状態によっても変わるが、通常一昼夜含浸すれば高分子濃度が多孔質ポリマ粒子の内部で外部濃度と平衡状態となる。その後、水、アルコール等の溶媒で洗浄し、未吸着分の水酸基を有する高分子を除去する。 Specifically, for example, the polymer solution is impregnated with the above solution. In the impregnation method, porous polymer particles are added to a polymer solution having a hydroxyl group and left for a predetermined time. Although the impregnation time varies depending on the surface state of the porous polymer particles, the polymer concentration is in equilibrium with the external concentration inside the porous polymer particles if it is usually impregnated overnight. Then, it wash | cleans with solvents, such as water and alcohol, and remove | eliminates the polymer which has a hydroxyl group which is not adsorb | sucked.
(架橋処理)
 次いで、架橋剤を加えて多孔質ポリマ粒子表面に吸着された水酸基を有する高分子を架橋反応させて、架橋体を形成する。このとき、架橋体は、水酸基を有する3次元架橋網目構造を有する。
(Crosslinking treatment)
Next, a crosslinking agent is added to cause the polymer having a hydroxyl group adsorbed on the surface of the porous polymer particles to undergo a crosslinking reaction to form a crosslinked body. At this time, the crosslinked body has a three-dimensional crosslinked network structure having a hydroxyl group.
 架橋剤としては、例えば、エピクロルヒドリン等のエピハロヒドリン、グルタルアルデヒド等のジアルデヒド化合物、メチレンジイソシアネート等のジイソシアネート化合物、エチレングリコールジグリシジルエーテル等のグリシジル化合物などのような水酸基に活性な官能基を2個以上有する化合物が挙げられる。また、水酸基を有する高分子としてキトサンのようなアミノ基を有する化合物を使用する場合には、ジクロロオクタンのようなジハライド化合物も架橋剤として使用できる。 As the crosslinking agent, for example, an epihalohydrin such as epichlorohydrin, a dialdehyde compound such as glutaraldehyde, a diisocyanate compound such as methylene diisocyanate, a glycidyl compound such as ethylene glycol diglycidyl ether, and two or more functional groups active on a hydroxyl group. The compound which has is mentioned. Further, when a compound having an amino group such as chitosan is used as the polymer having a hydroxyl group, a dihalide compound such as dichlorooctane can also be used as a crosslinking agent.
 この架橋反応には通常触媒が用いられる。該触媒は架橋剤の種類に合わせて適宜従来公知のものを用いることができるが、例えば、架橋剤がエピクロルヒドリン等の場合には水酸化ナトリウム等のアルカリが有効であり、架橋剤がジアルデヒド化合物の場合には塩酸等の鉱酸が有効である。 A catalyst is usually used for this crosslinking reaction. As the catalyst, a conventionally known catalyst can be appropriately used according to the type of the crosslinking agent. For example, when the crosslinking agent is epichlorohydrin or the like, an alkali such as sodium hydroxide is effective, and the crosslinking agent is a dialdehyde compound. In this case, a mineral acid such as hydrochloric acid is effective.
 架橋剤による架橋反応は、通常、水酸基を有する高分子を吸着させた多孔質ポリマ粒子を、適当な媒体中に分散、懸濁させた系に架橋剤を添加することによって行われる。架橋剤の添加量は、水酸基を有する高分子として多糖類又はその変性体を使用した場合、単糖類の1単位を1モルとすると、それに対して0.1~100モル倍の範囲内で、目的とする分離材の性能に応じて選定することができる。架橋剤の濃度が高いと、高分子が有する三次元網目構造の網目が小さくなり易く、架橋剤の濃度が低いと、高分子が有する三次元網目構造の網目が大きくなり易いと考えられる。したがって、架橋剤の添加量は、例えば、分離材による精製対象物の分子量の観点から、適宜調整してもよい。架橋剤の添加量が0.1モル倍以上であると、被覆層が多孔質ポリマ粒子から剥離し難い傾向にある。架橋剤の添加量が100モル倍以下であると、水酸基を有する高分子との反応率が低い場合であっても、架橋体が有する三次元網目構造の網目サイズが小さくなり易いことから、ゲルろ過分離材として使用した際に、低い分子量の物質の分画性が更に向上すると考えられる。 The crosslinking reaction with a crosslinking agent is usually performed by adding a crosslinking agent to a system in which porous polymer particles adsorbing a polymer having a hydroxyl group are dispersed and suspended in an appropriate medium. When the polysaccharide or a modified product thereof is used as the polymer having a hydroxyl group, the amount of the crosslinking agent added is within a range of 0.1 to 100 mol times with respect to 1 mol of one unit of the monosaccharide. It can be selected according to the performance of the target separation material. When the concentration of the crosslinking agent is high, the network of the three-dimensional network structure possessed by the polymer is likely to be small, and when the concentration of the crosslinking agent is low, the network of the three-dimensional network structure possessed by the polymer is likely to be large. Therefore, the addition amount of the crosslinking agent may be appropriately adjusted from the viewpoint of the molecular weight of the object to be purified by the separating material, for example. When the addition amount of the crosslinking agent is 0.1 mol times or more, the coating layer tends to hardly peel from the porous polymer particles. When the addition amount of the crosslinking agent is 100 mol times or less, the network size of the three-dimensional network structure of the crosslinked body tends to be small even when the reaction rate with the polymer having a hydroxyl group is low. When used as a filter separation material, it is considered that the fractionation property of a substance having a low molecular weight is further improved.
 また、架橋反応時の触媒の使用量としては、架橋剤の種類にもよるが、水酸基を有する高分子として多糖類を使用する場合、通常、多糖類を形成する単糖類の1単位を1モルとすると、これに対して好ましくは0.01~10モル倍の範囲、より好ましくは0.1~5モル倍で使用される。 The amount of the catalyst used in the crosslinking reaction depends on the type of crosslinking agent, but when a polysaccharide is used as the polymer having a hydroxyl group, usually 1 mol of one unit of monosaccharide forming the polysaccharide is used. Then, it is preferably used in the range of 0.01 to 10 mole times, more preferably 0.1 to 5 mole times.
 例えば、該架橋反応条件を温度条件とした場合、反応系の温度を上げ、その温度が反応温度に達すれば架橋反応が生起する。 For example, when the cross-linking reaction condition is a temperature condition, the temperature of the reaction system is raised, and the cross-linking reaction occurs when the temperature reaches the reaction temperature.
 水酸基を有する高分子の溶液等を含浸させた多孔質ポリマ粒子を分散、懸濁させる媒体としては含浸させた高分子溶液から高分子、架橋剤等を抽出してしまうことなく、かつ、架橋反応に不活性なものである必要がある。その具体例としては、水、トルエン、ジクロルベンゼン、ニトロメタン等が挙げられる。 As a medium for dispersing and suspending porous polymer particles impregnated with a polymer solution having a hydroxyl group, the polymer or crosslinking agent is not extracted from the impregnated polymer solution, and a crosslinking reaction is performed. Must be inert. Specific examples thereof include water, toluene, dichlorobenzene, nitromethane and the like.
 架橋反応は、通常、5~90℃の範囲の温度で、1~10時間かけて行うことができる。架橋反応の温度は、好ましくは、30~90℃である。 The crosslinking reaction can be usually performed at a temperature in the range of 5 to 90 ° C. for 1 to 10 hours. The temperature of the crosslinking reaction is preferably 30 to 90 ° C.
 架橋反応終了後、生成した粒子をろ別し、次いで、メタノール、エタノール等の親水性有機溶媒で洗浄し、未反応の高分子、懸濁用媒体等を除去する。これにより、多孔質ポリマ粒子の表面の少なくとも一部が、水酸基を有する高分子を含む被覆層により被覆され、かつ、水酸基を有する高分子が架橋されている分離材が得られる。必要に応じ、上記架橋処理の工程を省略してもよい。 After completion of the crosslinking reaction, the produced particles are filtered off and then washed with a hydrophilic organic solvent such as methanol or ethanol to remove unreacted polymer, suspending medium and the like. As a result, a separating material is obtained in which at least a part of the surface of the porous polymer particles is covered with a coating layer containing a polymer having a hydroxyl group, and the polymer having a hydroxyl group is crosslinked. If necessary, the cross-linking treatment step may be omitted.
 本実施形態において、湿潤状態における分離材の5%圧縮変形弾性率は、100MPa以上である。湿潤状態における分離材の5%圧縮変形弾性率が100MPa未満である場合、分離材の柔軟性が高まることにより分離材が変形し易いために、カラム内において圧密化してカラム圧が高くなると考えられる。一方で、湿潤状態における分離材の5%圧縮変形弾性率が100MPa以上である場合、このようなカラム圧の上昇が抑制され易いと共に、タンパク質の非特異吸着が低減され易いと考えられる。 In this embodiment, the 5% compression deformation elastic modulus of the separating material in a wet state is 100 MPa or more. When the 5% compressive deformation elastic modulus of the separating material in a wet state is less than 100 MPa, it is considered that the separating material is easily deformed by increasing the flexibility of the separating material, so that the column pressure is increased due to consolidation in the column. . On the other hand, when the 5% compression deformation modulus of the separating material in a wet state is 100 MPa or more, it is considered that such an increase in column pressure is easily suppressed and nonspecific adsorption of proteins is easily reduced.
 ここで、「湿潤状態」とは、水分により飽和した状態を指す。湿潤状態を維持するには、測定する直前に水中から分離材を取り出して使用することが好ましい。「湿潤状態」においては、通常、粒子表面及び粒子内の細孔が水(純水等)を含んでいる。 Here, “wet state” refers to a state saturated with moisture. In order to maintain the wet state, it is preferable to use the separating material taken out of water immediately before the measurement. In the “wet state”, the particle surface and the pores in the particle usually contain water (pure water or the like).
 本実施形態の分離材の5%圧縮変形弾性率(例えば、分離材を50mNで圧縮したときの5%圧縮変形弾性率)は、以下のようにして算出することができる。
 微小圧縮試験機(Fisher製)を用いて、室温(25℃)にて荷重負荷速度1mN/秒で四角柱の平滑な端面(50μm×50μm)により分離材を0mNから50mNまで圧縮したときの荷重及び圧縮変位を測定する。得られた測定値から、分離材が5%圧縮変形したときの圧縮変形弾性率(5%K値)を下記式により求めることができる。
  5%K値(MPa)=(3/21/2)×F×S-3/2×R-1/2
 F:分離材が5%圧縮変形したときの荷重(mN)
 S:分離材が5%圧縮変形したときの圧縮変位(μm)
 R:分離材の半径(μm)
The 5% compression deformation elastic modulus (for example, 5% compression deformation elastic modulus when the separation material is compressed at 50 mN) of the separation material of the present embodiment can be calculated as follows.
Using a micro compression tester (manufactured by Fisher), the load when the separating material is compressed from 0 mN to 50 mN with a smooth end face (50 μm × 50 μm) of a square column at a load rate of 1 mN / sec at room temperature (25 ° C.). And measure the compression displacement. From the measured value obtained, the compression deformation elastic modulus (5% K value) when the separating material is 5% compressively deformed can be obtained by the following formula.
5% K value (MPa) = (3/2 1/2 ) × F × S −3/2 × R −1/2
F: Load (mN) when the separating material is 5% compressively deformed
S: Compression displacement (μm) when the separating material is 5% compressively deformed.
R: radius of separation material (μm)
 湿潤状態における分離材の5%圧縮変形弾性率は、タンパク質の非特異吸着を更に低減し易い観点及びカラム長さを長くしても粒子が変形し難い観点から、例えば、110MPa以上であってもよく、120MPa以上であってもよく、130MPa以上であってもよい。湿潤状態における分離材の5%圧縮変形弾性率は、例えば、1000MPa以下であってもよく、950MPa以下であってもよく、900MPa以下であってもよく、500MPa以下であってもよい。 The 5% compressive deformation elastic modulus of the separating material in a wet state is, for example, 110 MPa or more from the viewpoint of further reducing nonspecific adsorption of proteins and from the viewpoint that particles are not easily deformed even if the column length is increased. It may be 120 MPa or more, or 130 MPa or more. The 5% compressive deformation elastic modulus of the separating material in the wet state may be, for example, 1000 MPa or less, 950 MPa or less, 900 MPa or less, or 500 MPa or less.
 分離材の5%圧縮変形弾性率は、架橋剤の種類及び使用量、被覆層の量等により調整することができる。例えば、架橋剤の使用量又は被覆層の量が多いほど、5%圧縮変形弾性率が大きくなる傾向がある。 The 5% compressive deformation modulus of the separating material can be adjusted by the type and amount of crosslinking agent used, the amount of coating layer, and the like. For example, as the amount of the crosslinking agent used or the amount of the coating layer increases, the 5% compressive deformation modulus tends to increase.
 本実施形態の分離材の平均粒径は、分離能が更に向上し易い観点から、例えば、300μm以下であってもよく、150μm以下であってもよく、100μm以下であってもよい。分離材の平均粒径は、通液性の向上の観点から、例えば、1μm以上であってもよく、10μm以上であってもよく、30μm以上であってもよく、50μm以上であってもよい。これらの観点から、分離材の平均粒径は、例えば、1~300μmであってもよく、10~150μmであってもよく、30~100μmであってもよく、50~100μmであってもよい。 The average particle diameter of the separation material of the present embodiment may be, for example, 300 μm or less, 150 μm or less, or 100 μm or less from the viewpoint of further improving the separation performance. From the viewpoint of improving liquid permeability, the average particle diameter of the separating material may be, for example, 1 μm or more, 10 μm or more, 30 μm or more, or 50 μm or more. . From these viewpoints, the average particle diameter of the separating material may be, for example, 1 to 300 μm, 10 to 150 μm, 30 to 100 μm, or 50 to 100 μm. .
 本実施形態の分離材の粒径の変動係数(C.V.)は、例えば、1%以上であってもよく、3%以上であってもよく、5%以上であってもよい。上記変動係数は、例えば、50%以下であってもよく、15%以下であってもよく、10%以下であってもよい。本実施形態の分離材の粒径の変動係数(C.V.)は、通液性が向上し易い観点から、例えば、1~50%であってもよく、3~15%であってもよく、5~15%であってもよく、5~10%であってもよい。 The variation coefficient (CV) of the particle size of the separation material of the present embodiment may be, for example, 1% or more, 3% or more, or 5% or more. The variation coefficient may be, for example, 50% or less, 15% or less, or 10% or less. The coefficient of variation (CV) of the particle size of the separating material of the present embodiment may be, for example, 1 to 50% or 3 to 15% from the viewpoint of easy improvement of liquid permeability. It may be 5 to 15% or 5 to 10%.
 本実施形態の分離材は、多孔質ポリマ粒子1g当たり30~500mgの被覆層を備えることが好ましい。被覆層の量は熱分解の重量減少等で測定することができる。 The separation material of the present embodiment preferably includes a coating layer of 30 to 500 mg per 1 g of porous polymer particles. The amount of the coating layer can be measured by reducing the weight of pyrolysis.
 本実施形態の分離材は、カラムに充填した場合、カラム圧0.3MPaのときに通液速度が800cm/h以上であることが好ましい。カラムクロマトグラフィーでタンパク質の分離を行う場合、タンパク質溶液等の通液速度としては、一般に400cm/h以下の範囲であるが、本実施形態の分離材を使用した場合は、通常のタンパク質分離用の分離材よりも速い通液速度800cm/h以上で使用することができる。 When the separation material of this embodiment is packed in a column, it is preferable that the liquid passing speed is 800 cm / h or more when the column pressure is 0.3 MPa. When separating proteins by column chromatography, the flow rate of protein solution or the like is generally in the range of 400 cm / h or less. However, when the separation material of the present embodiment is used, the separation rate for normal protein separation is as follows. It can be used at a liquid passing speed of 800 cm / h or more faster than the separating material.
 なお、本明細書における通液速度とは、φ7.8×300mmのステンレスカラムに本実施形態の分離材を充填し、液を通した際の通液速度を表す。 In addition, the liquid flow rate in this specification represents the liquid flow rate when the separation material of this embodiment is filled in a stainless steel column of φ7.8 × 300 mm and the liquid is passed.
 本実施形態の分離材は、多孔質ポリマ粒子上に水酸基を有する高分子を含む被覆層を備えることにより、タンパク質等の生体高分子の分離において、天然高分子からなる粒子又は合成ポリマからなる粒子のそれぞれの利点を有する。また、本実施形態の分離材は、タンパク質の非特異吸着が少ないことから、タンパク質の不可逆吸着が起こりにくい傾向にある。さらに、本実施形態の分離材は、同一流速下でのカラム圧が低い傾向にある。 The separation material of the present embodiment is provided with a coating layer containing a polymer having a hydroxyl group on porous polymer particles, whereby particles made of natural polymers or particles made of synthetic polymers in the separation of biopolymers such as proteins. Each has its advantages. Moreover, since the separation material of this embodiment has few nonspecific adsorption | suction of protein, it exists in the tendency for the irreversible adsorption | suction of a protein to occur easily. Furthermore, the separation material of this embodiment tends to have a low column pressure under the same flow rate.
 本実施形態の分離材は、生体高分子をサイズ排除精製による分離に用いるのに好適であり、本実施形態の分離材は、カラムクロマトグラフィーにおいて、使用することが可能である。本実施形態の分離材は、例えば、液体クロマトグラフィー用のものである。本実施形態の分離材を用いて分離できる生体高分子としては、水溶性物質が好ましい。 The separation material of the present embodiment is suitable for use in separation by size exclusion purification of biopolymers, and the separation material of the present embodiment can be used in column chromatography. The separation material of this embodiment is for liquid chromatography, for example. The biopolymer that can be separated using the separation material of the present embodiment is preferably a water-soluble substance.
[水溶性高分子物質の精製方法]
 本実施形態の水溶性高分子物質の精製方法は、本実施形態のゲルろ過用分離材を用いてゲルろ過クロマトグラフィーを行うものである。精製対象である水溶性高分子物質としては、例えば、水溶性の生体高分子が挙げられる。水溶性の生体高分子としては、例えば、血清アルブミン、免疫グロブリン等の血液タンパク質などのタンパク質、生体中に存在する酵素、バイオテクノロジーにより生産されるタンパク質生理活性物質、DNA、及び、生理活性をするペプチドが挙げられる。精製される水溶性高分子物質の重量平均分子量は、例えば、200万以下であってもよく、50万以下であってもよい。また、公知の方法に従い、タンパク質の等電点、イオン化状態等によって、分離材の性質、条件等を選んでもよい。公知の方法としては、例えば、特開昭60-169427号公報等に記載の方法が挙げられる。
[Method for purifying water-soluble polymer]
The purification method of the water-soluble polymer substance of the present embodiment performs gel filtration chromatography using the separation material for gel filtration of the present embodiment. Examples of the water-soluble polymer substance to be purified include water-soluble biopolymers. Examples of water-soluble biopolymers include proteins such as serum albumin and blood proteins such as immunoglobulins, enzymes present in living bodies, protein bioactive substances produced by biotechnology, DNA, and bioactivity. Peptides are mentioned. The weight average molecular weight of the water-soluble polymer substance to be purified may be, for example, 2 million or less, or 500,000 or less. Further, according to a known method, the properties, conditions, etc. of the separation material may be selected according to the isoelectric point, ionization state, etc. of the protein. Examples of known methods include the methods described in JP-A-60-169427.
 精製対象となる水溶性高分子物質の具体例は、サイログロブリン、ガンマグロブリン、牛血清アルブミン、ミオグロビン及びウラシルを含む。水溶性高分子物質の質量(kDa)は、例えば、0.01~10000kDaであってもよく、0.05~5000kDaであってもよく、0.1~1000kDaであってもよい。 Specific examples of water-soluble polymer substances to be purified include thyroglobulin, gamma globulin, bovine serum albumin, myoglobin, and uracil. The mass (kDa) of the water-soluble polymer substance may be, for example, 0.01 to 10,000 kDa, 0.05 to 5000 kDa, or 0.1 to 1000 kDa.
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
[実施例1]
(多孔質ポリマ粒子の合成)
 500mLの三口フラスコに、モノマとして純度96%のジビニルベンゼン(新日鉄住金化学株式会社製、商品名:DVB960)を16g、多孔質化剤としてヘキサノールを16g、及びジエチルベンゼンを16g、開始剤として過酸化ベンゾイルを0.64g加え、分散相とした。また、0.5質量%のポリビニルアルコール水溶液を連続相として使用した。この連続相と分散相とをマイクロプロセスサーバーを使用して乳化した後、得られた乳化液をフラスコに移し、80℃のウォーターバスで加熱しながら、攪拌機を用いて約8時間撹拌した。得られた粒子をろ別した後、アセトンで洗浄し、多孔質ポリマ粒子を得た(以下、本実施例で得られた多孔質ポリマ粒子を「多孔質ポリマ粒子1」という)。多孔質ポリマ粒子1の粒径をフロー型粒径測定装置で測定し、平均粒径及び粒径のC.V.値(変動係数)を算出した。結果を表1に示す。
[Example 1]
(Synthesis of porous polymer particles)
In a 500 mL three-necked flask, 16 g of 96% pure divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: DVB960), 16 g of hexanol as a porous agent, 16 g of diethylbenzene, and benzoyl peroxide as an initiator Was added to obtain a dispersed phase. Moreover, 0.5 mass% polyvinyl alcohol aqueous solution was used as a continuous phase. After emulsifying the continuous phase and the dispersed phase using a microprocess server, the obtained emulsion was transferred to a flask and stirred for about 8 hours using a stirrer while heating in a water bath at 80 ° C. The obtained particles were filtered and then washed with acetone to obtain porous polymer particles (hereinafter, the porous polymer particles obtained in this example are referred to as “porous polymer particles 1”). The particle size of the porous polymer particles 1 was measured with a flow type particle size measuring device, and the average particle size and particle size C.I. V. The value (coefficient of variation) was calculated. The results are shown in Table 1.
(水酸基を有する高分子(疎水基変性アガロース)の合成)
 アガロース水溶液(2質量%)480mLに、水酸化ナトリウム0.98g及びグリシジルフェニルエーテル4.90gを投入して60℃で6時間反応させ、アガロースにフェニル基を導入した。得られた変性アガロースをイソプロピルアルコールで再沈殿させ、洗浄した。変性アガロースの疎水基含有量を下記方法により算出したところ、14.2%であった。
(Synthesis of polymer having hydroxyl group (hydrophobic group-modified agarose))
To 480 mL of an agarose aqueous solution (2% by mass), 0.98 g of sodium hydroxide and 4.90 g of glycidyl phenyl ether were added and reacted at 60 ° C. for 6 hours to introduce a phenyl group into the agarose. The obtained modified agarose was reprecipitated with isopropyl alcohol and washed. The hydrophobic group content of the modified agarose was calculated by the following method and found to be 14.2%.
(変性アガロースの疎水基含有量の評価)
 乾燥状態の粉末アガロース(変性されていないアガロース)と、揮発分0.1質量%未満まで乾燥させた変性アガロースをそれぞれ70℃の純水に溶解させ、0.05質量%の水溶液サンプルを調製した。
(Evaluation of hydrophobic group content of modified agarose)
Dry powder agarose (unmodified agarose) and denatured agarose dried to a volatile content of less than 0.1% by mass were each dissolved in pure water at 70 ° C. to prepare a 0.05% by mass aqueous solution sample. .
 分光光度計により各水溶液の269nmの吸光度を測定して濃度を求め、下記式より疎水基含有量を算出した。
・疎水基含有量(%)=(CAG/(CHAG+CAG))×100
・CAG:変性されているアガロース構成単位の濃度(mmol/L)
 =A/εGPE×1000
・CHAG:変性されていないアガロース構成単位の濃度(mmol/L)
 =(変性されてないアガロース構成単位の濃度(g/L)/アガロース構成単位(306g/mol))×1000
・A:疎水基導入アガロースの真の吸光度
 =疎水基を導入したアガロースの吸光度-変性されていないアガロースの吸収
・εGPE:グリシジルフェニルエーテルの吸光係数
 =1372(L/(mol・cm))
・変性されていないアガロースの吸収=変性されてないアガロースの吸光度×(変性アガロースのサンプル濃度(mmol/L)/変性されてないアガロースのサンプル濃度(mmol/L))
・変性されてないアガロース構成単位の濃度(g/L)=変性アガロースのサンプル濃度(質量%)×10-変性されているアガロース構成単位の濃度(g/L)
・変性されているアガロース成単位の濃度(g/L)=(CAG×変性されているアガロース構成単位(456g/mol))/1000
The absorbance at 269 nm of each aqueous solution was measured with a spectrophotometer to determine the concentration, and the hydrophobic group content was calculated from the following formula.
Hydrophobic group content (%) = (C AG / (C HAG + C AG )) × 100
C AG : concentration of denatured agarose constituent unit (mmol / L)
= A / ε GPE × 1000
C HAG : Concentration of unmodified agarose constituent unit (mmol / L)
= (Concentration of unmodified agarose constituent unit (g / L) / Agarose constituent unit (306 g / mol)) × 1000
A: True absorbance of hydrophobic group-introduced agarose = Absorbance of agarose into which hydrophobic group has been introduced-Absorption of unmodified agarose • ε GPE : Absorption coefficient of glycidyl phenyl ether = 1372 (L / (mol · cm))
Absorption of undenatured agarose = absorbance of undenatured agarose × (sample concentration of denatured agarose (mmol / L) / sample concentration of unmodified agarose (mmol / L))
Non-denatured agarose constituent unit concentration (g / L) = denatured agarose sample concentration (mass%) × 10−denatured agarose constituent unit concentration (g / L)
Density of modified agarose unit (g / L) = (C AG × modified agarose constituent unit (456 g / mol)) / 1000
 また、粒子に吸着した変性アガロースの疎水基含有量は、粒子0.2gを1M硫酸10mL中にて、70℃、5時間処理し、処理液を分光光度計にて269nmの吸光度を測定して処理液濃度を求めることで、同様に算出できる。 The hydrophobic group content of the modified agarose adsorbed on the particles was determined by treating 0.2 g of the particles in 10 mL of 1M sulfuric acid at 70 ° C. for 5 hours, and measuring the absorbance at 269 nm with a spectrophotometer. It can calculate similarly by calculating | requiring a process liquid density | concentration.
(変性アガロースの吸着及び架橋)
 20mg/mLの変性アガロース水溶液に多孔質ポリマ粒子1を70mL/粒子gの濃度で投入し、55℃で24時間攪拌して、多孔質ポリマ粒子1に変性アガロースを吸着させた。変性アガロースが吸着した粒子をろ別して、更に熱水で洗浄した。
(Adsorption and cross-linking of modified agarose)
Porous polymer particles 1 were added to a 20 mg / mL modified agarose aqueous solution at a concentration of 70 mL / particle g and stirred at 55 ° C. for 24 hours to adsorb the modified polymer particles 1 to the porous polymer particles 1. The particles adsorbed with the modified agarose were filtered off and further washed with hot water.
 変性アガロースは次のようにして架橋した。変性アガロースが吸着した粒子10gを、0.4M水酸化ナトリウム水溶液に分散させ、架橋剤(エピクロロヒドリン)濃度が0.04Mとなるように架橋剤を添加し、8時間室温にて攪拌した。その後、2質量%の熱ドデシル硫酸ナトリウム水溶液で洗浄後、純水で洗浄した。得られた粒子を乾燥して、分離材を得た。得られた分離材を熱重量分析することにより、多孔質ポリマ粒子1g当たりの被覆層の質量(mg/粒子g)を算出した。また、得られた分離材の粒径をフロー型粒径測定装置で測定し、平均粒径及び粒径のC.V.値(変動係数)を算出した。これらの結果を表2に示す。 The modified agarose was crosslinked as follows. 10 g of particles adsorbed with modified agarose were dispersed in a 0.4 M aqueous sodium hydroxide solution, a crosslinking agent (epichlorohydrin) was added to a concentration of 0.04 M, and the mixture was stirred at room temperature for 8 hours. . Then, after washing with 2% by mass of hot sodium dodecyl sulfate aqueous solution, it was washed with pure water. The obtained particles were dried to obtain a separating material. The mass of the coating layer per 1 g of porous polymer particles (mg / particle g) was calculated by thermogravimetric analysis of the obtained separating material. Further, the particle size of the obtained separating material was measured with a flow type particle size measuring device, and the average particle size and particle size of C.I. V. The value (coefficient of variation) was calculated. These results are shown in Table 2.
(タンパク質の非特異吸着量評価)
 得られた分離材0.2gをBSA(Bovine Serum Albumin)濃度24mg/mLのTris-塩酸緩衝液(pH8.0)20mLに投入し、24時間室温で攪拌した。その後、遠心分離を行って上澄み液をとった。分光光度計で上澄み液の280nmの吸光度を測定することによって求めた上澄み液中のBSA濃度から、粒子に吸着したBSA量を算出した。粒子1mLあたりのBSA吸着量を、非特異吸着量として評価した。結果を表2に示す。
(Evaluation of non-specific adsorption amount of protein)
0.2 g of the obtained separating material was put into 20 mL of Tris-hydrochloric acid buffer (pH 8.0) having a BSA (Bovine Serum Albumin) concentration of 24 mg / mL and stirred at room temperature for 24 hours. Then, it centrifuged and took the supernatant liquid. The amount of BSA adsorbed on the particles was calculated from the BSA concentration in the supernatant obtained by measuring the absorbance at 280 nm of the supernatant with a spectrophotometer. The amount of BSA adsorbed per mL of particles was evaluated as the amount of nonspecific adsorption. The results are shown in Table 2.
(湿潤状態における5%圧縮変形弾性率)
 微小圧縮試験機(Fisher製)を用いて、室温(25℃)にて荷重負荷速度1mN/秒で四角柱の平滑な端面(50μm×50μm)により、湿潤状態の分離材を0mNから50mNまで圧縮し、分離材の5%圧縮変形弾性率を測定した。結果を表2に示す。
(5% compressive deformation modulus in wet condition)
Using a micro compression tester (manufactured by Fisher), compressing the wet separation material from 0 mN to 50 mN with a smooth end face (50 μm × 50 μm) of a square prism at a load rate of 1 mN / sec at room temperature (25 ° C.). Then, the 5% compressive deformation elastic modulus of the separating material was measured. The results are shown in Table 2.
(カラムの充填)
 分離材を濃度30質量%のスラリー(溶媒:メタノール)として、15分かけて、φ7.8×300mmのステンレスカラムに充填した。
(Packing the column)
The separation material was packed in a stainless steel column of φ7.8 × 300 mm as a slurry (solvent: methanol) having a concentration of 30% by mass over 15 minutes.
(耐久性評価)
 分離材を充填したカラムに、800cm/hの流速で水を流し、カラム圧を測定後、3000cm/hに流速を上昇させ、1時間通液させた。再度800cm/hに流速を下げてカラム圧を測定した。流速を下げた後のカラム圧が初期値(3000cm/hに流速を上げる前のカラム圧)より10%以上上昇した場合を「B」、カラム圧の上昇量が10%未満である場合を「A」として評価した。結果を表2に示す。
(Durability evaluation)
Water was passed through the column filled with the separation material at a flow rate of 800 cm / h, and after measuring the column pressure, the flow rate was increased to 3000 cm / h and allowed to flow for 1 hour. The column pressure was measured again by reducing the flow rate to 800 cm / h. “B” indicates that the column pressure after the flow rate has decreased is 10% or more from the initial value (column pressure before increasing the flow rate to 3000 cm / h), and “B” indicates that the increase in column pressure is less than 10%. Evaluated as “A”. The results are shown in Table 2.
(タンパク質分離評価)
 上記の分離材を充填したカラムに、36mg/mLに調整した5種類の標準タンパク質溶液を100μLインジェクトし、カラム通液後の溶液をUV(280nm)でモニタリングしてそれぞれの溶出時間を比較した。標準タンパク質は、サイログロブリン(660kDa)、ガンマグロブリン(150kDa)、牛血清アルブミン(66kDa)、ミオグロビン(17kDa)及びウラシル(112Da)を使用した。溶離液は、50mMリン酸緩衝液(pH7.4)を使用し、流速は0.5mL/minとした。表3に、各タンパク質溶液の溶出時間を示す。
(Protein separation evaluation)
100 μL of 5 kinds of standard protein solutions adjusted to 36 mg / mL were injected into the column packed with the above separating material, and the solutions after passing through the column were monitored by UV (280 nm) to compare the elution times. . Standard proteins used were thyroglobulin (660 kDa), gamma globulin (150 kDa), bovine serum albumin (66 kDa), myoglobin (17 kDa) and uracil (112 Da). The eluent used was 50 mM phosphate buffer (pH 7.4), and the flow rate was 0.5 mL / min. Table 3 shows the elution time of each protein solution.
[実施例2]
 実施例1と同様にして、多孔質ポリマ粒子を合成し、得られた多孔質ポリマ粒子を評価した(以下、本実施例で得られた多孔質ポリマ粒子を「多孔質ポリマ粒子2」という)。結果を表1に示す。
[Example 2]
In the same manner as in Example 1, porous polymer particles were synthesized, and the obtained porous polymer particles were evaluated (hereinafter, the porous polymer particles obtained in this example are referred to as “porous polymer particles 2”). . The results are shown in Table 1.
 架橋剤の添加量を、架橋剤(エピクロロヒドリン)濃度が0.4Mとなるような量としたこと以外は、実施例1と同様にして、分離材を作製し、これを評価した。評価結果を表2及び表3に示す。 A separating material was prepared and evaluated in the same manner as in Example 1 except that the amount of the crosslinking agent added was such that the concentration of the crosslinking agent (epichlorohydrin) was 0.4M. The evaluation results are shown in Tables 2 and 3.
[比較例1]
 市販のアガロース粒子(Sepharose 6 FF、GEヘルスケア)を準備した(以下、「アガロース粒子1」という)。多孔質ポリマ粒子1及び2と同様の方法で、アガロース粒子1の平均粒径及び粒径のC.V.値(変動係数)を算出した。結果を表1に示す。アガロース粒子1をそのまま分離材として用い、実施例1と同様に評価した。結果を表2及び表3に示す。
[Comparative Example 1]
Commercially available agarose particles (Sepharose 6 FF, GE Healthcare) were prepared (hereinafter referred to as “agarose particles 1”). In the same manner as the porous polymer particles 1 and 2, the average particle diameter and the C.I. V. The value (coefficient of variation) was calculated. The results are shown in Table 1. Agarose particles 1 were used as they were as a separating material and evaluated in the same manner as in Example 1. The results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3に示すとおり、実施例1、2の分離材は、タンパク質の非特異吸着が少なく、高分子量タンパク質の分画性にも優れ、かつ、カラムとして用いたときの耐久性に優れることがわかる。また、実施例1、2の分離材を用いてゲルろ過クロマトグラフィーを行うことにより、水溶性高分子物質を精製できることがわかる。 As shown in Tables 2 and 3, the separation materials of Examples 1 and 2 have less protein non-specific adsorption, excellent fractionation of high molecular weight proteins, and excellent durability when used as a column. I understand that. Moreover, it turns out that a water-soluble polymer substance can be refine | purified by performing a gel filtration chromatography using the separating material of Example 1,2.

Claims (7)

  1.  多孔質ポリマ粒子と、
     該多孔質ポリマ粒子の表面の少なくとも一部を被覆する、水酸基を有する高分子を含む被覆層と、を備え、
     湿潤状態における5%圧縮変形弾性率が100MPa以上である、ゲルろ過用分離材。
    Porous polymer particles;
    A coating layer containing a polymer having a hydroxyl group, covering at least a part of the surface of the porous polymer particles,
    A separation material for gel filtration having a 5% compressive deformation elastic modulus in a wet state of 100 MPa or more.
  2.  前記多孔質ポリマ粒子が、スチレン系モノマをモノマ単位として含有するポリマを含む、請求項1に記載のゲルろ過用分離材。 The separation material for gel filtration according to claim 1, wherein the porous polymer particles include a polymer containing a styrene monomer as a monomer unit.
  3.  前記水酸基を有する高分子が、多糖類又はその変性体である、請求項1又は2に記載のゲルろ過用分離材。 The separation material for gel filtration according to claim 1 or 2, wherein the polymer having a hydroxyl group is a polysaccharide or a modified product thereof.
  4.  前記水酸基を有する高分子が架橋されている、請求項1~3のいずれか一項に記載のゲルろ過用分離材。 The separation material for gel filtration according to any one of claims 1 to 3, wherein the polymer having a hydroxyl group is crosslinked.
  5.  平均粒径が1~300μmである、請求項1~4のいずれか一項に記載のゲルろ過用分離材。 The separation material for gel filtration according to any one of claims 1 to 4, wherein the average particle size is 1 to 300 µm.
  6.  粒径の変動係数が1~50%である、請求項1~5のいずれか一項に記載のゲルろ過用分離材。 6. The separation material for gel filtration according to any one of claims 1 to 5, wherein the coefficient of variation in particle size is 1 to 50%.
  7.  請求項1~6のいずれか一項に記載のゲルろ過用分離材を用いてゲルろ過クロマトグラフィーを行う、水溶性高分子物質の精製方法。 A method for purifying a water-soluble polymer substance, wherein gel filtration chromatography is performed using the gel filtration separation material according to any one of claims 1 to 6.
PCT/JP2018/013692 2017-03-30 2018-03-30 Separating material for gel filtration and method for purifying water-soluble polymer substance WO2018181925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019510266A JPWO2018181925A1 (en) 2017-03-30 2018-03-30 Separation material for gel filtration and method for purifying water-soluble polymer substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068078 2017-03-30
JP2017-068078 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181925A1 true WO2018181925A1 (en) 2018-10-04

Family

ID=63676602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013692 WO2018181925A1 (en) 2017-03-30 2018-03-30 Separating material for gel filtration and method for purifying water-soluble polymer substance

Country Status (2)

Country Link
JP (1) JPWO2018181925A1 (en)
WO (1) WO2018181925A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515640A (en) * 2009-01-22 2012-07-12 フレセニウス メディカル ケア ドイチェランド ゲーエムベーハー A sorbent for removing protein binding substances
WO2016117574A1 (en) * 2015-01-19 2016-07-28 日立化成株式会社 Separation material
US20160231208A1 (en) * 2013-10-03 2016-08-11 3M Innovative Properties Company Ligand-functionalized substrates with enhanced binding capacity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515640A (en) * 2009-01-22 2012-07-12 フレセニウス メディカル ケア ドイチェランド ゲーエムベーハー A sorbent for removing protein binding substances
US20160231208A1 (en) * 2013-10-03 2016-08-11 3M Innovative Properties Company Ligand-functionalized substrates with enhanced binding capacity
WO2016117574A1 (en) * 2015-01-19 2016-07-28 日立化成株式会社 Separation material

Also Published As

Publication number Publication date
JPWO2018181925A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6778382B2 (en) Separator
WO2016117572A1 (en) Separation material
JP2017192897A (en) Separation material and column
JP2017122643A (en) Separation material and column
JP6476887B2 (en) Separation material
JP2021030181A (en) Method for producing separation material, separation material, and packed column
JP6972606B2 (en) Separation material, column, and method for manufacturing the separation material
JP6778381B2 (en) Separator
WO2018181925A1 (en) Separating material for gel filtration and method for purifying water-soluble polymer substance
WO2020036151A1 (en) Separating material, method of manufacturing separating material, and column
JP2017125815A (en) Separation material and column
JP6759679B2 (en) Separator and column
JP6746919B2 (en) Separation material and column
JP6676975B2 (en) Separation materials and columns
JP6834132B2 (en) Separator and column
JP6939021B2 (en) Separator and column
JP6874276B2 (en) Separator and column
JP6676976B2 (en) Separation materials and columns
JP6926573B2 (en) Separator and column
JP6852259B2 (en) Separator and column
JP6746915B2 (en) Separation material and column
WO2018174022A1 (en) Separation material
JP6834130B2 (en) Separator and column
JP2020018989A (en) Separation material
JP2017125797A (en) Separation material and column

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775251

Country of ref document: EP

Kind code of ref document: A1